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Spectral correlations are a powerful tool to study the dynamics of quantum many-body systems. For
Hermitian Hamiltonians, quantum chaotic motion is related to random matrix theory spectral correlations.
Based on recent progress in the application of spectral analysis to non-Hermitian quantum systems, we
show that local level statistics, which probe the dynamics around the Heisenberg time, of a non-Hermitian
q-body Sachdev-Ye-Kitev (nHSYK) model with N Majorana fermions, and its chiral and complex-fermion
extensions, are also well described by random matrix theory for q > 2, while for q ¼ 2, they are given by
the equivalent of Poisson statistics. For that comparison, we combine exact diagonalization numerical
techniques with analytical results obtained for some of the random matrix spectral observables. Moreover,
depending on q and N, we identify 19 out of the 38 non-Hermitian universality classes in the nHSYK
model, including those corresponding to the tenfold way. In particular, we realize explicitly 14 out of the 15
universality classes corresponding to non-pseudo-Hermitian Hamiltonians that involve universal bulk
correlations of classes AI† and AII†, beyond the Ginibre ensembles. These results provide strong evidence
of striking universal features in nonunitary many-body quantum chaos, which in all cases can be captured
by nHSYK models with q > 2.
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I. INTRODUCTION

Calculations in strongly interacting quantum systems are
generically difficult. The spectrum of the Hamiltonian is
arguably one of the least expensive quantities that can be
computed numerically. Moreover, the spectrum is basis
invariant, and that, especially in many-body systems, is a
substantial advantage. These facts help us understand the
relevance of the Bohigas-Giannoni-Schmit (BGS) conjec-
ture [1], which states that spectral correlations of quantum
chaotic systems at the scale of the mean level spacing are
given by the predictions of random matrix theory. It
provides a simple, both conceptually and practically, but
still very powerful link between the analysis of the

spectrum and the quantum dynamics. More importantly, it
points to a very robust universality of the late-time quantum
dynamics under relatively mild conditions and with rela-
tively well-understood exceptions due to phenomena like
Anderson localization or integrability. Global antiunitary
symmetries, and not dynamical features, label different
universality classes, which are rigorously classified using
random matrix theory (RMT), the so-called tenfold way [2].
Although the Berry-Tabor conjecture [3] states a similar
spectral characterization of integrable systems, its applicabil-
ity is more restricted because, in some sense, each integrable
system is integrable in its own way.
As an illustration of the aforementioned universality, the

study of spectral correlations to characterize quantum
motion encompasses multiple disciplines with no direct
relation between them. It started 70 years ago in the context
of nuclear physics, where Wigner showed [4] that short-
range spectral correlations of highly excited states of nuclei
are well described by random matrix theory. In the 1970s
and 1980s, interest gradually shifted from nuclear physics
to the dynamics of single-particle Hamiltonians in both
deterministic [1] and random [5] potentials. Later, it was
successfully applied [6,7] to describe the level statistics of
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the lattice QCD Dirac operator in the presence of gauge
configurations. The chiral symmetry of the Dirac operator
led to the proposal of universality classes in the context of
random matrix theory, which were the direct precedent of
the tenfold way [8]. In recent years, it has also found
applications in quantum gravity after the proposal [9] that a
certain universal bound on chaos is saturated in field
theories with a gravity dual. More specifically, it is a
bound on the growth of particular out-of-time-order corre-
lation functions in the semiclassical limit. For quantum
chaotic systems, the growth is exponential around the
Ehrenfest time with a rate controlled by the classical
Lyapunov exponent. In the early days of quantum chaos
theory [10,11], this exponential growth was broadly
employed to characterize quantum chaos in single-particle
Hamiltonians.
More recently, Kitaev [12] showed analytically that a

system of N fermions with q-body random interactions in
zero spatial dimensions, which is now called the Sachdev-
Ye-Kitaev (SYK) model, saturates the bound of Ref. [9],
which indicates the existence of a gravity dual. Indeed, in
the strong-coupling, low-temperature limit, it shares with
Jackiw-Teitelboim (JT) gravity [13,14]—a near-AdS2
background—the same low-energy effective Schwarzian
action. Therefore, the study of the SYK model could reveal
features of nonperturbative quantum gravity in low dimen-
sions. Along this line, the observation that level statistics of
the SYKmodel are well described by randommatrix theory
[15–17] is suggestive that quantum black holes in JT
gravity are also quantum chaotic at all but the shortest
timescales. Indeed, the relation between SYK and JT
gravity is not restricted to black holes, as other gravity
configurations like wormholes [18,19] have been shown to
be closely related to two identical SYK models in the low-
temperature limit. As temperature increases, a first-order
phase transition takes place, which can also be character-
ized [20] by level statistics. By tuning q and N, and
considering also Dirac fermions, it is possible to reproduce
all ten universality classes [21–27]. Although, in the past,
similar models with Dirac fermions have been intensively
investigated [28–34] in nuclear physics, condensed matter,
and many-body quantum chaos, it was Kitaev’s demon-
stration that quantum chaos and strong interactions could,
to some extent, coexist with analytical tractability, together
with its relevance in quantum gravity, that has brought SYK
to the research forefront in theoretical physics.
So far, we have restricted our discussion to closed systems

where the spectrum is real. However, non-Hermitian [35]
effective descriptions of quantum Hamiltonians appear in a
multitude of problems: quantum dissipative systems [36,37]
such as cold atoms in dynamical optical potentials, the
Euclidean QCD Dirac operator at nonzero chemical poten-
tial [38,39], photons with parity-time symmetry [40], the
scattering matrix of open quantum systems from quantum
dots [41] to compound nuclei [42], and flux lines depinned
from columnar defects by a transverse magnetic field in

superconductivity [43]. Recently, the application of random
matrix theory to generic open quantum systems has also
gathered pace. Modeling the generators of driven or dis-
sipative quantum dynamics as randommatrices has led to an
understanding of the spectral distributions, typical time-
scales, spectral gaps, and steady-state properties of open
systems described by random Lindbladians [44–53], quan-
tum channels [54–57], and Markov generators [52,58].
The universality of correlations in non-Hermitian sys-

tems has also been the subject of great interest. Spectral
correlations of random non-Hermitian matrices of the so-
called Ginibre ensembles [59], defined by the real, com-
plex, or quaternionic nature of the matrix entries, are
relatively well understood, with explicit results for both
the three standard universality classes [60] and the three
chiral classes [61–64] that have found applications, e.g., in
the context of Euclidean QCD at finite baryonic chemical
potential. However, according to the full classification of
symmetries in non-Hermitian random matrices [65,66],
there are 38 non-Hermitian universality classes. It turns out
that the Ginibre ensemble is only one of the three
universality classes [67,68] for local level statistics in
non-Hermitian random matrix theory. The other two, called
AI† and AII†, are defined in terms of transposition
symmetry instead of complex conjugation. For instance,
they describe the spectral correlations of the QCD Dirac
operator in two-color QCD coupled to a chiral Uð1Þ gauge
field [39,61].
The progress in the development of a full classification

scheme has not yet fully translated into a systematic
spectral characterization of non-Hermitian quantum chaotic
systems (see Ref. [69] for a recent study focused on open
fermionic quantum matter). First, there is no equivalent of
the BGS conjecture, so the relation between dynamics and
level statistics is unclear. There are also additional technical
problems: Correlations of complex eigenvalues are weak-
ened, and the necessary unfolding of eigenvalues may be
problematic [47], in particular, when the eigenvalue dis-
tribution is not radially symmetric. However, these prob-
lems have been ameliorated in the last years with the
introduction of spectral observables that do not require
unfolding for short-range correlators, such as the ratio of
spacings between nearest-neighbor eigenvalues [70], which
have found applications in the study of collective-spin
Liouvillians [71], non-Hermitian Anderson transitions
[72–74], directed random graphs [75], nonunitary open
quantum circuits [76,77], two-color QCD [39], and the
classical-quantum transition [52]. The study of long-range
correlators such as the number variance [78–81] or spectral
form factor [82,83] (which requires unfolding) further
suggests that some weakened form of spectral rigidity is
still present in non-Hermitian systems and will be the
subject of a separate publication [84].
To address the issues mentioned in the previous para-

graph, one needs a many-body system where it is possible
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to test the results of random matrix theory, including the
existence of many more universality classes; at the same
time, this system should be simple enough to be amenable
to an analytical and numerical treatment so that it is
possible to independently probe the nature of the non-
Hermitian quantum dynamics. In this paper, we propose
that this model is the non-Hermitian SYK (nHSYK) model.
We focus our study on the local level statistics of this
model, which probes the quantum dynamics for long
timescales of the order of the Heisenberg time. For
q ¼ 2, we find that the spectrum is largely uncorrelated
and well described by the equivalent of Poisson statistics.
For q > 2, there is excellent agreement with the predictions
of non-Hermitian random matrix theory in short-range
correlators like the complex spacing ratio [70] and micro-
scopic correlators near the hard edge. The latter, in
particular, have remained unaddressed for all but the
Ginibre universality classes.
Depending on both q with values 3, 4, or 6, and N, we

have explicitly identified 19 of the 38 classes for non-
Hermitian systems and, in particular, 14 of the 15 corre-
sponding to non-pseudo-Hermitian Hamiltonians. This
encompasses nHSYK models belonging to different
complex Ginibre, complex symmetric, and quaternionic
symmetric universality classes; non-Hermitian Wishart-
Sachdev-Ye-Kitaev (nHWSYK) models, a chiral extension
of the nHSYKmodel realizing further non-Hermitian chiral
classes; and non-Hermitian complex-fermion SYK models.
Finally, we note that different non-Hermitian variants of

the SYK model have recently been investigated [19,85–88]
in the literature. However, both the employed models and
the focus of these studies are quite different from ours. In
Ref. [19], the gravity dual of two complex conjugate copies
of a q ¼ 4 nHSYK model was identified as a Euclidean
wormhole by an analysis of the free energy. The role
of replica-symmetry-breaking solutions in the low-
temperature limit of the free energy of two copies of a
nHSYK has been investigated in Ref. [85]. The entangle-
ment entropy and an emergent replica conformal symmetry
were recently studied in chains of q ¼ 2 nHSYK models
[87,88]. The Page curve [89], describing the process of
black hole evaporation [86], was computed by an effec-
tively open SYK model, where the role of the environment
is played by a q ¼ 2 SYK.

II. SACHDEV-YE-KITAEV MODEL WITH
COMPLEX COUPLINGS

We study a single non-Hermitian SYK model of N
Majorana fermions in (0þ 1) dimensions with q-body
interactions in Fock space, with complex instead of real
couplings:

H ¼
XN

i1<i2<���<iq
ðJi1i2���iq þ iMi1i2���iqÞψ i1ψ i2 � � �ψ iq ; ð1Þ

where Ji1���iq and Mi1���iq are Gaussian-distributed random
variables with zero average and variance [12,90],

σ2 ¼ 1

6ð2NÞq−1 ; ð2Þ

and fψ i;ψ jg ¼ 2δij. The Majorana fermions can be rep-
resented by 2N=2-dimensional Hermitian Dirac γ matrices,
and below, we denote them by γi. For our analytical
considerations, we work in a basis where the odd- and
even-numbered γ matrices are represented by real sym-
metric and purely imaginary antisymmetric matrices,
respectively. We consider the cases q ¼ 2, 3, 4, and 6,
and the number of fermions, N, is always even.
The Hamiltonian has, in general, a complex spectrum.

However, depending on q, it could have some additi-
onal symmetry. For instance, for q ¼ 3, we see that it has a
chiral symmetry Ei → −Ei, where Ei is, in general,
complex.

III. SPECTRAL DENSITY

We start our analysis with the study of the spectral
density of the nHSYK model. We compute its spectrum by
exact diagonalization techniques for values of N ≤ 28. For
each set of parameters, we obtain at least 106 eigenvalues.
We recall that for real couplings and a fixed finite N ≫ 1,
q > 2, or N; q → ∞ with q=

ffiffiffiffi
N

p
finite [91], the spectral

density close to the ground state grows exponentially, a
feature also typical of quantum black holes. For odd q,
when the “Hamiltonian” is the supercharge of a super-
symmetric theory, the system (i.e., the supercharge) has
chiral symmetry. The spectral density close to zero energy,
controlled by the chiral symmetry, is well described [22,27]
by the universal predictions of random matrix theory [7]
belonging to a universality class that depends on the
number N of Majoranas. Numerical results for the complex
spectral density, depicted in Figs. 1–4, indicate a rotation-
ally invariant spectrum for all q and N. The reason for
this is that the probability density can be written as
expð−cTrHH†Þ, which is invariant under multiplication
of the spectrum by a constant phase. For q > 2, the spectral
support ends in a rather sharp edge similar to that observed
in random matrix ensembles.
For q ¼ 2 and q ¼ 4—see Figs. 1 and 3, respectively—

the spectral density has a maximum in the central region of
small jEj with a monotonous decay towards a rather sharp
edge for q ¼ 4. In contrast, for q ¼ 3, the spectral density
depicted in Fig. 2 has a richer structure. Depending on N,
we observe different degrees of suppression, or enhance-
ment, of the spectral density, followed by a maximum at
intermediate distances. In some cases, we also observe
universal oscillations close to zero on the scale of the level
spacing due to a spectral inversion symmetry E → −E. For
q ¼ 6 (see Fig. 4), we also observe the effect of inversion
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symmetry for N ¼ 20 and N ¼ 24, but otherwise, the
spectral density is almost constant. In the next section, we
study, in more detail, the relation between these special
spectral features and additional global symmetries of the

nHSYK Hamiltonian. This will eventually lead to a full
match between different universality classes and specific
nHSYK Hamiltonians, depending on N and q, that imple-
ment them.

FIG. 1. Spectral density associated with the complex eigenvalues of the nHSYK Hamiltonian of Eq. (1) for q ¼ 2 and N ¼ 18 (left
panel) and 20 (right panel). The spectral density is radially symmetric, and it has a maximum in the jEj ∼ 0 region and then decreases
monotonically with no sign of a sharp spectral edge. There is no qualitative dependence on N. We see that the level correlations are not
quantum chaotic.

FIG. 2. Spectral density associated with the eigenvalues of the nHSYK Hamiltonian of Eq. (1) for q ¼ 3 and N ¼ 18 (top-left panel),
20 (top-right panel), 22 (bottom-left panel), and 24 (bottom-right panel). The spectral density is radially symmetric but qualitatively
different from the q ¼ 2 case. In all cases, the spectrum has a sharp edge that becomes discontinuous in the thermodynamical limit, and
the maximum is not at the center but rather in a ring not far from the edge. The chiral symmetry of the spectrum E → −E has a rather
profound effect on the density in the region jEj ∼ 0. We can observe the characteristic oscillations for N ¼ 18 near jEj ¼ 0. The spectral
density is, in general, suppressed in this region, though the suppression strength and pattern are dependent on N. These features are
related to different non-Hermitian universality classes.
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IV. SYMMETRY CLASSIFICATION

As is the case with Hermitian Hamiltonians, non-
Hermitian Hamiltonians are classified by symmetries of
the irreducible blocks of the unitary symmetries. What
remains are antiunitary symmetries and involutive sym-
metries. There are two possibilities for antiunitary sym-
metries of H, ½T þ; H� ¼ 0 with T 2þ ¼ �1. [Here, the
subscript refers to the sign in the commutation relation

in the first column of Eqs. (3)–(8) below.] Regarding
involutive symmetries, we have the chiral symmetry
fΠ; Hg ¼ 0 and the antiunitary symmetry fT −; Hg ¼ 0,
again with T 2

− ¼ �1. For non-Hermitian matrices, we have
the additional possibility to map H → H†, in combination
with the anti-unitary symmetries. We thus arrive at the
following symmetries [61,65–67,69,92–96]:

T þHT −1þ ¼ H; T 2þ ¼ �1; T þ antiunitary ðtime-reversal symmetryÞ; ð3Þ

T −HT −1
− ¼ −H; T 2

− ¼ �1; T − antiunitary ðparticle-hole symmetryÞ; ð4Þ

CþH†C−1þ ¼ H; C2þ ¼ �1; Cþ antiunitary ðtime-reversal symmetryÞ; ð5Þ

C−H†C−1− ¼ −H; C2− ¼ �1; C− antiunitary ðparticle-hole symmetryÞ; ð6Þ

ΠHΠ−1 ¼ −H; Π2 ¼ 1; Π unitary ðchiral symmetryÞ; ð7Þ

ηH†η−1 ¼ H; η2 ¼ 1; η unitary ðpseudo-HermiticityÞ: ð8Þ

FIG. 3. Spectral density associated with the complex eigenvalues of the nHSYKHamiltonian of Eq. (1) for q ¼ 4 andN ¼ 18 (top-left
panel), 20 (top-right panel), 22 (bottom-left panel), and 24 (bottom-right panel). As in the previous cases, the average spectral density is
radially symmetric, but, unlike theq ¼ 3 case, it is rather unstructured,with abroadmaximumlocated in the central part, followedbya slow
decay for larger jEj energies. Finally, as is the case forq ¼ 3, a rather sharp edge is observedwhere the density vanishes abruptly.Because of
the absence of inversion symmetry, the spectral density is not suppressed or enhanced in the jEj ∼ 0 region, as was the case for q ¼ 3.
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In the Hermitian case, the classification simplifies to the
symmetries of Eqs. (3), (4), and (7). In Ref. [66], there is
one more symmetry given by the substitution H → iH in
Eq. (8) (pseudo-anti-Hermiticity), but this does not give any
new classes for non-Hermitian Hamiltonians. In the case of
pseudo-Hermiticity, Eq. (8), one would normally consi-
der the modified Hamiltonian ηH, which is Hermitian, as
ðηHÞ† ¼ ηH. A well-known example of this is the Wilson
Dirac operator, where the symmetry is known as Γ5-
Hermiticity [97]. In the Bernard-LeClair (BL) classification
scheme [65,94], Eqs. (3) and (4) involve complex con-
jugation of the Hamiltonian matrix H and are referred to as
K symmetries; Eqs. (5) and (6) describe a transposition
symmetry of H and are dubbed C symmetries; chiral
symmetry Eq. (7), is called P symmetry; and pseudo-
Hermiticity, Eq. (8), is referred to as Q symmetry in
Ref. [65]. As in the Hermitian case, chiral symmetry
and pseudo-Hermiticity can be written as a composition
of time-reversal and particle-hole symmetries, and they are
only nontrivial in the absence of the latter. Furthermore,
they can either commute or anticommute with time-reversal
and particle-hole symmetries. Carefully accounting for all
inequivalent combinations of independent antiunitary sym-
metries and their commutation or anticommutation

relations with chiral symmetry and pseudo-Hermiticity
gives 38 non-Hermitian symmetry classes, of which 23
are pseudo-Hermitian [65,66,92,94].
For the nHSYK model, we consider the charge-

conjugation operators [21,23,24,26]

P ¼ K
YN=2

i¼1

γ2i−1 and R ¼ K
YN=2

i¼1

iγ2i; ð9Þ

where K denotes the complex-conjugation operator, which
square to

P2 ¼ ð−1Þ12N=2ðN=2−1Þ and R2 ¼ ð−1Þ12N=2ðN=2þ1Þ: ð10Þ

The combination of these two operators yields the
Hermitian operator,

S ¼ PR ¼ iN
2=4
YN
i¼1

γi; ð11Þ

which squares to the identity. This operator is also known
as Γ5 or the chiral-symmetry operator.

FIG. 4. Spectral density of the complex eigenvalues of the nHSYK Hamiltonian of Eq. (1) for q ¼ 6 and N ¼ 18 (top-left panel),
20 (top-right panel), 22 (bottom-left panel), and 24 (bottom-right panel). As in the previous cases, the average spectral density is radially
symmetric. However, we observe distinctive features as well. The spectrum has inversion symmetry for N ¼ 20, 24, but, unlike for
q ¼ 3 and to a lesser extent for q ¼ 4, the density is rather unstructured except in the jEj → 0 region where, depending onN, we observe
either a sharp suppression (N ¼ 20) or a strong enhancement (N ¼ 24). Also in this case, we find a sharp edge.
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The operators P and R act on Majorana fermions as
PγiP−1 ¼ −ð−1ÞN=2γi and RγiR−1 ¼ ð−1ÞN=2γi. The
complex couplings Ji1���iq þ iMi1���iq are invariant under
transposition, and hence, the nHSYK Hamiltonian has
the involutive symmetries

PH†P−1 ¼ ð−1Þqðqþ1Þ=2ð−1ÞqN=2H; ð12Þ

RH†R−1 ¼ ð−1Þqðq−1Þ=2ð−1ÞqN=2H; ð13Þ

SHS−1 ¼ ð−1ÞqH: ð14Þ

Comparing with Eqs. (3)–(8), we see that P andR play the
role of either Cþ or C−, while S either commutes or
anticommutes with the Hamiltonian. For the nHSYK
model, the many-body matrix elements are manifestly
complex, and no antiunitary symmetries that map H back
to itself exist. Then, only the involutive symmetries (5)–(7)
can occur [98]. The nHSYK model thus belongs to one of
the ten BL symmetry classes without reality conditions
[65], which are in one-to-one correspondence with the
Hermitian Altland-Zirnbauer (AZ) classes [8] and are
summarized in Table I. The difference between the AZ
classes and the BL classes without reality conditions is that
complex conjugation is replaced by transposition and the
Hermiticity constraint is lifted. For example, a Hermitian
real Hamiltonian is to be replaced by a non-Hermitian

complex symmetric Hamiltonian. Following the Kawabata-
Shiozaki-Ueda-Sato nomenclature [66], they are dubbed A,
AIII†, AI†, AII†, D, C, AI†þ, AII

†
þ, AI†−, and AII†−. [99]

Here, we have adopted a shorthand notation, where a
subscript in the name of a class indicates that the chiral
symmetry is commuting (subscript þ) or anticommuting
(subscript −) with the time-reversal or particle-hole sym-
metries. For example, AI†þ denotes class AI† with chiral
symmetry that commutes with the time-reversal sym-
metry (ΠT þ ¼ þT þΠ).
The nHSYK symmetry classification can be performed

systematically by evaluating Eqs. (10) and (12)–(14) for
different values of q mod 4 and N mod 8. Note that while
the physical interpretation of the operators P, R, and S is
different in the SYK and nHSYK models, the defining
relations in Eqs. (10) and (12)–(14) are formally the same.
It follows that the symmetry classification of the former
[16,17,21–26] also holds for the latter, provided that one
replaces any reality condition by a transposition one. We
now investigate in more detail the dependence of these
symmetries of the odd or even nature of q in the nHSYK
Hamiltonian Eq. (1).
Even q. According to Eq. (14), H commutes with S

(which is proportional to the fermion parity operator), the
Hilbert space is split into sectors of conserved even and odd
parity, and the Hamiltonian is block-diagonal. There is no
chiral symmetry. From Eqs. (12) and (13), we see that H

TABLE I. Non-Hermitian symmetry classes without reality conditions, nine of which are realized in the non-
Hermitian SYK model (i.e., all except class AIII†). For each class, we list its antiunitary and chiral symmetries, an
explicit matrix realization [92], its name under the Kawabata-Shiozaki-Ueda-Sato classification [66], and the
corresponding Hermitian ensemble. In the matrix realizations, A, B, C, and D are arbitrary non-Hermitian matrices
unless specified otherwise, and empty entries correspond to zeros. In the last column, we list the AZ classes [8] that
are in one-to-one correspondence with the non-Hermitian classes without reality conditions.

C2þ C2− S2 Matrix realization Class Hermitian correspondence

0 0 0 A A GUE (A)
0 0 1 � A

B

�
AIII† chGUE (AIII)

þ1 0 0 A ¼ A⊤ AI† GOE (AI)
−1 0 0 � A B

C A⊤
�
;

�
B ¼ −B⊤
C ¼ −C⊤

AII† GSE (AII)

0 þ1 0 A ¼ −A⊤ D BdG-S (D)
0 −1 0 � A B

C −A⊤
�
;

�
B ¼ B⊤
C ¼ C⊤

C BdG-A (C)

þ1 þ1 1 � A
A⊤

�
AI†þ chGOE (BDI)

−1 −1 1
0
BB@

A B
C D

D⊤ −B⊤
−C⊤ A⊤

1
CCA

AII†þ chGSE (CII)

þ1 −1 1 � A
B

�
;

�
A ¼ A⊤
B ¼ B⊤

AI†− chBdG-S (CI)

−1 þ1 1 � A
B

�
;

�
A ¼ −A⊤
B ¼ −B⊤

AII†− chBdG-A (DIII)
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transforms similarly under both P and R (when
they act within the same block), and it suffices to
consider the action of one, sayP. We have the commutation
relation

SP ¼ ð−1ÞN=2PS: ð15Þ
(i) When N mod 8 ¼ 2, 6, P is a fermionic operator

that anticommutes with S. Note that P is not an
involutive symmetry of the Hamiltonian in a diago-
nal block representation, as it maps blocks of
different parity into each other. The two blocks
are the transpose of each other and have no further
constraints (class A or complex Ginibre).

(ii) When N mod 8 ¼ 0, 4 and q mod 4 ¼ 0, P is a
bosonic operator that commuteswithS. Each blockof
the Hamiltonian has the involutive symmetry,
PH†P−1 ¼ þH. If N mod 8 ¼ 0, P2 ¼ 1, and we
can find a basis in which the Hamiltonian is
symmetric. This is the universality class of com-
plex symmetric matrices, also known as AI†. If
N mod 8 ¼ 4,P2 ¼ −1, we can find a basis inwhich
H⊤ ¼ IHI−1, with I the symplectic unit matrix. This
class is AII†.

(iii) WhenN mod 8 ¼ 0, 4 and q mod 4 ¼ 2, P is again
a bosonic operator that commutes with S. Within
each block, we have the involutive symmetry,
PH†P−1 ¼ −H. If N mod 8 ¼ 0, P2 ¼ 1, we can
find a basis in which the Hamiltonian becomes
antisymmetric and the universality class is given
by that of complex antisymmetric matrices (non-
Hermitian class D); if N mod 8 ¼ 4, P2 ¼ −1, and
we can find a basis where H⊤ ¼ −IHI−1. Complex
matrices satisfying this constraint belong to non-
Hermitian class C.

Odd q. In this case, S is a chiral symmetry operator that
anticommutes with H, so H acquires an off-diagonal block
structure in a chiral basis. The operators P and R now act
differently on H (one satisfies XH†X−1 ¼ H and the other
XH†X−1 ¼ −H with X eitherP orR). Hence, both must be
considered if we use the square of P, R, and S to classify
the matrices. However, for the derivation of the block
structure, as given in Table I, we of course only need either
P or R, and S.

(i) When N mod 8 ¼ 0, both P and R are bosonic
operators squaring to þ1. Since they commute with
S, and one of them satisfies XH†X−1 ¼ H (P if
q mod 4 ¼ 3, R if q mod 4 ¼ 1), the Hamiltonian
in a suitable basis is a complex matrix with vanish-
ing diagonal blocks and off-diagonal blocks that are
the transpose of each other (class AI†þ), irrespective
of whether q mod 4 ¼ 1 or 3.

(ii) When N mod 8 ¼ 4, both P and R are bosonic
operators commuting with S and squaring to −1.
Hence, the off-diagonal blocks A and B of H are

related by B⊤ ¼ IAI−1. This is the universality class
AII†þ, irrespective of whether q mod 4 ¼ 1 or 3.

(iii) When N mod 8 ¼ 2, 6, we have that fS;Pg ¼ 0
and fS;Rg ¼ 0. So P and R have vanishing
diagonal blocks, and depending on N, P2 ¼ 1

and R2 ¼ −1 (N mod 8 ¼ 2), or P2 ¼ −1 and
R2 ¼ 1 (N mod 8 ¼ 6). We choose the operator
that squares to 1. Since it anticommutes with S, it
has the block structure

X ¼
�
0 x−1

x 0

�
: ð16Þ

IfXH†X−1 ¼ H, the blocks ofH satisfy xA⊤x−1 ¼ A
and xB⊤x−1 ¼ B, so we can find a basis in which the
blocks are symmetric. This is the case forN mod 8 ¼
2 and q mod 4 ¼ 1 orN mod 8 ¼ 6 and q mod 4 ¼
3 (class AI†−). If XH†X−1 ¼ −H, the blocks of H
satisfy xA⊤x−1 ¼ −A and xB⊤x−1 ¼ −B, so we can
find a basis in which the blocks are skew symmetric.
This is the case forN mod 8 ¼ 2 andq mod 4 ¼ 3 or
N mod 8 ¼ 6 and q mod 4 ¼ 1 (class AII†−).

The complete symmetry classification of the nHSYK
Hamiltonian for all q and even N in terms of BL classes is
summarized in Table II. Note that the tenth symmetry class
AIII† is not realized by the nHSYK Hamiltonian Eq. (1).
[100] We note that one could also view the non-Hermitian
structures as complexified real structures relating them to
the classification in terms of symmetric spaces; see
Ref. [101] for related remarks.
It is important to stress that, since the symmetry

classification is algebraic, it is not necessarily related to
specific features of spectral correlations that probe the
quantum dynamics for long timescales of the order of the
Heisenberg time. However, we see in the next two sections
that this is the case. By studying local bulk and hard-edge
spectral correlations for different values of q andN, we find
not only excellent agreement with the predictions of non-
Hermitian RMT for q > 2 but also that the different
universality classes resulting from the symmetry classifi-
cation can be characterized by the analysis of level
statistics. Assuming that the relation between RMT level

TABLE II. Complete symmetry classification of the nHSYK
Hamiltonian into BL classes without reality conditions for all q
and even N.

N mod 8 0 2 4 6

q mod 4 ¼ 0 AI† A AII† A
q mod 4 ¼ 1 AI†þ AI†− AII†þ AII†−
q mod 4 ¼ 2 D A C A
q mod 4 ¼ 3 AI†þ AII†− AII†þ AI†−
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FIG. 6. Distribution of complex spacing ratios, Eq. (17), for N ¼ 24 and q ¼ 2 (top-left panel), 3 (top-right panel), 4 (bottom-left
panel), and 6 (bottom-right panel). The results are qualitatively similar to those for N ¼ 20.

FIG. 5. Distribution of complex spacing ratios, Eq. (17), for N ¼ 20 and q ¼ 2 (top-left panel), 3 (top-right panel), 4 (bottom-left
panel), and 6 (bottom-right panel). Suppression of the complex spacing ratio density around the origin and along the real positive
semiaxis is observed for q > 2. This is also the random matrix theory prediction [70], which should indicate quantum chaotic dynamics.
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FIG. 7. Angular density of the complex spacing ratio related to the eigenvalues of the nHSYK Hamiltonian Eq. (17) for different
values of N and q. We see agreement with the predictions of Table II in all cases.

FIG. 8. Radial density of the complex spacing ratio related to the eigenvalues of the nHSYK Hamiltonian Eq. (17) for different values
of N and q. We see agreement with the predictions of Table II in all cases.
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statistics and quantum chaos persists for non-Hermitian
Hamiltonians, our results provide direct evidence that the
nHSYK model is versatile enough to describe all possi-
ble quantum ergodic states to which quantum chaotic
systems with a complex spectrum relax after a sufficiently
long time.

V. LEVEL STATISTICS: COMPLEX
SPACING RATIOS

We initiate our analysis of spectral correlations by
studying spacing ratios, also called adjacent gap ratios,
which are spectral observables that have the advantage of
not requiring unfolding. They were introduced to describe
short-range spectral correlations of real spectra [102–104],
but they have recently been generalized [70] to complex
spectra. Because of their short-range nature, these ratios
probe the quantum dynamics for late timescales of the order
of the Heisenberg time. However, as was mentioned
previously, a full dynamical characterization of level
statistics, equivalent to the BGS conjecture [1], for non-
Hermitian systems is still missing. Therefore, strictly
speaking, we perform a comparison with the predictions
of non-Hermitian random matrix theory, implicitly assum-
ing that good agreement still implies quantum chaotic
motion.
We define the complex spacing ratio as

λk ¼
ENN
k − Ek

ENNN
k − Ek

; ð17Þ

where Ek, with k ¼ 1; 2;…; 2N=2, is the complex spectrum
for a given disorder realization, ENN

k is the closest eigen-
value to Ek using the standard distance in the complex
plane, and ENNN

k is the second closest eigenvalue. By
construction, jλkj ≤ 1, so it is restricted to the unit disk.
This is the most natural generalization of the real spacing
ratio to the complex case. We perform ensemble averaging,
so we have a minimum of 106 eigenvalues for each set of
parameters N, q. The distribution of the resulting averaged
complex spacing ratio λk is depicted in Figs. 5 and 6. We
observe qualitative differences between q ¼ 2 and q > 2.
For the former, it is rather unstructured (i.e., flat) with no
clear signature of level repulsion for small spacing. In the
real case, this is a signature of the absence of quantum
chaos. By contrast, for q > 2, the complex spacing ratio is
heavily suppressed for small spacings, especially at small
angles, which is a signature of level repulsion. Indeed, a
very similar pattern is observed for non-Hermitian random
matrices [70]. We now show that the three universality
classes of local bulk correlations—AI†, A (GinUE), and
AII† [67]—with increasing level repulsion, can be clearly
distinguished by the complex spacing ratio distribution.
In order to gain a more quantitative understanding of the

spectral correlations, we compute the marginal angular

ρðθÞ and radial ρðrÞ complex spacing ratio distributions,
where λk ¼ rkeiθk . The results, presented in Figs. 7 and 8,
confirm the existence, depending on N and q, of the three
universality classes mentioned above. However, only for
q > 2 do we observe agreement with the random matrix
prediction, which indicates that, as in the real case, this is a
requirement for non-Hermitian many-body quantum chaos.
We note that the full spectrum was employed in the
evaluation of these marginal distributions. Therefore,
ρðrÞ and ρðθÞ cannot distinguish between, for instance,
class A and classes C and D, as the last two only differ from
class A in the region jEj ∼ 0 of small eigenvalues. In
summary, the complex spacing ratios of the nHSYK
Hamiltonian (1) distinguish universality classes A, AI†,
and AII†.
To get a more visual confirmation of the symmetry

classification, we can characterize the complex spacing
ratio distribution by a single number, say, its first radial
moment, hri ¼ R drrρðrÞ, as a function of N and q. The
values of hri for the three universal bulk statistics (A, AI†,
and AII†) are given in Table III. The results presented in
Fig. 9 show that hri computed numerically for the nHSYK
model closely follows the predicted RMT pattern for q ¼ 3,
q ¼ 4, and 6, while it goes to the Poisson value for q ¼ 2.

TABLE III. Universal single-number signatures of the non-
Hermitian universality classes without reality conditions. The
first radial moment hri of the complex spacing distribution
measures the bulk level repulsion of the three universal bulk
classes A, AI†, and AII†, while the ratio R1 in Eq. (18) gives the
repulsion between the hard edge and the eigenvalue with smallest
absolute value for the seven classes with spectral inversion
symmetry. The values of hri are obtained by numerical exact
diagonalization of 215 × 215 random matrices of the correspond-
ing class averaging over an ensemble of 28 realizations. Mean-
while, the value of hri has been obtained analytically for class A
[105] in the thermodynamical limit. Its value is equal to
hri ¼ 0.73866, which is in agreement with our numerical value.
In order to compute the ratio R1 in Eq. (18), we numerically
diagonalize 107 100 × 100 matrices of the corresponding uni-
versality class. Note that for the complex spacing ratio distribu-
tion (and its moments), it was shown in Ref. [70] that they have
large finite-size corrections for Gaussian-distributed random
matrices; hence, very large matrices have to be considered to
converge to the universal result of the thermodynamical limit. In
contrast, we have verified numerically that the smallest eigen-
value distribution (and thus R1) converges to a universal
distribution very rapidly with the system size; therefore, using
relatively small matrices is justified.

Class A AI† AII†

hri 0.7384 0.7222 0.7486

Class AIII† D C AI†þ AII†þ AI†− AII†−
R1 1.129 1.228 1.102 1.222 1.096 1.123 1.138
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These results confirm the predictions of Table II for the
local bulk correlations (level repulsion). In the next section,
we study the distribution of the eigenvalue with the lowest
absolute value. The shape of this observable is expected to
have a universal form for each universality class that should
agree with the random matrix prediction, provided the
spectrum has one of the inversion symmetries studied
previously. This enables us to identify additional univer-
sality classes depending on the type of inversion symmetry
of the nHSYK Hamiltonian by the study of level statistics.

VI. LEVEL STATISTICS: HARD-EDGE
UNIVERSALITY

Through the use of complex spacing ratios, we can only
distinguish three universality classes of bulk correlations.
In addition, the classes with spectral inversion symmetry
(chiral or particle-hole) show universal repulsion from the
spectral origin, the so-called hard edge for real spectra. This
universal behavior can be captured by zooming in on
the eigenvalues closest to the origin, on a scale of up to
a few level spacings, the so-called microscopic limit. In

particular, the distribution of the eigenvaluewith the smallest
modulus, P1ðjE1jÞ, gives, when combined with the bulk
complex spacing ratio distribution, a measure to uniquely
distinguish the ten non-Hermitian symmetry classes without
reality conditions. As an example, in Fig. 10, we show the
distribution of jE1j for the nHSYK model with q ¼ 6 and
N ¼ 20 and 24, and compare it with the prediction of non-
Hermitian random matrix theory for classes C and D,
respectively. In order to carry out a parameter-free compari-
sonwith the nHSYKmodel, we normalize the distribution to
unity and rescale jE1j by its average. We thus see that, while
the q ¼ 6 nHSYK Hamiltonian has the same bulk statistics
for all N, we can still resolve the Bott periodicity, which
enables us to distinguish universality classes, through the
statistics of jE1j.
A convenient way to capture the hard-edge universality

by a single number is to consider the ratio (normalized
variance)

R1 ¼
hjE1j2i
hjE1ji2

¼
R
djEjjEj2P1ðjEjÞ

(
R
djEjjEjP1ðjEjÞ)2

; ð18Þ

FIG. 9. First radial moment hri of the complex spacing ratio (CSR) distribution as a function of the number of Majoranas, N, for the
q ¼ 2, 3, 4, 6 nHSYK model. The dots are the results of exact numerical diagonalization, the horizontal solid lines are the values of hri
for the three universal bulk statistics (A, AI†, and AII†), and the dashed curve follows the classification scheme of Table II. For q ¼ 2, hri
goes to the Poisson value 2=3 as N increases, showing that no RMT correlations exist around the Heisenberg time. For q ¼ 6, the three
classes realized for different values of N all have the same bulk correlations (those of class A). We see excellent agreement between the
nHSYK results and the RMT predictions, except for the smaller values of N, where finite-size effects are more pronounced.
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following the proposal by Sun and Ye for Hermitian
random matrices [26]. The values of R1 for the seven
non-Hermitian classes with inversion symmetry listed in
Table I are tabulated in Table III. To further confirm our
symmetry classification, in Fig. 11, we show the value of
R1 as a function of N for the q ¼ 3 and q ¼ 6 nHSYK
models. We again see excellent agreement with the random
matrix predictions, thus fully confirming the symmetry
classification of Sec. IV.

VII. ADDITIONAL UNIVERSALITY CLASSES IN
GENERALIZED NHSYK MODELS

We have already identified nine universality classes by
different choices of N and q of the nHSYK Hamiltonian

(1). However, of the 38 universality classes, 23 are pseudo-
Hermitian, which brings us in the ballpark of realizing the
15 universality classes of non-Hermitian or non-pseudo-
Hermitian Hamiltonians in the nHSYK model. Indeed,
there is only one universality class, AIII† (also known as
chGinUE), of the original tenfold way still to be identified
in nHSYK. In this section, we consider generalizations of
the nHSYK that belong to AIII† and to several other
universality classes.

A. Symmetry classification of chiral nHSYK models

We start by investigating models with a built-in chiral
symmetry, where the Hamiltonian, termed non-Hermitian
chiral or Wishart SYK (nHWSYK) [27], in an appropriate

FIG. 10. Distribution of the eigenvalues of H with the smallest absolute value for the q ¼ 6 nHSYK model with N ¼ 20 and N ¼ 24
(filled histogram), compared with the random matrix theory predictions for the non-Hermitian classes C and D, respectively (dashed
curves). The RMT predictions are obtained by exactly diagonalizing 107 random matrices of dimension 100 structured according to the
fourth column of Table I. The nHSYK results (solid curves) are obtained from an ensemble of approximately 4.5 × 104 and 3 × 104

realizations forN ¼ 20 and N ¼ 24, respectively, resulting in much larger finite-size effects. The comparison is parameter-free and does
not involve any fitting.

FIG. 11. Ratio R1 in Eq. (18) as a function of the number of Majoranas,N, for the q ¼ 3 and the q ¼ 6 nHSYKmodel. The dots are the
results of exact numerical diagonalization of the corresponding nHSYKHamiltonian, the horizontal solid lines are the values of the ratio for
the six classes with spectral inversion symmetry realized in the nHSYK model, and the dashed curves follow the classification scheme of
Table II. For q ¼ 3, the Hamiltonian has a chiral symmetry for all even N, while for q ¼ 6, there is a particle-hole symmetry only ifN is a
multiple of 4. We see excellent agreement between the nHSYK results and the RMT predictions for all available system sizes.
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basis is represented by two off-diagonal blocks, where each
block is either a Hermitian or non-Hermitian SYK. By
tuning N and q in this model, we describe six new
universality classes. More specifically, we consider the
Hamiltonian

H ¼ antidiagðH;H0Þ ≔
�

H

H0

�
; ð19Þ

equivalent to the two-matrix model H0 ¼ HH0, where H
and H0 are independent Hermitian or non-Hermitian SYK
Hamiltonians (both with the same N and q). Throughout,
diag and antidiag represent diagonal and antidiagonal block
matrices, respectively. The model H gives the non-
Hermitian generalization of the Wishart-SYK model
[27], where, in the latter, H0 ¼ H† to ensure Hermiticity.
This model has built-in chiral symmetry represented by the
operator Π ¼ diagð1;−1Þ that commutes with the
Hamiltonian. Since the (nH)SYK model with odd q already
has a chiral symmetry and two symmetries of the same type
only generate an additional commuting unitary symmetry,
we consider only even q.
For all even q, if N mod 8 ¼ 2, 6 and the couplings are

complex, H and H0 have no symmetries, and the chiral
symmetry is the only symmetry of H, which thus belongs
to class AIII†. This is the only non-Hermitian class without
reality conditions (see Table I) not realized by the original
nHSYK model (1), thus completing the corresponding
tenfold way. Contrary to the Hermitian case, there are still
additional classes beyond those (i.e., classes with reality
conditions), some of which are realized in nHWSYK for
other values of q and N. In Table IV, we list these extra

classes, together with their defining symmetries and a
matrix representation.
For all even q, if N mod 8 ¼ 2, 6 and the couplings are

real, H and H0 are Hermitian and thus also have trivial
pseudo-Hermiticity. However, when the trivial pseudo-
Hermiticity of H, H0 passes down to H, it becomes
nontrivial and is implemented by η ¼ antidiagð1; 1Þ.
Since Π and η anticommute, H belongs to class AIII−.
If q mod 4 ¼ 0, N mod 8 ¼ 0, and the couplings are

complex, then H and H0 belong to class AI† and have a
transposition symmetry with antiunitary P, PH†P−1 ¼
þH [see Eq. (12)] that squares to P2 ¼ þ1. It then follows
thatH has a time-reversal symmetry CþH†C−1þ ¼ þH with
antiunitary Cþ ¼ antidiagðP;PÞ that squares to C2þ ¼ þ1

and anticommutes with Π. We thus see that H belongs to
class AI†− (see also Table IV). Proceeding similarly, we find
that if q mod 4 ¼ 2 and N mod 8 ¼ 4, H also belongs to
class AI†−, while for q mod 4 ¼ 0, N mod 8 ¼ 4 and
q mod 4 ¼ 2, N mod 8 ¼ 0, it belongs to class AII†−.
These two classes were already implemented in the original
nHSYK model.
If q mod 4 ¼ 0, N mod 8 ¼ 0, and the couplings are

real, then H and H0 are Hermitian SYK models belonging
to the AZ class AI. As in the preceding paragraph, H has
transposition antiunitary symmetry CþH†C−1þ ¼ þH with
C2þ ¼ þ1 that anticommutes with the chiral symmetry
operator Π, but it also has additional pseudo-Hermiticity
implemented by η ¼ antidiagð1; 1Þ that anticommutes with
Π and commutes with Cþ. The combined transposition
symmetry and pseudo-Hermiticity induce a complex-con-
jugation symmetry with unitary T þ ¼ ηCþ ¼ diagðP;PÞ,

TABLE IV. Five non-Hermitian symmetry classes with reality conditions realized in the nHWSYK model. For each class, we list its
antiunitary and chiral symmetries and their commutation relations, an explicit matrix realization [92], and its name under the Kawabata-
Shiozaki-Ueda-Sato classification [66]. The symbols ϵXY indicate whether the two operators X and Y commute, e.g., T HT −1 ¼ ϵT HH,
while the symbols ηX denote the square of operator X, e.g., T 2 ¼ ηT . In the matrix realizations, A, B, C, and D are arbitrary non-
Hermitian matrices unless specified otherwise, and empty entries correspond to zeros.

ϵT H ηT ϵCH† ηC ϵΠT ϵΠC ϵΠη Matrix realization Class

… … … … … … −1 � A
B

�
;

�
A ¼ A†

B ¼ B†
AIII−

þ1 þ1 þ1 þ1 þ1 −1 −1 � A
B

�
;

�
A ¼ A† ¼ A⊤ ¼ A�

B ¼ B† ¼ B⊤ ¼ B�
BDI†−þ

þ1 −1 þ1 −1 þ1 −1 −1
0
BB@

A B
−B� A�

C D
−D� C�

1
CCA;

8>><
>>:

A ¼ A†

B ¼ −B⊤
C ¼ C†

D ¼ −D⊤

CII†−þ

−1 þ1 −1 þ1 þ1 −1 −1 � A
B

�
;

�
A ¼ A† ¼ −A⊤ ¼ −A�

B ¼ B† ¼ −B⊤ ¼ −B�
BDIþ−

−1 −1 −1 −1 þ1 −1 −1
0
BB@

A B
B� −A�

C D
D� −C�

1
CCA;

8>><
>>:

A ¼ A†

B ¼ B⊤
C ¼ C†

D ¼ D⊤

CIIþ−
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T þHT −1þ ¼ þH, that squares to T 2þ ¼ þ1 and com-
mutes with Π. We thus conclude that H belongs
to class BDI†−þ. Proceeding similarly, we find that if
q mod 4 ¼ 0, N mod 8 ¼ 4, it belongs to class CII†−þ; if
q mod 4 ¼ 2, N mod 8 ¼ 0, to class BDIþ−; and if
q mod 4 ¼ 2, N mod 8 ¼ 4, to class CIIþ−.
The symmetry classification of the chiral two-matrix

modelH with Hermitian and non-Hermitian SYK blocks is
summarized in Tables V and VI.

B. Level statistics in the chiral class AIII†

Instead of an extensive numerical confirmation of these
new universality classes in the SYK model, we focus on the
AIII† universality class that completes the tenfold way. We
note that only recently [27] have the correlations of the
Hermitian version of AIII†, the chGUE universality class,
been identified in the SYK model. We study level statistics
for the chiral nHSYK Hamiltonian (19) with H, H0 blocks

given by independent q ¼ 4 nHSYK models. For q ¼ 4,
AIII† requires N mod 8 ¼ 2, 6, so we stick to N ¼ 22, 26.
We obtain more than 107 eigenvalues in each case by exact
diagonalization techniques. In analogy with the previous
cases, we start with the analysis of short-range bulk spectral
correlations represented by the radial ρðrÞ and angular ρðθÞ
distributions of the complex spacing ratio density. Results
depicted in Fig. 12 confirm an excellent agreement with the
AIII† randommatrix prediction for bothN. However, this is
a bulk observable, so the result for AIII† is identical to that
of the A universality class.
In order to differentiate these two universality classes, we

study the distribution of the eigenvalue with the smallest
modulus jE1j. Because of the chiral symmetry, we expect
the distribution to be universal and very well approximated
by the random matrix prediction for AIII†.
We first compute the normalized variance R1, Eq. (18).

For N ¼ 22, with around 20 000 disorder realizations, we
obtain R1 ¼ 1.131, while for N ¼ 26, with 12 000 disorder
realizations, we get R1 ¼ 1.128. This is in excellent
agreement with the random matrix result R1 ¼ 1.129.
The agreement is not restricted to this low-order moment.
The full distribution of jE1j (see Fig. 13) is very close to the
numerical random matrix result. The comparison does not
involve any fitting procedure, only a rescaling by the
average in each case. This is further confirmation that this
chiral nHSYK model belongs to the AIII† universality
class.
We can also make an analytical prediction for the

distribution of jE1j in class AIII†. The radial spectral
density is given by [106,107]

ρðjEjÞ ¼ 2u2

π
jEj2K0ðjEj2uÞI0ðjEj2uÞ; ð20Þ

with

TABLE V. Symmetry classes realized in the chiral two-matrix
model H with nHSYK blocks H, H0.

N mod 8 0 2 4 6

q mod 4 ¼ 0 AI†− AIII† AII†− AIII†

q mod 4 ¼ 2 AII†− AIII† AI†− AIII†

TABLE VI. Symmetry classes realized in the chiral two-matrix
model H with Hermitian SYK blocks H, H0.

N mod 8 0 2 4 6

q mod 4 ¼ 0 BDI†−þ AIII− CII†−þ AIII−
q mod 4 ¼ 2 BDIþ− AIII− CIIþ− AIII−

FIG. 12. Radial (left panel) and angular (right panel) density of the complex spacing ratio defined by Eq. (17) for the nHWSYK
Hamiltonian Eq. (19) with N ¼ 22, 26 and about 20 000 disorder realizations. We see agreement with the predictions of the AIII† in
all cases.
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u ¼ π lim
jEj→∞

ρðjEjÞ: ð21Þ

For small jEj, the radial spectral density behaves as

ρðjEjÞ ∼ jEj3 log jEj: ð22Þ

We conclude that the radial distribution of the smallest
eigenvalue must also behave as jE1j3 log jE1j for small jE1j,
which is in agreement with numerical results. It is
also possible to obtain an excellent analytical estimation
of the random matrix result for the full distribution
of jE1j (see also Refs. [108,109]). We consider a random
matrix W from class AIII† with square D ×D off-diagonal
blocks (recall Table I). The 2D eigenvalues of W come
in symmetric pairs and are denoted E1;−E1; E2;
−E2;…; ED;−ED. We introduce D new variables zj ¼
E2
j whose joint distribution is given by [110]

Pjointðz1;…; zDÞ ∝
YD
j¼1

K0ð2DjzjjÞ
Y

1≤j<k≤D
jzj − zkj2: ð23Þ

Because the distribution (23) is invariant under permuta-
tions of eigenvalues zj, we can choose z1 as the eigenvalue
with the smallest absolute value. Then, by construction,
the distribution of z1 is obtained by integrating out all the
remaining eigenvalues outside the disk centered at the
origin and with radius jz1j:

P1ðjz1jÞ ∝ jz1jK0ð2Djz1jÞ
Z

2π

0

YD
j¼1

dϕj

×
Z þ∞

jz1j

YD
j¼2

djzjjjzjjK0ð2DjzjjÞ

×
Y

1≤j<k≤D
jjzjjeiϕj − jzkjeiϕk j2; ð24Þ

where we denote zj ¼ jzjjeiϕj in polar coordinates. We
proceed by evaluating the integrals in Eq. (24) for the
smallest possible values of D, i.e., D ¼ 2; 3; 4;…. In the
spirit of the Wigner surmise for the spacing distribution, we
expect the results to converge to the universal large-D limit
very quickly with D. Indeed, the D ¼ 2 result is already
almost indistinguishable from large-D numerical calcula-
tions on a linear scale, as we now show. Setting D ¼ 2
in Eq. (24), performing the angular integration of
jjz1jeiϕ1 − jz2jeiϕ2 j2, and changing variables back to the
chiral eigenvalue jE1j ¼

ffiffiffiffiffiffiffijz1j
p

, we obtain

P1ðjE1jÞ
¼N ðcjE1jÞ3K0(ðcjE1jÞ2)

×

�
ðcjE1jÞ4

Z þ∞

ðcjE1jÞ2
dxxK0ð2xÞ þ

Z þ∞

ðcjE1jÞ2
dxx3K0ð2xÞ

�
;

ð25Þ

where the normalization constant is equal toN ¼ 32c. The
arbitrary energy scale can be chosen as c ¼ 7=9 such that
hjE1ji ¼

R
djE1jjE1jP1ðjE1jÞ ¼ 1. The remaining integrals

over Bessel functions could be expressed in closed form in
terms of Bessel and Lommel functions, but their precise
form is very complicated. The two integrals can easily be
evaluated numerically to high accuracy. Note that in
agreement with Eq. (20), the D ¼ 2 result for P1jðE1Þj
for small jE1j also behaves as ∼jE1j3 log jE1j. In Fig. 14,
we show how the D ¼ 2 surmise (corresponding to 4 × 4
random matrices) compares with exact diagonalization
results (107 disorder realizations), both in a linear (left
panel) and logarithmic scale (right panel). We see excellent
agreement with the 4 × 4 numerical result, as expected
since we are performing an exact calculation. On a linear
scale, it is also hard to distinguish it from the numerical
results for large D ¼ 50 (100 × 100 matrices), while
deviations in the right tail can be noted on a logarithmic
scale. The agreement with the nHWSYK result (see
Fig. 13) is also excellent.
The procedure can be easily improved by consideringD ¼

3 andD ¼ 4. The resulting expressions are similar toEq. (25)
but involve additional integrals over Bessel functions and
quickly become very cumbersome. In Fig. 14, we compare
the distribution computed for D ¼ 3 (not written out) with
the corresponding numerics, again seeing perfect agreement.

FIG. 13. Distribution of the eigenvalue with the smallest
absolute value jE1j for the chiral nHSYK model Eq. (19) with
q ¼ 4 and N ¼ 22, 26 and about 50 000 disorder realizations. We
find excellent agreement with the random matrix prediction for
the AIII† universality class, obtained by diagonalization of 107,
100 × 100 matrices. The analytical surmise [Eq. (25), black] is
also very close to the numerical results. We note that the
comparison is parameter-free.
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Moreover, we see a fast convergence towards the large-D
result (e.g.,D ¼ 50). Formost practical purposes (cf. Fig. 13
for the comparison with the nHWSYK model), the D ¼ 2
result suffices.
In conclusion, the study of spectral correlations shows

that the q ¼ 4 chiral nHSYK model, Eq. (19), belongs to
class AIII†, and its dynamics is quantum chaotic for
sufficiently long timescales. We expect that a similar
agreement with the random matrix predictions will be
obtained for the other chiral nHSYK models introduced in
the previous subsection.

C. Classes with complex-conjugation symmetry in
nHSYK models with complex fermions

In the previous subsections, we completed the tenfold
BL classes without reality conditions. There exist only five
remaining classes without pseudo-Hermiticity (two non-
chiral and three chiral classes), which are listed in
Table VII. [111] These classes involve complex-conjuga-
tion symmetry but no transposition symmetry (because
simultaneous complex-conjugation and transposition sym-
metries imply pseudo-Hermiticity). Four of these classes
emerge naturally if we consider complex-fermion nHSYK
models, i.e., a Hamiltonian

Hc ¼
XNc

i<j
k<l

wij;klc
†
i c

†
jckcl; ð26Þ

where wij;kl ¼ −wji;kl ¼ −wij;lk are independent random
variables (real, complex, or quaternionic) and c†i and ci are
the creation and annihilation operators of Nc ¼ N=2
complex fermions, respectively. The complex fermions
can be expressed in terms of Majorana fermions as
ci ¼ ψ2i−1 þ iψ2i, c†i ¼ ψ2i−1 − iψ2i. In a basis where

the odd γ-matrices are real and the even ones are purely
imaginary (which is our convention throughout this paper),
the creation and annihilation operators are real,

ci ¼ c�i and c†i ¼ c⊤i : ð27Þ

Since we have

H†
c ¼

XNc

i<j
k<l

wkl;ijc
†
i c

†
jckcl; ð28Þ

FIG. 14. Distribution of the eigenvalues with smallest absolute values, P1ðjE1j=hjE1jiÞ, for random matrices from class AIII†, on
linear (left panel) and logarithmic (right panel) scales. The solid, colored curves are obtained from the exact diagonalization of 107

random matrices of different sizes, while the dashed and dot-dashed black lines are the exact analytic results for D ¼ 2 [4 × 4 matrices,
Eq. (25)] and D ¼ 3 (6 × 6 matrices).

TABLE VII. Non-Hermitian symmetry classes with reality
conditions but no pseudo-Hermiticity, four of which are realized
in the complex-fermion nHSYKmodel (i.e., all except class AI−).
For each class, we list its antiunitary and chiral symmetries, an
explicit matrix realization [92], its name under the Kawabata-
Shiozaki-Ueda-Sato classification [66], and its name as a Ginibre
ensemble (class AI− has no conventional Ginibre name). In the
matrix realizations, A, B, C, and D are arbitrary non-Hermitian
matrices unless specified otherwise, and empty entries corre-
spond to zeros.

T 2þ T 2
− S2 Matrix realization Class Ginibre ensemble

þ1 0 0 A ¼ A� AI GinOE
−1 0 0 � A B

−B� A�
� AII GinSE

þ1 þ1 1 � A
B

�
;

�
A ¼ A�

B ¼ B�
AIþ chGinOE

−1 −1 1
0
BB@

A B
−B� A�

C D
−D� C�

1
CCA

AIIþ chGinSE

þ1 −1 1 � A
A�

� AI− …
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if we set wij;kl ¼ w�
kl;ij, Hc is Hermitian, and we recover

the two-body random ensemble [30]. However, if we relax
this condition and let wij;kl and wkl;ij become independent,
Hc is non-Hermitian and has complex eigenvalues. The
independence of wij;kl and wkl;ij, together with Eq. (27),
further precludes the existence of both transposition sym-
metries, Eqs. (5) and (6), and complex-conjugation par-
ticle-hole symmetry, Eq. (4). The only remaining possible
antiunitary symmetry is complex-conjugation time-reversal
symmetry, T þHcT −1þ ¼ Hc, Eq. (3), depending on the
reality of the couplings.

(i) If wij;kl is complex (i.e., arbitrary), there is no
antiunitary symmetry T þ, and the Hamiltonian
belongs to the Ginibre unitary ensemble (GinUE)
or non-Hermitian class A.

(ii) If wij;kl ¼ w�
ij;kl is real, then there exists a basis

where Hc ¼ H�
c is real, and it belongs to the Ginibre

orthogonal ensemble (GinOE) or non-Hermitian
class AI.

(iii) If wij;kl is a quaternion, i.e.,

wij;kl ¼
 

wð1Þ
ij;kl wð2Þ

ij;kl

−wð2Þ�
ij;kl wð1Þ�

ij;kl

!
ð29Þ

with wð1Þ
ij;kl and wð2Þ

ij;kl complex, there exists a basis
where Hc ¼ IH�

cI−1, with I the symplectic unit
matrix, because the matrix elements of ci and c†i
are real (and a real number times a self-dual
quaternion remains a self-dual quaternion). We
see that Hc belongs to the Ginibre symplectic
ensemble (GinSE) or non-Hermitian class AII.

Proceeding as before, we can now consider a chiral or
Wishart complex-fermion nHSYK model, i.e., a
Hamiltonian given by Eq. (19) with off-diagonal blocks
given by Hc. These models again have a chiral symmetry
implemented by the unitary operator Π ¼ diagð1;−1Þ. As
before, the symmetry classification depends solely on the
reality conditions of the couplings.

(i) If the couplings are complex, the chiral symmetry is
the only symmetry of the chiral Hamiltonian, and it
immediately follows that it belongs to class AIII†.

(ii) If the couplings are real, each block has an anti-
unitary symmetry realized by K (complex conjuga-
tion), which implies the chiral Hamiltonian satisfies
T þHT −1þ ¼ H, with T þ ¼ diagðK;KÞ squaring to
T 2þ ¼ þ1. Because Π and T þ commute, this
defines the universality class AIþ.

(iii) If the couplings are quaternionic, the antiunitary
symmetry of the blocks, realized by I with I2 ¼ −1,
implies the existence of an antiunitary symmetry T þ
of H, with T þ ¼ diagðI; IÞ, which squares to

T 2þ ¼ −1 and again commutes with the chiral
unitary Π. This is the universality class AIIþ.

The symmetry classification of the nonchiral and chiral
nHSYK models with complex fermions is summarized in
Table VIII. The final non-Hermitian symmetry class, AI−,
consisting of chiral block matrices with zero diagonal
blocks and off-diagonal blocks being the complex con-
jugates of each other (see last line in Table VII), is realized
neither in the nHSYK nor in its chiral or complex-fermion
extensions. It would be interesting to find a variant of the
model that implements this symmetry class and, in that
way, complete the full fifteenfold classification of non-
pseudo-Hermitian matrices by the nHSYK model.

VIII. OUTLOOK AND CONCLUSIONS

We have proposed a single-site SYK model with com-
plex couplings as a toy model for many-body non-
Hermitian quantum chaos. We have shown that 19 out
of 38 universality classes in the symmetry classification of
non-Hermitian quantum systems occur naturally in this SYK
model and its chiral and complex-fermion extensions. In
particular, we have reproduced all but one (AI−) non-pseudo-
Hermitian universality classes, namely, A, AIII†, AI†, AII†,
D, C, AI†þ, AII

†
þ, AI†−, AII†−, AI, AII, AIþ, and AIIþ (see

Tables II, V, VI, and VIII). A detailed spectral analysis of the
original nHSYK model, involving short-range correlators
such as the complex spacing ratios in the bulk and the
distribution of the smallest eigenvalue near the hard edge, has
revealed an excellent agreement with the RMT predictions
for nine universality classes occurring for different choices of
N and q in the Hamiltonian. Six additional universality
classes were identified for the non-Hermitian version of the
Wishart-SYKmodel. In particular, it realizes the class AIII†,
the only non-Hermitian class without reality conditions not
realized by the nHSYK, thus completing our program of
finding explicit realizations of the tenfold classification
within the non-Hermitian SYK model. Interestingly, and
contrary to the Hermitian case, the nHWSYK model also
realizes classes beyond the tenfoldway, illustrating the richer
classificationof non-Hermitian randommatrixmodels.More
concretely, it also realizes the five pseudo-Hermitian classes
AIII−, BDI†−þ, CII†−þ, BDIþ−, and CIIþ−. Finally, the
complex-fermion nHSYK model realizes non-pseudo-
Hermitian classes with reality conditions, namely, the
Ginibre orthogonal, Ginibre symplectic, chiral Ginibre
orthogonal, and chiral Ginibre symplectic ensembles.

TABLE VIII. Symmetry classes realized in complex-fermion
nHSYK and nHWSYK models.

Couplings Real Complex Quaternionic

Nonchiral AI A AII
Chiral AIþ AIII† AIIþ
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Additionally, we mention the possibility of realizing
further symmetry classes in two-site nHSYK models.
These models, relevant for wormhole physics [18–20,85]
and also in the exploration of dominant off-diagonal replica
configurations [85], provide an interesting playground to
implement not only the universality classes already realized
in the nHSYK but also going beyond by tuning the
additional parameters appropriately. However, a potential
issue in this case may be that the coupling needed to lift
spectral degeneracies actually determines the RMT sym-
metry class, and it may occur that no new classes are
obtained without fine-tuning.
The study of local level statistics presented in this paper

will be complemented by a companion work [84] on
long-range correlations that explore shorter timescales.
Deviations from random matrix universality allow us to
use the nHSYK model as a toy model of both generic
features of the universal quantum ergodic state reached
around the Heisenberg time and non-universal, but still
rather generic, properties of quantum interacting systems in
its approach to ergodicity.
Other natural extensions of this work include the

analytical calculation of the spectral density of the
nHSYK model by combinatorial techniques and a short-
time characterization of non-Hermitian many-body quan-
tum chaos in this nHSYK model by the evaluation of the
Lyapunov exponent resulting from an out-of-time-order
correlation function [10,12,90] for times of the order of the
Ehrenfest time. The latter could help dynamically charac-
terize non-Hermitian quantum chaos. For real spectra, we
have the BGS conjecture that relates dynamical and
spectral correlations. However, despite the heavy use of
terminology borrowed from the real-spectrum case, it is
still unclear to what extent agreement with non-Hermitian
random matrix predictions is related to quantum chaos in
the original sense of quantum dynamics of classically
chaotic systems. We plan to address some of these issues
in the near future.
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