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We measure isotope shifts for neutral Yb isotopes on an ultranarrow optical clock transition 1S0 − 3P0

with an accuracy of a few hertz. Combined with one of the recently reported isotope-shift measurements of
Ybþ on two optical transitions, the result allows us to construct the King plots—a set of scaled isotope
shifts data on two different optical transitions plotted in two-dimensional plane. When only the leading-
order terms of isotope shifts are taken into account, a King plot should exhibit a linear relation as a result
of elimination of the leading nuclear-size dependence. Extremely large nonlinearity unexplainable by a
quadratic field shift is revealed, which was proposed previously as a source of the observed nonlinearity of
the King plot. We further construct the generalized King plot with three optical transitions so that we can
eliminate the contribution arising from a higher-order effect within the standard model. Our analysis of the
generalized King plot shows a deviation from linearity at the 3σ level, indicating that there exist at least two
higher-order contributions in the measured isotope shifts. Under reasonable assumptions, we obtain the
upper bound of the product of the couplings for a new boson, mediating a force between electrons and
neutrons—jyeynj=ðℏcÞ < 1 × 10−10 for the mass less than 1 keV—with the 95% confidence level,
providing an important step toward probing new physics via isotope-shift spectroscopy.
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I. INTRODUCTION

The standard model (SM) of particle physics offers an
excellent explanation of most of the phenomena in nature
[1]. It is, however, an empirical model; therefore it does not
provide any explanation about the three generations of
matter and the origin of mass mixing. In addition, some
phenomena have escaped from the proper explanation by
the SM such as cosmological phenomena [2,3] including
dark matter and matter-antimatter asymmetry, as well as the
strong CP problem [4]. There have been continuous efforts
in the search for physics beyond the SM in various
experiments ranging from high-energy frontier [1] to
low-energy precision measurements [5].
Recently, a novel proposal of detecting a new boson

beyond the SM mediating a new force between neutrons

and electrons has attracted considerable attention [6,7].
Such a coupling between neutrons and electrons will
manifest itself in an isotope-dependent resonant frequency
shift of electronic transitions, which will be detected
spectroscopically. However, due to the large uncertainty
in the atomic energy calculation which requires scarcely
known nuclear properties such as a charge distribution
within a nucleus, it is hopeless to directly compare the
experimentally determined resonance frequency with the
theoretical prediction for each isotope. To overcome
this difficulty, the proposal relies on the linear relation
of the isotope shifts (ISs) of two different electronic
transitions, known as King plot linearity [8,9], which
should hold under the usually accepted assumption that
the IS consists of mass-shift (MS) and field-shift (FS) terms
each of which is expressed as a product of nuclear-
dependent and electronic-transition-dependent factors.
Introducing the new extra isotope-dependent term, called
the particle shift (PS), results in a nonlinearity of the King
plot. The PS can be described by the Yukawa potential
VðrÞ ¼ ð−1Þsþ1yeyn expð−mcr=ℏÞ=ð4πrÞ, where m and s
stand for the mass and the spin of the new boson,
respectively, and ye (yn) are the couplings of the new
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boson to electron (neutron). Here c and ℏ represent
the speed of light and the reduced Planck constant,
respectively.
Motivated by this proposal, so far, the precise IS

measurements for Caþ [10,11], Ybþ [12], Srþ [13], and
Sr [14,15] have been recently reported. In particular,
impressive precision of about 10 mHz in the IS measure-
ment is demonstrated for a particular isotope pair of
87Sr − 88Sr by a state-of-the-art optical lattice clock tech-
nique [14], and for a pair of 86Srþ− 88Srþ using a novel
two-isotope entangled state [13]. Important progress has
been reported for Caþ [10,11] and Ybþ [12] where
systematic precision IS measurements using two different
optical transitions are performed and used to carry out a
King plot analysis. While the resulting King plot for the
Caþ IS data with about 20 Hz accuracy is consistent with
the linearity, an evidence of nonlinearity at the 3 standard
deviation level is observed in the King plot for the Ybþ
300 Hz precision IS data. Although a new particle gives rise
to the nonlinearity of the King plot in principle, higher-
order effects within the SM can also result in nonlinearities
[16], and thus limits the sensitivity to new physics [17–19].
It is noted that the higher-order terms in the mass shift are
much smaller for heavy elements such as Yb [18,20]. More
recently it is argued that the theoretical analysis within the
SM could explain the result of nonlinearity observed in
Ybþ by considering a quadratic field shift (QFS) [12],
the next-leading-order Seltzer moment, or an isotope-
dependent nuclear deformation [21]. It is noted that such
an analysis requires very accurate atomic and nuclear
theory calculations, the validity of which should be care-
fully checked.
To overcome the difficulty associated with this SM

contribution, the generalization of the King plot is proposed
in Ref. [17]. In this generalized King plot, the IS data for
more than two electronic transitions are utilized to elimi-
nate the SM contribution by considering the nonlinearity in
dimensions higher than two. A numerical calculation was
reported in a recent paper [22], with an ultranarrow ð6sÞ2
1S0 − 6s6p 3P0 transition of a neutral Yb and already
reported two transitions of Ybþ as an example. Also, the
recent theory papers discuss the use of the Yb 1S0 − 3P0

clock transition [23,24] as one of the transitions for the
King plot. It is noted that absolute frequency measurement
of the Yb 1S0 − 3P0 clock transition was reported with less
than 1 Hz accuracy [25,26] only for two isotopes of 171Yb
and 174Yb and with 10 Hz accuracy for 173Yb [27], and there
has been no report on any measurements for five (or more)
isotopes, which is the minimum requirement in the con-
struction of the generalized King plot.
Here we report the first systematic precise measurement

of ISs for six neutral Yb isotopes including five bosons
on an ultranarrow optical clock transition 1S0 − 3P0. By
working with a large number of ultracold atoms loaded
into a magic-wavelength optical lattice [28] where the

polarizabilities in the 1S0 and 3P0 are quite close, we can
largely suppress the light shift due to the optical lattice and
the Doppler effect. In addition, the three-dimensional (3D)
optical lattice configuration and the irradiation of photo-
association (PA) beam enable us to realize a system
consisting of each atom isolated and localized in one
lattice site with no multiple occupancy, thus free from a
collisional shift. Furthermore, a measurement scheme of
alternate interrogation of the isotope pairs minimizes the
effects due to the drifts of a clock laser frequency and a
magnetic field. Various systematic effects such as a
quadratic Zeeman shift, a residual optical lattice light shift,
a probe-light shift, and so on, are carefully examined. As a
result, the ISs are determined with an accuracy of a few
hertz, corresponding to a more than 2 orders of magnitude
improvement over the recent Ybþ measurement [12]. It is
noted that the accuracy of our measurement is checked
by confirming the consistency between our IS measurement
for the 171Yb and 174Yb pair and the absolute frequency
measurements in NIST [25,26] within the uncertainty of
about 1 Hz. The determined ISs are utilized to discuss
the nonlinearity of King plots by combining the recently
reported IS measurements of Ybþ on 2S1=2 − 2D3=2

and 2S1=2 − 2D5=2 transitions. The King plots using the
1S0 − 3P0 and one of the above-mentioned Ybþ transitions
show very large nonlinearity. This demonstrates the ad-
vantage of using the two optical transitions associated with
the electronic states of very different characters in obtaining
a high sensitivity on the higher-order effect, owing to the
lack of a cancellation mechanism. In order to eliminate
the higher-order effect, we construct the generalized King
plot by using the ISs for all three optical transitions.
Importantly, our analysis of the generalized King plot
shows a deviation from linearity at the 3σ level, and the
upper bound of the product of the new boson couplings
jyeynj=ðℏcÞ < 1.2 × 10−10 for the new boson mass less
than 1 keV with the 95% confidence level (C.L.) is derived.
In addition, this work will also trigger theoretical efforts to
discriminate between different nuclear models through
theory-experiment comparisons.

II. ISOTOPE SHIFT AND LINEAR RELATION

A. 2D King plot

The IS between the isotope pair of ðA0; AÞ for
the transition λ can be parametrized in the good approxi-
mation as

νA
0A

λ ¼ Kλδμ
A0A þ Fλδhr2iA0A: ð1Þ

The two terms on the right-hand side are known as the
leading order of the MS and FS. Here, δμA

0A is the inverse
mass difference of nuclei 1=mA0 − 1=mA, δhr2iA0A is
the difference of the nuclear mean-square charge radii
hr2iA0 − hr2iA (see the Appendix A for the values adopted
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in this work), and the isotope-independent factors Kλ and
Fλ are the electronic factors given by the electron density.
When we consider this leading-order IS in Eq. (1) for

two distinct transitions λ1 and λ2, we obtain a linear relation
for νA

0A
λ1

and νA
0A

λ2
,

νA
0A

λ2
¼ Fλ2λ1ν

A0A
λ1

þ Kλ2λ1δμ
A0A; ð2Þ

where Fλ2λ1 and Kλ2λ1 are the isotope-independent coeffi-
cients, given as Fλ2λ1¼Fλ2=Fλ1 and Kλ2λ1¼Kλ2−Fλ2λ1Kλ1 .
Here, ambiguous nuclear dependence δhr2iA0A is eliminated
between the transitions. Equivalently, dividing Eq. (2)
by δμA

0A, we obtain the original King linear relation for
ν̄A

0A
λ1

and ν̄A
0A

λ2
,

ν̄A
0A

λ2
¼ Fλ2λ1 ν̄

A0A
λ1

þ Kλ2λ1 ; ð3Þ

where ν̄A
0A

λ ≡ νA
0A

λ =δμA
0A is called the modified IS [8,9]. In

Eq. (3), the slope and intercept are isotope independent, and
thus all the ISs data are plotted along a single line in a
ðν̄A0A

λ2
; ν̄A

0A
λ1

Þ two-dimensional (2D) space.
The higher-order IS term, denoted as νA

0A
λ;HO, can violate

the linear relation [6,16]. For the higher-order IS within the
SM, relevant for heavy elements like Yb [16], we consider
two higher-order FSs,

νA
0A

λ;HO → Gð4Þ
λ δhr4iA0A þGð2Þ

λ ½δhr2i2�A0A; ð4Þ

where the first term is the next-leading-order Seltzer
moment, and the second one is the QFS. The isotope
dependence of the next-leading-order Seltzer moment is
given by δhr4iA0A ¼ hr4iA0 − hr4iA [29]. As introduced in
Ref. [12], the isotope dependence of the QFS can
be described by ½δhr2i2�A0A ¼ ðδhr2iA0A0Þ2 − ðδhr2iAA0Þ2,
where A0 is the reference nucleus. This isotope dependence
is simply obtained by the modification of the naive
ðδhr2iA0AÞ2 term to satisfy the transitive consistency con-

dition of the IS νA
0A

λ ¼ νA
0A0

λ þ νA0A
λ . They are obviously

equivalent to the relations ½δhr2i2�A0A ¼ ðδhr2iA0AÞ2 if A is
chosen as the same nucleus with the reference A0 ¼ A.

Their electronic factors are written by Gð4Þ
λ and Gð2Þ

λ ,
respectively.
For the higher-order IS beyond the SM, we consider the

PS, a possible new physics contribution given by the
weakly interacting light boson:

νA
0A

λ;HO → αNPXλðA0 − AÞ: ð5Þ

For the PS, we assume the new physics contribution can be
described by the Yukawa potential VðrÞ, given in Sec. I.
In Eq. (5), we define the reduced coupling αNP ¼
ð−1Þsþ1yeyn=ð4πℏcÞ and the electronic factor of the new
physics as the expectation value of the potential,

Xλ ¼
c
2π

Z
∞

0

drδρλðrÞ
e−mcr=ℏ

r
; ð6Þ

where δρλðrÞ represents the change in the radial electron
density function during the transition λ.
We need to include the higher-order ISs once the

experimental precision reaches a level of the higher-order
ISs. In this case, νA

0A
λ is given as

νA
0A

λ ¼ Kλδμ
A0A þ Fλδhr2iA0A þHλδη

A0A; ð7Þ

which now includes either of the higher-order IS terms
considered in the above as Hλδη

A0A, where δηA
0A and Hλ

are the isotope dependence and the electronic factor,
respectively. Then, the violation of the linear relation is
formulated as

νA
0A

λ2
¼ Fλ2λ1ν

A0A
λ1

þ Kλ2λ1δμ
A0A þHλ2λ1δη

A0A; ð8Þ

where the last term is responsible for the nonlinearity,
and Hλ2λ1 ¼ Hλ2 − Fλ2λ1Hλ1 . If we employ the right source
of the higher-order effect and its accurate isotope depend-
ence, the data can be fit within errors. We note that the
isotope dependence of the higher-order effect is usually
very difficult to evaluate.

B. 3D King plot

This discussion of the King linearity is generalized to the
case of more than two transitions, proposed in Ref. [17].
Here, we consider the case where we have the ISs of three
different transitions of λ1, λ2, and λ3, and four or more
independent pairs of isotopes. While the ISs are given as
Eq. (7), the IS data for three transitions satisfy the following
linear relation of

νA
0A

λ3
¼ fλ1ν

A0A
λ1

þ fλ2ν
A0A
λ2

þ kμδμA
0A; ð9Þ

where fλ1 , fλ2 , and kμ are the isotope-independent coef-
ficients associated with the three transitions. They can be
specified as in the case of Eq. (2). Dividing Eq. (9) by δμA

0A,
we now obtain the generalized King linear relation between
ν̄A

0A
λ1

, ν̄A
0A

λ2
, and ν̄A

0A
λ3

as

ν̄A
0A

λ3
¼ fλ1 ν̄

A0A
λ1

þ fλ2 ν̄
A0A
λ2

þ kμ: ð10Þ

In this way, in addition to the leading-order FS term
δhr2iA0A, a higher-order effect δηA

0A is eliminated in the
generalized 3D King plot while in the original 2D King
linearity for two transitions only the δhr2iA0A term is
eliminated. This strategy has a great advantage that we
do not need to know the exact values for the isotope-
independent electronic factors and isotope-dependent
nuclear factors δhr2iA0A and δηA

0A which are often very
difficult to evaluate. The observation of nonlinearity of the
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generalized King plot Eq. (10) has an important implication
in the new particle search since the dominant higher-order
effect which may well come from the origin within the SM
should be eliminated. The observed nonlinearity can be
analyzed using the relation

νA
0A

λ3
¼ fλ1ν

A0A
λ1

þ fλ2ν
A0A
λ2

þ kμδμA
0A þ hδζA

0A; ð11Þ

where the last term is responsible for the nonlinearity,
originated from the further additional higher-order IS, and
h represents the isotope-independent coefficient and δζA

0A

the nuclear-dependent factor. We give an explicit formula
later. See Appendix F.

III. METHODS

Our experiments start with the preparation of the ultra-
cold atoms in a 3D optical lattice. The basic sequence is the
same for all five bosonic isotopes of 168Yb, 170Yb, 172Yb,
174Yb, and 176Yb used for the main IS measurements and
two fermionic isotopes of 171Yb and 173Yb for the reference
and investigation of the systematic effects. Figures 1(a)
and 1(b) show the Yb energy-level diagram relevant
to the experiments and the pulse sequence, respectively.
The atoms are decelerated by the Zeeman slower with the
1S0–1P1 transition at 398.9 nm and captured by the
magneto-optical trap (MOT) with the 1S0 − 3P1 transition
at 555.8 nm. This is followed by loading the atoms into the
crossed far-off-resonance trap (FORT), which is composed
of the horizontal FORT at 1064 nm and the vertical FORT
at 1070 nm. Subsequently, the atoms are cooled down to
the nanokelvin regime by the evaporative cooling. Since the
s-wave scattering lengths of 171Yb and 176Yb atoms in the
1S0 state are not large enough for the thermalization with
single species [30], they are cooled down using the
sympathetic cooling with 174Yb atoms, which are later
removed by the resonant light on the 1S0 − 3P1 transition
after the evaporation. The atoms are then loaded into the
3D optical lattice at the magic wavelength of λm ¼
759.349 nm [31]. The lattice depth for each axis is set
to 30ER, whose trap frequency is 22 kHz. Here
ER ¼ kB × 95.4 nK, with kB being the Boltzmann con-
stant, is the recoil energy for 174Yb. It is noted that the
amplified spontaneous emissions from tapered amplifiers
for the lattice beams are cut off by volume Bragg gratings
with the resolution of less than 0.025 nm [32]. The lattice
depth is calibrated with a pulsed lattice technique [33], and
the lattice-laser beams pass through acousto-optic modu-
lators (AOMs) for preventing interference between distinct
lattice beams and for their power control and stabilization.
The AOMs shift the lattice-laser frequencies for x, y, and z
axes by þ80, −80, and þ85 MHz, respectively. A laser
beam for PA, which is red detuned from the 1S0 − 3P1

resonance, is irradiated to remove the multiply occupied
sites [34]. The isotope-dependent experimental parameters

associated with the preparation of the cold atoms are
summarized in Appendix B.
After the PA, the interrogation pulse at 578.4 nm, with

the Rabi frequency of 2π × 2.0 Hz, is applied for 150 ms in
a magnetic field of B0 ¼ 1.47 mT in a typical condition. A
finite magnetic field mixes the 3P1 state into the 3P0 state,
allowing the 1S0 − 3P0 transition for the even isotopes,
otherwise doubly forbidden [36]. The clock excitation laser
is stabilized using an ultralow-expansion glass (ULE)
cavity [37] by means of the Pound-Drever-Hall (PDH)
technique, as shown in Fig. 1(c), and the typical linewidth
is a few hertz, confirmed by the beat measurement between
two independently stabilized lasers. Since the clock exci-
tation light is delivered to the optical table for the experi-
ments via a 25 m optical fiber, the fiber-noise-cancellation
(FNC) system by a phase-lock loop is configured [38].
Instead of adopting the offset locking to the ULE cavity for
tuning the 578.4 nm clock laser frequency to each isotope
resonance, the locking to the ULE cavity is performed at
the fixed laser frequency to keep the steady locking
operation, and the frequency shift associated with the IS
is introduced by a fiber electro-optic modulator (EOM) just
before the atoms. The total intensity including the carrier
and the sidebands amounts to I0 ¼ 370 mW=cm2.
Finally, the numbers of the atoms excited to the 3P0 state

as well as those remaining in the 1S0 are obtained by the
consecutive absorption imaging so that we can extract the
excitation fraction, rather than the excited atom number
which is more sensitive to the atom number fluctuation.
The first imaging pulse detects the 1S0 atoms, which is
followed by removing the 1S0 atoms using the blast light.
Then, the resonant light with the 3P0 − 3D1 transition at
1,389 nm is shed to repump the 3P0 atoms into the 1S0 state,
and the second imaging pulse is applied [39]. The 1S0 − 1P1

transition is employed for the imaging and the atom blast.
ISs are measured by the interleaved clock operation

of the isotope pairs, which allows one to mitigate the
systematic effects, such as the drifts of the clock-laser
frequency and a magnetic field [14]. Figure 1(c) shows the
schematic illustration of the clock operation, where two
excitation fractions with different laser frequencies are
compared and the obtained frequency-error signal is fed
back to the signal generator driving the fiber EOM. The
clock excitation of an isotope pair is performed alternately
to implement the interleaved clock operation, and the IS is
measured as the difference of the fiber EOM frequencies for
the isotope pair. As shown in Fig. 1(b), the interrogations
are repeated with a sequence time of τ0, and the cycle time
of the IS measurement is τ ¼ 4τ0 since two measurements
for each isotope are needed for a single IS measurement.
Figure 2 shows the stability of the interleaved measure-
ment, the total time of which amounts to 9 hours. The
measured Allan deviation decreases with the increase of the
averaging time, suggesting that the interleaved measure-
ment does not suffer from serious long-term perturbations.
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IV. RESULTS

A. Isotope shifts of the 1S0 − 3P0 transition

Figures 3(a)–3(d) show the results of the IS measure-
ments. We adopt the total lattice depth of ð30; 30; 30ÞER for

the operational condition to measure the ISs and their
statistical uncertainties. In a typical experiment, 50 mea-
surements are performed, and the dataset is divided into
five segments. The statistical uncertainty is obtained as the
standard error calculated from the mean values of the five
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FIG. 1. Schematic diagram of experiment. (a) Relevant energy diagram of Yb atom. Note that the branching ratio for the radiative
decay from 3D1 to the metastable state 3P2 is 1% [35], which is negligibly small compared with the measurement uncertainty, so we did
not take this into account in our analysis. (b) The timing chart of measurement and pulse sequence after evaporative cooling. The pulse
which removes remaining 174Yb atoms in the preparation of 176Yb or 171Yb samples is not included in this diagram. Note that a sequence
time τ0 amounts to more than 100 s (see Appendix B), and most of the sequence time is spent for the loading of the atoms into a MOT
from the Zeeman slower and the evaporative cooling. (c) Schematic illustration of experimental apparatus. An interference-filter-
stabilized external-cavity diode laser (IFDL) at 1156 nm is frequency doubled using a periodically poled lithium niobate (PPLN)
waveguide to obtain the clock laser. The fiber-noise cancellation (FNC) is operated by controlling the voltage-controlled crystal
oscillator (VCXO) driving the AOM1 so that the beat note between the incident and returned light is phase locked to the crystal oscillator
(XO) driving AOM2. The signal generators SG1 and SG2 are referenced by the oven-controlled crystal oscillator disciplined by the
global positioning system (GPS). The absorption images are analyzed by a PC, which controls the frequency of the SG2 driving a fiber
EOM. The polarization of each lattice beam is linear and perpendicular to the magnetic field.
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segments. As a result, the ISs for all four pairs are measured
with the statistical uncertainty well below 1 Hz.
To compensate for systematic effects on the IS mea-

surements, we experimentally investigate the dependences

on the lattice light intensity, the magnetic field, and the
probe-light intensity. In particular, the lattice light shift is
considered to make the predominant contribution since the
measurements for all the isotopes are performed at the same
lattice wavelength, although, in principle, the magic con-
dition depends on the isotopic species. Figures 4(a)–4(d)
show the lattice-light-shift dependence of the ISs. These
measurements are performed with the x-axis lattice depth
set to more than 30ER to satisfy the Lamb-Dicke condition.
The three lattice beams have the different frequencies by
the AOMs, and the maximum frequency difference is
160 MHz. According to the differential light shift measured
in Ref. [31], the maximum light-shift difference between
the lattice beams is expected to be less than 0.1 Hz and
common for all the isotopes. The unperturbed IS is
obtained from the fit to the data with the function consid-
ering the nonlinear effect due to the zero-point energy [40].
From this, we determine the correction due to the lattice
light shift. The uncertainty in the lattice light shift, which is
given by the fitting error, is included as a systematic
uncertainty in Table I.
Figure 5(a) shows the systematic investigation of the

Zeeman shift for each isotope. Since the bosonic isotope
has no nuclear spin, there is no linear Zeeman shift in the
1S0 and 3P0 states. However, the 3P1 state in the fine-
structure levels interacts with a magnetic field B, yielding
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FIG. 2. Stability of interleaved clock operation. 173Yb atoms
with mF ¼ �5=2 are alternately interrogated with a cycle time of
τ ¼ 136 s by the clock transition 1S0ðF ¼ 5=2; mF ¼ �5=2Þ−
3P0ðF0 ¼ 5=2; mF0 ¼ �5=2Þ. Vertical and horizontal axes re-
present the overlapping Allan deviation and the averaging time,
respectively. Error bars represent the upper and lower bounds
with 1σ confidence interval.

FIG. 3. Time traces of IS measurements. (a) (168,170), τ¼258 s,
χ2red ¼ 1.03, (b) (170,174), τ ¼ 162 s, χ2red ¼ 0.51, (c) (172,174),
τ ¼ 170 s, χ2red ¼ 0.75, and (d) (174,176), τ ¼ 144 s, χ2red ¼ 1.13.
Here, χ2red represents the reduced χ-squared value. Data points
show the mean values of (a) nine measurements and (b)–(d) ten
measurements, and error bars represent the overlapping Allan
deviations. Red lines and shaded regions correspond to the
means of the data points and the 1σ statistical uncertainties,
respectively.

FIG. 4. Systematic effect of lattice light shift. (a) (168,170),
(b) (170,174), (c) (172,174), and (d) (174,176). The horizontal
axis represents the total lattice depth in units of ER. Error bars
show the 1σ statistical uncertainties obtained from the over-
lapping Allan deviations. We draw red lines as guides to the eye.
The origin of the vertical axis corresponds to the unperturbed IS,
which is obtained from the fit to the data. The inconsistencies
between the uncertainties of Figs. 3(b) and 3(c) and those in
Figs. 4(b) and 4(c) at the same operational condition would be
ascribed to the small number of measurements in the IS data.
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the non-negligible quadratic Zeeman shift −β2B2 in the 3P0

state. To obtain the coefficient β2, the interleaved meas-
urement with a target magnetic field and a reference
magnetic field B0 is performed, and the magnetic
field is calibrated with the 1S0ðF ¼ 5=2; mF ¼ �5=2Þ−
3P0ðF0 ¼ 5=2; mF0 ¼ �5=2) transitions of 173Yb, with
the first-order Zeeman shift of �2.768ð13Þ Hz=μT [41].
The mean of the β2 values shown in Fig. 5(a) is
β̄2 ¼ −6.11ð7Þ Hz=mT2, which is in good agreement with
the previous measurement, −6.12ð10Þ Hz=mT2 [25], and
the theoretical value, −6.2 Hz=mT2 [36]. Since the quad-
ratic Zeeman shift originates from the Zeeman mixing
between the 3P0 and 3P1 states, it is proportional to the
inverse of the energy difference between the two states.
Therefore, the isotope-dependent Zeeman shift in a mag-
netic field of B0 is estimated to be 10−6 times smaller than
the observed common shift of 13 Hz at B0. We thus set the
correction due to the Zeeman shift to zero, and the
systematic uncertainties are given by the uncertainty of
the magnetic field, which are summarized in Table I.
Probe light induces a Stark shift κI due to the off-

resonant coupling such as the 1S0 − 1P1 transition at
399 nm and the 3P0 − 3S1 transition at 649 nm.
Theoretically, the isotope-dependent probe-light shift with
the intensity I0 is estimated to be 10−6 times smaller than
the observed common shift of 5.6 Hz at I0. As in the
measurement of β2, the interleaved measurements with
target probe intensity I and a reference probe intensity of I0
are performed to obtain the coefficient κ. As shown in

Fig. 5(b), the measured probe-light shift coefficient κ does
not show a systematic isotope dependence within the
uncertainties of the measurements which are much larger
than the expected isotope dependence. The mean of the κ
values shown in Fig. 5(b) is κ̄¼13.3ð1.4ÞmHz=ðmW=cm2Þ,
which is consistent with the previous measurement in
Ref. [25]. Similar to the measurement of the quadratic
Zeeman effect, the correction due to the probe-light shift is
set to zero, and the systematic uncertainties are conserva-
tively given by considering the probe-light intensity fluc-
tuation of 20%, which are summarized in Table I.
In addition, the systematic effect due to the servo error of

the clock operation is considered. The frequency shift from
the atomic resonance due to the offset of the error signal is
predominantly caused by the drift of the ULE cavity, which
is typically 20 mHz=s. The correction and uncertainty due
to the servo error are estimated from the mean values and
the standard deviations of the excitation fractions on both
shoulders of the excitation profile. The results are sum-
marized in Table I. Aside from the servo error, the drift of
the ULE cavity during the dead time could cause a
frequency shift. In our system, the frequency shift by
0–1 Hz is estimated by the fit to the time trace of the EOM
frequency during the clock operation. Note that this
correction is already taken into account but is not shown
in Table I since the frequency drift rate is time varying
and the correction to the data depends on the measure-
ment time.
The blackbody radiation (BBR) shift on the 1S0 − 3P0

transition is calculated as −1.2774ð6Þ Hz at the temper-
ature of 300 K [42], which is a common perturbation,
similar to the Zeeman shift and the probe-light shift.
Considering the maximum temperature fluctuation in the
course of our experiments of 1 K, a change in the BBR shift
is estimated as 20 mHz. In addition, the isotope-dependent
BBR shift is estimated to be 10−6 times smaller than the
common shift, which leads us to neglect the effect of the
BBR shift.
A phase shift that arises when the interrogation light is

switched on and off could cause a systematic effect, known
as the AOM chirp. This is especially serious for a Ramsey
resonance. In our experiment, the switching by the AOM2
in Fig. 1(c) may be responsible for this effect. We examine

TABLE I. Systematic corrections and uncertainties for measurements of ISs.

(168, 170) (170, 174) (172, 174) (174, 176)

Systematic effects Cor. (Hz) Unc. (Hz) Cor. (Hz) Unc. (Hz) Cor. (Hz) Unc. (Hz) Cor. (Hz) Unc. (Hz)

Lattice light shift 1.5 1.3 2.6 0.7 1.8 0.4 4.6 2.3
Zeeman shift 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01
Probe light shift 0.0 1.3 0.0 1.3 0.0 1.5 0.0 1.4
Servo error 0.1 1.1 0.1 1.2 0.0 1.4 0.1 0.9
BBR 0.0 0.02 0.0 0.02 0.0 0.02 0.0 0.02
AOM chirp 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01
Total 1.6 2.1 2.6 1.9 1.8 2.0 4.6 2.8

FIG. 5. Systematic effects of (a) quadratic Zeeman shift and
(b) probe light shift. Error bars show fitting errors with 1σ
confidence intervals.
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the phase chirp by mixing down the beat signal between the
light passing through the AOM2 and the reference light,
yielding a frequency shift of 9(6) mHz, which is common
for all isotopes, and is negligible.
Table II summarizes the measured ISs, showing that

each IS is determined with an accuracy of a few hertz.
In addition to bosonic isotope pairs, we measure the IS
of 171Yb and 174Yb to check the accuracy of our measure-
ment scheme by comparing our result with those in the
previous studies using the state-of-the-art optical lattice
clock technique [25,26]. Spin-polarized 171Yb atoms are
prepared instead of the application of the PA, and
171YbðmF ¼ þ1=2Þ, 171YbðmF ¼ −1=2Þ, and 174Yb atoms
are alternately interrogated by the clock laser. The
systematic uncertainty associated with the first-order
Zeeman shift of 171Yb (mF ¼ �1=2) is evaluated from
∓2.000ð3Þ Hz=μT in Ref. [43]. As shown in Table II, our
measurement is in good agreement with the results in
Refs. [25,26] with the uncertainty of about 2 Hz.

B. 2D King plot

The measured ISs of the γ∶1S0 − 3P0 can be exploited to
study the nonlinearity of the King plot by combining the
α∶2S1=2 − 2D5=2 and β: 2S1=2 − 2D3=2 transitions of Ybþ

reported in Ref. [12]. Figures 6(a) and 6(b) show the 2D
King plots with the combinations of ðν̄A0A

γ ; ν̄A
0A

α Þ and
ðν̄A0A

γ ; ν̄A
0A

β Þ for the modified IS. Although the results exhibit
the overall linearity for both combinations, the deviations
on the order of 1–10 kHz are clearly seen. The fit to the data
is obtained by the full χ2 analysis (see Appendix C), and the
best-fit parameters are summarized in Table III. This is
basically the same method used in Refs. [12,17] except for
rearrangements of the data employed in Ref. [12]. The best-
fit parameters are roughly consistent with the numerical
results in Refs. [12,22,24]. However, it is also clear that the
different theories result in the different values,which are also
different from the experimental data. The experimental data
can be used as a benchmark to improve theoretical calcu-
lations. This analysis also quantifies the nonlinearities as the
χ2½λ1;λ2� minima with the degrees of freedom (d.o.f.) of 3,

χ2½γ;α� ¼ 1.1 × 104; ð12Þ

χ2½γ;β� ¼ 1.7 × 104; ð13Þ

which are much larger compared to that of the transitions
ðα; βÞ∶χ2½α;β� ¼ 15.37 (see Appendix D). The observed large

nonlinearity compared with that of the transitions ðα; βÞ is
reasonable when we consider the characters of the transi-
tions involved. The transitions α and β are the same
with each other except for the relativistic effects, which
results in the almost unity for the value of Fβα and thus
Hβα ∼Hβ −Hα ∼ 0 when Hα ∼Hβ. On the other hand, the
electronic configuration of the transition γ is quite different
from those ofα and β. As a result,Fαγ andFβγ take about 1.6,

TABLE II. Measured ISs of the γ∶1S0 − 3P0 transition. Total 1σ
uncertainties are shown as ðÞtot.
Isotope pair ðA0; AÞ IS νA

0A
γ (Hz) References

(168,170) 1 358 484 476.2ð2.2Þtot This work
(170,174) 2 268 486 592.6ð1.9Þtot This work
(172,174) 992 714 586.6ð2.1Þtot This work
(174,176) 946 921 774.9ð2.9Þtot This work
(171,174) 1 811 281 646.7ð2.3Þtot This work

1 811 281 645.8ð0.9Þtot [25,26] (1
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FIG. 6. 2D King plots of γ∶Yb 1S0 − 3P0 transition versus
(a) α∶Ybþ 2S1=2 − 2D5=2 transition and (b) β∶Ybþ 2S1=2 − 2D3=2

transition. Each inset shows the enlarged view magnified by 105.
Error bars, which represent 1σ uncertainties, are smaller than the
symbol sizes. Solid lines are the fits to the data with Eq. (3).

KOKI ONO et al. PHYS. REV. X 12, 021033 (2022)

021033-8



different from unity, and thus there is no cancellation in
HαγðHβγÞ even when Hγ ∼Hα (Hγ ∼Hβ).
We introduce the QFS as the higher-order IS to

fit the data. We take ½δhr2i2�A0A as δηA
0A in Eq. (8)

and its coefficient as an additional fitting parameter (see
Appendix C for details). However, χ2 is not improved,

χ2½γ;α�ðQFSÞ ¼ 1.0 × 104; ð14Þ

χ2½γ;β�ðQFSÞ ¼ 8.4 × 103; ð15Þ

where the d.o.f. of χ2 is 2. This indicates several possibil-
ities. While we use the mean-square nuclear charge radii
shown in Table VI in the evaluation of QFS term, these
values may not be accurate enough at the present level of
experimental accuracy. Thus, the insufficient current accu-
racy of δhr2iA0A may make the fit worse. The failure of
the fitting can also be explained when the origin of the
observed nonlinearity cannot be solely attributed to the
QFS. In fact, the roles of the next-leading-order Seltzer
moment δhr4iA0A [19] and the nuclear deformation [21] are
discussed. The assumption of the approximate relation of
δhr4iA0A to ½δhr2i2�A0A, which is the basis of the absorption
of the δhr4iA0A term into the QFS and leading-order FS term
[12], may not be validated at the improved accuracy of the
measurements associated with the transition γ.
We also introduce the PS as the higher-order IS to fit the

data. However, again χ2 is not improved,

χ2½γ;α�ðPSÞ ¼ 8.8 × 103; ð16Þ

χ2½γ;β�ðPSÞ ¼ 7.5 × 103: ð17Þ

C. 3D King plot

1. Observation of nonlinearity of 3D King plot

The generalized King plot combining all the IS data for
the three transitions provides us with important insights on
the origin of the violation of the King linearities Eqs. (12)
and (13). As we discuss in Sec. II B, if the observed
nonlinearity originates from the single source which is
factorized as the products of isotope-dependent nuclear
term and isotope-independent electronic term, we expect
the perfect linearity of the generalized 3D King plot
Eq. (10). Figure 7 shows the generalized King plot with
the three transitions ðλ1; λ2; λ3Þ ¼ ðγ; α; βÞ, and the best-fit
parameters are summarized in Table IV. Note that the jfγj is
much smaller than fα ≈ 1, indicating the best-fit plane is
almost perpendicular to the horizontal, or α–β plane, as
shown in Fig. 7. This is reasonable if we consider the close
similarity between the α and β transitions and much less

TABLE III. Best-fit parameters of 2D King plots shown in
Figs. 6(a) and 6(b). Here, λ1 represents the optical transition of γ,
and λ2, α or β. The d.o.f. of χ2 is 3 ¼ 5 (observations for α or β)
þ4 (observations for γ) −2 (fitting parameters) −4 (ISs on γ). The
error of each fit parameter is evaluated as 1σ. The results are
compared with the theoretical results in Refs. [12,22,24]. The
values associated with Refs. [22,24] (Refs. [12,24]) are obtained
by combining the MS and the FS of the γ transition in Ref. [24]
and those of the α and β transitions in Ref. [22] (Ref. [12]).

ðλ1; λ2Þ Fλ2λ1 Kλ2λ1 (GHz amu) References

ðγ; αÞ 1.63471003(90) −593.388ð16Þ This work
1.5140 −255 [22]
1.3565 −856 [22,24]
1.4613 −1257 [12,24]

ðγ; βÞ 1.6533771(10) −480.159ð16Þ This work
1.5400 −31 [22]
1.3798 −643 [22,24]
1.4836 −1211 [12,24]
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FIG. 7. Generalized King plot using all three transitions. The
plane is the fit to the data by Eq. (10). Each inset shows the
enlarged view magnified by 106, seen from the direction parallel
to the plane and orthogonal to the β axis (indicated by the arrow),
and so the plane is represented as the red line in the inset. The
labels Δν̄α and Δν̄β show the deviations from the modified ISs,
and a label for the γ axis is not shown in the insets. Error bars
represent 1σ uncertainties.

TABLE IV. Best-fit parameters of 3D King plots shown in
Fig. 7. The error of each fit parameter is evaluated as 1σ. The
results are compared with the theoretical results Ref. [22] under
the assumption that the QFS is eliminated by the construction of
the 3D King plot.

fα fγ kμ (GHz amu) Reference

1.023(13) −0.019ð21Þ 127.2(7.7) This work
1.276 −0.391 294.4 [22]
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between the γ and these two. The experimental data can be
used as a benchmark to improve theoretical calculations.
The minimum χ2 of this linear relation is

χ2½γ;α;β� ¼ 15ðp ¼ 2.3 × 10−3Þ; ð18Þ

where the corresponding p value is calculated with the
d.o.f. of 3. This p value corresponds to a significance of 3σ.
In Sec. IV B of 2D King plots including the transition γ, we
have seen that the χ2 minima are quite large. In the
generalized 3D King plot, on the other hand, we find that
χ2 is small, which indicates that the major origin of the
nonlinearity is removed.
Importantly, at the same time, the obtained χ2 is not as

small as the expected minimum value χ2min ¼ 4.037 limited

by the consistency condition νA
0A

λ ¼ νA
0A0

λ − νAA0

λ for the α
and β transitions (see Appendix D). This means that the
observed ISs data cannot be explained by a single source of
the higher-order effects such as the QFS or the nuclear
deformation proposed as candidates of the observed non-
linearity in the ðα; βÞ King plot [12,21], or the PS, but at
least two distinct higher-order ISs are involved in the data.

2. Determination of the upper bound
of the new particle coupling

Here, we present the main result of this work; namely, we
set the upper bound of the new particle coupling from the
analysis of our 3D King plot. We assume that there is an
additional SM source of the higher-order IS other than the
QFS, and this additional SM source is to be eliminated
by the construction of the 3D King plot as discussed in
Sec. II B. In addition, we assume that the remaining
nonlinearity observed in the 3D King plot is originated
from the QFS. Here, we make our argument on the validity
of the assumptions in the above. As shown in IV C, the fit
with the original 3D King’s relation Eq. (10) exhibits the
nonlinearity at the 3σ level, indicating that there exist at
least two distinct higher-order contributions to the mea-
sured isotope shifts. It is reasonable that the two distinct
higher-order IS terms involved in the observed data are the
next-leading-order Seltzer moment δhr4iA0A and the QFS
[see Refs. [12,16,18,19,21] and Eq. (4)] since these two
terms are the next-order corrections for the leading-order
field shift. Note that the higher-order terms in the mass shift
are much smaller than these corrections for heavy elements
such as Yb [18,20]. Although the source of nonlinearity
other than QFS is not needed to be specified in our analysis
of the 3D King plot, the next-leading-order Seltzer moment
δhr4iA0A is then a plausible candidate for another source.
Under these assumptions, we perform the QFS fit,

namely, the fit with Eq. (11) with h ¼ hQFS and
δηA

0A ¼ ½δhr2i2�A0A. The result of the fitting shows that
the χ2 minimum reaches the theoretical minimum. This
procedure gives a constraint on hQFS and we take this

constraint into account in the following χ2 analysis. Then,
we additionally introduce the nonlinear term given by hPS
as in Eq. (11), and evaluate the upper bound of hPS as the
value with which the χ2 increases from the χ2 minimum by
the amount corresponding to the 95% C.L. The electronic
factors Xα, Xβ, and Xγ in the expression of hPS are similarly
taken from Refs. [12,22] as in Appendix E, while the
coefficients fα and fγ in hPS are fixed as the best-fit values
obtained from the fitting as the coefficients of νA

0A
α and νA

0A
γ

in Eq. (11). The adoption of the values of fα and fγ is
reasonable since these should coincide with the coefficients
appearing in the hPS (see Appendix F). The obtained upper
bound is shown as the red curve in Fig. 8. If the mass of the
new boson is 10 eV, we obtain the bound of jyeynj=ðℏcÞ ≤
1.2 × 10−10 with the 95% C.L. This bound is of the same
order as the one with the data of Caþ [11], which is
jyeynj=ðℏcÞ < 6.9 × 10−11 for m ¼ 1 eV and depicted as
the purple dashed line in Fig. 8. While this is above the
terrestrial bound given as the orange line in Fig. 8, the
sensitivity obtained from the 3D King plot can surpass this
terrestrial bound for m ∼ 2 keV if the uncertainties of νA

0A
αðβÞ

and δhr2iA0A are improved by factors of 102 and 10,
respectively (see the blue line shown in Fig. 8). The
uncertainty in the nuclear mass coming from those of
atomic mass and binding energy does not play an important
role in the χ2 value, nor needs to be improved for the blue
line. We note that the above upper bound is applicable
provided no accidental cancellation between the QFS and
PS contributions to the observed nonlinearity occurs in the
3D King plot.

FIG. 8. Product of couplings jyeynj of a new boson as a
function of the mass m. The red line represents the upper bound
of the coupling with the 95% C.L. (see main text for details). For
comparison, the constraint from electron anomalous magnetic
moment (g − 2) measurements [44,45] combined with neutron
scattering measurements [46–48] is shown as the orange shaded
region. The purple dashed line shows the upper bound from the
Caþ analysis in Ref. [11]. The blue line shows the constraint
which is obtained if the uncertainties of νA

0A
αðβÞ and δhr2iA0A are

improved by factors of 102 and 10, respectively.
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In general, it is difficult to discriminate the origin of the
higher-order IS terms among the different sources. The
obtained fitting coefficients fα, fγ, kμ will offer a possible
consistency check in the nonlinearity fit (see Appendix G).

3. Inapplicability of the PS and QFS assumption

Different from the analysis and assumptions in the
previous section, here, we consider the applicability of
the assumptions adopted in Refs. [12,22]. Namely, in the
derivation of the bound on the new boson in Refs. [12,22],
the PS and only the QFS within the SM are assumed to be
the two distinct higher-order ISs involved in the data of
Ref [12]. In Appendix E, we describe the result of a 3D
analysis under the same assumption. Note that the purpose
of this analysis is just to check the validity of this
assumption adopted in Refs. [12,22]. This analysis results
in the inconsistently large positive signal for the new boson,
which demonstrates that the above assumption which
considers only one SM effect of QFS and neglects all
other SM effects is not justified.

D. Absolute frequency of clock transition

In addition, by referencing the reported absolute fre-
quency of the 1S0 − 3P0 transition for 171Yb [26], our IS
measurements provide the absolute frequencies for five
bosonic isotopes, which is summarized in Table V.

V. CONCLUSIONS AND PROSPECTS

In conclusion, we measure ISs for neutral Yb isotopes on
an ultranarrow optical clock transition 1S0 − 3P0 with an
accuracy of a few hertz. The determined ISs are combined
with the recently reported IS measurements for two optical
transitions of Ybþ, enabling us to construct the two King
plots. Both of them show very large nonlinearity, demon-
strating the high sensitivity to the higher-order effect in the
IS. We also carry out the generalized King plot using the
three optical transitions. Our analysis shows a deviation
from linearity at the 3σ uncertainty level and jyeynj=ðℏcÞ <
1.2 × 10−10 for m < 1 keV with the 95% C.L.

We expect that the demonstrated method for the precise
IS measurement will be straightforwardly applied to addi-
tional ultranarrow optical transitions of ð6sÞ2 1S0 − 6s6p
3P2 at the wavelength of 507 nm and ð4fÞ14ð6sÞ2 1S0 −
ð4fÞ13ð6sÞ25d (J ¼ 2) at 431 nm of Yb atoms [23,49],
providing the original 2D and generalized 3D King plots
using neutral Yb transitions alone. Note that the high-
resolution spectroscopy and high-sensitive detection meth-
ods for the ð6sÞ21S0 − 6s6p3P2 transition are already
demonstrated [50–52]. Furthermore, as we measure the
fermionic isotope of 171Yb, we can also extend the meas-
urement to another fermionic isotope of 173Yb, which will
allow us to construct a still higher-dimensional King plot
[24]. These will give important insights into the origin of
the observed nonlinearity in this work. Finally, we note that
our present work and future efforts offer important bench-
marks for studies to discriminate between different nuclear
models through theory-experiment comparisons [21].
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APPENDIX A: NUCLEAR MASS AND NUCLEAR
CHARGE RADIUS

As the inverse mass differences, we use the masses
of the nuclei. They are calculated by the formula
mA ¼ mnucleus ¼ matomðAÞ − Zme þ EbðZÞwith the atomic
masses matomðAÞ given in Table VI, where the electron
mass me ¼ 5.485 799 090 65ð16Þ × 10−4 amu, where
amu represents the atomic mass unit [53,54]. We
evaluate the binding energy with EbðZÞ ¼ 14.4381Z2.39 þ
1.55468 × 10−6Z5.35 eV with the uncertainty of 1.1 keV
given by Ref. [55]. In the case of Yb, this is Ebð70Þ ¼
4.106ð12Þ × 10−4 amu with the conversion factor
of 1 eV ¼ 1.073 544 102 33ð32Þ × 10−9 amu.
The ionic masses are used in Ref. [12]. As shown in

Appendix D, our 2D analysis of the Ybþ data with the
nuclear masses is consistent with Ref. [12]. In our other 2D

TABLE V. Absolute frequencies of γ∶1S0 − 3P0 transition.

Isotope Transition frequency (Hz) References

168 518 297 652 280 285.8(3.7) This work

170 518 296 293 795 809.6(3.0) This work
171 518 295 836 590 863.6(0.3) [26]

172 518 295 018 023 803.6(3.1) This work
173 518 294 576 845 268(10) [27]

174 518 294 025 309 216.9(2.3) This work
518 294 025 309 217.8(0.9) [25]

176 518 293 078 387 442.1(3.7) This work
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and 3D analyses, the changes in χ2 are a few percent when
the atomic masses are employed instead of the nuclear
masses. Thus, the precise definition of masses to describe
the first-order MS is not relevant in the present work. In
particular, the bound on the new particle and its future
prospect given in Fig. 8 vary only about 1% even if we use
the atomic masses.
To evaluate the isotope dependence of the QFS, we use

the mean-square charge radii given by Ref. [24]. These
values are summarized in Table VI.

APPENDIX B: ISOTOPE-DEPENDENT
EXPERIMENTAL PARAMETERS

Table VII summarizes the experimental parameters
which depend on the isotopic species. The PA lines are
identified experimentally, whose resonance frequencies are
consistent with the theoretical calculation in Ref. [56].
Instead of the PA, the spin-polarized 171Yb atoms are
prepared using the optical pumping associated with the
1S0ðF¼ 1=2Þ− 3P1ðF0 ¼ 1=2Þ transition. As well as 171Yb,
the resonant light with 1S0ðF ¼ 5=2Þ − 3P1ðF0 ¼ 5=2Þ

transition is applied to pump the 173Yb atoms into the
j↑ð↓Þi ¼ jmF ¼ þð−Þ5=2i states. It is noted that the PA
light is not applied to the 173Yb atoms since the clock
transition frequency associated with the multiply occupied
sites is well separated from that of the singly occupied
sites [57,58].

APPENDIX C: STATISTICAL TEST OF
LINEARITIES

The nonlinearity of the King plot is analyzed with
the χ2 function. We measured νAA

0
γ for the isotope pairs

Aγ ¼ fð168; 170Þ; ð170; 174Þ; ð172; 174Þ; ð174; 176Þg. In
Ref. [12], for the transitions α and β, the isotope pairsAα ¼
Aβ ¼ fð168; 170Þ; ð170; 172Þ; ð172; 174Þ; ð174; 176Þg are
measured. In addition to these pairs, the ν170;174α and ν170;174β

are measured in Ref. [12], and we perform the χ2 analysis
including these redundant data. Although it is possible to
quantify nonlinearities by introducing a geometrical mea-
sure like areas of triangles as discussed in Ref. [22], the χ2

analysis is more straightforward to handle the redundant
data and multiple sources of nonlinearities.

1. 2D case

We consider the following model for the 2D King plot
with the ðλ1; λ2Þ transitions:

νAA
0

λ2
¼ cμδμAA

0 þ cλ1ν
AA0
λ1

; ðC1Þ

where cμ and cλ1 are the model parameters associated with
the electronic factors. The corresponding χ2 function is
given by

χ2 ¼ χ2mass þ
X

λ¼λ1;λ2

� X
ðA;A0Þ∈Aλ

�
νAA

0
λ − ν̃AA

0
λ

σνAA0λ

�
2

þ
�
ν170;172λ þ ν172;174λ − ν̃170;174λ

σν170;174λ

�2�
; ðC2Þ

TABLE VI. Atomic masses and differences in mean-square
nuclear charge radii. These values are respectively given by
Ref. [54] and Ref. [24].

A matomðAÞ (amu)

168 167.933 891 30(10)
170 169.934 767 243(11)
172 171.936 386 654(15)
174 173.938 867 546(12)
176 175.942 574 706(16)

ðA0; AÞ δhr2iA0A (fm2)

(170,168) 0.1348(6)
(172,170) 0.1266(6)
(174,172) 0.0989(6)
(176,174) 0.0944(5)

TABLE VII. Summary of isotope-dependent experimental parameters. The parametersΔA and τA correspond to the detuning of the PA
line from the 1S0 − 3P1 transition and the PA time for the isotope A, respectively. In addition,NA and TA correspond to the number of the
atom before the interrogation and the atom temperature after the evaporative cooling, respectively. It is noted that the 174Yb atoms are
cooled below the transition temperature of the Bose-Einstein condensation (BEC) with no discernable thermal components.

ðA0; AÞ (170,168) (174,170) (174,172) (171,174) (174,176) ð173↑; 173↓Þ
τ0 (s) 64.6 40.5 28.6 39.7 36 34
τ (s) 258.4 162 114.4 238.2 144 136

A 168 170 171 172 173 174 176

ΔA=2π (MHz) −2072 −6213 −1143 −3687 −598
τA (ms) 10 20 10 1 1
NA (×103) 10 15 10 15 20 25 25
TA (μK) 0.5 0.3 0.5 0.7 0.1 BEC 0.2
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where the tilded quantities and σð·Þ correspond to the
measured quantities and their experimental uncertainties,
respectively. The first term χ2mass contains the contributions
from the parameters related to nuclear masses described in
Appendix A. Note that the last term is only included for the
transitions α and β. For example, the χ2½α;β�, the χ

2 function for

ðλ1; λ2Þ ¼ ðα; βÞ, has the following parameters: four inde-
pendent νAA

0
α ’s and two model parameters (cμ and cα). Thus,

we have 4þ 2 ¼ 6 fitting parameters. Additionally, we have
the following measurements with errors: five ν̃AA

0
α ’s and five

ν̃AA
0

β ’s. Thus, we have 5þ 5 ¼ 10 experimental constraints.
Hence, the d.o.f. is 10 − 6 ¼ 4. It is noted that the d.o.f. of the
χ2½α;β� in Ref. [12] is 2 since the redundant measurements

ν̃170;174αðβÞ are used to improve the precision of ν̃170;172αðβÞ and

ν̃172;174αðβÞ , meaning that ν̃170;172αðβÞ , ν̃172;174αðβÞ , and ν̃170;174αðβÞ are

not independent of each other. From the same argument,
the d.o.f. of the χ2½α;γ� and χ2½β;γ� is 3 in our analysis.
When the QFS and PS are considered as the nonlinear

source of the King relation, the fitting function is modified
by adding cq½δhr2i2�AA0

and cpðA − A0Þ to the right-hand
side of Eq. (C1), respectively. Here cq and cp are a fitting
parameters for the QFS and PS, respectively, and the χ2

function has the d.o.f. of 3 for the case of ðα; βÞ and 2 for
both of ðα; γÞ and ðβ; γÞ.

2. 3D case

As well as the 2D case, the linear model for the 3D King
plot with the ðλ1; λ2; λ3Þ transitions is considered:

νAA
0

λ3
¼ cμδμAA

0 þ cλ1ν
AA0
λ1

þ cλ2ν
AA0
λ2

: ðC3Þ

The corresponding χ2 function has the same form as
Eq. (C2) where the summation for λ now includes λ3.
The d.o.f. of χ2½γ;α;β� is 3 ¼ 14 (observations for α, β, and γ)

−3 (fitting parameters) −8 (independent ISs on α and γ).

APPENDIX D: 2D KING RELATION
WITH ðα; βÞ TRANSITIONS

The combination ðα; βÞ is the same as that investigated
in Ref. [12]. Here we perform the analysis for this
combination to check the consistency of our analysis
with that in Ref. [12]. The minimum χ2 and the corre-
sponding p value are

χ2½α;β� ¼ 15.37 ðp ¼ 4.0 × 10−3Þ: ðD1Þ

The best-fit parameters are Fβα ¼ 1.011 410 06ð86Þ and
Kβα ¼ 120.160ð23Þ GHz amu. They are consistent with
the results shown by Ref. [12], F0

βα ¼ 1.011 410 24ð86Þ
and K0

βα ¼ 120.208ð23Þ GHz amu. Note that the central
values are slightly different from each other because
we have used different values for the inverse mass
differences. We then introduce the QFS or the PS in
Eq. (8) as higher-order ISs. Including an additional source
of the ISs, one of four d.o.f. is consumed by the additional
fit parameter Hβα. Their χ2 minima are

χ2½α;β�ðQFSÞ ¼ 4.3 ðp ¼ 0.23Þ; ðD2Þ

χ2½α;β�ðPSÞ ¼ 5.4 ðp ¼ 0.15Þ: ðD3Þ

Following Ref. [12], we minimize χ2 including both of the
higher-order ISs,

χ2½α;β�ðQFS; PSÞ ¼ 4.0 ðp ¼ 0.13Þ; ðD4Þ

where the p value is calculated with the d.o.f. of 2. From
the PS fit, we obtain the bound on the new physics
coupling 3.8 × 10−11 ≤ ð−1Þsþ1yeyn=ðℏcÞ ≤ 1.7 × 10−10

for the new particle mass of 10 eV at 95% C.L. The
summary of the above fit results and the minimum χ2 are
shown in Table VIII.
Here we consider the origin of the minimum values of χ2

obtained in the above analysis. The ISs should satisfy the

transitive consistency condition νA
0A

λ ¼ νA
0A0

λ − νAA0

λ for any
transitions by definition. With this condition, the shifts of
some isotope pairs can be given by combinations of
other pairs. In the case of Ref. [12], three isotope pairs
(170,172), (172,174), and (170,174) are in this situation.
The minimum contributions from the condition to χ2 are
given by

χ2CλðA0;A1; A2Þ ¼
ðνA1A0

λ − νA2A0

λ − νA1A2

λ Þ2
ðσA1A0

λ Þ2 þ ðσA2A0

λ Þ2 þ ðσA1A2

λ Þ2 : ðD5Þ

Using the results of Ref. [12], we find the lower limit of χ2

when we include the transitions α or β:

χ2Cαð172; 170; 174Þ ¼ 0.1262; ðD6Þ

TABLE VIII. Best-fit parameters with transition pairs ðλ1; λ2Þ ¼ ðα; βÞ. The error of each fit parameter is evaluated as 1σ.

Sources χ2 (p value) Fβα Kβα (GHz amu) Hβα;QFS (kHz=fm4) Hβα;PS (kHz)

QFS 4.3 (0.23) 1.011 401 6(27) 120.381(70) 71(21) 0
PS 5.4 (0.15) 1.011 401 8(27) 121.55(44) 0 40(13)
QFS and PS 4.0 (0.13) 1.011 401 2(28) 120.77(81) 52(45) 13(26)
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χ2Cβð172; 170; 174Þ ¼ 3.911; ðD7Þ

χ2Cαð172; 170; 174Þ þ χ2Cβð172; 170; 174Þ ¼ 4.037: ðD8Þ

These are the theoretical minima of χ2 in our analyses with
α and/or β included.

APPENDIX E: ANALYSIS OF THE
NONLINEARITY OF GENERALIZED
KING PLOT ASSUMING QFS AND PS

Here we suppose that the QFS and PS are the two distinct
higher-order ISs involved in the data, as assumed in
Refs. [12,22]. Furthermore, we consider the particular case
where the QFS is eliminated in the 3D King plot con-
struction and the PS remains as the origin of the non-
linearity in the 3D King relation. This corresponds to the
case of Eq. (11) with the PS-origin nonlinearity term given
by hPS. From this analysis, we find that the χ2 minimum
reaches the theoretical minimum, and we can determine the
best-fit values for hPS as well as for the coefficients fα, fγ ,
and kμ given in Table IX. The hPS is expressed as
hPS ¼ αNPðXβ − fαXα − fγXγÞ. See Appendix F for the
details. We employed the electronic factor of the β
transition Xβ which is calculated by the configuration
interaction method in Ref. [12]. The other factors Xα;γ

are reconstructed so as to reproduce the results of Ref. [22].
We evaluated fα;γ also with other electronic factors given
by Ref. [22]. Thus, from the best-fit value of hPS, we can
determine the favored region of the coupling and mass of
the new boson, as shown as the black shaded region in
Fig. 9. For instance, the favored region is 1.1 × 10−11 ≤
ð−1Þsyeyn=ðℏcÞ ≤ 4.5 × 10−11 in the 95% C.L. when the
mass of the new boson is 10 eV. Note that the product of the
couplings yeyn is positive (negative) for s ¼ 0 (s ¼ 1) in
the smaller mass side of the peak structure, namely,
m≲ 10 keV. This peak structure is attributed to the
cancellation of the electronic factors, and the sign of
yeyn changes across the peak. The suggested favored
region, however, conflicts with the exclusion limit set by
the other terrestrial experiment, obtained from the product
of the individual bounds on the couplings with electron and
neutron, as shown as the orange line in Fig. 9. Thus, we
conclude that the QFS plus PS assumption is not valid to
describe the observed nonlinearities in the Yb=Ybþ system.

APPENDIX F: EXPLICIT FORMS
OF hPS AND hQFS

Here we consider two distinct higher-order sources,
defined as IλδηA

0A and JλδζA
0A, and the IS is expressed as

νA
0A

λ ¼ Kλδμ
A0A þ Fλδhr2iA0A þ IλδηA

0A þ JλδζA
0A: ðF1Þ

When we eliminate δhr2iA0A and δηA
0A by combining the

three transitions ðλ1; λ2; λ3Þ, the coefficients of the 3D King
relation Eq. (11) are expressed as

fλ1 ¼
Fλ2Iλ3 − Fλ3Iλ2
Fλ2Iλ1 − Fλ1Iλ2

; ðF2Þ

fλ2 ¼
Fλ3Iλ1 − Fλ1Iλ3
Fλ2Iλ1 − Fλ1Iλ2

; ðF3Þ

kμ ¼ Kλ3 − fλ1Kλ1 − fλ2Kλ2 ; ðF4Þ

h ¼ Jλ3 − fλ1Jλ1 − fλ2Jλ2 : ðF5Þ

If JλδζA
0A corresponds to the QFS or PS, the nonlinear

terms hQFS and hPS are expressed as

hQFS ¼ Gð2Þ
λ3

− fλ1G
ð2Þ
λ1

− fλ2G
ð2Þ
λ2
; ðF6Þ

hPS ¼ αNPðXλ3 − fλ1Xλ1 − fλ2Xλ2Þ: ðF7Þ

Note that the coefficients in hPS and hQFS, shown in
Eqs. (F2) and (F3), depend on the electronic factors of
the eliminated terms Iλ1 , Iλ2 , and Iλ3 .

TABLE IX. Best-fit parameters for 3D King relation with the
PS term as an origin of the nonlinearity. The error of each fit
parameter is evaluated as 1σ.

fα fγ kμ (GHz amu) hPS (kHz)

0.993(16) 0.030(26) 111.1(9.0) 50(15)

FIG. 9. Product of couplings jyeynj of a new boson as a
function of the mass m. The black shaded region represents
the 95% confidence interval of the new physics coupling obtained
from the fit using Eq. (11) with h ¼ hPS. For comparison, the
constraint from electron anomalous magnetic moment (g − 2)
measurements combined with neutron scattering measurements is
shown as the orange shaded region, as in Fig. 8. In addition, the
favored regions and constraints from Ybþ analysis [12] are
shown as red and blue lines and shaded regions, in exactly the
same manners as in Ref. [12].
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APPENDIX G: POSSIBLE CONSISTENCY CHECK
IN THE NONLINEARITY FIT

In Appendix E, following Refs. [12,22], we describe the
3D King plot analysis under the assumption that the QFS
and PS are two distinct higher-order ISs involved in the
data. This picture is not plausible to explain the observed
deviations from the linearities because the given favored
region is excluded by the other experiments. In general,
even if the dataset is fit by some higher-order ISs well, they
do not have to be the origins of the observed nonlinearity.
Here, we discuss a method to test the origins of the higher-
order ISs.
Different from the argument in Appendix E where we

attribute the PS to the source of the nonlinearity and the
QFS is eliminated by the construction of 3D King plot, we
here attribute the QFS, instead of the PS, to the source to
explain the leftover nonlinearity and the PS is eliminated.
These two constructions should be treated on an equal
footing, in principle. This fit gives us the χ2 of the
theoretical minimum; see Table X for the fit result. In this
case, the given fit coefficients can be calculated with the
electronic factors Fλ, Kλ, and Xλ ðλ ∈ fα; β; γgÞ using the
formulas shown in Appendix F. The coefficients calculated
by the electronic factors given in Ref. [12] do not match the
fit result for m < 1 keV [59]. Table X shows the QFS fit
result and the theoretical coefficients at m ¼ 10 eV. This
means, as long as we use the numerical results given by
Ref. [22], the original assumption to include only the QFS
and the PS (m < 1 keV) as the higher-order ISs is incon-
sistent with the data. In the generalized King relation, this
method helps us to test the consistency of some higher-
order ISs with experimental results independent of other
experimental bounds.
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