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We prove that quantum information propagates with a finite velocity in any model of interacting bosons
whose (possibly time-dependent) Hamiltonian contains spatially local single-boson hopping terms along
with arbitrary local density-dependent interactions. More precisely, with the density matrix ρ ∝ exp½−μN�
(with N the total boson number), ensemble-averaged correlators of the form h½A0; BrðtÞ�i, along with out-
of-time-ordered correlators, must vanish as the distance r between two local operators grows, unless
t ≥ r=v for some finite speed v. In one-dimensional models, we give a useful extension of this result that
demonstrates the smallness of all matrix elements of the commutator ½A0; BrðtÞ� between finite-density
states if t=r is sufficiently small. Our bounds are relevant for physically realistic initial conditions in
experimentally realized models of interacting bosons. In particular, we prove that v can scale no faster than
linear in number density in the Bose-Hubbard model: This scaling matches previous results in the high-
density limit. The quantum-walk formalism underlying our proof provides an alternative method for
bounding quantum dynamics in models with unbounded operators and infinite-dimensional Hilbert spaces,
where Lieb-Robinson bounds have been notoriously challenging to prove.
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I. INTRODUCTION

In Einstein’s theory of relativity, information cannot
travel faster than the speed of light, c. However, there can
also be emergent speed limits (such as the speed of sound,
which controls auditory signaling), which are much slower
than c. In quantum mechanical systems, it was first proved
by Lieb and Robinson [1] that there is a finite speed
of quantum information in local lattice models with
finite-dimensional Hilbert spaces (on any given site).
Analogously to the relativistic setting, it is said that these
local lattice models have a “Lieb-Robinson light cone”:
Information propagates with a finite velocity v, and signals
cannot be sent between “spacelike separated” qubits,
separated by a distance x > vt. Especially in recent years,
many authors have qualitatively improved upon the original
bounds of Lieb and Robinson, in local lattice models [2–6],
in dissipative and nonunitary dynamics [7], in models with
power-law interactions [8–17], in all-to-all interacting

models [18,19], in semiclassical spin models [6,20], and
even in microscopic toy models of quantum grav-
ity [21,22].
However, it has proven notoriously difficult to find

rigorous bounds on quantum dynamics in models with
infinite-dimensional Hilbert spaces. This is not a simple
mathematical curiosity, avoidable in any practical physical
setting: Any quantum mechanical system with conven-
tional bosonic degrees of freedom, such as photons or
phonons, has an infinite-dimensional Hilbert space arising
from the bosonic degrees of freedom. Indeed, a simple
model demonstrates that quantum information can propa-
gate arbitrarily fast in certain bosonic systems [23], so any
bound on dynamics must be restricted to special kinds
of bosonic models. Nevertheless, the model of Ref. [23]
is somewhat unusual: The “hopping terms” in the
Hamiltonian can annihilate or create two bosons, rather
than moving a single boson from one site to another. Could
it be the case that in more physically relevant bosonic
models, there is a finite speed of information?
While initial progress towards answering this question

(ideally in the affirmative) was restricted to the analysis of
systems with interacting bosons with bounded interactions
[24], or to classical models [25], more recent work has been
able to bound special classes of commutators in interacting
models, which have boson-spin interactions [26] of a very
special kind, relevant to cavity quantum electrodynamics
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[27] or trapped ion crystals [28]. Attempts to derive a finite
velocity on information propagation have also been suc-
cessfully made when restricting to states with a finite
number of total bosons [29] (yet vanishing boson density in
the thermodynamic limit). In macroscopic quantum states
with sufficiently low number density of bosons, a recently
derived bound shows that the shortest time t in which
information can propagate a distance r is t ∼ r= log2 r [30]
in models where the interactions are density dependent.
The result of Ref. [30], which is relevant to most physically
realized models of interacting boson models, roughly
suggests that the velocity of information grows with time
as v ≲ log2 t. This is almost—though not quite—a “linear
light cone” in the same spirit as the Lieb-Robinson bounds
on local spin chains.
Despite the very long-standing theoretical challenge in

establishing the finiteness of the speed of information
rigorously in a model of interacting bosons, more practical
work seems to clearly confirm that physically relevant
Bose gases have a linear light cone—namely, a finite
velocity with which quantum correlations and information
can spread. In fact, the first crisp experimental observation
of a finite velocity of quantum correlations took place in
an experiment on one-dimensional ultracold Bose
gases [31]. Indeed, many authors [32–37] have observed
strict light cones in numerical simulations of these
Bose gases, but no rigorous results have been able to
generalize the mathematically precise Lieb-Robinson
bounds to interacting bosons. (Of course, because of
the challenge of proving a Lieb-Robinson bound for these
models, one may not know with mathematical certainty
that these simulations are guaranteed to have control-
lable error.)
This paper closes the long-standing gap between experi-

ment and simulation on the one hand, and mathematical
physics on the other. We prove that correlation functions of
interest in physical problems remain small outside of an
emergent light cone that propagates with a finite velocity in
“thermal” states with infinite temperature, but a finite
number density of bosons, in interacting boson models
with density-dependent interactions on any lattice or graph.
In one-dimensional models, we prove stronger results:
There is a finite velocity of quantum information in every
finite-density state or ensemble. As a consequence of
this stronger 1D result, we also prove that simulating
Bose-Hubbard-like models in 1D is not asymptotically
more difficult than simulating a 1D model with a finite-
dimensional Hilbert space. Similarly, like in models with
finite-dimensional Hilbert spaces [2,3,38], models with a
gapped ground state have correlation functions (in said
ground state) that exponentially decay with distance. These
results, along with the mathematical method we use to
prove them (which differs somewhat from Refs. [29,30]),
form the key results of this paper. A schematic depiction of
our results is provided in Fig. 1.

II. INTUITION BEHIND OUR RESULTS AND
METHODS

In this section, we present a nonrigorous overview of the
key results, along with the mathematical techniques we use
to prove them. The following sections contain the many
technical details outlined here.
While our formal results are actually rather broad in

scope, by far the most recognizable model to which they
apply is the canonical Bose-Hubbard model [39–43]. For
pedagogical purposes, let us focus here on the one-dimen-
sional version of this model, whose Hamiltonian is

H ¼
X∞
x¼−∞

(Jb†xbxþ1 þ Jb†xþ1bx þUnxðnx − 1Þ); ð2:1Þ

where b†x and bx are bosonic creation and annihilation
operators on site x,

nx ¼ b†xbx ð2:2Þ

is the boson number operator, and

½bx; b†y� ¼ δxy: ð2:3Þ

In Eq. (2.1), we further assumed that the model is one
dimensional with nearest-neighbor hopping terms.
Theorem 6.1 proves that in bosonic models like this—

independent of the spatial dimensionality or other details of
the lattice—“thermal” correlation functions in a finite-
density grand-canonical ensemble are superexponentially
small outside of a linear light cone, just as they are in local
spin chains. If A0 and Br represent two spatially local
operators separated by distance r, and OðtÞ ≔ eiHtOe−iHt

denotes Heisenberg time evolution of an operator,

FIG. 1. Schematic depiction of the linear light cone in a model
of interacting bosons with single-body hopping terms, as in
Eq. (2.1). A local perturbation at the origin (x ¼ 0) can only
affect expectation values of observables at position x ¼ r in a
grand-canonical, finite-density ensemble, after a time t ≥ r=v.
Our proof that the velocity v is finite represents the first rigorous
proof that quantum correlations and information must propagate
with bounded velocities in a broad family of interacting bosonic
models, including (but not limited to) the canonical Bose-
Hubbard model.
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tr(e−μN ½BrðtÞ; A0�)
trðe−μNÞ ≤ c

�
vt
r

�
c0r
: ð2:4Þ

In this equation, c and c0 are constants, v is an upper bound
on the “speed of quantum information,” and μ represents a
chemical potential for the conserved number of bosons N
[44]. Note that v and c can depend on μ, and in our bound,
they can depend on the observables A and B as well (though
this may be an artifact of our bound and not a physical
effect). We emphasize that in this grand-canonical thermal
ensemble, the number of bosons, N, is macroscopically
large: Indeed, the average occupancy of bosons on a single
site is

hnxi ¼
1

eμ − 1
≔ n̄: ð2:5Þ

Our bound, which proves that v is finite, holds for any
0 < μ < ∞ and thus any finite density n̄. This result
provides a definitive negative answer to the question of
whether physically realistic, number-conserving models of
interacting bosons can propagate quantum correlations and
information infinitely fast in (typical) finite-density states,
and it settles a decades-old problem in mathematical
physics.
To motivate the form of Eq. (2.4), consider the following

scenario. We pick a random state at a given chemical
potential μ (let us call it jψi) and then apply a local
perturbation to jψi:

jψ 0i ≔ jψi þ iϵA0jψi þ � � � ; ð2:6Þ

with A0 a local operator. We take the parameter ϵ to be
small and real, and A0 to be Hermitian, for pedagogical
purposes here. How much might this perturbation affect an
observable Br, located a distance r away, by time t? This is
captured by

hψ 0ðtÞjBrjψ 0ðtÞi − hψ 0ð0ÞjBrjψ 0ð0Þi
¼ hψ jð1 − iϵA†

0ÞeiHtBre−iHtð1þ iϵA0Þjψi
− hψ jð1 − iϵA†

0ÞBrð1þ iϵA0Þjψi þ � � �
¼ hψ jðBrðtÞ − Br þ iϵ½BrðtÞ − Br; A0�Þjψi þ � � �
≈ iϵhψ j½BrðtÞ; A0�jψi; ð2:7Þ

where in the last step we have assumed that hψ jBrðtÞjψi is
essentially time independent (thus all time dependence
arises entirely from our perturbation), and we have used the
fact that two operators that are spatially separated com-
mute: ½Br; A0� ¼ 0. Under time evolution, BrðtÞ becomes a
highly nonlocal operator, which can badly fail to commute
with A0. Equation (2.4) shows that the time t required for
this to happen is at least as large as r=v, for some finite
velocity v.

Let us now ascertain whether or not our bound has
optimal scaling. Assuming that operators A and B in
Eq. (2.4) are creation or annihilation operators (e.g., A0 ¼
b†0 and Br ¼ bx, with r ¼ a × x, where a represents the
physical spacing between lattice sites), we find

v ≤ ð496þ 384n̄Þ Ja
ℏ
: ð2:8Þ

Analytical and numerical studies of this particular model
[32–37] (albeit in studies of slightly different states or
ensembles) suggest that [33]

v≲ ð2þ 4n̄Þ Ja
ℏ
; ð2:9Þ

with this bound believed to be tight both when n̄ ≪ 1 and
when n̄ ≫ 1. In the former limit, the tightness of Eq. (2.9)
is seen by noting that the bosonic problem is essentially
noninteracting and the maximal velocity set by the
dispersion relation of the hopping J terms is 2Ja=ℏ. In
the latter limit, one can justify the scaling v ∼ n̄J by noting
that in a high-density state with strong interactions
U ≫ Jn̄, the boson creation or annihilation operators scale
as b; b† ∼

ffiffiffī
n

p
. Comparing our bound in Eq. (2.8) to

Eq. (2.9), we see that it is around 2 orders of magnitude
too large but captures the right scaling of the density
dependence both at high and low density. Moreover, the
functional form of our bound (2.4) is easily seen to be
optimal by studying the hopping of even a single boson [5].
As a consequence, our bound might be quantitatively, but
not qualitatively, improved.
As promised above, Eq. (2.4) holds in far more

than simply the Bose-Hubbard model. We prove that
our linear-light-cone bound remains valid for arbitrary,
spatially local, density-dependent interactions, for time-
dependent Hamiltonians, and with single-boson hopping
terms on any mathematical graph (which, of course,
includes physical lattices in one, two, or three dimensions).
Let us briefly outline the steps required to obtain

Eq. (2.8), where they can be found in the paper, along
with our broad strategy of proof. In Sec. III, we formally
define the space of models that we study. In Sec. IV, we
define a normalizable “operator Hilbert space” for bosonic
systems, where the grand-canonical ensemble ρ ∼ e−μN is
built into a natural inner product on this operator Hilbert
space. To motivate this construction, we first observe that
time dependence in Eq. (2.4) is most naturally phrased in
the language of growing operators. This suggests that, as in
standard Lieb-Robinson approaches, it will be more natural
to think of Heisenberg operator dynamics rather than
Schrödinger state evolution. However, a key shortcoming
of studying operator dynamics—and indeed, the critical
challenge that has foiled prior attempts to derive bounds on
bosonic models—pertains to the natural operators of

FINITE SPEED OF QUANTUM INFORMATION IN MODELS OF … PHYS. REV. X 12, 021039 (2022)

021039-3



interest, such as bx and b†y: (1) These operators are
infinite dimensional (since there are arbitrarily large
numbers of bosons that can exist on each site), and
(2) even more alarmingly, these operators are unbounded.
Mathematically, we write kbxk ¼ ∞—the operator
norm of bx does not exist. Intuitively, this unboundedness
follows from the fact that, even for just one boson,
bjni ¼ ffiffiffi

n
p jn − 1i, where jni; jn − 1i are normalized:

The coefficient
ffiffiffi
n

p
can be arbitrarily large. To bound

dynamics, we need to demonstrate that these
ffiffiffi
n

p
factors

cannot contribute to “dangerously fast” Heisenberg dynam-
ics. Given that prior numerics have already suggested
v ∼ n̄, resolving this issue is not only technical but also
essential to understanding the physics of how locality might
even be possible in a bosonic model.
The way that we overcome this technical challenge is to

use the “many-body quantum-walk” formalism for operator
growth [13,19–21]. In this approach, we take the operator-
Hilbert-space intuition seriously and think about the
operator bxðtÞ as a “quantum state” in some new
“Hilbert space.” Since this new vector space is our own
abstract construction, we choose it carefully; in particular,
we find it convenient to define the following inner product
between operators:

ðAjBÞ ≔ trð ffiffiffi
ρ

p
A† ffiffiffi

ρ
p

BÞ; ð2:10Þ

with ρ ∝ exp½−μN� for 0 < μ < ∞. The notation here is
inspired by Dirac’s bra-ket notation, but we use parentheses
to emphasize that this Hilbert space is not the physical one
but rather exists for operators. The key feature of Eq. (2.10)
is that states with a large number of bosons will have an
exponentially small inner product. Therefore, we expect
that the unboundedly fast quantum dynamics hinted at in
the previous paragraph will be so suppressed by

ffiffiffi
ρ

p
that we

can prove exact bounds on operator dynamics using this
inner product.
To get further intuition for this idea, observe that, in the

operator quantum walk, we write [45]

bxðtÞ ¼
X
i

ciðtÞbi þ
X
ijk

cij;kðtÞbibjb†k

þ
X
ijklm

cijk;lmðtÞbibjbkb†l b†m þ � � � : ð2:11Þ

The coefficients ciðtÞ, cij;kðtÞ, etc., are the coefficients of a
quantum state, but the states such as bibjb

†
k are not

normalized in the inner product (2.10). In fact, we could
estimate that, e.g., ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbibjb†kjbibjb†kÞ
q

∼ n̄3=2: ð2:12Þ

This means that, as we adjust the thermodynamic density n̄
of interest, the same Heisenberg operator bxðtÞ will be

interpreted quite differently: When n̄ ≫ 1, long operator
strings will be more important than when n̄ ≪ 1. To get
very rough insight into how this can give rise to an
n̄-dependent velocity (2.9), imagine that

bðtÞ ∼
X∞
m¼0

tm

m!
bx

Ym
j¼1

bxþjb
†
xþj: ð2:13Þ

Since the length of each b; b† ∼
ffiffiffī
n

p
, we could estimate that

the dominant term in the series above arises when ðn̄tÞn=n!
is maximal or when n̄t ∼m. Since m corresponds to the
distance traveled, this would give us velocity v ∼ n̄.
In reality, the origin of Eq. (2.9) is a little more complicated
in the Bose-Hubbard model, but this simple argument
above illustrates how a quantum-walk formalism can
crisply capture n̄-dependent dynamics in an interacting
boson model.
To actually prove Eq. (2.9), note that nonvanishing

commutators in Eq. (2.4) can only arise from the spatial
growth of operators. Therefore, we can actually bound
Eq. (2.4) by carefully understanding how operator strings
of b and b† evolve using the quantum walk. To obtain exact
results, we bound the growth of operator strings by defining
well-chosen “superobservables” F on the operator Hilbert
space. In a nutshell, we choose

F ∼
X∞
x¼−∞

eλjxjPx; ð2:14Þ

where Px is a projection onto operator strings with at least
one bx or b

†
x; we then prove that (via Markov’s inequality)

if (½A0ðtÞ;Bx�j½A0ðtÞ;Bx�)∼1; then (A0ðtÞjF xjA0ðtÞ)≳eλx:

ð2:15Þ

The precise implementation of this idea is detailed
in Sec. V.
In Sec. VI, we then prove the linear light cone (2.4) by

showing that

(A0ðtÞjF jA0ðtÞ)≲ eκt; ð2:16Þ

for some finite constant κ. This implies that the velocity in
Eq. (2.4) is

v ≤
κ

λ
: ð2:17Þ

Intuitively, this is done by noting that with each step in
time, the locality in H means that F cannot increase too
much. A bit more precisely, we evaluate Eq. (2.16) in an
interaction picture where the hopping terms [J, in Eq. (2.1)]
in the Hamiltonian are treated as the perturbation, and the
interactions [U, in Eq. (2.1)] are the unperturbed terms.
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This unperturbed terms, because we use a basis for operator
Hilbert space where theU-terms almost do not contribute to
time dependence in (A0ðtÞjF jA0ðtÞ). And if only hopping
terms were present, a linear light cone would exist since the
problem would reduce to a single-particle system where
Lieb-Robinson bounds are well established. The large
majority of our proof of the linear light cone amounts to
characterizing the extent to which the interactions can
modify (A0ðtÞjF jA0ðtÞ). The density-dependent inter-
actions cause the accumulation of many powers of b†b
in Eq. (2.11), albeit all on the same lattice site. Therefore, it
becomes critical to carefully resum these contributions.
Eventually, these effects lead to an enhancement in κ, and
hence the velocity of the light cone, beyond what the
single-particle hopping terms alone could achieve.
Remarkably, Eq. (2.9) shows that this enhancement is a
physical effect.
The operator growth picture above immediately

leads to both bounds on ordinary correlators such as
tr(ρ½A0ðtÞ; Br�) and bounds on out-of-time-ordered corre-
lators tr(

ffiffiffi
ρ

p ½A0ðtÞ; Br� ffiffiffi
ρ

p ½A0ðtÞ; Br�): See Corollary 5.5.
Bounds on these correlators exist in any spatial dimension.
While our light cone is stronger than that in Ref. [30], our
bound does not (as of now) apply to correlators in the
thermal state ρ ∼ e−βH.
Our second main result is the proof of a much stricter

notion of light cone in one-dimensional models. Theorem
7.2 proves that all matrix elements of ½A0ðtÞ; Br� between
finite-density quantum states are bounded by a light cone of
the form (2.4). This means that not only a typical finite-
density state but all finite-density states obey a linear light
cone. Intuitively, the proof of this result is straightforward.
In a chain of length L, the number of finite-density states
scales as eOðLÞ. In the worst-case scenario, a bound on
tr(

ffiffiffi
ρ

p ½A0ðtÞ; BL� ffiffiffi
ρ

p ½A0ðtÞ; BL�) is large because of a single
matrix element where the commutator is large. Thus, any
density matrix ρ̃ corresponding to a finite-density state
must have bounded entries:

tr( ˜ρ½A0ðtÞ; BL�)≲ ðeOðLÞÞ2tr( ffiffiffi
ρ

p ½A0ðtÞ; BL�
ffiffiffi
ρ

p ½A0ðtÞ; BL�)

∼
�
Oð1Þ · vt

L

�
L
: ð2:18Þ

The superexponential decay of Eq. (2.4) with L is so strong
that it allows us to safely salvage our bound: The number-
of-states factor is fairly negligible. However, we also need
to modify the proof above to deal with the case where the
two operators A0 and Bx are separated by distances x ≪ L;
given the picture of local operator growth sketched above,
we are able to obtain this result with a bit of further work.
We prove two important applications of this stronger

bound in 1D models. First, we bound the classical
computational complexity of simulating the Bose-
Hubbard model and prove in Sec. VIII that this task is

asymptotically no harder in one dimension than simulating
a local 1D spin chain. This demonstrates a simple and
practical application of our formal bound in condensed
matter and atomic physics. Second, we prove in Sec. IX
that in any 1D interacting Bose gas with time-independent
Hamiltonian and density-dependent interactions, correla-
tion functions in the ground state jE0i obey

hE0jA0BrjE0i − hE0jA0jE0ihE0jBrjE0i≲ e−r=ξ ð2:19Þ

whenever there is a finite energy gap to the first excited
state. (Here, ξ is a finite number, independent of r, and A0

and Br denote two local operators separated by a distance
r.) The exponential decay with r in Eq. (2.19) is just as
strong as it is in local models. These two results rigorously
show that, at least in certain ways, models of interacting
bosons—despite their formally infinite-dimensional Hilbert
space—can share many of the same physical properties as
models of interacting spins or fermions.
The results highlighted above have many implications.

Here, we highlight a few interesting ones, spanning atomic
and condensed matter physics, together with quantum
information. (1) It is common when simulating a Bose-
Hubbard model to truncate the Hilbert space not allowing
for arbitrarily large boson number fluctuations on any
given site. Our rigorous results can formally justify such
assumptions; indeed, we describe strong bounds on the
computational complexity of classically simulating the
Bose-Hubbard model in one dimension in Sec. VIII.
(2) Section IX demonstrates that (at least in 1D) a simple
feature of a phase of matter—a gapped ground state—will
lead to a finite correlation length in correlation functions,
independently of whether the local Hilbert space is finite or
not. Indeed, one would not expect such a mathematical
detail to have a profound physical consequence, and our
methods lead to a first rigorous demonstration of this
expectation. (3) Our results demonstrate that it is not
feasible to use Bose gases to asymptotically improve on
the operating speed of a future quantum information
processor: Signals propagate at finite velocities in any
physically realizable finite-density state in one dimension
(or in a typical state in higher dimensions). Even though
interactions can become arbitrarily strong if one engineers
all of the bosons to clump together under the quantum
dynamics, our result proves that these enhanced inter-
actions cannot, in fact, form the basis for rapid spreading of
quantum information or correlations.

III. BOSONIC MODELS WITH NUMBER
CONSERVATION

Let us now provide technical definitions of the models
we study in this paper. Consider an undirected graph G ¼
ðV; EÞ with vertex set V and edge set E consisting of pairs
of vertices. We do not require V or E to be finite sets, but
we will require that the degree of each vertex is
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degðvÞ ¼ jfe ∈ E∶v ∈ egj ≤ K ð3:1Þ

for some finite number K; this simply means that each
vertex has a finite number of neighbors.
On each vertex, we place a single bosonic degree of

freedom, corresponding to an infinite-dimensional Hilbert
space spanned by the states jniv for n ∈ Z≥0. The bosonic
raising operator b†v and lowering operator bv on each site
are defined as usual:

b†vjniv ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1iv; ð3:2aÞ

bvjniv ¼
ffiffiffi
n

p jn − 1iv: ð3:2bÞ

The global Hilbert space H of the model contains all
normalizable wave functions written in a product basis
⊗
v∈V

jniv. Bosonic operators on different sites commute:

½bu; b†v� ¼ δuv: ð3:3Þ
The number operator

nv ¼ b†vbv ð3:4Þ

counts the number of bosons on vertex v.
In this paper, we bound quantum dynamics generated by

the time-dependent Hamiltonians of the generic form

HðtÞ¼
X

fx;yg∈E
JxyðtÞb†xbyþ

X
S⊂V∶diamðSÞ≤l

USðnv∈S; tÞ; ð3:5Þ

with JxyðtÞ a Hermitian matrix (Jxy ¼ Jyx, with the overbar
denoting complex conjugation), and USðnv∈S; tÞ an arbi-
trary polynomial potential in the density operators acting in
a given subset S ⊂ V with the property that all sites within S
are within a distance l of each other. Here, the distance
between vertices u and v is defined in the Manhattan
sense—the minimal number of edges traversed to get from
one to the other. The dependence on t in the Hamiltonian
does not need to be continuous.
The canonical example of such a model is the Bose-

Hubbard model [39], in which after an appropriate choice
of units for time,

JxyðtÞ ¼ 1; ð3:6aÞ

Ufxgðn; tÞ ¼ U0nðn − 1Þ; ð3:6bÞ

with U0 > 0 a constant. However, in this paper, the only
requirement we impose is that

JxyðtÞ ≤ 1: ð3:7Þ

A key property of these models of interacting bosons is
as follows:

Proposition 3.1: (Number conservation) Let the total
number of bosons be

N ≔
X
x∈V

b†vbv: ð3:8Þ

Then,

½N;HðtÞ� ¼ 0: ð3:9Þ

This well-known result will be at the heart of our
approach. In particular, we now describe a many-body
quantum-walk formalism, which allows us to cleanly
control the dynamics of “thermal” correlators in a finite-
chemical-potential grand-canonical ensemble.

IV. OPERATOR HILBERT SPACE FOR BOSONS
AT FINITE DENSITY

Following Ref. [45], we now describe a many-body
quantum-walk formalism for describing the growth of
operators and ultimately bounding thermal correlation
functions. (Another approach that derived state-dependent
commutator bounds can be found in Ref. [46].) We do so by
defining the inner product (2.10) on the Hilbert space
of operators, with ρ the (grand-canonical) thermal
density matrix at infinite temperature and finite chemical
potential μ:

ρ ¼ ⊗
v∈V

ð1 − e−μÞe−μnv : ð4:1Þ

We assume 0 < μ < ∞. We use the notation jAÞ, jBÞ for
operators to emphasize that the inner product space
structure is essential in the framework that follows.
If we were studying a single bosonic degree of freedom

(graphG has one vertex), a useful basis for operator Hilbert
space would correspond to fjnihn0j∶n; n0 ∈ Z≥0g. The
Hilbert space of operators would consist of all states that
have finite length: If

O ≔
X∞
n;n0¼0

cnn0 jnihn0j; ð4:2Þ

then

ðOjOÞ ¼ ð1 − e−μÞ
X∞
n;n0¼0

jcnn0 j2e−μðnþn0Þ=2 < ∞: ð4:3Þ

We often use the notation

jnn0Þ ≔ eμðnþn0Þ=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p jnihn0j: ð4:4Þ

The normalization constant is chosen so that these vectors
are orthonormal:
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ðn1n01jn2n02Þ ≔ δn1n2δn2n02 : ð4:5Þ

Note that, in particular, the identity matrix

I ≔
X∞
n¼0

jnihnj ð4:6Þ

is a normalizable state; hence, it exists in the operator
Hilbert space, so long as μ > 0:

jIÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p X∞
n¼0

e−μn=2jnnÞ: ð4:7Þ

We then define the projection superoperator

PjOÞ ≔ jOÞ − ðIjOÞjIÞ ð4:8Þ

(to project any operator off of the identity), the projection
operators

Pnn0 ¼ jnn0Þðnn0j; ð4:9Þ

and the “identity superoperator”

I ≔
X∞
n;n0¼0

Pnn0 : ð4:10Þ

Our choice of operator basis is a balancing act between
two “competing interests.” On the one hand, since I
commutes with all operators, it is ideal to separate out
the identity, especially when bounding operator growth and
the spreading of quantum information. On the other hand,
an operator basis such as I; b; b†; b†b; � � � turns out to be
quite unwieldy. Moreover, we see that the basis vectors
jnn0Þ only pick up phases under time evolution under the
density-dependent interactions US; this property will be
particularly valuable in proving the light cone. Ultimately,
after some tinkering, we find that working in the jnn0Þ
operator basis, but projecting out the identity, is the most
effective strategy that we could find for describing growing
operators.
Now, let us explain the straightforward generalization of

this basis to a multisite problem (vertex set V now has more
than one element). We typically use subscripts to denote
that the objects defined above act on particular vertices: For
example, the projector off of operators that correspond to
the identity on vertex v is

Pv ≔ P|{z}
site v

⊗ ⊗
x∈V−v

I|fflfflffl{zfflfflffl}
other sites

: ð4:11Þ

Since ρ is a tensor product between vertices, the inner
product is well behaved. We find it useful to define the

projector onto operators that are not the identity on a subset
R ⊂ V:

PR ≔ 1 −
Y
v∈R

ð1 − PvÞ: ð4:12Þ

We define the Liouvillian

LðtÞ ≔ i½HðtÞ; ·� ð4:13Þ

to be a superoperator (a linear transformation on the
Hilbert space of operators). The time-evolution automor-
phism on this operator Hilbert space is defined by the
equation

d
dt
jAðtÞÞ ≔ LðtÞjAðtÞÞ: ð4:14Þ

We now state a number of useful formal properties of L and
of this inner product space.
Proposition 4.1: LðtÞ is anti-Hermitian: L† ¼ −L, or

ðAjLjBÞ ¼ −ðBjLjAÞ for any operators A and B.
Proof.—This result immediately follows from

Proposition 3.1:

ðAjLjBÞ ¼ trð ffiffiffi
ρ

p
A† ffiffiffi

ρ
p

i½H;B�Þ
¼ trði½ ffiffiffi

ρ
p

A† ffiffiffi
ρ

p
; H�BÞ ¼ i × trðB†½H;

ffiffiffi
ρ

p
A

ffiffiffi
ρ

p �Þ
¼ trð−iB† ffiffiffi

ρ
p ½H;A� ffiffiffi

ρ
p Þ; ð4:15Þ

where the second and third equalities follow from the
cyclicity of the trace, and the fourth equality follows from
the fact that for any operator fðNÞ, ½H; fðNÞ� ¼ 0. ▪
From this result, we immediately find the following

useful results:
Corollary 4.2: Let F be a superoperator. Then, the

expectation value of F in operator jAðtÞÞ obeys the
following equation:

d
dt
(AðtÞjF jAðtÞ) ¼ (AðtÞj½F ;LðtÞ�jAðtÞ): ð4:16Þ

Proof.—This follows from Eq. (4.14), and (by Proposition
4.1) ½LðtÞjAðtÞÞ�† ¼ ðAðtÞjLðtÞ† ¼ −ðAðtÞjLðtÞ. ▪
Corollary 4.3: The length of states in operator Hilbert

space does not change with time:

ðAjAÞ ¼ (AðtÞjAðtÞ): ð4:17Þ

These three simple facts show us that it is possible to
study operator growth in this system by thinking about
jAðtÞÞ as a normalizable quantum mechanical state in
operator Hilbert space, undergoing a quantum walk.
Indeed, physical operators of interest such as bv and b†v
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are normalized states in operator Hilbert space at any
μ > 0: For example,

jbvÞ ¼
X∞
n¼1

ffiffiffi
n

p jn − 1ihnjv

¼
X∞
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1 − e−μÞ

p
e−μð2n−1Þ=4jn − 1; nÞv: ð4:18Þ

V. BOUNDING CORRELATORS AND
COMMUTATORS

In this section, our main purpose is to explain why the
notion of normalizability in Eq. (4.18) is all that is required
to bound thermal correlators. We emphasize that it does not
matter that the conventional operator norm is unbounded.
In order to relate this quantum-walk formalism to the
questions most conventionally addressed in the literature, it
is useful to introduce some auxiliary superoperators. For
simplicity, we start by working in the Hilbert space of a
single boson—as above, it will be straightforward to
generalize using tensor products. Define the superoperator

Fβ ¼
X∞
n;n0¼0

maxðnþ β; n0 þ βÞβjnn0Þðnn0j; ð5:1Þ

together with

F β ≔ PFβP: ð5:2Þ
The following technical proposition shows us the extent to
which projecting onto or off of the identity can modify the
operator weight in a given jnn0Þ:
Proposition 5.1: On a single vertex, consider a normal-

izable operator

jOÞ ¼
X∞
n;n0¼0

Onn0 jnn0Þ ð5:3Þ

obeying ðOjOÞ ¼ 1. Then,

jðnnj1 − PjOÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μn=2 ¼ ðnnjIÞ; ð5:4aÞ

jðnnjPjOÞj ≤ jOnnj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μn=2; ð5:4bÞ

ðIjFβjIÞ ≤ ββð1 − e−μÞ−β: ð5:4cÞ

Proof.—Observe that since ðIjIÞ ¼ 1,

ðnnj1 − PjOÞ ¼ ðnnjIÞðIjOÞ ≤ ðnnjIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIjIÞðOjOÞ

p
¼ ðnnjIÞ: ð5:5Þ

Equation (4.7) then gives us Eq. (5.4a), and Eq. (5.4b) then
follows from the triangle inequality. For Eq. (5.4c),

ðIjFβjIÞ ¼ ð1 − e−μÞ
X∞
n¼0

e−μnðnþ βÞβ

≤ ð1 − e−μÞ β
β

β!

X∞
n¼0

e−μn
ðnþ βÞ!

n!
¼

�
β

1 − e−μ

�
β

;

ð5:6Þ

▪
The basic strategy for studying operator dynamics in the

quantum-walk formalism is to use Corollary 4.2 to effi-
ciently bound operator growth, by choosing a clever
superoperator F β that can constrain the correlation
functions of interest. Because bosonic operators are
unbounded, some care is required in order to choose such
a superoperator. Luckily, the following proposition shows
us that F β is sufficient to bound the operator length of
commutators:
Proposition 5.2: Let R ⊂ V, and define

O0 ≔
Y
x∈R

ðb†xÞηxbζxx : ð5:7Þ

Then, if

β ¼
X
x∈R

ðηx þ ζxÞ; ð5:8aÞ

γ ¼
X
x∈R

ðηx − ζxÞ; ð5:8bÞ

we have the inequality

ð½O;O0�j½O;O0�Þ ≤ 8ββ cosh
μγ

2

�
1þ β

�
β

1 − e−μ

�
β
�

×
X
x∈R

ðOjF β
xjOÞ: ð5:9Þ

Proof.—To avoid unnecessary clutter, in what follows,
we typically drop the β superscript on F below. First,
observe that since operators supported on disjoint sets
commute, we may freely write

½O;O0� ¼ ½PRO;O0�; ð5:10Þ

with PR defined in Eq. (4.12). Then, we apply the triangle
inequality:

ð½PRO;O0�j½PRO;O0�Þ≤ 2(O0ðPROÞjO0ðPROÞ)
þ2(ðPROÞO0jðPROÞO0): ð5:11Þ

The analysis of each term is similar, so we focus on the first
term. Writing out
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PRO ¼
X
n

OnjnÞ; ð5:12Þ

where here and in the remainder of this paper, we use n as a
quick shorthand for “all possible jnn0Þv on all vertices v,”
and defining au and a0u to be “unit vectors” corresponding
to nu ¼ 1 or n0u ¼ 1, respectively (with all other compo-
nents zero), we see that

O0PRO ¼
X
n

One−μγ=4jnþ gÞ

×
Y
x∈R

�Yζx
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ 1 − j

p
×
Yηx
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx − ζx þ k

p �
;

ð5:13Þ

where

g ≔
X
x∈R

ðηx − ζxÞax: ð5:14Þ

Note that terms where ζx > nx are actually absent, because
there is a factor of 0 in the product above; thus, such terms
will not be counted anyway. Now, observe that

Y
x∈R

�Yζx
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ 1 − j

p
×
Yηx
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx − ζx þ k

p �

≤
Y
x∈R

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ ηx

p Þζxþηx ≤
�
β þ

X
x∈R

nx

�
β=2

: ð5:15Þ

Combining Eqs. (5.13) and (5.15), we see that

(O0ðPROÞjO0ðPROÞ) ≤
X
n

jOnj2e−μγ=2
�
β þ

X
x∈R

nx

�
β

:

ð5:16Þ

Now, we use a series of generally loose inequalities to
simplify even further and reduce this expectation value to
sums over ðOjF xjOÞ. First, we observe that�
β þ

X
x∈Rnx

�
β

≤ ββ
X
x∈R

ðnx þ βÞβ

≤ ββ
X
x∈R

maxðnx þ β; n0x þ βÞβ: ð5:17Þ

Second, let us observe that PRjOÞ is not the same as PxjOÞ,
and therefore, ðOjPRFxPRjOÞ ≠ ðOjF xjOÞ. However, we
have the following proposition to address this issue (we
present a more general statement for later use).
Proposition 5.3: Suppose jOÞ ¼ PRjOÞ, and let

jÕÞ ¼ PvQjOÞ þ cð1 − PvÞQjOÞ, where c ∈ C, and the
superoperator Q ¼ Iv ⊗ Q−v is trivial on v ∈ R. Then,

ðÕjFvjÕÞ ¼
X
nn0

maxðnþ β; n0 þ βÞβkPnn0
v jÕÞk22

≤ ð2 − δc¼0ÞkQk2

×

�
ðOjF vjOÞ þ jcj2

�
β

1 − e−μ

�
β

ðOjPRjOÞ
�
;

ð5:18Þ

where we can further make the replacement

ðOjPRjOÞ ≤
X
x∈R

ðOjPxjOÞ ≤
X
x∈R

ðOjF xjOÞ: ð5:19Þ

Proof.—The triangle inequality implies that

kPnn0
v jÕÞk22 ≤ ð2 − δc¼0ÞðkPnn0

v PvQjOÞk22
þ jcj2kPnn0

v ð1 − PvÞQjOÞk22Þ: ð5:20Þ

Using

kPnn0
v PvQjOÞk2 ¼ kQPnn0

v PvjOÞk2 ≤ kQkkPnn0
v PvjOÞk2;

ð5:21Þ

the first term on the right-hand side of
Eq. (5.20) after summing over n, n0 is bounded by
ð2 − δc¼0ÞkQk2ðOjF vjOÞ. For the second term, we analo-
gously pull out the factor kQk and then use Eqs. (5.4c) and
(4.7). Suppose R ¼ fxi∶i ¼ 1;…; jRjg; then, Eq. (5.19)
comes from

PR ¼
XjRj
i¼1

Pxi

Yi−1
j¼1

ð1 − PxjÞ ð5:22Þ

and k1 − Pxk ≤ 1 ≤ kFxk. ▪
Combining Eqs. (5.16) and (5.17) and Proposition 5.3

with c ¼ 1;Q ¼ I , we obtain

ðO0ðPROÞjO0ðPROÞÞ

≤ 2ββe−μγ=2
X
x∈R

�
ðOjF xjOÞþ

�
β

1− e−μ

�
βX
y∈R

ðOjF yjOÞ
�

≤ 2ββe−μγ=2
�
1þβ

�
β

1−e−μ

�
β
�X

y∈R
ðOjF yjOÞ: ð5:23Þ

Bounding ððPROÞO0jðPROÞO0Þ requires analogous
steps but with n0x replacing nx in the intermediate equalities,
and with a factor of eμγ=2 instead of e−μγ=2:
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(ðPROÞO0jðPROÞO0)

≤ 2ββeμγ=2
�
1þ β

�
β

1 − e−μ

�
β
�X

y∈R
ðOjF yjOÞ: ð5:24Þ

Combining Eqs. (5.11) and (5.23), we obtain Eq. (5.9). ▪
We emphasize that, especially for β > 1, the coefficients

in Eq. (5.9) are not tight. Nevertheless, they are sufficient to
prove a linear light cone in bosonic models with super-
exponentially small tails, which is the main purpose of this
paper. Indeed, Proposition 5.2 is at the heart of our proof of
a linear light cone since we show how to use the quantum-
walk formalism to bound (OðtÞjF vjOðtÞ). Note that
Proposition 5.2 does not restrict the form of O apart from
normalizability, and it easily generalizes to operators O0

beyond strings of b; b†, as long as its expansion coefficients
on the basis jnihn0j are bounded by a polynomial of n, n0.
The linear-light-cone result in the next section naturally
follows for such generalized operators.
Our next goal is to explain how Proposition 5.2 is also

strong enough to constrain physically relevant correlation
functions of interest. Usually, the physical operators A of
interest obey ½A;N� ¼ kA for some k ∈ Z; this holds, for
example, if A is any product of creation and annihilation
operators. On such products (or sums thereof), our inner
product is easily related to more conventional thermal
expectation values:
Proposition 5.4: If

½A;N� ¼ ðkþ k0ÞA; ð5:25aÞ

½B;N� ¼ kB; ð5:25bÞ

then for any tA; tB ∈ R,

(AðtAÞjBðtBÞ) ¼ δk0;0eμk=2tr(ρAðtAÞ†BðtBÞ): ð5:26Þ

Proof.—Using Proposition 3.1, and letting UB be the
time-evolution operator for time tB,

½N;BðtBÞ� ¼ ½N;U†
BBUB� ¼ U†

B½N;B�UB ¼ −kBðtBÞ:
ð5:27Þ

In the last step, we used Eq. (5.25). For this reason, we can,
without loss of generality (and for ease of notation), set
tA ¼ tB ¼ 0 since our results do not depend on time
evolution. Now, let jψMi denote an eigenvector of N with
eigenvalue M, and consider that, because of Eq. (5.25),

NBjψMi ¼ BðN − kÞjψMi ¼ ðM − kÞBjψMi: ð5:28Þ

More generally,

A† ffiffiffi
ρ

p
B

ffiffiffi
ρ

p jψMi ¼ A† ffiffiffi
ρ

p
Be−μM=2jψMi

¼ e−μM=2A† ffiffiffi
ρ

p
BjψMi

¼ e−μM=2A†Be−μðM−kÞ=2jψMi: ð5:29Þ

Observe that this final state is an eigenvector of N
with eigenvalue M − kþ ðkþ k0Þ ¼ M þ k0, analogously
to Eq. (5.28).
Now, if we wish to evaluate

trðA† ffiffiffi
ρ

p
B

ffiffiffi
ρ

p Þ ¼
X∞
M¼0

X
jψMi

hψMjA† ffiffiffi
ρ

p
B

ffiffiffi
ρ

p jψMi; ð5:30Þ

we observe that the trace can be evaluated as a sum over all
possible states with a fixed number of bosons M. Clearly,
this inner product can only be nonzero if k0 ¼ 0. Moreover,
using Eq. (5.29), we can easily write

trðA† ffiffiffi
ρ

p
B

ffiffiffi
ρ

p Þ ¼ trðA†BρÞeμk=2; ð5:31Þ

which is equivalent to Eq. (5.26). ▪
Using the Cauchy-Schwarz inequality, we immediately

get the following corollary:
Corollary 5.5: Suppose that for any fixed ϵ > 0, there

exists a velocity v such that for two vertices x; y ∈ V
separated by distance r, for t < r=v,

ð½OxðtÞ;O0
y�j½OxðtÞ;O0

y�Þ ≤ ϵ: ð5:32Þ

Then, there also exist constants ϵ0 and ϵ00 such that the
following inequalities hold:

tr(ρ½OxðtÞ;O0
y�) < ϵ0; ð5:33aÞ

tr(ρ½OxðtÞ;O0
y�†½OxðtÞ;O0

y�) < ϵ00: ð5:33bÞ

Therefore, there is also a finite velocity v at which
correlations spread in ordinary thermal correlators.

VI. LINEAR LIGHT CONE

We are now ready to state our main result, which
amounts to the rigorous statement and proof of Eq. (2.4).
Theorem 6.1: (Finite speed of correlations). Let O

denote an operator with initial support on the subset
R ⊂ V: namely, ð1 − PRcÞjOÞ ¼ jOÞ. Let operator O0 have
support in subset S ⊂ V. Suppose that for all vertices u ∈ R
and v ∈ S, distðu; vÞ ≥ r; we denote this by distðR; SÞ ¼ r.
Then,

(½OðtÞ;O0�j½OðtÞ;O0�) ≤ C ×

�
vt
r

�
r=ð2lþ1Þ

; ð6:1Þ

for vjtj < r, where
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C ¼ 16ββ cosh
μγ

2

�
1þ β

�
β

1 − e−μ

�
β
�

×

�X
x∈R

ðOjFβ
xjOÞ þ

�
β

1 − e−μ

�
β

ðjRj þ jRljÞðOjOÞ
�
;

ð6:2Þ

Rl ¼ fx ∈ V∶distðx; RÞ ≤ lg, β and γ are defined in
Proposition 5.2 based on the properties of O0, time
evolution is generated by a Hamiltonian HðtÞ obeying
the constraints described in Sec. III, and the velocity

v<

8>><
>>:
8Kð31þ24μ−1Þ β¼ 1;l¼ 0

92Kð2βÞβþ1ð1þ2μ−1Þβþ1 β> 1;l¼ 0

2βþ10ð2lþ1ÞK3lþ2β2βð1þ2μ−1Þ2β l> 0.

ð6:3Þ

Proof.—The proof of this result follows the general
strategy of previous quantum-walk-based proofs on quan-
tum information dynamics (e.g., Refs. [13,19,21]). We
show that

(OðtÞjF xjOðtÞ) ≤ CxðtÞ ð6:4Þ

for each vertex x ∈ V, where the functions CxðtÞ obey the
differential equations

dCu

dt
≤

X
u∈V∶distðu;vÞ≤1þl

MuvðtÞCvðtÞ ð6:5Þ

subject to appropriate initial conditions on CvðtÞ, which we
will explain shortly. Finding bounds on the coefficients
MuvðtÞ is somewhat tedious and will take up much of the
proof of this overall theorem. Once we have a bound on
MuvðtÞ, we integrate this differential equation to find a
bound on (OðtÞjF xjOðtÞ). Proposition 5.2 then completes
the proof.
Let us now carry out these steps. The first step is to

provide a useful definition for CvðtÞ. In order to prove this
result, we use an interaction picture similar to Ref. [30]. Let
us denote with LJ andLU the Liouvillians corresponding to
the J and U terms in the Hamiltonian, respectively. Letting
T denote the time-ordering operator, we define

LJðtÞU ≔ i½HJðtÞU; ·�; ð6:6Þ

where

HJðtÞU ≔ T exp

�Z
t

0

dt0LUðt0Þ
�
HJðtÞ ð6:7Þ

is the interaction-picture hopping term.

The key observation is that U is a sum of mutually
commuting operators, which means that we may write

T exp

�Z
t

0

dt0LUðt0Þ
�
¼
Y
S⊂V

T exp

�Z
t

0

dt0LU;Sðt0Þ
�
; ð6:8Þ

where LU;S ¼ i½US; ·�; the ordering of the product above
does not matter. So, this means that

HJ;uvðtÞU ¼
Y

S∶fu;vg∩S≠∅
T exp

�Z
t

0

dt0LU;Sðt0Þ
�
HJ;uvðtÞ:

ð6:9Þ

Observe that this operator is the identity on any site that is
farther than lþ 1 sites away from either u or v. Let us
denote

Buv ≔ fy ∈ V∶minðdistðy; uÞ; distðy; vÞÞ ≤ lg: ð6:10Þ

Then, letting nBuv
denote only the occupation numbers for

sites in Buv, we may write

HJ;uvðtÞU ¼ IBc
uv
⊗ JuvðtÞ

X
nBuv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nvðnu þ 1Þ

p
× jnBuv

þ au − avihnBuv
j × eiθðnBuv ;tÞ þ H:c:

ð6:11Þ

To derive this result, we have used the fact that the
interactions HU are diagonal in the occupation number
basis and hence only contribute an overall phase to the
operator:

θðn; tÞ ≔
Z

t

0

dt0½Uðnþ au − av; t0Þ − Uðn; t0Þ�: ð6:12Þ

In this equation, we use the diagonal elements of the
operators U, using the expected notation. The key obser-
vation about Eq. (6.11) is that the operators are almost the
same as single-boson hopping operators, except for the
possibility of an arbitrary phase factor. However, this phase
factor will be mild and possible to account for in what
follows.
Next, we write

jOðtÞÞ¼ T exp

�Z
t

0

dt0LJðt0ÞU
�
×T exp

�Z
t

0

dt0LUðt0Þ
�
jOÞ

≔ T exp

�Z
t

0

dt0LJðt0ÞU
�
jOðtÞUÞ

≔UðtÞjOðtÞUÞ; ð6:13Þ

and observe that
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(OðtÞjF xjOðtÞ) ¼ (OðtÞUjUðtÞ†F xUðtÞjOðtÞU): ð6:14Þ

We then choose our initial conditions Cxð0Þ such that

Cxð0Þ ≥ (OðtÞUjF xjOðtÞU); for any t; ð6:15Þ
and we choose MuvðtÞ such that

(Oj½F x;LJðtÞU�jO) ≤
X
y∈V

MxyðtÞ(OjF yjOÞ; for all jO):

ð6:16Þ
If we can achieve Eqs. (6.15) and (6.16), then we will
obtain Eqs. (6.4) and (6.5). We obtain each of these two
desired results in turn.
Lemma 6.2: Suppose the operator jOÞ is supported in

an initial set R: If Rc denotes the complement of R, then

jOÞ ¼ ð1 − PRcÞjOÞ: ð6:17Þ
Then, Eq. (6.4) holds if we choose

Cxð0Þ¼

8>><
>>:
2ββð1− e−μÞ−βþ2ðOjFxjOÞ x∈R

4ββð1− e−μÞ−β 0< distðx;RÞ≤l

0 otherwise:

ð6:18Þ

Proof.—We begin by writing the operator

jOÞ ¼
�X

nR

OnR
jnR

�
⊗ ⊗

y∈Rc
jIÞy: ð6:19Þ

Because of Eq. (6.8), jOðtÞUÞ remains as the identity I on x
for distðx; RÞ > l; thus, Cxð0Þ ¼ 0 in this case. For
distðx; RÞ ≤ l, using Proposition 5.1 and the fact that
the interaction does not grow “size” n, n0, we have

kPnn0
x PxjOðtÞUÞk22
≤ ðkPnn0

x jOðtÞUÞk2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μn=2δnn0kOk2Þ2

≤ 2kPnn0
x jOÞk22 þ 2ð1 − e−μÞe−μnδnn0 ðOjOÞ: ð6:20Þ

Then,

ðOðtÞUjF xjOðtÞUÞ
¼ ðOðtÞUjPxFxPxjOðtÞUÞ

¼
X∞
n;n0¼0

maxðnþ β; n0 þ βÞβkPnn0
x PxjOðtÞUÞk22

≤ 2ðOjFxjOÞ þ 2ðOjOÞ
X∞
n¼0

ðnþ βÞβð1 − e−μÞe−μn

≤ 2ðOjFxjOÞ þ 2

�
β

1 − e−μ

�
β

ðOjOÞ; ð6:21Þ

where for 0 < distðx; RÞ ≤ l, we can further simplify using
ðOjFxjOÞ ¼ ðIjFjIÞ and Eq. (5.4c). ▪
The next step is to derive Eq. (6.16), which we achieve

using the following lemma:
Lemma 6.3: Equation (6.16) holds with

MuvðtÞ ≤ δdistðu;vÞ≤2lþ1

8>><
>>:

62þ 48μ−1 l ¼ 0; β ¼ 1

23ð2βÞβþ1ð1þ 2μ−1Þβþ1 l ¼ 0; β > 1

2βþ8β2βð1þ 2μ−1Þ2βKlþ1 l > 0

; ðu ≠ vÞ ð6:22Þ

and

MuuðtÞ ≤

8>><
>>:

ð62þ 48μ−1ÞK l ¼ 0; β ¼ 1

23ð2βÞβþ1ð1þ 2μ−1Þβþ1K l ¼ 0; β > 1

2βþ8β2βð1þ 2μ−1Þ2βKlþ1 l > 0.

ð6:23Þ

Proof.—The proof of this result is somewhat tedious, and
the reader may wish to skim or skip this part (or only read a
subset to get the general idea). In a nutshell, we simply need
to expand out

(Oj½F z;LJðtÞU�jO)

¼ (Oj½PzFzPz;LJðtÞU�jO)

¼ (OjPz½Fz;LJðtÞU�PzjO)þ (Oj½Pz;LJðtÞU�FzPzjO)

þ (OjPzFz½Pz;LJðtÞU�jO)

¼ (OjPz½Fz;LJðtÞU�PzjO)þ 2(OjPzFz½Pz;LJðtÞU�jO):

ð6:24Þ

The third line follows from Proposition 4.1 and from the
Hermiticity of superoperators Fz and Pz. In what follows,
to avoid clutter, we simply write Luv ¼ LJ;uvðtÞU and
LJ ¼ LJðtÞU. Since Pz is a projector, we have
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½Pz;LJ� ¼
X

uv∈E∶distðz;fu;vgÞ≤l
½Pz;Luv�

¼
X

uv∈E∶distðz;fu;vgÞ≤l
½Luvð1 − PzÞ − ð1 − PzÞLuv�:

ð6:25Þ

So, ultimately, we need to evaluate

ðOj½F z;Luv�jOÞ ¼ ðOjPz½Fz;Luv�PzjOÞ
þ 2ðOjPzFzLuvð1 − PzÞjOÞ
− 2ðOjPzFzð1 − PzÞLuvjOÞ: ð6:26Þ

We call the terms above case 1, case 2, and case 3,
respectively, and evaluate each in turn. For cases 2 and
3, we also need to separately handle the possibility that
z ∈ fu; vg (case A) or z ∉ fu; vg (case B). In what follows,
we also use the notation

jŌzÞ ≔ ð1 − PzÞjOÞ; ð6:27aÞ

jÕzÞ ≔ PzjOÞ: ð6:27bÞ

Lastly, we use the fact that, since operators supported on
disjoint sets commute,

LuvjOÞ ¼ LuvPBuv
jOÞ ¼ PBuv

LuvPBuv
jOÞ: ð6:28Þ

However, to avoid clutter, we often do not bother to write
PBuv

explicitly, except where necessary or useful.
Case 1: Since Luv only grows “size” n, n0 on site u, v,

we only need to consider the case z ¼ u. First, rearrange the
projectors

ðOjPu½Fu;Luv�PujOÞ¼ ðOjPu½Fu;Luv�PuPvjOÞ
þðOjPvPu½Fu;Luv�Puð1−PvÞjOÞ

¼ ðOjð2−PvÞPu½Fu;Luv�PuPvjOÞ;
ð6:29Þ

where we have used ð1 − PvÞLuvð1 − PvÞ ¼ 0, along with
F†
u ¼ Fu. At this point, it is most helpful to separate out

b†ubv and b†vbu terms in Huv and handle them separately.
Indeed, let us define

L<
u;vjOÞ ¼ iJuvðtÞjb†ubvOÞ; ð6:30aÞ

L>
u;vjOÞ ¼ −iJuvðtÞjOb†ubvÞ; ð6:30bÞ

so that we can split up

LuvPBuv
jOÞ ¼ ðL<

uv þ L>
uv þ L<

vu þ L>
vuÞPBuv

jOÞ: ð6:31Þ

As all terms are analyzed in exactly the same way, with the
only differences being, e.g., that

L<
uvjnÞ ¼ iJuvðtÞjnþ au − avÞ; ð6:32aÞ

L>
uvjnÞ ¼ −iJuvðtÞjnþ a0v − a0uÞ; ð6:32bÞ

we just focus on the first one L<
uv in all cases that follow.

Since the interaction terms in the Hamiltonian obey

LUðtÞjnÞ ¼ i
dθn
dt

jnÞ; ð6:33Þ

with dθn=dt a conveniently named constant prefactor, we
find that

½Fu;L<
uv�jnÞ ¼ iJuvðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnu þ 1Þnv

p
eiðθnþau−av−θnÞ

× δnu≥n0ufðnuÞjnþ au − avÞ; ð6:34Þ

where

fðnÞ≔ ðnþ1þβÞβ− ðnþβÞβ

¼ðnþβÞβ−1
Xβ−1
k¼0

�
1þ 1

nþβ

�
k

≤ ðnþβÞβ−1β
��

1þ1

β

�
β

−1

�
≤ ðe−1ÞβðnþβÞβ−1:

ð6:35Þ

Temporarily defining

jðnjPuð1 − Pv=2ÞjOÞj ≔ φn; ð6:36aÞ

jðnjPuPvjOÞj ≔ ϕn; ð6:36bÞ

we see that

jjðOjð2−PvÞPu½Fu;L<
uv�PuPvjOÞjj

≤ 2ðe−1Þβ
X
n

ϕnðnuþβÞβ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnuþ1Þnv

p
φnþau−av

≤ 2ðe−1Þβ
X
n

½ðnv−1þβÞβþδβ>1ðnuþβÞβ�ϕ2
n

þðnuþβÞβφ2
nþau−av

≤ 2ðe−1Þβ½ð1þδβ>1ÞðOjF ujOÞþðOjF vjOÞ�: ð6:37Þ

To obtain the second inequality above, we used the
following proposition:
Proposition 6.4: Let ξu; ξv;φ;ϕ be positive real num-

bers and β be a positive integer. Then,ffiffiffiffiffiffiffiffiffi
ξuξv

p
ξβ−1u φϕ ≤ ξβuφ2 þ ξβvϕ2 þ δβ>1ξ

β
uϕ2: ð6:38Þ
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Proof.—This inequality is trivial for β ¼ 1 or φϕ ¼ 0;
the other cases can be proven by taking the ratio of the two
sides of Eq. (6.38) and using

ð2β − 1Þ φ2 þ ϕ2

φϕð2β − 1Þ

ffiffiffiffiffi
ξu
ξv

s
þ ϕ

φ

�
ξv
ξu

�
β−1=2

≥ 2β

��
φ2 þ ϕ2

φϕð2β − 1Þ
�
2β−1 ϕ

φ

�
1=2β

≥ ð2βÞ 1
2β

��
φ2 þ ϕ2

φϕ

�
2β−1 ϕ

φ

�
1=2β

: ð6:39Þ

The first inequality comes from

ð2β − 1Þaþ b ≥ 2βða2β−1bÞ1=2β; ð6:40Þ

with ð2β − 1Þa and b the first two terms in the leftmost part
of Eq. (6.39). The second inequality in Eq. (6.39) comes
from replacing 2β − 1 < 2β. Now, letting x ¼ ϕ=φ, we
observe that

�
x

�
xþ1

x

�
2β−1

�
1=2β

¼ðx2þ1Þ1=2β
�
xþ1

x

�
1−1=β

≥ 1

ð6:41Þ

for any x > 0. Hence, we obtain Eq. (6.38). ▪
In the last line of Eq. (6.37), we use Proposition 5.3 with

c ¼ 0 and either Q ¼ Pv or Q ¼ 1 − Pv=2, both of which
obey kQk ¼ 1. This completes case 1.
Case 2A: The remaining four cases all have a similar

flavor. The nontrivial aspect of these cases involves the
presence of a PLð1 − PÞ term, which will require some
special care: As in our proof of Proposition 5.3, the ð1 − PÞ
projection onto the identity is actually responsible for the
fastest-growing terms in our bound as μ → 0. Assuming
z ¼ u, and defining

jðnjPujOÞj ≔ ϕn; ð6:42aÞ

jðIu ⊗ n−uj½Pv þ δl>0ð1 − PvÞ�jŌuÞj ≔ ψn−u
; ð6:42bÞ

we find that

jðÕujFuL<
uvjŌuÞj≤

X
n

δnun0uϕnþau−avψn−u
e−μnu=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e−μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnuþ1Þnv

p
ðnuþ1þβÞβ

≤
X
n

δnun0ue
−μnu=2ðnuþ1þβÞ

�
ηð1− e−μÞ½ðnvþβÞβþδβ>1ðnuþ1þβÞβ�ψ2

n−u
þ1

η
ðnuþ1þβÞβϕ2

nþau−av

	

≤ 2η

�
βþ 1

1− e−μ=2

�X
n−u

ðnvþβÞβψ2
n−u

þ2ηδβ>1

�
βþ1

1− e−μ=2

�
βþ1X

n−u

ψ2
n−u

þ1

η

�
1þβþ 2

eμ

�
ðOjF ujOÞ:

ð6:43Þ

In the first line, we have used Eq. (4.7) to show that

ψn−u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μnu=2 ≥ jðnj½Pv þ δl>0ð1 − PvÞ�jŌuÞj:

ð6:44Þ
In the second line, we introduced an arbitrary new constant
0 < η < ∞, by noting that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
ϕψ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
ψ

ffiffiffi
η

p Þ × ϕffiffiffi
η

p ð6:45Þ

and using Proposition 6.4. In the third line, we used
Eq. (5.6) to explicitly evaluate the nu sums in the first
two terms, along with the inequality

nae−bn <

�
a
eb

�
a

ðfor all 0 ≤ n < ∞Þ; ð6:46Þ

in order to efficiently handle the extra factor of
e−μnu=2ðnu þ 1þ βÞ in the third term.
For the second term in the last line of Eq. (6.43), we can

easily see that [recall Eq. (6.28)]

X
n−u

ψ2
n−u

≤ ðOjPBuv
jOÞ: ð6:47Þ

To simplify the first term in Eq. (6.43), we use Proposition
5.3 with Q−v ¼ 1 − Pu and c ¼ δl>0:

X
n−u

ðnvþβÞβψ2
n−u

≤ 2ðOjF vjOÞþ2δl>0

�
β

1− e−μ

�
β

ðOjPBuv
jOÞ: ð6:48Þ

Now, using η ¼ 1=2 in Eq. (6.43), we conclude the analysis
of case 2A:

jðÕujFuL<
uvjŌuÞj≤ 2

�
1þβþ2

μ

�
½ðOjF ujOÞþðOjF vjOÞ�

þðδβ>1þ2δl>0Þ
�

βþ1

1− e−μ=2

�
βþ1

× ðOjPBuv
jOÞ: ð6:49Þ
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Case 2B: Now, we turn to the case z ≠ u, v, which
contributes only when l > 0. Defining

jðnjPzjOÞj ≔ ϕn; ð6:50aÞ

jðIu ⊗ n−zjŌzÞj ≔ ψn−z
; ð6:50bÞ

we find that

jðÕzjFzL<
uvjŌzÞj ≤ δl>0

X
n

δnzn0zðnz þ βÞβϕnþau−av

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnu þ 1Þnv

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μnz=2ψn−z

≤
δl>0
2

X
n

δnzn0ze
−μnz=2ðnz þ βÞβ½ðnu þ 1Þϕ2

nþau−av þ ð1 − e−μÞnvψ2
n−z

�

≤
δl>0
2

�X
n

ð2βÞβ
�
1þ

�
2

eμ

�
2β
�
ðnu þ 1Þϕ2

nþau−av þ
X
n−z

ð1 − e−μÞββ
ð1 − e−μ=2Þβþ1

nvψ2
n−z

�
: ð6:51Þ

In the second line, we used ab ≤ 1
2
ða2 þ b2Þ; in the third line, we used Eq. (5.6), together with

ðnz þ βÞβe−μnz=2 ≤ 2βðββ þ nβzÞe−μnz=2 ≤ ð2βÞβ
�
1þ

�
2

eμ

�
β
�
; ð6:52Þ

the last inequality follows from Eq. (6.46). Lastly, we used that, e.g., nu þ 1 ≤ ðnu þ βÞβ along with analogous
manipulations to Eq. (6.48) to see that

jðÕzjFzL<
uvjŌzÞj ≤ δl>0ð2βÞβ

�
1þ

�
2

eμ

�
β
��

ðOjF ujOÞ þ
�

β

1 − e−μ

�
β

ðOjPBuv
jOÞ

�

þ δl>0
2ββ

ð1 − e−μ=2Þβ
�
ðOjF vjOÞ þ

�
β

1 − e−μ

�
β

ðOjPBuv
jOÞ

�
: ð6:53Þ

Case 3A: Let z ¼ u. Now, denote

jðnjPujOÞj ≔ ϕn; ð6:54aÞ
jðIu ⊗ n−uj½Pv þ δl>0ð1 − PvÞ�FujÕuÞj ≔ ψn−u

: ð6:54bÞ

Since ð1 − PuÞLuv ¼ ð1 − PuÞLuvPu (Luv will always
change either nu or n0u), we may simply evaluate

jðÕujFuð1 − PuÞL<
uvjÕuÞj ≤

X
n

δnun0u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μnu=2ψn−u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nuðnv þ 1Þ

p
ϕnþav−au

≤
X
n

δnun0ue
−μnu=2

�
η

4
ð1 − e−μÞðnv þ 1Þψ2

n−u
þ 1

η
ðnu þ 1Þϕ2

nþav−au

�

≤
η

2

X
n−u

ðnv þ 1Þψ2
n−u

þ 1

η
ðOjF ujOÞ; ð6:55Þ

employing similar tricks to case 2B. For the first term, define Q ¼ ð1 − PuÞFu, and observe that

kQk ¼ kð1 − PuÞFuk ¼ kFujIuÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

ðnþ βÞ2βe−μn
r

≤
�

2β

1 − e−μ

�
β

: ð6:56Þ

Similarly to Proposition 5.3,

X
n−uv

ψ2
n−u

¼
X
n−uv

jðIu ⊗ n−ujð1 − PuÞFu½Pv þ δl>0ð1 − PvÞ�jÕuÞj2

≤ kð1 − PuÞFuk2 × ðIjIÞ × kPnn0
v ½Pv þ δl>0ð1 − PvÞ�jÕuÞk22: ð6:57Þ
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Plugging Eqs. (6.56) and (6.57) into Eq. (6.55), noting that ðIjIÞ ¼ 1, and using Proposition 5.3, we find

X
n−u

ðnv þ 1Þψ2
n−u

≤ η

�
2β

1 − e−μ

�
2β
�
ðOjF vjOÞ þ δl>0

�
β

1 − e−μ

�
β

ðOjPBuv
jOÞ

�
þ ðOjF ujOÞ

η
: ð6:58Þ

Choosing

η ¼
�

2β

1 − e−μ

�
−β
; ð6:59Þ

we obtain

jðÕujFuð1 − PuÞL<
uvjÕuÞj ≤

�
2β

1 − e−μ

�
β
�
ðOjF ujOÞ þ ðOjF vjOÞ þ δl>0

�
β

1 − e−μ

�
β

ðOjPBuv
jOÞ

�
: ð6:60Þ

Case 3B: The last case proceeds very similarly to case
3A. Defining

jðnjOÞj ≔ ϕn; ð6:61aÞ

jðIz ⊗ n−zjFzjÕzÞj ≔ ψn−z
;

jðn−zjð1 − PzÞjOÞj ≔ ψ̃n−z
; ð6:61bÞ

and noting that analogous to Eq. (6.57),

X
n−zv

ψn−z
≤
�

2β

1 − e−μ

�
βX
n−zv

ψ̃n−z
; ð6:62Þ

we find that

jðÕzjFzð1 − PzÞL<
uvjOÞj ≤ δl>0

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p
e−μnz=2ψn−z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnv þ 1Þnu

p
ϕnþav−auδnzn0z

≤
δl>0
2

�
2β

1 − e−μ

�
βX

n

δnzn0z ½ð1 − e−μÞe−μnzðnv þ 1Þψ̃2
n−z

þ nuϕ2
nþav−au �

≤
δl>0
2

�
2β

1 − e−μ

�
β
�X

n−z

ðnv þ 1Þψ̃2
n−z

þ
X
n

nuϕ2
nþav−au

�

≤ δl>0

�
2β

1 − e−μ

�
β
�
ðOjF ujOÞ þ ðOjF vjOÞ þ 2

�
β

1 − e−μ

�
β

ðOjPBuv
jOÞ

�
; ð6:63Þ

where we completed the square in the second line along
with using Eq. (6.62), evaluated the sum over nz in the third
line, and used Proposition 5.3 in the fourth line.
Combining the cases: Now, it simply remains to

combine all of our results: Eq. (6.37) for case 1,
Eq. (6.49) for case 2A, Eq. (6.53) for case 2B,
Eq. (6.60) for case 3A, and Eq. (6.63) for case 3B. We
use many elementary inequalities to try to simplify com-
plicated expressions, such as

1

1 − e−μ=2
≤ 1þ 2

μ
; ð6:64Þ

β þ 1 < 2β, etc., along with the (quite loose) inequality
(5.19). When l ¼ 0, we may simply replace
ðOjPBuv

jOÞ ≤ ðOjF ujOÞ þ ðOjF vjOÞ. We then observe

that in the above calculation, it is this combination of
ðOjF ujOÞ þ ðOjF vjOÞ that shows up everywhere. This
then implies that our bound on Muu will be K times larger
than our bound on Muv, where we have used the fact that
(as defined above) no vertex in G has more than K adjacent
vertices. This leads us to the l ¼ 0 cases contained
in Eq. (6.22).
For simplicity, we go into less detail in the l > 0 cases.

First, let us simply use the crude fact above that

ðOjF ujOÞ; ðOjF vjOÞ; ðOjPBuv
jOÞ ≤

X
x∈Buv

ðOjF xjOÞ:

ð6:65Þ
It is then simply a matter of counting up every single
coefficient. Observe that for a given edge ðuvÞ ∈ E, we
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may induce a contribution to MxyðtÞ for x; y ≠ u, v. The
following proposition bounds how often this can happen:
Proposition 6.5: Consider two vertices fx; yg ⊂ V in a

graph G ¼ ðV; EÞ with maximal degree K. Recall the
subsets Be, defined in Eq. (6.10) for each edge e ∈ E.
Let the number of edges e for which fx; yg ⊆ Buv be
defined as N xy. Then,

N xy ≔ jfe ∈ E∶fx; yg ⊆ Begj ≤ δdistðx;yÞ≤2lþ1Klþ1:

ð6:66Þ

Proof.—If l ¼ 0, then N xy ¼ 1: e ¼ ðxyÞ is required.
So Eq. (6.66) is true but loose, in this case.
If l > 0, observe that we can (without much effort)

bound N xy by simply finding the number of Be containing
x. This is upper bounded by assuming that the graph G is a
K-regular tree: The reason for this is because if G contains
any cycles (loops), then it is possible that the following
count (based on the assumption of a tree) of the number of
edges e within a distance l of x may double count edges.
On aK-regular tree, there are K neighbors u of the vertex x.
Each u has K − 1 additional neighbors u0, with
distðu0; xÞ ¼ 2. Continuing this process, we see that there
are KðK − 1Þm edges that connect a vertex a distance m
from x to a vertex at distance mþ 1. Then,

N xy ≤
Xl
m¼0

KðK − 1Þm ≤ K þ
Xl
m¼1

KmðK − 1Þ ¼ Klþ1;

ð6:67Þ

which completes the proof. ▪
Proposition 6.5 implies that for any pair of vertices x, y,

we may have contributions to Mxy from up to N xy

couplings in LJ. So, summing up the total contribution
from a single coupling using Eq. (6.65), we arrive at the
l > 0 results in Eq. (6.22). ▪
The hard part of the proof is now complete. The last step

is rather standard: to solve the differential equations (6.5)
and bound the resulting CvðtÞ. We achieve this using
quantum-walk-inspired methods, following Ref. [19]:
Lemma 6.6: Given a graph G ¼ ðV; EÞ and real-

valued functions CvðtÞ on each vertex v, if the differential
inequalities

dCv

dt
≤ AvðtÞCvðtÞ þ

X
u∶distðu;vÞ≤2lþ1

BuvðtÞCuðtÞ; ð6:68Þ

then, if

AvðtÞ ≤ K2lþ1B; ð6:69aÞ

BuvðtÞ ≤ B; ð6:69bÞ

and the initial conditions are that (for subset R ⊂ V)
Cvð0Þ ¼ 0 if v ∉ R, then if distðx; RÞ ¼ r,

CxðtÞ ≤
�
vt
r

�
r=ð2lþ1Þ

×
X
x∈R

Cxð0Þ; if vt < r; ð6:70Þ

where the velocity

v < 4ð2lþ 1ÞK2lþ1B: ð6:71Þ

Proof.—Let λ > 1 be a real number, and define

GðtÞ ≔
X
v∈V

CvðtÞλdistðv;RÞ: ð6:72Þ

Observe that, using Eq. (6.69),

dG
dt

≤
X
v∈V

�
K2lþ1BCvðtÞ þ

X
u∶distðu;vÞ≤2lþ1

BCuðtÞ
�
λdistðv;RÞ

≤ K2lþ1Bð1þ λ2lþ1ÞGðtÞ; ð6:73Þ

where in the second equality we used λdistðv;RÞ ≤
λ2lþ1þdistðu;RÞ, along with the fact that the number of
vertices u within distance 2lþ 1 of any given vertex must
be ≤ K2lþ1, analogously to Eq. (6.67). Therefore,

GðtÞ ≤ Gð0Þ exp ½K2lþ1Bð1þ λ2lþ1Þt�: ð6:74Þ

In the spirit of Markov’s inequality, we thus find that if
r ¼ distðx; RÞ,

CxðtÞ≤ λ−rGðtÞ

≤Gð0Þexp
�
K2lþ1Bð1þλ2lþ1Þt− r

2lþ1
logλ2lþ1

�
:

ð6:75Þ

We now choose the optimal value of λ, which
corresponds to

λ2lþ1 ¼ r
ð2lþ 1ÞK2lþ1Bt

: ð6:76Þ

We then find that

CxðtÞ ≤ Gð0Þ exp
�
−

r
2lþ 1

�
log

r
ð2lþ 1ÞK2lþ1Bt

−
ð2lþ 1ÞK2lþ1Bt

r
− 1

��
: ð6:77Þ

If the object in parentheses above is positive, then CxðtÞ is
superexponentially suppressed. It is straightforward to
numerically check that
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log x −
1

x
− 1 > log

x
4
> 0 ð4 < x < ∞Þ: ð6:78Þ

Combining Eqs. (6.77) and (6.78), and using

Gð0Þ ¼
X
x∈R

Cxð0Þ; ð6:79Þ

we find that Eq. (6.70) holds for velocity v given
in Eq. (6.71). ▪
According to Lemma 6.2, Gð0Þ in the previous proof is

Gð0Þ ¼ 2
X
x∈R

ðOjFxjOÞ þ 2

�
β

1 − e−μ

�
β

ðjRj þ jRljÞ;

ð6:80Þ

where Rl ¼ fx ∈ V∶distðx; RÞ ≤ lg. Then, Eqs. (6.1) and
(6.3) immediately follow from combining Eq. (6.5) with
Proposition 5.2, and Lemmas 6.3 and 6.6. We have thus
proven the existence of a linear light cone in the grand-
canonical ensemble of interacting bosonic models. ▪
Note that in the case l > 0, we actually know that

AvðtÞ ≤ B as well, so the bound in Eq. (6.3) is expected to
be particularly weak in this case—however, as noted in the
Introduction, we believe that none of our O(1) coefficients
is particularly tight; the most important result in this
theorem (besides the fact that v is finite) is the scaling
of velocity when β ¼ 0 and l ¼ 1, which cannot qualita-
tively be improved any further.
On a nearest-neighbor d-dimensional cubic lattice, one

has K ¼ 2d, and thus, in higher dimensions, our velocity
factor becomes larger. This effect is common to Lieb-
Robinson bounds [6], and it arises in such a cubic lattice
due to the fact that there are exponentially many paths one
can find between two widely separated points. There is a
contribution to our commutator bound and quantum walk
from operators growing along each path.

VII. ONE-DIMENSIONAL MODELS

One important limitation of Theorem 6.1 is that it
only holds for “thermal averages” in a particular infinite-
temperature grand-canonical ensemble. While such a result
is highly suggestive that a light cone exists in all finite-
density states, it does not represent a mathematically
rigorous proof. In this section, we show that in one-dimen-
sional models, we can come very close to proving a “worst-
case” Lieb-Robinson-style bound, which demonstrates a
finite velocity of quantum information in all finite-density
states. Furthermore, we can remove the β dependence of the
information speed so that all physical processes are bounded
by one speed, regardless ofwhat operator is used to probe the
system.
In order to do this, we first introduce some notation. Let

V ¼ fi∶i ¼ −L;−Lþ 1;…; Lg denote sites in a 1D chain,
labeled by integers. Define Qx (x ≥ 0) to project onto

operators acting nontrivially on the set fx;−xg but which
acts trivially on any site farther from the origin i ¼ 0:

Qx ¼ Pfx;−xg
Y
y>x

ð1 − PyÞð1 − P−yÞ: ð7:1Þ

Immediately, we notice the following useful result:
Proposition 7.1: If Q0jOÞ ¼ jOÞ, then

(OðtÞjQrjOðtÞ) ≤ (OðtÞjPfr;−rgjOðtÞ) ≤ C

�
vt
r

�
r=ð2lþ1Þ

;

ð7:2Þ

with

v <

(
8Kð31þ 24μ−1Þ l ¼ 0

211ð2lþ 1ÞK3lþ2ð1þ 2μ−1Þ2 l > 0.
ð7:3Þ

Proof.—Since k1−Pjk¼1, we see that (OðtÞjQrjOðtÞ)≤
(OðtÞjPfr;−rgjOðtÞ). To bound this latter inner product, we
useLemma6.6. This showsus that Eq. (7.2) holds;moreover,
v can be evaluated at β ¼ 1, which leads to Eq. (7.3). ▪
Using this proposition, we can then prove the following

theorem:
Theorem 7.2: Let R ¼ fi ∈ V∶r ≤ i ≤ rþg, where

rþ − r ¼ Oð1Þ. Define O0; β; γ as in Eqs. (5.7) and (5.8).
If there are some μ; θ; K0 > 0 such that the state ρ̃ satisfies

trð
ffiffiffĩ
ρ

p
A†

ffiffiffĩ
ρ

p
AÞ≤K0θ

2xtrð ffiffiffiffiffi
ρμ

p
A† ffiffiffiffiffi

ρμ
p

AÞ; ∀ A¼A≤x⊗I>x

ð7:4Þ

(i.e., A is nonidentity only within sites f−x;…; xg), then
we have the inequality

ð½OðtÞ;O0�j½OðtÞ;O0�Þρ̃
≔ trð

ffiffiffĩ
ρ

p
½OðtÞ;O0�†

ffiffiffĩ
ρ

p
½OðtÞ;O0�Þ

≤ C1

�ð2θÞ8lþ4v0t
r

�
r=ð2lþ1Þ

; ð7:5Þ

for r > ð2θÞ8lþ4v0t. Here, v0 ¼ ð1þ ϵÞvμ=2, where vμ is
given in Eq. (7.3) and ϵ is arbitrarily small but finite. The
constants 0 < C1; ϵ < ∞ are independent of r.
Proof.—We prove this result in two steps: First, we

analyze inner products of the form ðOO0jOO0Þ without
relying on an F-ansatz (as we did in the previous sections);
then, we show how to use Eq. (7.4) in order to
obtain Eq. (7.5).
Let us begin with our first step. In what follows, we

denote OðtÞ by O. Since, obviously, ½OðtÞ;O0� ¼ 0 if OðtÞ
has no support in the set R, we can always projectOðtÞ onto
operators that have support in set R. It is convenient to do
this using the PR operator introduced above—but with an
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inner product evaluated at μ=2 instead. (We will point out
later where this “trick” becomes useful.) Using the Cauchy-
Schwarz inequality, we find that

ð½O;O0�j½O;O0�Þρ̃ ≤ 2(O0ðPμ=2
R OÞjO0ðPμ=2

R OÞ)ρ̃
þ 2(ðPμ=2

R OÞO0jðPμ=2
R OÞO0)ρ̃; ð7:6Þ

where Pμ=2
R is the projection operator defined via the inner

product ρμ=2. In the rest of this proof, we neglect to write the
superscript μ=2 in PR.
It is useful to expand out PRO a bit more explicitly. We

write

PRO ¼ O≤rþ þ
XL

x¼rþþ1

Ox; ð7:7Þ

where

Ox ≔ QxPRO ¼
X
n;n0

Õx;nn0 jnihn0j ⊗ I>x; ð7:8aÞ

O≤x ≔ PRO −
XL
y¼xþ1

Ox ¼
X
n;n0

Õ≤x;nn0 jnihn0j ⊗ I>x;

ð7:8bÞ

where n;n0 above only run over sites f−x;…; xg,
n ¼ fn−xn0−x;…; nxn0xg, and jnihn0j is shorthand for
jn−x � � � nxihn0−x � � � n0xj. Here, we are temporarily using
the “bare” operator basis jnihn0j, whose coefficient is Õn
(this is not the same as our previously introduced On).
Observe that from Eq. (7.2),

trð ffiffiffiffiffiffiffiffi
ρμ=2

p
O†

x
ffiffiffiffiffiffiffiffi
ρμ=2

p
OxÞ

¼
X
n∈n≤x

jÕx;nj2
Y
jij≤x

ð1 − e−μ=2Þe−μðniþn0iÞ=4

≤ C

�
vt
x

�
x=ð2lþ1Þ

; ð7:9Þ

trð ffiffiffiffiffiffiffiffi
ρμ=2

p
O†

≤x
ffiffiffiffiffiffiffiffi
ρμ=2

p
O≤xÞ

¼
X
n∈n≤x

jÕ≤x;nj2
Y
jij≤x

ð1 − e−μ=2Þe−μðniþn0iÞ=4

≤ (OðtÞjPRjOðtÞ) ≤ C0
�
vt
r

�
r=ð2lþ1Þ

: ð7:10Þ

Now, let us analyze what multiplication by O0 does.
Similar to our discussion in the proof of Proposition 5.2
(and using similar notation), we observe that

O0Ox ¼
X
n∈n≤x

Õx;ncnjnþ gihnj ⊗ I>x; ð7:11Þ

where, using Eq. (5.15),

0 ≤ cn ≤
�
β þ

X
x∈Rnx

�
β=2

: ð7:12Þ

An analogous calculation to what follows holds
for OxO0, as well as for O0O≤x, so we only show
the case O0Ox explicitly. Using the inner product induced
by ρμ,

ðO0OxjO0OxÞμ¼
X
n∈n≤x

jÕx;nj2c2nhnj
ffiffiffi
ρ

p jnihnþgj ffiffiffi
ρ

p jnþgi

¼
X
n∈n≤x

jÕx;nj2c2ne−μγ=2
Y
jij≤x

ð1−e−μÞe−μðniþn0iÞ=2:

ð7:13Þ

At this point, we have two factors—Õx;n and cn—that
must be bounded. First, we use Eqs. (6.46) and (7.12) to
show that

c2n
Y
jij≤x

e−μðniþn0iÞ=4 < eμβ=4
�
4β

eμ

�
β

≔ C2: ð7:14Þ

Then, we can use Eqs. (7.8) and (7.14) to show that

ðO0OxjO0OxÞμ ≤C2e−μγ=2
X
n∈n≤x

jÕx;nj2
Y
jij≤x

ð1−e−μÞe−μðniþn0iÞ=4

≤C2e−μγ=2
�

1− e−μ

1−e−μ=2

�
2xþ1

C

�
vt
x

�
x=ð2lþ1Þ

≤ 2CC2e−μγ=2
�
24lþ2vt

x

�
x=ð2lþ1Þ

: ð7:15Þ

Again, similar manipulations follow for other operator
orderings such as OxO0, and they lead to an identical
functional form up to a different choice of O(1) prefactors
C and C2.
At this point, we are ready to invoke Eq. (7.4). The key

observation is that

trð
ffiffiffĩ
ρ

p
A†

ffiffiffĩ
ρ

p
BÞ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð

ffiffiffĩ
ρ

p
A†

ffiffiffĩ
ρ

p
AÞtrð

ffiffiffĩ
ρ

p
B†

ffiffiffĩ
ρ

p
BÞ

q
≤ K0θ

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trð ffiffiffiffiffi

ρμ
p

A† ffiffiffiffiffi
ρμ

p
AÞtrð ffiffiffiffiffi

ρμ
p

B† ffiffiffiffiffi
ρμ

p
BÞ

q
: ð7:16Þ

If we then expand out
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(O0ðPROÞjO0ðPROÞ)ρ̃ ¼ ðO0O≤rþjO0O≤rþÞρ̃ þ
X
x>rþ

½ðO0OxjO0O≤xÞρ̃ þ H:c:� − ðO0OxjO0OxÞρ̃

≤ ðO0O≤rþjO0O≤rþÞρ̃ þ
X
x>rþ

2jðO0OxjO0O≤xÞρ̃j þ ðO0OxjO0OxÞρ̃; ð7:17Þ

for each term above, we can bound it using Eq. (7.16):

(O0ðPROÞjO0ðPROÞ)ρ̃ ≤K0θ
2rþðO0O≤rþjO0O≤rþÞμþK0

X
x>rþ

θ2x½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO0OxjO0OxÞμðO0O≤xjO0O≤xÞμ

q
þðO0OxjO0OxÞμ�

≤ 2K0C2e−μγ=2
�
θ2rþC022rþ

�
vt
r

�
r=ð2lþ1Þ

þ
X
x>rþ

ð2θÞ2x
�
2

ffiffiffiffiffiffiffiffi
CC0p �

vt
r

�
r=2ð2lþ1Þ�vt

x

�
x=2ð2lþ1Þ

þC

�
vt
x

�
x=ð2lþ1Þ�	

≤C0
1

�ð2θÞ4lþ2vt
r

�
r=ð2lþ1Þ

; if ð2θÞ8lþ4ð1þ ϵÞvt< r; ð7:18Þ

where ϵ > 0 is any finite constant, and 0 < C0
1 < ∞ is a constant independent of r or t, but dependent on ϵ. To derive the last

inequality above, we have to approximately resum the two x-dependent terms, which is where we introduce ϵ. Observe that
for x > rþ, we may write

X
x≥rþ

�
vt
x

�
x=ð4lþ2Þ

<
X
x≥rþ

�
vt
rþ

�
rþ=ð4lþ2Þ

×

�
1

1þ ϵ

�ðx−rþÞ=ð4lþ2Þ
¼

�
1 −

1

ð1þ ϵÞ1=ð4lþ2Þ

�
−1
�
vt
rþ

�
rþ=ð4lþ2Þ

: ð7:19Þ

The ϵ-dependent prefactor ends up absorbed in the constant
C0
1. Using this identity on both terms in the x sum of

Eq. (7.18), and noting that r < rþ, we obtain the final
inequality of Eq. (7.18). A slightly awkward feature of this
equation is that our bound is superexponentially small
when the prefactor C0

1 diverges: Namely, the velocity that is
suggested by the parenthetical expression does not match
the speed of the light cone in which the expression is valid.
The presentation of the bound in Eq. (7.5) simply replaces
ð2θÞ4lþ2v → ð2θÞ8lþ4ð1þ ϵÞv so that the formula directly
implies the region where the light cone is valid.
The theorem follows because the second term in

Eq. (7.6) can be treated exactly the same way. ▪
The following corollary demonstrates that the assump-

tions of the above theorem are sufficiently mild that they
allow us to prove a finite velocity of information, as
measured by all finite-density matrix elements of a
commutator:
Corollary 7.3: Let jψ1i and jψ2i denote many-body

states such that the maximal number of bosons on any site
is m. Then, for any m < ∞, there exists a velocity 0 <
v� < ∞ and a constant 0 < C < ∞ such that for operators
O;O0 obeying the assumptions of Theorem 7.2,

jhψ1j½OðtÞ;O0�jψ2ij ≤ C

�
v�t
r

�
r
: ð7:20Þ

Proof.—The goal is to apply Theorem 7.2 to the
following three choices of ρ̃:

ρ̃1 ¼ jψ1ihψ1j; ð7:21aÞ

ρ̃2 ¼ jψ2ihψ2j; ð7:21bÞ

ρ̃3 ¼ jψihψ j; where jψi ¼ 2−1=2ðjψ1i þ eiϕjψ2iÞ:
ð7:21cÞ

Here, ϕ is real. To see why this would be helpful, observe
that

trð
ffiffiffĩ
ρ

p
3A

†
ffiffiffĩ
ρ

p
3AÞ

¼ jhψ jAjψij2 ¼ 1

4
jhψ1jAjψ1i þ hψ2jAjψ2i

þ ðeiϕhψ1jAjψ2i þ c:c:Þj2
≤ jhψ1jAjψ1ij2 þ jhψ2jAjψ2ij2 þ 2jhψ1jAjψ2ij2
≤ trð

ffiffiffĩ
ρ

p
1A

†
ffiffiffĩ
ρ

p
1AÞ þ trð

ffiffiffĩ
ρ

p
2A

†
ffiffiffĩ
ρ

p
2AÞ þ 2jhψ1jAjψ2ij2:

ð7:22Þ

Our goal now is to verify that Theorem 7.2 holds for each
of these three density matrices. Expand ψ i; (i ¼ 1, 2) in the
boson number eigenbasis jn≤xi on sites ≤ x,
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jψ ii ¼
X
n≤x

ai;n≤x
jn≤xi ⊗ jψ i;n≤x

i; ð7:23Þ

where jψ i;n≤x
i are normalized states on sites > x, so thatX

n≤x

jai;n≤x
j2 ¼ 1: ð7:24Þ

Thus, if QxA ¼ A, since hψ i;n≤x
jψ j;n0

≤x
i ≤ 1,

jhψ ijAjψ jij2 ≤
�X

n≤x;n0
≤x
jāi;n≤x

aj;n0
≤x
jjhn≤xjAjn0

≤xij
�

2

≤
X

n≤x;n0
≤x

jai;n≤x
j2jaj;n0

≤x
j2

X
n≤x;n0

≤x

jhn≤xjAjn0
≤xij2

¼
X

n≤x;n0
≤x

jhn≤xjAjn0
≤xij2

≤ trð ffiffiffiffiffi
ρμ

p
A† ffiffiffiffiffi

ρμ
p

AÞ ×
Y
jjj≤x

eμm

1 − e−μ
: ð7:25Þ

In the second line, simply observe that if the inner product
is expanded out into all possible matrix elements of A, then
when

μ ¼ 1

m
; ð7:26Þ

the coefficient of jhnjAjn0ij2 is greater than or equal to
unity. Of course, the second line includes all other possible
matrix elements weighted by various factors. We conclude
that Eq. (7.4) holds for each of ρ̃1;2;3 with K0 ≤ 4 and

θ ≔ eð1þmÞ ≥ e

1 − e−1=m
: ð7:27Þ

Therefore,

trð ffiffiffiffiffiffiffiffiffiffi
ρ̃1;2;3

p ½OðtÞ;O0�† ffiffiffiffiffiffiffiffiffiffi
ρ̃1;2;3

p ½OðtÞ;O0�Þ < C0
�
v�t
r

�
r

ð7:28Þ

for some constants 0<C0;v�<∞ as given in Theorem 7.2.
Combining Eqs. (7.22) and (7.28), we obtain Eq. (7.20).▪
Corollary 7.3 provides a complete Lieb-Robinson-like

bound for Bose-Hubbard-like models in one dimension.
Since we know, as discussed in the Introduction, that a
finite Lieb-Robinson velocity cannot exist in all states as
the physical velocity can diverge at high density, this is the
strongest possible type of light cone.
Note that if m ≫ 1 in Corollary 7.3, the velocity v� in

Eq. (7.20) has parametrically different scaling at the (worst-
case) density of m than the bound for ρ̃ ¼ ρμ at μ ¼ 1=m.
We believe that this is not likely to be a physical effect,
though, of course, a further investigation is worthwhile.

As of yet, we do not know how to generalize Theorem 7.2
or Corollary 7.3 to a higher-dimensional lattice model. The
simple reason is that in d dimensions, a ball of radius r has rd

sites inside, so θr
d
grows too quickly to merely “rescale” the

velocity of our light cone. For any d ¼ 2; 3;…, the bound of
Ref. [30] can be better. However, we note that the bound of
Ref. [30] requires that the density matrix ρ̃ commutes with
the Hamiltonian H. In general, we only expect a two-
parameter family of such ρ̃ of broad physical importance:
ρ̃ ∝ exp½−βðH − μ̃NÞ�. Our Theorem6.1 applies to this case
whenever one considers the limit of β ¼ 0 and βμ̃ ≔ −μ
remains finite.
The methodology behind Corollary 7.3 is not limited to

this particular setting of interacting boson systems. Indeed,
it is easily generalized to prove that Frobenius and Lieb-
Robinson light cones are [up to O(1) factors] equivalent in
one-dimensional models with local interactions: Although
this result was known previously [19], the current approach
gives an alternative perspective as to why this must be the
case. In the presence of long-range interactions, however, it
is known that the Frobenius and Lieb-Robinson light cones
are distinct [13]: Hence, it is possible to have a finite
velocity for Frobenius commutator bounds but a diverging
velocity for the usual operator norm of a commutator. From
the perspective of Theorem 7.2, this is allowable because
the tail in the bounds is only algebraic: ðt=rαÞβ for some
finite coefficients α and β. Because β does not scale with r,
it is not generally possible to apply Theorem 7.2 in these
models without qualitatively changing the shape of the light
cone, unless the number of sites on which the state is
specified is r independent.

VIII. CLASSICAL COMPLEXITY OF
SIMULATIONS

We can now prove that Bose-Hubbard-type models in
one dimension are asymptotically no harder to simulate
classically than usual spin chains. This result provides
mathematical justification to the routine simulation of low-
density Bose gases by working in a truncated Hilbert space.
More precisely, our results will bound the size of the

finite-dimensional Hilbert space needed to accurately
calculate tr(ρ̃OðtÞ) using a classical computer, where,
for simplicity, we assume Q0jOÞ ¼ jOÞ. Although the
finite-density condition (7.4) is sufficient for our purpose,
we use a potentially weaker version instead, assuming

tr≤x(ρ
−1=2
μ;≤x ðtr>xρ̃Þρ−1=2μ;≤x ðtr>xρ̃Þ) ≤ K0θ

2x; ∀ x; ð8:1Þ

for some μ; θ; K0 > 0, where ρμ;≤x ≔ tr>xρμ. In the above
identity, the Hilbert space has been truncated to sites
f−x;…; xg, which is denoted with the appropriate sub-
scripts. Similar to Eq. (7.4), Eq. (8.1) requires the boson
density in ρ̃ to be at most of order θ, as one can verify for
boson number eigenstates jni. As a simple example, if in
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the initial state we know that there are exactly N≤x bosons
on sites ≤ x, then we can choose

μ ¼ 2xþ 1

N≤x
; K0 ¼ θ ¼ e

1 − e−μ
: ð8:2Þ

In Proposition 8.3 at the end of this section, we show that
Eq. (7.4) implies Eq. (8.1) with a change of parame-
ters K0; θ.
Outlining the steps we need to obtain a bound on the

computability, we first show in Theorem 8.1 that OðtÞ can
be approximated with exponential accuracy by [47]

OðtÞ≤r ≔ eiH≤rtOe−iH≤rt: ð8:3Þ

Here, H≤r is a Hamiltonian that acts only on sites less than
or equal to rþ l, with r≳ vt to be determined:

H≤r ¼
Xr−1
i¼−r

HJ;i þ
Xr

i¼−r−l
Ui; ð8:4Þ

where HJ;i is the hopping between i, iþ 1, and Ui acts on
i;…; iþ l. (Recall that l is the range of interactions, and
l ¼ 0 for the Bose-Hubbard model.) Then, we show in
Proposition 8.2 that Eq. (8.1) implies that the accurate
calculation of tr(ρ̃OðtÞ) can be done in a finite-dimensional
Hilbert space, with an error vanishing exponentially at
large t.
Theorem 8.1: Let O be an operator on site 0 consisting

of a finite product of creation and annihilation operators. If
there are some μ; θ; K0 > 0 such that ρ̃ satisfies Eq. (8.1),
then the error by restricting to H≤r is bounded by

jtr(ρ̃OðtÞ) − trðρ̃OðtÞ≤rÞj ≤ C3rt
�ð2θÞ4lþ2v0t

r

�
r=ð4lþ2Þ

;

ð8:5Þ

for r > ð2θÞ4lþ2v0t. Here, v0 ¼ ð1þ ϵÞvμ=2, where vμ is
given in Eq. (7.3) and ϵ is arbitrarily small but finite. The
constants 0 < C3; ϵ < ∞ are independent of r.
Proof.—Take H to be time independent for notational

simplicity; however, the result holds for t-dependent H as
well with straightforward modifications. Decompose H ¼
J>r þ ðH − J>rÞ, where J>r ¼

P
i≥r HJ;i þ

P
i<−r HJ;i

contains all the hopping terms in H that are not included
in H≤r. Since all interaction terms commute, the evolution
by H − J>r is

e−itðH−J>rÞ ¼ e−itH≤re−itU>r ; ð8:6Þ

where U>r contains interaction terms in H that are not
included in H≤r. As a result, O evolved by H − J>r is the
same as by H≤r, so the error is expressed using the
Duhamel identity

Δr ≔ tr(ρ̃OðtÞ) − tr(ρ̃OðtÞ≤r)

¼ i
Z

t

0

trðρ̃eisðH−J>rÞ½J>r;Oðt − sÞ�e−isðH−J>rÞÞds: ð8:7Þ

Similar to Eq. (7.7), we can replace Oðt − sÞ by

P≥rOðt − sÞ ¼
XL
x¼r

Ox: ð8:8Þ

Commutator ½J>r;Ox� has no support beyond xþ 1, so all
interaction terms that act nontrivially outside xþ lþ 1 do
not contribute to evolution in Eq. (8.7). Denote ðH − J>rÞx
by dropping such terms in H − J>r. Now, view the
evolution by H − J>r in Eq. (8.7) as acting on ρ̃ instead.
Defining ρ̃xðsÞ ¼ e−isðH−J>rÞx ρ̃eisðH−J>rÞx , we find that

Δr ¼ i
Z

t

0

X
x≥r

trðρ̃xðsÞ½J>r;Ox�Þds

¼ i
Z

t

0

X
x≥r

ðYxj½J>r;Ox�Þμ;≤xþlþ1ds; ð8:9Þ

where

Yx ≔ ρ−1=2μ;≤xþlþ1(tr>xþlþ1ρ̃xðsÞ)ρ−1=2μ;≤xþlþ1; ð8:10Þ

and the inner product ð·j·Þμ;≤xþlþ1 is taken by assuming that
the Hilbert space has support only on sites within xþ lþ 1.
Since ρ̃x is evolved within xþ lþ 1 only, we can first
partially trace out the sites > xþ lþ 1 and then evolve
with time: tr>xþlþ1ρ̃xðsÞ ¼ ðtr>xþlþ1ρ̃ÞðsÞ. Thus, property
(8.1) persists under such evolution because ρμ is stationary:

ðYxjYxÞμ;≤xþlþ1 ¼ tr≤xþlþ1(ρ
−1=2
μ;≤xþlþ1ðtr>xþlþ1ρ̃xðsÞÞρ−1=2μ;≤xþlþ1ðtr>xþlþ1ρ̃xðsÞÞ)

¼ tr≤xþlþ1(ρ
−1=2
μ;≤xþlþ1ðtr>xþlþ1ρ̃ÞðsÞρ−1=2μ;≤xþlþ1ðtr>xþlþ1ρ̃ÞðsÞ)

¼ tr≤xþlþ1(ρ
−1=2
μ;≤xþlþ1ðtr>xþlþ1ρ̃Þρ−1=2μ;≤xþlþ1ðtr>xþlþ1ρ̃Þ) ≤ K0θ

2ðxþlþ1Þ; ∀ x ≥ r: ð8:11Þ

Furthermore, expand J>r by HJ;i, and use Eq. (7.15) with O0 ¼ HJ;i and β ¼ 2, γ ¼ 0,
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jΔrj ≤ 2t
X
x≥r

Xx
i¼r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYxjYxÞμ;≤xþlþ1

q
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHJ;iOxjHJ;iOxÞμ;≤xþlþ1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðOxHJ;ijOxHJ;iÞμ;≤xþlþ1

q
Þ

≤ 4t
X
x≥r

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0θ

2ðxþlþ1ÞCC2

�
24lþ2vt

x

�
x=ð2lþ1Þ

s
≤ C3rt

�ð2θÞ4lþ2vt
r

�
r=ð4lþ2Þ

; ð8:12Þ

where the factor of 2 in the first line accounts for both
directions, and C3 is a constant independent of r or t. We
have assumed r > ð2θÞ4lþ2ð1þ ϵÞv with any finite con-
stant ϵ > 0 to get the last equation, using manipulations
similar to Eq. (7.19). ▪
Proposition 8.2: Under the conditions of Theorem 8.1,

set

r ¼ eð2θÞ4lþ2v0t; ð8:13Þ
and let ρ̃≤N0

denote the restriction of tr>rþlρ̃ to the Hilbert
space of states with less than or equal to N0 bosons on sites
jij ≤ rþ l. Note that ρ̃≤N0

does not need to be normalized.
Choose

N0 ¼ ð2rþ 2lþ 1Þmax

�
4;

1

eμ=3 − 1
;

2

μ

�
1þ 8 ln 2þ ln

θð1 − e−μÞ
μ4

��
: ð8:14Þ

Then, the error of calculating the dynamics of O by
restricting to this Hilbert space is bounded by

jtr(ρ̃OðtÞ) − tr(ρ̃≤N0
OðtÞ≤r)j ≤ C4r2e−r=ð4lþ2Þ; ð8:15Þ

where 0 < C4 < ∞ is independent of r.
Proof.—Using the triangle inequality,

jtr(ρ̃OðtÞ) − tr(ρ̃≤N0
OðtÞ≤r)j

≤ jtr(ρ̃OðtÞ) − tr(ρ̃OðtÞ≤r)j
þ jtr(ρ̃OðtÞ≤r) − tr(ρ̃≤N0

OðtÞ≤r)j; ð8:16Þ

where the first term is bounded by the form of the right-
hand side of Eq. (8.15) according to Theorem 8.1. Thus, we
only need to bound the second term by the same form.
Since it only involves dynamics within sites jij ≤ rþ l, for
the rest of this proof, we can denote with ρ̃ the initial state
restricted to this segment of length r0 ≔ 2rþ 2lþ 1. Its
support at large boson numbers is bounded by Eq. (8.1):X
N;N0

eμðNþN0Þ=2 X
n∈nN;n0∈nN0

jρ̃nn0 j2 ≤ (θð1 − e−μÞ)r0 ; ð8:17Þ

where nN is the set of all n with total boson number N.
By counting the number of ways to arrange N bosons

on r0 sites (a textbook statistical-mechanics problem), we
find

jnN j ≤
ðN þ r0Þ!
r0!N!

≤ exp

�
r0 ln

�
1þ N

r0

�
þ N ln

�
1þ r0

N

��
:

ð8:18Þ

By the assumptions in the proposition, the matrix
element hnjOðtÞjn0i is nonzero only for N − N0 ¼ γ ≥ 0,
and it is bounded by a power KONβ, where β, γ are given
in Eq. (5.8). Using this to argue why the N0 chosen
in Eq. (8.14) is useful, observe that the error of this
truncation is

jtr½ðρ̃ − ρ̃≤N0
ÞOðtÞ�j

≤
X
N>N0

X
n∈nN;n0∈nN−γ

jρ̃nn0 jKONβ

≤ KO

X
N>N0

Nβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jnN jjnN−γj

X
n∈nN;n0∈nN−γ

jρ̃nn0 j2
s

≤ KO

X
N>N0

Nβ ðN þ r0Þ!
r0!N!

e−μðN−γ=2Þ=2(θð1 − e−μÞ)r0=2

≔ KOeμγ=4
X
N>N0

qN: ð8:19Þ

In the last step, we defined the sequence ðqNÞN≥N0
. Since

for any 0 < ϵ0 < ð1 − e−μ=2Þ=2,

qN
qN−1

¼
�

N
N − 1

�
β N þ r0

N
e−μ=2 ≤ 1 − ϵ0;

if

8>><
>>:



N

N−1

�
β
≤ 1

1−ϵ0 ⇔ N ≥ 1
1−ð1−ϵ0Þ1=β

Nþr0
N e−μ=2 ≤ 1 − 2ϵ0 ⇔ N ≥ r0

eμ=2ð1−2ϵ0Þ−1 ;

ð8:20Þ

the sequence is bounded by an exponential:
qN ≤ qN0

ð1 − ϵ0ÞN−N0 , if

θ0 ≔
N0

r0
≥

1

eμ=2ð1 − 2ϵ0Þ − 1
; ð8:21Þ
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and

r0 >
eμ=2ð1 − 2ϵ0Þ − 1

1 − ð1 − ϵ0Þ1=β : ð8:22Þ

When inequalities Eqs. (8.21) and (8.22) hold, the sum over
qN is bounded by qN0

=ϵ0. Then, bounding the binomial
coefficient by Eq. (8.18),

jtr½ðρ̃ − ρ̃≤N0
ÞOðtÞ�j ≤ KOeμγ=4ðr0θ0Þβ

1

ϵ0

× exp

�
r0

2
½ln (θð1 − e−μÞ)þ 2ð1þ θ0Þ lnð1þ θ0Þ

− 2θ0 ln θ0 − μθ0�
	
: ð8:23Þ

The error can be made exponentially small in r0 by
choosing a θ0 determined by θ, μ, but not r. To be concrete,
we restrict to the case θ0 ≥ 4 so that

ð1þ θ0Þ lnð1þ θ0Þ − θ0 ln θ0 < 2 ln θ0: ð8:24Þ

We then wish to satisfy

ln ξþ 4 ln θ0 − μθ0 ≤ 0 ⇔

lnðξ1=4θ0Þ ≤ μ̃ðξ1=4θ0Þ; μ̃ ≔
μ

4
ξ−1=4; ð8:25Þ

where we have set ξ ¼ eθð1 − e−μÞ so that the exponent in
Eq. (8.23) is smaller than −r0=2. If μ̃ ≥ 1=e, Eq. (8.25)
holds for any θ0 > 0; otherwise, one can verify that ξ1=4θ0 ≥
ð2=μ̃Þ lnð1=μ̃Þ > 2e suffices. Thus, considering Eq. (8.21)
in addition, we choose

θ0 ¼ max

�
4; ξ−1=4

2

μ̃
ln
1

μ̃
;

1

eμ=3 − 1

�

¼ max

�
4;

1

eμ=3 − 1
;
2

μ

�
1þ 8 ln 2þ ln

θð1 − e−μÞ
μ4

��
;

ð8:26Þ

where we have set 2ϵ0 ¼ 1 − e−μ=6. Such θ0 makes the error
exponentially small:

jtr½ðρ̃ − ρ̃≤N0
ÞOðtÞ�j ≤ KOeμγ=4ðr0θ0Þβ

2

1 − e−μ=6
e−r

0=2;

ð8:27Þ

which can be manipulated to obtain the form on the right-
hand side of Eq. (8.15). This completes the proof. ▪
This Proposition rigorously proves that it is not asymp-

totically harder to simulate the 1D Bose-Hubbard model at
finite density than it is to simulate any 1D model of
interacting spins or fermions. To simulate the expectation

value of a local observable for time t, with asymptotically
vanishing error, one could truncate the Hilbert space
according to Proposition 8.2. Since this truncated Hilbert
space has dimension D obeying

logD≲ θ0r0 ∝ t; ð8:28Þ

we find that the dynamics can be simulated with exp (OðtÞ)
classical resources. Consider separating the whole time
region time steps of size t0. At each step, a naive time
discretization for evolving the density matrix ρ̃ induces an
error

kδρ̃k1 ¼ O(kðHt0Þ2ρ̃k1) ¼ OðkHk2t20Þ: ð8:29Þ

The total error for all steps is multiplied by an extra factor
t=t0. If we desire the error in hOðtÞi to be at most ϵ, then we
need

kOkkδρ̃k1 ×
t
t0
¼ kOk t

t0
OðkHk2t20Þ ≤ ϵ; ð8:30Þ

which implies that

t
t0
¼ O

�
polyðtÞ 1

ϵ

�
; ð8:31Þ

where we have used kOk; kHk ¼ O(polyðtÞ) thanks to the
truncation. Since each step needs polyðDÞ resources, the
total computational resources required are exp (OðtÞ)=ϵ.
Lastly, as mentioned, let us show that Eq. (7.4) implies

Eq. (8.1). Note that we need version (7.4) to bound the
2-norm of a growing operator in the previous section, while
here we need its ∞-norm in the finite-density subspace.
More precisely, we give the following proposition.
Proposition 8.3: If the state ρ̃ satisfies Eq. (7.4), then

tr≤x(ρ
−1=2
μ;≤x ðtr>xρ̃Þρ−1=2μ;≤x ðtr>xρ̃Þ)

≤
�
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p

1 − e−μ=2

�2�θ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−μ

p

1 − e−μ=2

�4x

; ∀ x: ð8:32Þ

Proof.—For a given x, denote the matrix elements of
ρ−1=2μ;≤x by ηn ≔ hnjρ−1=2μ;≤x jni, where the index n runs over the
boson number eigenstate basis on sites less than or equal to
x. We first bound the left-hand side of Eq. (8.1):

tr(ρ−1=2μ;≤x ðtr>xρ̃Þρ−1=2μ;≤x ðtr>xρ̃Þ)
¼

X
nn0

ηnηn0 jhnjρ̃≤xjn0ij2 ≤
X
nn0

ηnηn0 hnjρ̃≤xjnihn0jρ̃≤xjn0i

¼ ðtrρ−1=2μ;≤x ρ̃≤xÞ2: ð8:33Þ

Here and for the rest of this proof, we drop the subscript
“≤ x” on the trace for simplicity. Suppose there is a set of
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operators fAp∶p ¼ 0; 1;…g that are supported on sites less
than or equal to x, such that

X
p

A†
pOAp ¼ 1

2
fO; ρ−1=2μ;≤x ⊗ I>xg ð8:34Þ

for any operatorO. Then, choosingO ¼ ffiffiffĩ
ρ

p
, the root of the

right-hand side of Eq. (8.33) is

trρ−1=2μ;≤x ρ̃≤x ¼
1

2
trð

ffiffiffĩ
ρ

p
f

ffiffiffĩ
ρ

p
; ρ−1=2μ;≤x ⊗ I>xgÞ

¼
X
p

trð
ffiffiffĩ
ρ

p
A†
p

ffiffiffĩ
ρ

p
ApÞ

≤ K0θ
2x
X
p

trð ffiffiffiffiffi
ρμ

p
A†
p

ffiffiffiffiffi
ρμ

p
ApÞ; ð8:35Þ

where Eq. (7.4) is used in the last step. Now, we
construct fApg to evaluate the right-hand side of
Eq. (8.35). To satisfy Eq. (8.34), we decompose O as
O ¼ P

nn0 Onn0 jnihn0j ⊗ O0
nn0 , where each O0

nn0 acts out-
side x. Since Eq. (8.34) is linear in O and the > x parts of
the operators on both sides agree trivially, it suffices to
restrict to the ≤ x sites and only consider the operator basis
O ¼ jnihn0j. Using ansatz A†

p ¼ Ap ¼ P
n Apnjnihnj,

Eq. (8.34) yieldsX
p

ApnApn0 ¼ ðηn þ ηn0 Þ=2: ð8:36Þ

The left-hand side can be viewed as the inner product
between two vectors A·;n and A·;n0 , so all the vectors A·;n can
be constructed inductively. For example, start from
Ap0 ¼ η0δp0. To find a second vector A·;n with arbitrary
n ≠ 0, we set Apn ¼ 0 for all p > 1. The only nonzero
elements A0n; A1n are then determined by the inner product
with A·;0 and using Eq. (8.36). However, the specific form
of Apn is not important for the proof, and we only need its
existence. Equation (8.36) then impliesX
p

trð ffiffiffiffiffi
ρμ

p
A†
p

ffiffiffiffiffi
ρμ

p
ApÞ ¼

X
p

X
n

ApnApnη
−2
n

¼
X
n

η−1n ¼ tr≤x
ffiffiffiffiffiffiffiffiffiffi
ρμ;≤x

p

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−μ
p

1 − e−μ=2

�2xþ1

: ð8:37Þ

Finally, Eq. (8.32) follows by combining the above
equation with Eqs. (8.33) and (8.35). ▪

IX. CLUSTERING OF CORRELATIONS IN THE
GROUND STATE

As another application of Theorem 7.2, we prove
exponential clustering for gapped ground states in one

dimension in any model of interacting bosons described by
Hamiltonians with density-dependent interactions. In par-
ticular, we assume there is a nondegenerate ground state
jE0i. Let O;O0 be two operators that are supported on two
sets of sites, whose supports are separated by distance r.
They can be unbounded operators such as bs or b†s; we
only require that their actions on the ground state do not
lead to states with unbounded norm (this property will be
satisfied by products of b or b† if jE0i has bounded boson
numbers on each site): kOjE0ik2kO0jE0ik2 < ∞. Define
their ground-state correlation as

CorðO;O0Þ ≔ hE0jOO0jE0i − hE0jOjE0ihE0jO0jE0i:
ð9:1Þ

If the ground-state density matrix satisfies condition (7.4),
the following theorem proves that this correlation decays
exponentially with the operators’ separation r, whenever
there is a finite gap to the first excited state.
Theorem 9.1: Let H be a time-independent

Hamiltonian. Assume there is a nondegenerate ground
state ρ̃ ¼ jE0ihE0j satisfying Eq. (7.4). Let ΔE be the
spectral gap of H. Then, whenever kOjE0ikkO0jE0ik < ∞
and the support of O and O0 is separated by r,

jCorðO;O0Þj ≤ C5 exp

�
−
ΔE
2v

r

�
; ð9:2Þ

where 0 < C5 < ∞ is independent of r, and v ¼ ð2θÞ8lþ4v0
is given in Theorem 7.2.
Proof.—The proof follows earlier work such as

Refs. [2,30]. Without loss of generality, set E0 ¼ 0.
Consider the identity [e.g., Eq. (S.29) in Ref. [30]]

CorðO;O0Þ ¼
Z

T

−T
dtKðtÞhE0j½OðtÞ;O0�jE0i

− ðhE0jOQTO0jE0i þ c:c:Þ; ð9:3Þ

where the parameter T is to be determined, and

KðtÞ≔ i
2π

lim
ϵ→0þ

e−
ΔEt2
2T

tþ iϵ
; QT ≔

X
s≥1

K̃ðEsÞjEsihEsj: ð9:4Þ

Here, c is an O(1) constant, K̃ðEÞ is the Fourier transform
of KðtÞ, and fjEsi∶s ≥ 0g denotes all the eigenstates. Note
that

kQTk ≤ max
s≥1

jK̃ðEsÞj ≤
c
2
e−TΔE=2: ð9:5Þ

It follows that

hE0jOQTO0jE0iþ c:c:≤ kOjE0ikkO0jE0ike−TΔE=2: ð9:6Þ
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We now use Theorem 7.2 to bound the first term:

jtr(ρ̃½OðtÞ;O0�)j ≤ ½tr(
ffiffiffĩ
ρ

p
½OðtÞ;O0�†

ffiffiffĩ
ρ

p
½OðtÞ;O0�)�1=2

≤
ffiffiffiffiffiffi
C1

p �
vt
r

�
r=ð4lþ2Þ

; ð9:7Þ

where v ¼ ð2θÞ8lþ4v0 as in Eq. (7.5). Then,����
Z

T

−T
KðtÞhE0j½OðtÞ;O0�jE0idt

����
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πΔE
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�
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: ð9:8Þ

Combining both terms in Eq. (9.3) and choosing

T ¼ r
v
exp

�
−ð4lþ 2ÞΔE

2v

�
<

r
v
; ð9:9Þ

we obtain

jCorðO;O0Þj ≤
� ffiffiffiffiffiffiffiffiffiffi

C1

πΔE

r
þ ckOjE0ikkO0jE0ik

�

× exp

�
−
ΔE
2v

r

�
; ð9:10Þ

which reduces to Eq. (9.2). ▪
Equation (9.2) improves a previous result in Ref. [30],

where the form of operatorsO;O0 is more restricted and the
bound on the correlation decays subexponentially as
expð−c ffiffiffiffiffiffiffiffiffiffiffiffi

r= ln r
p Þ. Our improvement arises from the tight

tails in our linear light cone.
Generalizing this result to models with degenerate

ground states appears straightforward (see, e.g., Ref. [2]).
A standard application of clustering theorems for finite-
dimensional quantum systems has been the proof of an
entanglement area law. In the bosonic case, this appears to
be more subtle because all existing bounds have explicit
constants that depend on the Hilbert space dimension
[48,49]. Thus, it is not entirely straightforward to use
Theorem 9.1 to prove an entanglement area law for bosonic
models. Nevertheless, we anticipate that further generaliz-
ing the results of Sec. VIII, it may be possible to project
jE0ihE0j into a subspace with bounded boson number on
each site, in which case, Theorem 9.1 would also lead to an
entanglement area law.

X. OUTLOOK

Inspired by earlier work [24,30], we have proven that
correlators and out-of-time-ordered correlators, measured
in the infinite-temperature grand-canonical ensemble

defined in Eq. (4.1), vanish outside of a linear light
cone in a broad family of interacting boson models:
h½A0ðtÞ; Br�i → 0 if vt < r, with asymptotics encapsulated
in Eq. (2.4). As we highlighted in the Introduction, our
bound on v is qualitatively optimal for the Bose-Hubbard
model, for commutators involving single-boson creation
and annihilation operators in any dimension, and for all
commutators in one dimension. In one dimension, we
generalized this result to prove that all matrix elements of a
commutator hψ1j½A0ðtÞ; Br�jψ2i are vanishingly small
outside of a light cone v0t < r, with a slightly larger
velocity v0, whenever the states jψ1;2i have a bounded
number of bosons on each site. This latter result could
then be used to demonstrate the computational complexity
of simulating Bose gases, along with the exponential
decay of correlations in gapped ground states, in a broad
range of experimentally relevant states of one-dimensional
Bose gases.
We hope that our work will be generalized to address

important open questions in the future. First (though of less
general interest), we anticipate likely order-of-magnitude
improvements in the O(1) coefficients in our bound (6.3).
Second and more importantly, we were not able to prove
that all local correlators are bounded by the same velocity,
outside of one-dimensional models. We believe this to be a
physically reasonable property, yet the quantum-walk
formalism we developed is not sufficiently developed to
prove this property, which may rely on more sophisticated
clustering approximations. We hope that this issue can be
resolved in the near future. Third, we have only proven in
one spatial dimension that there does not exist any finite-
density state where quantum information cannot spread
with arbitrarily large velocity. In higher dimensions, our
bound only shows that such states are vanishingly rare in
the grand-canonical ensemble. The technical reason why
we were unable to prove that no such state with “super-
luminal” propagation can exist is essentially that the
density matrix ρ defined in Eq. (4.1) is unique in that it
commutes with all number-conserving HðtÞ and is a tensor
product: Namely, the density matrix has a strict form of
locality. These properties of ρ are crucial to the anti-
Hermitian nature of L (in our nontrivial inner product) and
to spatial locality in our operator growth formalism (we can
build an orthonormal operator basis by taking the tensor
product of single-site operators). We expect that no state
with superluminal propagation exists; however, techniques
that combine ours with those of Ref. [30] may be required
to definitively resolve this issue.
Looking forward, we anticipate that our formalism will

find wide applicability and generalizations. First and fore-
most, our bound on information spreading in the 1D Bose-
Hubbard model asymptotically agrees with previous
numerics [32–37] on the velocity of correlations both at
low and high boson densities. Remarkably, this implies that
there is no complicated, time-dependent protocol that can
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transmit information parametrically faster than simple time
evolution in the canonical 1D Bose-Hubbard model,
perturbed away from the insulating state (which we would
normally think of as having very slow dynamics). Our
strong form of linear light cone, proven in 1D, also implies
that (within the linear light cone) the Bose-Hubbard model
is not much harder to simulate than an interacting spin
model on a lattice; this result may be somewhat surprising,
as simulating Bose-Hubbard-like models has been conjec-
tured to be a good experimental test of quantum supremacy
[13,50–53].
Since Corollary 7.3 holds for arbitrary one-dimensional

states with a finite number density of bosons, our result
rules out the possibility of using bosons to parametrically
speed up quantum information transfer or signaling.
Regardless of the details of the microscopic time-dependent
protocol, this result holds so long as the Hamiltonian only
includes density-dependent interactions. We anticipate that
this result can be extended to higher dimensions, but we
leave a proof to future work.
There are many further scenarios where bounds on

bosonic quantum information dynamics are highly desir-
able. In trapped ion crystals [28] or cavity quantum
electrodynamics [27,54], the Hamiltonian involves spins
coupled to bosons. Since these models do not typically
conserve the number of bosons, our methods will need to
be modified somewhat to remain applicable [26]. As both
trapped ions and cavity QED have been proposed as
platforms for quantum computation or metrology, a fun-
damental speed limit on the time to implement a quantum
gate (e.g.) is highly desirable. Understanding bosonic
dynamics in the presence of long-range hopping or inter-
actions [55] could also be important in generalizing our
methods to these systems.
Outside of quantum technologies, there are also inter-

esting conjectures about fundamental speed limits on
interacting phonons in metals [56], which typically exhibit
more complicated Hamiltonians than the Bose-Hubbard
model. Our new methods for studying bosonic dynamics
may help to prove the conjectured bounds in Ref. [56].
Finally, there are many fundamental open questions

about the nature of speed limits in finite-temperature
correlators, which cannot be addressed using standard
Lieb-Robinson techniques. Recent results from gauge-
gravity duality [57] have suggested universal temper-
ature-dependent bounds on the emergent light cone that
arises in finite-temperature correlators. We expect that
methods similar to those developed here—namely, devel-
oping thermal inner products on operator space [58] by
replacing our ρ ¼ e−μN with ρ ¼ e−βH—will aid in rigor-
ously proving bounds on the thermal butterfly velocity that
controls information spreading at finite temperature, which
is believed to exhibit universal dependencies on temper-
ature [59,60]. We have made early progress towards this
question by affirmatively proving the universality of this

conjectured temperature dependence in the dynamics
of a single quantum particle [61]; however, the extension
to many-body systems remains an important open
problem [46]. If our methods can instead give strong
bounds on butterfly velocities, they may further lead to
a solution of long-standing challenges associated with
whether—and why—the timescale of quantum dynamics
at low temperature is always bounded by the Planckian
time ℏ=kBT [58,62,63].
While there remain many critical outstanding questions

on the speed limits on quantum dynamics, the quantum-
walk methods we have developed in this paper lead to a
qualitatively new way of thinking about constraining
quantum dynamics. The methods introduced in this paper
are particularly well suited to tackling two important and
common challenges that have arisen in the past: the
unboundedness of the Hamiltonians of bosonic systems,
and the desire to bound dynamics not in the entire Hilbert
space, but only in an experimentally relevant (here, finite-
density) subspace. We anticipate our methods could aid
progress on the challenging mathematical physics problems
highlighted above in the near future.
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