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Systems with low mechanical dissipation are extensively used in precision measurements such as
gravitational wave detection, atomic force microscopy, and quantum control of mechanical oscillators via
optomechanics and electromechanics. The mechanical quality factor (Q) of these systems determines the
thermomechanical force noise and the thermal decoherence rate of mechanical quantum states. While the
dissipation rate is typically set by the bulk acoustic properties of the material, by exploiting dissipation
dilution, mechanical Q can be engineered through geometry and increased by many orders of magnitude
Recently, soft clamping in combination with strain engineering has enabled room temperature quality
factors approaching 109 in millimeter-scale resonators. Here we demonstrate a new approach to soft
clamping which exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices.
In contrast to previous approaches, which rely on cascaded elements to achieve soft clamping, perimeter
modes are soft clamped due to symmetry and the boundary conditions at the polygon vertices. Perimeter
modes reach Q’s of 3.6 × 109—a record at room temperature—while spanning only two acoustic

wavelengths. We demonstrate thermal-noise-limited force sensitivity of 1.3 aN=
ffiffiffiffiffiffi
Hz

p
for a 226 kHz

perimeter mode with quality factor of 1.5 × 109 at room temperature. The small size of our devices makes
them well suited for near-field integration with microcavities for quantum optomechanical experiments.
Moreover, their compactness allows the realization of phononic lattices. We demonstrate a one-dimensional
Su-Schrieffer-Heeger chain of high-Q perimeter modes coupled via nearest-neighbour interaction and
characterize the localized edge modes.
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I. INTRODUCTION

High-Q mechanical resonators have found widespread
application in precision measurements, including interfero-
metric detection of gravitational waves [1] and optome-
chanical experiments exploring the limits of quantum
measurement [2–5]. In these endeavors, mechanical dis-
sipation plays a central role as it describes the coupling rate
to the thermal bath, and together with the resonator’s
effective mass sets the thermal force noise floor [6,7].
High force sensitivity requires low mass and low dissipa-
tion and one typically comes at the cost of the other, as

mechanical losses are often dominated by surface effects,
and it has therefore been observed that smaller mechanical
resonators have higher dissipation [8].
Over the past decade, the experimentally accessible

quality factors of nanomechanical resonators have
increased by 3 orders of magnitude. This revolution in
dissipation control is underpinned by the phenomenon
“dissipation dilution,” first seen in test mass suspensions
of gravitational wave detectors [1]. Dissipation dilution
occurs through a combination of stress and geometric
nonlinearity [9], the condition where resonator elongation
is quadratic in mode amplitude. Notably, dissipation
dilution allows reduction of dissipation by engineering
the geometry of the resonator rather than its constituent
materials. It was shown that in the regime of strong
dissipation dilution, most of the mechanical losses of an
unpatterned structure arise from mode curvature near
the boundaries [10,11]. A number of techniques were
therefore developed which reduce the mechanical mode
amplitude near the clamping points, including phononic
band gap engineering [11], clamp tapering [12], and
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hierarchical structuring [13,14]. The elimination of these
boundary losses (soft clamping [11]) has allowed nano-
mechanical resonators with quality factors of nearly 109 at
room temperature [15], approaching cryogenically cooled
single crystal quartz (Q ¼ 8 × 109) and bulk sapphire
resonators (Q > 109) [16,17].
To realize high mechanical quality factors by

dissipation dilution, extremely high aspect ratios (i.e.,
length=thickness > 105) are required: state-of-the-art
implementations have thicknesses of tens of nanometers
and lengths on the millimeter scale [11,13,15,18]. For
example, phononic band gap engineering typically requires
a structure size of at least ten acoustic wavelengths. These
large sizes present an obstacle to the practical use of such
resonators in integrated optomechanical systems, where the
mechanical resonator is suspended within hundreds of
nanometers from an optical microcavity to engineer strong
near-field optomechanical coupling [19,20]. The large size
requirement also limits the attainable quality factors in such
resonators due to the difficulty of suspending stressed
resonators larger than a few millimeters.
We realized mechanical resonators with quality factors

exceeding 3 × 109 at room temperature, surpassing the
state-of-the-art mechanicalQ factors [15] by a factor of 4 in

tenfold smaller devices [Fig. 1(c)]. These structures are well
suited for integration with nanoscale cavities for sensing
and quantum optomechanical experiments. The simplicity
of the design further increases its flexibility: by scaling
the size of the resonator, soft-clamped perimeter modes can
be realized at different frequencies. In our work, we show
Q > 108 over a span of more than four octaves (170 kHz–
2.5 MHz), but smaller and larger frequencies are also
possible. We perform efficient displacement readout of the
perimeter modes using a free-space optical interferometer
and demonstrate thermal-limited force sensing enabled by
feedback damping [21].
The perimeter modes of different polygon resonators can

be coupled through a joint tether, allowing the creation of
phononic dimers. Phononic dimers have been studied in
defect modes of phononic crystals [23–26], targeting force
sensing applications [27–29]. The compactness of the
resonators also simplifies the creation of large, coupled
phononic arrays, making polygon resonators a suitable
platform for exploring multimode physics of phononic
structures, such as topological modes [30–35]. As a proof
of principle, we demonstrate a one-dimensional array of six
resonators forming a Su-Schrieffer-Heeger (SSH) chain
[36] and characterize the localized edge modes. Moreover,
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FIG. 1. Comparison of state-of-the-art strained mechanical resonator designs. (a) Schematics of different mechanical resonators with
their spatial extent illustrated by double-headed arrows (L). From left to right: polygon resonator, binary tree nanobeam [13], phononic
crystal nanobeam [15], strain engineered nanobeam [15], and phononic crystal membrane [11]. (b) Simulated displacement profile of
perimeter modes (plotted between two adjacent clamps) and phononic crystal soft-clamped modes with the same frequency.
(c) Measured room temperature Q for polygons (blue circles) with different aspect ratios (L=h) and the best reported values for other
designs of tensioned resonators [11,13,15]. For each data point, the corresponding resonance frequency is written on the plot. The green
shaded area is accessible for the fundamental mode of a tensioned nanobeam with 20 nm thickness (h). The solid black line separating
the gray and blue shaded areas shows the clampless limit for a 20-nm-thick beam [Eq. (2)]. The dashed arrow compares a polygon
(Q ¼ 120 × 106) and a phononic crystal soft-clamped beam (Q ¼ 150 × 106) with the same thickness (h ¼ 20 nm) and frequency
(f ¼ 2.5 MHz), showing 26 times lower aspect ratio for the polygon resonator, given the particular number of unit cells (n ¼ 26) chosen
for the phononic crystal soft-clamped beam in Ref. [15]. (d) Size comparison between a 200-μm-long polygon resonator with Q ¼
155 × 106 at 1.6 MHz and a 2 × 2 mm2 phononic crystal membrane with Q ¼ 74 × 106 at 1.46 MHz frequency [22], illustrating the
reduced size.
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coupling these arrays to optical cavities could allow
experimental implementation of two-mode mechanical
entanglement protocols [37].

II. SOFT-CLAMPED PERIMETER MODES

The quality factor of a mechanical mode experiencing
dissipation dilution is enhanced by the dilution factor (DQ)
[9] over the intrinsic quality factor of the material (Qint)
such that Q ¼ DQ ×Qint. The intrinsic quality factor is a
material property, given by Qint ¼ 1=ϕ, where ϕ is the loss
angle characterizing the delay between stress and strain.
DQ can be engineered by changing the resonator geometry,
and here we show that perimeter modes have 2 orders of
magnitude higher DQ compared to uniform strings.
Our resonators can be understood as a network of

tensioned one-dimensional strings. It is therefore useful
to start from the dilution factor of the nth flexural mode of a
stressed mechanical resonator [1,9,38]:

DQ;n ¼
1

αnλþ βnλ
2
; λ ¼

ffiffiffiffiffiffiffi
1

12ϵ

r
h
l
; ð1Þ

with thickness h, characteristic length l, and average strain
ϵ. The αnλ term arises from the curvature near the
boundaries and βnλ

2 from the curvature distributed over
the rest of the mode. For structures with high tension and
large aspect ratio, λ is much smaller than one, and αn
therefore sets the limit on the dilution factor. If we consider
a structure with no boundary curvature [αn ¼ 0 in Eq. (1)],
the DQ for a given strain is bounded by

DQ ≤
12Eϵ2

ρh2ω2
; ð2Þ

where ρ is the film density, ω the mechanical mode
frequency, and E the Young’s modulus of the material
[9]. The limit in Eq. (2) corresponds to the dilution factor
experienced by the fundamental mode (n ¼ 1) of a hypo-
thetical, clampless beam (1=β1λ2) vibrating at frequency ω.
We call this limit the “clampless” limit for the quality factor.
The boundary curvature (αn) can be suppressed by soft-

clamping techniques, two of which were previously
reported: phononic band gap engineering [11,15] and
hierarchical structuring [13]. While hierarchically struc-
tured resonators [13,14] are prevented from reaching the
clampless limit by torsional losses, phononic band gap
engineering allows one to saturate Eq. (2) at the cost of
larger device size [11,15]. In the following, we show that a
different class of resonators also host soft-clamped modes
and approach the clampless limit: polygons composed
of connected beams that are tethered at their vertices.
Figure 2(a) shows an example polygon resonator with four
vertices and the simulated displacement profile of its
fundamental perimeter mode, i.e., the mode which has
half an acoustic wavelength per polygon side. Figure 2(b)
shows fabricated polygon resonators with four, six, and
eight vertices.
The dissipation dilution of perimeter modes of polygon

resonators can be found analytically under the narrow-
beam approximation, in which the length over width ratios
of all constituent beams are infinitely large. In this case, the
boundary loss coefficient (αn) is zero, since perimeter
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FIG. 2. Ultrahigh-Q perimeter modes. (a) FEM simulation of the fundamental perimeter mode with an inset showing the generation of
torsional deformation of the tethers. (b) False-colored scanning electron micrographs of polygon Si3N4 strained resonator devices with
l0 ¼ 700 μm, rl ¼ 0.6, w0 ¼ 200 nm, and 20 nm thickness (scale bars correspond to 500 μm). Top right of (b) shows an enlarged
junction of a stress-preserving square resonator (scale bar corresponds to 1.5 μm). (c) The effect of tether length (rl) on Q for samples
with l0 ¼ 250 μm, w0 ¼ 300 nm, and 20 nm thickness. Blue, orange, and green data points represent square, hexagon, and octagon
resonators, respectively. (d) The effect of polygon width (w0) on the Q for samples with l0 ¼ 100 μm, rl ¼ 0.6, and 20 nm thickness.
Open circles (joined by a dashed line) are FEM simulations and orange line is the Q computed from Eq. (3).
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modes do not produce flexural displacements in the tethers.
The torsional deformations of the tethers, however, are
always non-negligible, and they add to the distributed loss
coefficient βn.
The dilution factor equals the ratio of the tension energy

stored by the sinusoidal standing waves in the perimeter
beams to the sum of the bending energy of those waves and
the torsional energy of the tethers. For an N-sided polygon
with equal stress along all segments, D−1

Q is found as

D−1
Q ¼

�
1

n2π2λ2

�
−1

þ
�
rlð1þ νÞ cos2 ðπ=NÞ

4rwλ2

�−1
; ð3Þ

where rl is the ratio of the support length to the side length
of the polygon [Fig. 2(a)], rw ¼ ws=w0 is the ratio of
the support width to the side width of the polygon, n is the
perimeter mode order, and ν is the Poisson ratio of the
material (see Appendix A). Equation (3) shows that tor-
sional losses prevent the dilution factor of the fundamental
perimeter mode [n ¼ 1, as illustrated in Fig. 2(a)] from
saturating Eq. (2).
The predictions of Eq. (3) are in good quantitative

agreement with experimental results for a subset of devices

in our work, namely the ones with the highest length-to-
width aspect ratio as shown in Figs. 2(c) and 2(d) (also see
Appendix A). For the others, it still provides qualitative
insights, but we resort to two-dimensional finite-element
simulations for quantitative theoretical predictions. The
validity range of Eq. (3) is investigated in detail in
Appendix A. One qualitatively new effect introduced by
finite aspect ratio is a finite boundary loss coefficient (αn),
which in real structures is suppressed by a factor of order
ðws=lsÞ2, where ls is the length and ws is the width of the
supports. Additionally, the dependence of Q on width that
we observe in FEM simulations is not captured by this
simple model, as it arises due to the torsional deformations
of the polygon sides.

III. EXPERIMENTAL CHARACTERIZATION OF
PERIMETER MODES

We fabricate devices out of 20-nm-thick Si3N4 film with
1 GPa deposition stress, following a previously established
fabrication process focused on creating large gaps between
the suspended resonators and the substrate [39] (see
Appendix D). The intrinsic quality factor of the film has

(b)(a)

(c)

FIG. 3. Characterization of fundamental and higher-order perimeter modes. (a) A survey of all the measured Q’s of fundamental
perimeter modes for square-, hexagon-, and octagon-shaped Si3N4 resonators (blue, orange, and green circles, respectively), with
rl ∈ ½0.2; 0.4; 0.6; 0.8� and w0 ¼ 200 and 300 nm. The solid black line shows the clampless limit for a 20 nm Si3N4 film assuming
intrinsic quality factor of Qint ¼ 2500. FEM simulation Q’s (open circles) are plotted for optimal geometrical parameters (rl ¼ 0.6 and
w0 ¼ 200 nm). The dot-dashed line interpolates the FEM simulation Q’s and shows the λ2 scaling. The dashed line is the fundamental
mode Q of a uniform nanobeam. (b) High-order perimeter mode Q’s (blue dots) of a square with l0 ¼ 700 μm, rl ¼ 0.2, and w0 ¼
200 nm are shown with FEM predictions (open circles). Open squares show the calculated Q’s of a uniform beam with the same
thickness and fundamental mode frequency. Displacement profiles of the first two perimeter modes are shown as insets. (c) Gated
ringdown measurement (1 s on, 5 min off) of a square with l0 ¼ 700 μm, rl ¼ 0.2, and w0 ¼ 200 nm with a fundamental perimeter
modeQ of 1.6 × 109 at 350 kHz. Orange line: exponential fit to the data shown by blue circles. Faded blue data are excluded from the fit
as the laser is blocked at these times.
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been previously characterized to be Qint ¼ 2500 [13] and
we use this value to compute the predicted Q after finding
DQ using FEM simulations or theoretical modeling.
Mechanical Q’s are extracted from ringdown decay times
of excited modes measured using a free-space optical
interferometer with gated laser illumination of the sample
[see Fig. 4(d) and Ref. [13] for more details]. An example
ringdown trace is shown in Fig. 3(c). The chips are rested
on a holder inside the vacuum chamber without any fixation
unless otherwise indicated. We investigate the effect of chip
mounting on the Q in detail in Appendix F, where we find
that perimeter modes are less sensitive to chip clamping
conditions than the low order modes of unpatterned nano-
beams [38] and membranes [40].
We first investigate the dependence of Q on the relative

support length (rl). We expect an initial increase in Q as a
function of support length due to the reduction of lossy
torsional energy. However, as rl reaches one, torsional
modes of the supports start to hybridize with the perimeter
modes leading to a dramatic increase in dissipation (see
Appendix A). This is reflected in FEM simulations and
measurements, with a decrease in Q starting from rl ¼ 0.8
[see Fig. 2(c)]. We next investigate the influence of overall
resonator width (w0) by fabricating and characterizing
polygons with varying widths and l0 ¼ 100 μm and rl ¼
0.6 [the optimal rl value found in Fig. 2(c)]. We observe a
reduction in Q with increasing resonator width w0, in good
agreement with simulation, which arises due to the increase
of lossy torsional energy in the polygon sides with
increasing width. Note that the theoretical model does
not capture the width dependence of the Q, but agrees well
with the data when w0 ≤ 200 nm and rl < 1. As expected
from FEM simulations, we do not observe a clear depend-
ence of Q on the number of sides (N). The data spread in
Figs. 2(c) and Fig. 2(d) is mainly caused by the fabrication
imperfections (see Appendix D).
In Fig. 3(a), we survey the measured quality factors of

fundamental perimeter modes in resonators with different
geometries:N ¼ 4, 6, and 8, rl ¼ 0.2, 0.4, 0.6, and 0.8, and
w0 ¼ 200 and 300 nm. For each mode, we perform
multiple measurements with different duty cycles to rule
out optical damping and antidamping effects on the Q (see
Appendix H). The presented data span many combinations
of rl, w0, andN, while the FEM simulations are shown only
for the optimum design with rl ¼ 0.6 and w0 ¼ 200 nm.
Optimally designed samples that are free of fabrication
imperfections show good agreement with the FEM simu-
lations. Simulated Q’s of the perimeter modes for the
optimum design are lower than the clampless limit
by a factor of about 1.5 due to additional distributed
torsional energy. Our measurements corroborate that
the dissipation dilution of perimeter modes scales with
device length according to DQ ∝ 1=λ2, which shows that
these modes are soft clamped. Our highest measured Q is
3.6 × 109 for a 700 μm square with a fundamental

perimeter mode at 350 kHz with an effective mass of
meff ¼ 17 pg (estimated from FEM simulation) and zero-
point motion of xZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2meffΩm

p ¼ 37 fm.
In polygon resonators, the boundary losses are elimi-

nated for a whole family of perimeter modes that have
nodes at the tethers. We characterize the Q of the first six
harmonics of the perimeter mode for a square with
l0 ¼ 700 μm, w0 ¼ 200 nm, and rl ¼ 0.2. As expected
from simulations, the harmonics of the perimeter mode
also show significantly higher DQ with respect to the out-
of-plane flexural modes of a doubly clamped beam
[Fig. 3(b)].

IV. POLYGON RESONATORS WITH A
WIDTH CORRUGATION FOR EFFICIENT

OPTICAL READOUT

Nanomechanical resonators are commonly interrogated
using free-space optical interferometers [41,42]. However,
efficient free-space optical readout of high aspect ratio
strings is challenging due to their suboptical-wavelength
dimensions. To overcome this challenge, we fabricate
square-shaped polygon resonators with side segments
whose width is increased at the center. The region with
increased width forms a pad that reflects more light. The
relation between Q and width of the pad involves a
combination of stress relaxation, torsional losses, and
mode hybridization. We study the width dependence using
FEM simulations (see Appendix C) and choose pad
widths for which the Q degradation is minor (less than
50%). Figures 4(a) and 4(b) show a dark-field microscope
image of a square-shaped resonator with a reflection pad
where the width w is increased with a cosine profile
over 100 μm.
Figure 4(d) shows the experimental setup used for

position measurement of the devices. Light is focused
on the resonator using a microscope objective and the
reflected light is detected in a balanced homodyne scheme.
The mechanical modes appear as sidebands in the homo-
dyne noise spectrum. The power of these sidebands (i.e.,
area under each one) is proportional to the reflected optical
power from the resonator and the amplitude of the
mechanical oscillations at the probing point. To study
the effect of the width corrugation, we measure the
mechanical sideband power of the perimeter mode Pm at
different positions on a polygon side. Since the width of the
segment (w0 ¼ 700 nm) is comparable to the optical
wavelength (768 nm), the reflected power depends on
the width at the probing point. In Fig. 4(c) we show Pm at
each point on the side segment. As expected, in the regions
where the width is constant, Pm follows the mode shape of
the perimeter mode. When the laser beam is focused on the
pad, we observe an improvement of about 5.5 in Pm
compared to the constant width case. To avoid the effects
of optical driving, this measurement is done at high
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pressure (∼1 × 10−3 mbar) where the linewidths of the
modes are broadened due to gas damping.
To calibrate the homodyne spectra in terms of displace-

ment, we utilize the nonlinear transduction regime of the
interferometer [43]. Consider a mode with frequency Ωm
whose displacement at a fixed probe position is given by
xðtÞ ¼ x0 cosΩmt. The output voltage of the balanced
homodyne is given by VðtÞ ¼ V0 sinðϕ0 þ β0 cosΩmtÞ,
where β0 ¼ 4πx0=λL and V0 and ϕ0 are the fringe
amplitude and quadrature angle, respectively, and λL is
the laser wavelength. For small oscillation amplitudes
(x0 ≪ λL), the interferometer linearly transduces the dis-
placement to voltage as VðtÞ ¼ DxðtÞ, where D ¼
ð4πV0=λLÞ cosϕ0. Knowing V0, one can utilize the optical
wavelength as a ruler for displacement calibration.

However, V0 cannot be readily determined when there
are spurious reflections not originating from the
mechanical resonator, for example, from the chip sub-
strate, tens of micrometers below the nanobeam. V0 can
be calibrated by coherently driving the mechanical mode
to high oscillation amplitudes. When the amplitude of
oscillations approaches λL=8, V0 can be determined by
analyzing the frequency components of the nonlinearly
transduced voltage at harmonics of Ωm [see Fig. 4(e)].
This method is robust to spurious reflections since the
nonlinearly transduced signal originates from the
mechanical resonator. The single-sided power spectral
density (PSD) of VðtÞ, SVðωÞ (see Appendix I for the
definition), features multiple sidebands of the mechanical
mode:

(a) (d)
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FIG. 4. Polygon resonators with width corrugations and interferometric readout. (a) Dark-field microscope image of a square-shaped
polygon resonator with width corrugations (inset). White scale bars: main image, 100 μm; inset, 10 μm. Device parameters:
l0 ¼ 700 μm, rl ¼ 0.35, and w0 increased from 700 nm to 2.5 μm in the width corrugation. (b) The width profile of the pad shown in the
inset of (a). (c) Perimeter mode thermomechanical sideband power at different positions on the side segment of a 1 mm square-shaped
polygon resonator with width corrugations similar to the ones shown in (a) and (b). Blue circles: measured sideband power. Orange
curve: expectation from the mode shape of the perimeter mode along a side segment (obtained from a FEM simulation). (d) Experimental
setup used for interferometric position measurement and feedback control of the resonators. UHV: ultrahigh vacuum chamber with
pressure below 10−8 mbar. PZT: piezoelectric actuator. Feedback: lock-in amplifier and digital phase-locked loop (PLL) employed to
synthesize a feedback signal for the piezoelectric actuator. (e) Working principle of displacement calibration using nonlinear
transduction in an interferometer. The gray line shows the transduction curve of the interferometer. The blue and red lines correspond to
linear and nonlinear transduction regimes, respectively. (f) PSD of the homodyne signal SVðωÞ (left) and corresponding calibrated
displacement PSD SxðωÞ (right) for the driven motion of the perimeter mode. Boxes mark sidebands at the higher-order harmonics of the
perimeter mode that are created due to the interferometer nonlinearity. (g) Fit of the first five Bessel functions to the five sidebands
shown in (f). Gray dashed line corresponds to the fit value for β0 and boxes correspond to the normalized sideband amplitude
An=V0qnðϕ0Þ.
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SVðωÞ ¼ 2πV2
0

X∞
n¼1

q2nðϕ0ÞJ2nðβ0Þδðω − nΩmÞ; ð4Þ

where qnðϕ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð−1Þn cos 2ϕ0

p
, Jnð·Þ are the Bessel

functions of the first kind, and δð·Þ is Dirac’s δ function.
Note that in reality the sidebands have finite linewidths.
In Fig. 4(f) we show SVðωÞ obtained from a resonator
with l0 ¼ 1 mm and pads with dimensions similar to the
one shown in Fig. 4(b), for 350 μW of optical power
focused on the pad. The perimeter mode at 226 kHz is
driven to an amplitude of x0 ¼ 122 nm (determined by
the calibration). Sideband amplitudes An, defined as the
square root of the area under each peak, can be directly
computed from the experimental homodyne spectra.
From Eq. (4), the sideband amplitudes are given
by An ¼ V0qnðϕ0ÞJnðβ0Þ.
The calibration parameters (V0, ϕ0, and β0) can be

obtained by fitting this model to the data [see Figs. 4(f)
and 4(g)]. The displacement PSD can then be found as
SxðωÞ ¼ D−2SVðωÞ. The calibrated SxðωÞ, for the spectrum
shown inFig. 4(f), is shownon the right-hand axis. The noise
floor, i.e., the imprecision noise in the position measure-
ment, reaches a level of Simp

x ¼ 0.9 × 10−26 m2=Hz at
226 kHz, equivalent to displacement fluctuations of
96 fm in a 1 Hz bandwidth. For a mechanical mode with
frequency ofΩm, linewidth ofΓm, and effectivemass ofmeff ,
one can also define a thermal-phonon-equivalent impreci-
sion [3] as nimp ¼ Simp

x =2SZPFx , whereSZPFx ¼ 2ℏ=meffΩmΓm

is the peak value of the zero-point fluctuations’ PSD. For the
1mmdevicementioned abovewemeasure a quality factor of
1.5 × 109 and compute an effective mass of 101 pg (using a
FEM simulation). The thermal-phonon-equivalent impreci-
sion for this device amounts to nimp ¼ 0.003.

V. THERMAL-NOISE-LIMITED FORCE SENSING

Force sensing using mechanical oscillators relies on
referring displacement fluctuations of a mode to force
fluctuations using the known susceptibility of the mechani-
cal mode [44]. Consider a mechanical mode with resonance
frequency Ωm, linewidth of Γm, and effective mass meff .
The frequency response of the displacement of the mode
xðtÞ to a force to be measured FextðtÞ is given by
xðωÞ ¼ χmðωÞFextðtÞ, where χmðωÞ is the susceptibility
given by

χmðωÞ ¼ ½meffðΩ2
m − ω2 − iΩmΓmÞ�−1; ð5Þ

where we have assumed a structural damping model [45].
In a realistic setting the mechanical mode is in thermal
equilibrium at temperature T and is subject to the stochastic
thermal force FthðtÞ. The displacement measurement
record xmeasðtÞ also includes the measurement impreci-
sion, i.e., xmeasðtÞ ¼ xðtÞ þ ximpðtÞ. As a result, if the

displacement measurement record has PSD of Smeas
x ðωÞ,

the force-referred noise PSD, Smeas
F ðωÞ, is given by

Smeas
x ðωÞ=jχmðωÞj2, which amounts to

Smeas
F ðωÞ ¼ SextF ðωÞ þ SthF ðωÞ þ Simp

F ðωÞ; ð6Þ

where SextF ðωÞ is the PSD of the external force, SthF ðωÞ ¼
4meffkBTΓm is the PSD of the thermal force, and
Simp
F ðωÞ ¼ Simp

x ðωÞ=jχmðωÞj2 is the force-referred meas-
urement imprecision. Evidently, the force sensitivity is
limited by the thermal force and the imprecision.
Therefore, one can only perform thermal-noise-limited
force sensing in a bandwidth determined by the impre-
cision level. For a thermal-phonon-equivalent imprecision
of nimp, the 3 dB bandwidth of thermal-noise-limited force
sensing is given by Δωth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnth=nimpÞ
p ðΓm=2Þ, where

nth ¼ kBT=ℏΩm is thermal phonon occupancy of
the mode.
Thermal-noise-limited force sensing requires

resolving the Brownian motion of the mechanical mode.
Our best polygon resonators have linewidths as low as
Γm ¼ 2π × 100 μHz. Reaching this level of spectral res-
olution requires a measurement record of at least 3 hours.
However, for such long data acquisitions, the measure-
ment is sabotaged by frequency fluctuations of the
mechanical mode, potentially caused by measurement
setup alignment drifts, ambient temperature fluctuations,
and heating from optical absorption. Nevertheless, one
can circumvent these issues by broadening the mechanical
linewidth by means of measurement-based feedback (i.e.,
feedback cooling) [21,46,47]. Introducing a feedback
force proportional to the oscillator’s delayed displace-
ment, FfbðtÞ ¼ −meffΩ2

mgfbxðt − τfbÞ, modifies the mode’s
susceptibility. For a quarter period delay (τfb ¼ π=2Ωm)
the effective susceptibility of the mode is

χeffðωÞ ¼ ½meffðΩ2
m − ω2 − iΩmΓtotÞ�−1; ð7Þ

where Γtot ¼ Γmð1þQgfbÞ is the broadened linewidth. In
the classical regime, the linewidth broadening results in
cooling to an effective temperature of

Teff ¼
Γm

Γtot
T: ð8Þ

As a consequence, in a force sensing experiment with a
feedback cooled oscillator, one will obtain the same
thermal-limited force sensitivity and force-referred meas-
urement imprecision as if the oscillator was not feedback
cooled (see Appendix J for a detailed derivation). The
benefit of using feedback cooling is that the broadened
mode has a faster response and the Brownian motion
can be fully resolved with much shorter measurement
records, thereby alleviating experimental stability require-
ments [21].
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To demonstrate feedback cooling and thermal-limited
force sensing, we use the square-shaped resonator with
l0 ¼ 1 mm and reflection pads mentioned in the previous
section. For applying the feedback force, we use a piezo-
electric actuator whose drive frequency is phase locked to
the perimeter mode, using the demodulated homodyne
signal and a phase-locked-loop module [Fig. 4(d)].
Figure 5(a) shows the PSD of the measured position
Smeas
x ðωÞ. Feedback cooling broadens the mode’s linewidth

to Γtot ¼ 2π × 1.0 Hz, inferred from a Lorentzian fit. The
measured PSD is in good agreement with the expected
thermal fluctuation PSD of the broadened mode
[jχeffðωÞj2SthF ðωÞ]. For the theoretical model the effective
mass is estimated from a FEM simulation and Γm ¼ 2π ×
151 μHz is found independently using gated ringdown
measurements. Integration of the measured PSD reveals an
effective temperature of Teff ¼ 44 mK equivalent to pho-
non occupation of 4.1 × 103. The force-referred noise PSD
is shown in Fig. 5(b), comparing the experimental data with
the expectation from Eq. (6) (in the absence of the external
force). This analysis reveals a thermal-noise-limited
force sensitivity of

ffiffiffiffiffiffi
SthF

p
¼ 1.3 aN=

ffiffiffiffiffiffi
Hz

p
. The thermal-

noise-limited force sensing bandwidth measured from the
spectrum in Fig. 5(b) amounts to Δωth ¼ 2π × 7.3 Hz.

VI. PHONONIC DIMERS AND ARRAYS

Coupled mechanical resonators are used for mass and
charge sensing [48,49] and studies of fundamental multi-
mode dynamics [50,51]. The torsional deformations in the
tethers can be utilized to couple the perimeter modes of two
polygon resonators [Fig. 2(a)]. By joining two square-
shaped resonators with a tether, we induce torsional
coupling between the perimeter modes [as in the device
in Fig. 6(b)]. This coupling results in hybridization of the
two perimeter modes of the two resonators into a pair
of new modes. As shown in Fig. 6(a), these modes are “in-
phase” and “out-of-phase” combinations of the two perim-
eter modes. Because of the symmetries of these modes,
the deformation of the coupler segment takes two
different forms. For the in-phase mode, the antisymmetric
displacement results in torsional deformation while for the
out-of-phase mode the deformation is solely rotational and
therefore stores no elastic energy [Fig. 6(a)].
The strength of the coupling (i.e., the hybridized modes’

frequency splitting) is determined by the dimensions of the
coupler segment [wc and lc, shown in the inset of Fig. 6(d)].
Using FEM simulations, we find an approximately linear
relation between the frequency splitting δf and the param-
eter w2

c=lc (see Appendix K for more details). We exper-
imentally study “phononic dimers” with side lengths of
100 μm with different coupling parameters w2

c=lc and find
the expected hybridization of perimeter modes (see Fig. 6).
In Fig. 6(e), we show the scaling of δf with the coupling

parameter, that is in agreement with the FEM simulations.
For δf < 10 kHz, the fabrication disorder can be larger
than the coupling strength, which prevents hybridization
(see Appendix K for details).
The difference in the deformation of the coupling seg-

ments also leads to different dissipation rates for the
hybridized modes. The extra torsion of the in-phase mode
reduces its quality factor compared to the out-of-phase
mode [as shown experimentally in Fig. 6(g)]. This is
supported by FEM simulations, and while the experimental
quality factors of the out-of-phase modes do not attain the
predicted values, they do show reduced loss compared to
the in-phase modes [Fig. 6(g)].
The simple design of polygons facilitates coupling of

several mechanical resonators with varying nearest-neigh-
bor coupling without any additional design change and by
simply changing the width of the coupling segments (wc) in
order to study complex coupled mechanical states. As a
proof-of-principle experiment, by choosing coupling rates
that alternate between intracell and intercell coupling, J and
J0, one can realize a one-dimensional Su-Schrieffer-Heeger
chain [36]. A SSH chain is an example of a one-dimen-
sional chiral Hamiltonian with nontrivial topology, where
the coupling strength is alternated between the sites [J and
J0 in Fig. 6(c)] [52]. Figure 6(c) shows a fabricated array
of six square resonators with side length of 100 μm
and alternating coupling rates with simulation values of

n imp=0.003

FS th

FS imp

(b)

(a)

FIG. 5. Feedback cooling and thermal-noise-limited force
sensing. (a) Displacement fluctuation PSD of the feedback cooled
perimeter mode. Blue line: experimental data. Orange line:
Lorentzian fit to the data which gives a total linewidth of
Γtot ¼ 2π × 1.0 Hz. Red line: expected Brownian motion PSD.
Dashed gray line: the imprecision noise background in the
displacement measurement. (b) Force noise PSD. Blue and
orange lines are the experimental data and the Lorentzian fit
shown in (a), divided by the effective susceptibility [Eq. (7)]. Red
line: the expected thermal force PSD. Dashed gray line: con-
tribution from imprecision.
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J=2π ¼ 0.35 kHz and J0=2π ¼ 5 kHz (corresponding to
dimer frequency splittings of 0.7 and 10 kHz). In this case,
the array can be seen as a three-cell chain of phononic
dimers. If the intercell coupling is weaker than the intracell
coupling (J0 > J), the array exhibits edge modes of the
perimeter modes of the chain. Figure 6(f) shows FEM
simulations of such a mode of this array. This is a collective
mode where all the resonators are oscillating in their
perimeter mode while the amplitudes of the modes at
the “edge” sites of the array are much greater than for the
“bulk” sites. However, in practice, fabrication disorder can
lift the degeneracy and the two new modes which emerge
are not fully symmetric but nevertheless show some edge
mode characteristics. We observe two such modes in our
structure and characterize them by measuring the rms
values of the thermal fluctuations of each mode at each
site and observe that both modes are fully localized at one
of the edge sites [see Fig. 6(h)]. In an alternative scenario
where J0 < J, the system transitions into a so-called
“trivial” phase where the edge modes’ degeneracy is fully
lifted and their edge characteristics completely vanish. We
fabricate an array with flipped order of strong-weak

coupling rates (J=2π ¼ 5 kHz and J0=2π ¼ 0.35 kHz)
and follow the same measurement procedure. We identify
six modes that have frequencies close to that of a single
perimeter mode but we do not observe any edge structure in
any of them (see Appendix L for the complete mode
spectrum). This provides further evidence for topological
symmetries playing a significant role in the eigenmodes of
our arrays. We measure Q ≈ 107 for the edge modes
of the SSH chain which is 50% below the simulation.
The simulated Q for the edge modes is equal to the single
cell perimeter mode Q, showing that the chains of
polygon resonators are capable of retaining the single
polygon quality factors. The origin of this discrepancy
requires further investigation and could be due to mode
hybridization arising from fabrication imperfections (see
Appendix D).

VII. CONCLUSION

We demonstrated perimeter modes in vertex-clamped
polygon resonators that implement soft clamping without
a phononic band gap. Our devices have Q’s as high as

(a)

(e) (f)

(h)

J
J

J J

out of phase

in phase

(d)

(b) (c)

lc
wc

(g)

J

FIG. 6. Phononic dimers and arrays of polygon resonators. (a) FEM simulations of the in-phase and out-of-phase modes of a phononic
dimer. The insets show the deformation of the coupler segment for the two cases. (b),(c) Optical micrographs of a fabricated dimer and a
chain, both composed of square-shaped resonators with side lengths of 100 μm. The scale bars correspond to 100 μm. (d) The
frequencies of the in-phase (square) and out-of-phase (circle markers) modes from data (filled markers) and FEM simulation (empty
markers) for different coupling parameters. The inset indicates the coupling parameters of a phononic dimer. (e) Frequency splitting of
the in-phase and the out-of-phase modes from data (filled markers) and FEM simulation (empty markers) for different coupling
parameters. (f) FEM simulation of the edge mode profiles of a phononic array made of six square-shaped resonators. The slight
asymmetry is due to the disorder in the mesh of the simulation. (g) Q of the hybridized modes from data (filled markers) and FEM
simulation (empty markers) for different coupling parameters. The dashed line corresponds to quality factor of a single square-shaped
resonator. (h) rms values of the Brownian motion of each site measured for the two split modes, showing localization of the mode at the
edges of the chain.
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3.6 × 109 at room temperature, exceeding the state-of-the-
art Q by a factor of 4 with 10 times smaller devices [15].
The enhanced dissipation dilution (DQ) of the polygons
combined with crystalline materials [53,54] could enable
Q’s exceeding 1010 in cryogenic environments. Our highest
Q resonator has a thermal-noise-limited force sensitivity offfiffiffiffiffiffi
SthF

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBTmΓm
p

≈ 420 zN=
ffiffiffiffiffiffi
Hz

p
at room temperature,

on par with atomic force microscopy cantilevers at milli-
kelvin temperatures (190 zN=

ffiffiffiffiffiffi
Hz

p
) [55]. Polygon resona-

tors are well suited for integration in sensing platforms,
such as inverted microscope systems, as the multiple sides
of the polygon facilitate addition of several probes or
measurement specimens on the same mechanical resonator
[28,56–58]. One could even imagine functionalizing one
side of the polygon by the deposition of a magnetic or
metallic coating to provide sensitivity to electric or mag-
netic fields that could then be read out optically on a
different polygon side. With an eye toward sensing appli-
cations, we show that by increasing the width of a part
of the polygon resonator, we can perform thermal-
noise-limited force sensing with a simple free-space inter-
ferometer. Efficient interferometric readout of such low
dissipation mechanical resonators could also allow cavity-
free feedback cooling of the mechanical motion to the
quantum ground state [44,59,60].
Near-field coupling allows high optomechanical cou-

pling rates (g0=2π > 20 kHz) [3,20,21], but is technically
challenging with millimeter-scale structures due to the
small gaps required (∼100 nm) between the optical cavity
and mechanical resonator. The compact form factor of
polygon resonators promises increased mechanical qual-
ity factors for integrated optomechanical systems, facili-
tating room temperature quantum optomechanical
experiments such as feedback cooling [2,3], ponderomo-
tive squeezing [61–64], and observation of radiation
pressure shot noise [65,66]. Previous demonstrations of
integrated optomechanical systems using Si3N4 nano-
beams [3,19,67,68] have been limited by low mechanical
Q and Q × f. A doubly clamped nanobeam with 420 μm
length results in Q ¼ 6 × 106 and Q × f ¼ 3.5 × 1012 Hz,
which prohibits ground state cooling at room temperature
[6]. A polygon with equal clamp-to-clamp length, thick-
ness, and width profile would exhibit Q ¼ 420 × 106 and
Q × f ¼ 3.6 × 1014 Hz, resulting in an order of magni-
tude higher single photon cooperativity (see Appendix N
for details) and providing access to the quantum back-
action-dominated regime at room temperature.
Finally, we show coupling of polygon resonators form-

ing phononic dimers with controllable mechanical mode
splitting which allows us to explore coupled high-Q
phononic arrays. Moreover, the coupled polygons provide
an alternative platform for parametric spin sensing [27–29]
and study of topological states in nanomechanics [69]
owing to their controllable mechanical coupling rates and
potential for extremely low dissipation.

The supporting data and data analysis codes are available
at Ref. [68].
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APPENDIX A: THEORY MODEL FOR
DISSIPATION DILUTION OF THE

PERIMETER MODES

To analytically estimate the dilution factor of perimeter
modes, we proceed as in Refs. [10,70]. We express a
lossless “tension” energy:

hWtensi ¼ Nσw0h
Z

l0

0

½u0ðxÞ�2dx; ðA1Þ

from the out-of-plane displacement profile uðxÞ along the
polygon sides. Here,N is the number of sides, σ is the static
stress after relaxation, w0 is the polygon width, l0 the side
length, and h the film thickness.
The lossy energy is approximated as arising only from

bending in the polygon sides and from the torsion of the
supporting tethers [70]. Explicitly,

hWbendi ¼
NEw0h3

12

Z
l0

0

½u00ðxÞ�2dx; ðA2Þ

with Young’s modulus E and the integral running over the
polygon side, and

hWtorsi ¼
NEwsh3

6ð1þ νÞ
Z

ls

0

½τ0ðxÞ�2dx; ðA3Þ

with τ torsion angle, evaluated over the supporting tether of
length ls and width ws. Note that we are neglecting torsion
in the polygon side beams, which can contribute signifi-
cantly for larger side widths.
In order to evaluate the integrals, we assume simplified

displacement and torsion profiles. In the polygon sides, the
out-of-plane displacement will be almost perfectly sinus-
oidal for λ ≪ 1, with nodes at the polygon vertices: uðxÞ ¼
u0 sin ðnπx=l0Þ (n is the perimeter mode index). The torsion
angle is assumed to decay linearly toward the clamping
points [70]. This approximation is acceptable when the
support tether length is much smaller than the torsional
wavelength at the mechanical frequency of the perimeter
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mode. Torsion and out-of-plane displacement are con-
nected by continuity of the displacement field at the joint:

τðlsÞ ¼
u0ð0Þ
sinðθÞ ¼

nπu0
l0 cos ðπ=NÞ ; ðA4Þ

where θ ¼ π=2 − π=N is the semiangle subtended by two
polygon sides.
Since DQ ¼ hWtensi=ðhWbendi þ hWtorsiÞ, we can distin-

guish two separate contributions:

DQ;bend ¼
1

n2π2λ2
; ðA5Þ

DQ;tors ¼
rlð1þ νÞ cos2 ðπ=NÞ

4ðrwÞλ2
; ðA6Þ

such that D−1
Q ¼ D−1

Q;bend þD−1
Q;tors. Here, we defined

rl ¼ ls=l0, rw ¼ ws=w0, and λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð12σÞp

h=l.
The static stress in the polygon segments σ can be found

by imposing force balance and conservation of the length of
the path separating two polygon clamping points, upon
structure release:

σ ¼ σ0ð1 − νÞ½1þ 2rl sin ðπ=NÞ�
1þ 4ðrl=rwÞsin2ðπ=NÞ ; ðA7Þ

where σ0 is the thin film deposition stress, prior to structure
undercut.
Our model provides a good approximation of the DQ of

the first perimeter mode, but in general overestimates it, as
evident from the comparison with FEM simulations
(Fig. 7). This is mainly due to the simplified assumption
that lossy elastic energy is only stored in tether torsion and
polygon segments out-of-plane bending, which is valid in
the limit where w=l → 0. In the real displacement patterns,
the torsion in the polygon segments is also significant,
and becomes dominant as the segments get wider [see
Fig. 7(c)]. Moreover, the model is less accurate for
increasing mechanical frequency and tether length, as
the torsion angle profile in the tethers can no longer
be approximated as linear [see Figs. 7(a) and 7(b)]. In
Fig. 7(b), a minimum of DQ is observed as the first
perimeter mode hybridizes with a tether torsional mode,
around r ≈ 1.9. As a broad criterion, the analytical expres-
sion is accurate for the first perimeter mode, and
rl ≤ 0.6, w0 ≤ 200 nm.

APPENDIX B: STRAIN ENGINEERED POLYGON
RESONATORS

Dissipation dilution suggests that one method to improve
the Q of a soft-clamped mode is to enhance the local
stress in the region where the mode is localized [15]. This
method—strain engineering—has shown Q enhancement
in nanobeam resonators beyond the soft-clamping limit by
width tapering the nanobeam to increase the stress in the
localized mode region. We investigate strain engineering in
polygon resonators in simulations. By keeping the support
width (ws) constant and narrowing the polygon side width
(w0) by a tapering constant α < 1, we can enhance the local
stress in the sides of the polygon. For a suspended thin
film with a fixed deposition stress, the total tension
force at the junction is constant, and by narrowing the
sides of the polygon stress is enhanced [Eq. (A7)]. We
simulate the Q of the strain engineered design shown in
Fig. 8(b)(i) (Qstress) and compare it to the stress-preserving
design (Qnormal) that is studied in this work [Fig. 8(b)(ii)].
We simulate a square with l0 ¼ 250 μm, r ¼ 0.6,
w0 ¼ 200 nm, and 20 nm thickness. The simulation results
in Fig. 8(a) show possible Q enhancements up to 1.8 times
higher than the stress-preserving design.

(a)

(b)

(c)

FIG. 7. Theory model and FEM simulation comparison. We
compare simulation and analytical predictions for a polygon
resonator with N ¼ 4, l0 ¼ 700 μm, and uniform stress
(rw ¼ ffiffiffi

2
p

). (a) Dilution factor (DQ) for different perimeter modes
(w0 ¼ 200 nm, rl ¼ 0.4). (b)DQ of the first perimeter mode as the
support length is varied (fixedw0 ¼ 200 nm). The inset shows the
mode displacement for r ¼ 1.9, with the color encoding the
torsional energy density. (c) DQ of the first perimeter mode as
the width of all the segments is varied (fixed rl ¼ 0.4).
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APPENDIX C: EFFECT OF THE SIZE OF THE
WIDTH CORRUGATION ON Q

For polygon resonators with width corrugations, we use
FEM simulations to determine the dependence of the
perimeter modes’ parameters on the size of the pad. We
simulate square-shaped resonators with l0 ¼ 1 mm,
rl ¼ 0.35, and two values of w0. The corrugation has a
cosine-shaped width profile [Fig. 4(b)] over 100 μm. We
vary the pad width and calculate frequency, quality factor,
effective mass, and SthF for the perimeter mode. The results

of these simulations are shown in Figs. 9(a) and 9(b). This
behavior is due to hybridization of the perimeter mode
with the torsional mode in the side segment which
results in reduced Q. The optimal pad size must be chosen
by considering the conflicting requirements of small
effective mass, absence of buckling instabilities, and high
mechanical Q.

APPENDIX D: FABRICATION PROCESS FLOW

We fabricate all the samples using 20-nm-thick LPCVD
Si3N4 on Si wafers. The fabrication process is outlined in
Fig. 10. Structures are defined using electron beam (ebeam)
lithography using FOX16 resist. During this step, we
observe lithography stitching errors due to imperfections
in the overlap of the exposure fields of the ebeam process
(see Fig. 11). This could be a source of fabrication
imperfections. Patterns are transferred into the Si3N4 using
SF6-based dry etching. A biased mask is written using the
same ebeam lithography process and used for deep reactive

(a) (b)

(i)

(ii)

ws /√2

ws /√2

ws

ws

FIG. 8. Strain engineered polygon resonators. (a) Simulated Q
enhancement of polygon resonators via strain engineering
(Qstress) compared to the stress-preserving design (Qnormal).
(b) Schematic of the polygon width tapering for strain engineer-
ing (i) and stress-preserved design (ii) for a square-shaped
polygon.

(b)

(a)

FIG. 9. Dependence of Q and SthF on the corrugation width.
Square-shaped polygon resonators with corrugated widths are
simulated. Q and SthF are shown in (a) and (b) for w0 ¼ 0.2 μm
(blue) and w0 ¼ 0.7 μm (orange). The diamond marker corre-
sponds to the device used in the force sensitivity experiment.

1 2

3 4

5 6

FIG. 10. Fabrication process flow. (1) LPCVD thin film
deposition of Si3N4 on Si (red on gray). (2) ebeam lithography
on Si3N4 wafer using FOX16 (blue). (3) Dry etching of Si3N4.
(4) Recess ebeam (green corresponds to the second layer of
FOX16). (5) DRIE etching of Si substrate. (6) KOH undercut
and CPD.

(a) (b)

FIG. 11. ebeam lithography stitching errors. An example of a
device with (a) and without (b) stitching errors after the ebeam
lithography process. The area of stitching is marked with the
white dashed square for comparison. Scale bars correspond to
500 nm.
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ion etching (DRIE) of the silicon substrate to create a recess
for the final suspension etch. Samples are then diced to
chips and cleaned using piranha and BHF solutions prior to
the final etch. Si3N4 structures are released using KOH wet
etching and dried using a critical point dryer (CPD). Full
details of the nanofabrication process are available on the
NanoFab fabrication archive [39].

APPENDIX E: MODE SPECTRUM OF
POLYGON RESONATORS

By measuring the broadband thermomechanical noise
spectrum of a polygon resonator, we can label the modes
using the frequencies predicted by the FEM simulations.
The spectrum shown in Fig. 12(a) is obtained from the
device used in Sec. V by focusing the laser beam on the
pad. For this measurement, the pressure in the vacuum
chamber was increased to 1 × 10−3 mbar to provide sub-
stantial gas damping and prevent mode instability. A few of
the identified modes are shown in Fig. 12(a) alongside their
displacement mode profile. In the FEM simulation, the
stress is chosen such that the frequency of the fundamental
mode matches the experimentally found frequency. By this
anchoring, we find the frequencies of the out-of-plane
modes with less than 1% discrepancy, up to the third-order
perimeter mode.

According to the FEM simulation, in addition to the
high-Q out-of-plane mode, there exist four other in-plane
modes that are also localized on the perimeter of the
polygon (i.e., no displacement in the tethers). Even though
the free-space interferometer is weakly sensitive to the in-
plane modes, we detect the in-plane perimeter modes in a
narrowband spectrum, around the out-of-plane perimeter
mode [Fig. 12(b)]. We acquire this spectrum while applying
a moderate dissipative feedback at low pressure to avoid
mode instabilities. We identify these modes by comparing
their frequencies to the prediction from the simulation. The
first two in-plane modes are not consistent with the
simulation results. This is likely because of hybridization
due to fabrication imperfections, as in the simulation the
two modes are degenerate.

APPENDIX F: EFFECT OF CHIP
MOUNTING ON THE Q

The quality factors of nanomechanical resonators gen-
erally experience degradation (clamping losses) when the
chip on which they are fabricated is fixed by the application
of a force [38,40]. To investigate this degradation, we first
leave the chip unclamped on the characterization holder,
then clamp the chip tightly using metallic clamps pressing
on the edges of the chip and fixed with screws, and measure
the quality factor in both cases. We characterize polygons
with l0 ¼ 150 μm, rl ¼ 0.6, and w0 ¼ 300 nm, and com-
pare the measured Q. We measure four different devices
and observe 1%–10% degradation in the Q for the fixed
frame case. Error bars in Fig. 13 show the standard
deviation of 4 measurements for each sample. These
measurements show that the degradation due to chip
clamping conditions are substantially suppressed, as pre-
vious studies with unpatterned nanobeams and membranes
show substantially larger degradation [38,40].

(b)

(a)

FIG. 12. Mode spectrum of polygon resonators. (a) Blue line:
broadband thermomechanical noise spectrum, obtained from the
device used in Sec. V. Some of the identified modes are marked
with their corresponding mode profile obtained from a FEM
simulation. Orange line: signal with only local oscillator light.
Gray line: signal with no light incident on detector. (b) Narrow-
band displacement spectrum around the perimeter mode of the
same device; obtained while applying moderate dissipative
feedback. The out-of-plane and in-plane perimeter modes are
marked.

FIG. 13. Effect of chip mounting on the quality factor. Blue
dots show the average measured Q when the chip is freely
mounted on the sample holder and orange dots correspond to the
average measured Q when fixing the chip tightly using metallic
clamps pressing on the frame. Error bars show the standard
deviation of four measurements for each sample.
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APPENDIX G: FREQUENCY STABILITY OF
FABRICATED MECHANICAL RESONATORS

For many sensing applications, the frequency stability is
a relevant figure of merit. Therefore, we measured the
frequency stability of these mechanical resonators by
characterizing their Allan deviation. The Allan deviation
can be derived in terms of the frequency noise spectrum
SΩm

[71],

σ2ðτÞ ¼ 1

2Ω2
m

1

N − 1

XN
k¼2

ðf̄k − f̄k−1Þ2

¼ 2

π

�
2

Ωmτ

�
2
Z

∞

−∞
dωSΩm

½ω�sin4ðωτ=2Þ=ω2

¼ 2

π

�
2

Ωmτ

�
2
Z

∞

−∞
dωSϕ½ω�sin4ðωτ=2Þ; ðG1Þ

where fk is the averaged frequency of the oscillator over the
kth measurement fragment of duration τ, and the relation
SΩm

½ω� ¼ ω2Sϕ½ω� is used.
The thermomechanical phase noise of the oscillator in

the strong drive limit is given by

Sϕ½ω� ¼
1

hX2
osci

kBT
mΩ2

m

Γ=2
ω2 þ ðΓ=2Þ2 ¼

hX2
thi

hX2
osci

Γ=2
ω2 þ ðΓ=2Þ2 ;

ðG2Þ

therefore, the Allan deviation can be simplified to

σ2ðτÞ ¼ hX2
thi

hX2
osci

1

QmΩmτ

ðτΓmÞ2
1þ ðτΓmÞ2

: ðG3Þ

The other noise sources are the detection noise and
the long time linear drift. The detection noise SdϕðωÞ ¼
½ðΔfSnoiseÞ=hX2

osci�fðΔf=2Þ=½ω2 þ ðΔf=2Þ2�g is assumed
to arise from a flat background noise Snoise in the meas-
urement record, limited only by the detection bandwidth
Δf. When τ is much longer than the detection time
(∼1=Δf), the Allan deviation caused by the detection
noise is σdðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΔfSnoiseÞ=hX2

osci�½ð2πΔfÞ=Ω2
mτ�

p
. For

the long time linear drift δΩm=Ωm ¼ Dt, the Allan
deviation is σlðτÞ ¼ ½ðDτÞ= ffiffiffi

2
p �.

To investigate the frequency stability of our resonators,
we use a phase-locked loop (PLL) with a bandwidth of
1 kHz to track the mechanical frequency fluctuations in
our optical interferometer. The measurement result is
shown in Fig. 14. The result indicates that the mechanical
frequency stability is limited by the linear drift (rate
D ∼ 10−8 s−1) at long τ limit, which masks the extremely
low thermomechanical noise-induced frequency fluctua-
tions (Fig. 14), many orders of magnitude below. The rate

of this linear drift varies between different samples and is
consistent with the long-term drift in the resonance
frequency observed over 24 hours. As the frequency drift
is always positive (i.e., increases the resonance fre-
quency), it could be caused by mass reduction due to
evaporation of a volatile contaminant on the resonator
inside the vacuum chamber.

APPENDIX H: OPTICAL ANTIDAMPING IN
RINGDOWN MEASUREMENTS

We investigate the effect of the optical laser beam on the
measured mechanical Q to eliminate any effect of optical
damping or antidamping [15]. Figure 15 shows that the
optical antidamping can be comparable to the damping rate
of the oscillator when the measurement laser is left on
during the ringdown. We then perform stroboscopic ring-
down measurements where we open a laser shutter for 1 s
and vary the time in which the measurement laser is off. By
varying the duty cycle (¼ ½ton=ðton þ toffÞ�) we observe that
the effect of the measurement laser is negligible for long
duty cycles. For the Q’s reported in this work, we verify
that theQ does not changewhen varying the duty cycle by a
factor ranging from 4 to 10. The reported Q’s are an
average value of at least four individual ringdowns with the
same duty cycle.

FIG. 14. Frequency stability of perimeter modes. The meas-
urement result of Allan deviation of a 1 mm square-shaped
sample with w0 ¼ 200 nm and rl ¼ 0.2 is plotted in blue dots.
The dash-dotted line shows the calculated detection limit based
on the measurement SNR, and the dashed line is the fit to the
linear frequency drift in the long time limit. The fit yields a drift
rate D ∼ 10−8 s−1, which varies among different samples. The
theoretical thermal mechanical limit is plotted in black line,
which is many orders of magnitude below the measured Allan
deviation, due to the exceptionally high quality factor. The
scaling is reversed from the usual τ−1=2 to τ1=2 because we are
in the limit where the mechanics lifetime is longer than the
measurement time τ < 1=Γm.
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APPENDIX I: DEFINITION OF POWER
SPECTRAL DENSITIES

For a quantity yðtÞ, the double-sided power spectral
density is defined as

SyyðωÞ ¼
Z

∞

−∞
hyðtÞyðtþ τÞie−iωτdτ; ðI1Þ

where the average h·i is an ensemble average for stochastic
quantities [e.g., xðtÞ] and a temporal average for periodic
signals [e.g., VðtÞ in Sec. IV]. For stochastic signals, the
PSD is simply given by SyyðωÞ ¼ hjyðωÞj2i. However,
measured spectra are in fact the single-sided power spectral
densities defined as

SyðωÞ ¼
�
0 ω < 0

2SyyðωÞ ω > 0.
ðI2Þ

APPENDIX J: MATHEMATICAL DETAILS OF
FORCE SENSING IN THE PRESENCE OF

FEEDBACK COOLING

In the absence of an external force Fext, the equation of
motion for the mechanical mode in the frequency domain is
given by

χ−1m ðωÞxðωÞ ¼ FthðωÞ þ FfbðωÞ: ðJ1Þ
The feedback force is proportional to the delayed measured
displacement, xmeasðt − τfbÞ, where for a moderately high-
Q mode in the frequency domain it amounts to

FfbðωÞ ¼ meffΩ2
mgfbeiϕfb ½xðωÞ þ ximpðωÞ�: ðJ2Þ

The solution of Eq. (J1) for this feedback force is
given by

xðωÞ ¼ χeff ½FthðωÞ þmeffΩ2
mgfbeiϕfbximpðωÞ�: ðJ3Þ

Using the definitions given in Appendix I one can find the
PSDs for x and xmeas:

SxðωÞ ¼ jχeffðωÞj2½SthF ðωÞ þm2
effΩ4

mg2fbS
imp
x ðωÞ�; ðJ4Þ

Smeas
x ðωÞ ¼ jχeffðωÞj2½SthF ðωÞ þ jχmðωÞj−2Simp

x ðωÞ�: ðJ5Þ

To find the measured force noise PSD, Smeas
F ðωÞ, we divide

Smeas
x ðωÞ by jχeffðωÞj2 and the result is the one given in

Eq. (6). In short, the trace of feedback in Smeas
F ðωÞ

disappears due to the interference between xðωÞ and
ximpðωÞ and division by the effective susceptibility.

APPENDIX K: SIMULATIONS OF THE
PHONONIC DIMERS

We simulate the mode splitting of the dimers for
squares of 150 μm side length, 300 nm side width, and
r ¼ 0.2. We sweep the length of the coupler for different
coupler widths as shown in Fig. 16(a). We find that the

(a
rb

. u
ni

ts
)

FIG. 15. Measurement of laser antidamping for different duty
cycles. Ringdown measurement of a polygon resonator with
varying duty cycles of the measurement strobes. The laser off
time is swept while the on time is fixed to 1 s. Q’s are calculated
from exponential fits to the data and are shown in the inset with
marker color corresponding to the data traces.

(a)

(b)

FIG. 16. Frequency splitting of dimers. (a) FEM simulation of
mode splitting for varying coupler length (lc) and different
coupler widths (wc). (b) Compilation of all the simulated values
in (a) plotted versus w2

c=lc.
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mode splitting depends approximately linearly on w2
c=lc,

where wc is the width of the coupling segment and lc is the
length of the coupling segment [Fig. 16(b)]. Since the
coupler width dependence of the mode splitting is
stronger than the length dependence, we choose the
shortest and widest possible couplers to overcome the
disorder in the dimers and chains. The minimum coupler
length for a given width is determined by the requirement
that the coupler segment must be attached on all four
corners. Therefore, for wider couplers compared to the
beam width, we adapt the coupler length such as to avoid
buckling and deformation of the coupling segment after
device suspension.

APPENDIX L: FULL MODE SPECTRA OF THE
PHONONIC ARRAYS

A chain of n polygon resonators has many flexural
modes and we only consider the perimeter modes of the
structure. We identify n perimeter modes of the chain by
excluding modes with nonzero amplitude on the supporting
tethers. Using the same approach as explained in the main
text, we find the mode profiles of the collective perimeter
modes in the spectrum of both topological and trivial
chains. These modes have frequencies in the proximity of
the perimeter mode of a single site and have no amplitude
on the tethers (verifying that they are localized on the
perimeters). These mode profiles are shown in Fig. 17. One
can observe that the edge modes are only present in the
topological case. Nevertheless, the profile of the other
modes as well as the order of their appearance in the
spectrum are dominated by the disorder in the fabricated
devices.

APPENDIX M: DISORDER IN PHONONIC
DIMERS AND ARRAYS

Fabrication imperfections cause dimer and array devices
to deviate from an ideal model of coupled identical
resonators. These deviations manifest as asymmetry in
the hybridized modes of dimers or loss of topological
protection in arrays. In reality the disorder can be the result
of various processes (e.g., inhomogeneous stress distribu-
tion or imperfections in the lithography step). However, one
can reduce all the imperfections to a difference between the
bare frequencies of the resonators and characterize the
disorder using a simple model of coupled harmonic
oscillators. In particular, for an “imperfect” dimer, the
Hamiltonian can be written in the frame rotating with the
average frequency of the two resonators as

H ¼
�
δ J

J −δ

�
; ðM1Þ

where J is the coupling rate and δ is the absolute value of
half of the difference between the bare frequencies. The
eigenfrequencies of this Hamiltonian are given by ω� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ J2

p
corresponding to eigenvectors

Vþ ¼
�

Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ δ2

p
− δ

�
; ðM2Þ

V− ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 þ δ2
p

− δ

−J

�
; ðM3Þ

where þ and − correspond to in-phase and out-of-phase
modes, respectively. Here we observe that the disorder
parameter δ not only contributes to the frequency splitting,
but also results in an asymmetry between the amplitudes of
perimeter modes of each resonator in the hybridized modes.
In our experiment, this asymmetry manifests as a difference
between the detected SNR of the hybridized modes
when the interferometer is focused on sides of the two
resonators [Figs. 18(a) and 18(b)]. According to Eqs. (M2)
and (M3), the ratio of the smaller amplitude to the larger
one is given by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

J2

s
−
δ

J
: ðM4Þ

We measure this ratio by taking the ratio of rms thermal
fluctuations. We observe that as expected from Eq. (M4) for
devices with higher coupling parameters, the ratio is closer
to one [Fig. 18(c)]. One can also reverse Eq. (M4) and find
the disorder parameter as a function of the asymmetry ratio:

δ

J
¼ 1 − R2

2R
: ðM5Þ

Using the linear relation found in Fig. 16(b),we can compute
J from the geometric design parameters and translate
Eq. (M5) to actual frequency and find the distribution of

Topological Triviala b(a) (b)
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FIG. 17. Mode profiles of the collective perimeter modes. rms
values of the Brownian motion of each site measured for all the
collective perimeter modes of both topological (a) and trivial
(b) chains of six square-shaped resonators.
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the disorder parameter for these devices. The histogram for δ
is shown Fig. 18(d) and has an average around δ̄=2π ¼
2.7 kHz (equivalent to frequency splitting of 5.4 kHz). By
plugging this average value into Eq. (M4)we can explain the
average trend of the asymmetry ratio as a function of
the coupling parameter [Fig. 18(c)]. These results explain
the deviations from the FEM simulation in Fig. 6(e) for
frequency splittings below 10 kHz as well as the localization
in the edge modes of our phononic array [Fig. 6(h)].

APPENDIX N: COMPARISON OF POLYGON
RESONATORS AND DOUBLY CLAMPED

NANOBEAMS FOR INTEGRATION
WITH WHISPERING GALLERY
MODE OPTICAL CAVITIES

We use COMSOL to simulate the quality factor and
effective mass of a 420-μm-long doubly clamped nanobeam
with 20 nm thickness and 200 nm width with a single
corrugation in the center of the nanobeam using a cosine
profile to 600 nm over a 10 μm length. The corrugation was
added to increase the optomechanical coupling rate. These

design values are chosen as this geometry with 80 nm film
thickness has been fabricated successfully with optical
whispering gallery mode cavities [68]. For comparison,
we consider a 20-nm-thick square resonator with l0 ¼
280 μm and rl ¼ 0.35 (resulting in a clamp-to-clamp length
of 420 μm). For the square sides, we use the same width
profile as described for the nanobeam. The tether width is set
to have a stress-preserving design similar to all the designs
presented in this work. For the fundamental mode of the
doubly clamped nanobeam, we find Q ¼ 6 × 106 and f ¼
582 kHz with effective mass ofmeff ¼ 2.7 pg. The polygon
resonator simulation results in the fundamental perimeter
mode withQ ¼ 423 × 106 and f ¼ 863 kHz with effective
mass of meff ¼ 7 pg. We estimate the optomechanical
pulling factor G for each mechanical resonator using
Eq. (2) of Ref. [19].

APPENDIX O: COMPARISON OF SYSTEM
PARAMETERS FOR SIMILAR WORKS

In Table I we present the frequency, quality factor,
effective mass and the thermal noise-limited force

(a)

(b)

(c) (d)
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FIG. 18. Disorder in phononic dimers and arrays. (a),(b) Spectra of the interferometric measurement when the laser beam is focused on
sides of the two resonators in a phononic dimer. The dimer’s dimensions are similar to the ones shown in Fig. 6 with wc ¼ 2.1 μm and
lc ¼ 11.1 μm corresponding to nominal frequency splitting of 1.1 kHz. (c) Asymmetry ratio [Eq. (M4)] obtained from the experimental
spectra for devices with different coupling parameters, used for the measurement in Fig. 6(e). The dashed line is the model Eq. (M4) with
δ set as its average value. (d) Histogram of the disorder parameter δ extracted from the data shown in (c) using Eq. (M5).

TABLE I. Comparison of room temperature force sensing parameters for different types of mechanical oscillators.

References Type Frequency (Hz) Q Effective mass (kg)
ffiffiffiffiffiffi
SF

p
(N=

ffiffiffiffiffiffi
Hz

p
)

Thompson et al. [72] Membrane 1.34 × 105 1.1 × 106 4.0 × 10−11 7.1 × 10−16

Wilson et al. [40] Membrane 9.00 × 105 4.0 × 106 8.4 × 10−12 4.4 × 10−16

Schmid et al. [38] String 1.76 × 105 6.9 × 106 1.1 × 10−12 5.4 × 10−17

Reinhardt et al. [18] Trampoline 4.09 × 104 4.5 × 107 4.0 × 10−12 1.9 × 10−17

Tsaturyan et al. [11] Phononic crystal 7.77 × 105 2.1 × 108 1.6 × 10−11 7.8 × 10−17

Ghadimi et al. [15] Phononic crystal 1.33 × 106 8.0 × 108 1.1 × 10−14 1.4 × 10−18

Bereyhi et al. [13] Hierarchical 1.07 × 105 7.8 × 108 3.8 × 10−14 7.4 × 10−19

This work Perimeter 3.50 × 105 3.6 × 109 1.7 × 10−14 4.2 × 10−19
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sensitivity of a selection of uniform membranes, uniform
strings, trampolines, phononic crystal beams and mem-
branes, hierarchical beams and the perimeter modes pre-
sented in this work
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