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Despite their complexity, microbial ecosystems appear to be at least partially “coarse-grainable” in that
some properties of interest can be adequately described by effective models of dimension much smaller
than the number of interacting lineages. This is especially puzzling, since recent studies demonstrate that a
surprising amount of functionally relevant diversity is present at all levels of resolution, down to strains
differing by 100 nucleotides or fewer. Rigorously defining coarse-grainability and understanding the
conditions for its emergence is of critical importance for understanding microbial ecosystems. To begin
addressing these questions, we propose a minimal model for investigating hierarchically structured
ecosystems within the framework of resource competition. We use our model to operationally define
coarse-graining quality based on reproducibility of the outcomes of a specified experiment and show that a
coarse-graining can be operationally valid despite grouping together functionally diverse strains.
Furthermore, we demonstrate that a high diversity of strains (while nominally more complex) may, in
fact, facilitate coarse-grainability and that, at least within our model, coarse-grainability is maximized when
a community is assembled in its “native” environment. Our modeling framework offers a path toward
building a theoretical understanding of which ecosystem properties, and in which environmental

conditions, might be predictable by coarse-grained models.
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I. INTRODUCTION

Microbial communities are complex dynamical systems
composed of a highly diverse collection of interacting
species, and yet they often appear to be at least partially
“coarse-grainable,” meaning that some properties of inter-
est can be predicted by effective models of dimension
much smaller than the number of interacting lineages. For
example, industrial bioreactors consisting of hundreds of
species are well described by models with <10 functional
classes [1,2]. What makes this possible? One potential
explanation is that coarse-grainability is a direct conse-
quence of the hierarchically structured trait distribution
across organisms. If 100 interacting phenotypes are all
close variants of only ten species, which can be further
grouped into just two families, it is natural to expect that the
diverse community might be approximately described by a
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two- or ten-dimensional model. Under this view, effective
models are possible because ecosystems are less diverse
than a naive counting of microscopic strains might suggest.

However, recent data reveal this intuition to be too
simplistic: A surprising extent of relevant diversity persists
at all levels of resolution. Numerous studies highlight the
role of strain-level variation in shaping the functional
repertoire of a microbial population [3-8]. A recent work
by Goyal et al. concludes that strains might indeed be “‘the
relevant unit of interaction and dynamics in microbiomes,
not merely a descriptive detail” [9]. Surprisingly, however,
a greater strain diversity can sometimes enhance predict-
ability instead of undermining it [10]. Equally puzzling, the
notion of a bacterial species is undoubtedly useful, despite
collapsing together strains that famously may collectively
share only 20% of their genes [11]. Moreover, by some
assessments, the species-level characterization of a com-
munity appears to be too detailed and can be coarse-grained
further [12], e.g., to the level of a taxonomic family [13].

Rigorously defining coarse-grainability and understand-
ing the conditions for its emergence is of critical impor-
tance: Harnessing coarse-grainability is our main instrument
for understanding, predicting, or controlling the behavior
of these complex systems. Can an ecosystem be coarse-
grainable for some purposes but not others? Or in some
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environments but not others? Can we ever expect the coarse-
grained descriptions derived in the simplified environ-
ment of a laboratory to generalize to the complex natural
conditions? Addressing this exciting set of general ques-
tions is an important challenge at the interface of theoretical
microbial ecology and statistical physics.

Here, we introduce a theoretical framework to begin
addressing these questions. The novelty of our approach is
twofold. First, we propose a minimal model for investigat-
ing structured ecosystems. Much recent work studies the
behavior of large microbial ecosystems in the unstructured
regime, where the traits of interacting organisms are drawn
randomly (see, e.g., [14—18]). However, real ecosystems
assemble from pools of taxa whose trait distributions are
highly nonrandom due to functional constraints, common
selection pressures, or common descent. These factors
create structure at all levels, from the distribution of genes
across strains in microbial pangenomes [19-21] to the
distribution of function across taxa [12,22,23], with impor-
tant implications for dynamics, patterns of coexistence, or
responses to perturbations [24-27]. In natural communities,
taxa can often be grouped by identifiable functional roles,
often represented by closely related species or strains. As
we seek to define and characterize ecosystem coarse-
grainability, it seems clear that this structure must play
an important role. Our model implements such structure
within a consumer-resource framework in a simple, prin-
cipled way through trait interactions.

The second novelty of our approach is a framework
for defining and evaluating a hierarchy of coarse-grained
descriptions. The ultimate performance criterion for a
coarse-graining scheme would be its ability to serve as a
basis for a predictive model, capable of predicting ecosys-
tem dynamics or properties. However, finding the “most
predictive model” is a difficult problem. Here, as a simpler
first step, we propose an operational approach which is
inspired by the experiments in Ref. [13] and is based on the
reproducibility of experimental outcomes. Specifically, we
focus on a particular form of coarse-graining in which taxa
are grouped together into putative functional groups.
Grouping means omitting details, and we say that details
are safe to ignore if they do not change the outcome of
some specified experiment. Importantly, as we show,
choosing different experiments changes which, or whether,
details can be ignored.

Specifically, we define how ecosystems can be coarse-
grainable in the weak sense, where a desired performance
of a coarse-graining can be achieved in a given environ-
ment, and in the strong sense, where the performance of a
given coarse-graining is maintained even as environment
complexity is increased. We demonstrate that the same
ecosystem can be coarse-grainable under one criterion—
even in the strong sense—and not at all coarse-grainable
under another. This reconciles the apparent paradox men-
tioned above, showing that a coarse-graining can be
operationally valid for some purposes, despite grouping

together functionally diverse strains. We explain how
strong-sense coarse-grainability arises in the model con-
sidered here and show that this property is context specific:
A coarse-graining that works in the organisms’ natural
ecoevolutionary context is easily broken if the community
is assembled in the non-native environment or if the natural
ecological diversity is removed. Finally, we discuss the
extent to which our findings generalize beyond our model.

II. AN ECOEVOLUTIONARY FRAMEWORK FOR
A HIERARCHICAL DESCRIPTION OF THE
INTERACTING PHENOTYPES

In order to study the hierarchy of possible coarse-
graining schemes for ecosystems, we need an eco-
evolutionary framework that would describe players
functionally, by a list of characteristics that can be made
longer (more detailed) or shorter (more coarse-grained). In
addition, for our purposes we also want an ability to tune
the complexity of the environment, for example, to study
the robustness of a coarse-graining between the simplified
conditions of a laboratory and the more complex natural
environment. In this section, we present our model imple-
menting these two requirements.

A. The ecoevolutionary dynamics

A given environment presents various opportunities that
organisms can exploit to gain a competitive advantage.
Imagine a world where all such opportunities or “niches”
are enumerated with index i € {1...L}. The notation L,
highlights that, in general, one expects this to be a very
large number, corresponding to a complete (and, in
practice, unattainable) microscopic description. A strain
u is phenotypically described by enumerating which of
these opportunities it exploits, i.e., by a string of numbers
of length L, which we denote o,;. For simplicity, we
assume o,,; to be binary (¢,; € {0, 1}): Strain y either can
or cannot benefit from opportunity i. This allows us to think
of evolution as acting via bit flips O — 1 and 1+ 0,
corresponding to the acquisition or loss of the relevant
machinery (“trait i”’) via horizontal gene transfer events or
loss-of-function mutations.

We assume that the fitness benefit from carrying trait i is
largest when the opportunity is unexploited and declines as
the competition increases. For a given set of phenotypes
present in the community, the ecological dynamics are
determined by the feedback between strain abundance and
opportunity exploitation [Fig. 1(a)]. Briefly, the strain
abundances N, determine the total exploitation level T; =
> uNuoy; of opportunity i. The exploitation level deter-
mines the fitness benefit h; = h;(T;) from carrying the
respective trait; we choose h;(T;) of the form h;(T;) =
[b;/(14T;/K;)]. These h;, in turn, determine the growth
or decline of the strains. Specifically, we postulate the
following ecological dynamics:
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FIG. 1. Our ecoevolutionary framework modifies a standard
model of resource competition. Organisms engage in ecological
competition for limited resources and evolve by gaining or losing
traits. Carrying a trait incurs a cost but enables the organism to
benefit from the corresponding resource. Here, our novelty is to
consider how traits interact with each other. Combinations that
interact unfavorably are costly to maintain; as a result, not all
phenotypes are competitive. (a) A metabolic interpretation of our
model corresponds to an ecosystem in a chemostat. A set of
strains with abundances {N,} compete for a set of substitutable
resources indexed by i, e.g., alternative sources of carbon. In this
interpretation, K; correspond to resource supply rates, and h; are
the resource concentrations in the effluent. (b) For this work, we
adopt a more general interpretation where the resources i need not
be specifically metabolic. Instead, we think of i as enumerating
any depletable environmental opportunities that the phenotypes
can exploit, which confer a benefit /; that declines with exploi-
tation level 7';. We parametrize this dependence by the maximum
benefit b; and the carrying capacity K; (the exploitation level
where the benefit is halved); see the text. (¢) In our model,
phenotypes are binary vectors described by traits they carry. The
most competitive phenotypes (rows in the cartoon) are not
random but are shaped by pairwise trait interactions J;;. Strongly
synergistic traits (J;; > 0) tend to cooccur, while strongly
antagonistic traits (J;; < 0) are likely not carried together. Such
structured phenotypes lead to structured ecosystems, as we
investigate.

N
N—: = Zomhi — %, strain abundance, (1a)
b; . L
h; = h(T;) = TTTUK, benefit from carrying i, (1b)
T, = ZN”GW- exploitation of i. (1c)
"

In these equations, the parameters b; and K; describe the
environment, with b; being the fitness benefit of being the
first to discover the opportunity i (at zero exploitation
T; =0) and the “carrying capacity” K; describing how
quickly the benefit declines as the exploitation level T;
increases [Fig. 1(b)]. The quantities y,, are interpreted as the
“maintenance cost” of being an organism carrying a given
set of traits; more on this below.

The dynamics (1) is basically the MacArthur model of
competition for L, substitutable “resources” [28-30]. To
these dynamics, we add the stochastic arrival of new
phenotypes arising through bit flips (“mutations”), as is
standard in studies of adaptive dynamics. The combined
ecoevolutionary process is simulated using a hybrid dis-
crete-continuous method as described in Supplemental
Material [31]. As presented so far, our ecoevolutionary
model is similar to, e.g., Ref. [36]; our key novelty (trait
interactions) is introduced in the next section. We note,
however, that typically the interpretation of resources in
models like (1) is metabolic [16,18,37-40]; for example, i
might label the different forms of carbon available to a
carbon-limited microbial community. Here, we adopt a
more general perspective, where i labels any depletable
environmental opportunity, which need not be specifically
metabolic.

As an example, one way for a strain to survive in
chemostat conditions is to develop an ability to adhere to
the walls of the device [41]. The wall surface is finite and
provides an example of a nonmetabolic limited resource.
Similarly, being physically bigger or carrying a rare toxin
could be a useful survival strategy, but in both cases the
benefit decreases as the trait becomes widespread in the
community. Unlike the forms of carbon, which may be
numerous but are certainly countable and finite, the list
of exploitable opportunities of this kind could be arbitrarily
long (L, — o), especially when considering the com-
plexity of natural microbial environments. Note that, by
construction, our model allows coexistence of a very large
number of phenotypes. In many studies, explaining such
coexistence is the aim; here, it is our starting point. Rather
than asking how a given environment enables coexistence
of a diverse community, we start from the observation
that natural communities are extremely diverse, interpret
this as evidence for the existence of a very large number of
(potentially unknown) limiting factors, and ask whether
such diversity of types can be usefully coarse-grained.

Modeling fitness benefits as additive [Eq. (la)] is
certainly a simplification. It is also worth noting that the
model (1) is special in that it possesses a Lyapunov function
[42]; we return to this point below. Nevertheless, this is a
good starting step for our program, namely, understanding
the circumstances under which coarse-grained descriptions
are adequate. Most crucially, a suitable choice of the cost
model y, allows us to naturally obtain communities with an
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hierarchical structure of trait distributions across organisms
mimicking that of natural biodiversity.

B. A simple cost model leads to hierarchically
structured communities

Several studies investigated dynamics like (1) with costs
assigned randomly (see, e.g., [15-18,40,43]). Here, we
seek to build a model where the phenotypes in the
community are not random but are hierarchically struc-
tured, reproducing phenomena such as divergent taxa
belonging to identifiable functional groups, the fine-scale
strain diversity found within a species, or the notion of
“core” and “accessory’ traits in a bacterial pangenome [44].
For this, consider the following cost structure:

_C+Z)(l Oui Z‘]l] 0,i0,

i<j

(2)

The parameter ¢ encodes a baseline cost of essential
housekeeping functions (e.g., DNA replication). y; is the
cost of carrying trait i (e.g., synthesizing the relevant
machinery); for most of our discussion, we set ¢ = 0.1
and set all y; = yo = 0.5 for simplicity. The key object for

us is the matrix J;; s which encodes interactions between

[Fig. 1(c)]. As an example, the enzyme nitrogenase is
inactivated by oxygen, so running nitrogen fixation and
oxygen respiration in the same cell requires expensive
infrastructure for compartmentalizing the two processes
from each other; in our model, this corresponds to a
strongly negative J;; (carrying both traits is costly). An
example for the opposite case of a beneficial interaction
(positive J;;) is a branched catabolic pathway, where
sharing enzymes to produce common intermediates
reduces the cost relative to running the two branches
independently. Crucially, in our model, the parameters c,
Xi» and J;; are the same for all organisms; we refer to
them as encoding the “biochemistry” of our ecoevolu-
tionary world.

We now make our key choice. To set J;;, we generate a
random matrix of progressively smaller elements, as
illustrated in Fig. 2(a). Specifically, we draw the ele-
ment J;; out of a Gaussian distribution with zero mean
and standard deviation Jof[max(i, j)], with a sigmoid-
shaped f(n) = 1/{1 +exp[(n—n*)/8]} [see Fig. 2(b)].
Throughout this work, we set Jy, = 0.2, n* =10, and
6 = 3. As we will see, this choice for the interaction matrix
J implements a hierarchically structured distribution of
traits. Intuitively, since high-cost phenotypes are poor

traits and shapes the pool of viable (low-cost) phenotypes ~ competitors, we can think of the interactions J;; as
iti i Example of eco-evolutionary dynamics
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FIG. 2. A simple model of trait interactions leads to hierarchically structured ecosystems. (a),(b) In our model, the traits carried by a
given phenotype interact with each other to determine its “maintenance cost” (see the text). The matrix of pairwise trait interactions J;;
drawn randomly and is the same for all phenotypes, encoding the “biochemical constraints™; (a) shows an example (J;; is triangular Wlth
one element per trait pair i # j). We assume an interaction structure such that a few traits interact strongly while others interact weaker
and weaker (b). (c) An example of ecoevolutionary dynamics generated in our model. Shading corresponds to different phenotypes.
Although new strains continue to emerge and die out throughout the period shown, they can be grouped into several coarse-grained types
of approximately stable abundance (one is highlighted in color). (d) The phenotypes present at the end point of the trajectory shown in
(c). Each of 27 phenotypes is a row of length L., = 40 (white pixels are carried traits). The seven highlighted strains are identical in traits
1-24. We say that they belong to the same “L*-type,” for level of coarse-graining L* = 24. (e) The number of L*-types in the community
in (d), shown as a function of L*. At a coarse-grained level, the community appears to consist of only four types [one of these is
highlighted in (c) using color]; resolving finer substructure requires L* > 15. (f),(g) The same as (d) and (e) for a broader set of strains,
pooled over M, = 50 similar environments. The hierarchical structure is maintained (if the trait matrix were randomized, the number
of L*-types would grow exponentially; see the dashed line). Here, we ask: In what sense, if any, could the phenotypic details beyond
L* ~20-25 be coarse-grained away in this model?
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determining the “sensible” trait associations. For strongly
interacting traits, only some combinations are competitive,
resulting in traits that are mutually exclusive (J;; < 0)
or that frequently cooccur (J;; > 0) in low-cost (viable)
phenotypes [Fig. 1(c)]. In contrast, a weakly interacting
trait can be gained, be lost, or remain polymorphic, as
dictated by the environment. An example might be a gene
encoding a costly pump that enables the organism to live in
otherwise inaccessible (toxin-laden) regions of the habitat.
Such a trait is “weakly interacting” if the cost of running the
pump does not significantly depend on the genetic back-
ground. As we will see, our model naturally gives rise to
hierarchically structured sets of phenotypes that share some
“core” functions but differ in others to form finer-scale
diversity, resembling the notions of core and accessory
traits of a bacterial pangenome [44].

C. Environment defines a strain pool

To build some intuition about the model defined
above, consider Fig. 2(c) that shows an example of these
ecoevolutionary dynamics for one random biochemistry,
and an environment where we set b; = b, = 1 for sim-
plicity, and K; = K, = 10'° to set the scale of population
size as appropriate for bacteria. Grayscale shading corre-
sponds to distinct phenotypes; the community is initialized
with a single (randomly drawn) phenotype. The dynamics
of Fig. 2(c) illustrate that our framework allows us to define
a form of ecosystem stability where all the original
phenotypes may have gone extinct and were replaced by
others, and yet at a coarse-grained level the ecosystem
structure remains recognizably “the same.” Here, starting
from about r=~10°, the dynamics resemble a stable
coexistence of several coarse-grained ‘“‘species” (one is
highlighted in color), whose overall abundance remains
roughly stable even as individual strains continue to emerge
and die out. To formalize this observation, we need
the notion of coarse-grained “L*-types”, which we now
introduce.

As we continue the simulation, the dynamics converge to
an ecoevolutionary equilibrium (a state where the coexist-
ing types are in ecological equilibrium and no single-bit-
flip mutant can invade). In this example, it consists of 27
coexisting phenotypes and is shown in Fig. 2(d). Note that,
confirming our expectations, it appears to possess a
hierarchical structure. The seven highlighted strains are
identical over the first 24 components and differ only in the
“tail” (components 25-40). A coarse-grained description
that characterizes organisms only by the first L* = 24 traits
would be unable to distinguish these strains; we say that
these strains belong to the same L*-type with L* = 24.
Figure 2(e) plots the number of L*-types resolved at
different levels of coarse-graining L* [within the commu-
nity shown in Fig. 2(d)]. For L* = 3-15, the number of
types remains stable at just 4; the color in Fig. 2(c)
highlights one of them. Beyond L* = 15, adding more

details begins to resolve additional types, up until L* = L
when the number of L*-types coincides with the total
number of microscopic strains.

Of course, when discussing the diversity of strains one
expects to find in a given environment, it is important to
remember that no real environment is exactly static, and no
real community is in evolutionary equilibrium. To take this
into account while keeping the model simple, we consider
not a single equilibrium but a collection of communities
assembled in M., = 50 similar environments where we
randomly perturb the carrying capacity of all opportunities
[K; = Ko(1 + €n;), with e = 0.1 and #; are independent
identically distributed from a standard Gaussian]; see
Supplemental Material [31]. Figure 2(f) shows the set of
strains pooled over the 50 ecosystems assembled in this
way. This strain pool is the central object we seek to coarse-
grain. We stress that its construction explicitly depends on
the environment. (Or, more specifically, the particular
random set of M, similar environments, but M,, = 50
is large enough that the results we present are robust to their
exact choice.)

As we see in Fig. 2(f), adding more strains to the pool
makes its hierarchical structure even more apparent.
Quantitatively, the number of L*-types [Fig. 2(g)] grows
much slower than if the traits of each phenotype were
randomly permuted (the dashed control curve): Micro-
scopically, perturbing the environment favors new strains,
but at a coarse-grained level, these new strains are variations
of the same few types. This is precisely the behavior that we
aim to capture in our model. Beyond L* &~ 20-25, the number
of resolved types begins to grow rapidly. Can this diversity be
coarse-grained away? Is there a precise sense in which these
tail-end traits are “just details”? To answer this question, we
must begin by making it quantitative.

III. COARSE-GRAINING
A. Methodology for defining coarse-grainability

The L,-dimensional description we define represents the
complete list of niches and opportunities present in a natural
habitat. Any recreation in the laboratory is simplified,
retaining only some of the relevant factors. We model
simplified environments as including resources or oppor-
tunities 1 through L [Fig. 3(a)]. The parameter L represents
environment complexity. The other key parameter is the level
of coarse-graining detail, L* [Fig. 3(b)]. For each L*, the
identity and combined abundance of L*-types provides a
candidate coarse-grained description of the ecosystem. We
seek a quantitative metric for assessing its quality.

Ideally, this assessment would be a comparison of
performance of two models—one highly detailed, the other
coarse-grained—and our test would evaluate the prediction
error for a given property of interest. However, what we
build is not a coarse-grained model but a hierarchy of
coarse-grained variables. These variables could be used to
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FIG. 3. Defining weak and strong coarse-grainability. (a) The complex natural habitat is modeled as including a large number L, of
exploitable resources or opportunities. In a laboratory, we can consider a sequence of ever-more-detailed approximations including
resources 1, ..., L (with the remaining ones set to zero). (b) For each environment, the model describes the pool of strains we expect to
encounter [the pool of “L-strains”; see Fig. 2(f)]. For a given L, the strains are unlikely to carry traits i for resources not provided
(i > L). As environment complexity L increases, the pool becomes increasingly diverse. (¢) The set of L-strains can be coarse-grained to
a varying level of detail L* < L. Let Q(L,L*) be any quantitative metric (to be defined later) scoring the quality of the L*-coarse-
graining in the environment of complexity L. At L* = L, the strain diversity is fully resolved (no coarse-graining). The “coarse-
grainability” of the ecosystem is encoded in the behavior of Q(L,L*) at L* < L. Different metrics Q encode different operational
definitions of coarse-grainability. (d) A non-coarse-grainable ecosystem (sensu quality metric Q). The coarse-graining quality remains
poor unless the microscopic strain diversity is fully resolved (at L* = L). (e) Weak-sense coarse-grainability: In any given environment
(a fixed L, highlighted), a desired quality can be achieved with a coarser-than-microscopic description (L* < L). (f) Strong-sense
coarse-grainability: The same coarse-graining (a fixed L*, highlighted) provides the desired quality even as the environment complexity

is increased.

build any number of models, and identifying the most
predictive of these is a highly nontrivial task. Here, we
sidestep this problem by proposing an operational approach
that evaluates a coarse-graining based on the reproducibil-
ity of outcomes of a specified experimental protocol.

We will describe and contrast two protocols, each of
which could be seen as verifying the validity of the coarse-
graining and each yielding its own metric of coarse-
graining quality Q(L, L*); see Fig. 3(c). The “diagonal”
entries of Q (with L* = L) correspond to an absence of
coarse-graining: The description of strains resolves all the
traits relevant in a given environment. Coarse-grainability
is encoded in the behavior of Q(L,L*) with L* <L
[Figs. 3(d)-3(f)]. Consider first the behavior of Q(L, L*)
as a function of L*, with L fixed. If we observe that, in a
given environment, sufficient quality can be achieved
already with L* < L, we say that the ecosystem is
coarse-grainable in the weak sense. For strong-sense
coarse-grainability, we ask if the same coarse-grained
description continues to perform well even as the environ-
ment is made more complex (i.e., instead of fixing L and
varying L*, we fix L* and vary L). Strong-sense coarse-
grainability would be a highly desirable property, but
a priori it is unclear if it is even theoretically possible.

Crucially, these definitions depend on the choice of the
operational criterion for assessing coarse-graining validity

(the experiment whose results we require to be reproduc-
ible). Below, we show that the same ecosystem can be
coarse-grainable in the strong sense under one criterion and
yet not coarse-grainable at all under another.

B. Operational definitions of coarse-graining
quality Q(L, L*)

In this section, we describe two “experimental” proto-
cols, each of which could be seen as a sensible test of the
quality of a coarse-graining. They establish two alternative
criteria for a coarse-graining to be operationally valid,
which we then contrast.

1. The reconstitution test

One possible criterion is the reconstitution test. Drawing
arandom representative for each of the L*-types in the strain
pool, we seed an identical environment with the represent-
atives we choose, allowing them to reach an ecological
equilibrium [Fig. 4(b)]. If the details ignored by the
coarse-graining are indeed irrelevant, we expect such
“reconstituted” replicates to all be alike. If the reconstituted
communities are found to be highly variable depending on
exactly which representative we happen to pick, this signals
that the distinctions we attempt to ignore are, in fact,
significant.
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FIG. 4. Specific criteria for assessing coarse-graining quality
Q(L,L*). (a) In this cartoon, the community is coarse-grained
into three operational taxonomic units (OTUs), implemented in
our model as L*-types. (b) The reconstitution test. Under this
criterion, grouping strains into coarse-grained OTUS is justified if
reconstituting a community from a single representative of each
OTU yields similar communities regardless of which represent-
atives we pick. As a quantitative measure, we compare the OTU
abundances across replicates. (c) The “leave-one-out test.” Under
this criterion, grouping strains into coarse-grained OTUs is
justified if the strains constituting OTU X (green in this cartoon)
all behave similarly when introduced into a community missing
X. As a quantitative measure, we compare the invasion rates of
the left-out strains.

Quantitatively, for each L*-type p,, let us denote nﬁ,‘f) its

final relative abundance (i.e., the fraction of total popula-
tion size) in the reconstituted replicate a. The coefficient of
variation of n\" over a (denoted CV,[n\"]) provides a
natural measure of variability across replicates. To combine
these into a single number, we compute the average such
variability over all L*-types u,, weighted by their mean

relative abundance across replicates (denoted <n,(ff)>a):

Oree = 3 (), CV, ).
He
Since the coefficient of variation is, by definition,
CVa[an)} = stda[n,(f:)] / <n,<,(f>>a, our metric simplifies to
Orec = Dy, Stdg [n,(,a)]. With this definition, a perfect recon-

*

stitution has Q... = 0. Conveniently, this is automatically
the case if L* = L (no coarse-graining).

2. The leave-one-out test

As we will see, the criterion defined above is extremely
stringent and is rarely satisfied. In this section, we introduce

a weaker version. Instead of the composition of the
entire community, we explicitly focus on one particular
property of interest (below, the invasion rate of a strain).
Furthermore, instead of requiring the grouped-together
strains to be interchangeable in absolute terms, we ask
that they behave similarly in the context of the assembled
COMMURIty.

Specifically, for a given scheme grouping strains into
coarse-grained types, consider assembling a community
missing a particular coarse-grained type u. [the ecological
equilibrium reached when combining all the strains in the
pool, except those belonging to type u,; see Fig. 4(c)]. We
judge the coarse-graining as valid if the different strains
constituting the missing type yu, all behave similarly when
introduced into this community. As one example, we can
compare their initial growth rates if introduced into the
community at low abundance, called henceforth “invasion
rate” (other possible choices include the abundance the
strain reaches if established or the level of niche exploi-
tation &; in the resulting community; these are shown in
Supplemental Material [31]). If the invasion rates are
similar, describing the community as missing the coarse-
grained type u, indeed is consistent. If, however, the
invasion rates vary strongly, we conclude that the features
our coarse-graining is neglecting are, in fact, important.

Quantitatively, denote the invasion rate of strain y into a
community missing type u, as r,, . We define

Qiny = E :nmStduemrﬂ-m’
7.

where 7, is the relative mean abundance of strains
belonging to type u. in the pool and std,c, denotes the
standard deviation over all strains belonging to y, weighted
by strain abundance in the pool (i.e., a strain’s combined
abundance observed across the set of M, environments
used to define the pool). Once again, at L* =L we
automatically have Q;,, =0, as this corresponds to the
fully microscopic description (each type u, is represen-
ted by exactly one strain). Note that this averaging con-
vention (weighted by abundance in the pool) is slightly
different from that used in the previous section (using
average abundance across the assembled replicates). Using
the same convention for both Q,,, and Q.. does not
change our results but artificially inflates the latter with
noise from low-abundance (rare) strains. (For details, see
Supplemental Material [31].)

To illustrate the difference between the two criteria,
consider the statement that a community consisting of
Tetrahymena thermophila and Chlamydomonas reinhardtii
cannot be invaded by Escherichia coli [45]. What meaning
should we ascribe to this statement when phrased in terms
of coarse-grained units rather than specific strains? Under
the first criterion, we require that if we combine any single
strain of 7. thermophila, any strain of C. reinhardtii, and

021038-7



JACOB MORAN and MIKHAIL TIKHONOV

PHYS. REV. X 12, 021038 (2022)

any strain of E. coli, only the first two survive. Under the
second criterion, we combine a vial labeled 7. thermophila,
containing the entire diverse ensemble of its strains, with a
similarly diverse vial of C. reinhardtii and verify that the
resulting community cannot be invaded by any individual
strain of E. coli [46].

Note that, in our model, the existence of a Lyapunov
function [42] means the ecological equilibrium is uniquely
determined by the environment and the identity of the
competing strains; their initial abundance or the order of
their introduction does not matter. While this is a simpli-
fication, this property is very useful for our purposes, since
any lack of reproducibility between reconstituted commun-
ities is then clearly attributable to faulty coarse-graining. In
a model where even identical phenotypes could assemble
into multiple steady states, distinguishing this variability
from the variability due to strain differences adds a layer of
complexity to our analysis.

IV. RESULTS

A. A coarse-graining may be operationally valid despite
grouping functionally diverse strains

Throughout this section, we continue to use an envi-
ronment with K; = K, and b; = b, (all L, opportunities
are equally lucrative). In practice, when approximating a
complex environment in the laboratory, we try to capture
the most salient features first. Thus, it would have been
perfectly natural to instead let K; and/or b; decline with i;

one would expect this to improve coarse-grainability, and
this is indeed the case (see Supplemental Material [31]).
The motivation for our choice is twofold: First, keeping all
K; and b, the same requires fewer parameters than choosing
a particular functional form of decline with i. Second, the
regime where no niches are obviously negligible only
makes it more striking to find that an ecosystem can be
not only coarse-grainable, but coarse-grainable in the
strong sense.

Figure 5(a) plots O, (L, L") for the leave-one-out test
comparing the invasion rates of different strains falling into
the same coarse-grained types. We find that any desired
coarse-graining quality can be achieved by a sufficient L*
and is almost unaffected by L. As environment complexity
increases and becomes capable of sustaining an ever-
growing number of microscopic strains, each L*-type
becomes increasingly diverse. Nevertheless, all the strains
in the same L*-type continue to behave similarly by our
invasion-rate-based metric; in other words, under this cri-
terion, the ecosystem is coarse-grainable in the strong sense.

And yet, it would be wrong to conclude that the traits
beyond a given L* are “negligible” in any absolute sense.
This is clearly demonstrated by the reconstitution test
[Fig. 5(b)]. If we attempt to reconstruct the community
from its members, every detail matters: No amount of
coarse-graining is acceptable. We now explain this apparent
paradox within our model.

Consider a community at an ecological equilibrium, and
let us focus on a particular phenotype o carrying one of the

(a) Coarse-graining level (L*) (b) Coarse-graining level (L*) (c) 1/i
1 10 20 30 Qinv 1 10 20 30 Qrec 107" 10°
5 - : 0 : : . 10° 10°
=)
= Strong-sense Not .o .
'5 10 coarse-grainable coarse-grainable Sl 0t e
g‘ 2 = 402 > *
10° 3 10° :
8 20 | fp "o
- -~
3 £ L
: 30
o 4 4 4] = °
‘§ 10 10 10 1 .
fen .
w
40 =
FIG. 5. The same ecosystem can be coarse-grainable under one criterion, but not under another. (a) If coarse-graining quality is

evaluated using the leave-one-out test (assessing reproducibility of strain invasion rates), our ecosystem model is coarse-grainable in the
strong sense: The acceptable level of coarse-graining, determined by the desired quality score (isolines of Q), is robust to environment
complexity [compare to Fig. 3(f)]. (b) In contrast, under the reconstitution test criterion, no amount of coarse-graining is acceptable
[compare to Fig. 3(d)]. This comparison shows that a coarse-graining can be operationally valid for a given purpose (a) even when the
strains it groups together are functionally diverse (b). Both heat maps represent a single random biochemistry, the same in both. Isolines
in (a) are averaged over 20 biochemistries to demonstrate robustness (see Supplemental Material [31]). (c) Explaining the origin of
strong-sense coarse-grainability in our model. The plot shows the scaling with i of |h; — x;| [computed for L* = 30, L = 40, and
averaged across communities assembled for the leave-one-out test in (a)]. The strong-sense coarse-grainability in (a) is ensured
whenever the decay is faster than 1/i (dashed gray line). Intuitively, this makes the tail-end traits approximately neutral in the assembled
community; see the text. We expect this scaling to be controlled by the sigmoidal decay of trait interaction magnitude |J;;|, as confirmed
here [solid gray line; the same as Fig. 2(b) but normalized to a maximum of 1 to show the decay of interaction strength rather than their
absolute magnitude].
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weakly interacting (tail-end) traits iy: o;, = 1. What would
be the fitness effect of losing this trait? Losing the benefit
h;, from opportunity i, is offset by the reduction in
maintenance cost; for a weakly interacting trait, the con-
tribution from the term Zj Jji,0;0i, is negligible, and
the change in cost is simply y; . We conclude that the fitness
effect of losing the trait is 6f = y;, — h;,. At an evolu-
tionary equilibrium, we therefore have h; = y; (the
“functional attractor” state [40]). When this condition is
satisfied, we say that the opportunity or niche i, is
“equilibrated.” If a weakly interacting niche is equilib-
rated, carrying the respective trait becomes approximately
neutral.

Here, our community is not at the evolutionary equilib-
rium; nevertheless, a sufficiently diverse strain pool sim-
ilarly ensures that the opportunities corresponding to the
weakly interacting (tail-end) traits become approximately
equilibrated: h; ~ y;. For a simpler model where the
phenotype costs y, are drawn randomly, the mechanism
for this can be understood analytically (the “shielded
phase” in Ref. [18]; see also Ref. [47]). Here, the costs
are not random, but, as long as trait interactions are weak,
one expects the behavior to be similar (see Supplemental
section S6.2 in Ref. [18]). This expectation is confirmed in
simulations. Figure 5(c) shows the observed niche disequi-
librium 4; — y; as a function of 1/i. The plot confirms that
the tail-end niches (1/i — 0) are increasingly well equili-
brated (|h; — y;| decays with 7). The strong-sense coarse-
grainability in Fig. 5(a) is ensured whenever the decay is
faster than 1/ (dashed gray line). This is because, with this
scaling, the sum of contributions from the omitted tail-end
traits is bounded (see Supplemental Material [31]). The
analytical argument in Ref. [18] leads us to expect the
disequilibrium to be controlled by the decaying typical
magnitude of interactions |J;;| (solid gray line). If the tail-
end niches are equilibrated, carrying the respective traits
becomes approximately neutral, and the ability of a strain to
invade is entirely determined by its phenotypic profile over
nonequilibrated niches, explaining the observations in
Fig. 5(a). We conclude that, in our model, the strong-sense
coarse-grainability is a consequence of the faster-than-1/i
decay of interaction strength in Fig. 3(b).

Crucially, however, this approximate neutrality applies
only in the environment created by the assembled
community and does not mean that the distinctions are
functionally negligible. For instance, consider the (Lotka-
Volterra-style) interaction term for a given pair of strains

uF

A ELGN# _ ZG pu h} _ 10,0l
g N,M 8Nl/ pv blKl bOKO ’

i

where we substitute b; = by and K; = K, for our environ-
ment. Even when tail-end niches are equilibrated with

h; = y; = yo, we find that each of them contributes equally
to the interaction term: No detail is negligible.

This argument directly relates the observed effect to the
distinction between a trait that is truly neutral and one that
is effectively neutral in the assembled community only. A
truly neutral trait, one incurring almost no cost and bringing
almost no benefit, would have #; — 0 and its contribution
to the interaction term A,, would indeed be small. And,
indeed, if we repeat our analysis for a scenario where both
b; and y; decline with i, we find that neglecting the tail-end
traits becomes an adequate coarse-graining also for the
reconstitution test (see Supplemental Material [31]).

The conclusion from contrasting Figs. 5(a) and 5(b) is
worth emphasizing. In the example we construct, the
coarse-grained description is valid sensu Fig. 5(a). This
means that, for instance, we can meaningfully say that “a
community assembled of OTU#1 and OTU#2 can be
invaded by OTU#4.” We can even measure, e.g., the
invasion rate and be assured that it is quantitatively
reproducible, with a bounded error bar, across the many
strains that constitute OTU#4 at the microscopic level.
Despite all this, the interaction between the OTUs as
coarse-grained units is not actually definable: Any speci-
fic pair of strains of OTU#1 and OTU#4 may interact
differently with each other, as is indeed observed experi-
mentally [9].

Our focus on reproducibility of L*-type abundances
across replicates is inspired by the experiments in Ref. [13].
To complete this parallel, we should mention that, besides
inoculating the same environment with a set of similar
inocula, as we do for our reconstitution test [cf. Fig. 4(b)],
one could also use the same inoculum to seed a set of
similar environments. To implement this in our model, we
use the strain pool constructed as described in Sec. II C to
inoculate a set of environments with slight variations in the
carrying capacities K; & K, drawn from a Gaussian dis-
tribution of width ¢ = 0.1. This is meant to represent the
unavoidable variability present in any experimental repli-
cates of the “same” environment K; ~ K, which can affect
fitness even when subtle [48]. After assembling the
replicate communities, we find that community composi-
tion is more reproducible at coarser levels of description
[Figs. 6(b) and 6(c)], consistent with the experimental
observations of Goldford et al. [13] and with the inter-
pretation of this pattern as resulting from functional
redundancy within coarse-grained types [12,49].

B. Using non-native strain pool
reduces coarse-grainability

The previous section describes a mechanism by which
strain diversity can aid coarse-grainability. As we explain,
in our model ecosystem the diverse set of strains contained
within the coarse-grained units is able to successfully
equilibrate the weakly interacting niches, rendering them
effectively neutral and leading to the behavior shown in
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FIG. 6. Replicate communities assembled in similar environ-
ments are more reproducible at coarser level of description. (a) A
set of similar environments K + € (each carrying capacity
modified by 10% Gaussian noise) is inoculated with the same
strain pool and brought to ecological equilibrium. (b) Equilibrium
relative abundances of coarse-grained L*-types across 20
replicates, shown for two levels of coarse-graining. A coarser
description (L* = 5;7 resolved types) is more reproducible,
consistent with experimental observations [13]. (c) The variabil-
ity of coarse-grained descriptions increases with the level of
detail. Variability is measured as the average coefficient of
variation (CV) in relative abundance of an L*-type over 100
replicates, weighted by L*-type mean relative abundance across
replicates. Dashed lines mark L* =5, 30 shown in (b). Data
points and shading show mean £SD over 20 random choices of
biochemistry {J;;}. All simulations performed with L = 40.

Fig. 5(a). However, for this to occur, the strain pool
diversity needs to be derived from a sufficiently similar
set of environments, as we now show.

To see this, we repeat the leave-one-out analysis in
Fig. 5(a), except now we inoculate the same test environ-
ment of complexity L = 40 (using K; = Ky, b; = b, as
before) with strain pools derived from other environments
that are increasingly dissimilar to it. Specifically, following
the procedure described in Sec. IIC, we generate strain
pools in environments with K; = K (1 + en;), where ; are
drawn from the standard normal distribution and ¢ is the
parameter we vary. (The b; are left at b; = b, for simplic-
ity.) The results are presented in Fig. 7, which shows the
performance of different L*-coarse-grainings under the
leave-one-out test.

At e = 0, this is identical to the protocol in Fig. 5(a). We
see that describing phenotypes by 20 traits is sufficient for
the invasion rates of grouped-together strains to be

Coarse-graining level (L*)
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FIG. 7. A coarse-graining scheme works best when the envi-
ronment is populated by the native strain pool. The same test
environment as in Fig. 5(a) is inoculated with strain pools that
evolve in environments increasingly further away (see the text).
The coarse-graining quality is assessed by leave-one-out experi-
ments and shown as a function of L* and environment deviation ¢
from the test condition. L is fixed at L = 40 for comparison with
the last row in Fig. 5(a). As the environments for generating strain
pools are modified, the traits that were previously negligible can
no longer be coarse-grained. The same random biochemistry as in
Fig. 5(a) is used, and each pixel is averaged over 20 random
environments.

consistent within an error bar of Q < 102, However, as
€ is increased and the strain pools we use are derived from
increasingly distant environments, the same coarse-
graining becomes insufficient. Instead, a substantially
higher level of coarse-graining detail L* is required to
maintain the desired quality. In summary, we find that, in
our model, a coarse-graining scheme works best when the
environment is populated by the native strain pool.

V. DISCUSSION

The interface of statistical physics and theoretical ecol-
ogy has a long and highly influential tradition of studying
large, random ecosystems, starting from the work of
May [50]. The key insight of this approach is that pat-
terns that are typical to some ensemble of ecosystems are
more likely to be generalizable and reproducible than the
details specific to any one realization. However, the choice
of the ensemble (and, in particular, adding constraints
relevant for natural ecosystems) can affect predictions
significantly [51-57]. Which predictions of random-inter-
action models are robust to introducing more realistic
structures and, conversely, which phenomena cannot be
explained without invoking structural constraints is an
active area of research [58].

Resource competition models—one of the simplest
frameworks explicitly linking composition to function—
offer a highly promising context to begin addressing these
questions, with much recent progress. For example, it was
recently shown that cross-feeding interactions structured by
shared “rules of metabolism” (but otherwise random) can
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reproduce a surprising range of experimental observations
[13,43]. This work made it possible to begin disentangling
which experimental observations can be seen as evidence
for nontrivial underlying mechanisms and which can be
reproduced already in the simplest models.

In this work, we presented a simple framework that
allows generating random ecosystems with community
structure as a tunable control parameter. Instead of postu-
lating a fixed architecture, such as a number of discrete
“families” of phenotypes [43], we use a biologically
motivated approach to derive it from functional trade-offs,
parametrized by a matrix of trait-trait interactions J. Simple
(few-parameter) choices for J generate communities with
complex structures, including hierarchical architectures
which, at least superficially, appear to mimic those of
natural biodiversity. Perhaps the most immediate benefit
from such a framework would be to help develop new ways
to quantify the highly multidimensional concept of com-
munity structure across scales, such as, for example, the
structure of microbial pangenomes.

In this spirit, here we used this framework to quantify
the notion of coarse-grainability. We proposed a way to
operationally define the quality of a coarse-grained descrip-
tion based on the reproducibility of outcomes of a specified
experiment. We demonstrated that an ecosystem can be
coarse-grainable under one criterion while also not at all
coarse-grainable under another.

Specifically, one way to approach the coarse-graining
problem is to group together only the individuals that are to
a sufficient extent interchangeable. This is the criterion we
introduced as a “reconstitution test” and is the criterion
implicitly assumed by virtually all compositional models
of ecosystem dynamics [59]. However, experimental evi-
dence [3-6,9] suggests that, unless we are willing to resolve
types differing by as few as 100 bases, this criterion is
likely violated in most practical circumstances. It is cer-
tainly violated when grouping strains into functional
groups, or taxonomic species or families [11,12,60-63].
One expects, therefore, that explaining the practical suc-
cesses of such descriptions would require a different defini-
tion of what makes a coarse-graining scheme adequate.

We proposed that this can be achieved with only a subtle
change to the criterion: namely, by requiring that the
grouped strains be approximately interchangeable not in
all conditions but in the conditions created by the
assembled community itself. As long as the strains we
study remain in a diverse ecological context, and as long as
this diversity is derived from a sufficiently similar envi-
ronment, we find that the coarse-grained description can be
consistent in the sense that the strains grouped together
possess similar properties of interest (e.g., invasion rate and
postinvasion abundance).

In this paper, we focused on a case where the traits were
differentiated only by the strength of their interactions,
which established a unique hierarchy among them (a clear

order in which to include them in the hierarchy of coarse-
grained descriptions). In the more general case, the trait
cost y; or the trait usefulness in a given environment (b; and
K;) will set up alternative, potentially conflicting hierar-
chies. We expect the model to have a rich phenomenology
in this regime, which we have not considered here. Another
obvious limitation of our analysis is that our model includes
only competitive interactions. A simple way to extend our
framework would be to include cross-feeding interactions;
we leave this extension for future work.

Our analysis introduced a distinction between weak-
sense and strong-sense coarse-grainability based on
whether the performance of a coarse-graining scheme is
robust to increasing the environment complexity. We
explained how strong-sense coarse-grainability arises in
our model, linking it to a previously described phenome-
non, namely, that a sufficiently diverse community may
“pin” resource concentrations (here, the exploitation of
environmental opportunities) at values that are robust to
compositional details [16,18,37,47]. Tracing its origin
makes it clear that strong-sense coarse-grainability in our
model is only as good as the assumption that the cost of
carrying weakly interacting traits is independent of the
phenotypic background. Whether this assumption is ever a
good approximation in natural ecosystems remains to be
seen. Still, our argument provides an explicit mechanism
for how coarse-grainability can not only coexist, but may,
in fact, be facilitated by diversity.

The fact that strong-sense coarse-grainability is at least
theoretically possible is intriguing also for the following
reason. Throughout this work, we interpreted L as indexing
a sequence of ever-more-complex environments (e.g., a
minimal medium with one carbon source; a mixture of
several carbon sources; resuspended homogenized leaf
matter; or an actual leaf). An alternative perspective,
however, is to think of a single environment of interest
and take L to be the level of detail at which it is modeled.
Any model we could ever consider, however detailed, is
necessarily incomplete. Consider the example of the human
gut: How important is the exact geometry of the gut
epithelium, the effect of peristalsis and flow on small-scale
bacterial aggregates, or the exact role of the vast diversity of
uncharacterized secondary metabolites [64,65]7 It seems
plausible that the complete list of factors shaping this
ecosystem includes many we will never even know about,
let alone include in our models. Our analysis raises an
intriguing—though, at this point, purely speculative—
question of whether the tremendous diversity of natural
ecosystems might afford our models some unexpected
degree of robustness to such unknown details.

In conclusion, there are many reasons to believe that
analyzing a species in artificial laboratory environments
might be of limited utility for understanding its function
or interactions in the natural environment [66]. Usually,
however, the concern is that the laboratory conditions are
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too simple, and, in reality, many more details may matter.
Here, we use our model to propose that, at least in some
conditions, the opposite can be true: Understanding the
interaction of two strains in the foreign conditions of the
Petri dish may require a much more detailed knowledge of
microscopic idiosyncracies. Removing individual strains of
a species from their natural ecoevolutionary context may
eliminate the very reasons that make a species-level
characterization an adequate coarse-graining of the natural
diversity.

All simulations were performed in MATLAB (Mathworks,
Inc.). The associated code, data, and scripts to reproduce all
figures in this work are available at Mendeley Data [67]. A
PYTHON implementation of the model is also available [68].
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