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A central question of quantum computing is determining the source of the advantage of quantum
computation over classical computation. Even though simulating quantum dynamics on a classical
computer is thought to require exponential overhead in the worst case, efficient simulations are known to
exist in several special cases. It was widely assumed that these easy-to-simulate cases as well as any yet-
undiscovered ones could be avoided by choosing a quantum circuit at random. We prove that this intuition
is false by showing that certain families of constant-depth, 2D random circuits can be approximately
simulated on a classical computer in time only linear in the number of qubits and gates, even though the
same families are capable of universal quantum computation and are hard to exactly simulate in the worst
case (under standard hardness assumptions). While our proof applies to specific random circuit families, we
demonstrate numerically that typical instances of more general families of sufficiently shallow constant-
depth 2D random circuits are also efficiently simulable. We propose two classical simulation algorithms.
One is based on first simulating spatially local regions which are then “stitched” together via recovery
maps. The other reduces the 2D simulation problem to a problem of simulating a form of 1D dynamics
consisting of alternating rounds of random local unitaries and weak measurements. Similar processes have
recently been the subject of an intensive research focus, which has observed that the dynamics generally
undergo a phase transition from a low-entanglement (and efficient-to-simulate) regime to a high-
entanglement (and inefficient-to-simulate) regime as measurement strength is varied. Via a mapping
from random quantum circuits to classical statistical mechanical models, we give analytical evidence that a
similar computational phase transition occurs for both of our algorithms as parameters of the circuit
architecture like the local Hilbert space dimension and circuit depth are varied and, additionally, that the
effective 1D dynamics corresponding to sufficiently shallow random quantum circuits falls within the
efficient-to-simulate regime. Implementing the latter algorithm for the depth-3 “brickwork” architecture,
for which exact simulation is hard, we find that a laptop could simulate typical instances on a 409 × 409

grid with a total variation distance error less than 0.01 in approximately one minute per sample, a task
intractable for previously known circuit simulation algorithms. Numerical results support our analytic
evidence that the algorithm is asymptotically efficient.
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I. MOTIVATION

Simulating quantum systems on classical computers
requires effort that scales exponentially with the size of
the quantum system, at least for a general-purpose simu-
lation. This was the original motivation of the field of
quantum computing, since it shows that time evolution
(natural or controlled) of quantum systems can perform

tasks that are intractable for classical computers. However,
many special cases are known where quantum time
evolution can be efficiently simulated, including limited
entanglement or interaction, free fermions, and Clifford
circuits. Understanding the boundary between classically
simulable and intractable gets at a crucial question: What
makes quantum computing powerful?
There are two main ways to answer this question

concretely. We can find more classes of easy-to-simulate
quantum dynamics, or we can find evidence that other
classes of quantum dynamics are hard for classical com-
puters to simulate. The latter approach is related to the goal
of quantum computational supremacy [1], which involves
finding a well-defined computational task with evidence
for classical intractability (usually based on a plausible
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conjecture from complexity theory), then actually perform-
ing the task on quantum hardware, and verifying the result.
Achieving this feat (as has been claimed by Refs. [2–4])
is the computational analog of a Bell inequality violation:
Theoretically, it would merely confirm orthodox interpreta-
tions of quantum mechanics, but practically it would be a
milestone in our ability to coherently control quantum
systems.
A leading proposal for demonstrating quantum computa-

tional supremacy is random circuit sampling (RCS), mean-
ing that the quantum computer applies random unitary
gates and then measures all the qubits. This was used by
Google [2], and, as we discuss below, it is a plausible
candidate for an intractable class of dynamics. Indeed, the
previously known examples of efficiently simulable quan-
tum dynamics are all in some ways special: using only
Clifford gates or only nonentangling gates, for example. So
it would be reasonable to assume that random gates would
be the best way to avoid any known or unknown structure
in the circuits that would facilitate simulation.
Our main contribution is to show that RCS becomes easy

to simulate at low enough circuit depth and local dimen-
sion. We do this by developing classical algorithms for
RCS that are efficient (polynomial time) in some settings in
which all previously known classical algorithms are ineffi-
cient (exponential time). Moreover, in these regimes no
efficient classical sampling algorithms are possible for
arbitrary (i.e., nonrandom) circuits, assuming standard
complexity theoretic assumptions (specifically, the “non-
collapse of the polynomial hierarchy”). Our results thus
show that, for natural problems, random instances can be
much easier than a worst-case analysis would suggest. On
the other hand, we also find evidence that our algorithms
exhibit computational phase transitions into inefficient
regimes when certain parameters of the circuits are tuned.
While studying the classical simulability of any non-

trivial class of quantum circuits is inherently interesting for
understanding the boundary between classical and quantum
computation, in the remainder of this section, we give
high-level motivation for why studying random quantum
circuits, in particular, is especially important for the
research program of demonstrating quantum computational
supremacy.

A. Random circuit sampling

Before specifying theRCS task thatwe are concernedwith
in this work, it is worthwhile to begin with a discussion of
quantum computational supremacy proposals more gener-
ally. Modern proposals usually involve sampling problems.
A sampling problem asks, given an input string x, for one to
generate a sample according to some probability distribution
Dx defined as a function of x. This generalizes the usual task
of computing a deterministic function of x.
As a natural example, suppose x encodes the description

of a quantum circuit, and Dx is the output distribution

associated with circuit x, defined to be the distribution over
output strings induced by measuring each qubit in the
computational basis after applying the quantum circuit
described by x. Then the following is an example of a
sampling problem: Given a quantum circuit description x,
generate a sample from Dx. There is a trivial quantum
algorithmwhich executes this task: Just implement the circuit
x, measure all qubits, and report the measurement result.
The task of sampling from Dx appears to be much more

challenging for a classical computer, however, as a
straightforward classical simulation of the circuit x would
incur an exponential overhead. Indeed, it was shown by
Terhal and DiVincenzo in 2002 [5] that there does not exist
any efficient classical algorithm for sampling from Dx in
general unless the polynomial hierarchy collapses to the
third level, a consequence considered to be unlikely. A
stronger implication of their work, which is relevant to the
setting of constant-depth 2D circuits studied in this paper, is
that this hardness result applies even to depth-3 2D
quantum circuits. (Note that Ref. [5] defines “depth” using
a different convention than ours; we count only the unitary
gates and not the final layer of measurements.)
While the Terhal-DiVincenzo result implies that there

likely does not exist an efficient classical algorithm that
samples from the output distribution of an arbitrary depth-3
quantum circuit, there are obstacles in turning this into
a proposal for demonstrating quantum computational
supremacy. One is that, while this result implies that there
likely cannot exist a classical algorithm for simulating an
arbitrary circuit instance, it cannot guarantee that a specific
given instance is hard to simulate. In other words, Ref. [5]
is concerned with worst-case complexity; any efficient
classical algorithm must fail on some circuit instance but, in
principle, could succeed for the vast majority of instances.
Another obstacle is that their result implies that it is hard to
exactly sample from Dx, but it is most natural to addition-
ally require the hardness of sampling from any approximate
distribution D̃x which is close to the true distribution in
some meaningful sense. Approximate sampling is natural
because (a) imperfect quantum computers produce approxi-
mate samples, and (b) verifiers that test only a limited (say,
polynomial) number of samples, are not able to reliably
distinguish approximate samples from exact samples.
To circumvent these obstacles, one usually goes beyond

Ref. [5] by conjecturing that a certain family of quantum
circuits’ output distributions are typically hard for classical
computers to even approximately sample from in the
average case. While the classical hardness result of
Ref. [5] relies only on the noncollapse of the polynomial
hierarchy (a weak conjecture), much stronger conjectures
are required for such approximate, average-case hardness
statements. The three most well-known supremacy pro-
posals of this form are based on linear-optical networks [6],
nstantaneous quantum polynomial (IQP) time circuits
[7–9], and random circuits [2,10,11].
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In this paper, we study random quantum circuits
(formally defined subsequently). In addition to their pro-
posed utility in demonstrating quantum computational
supremacy, random quantum circuits also find a plethora
of applications in quantum information (e.g., scrambling
and quantum pseudorandomness) and physics (e.g.,
operator spreading and entanglement growth under
chaotic quantum dynamics). The quantum computational
supremacy proposal based on random circuits is known as
random circuit sampling and is the task of approximately
sampling from the output distribution of a random quan-
tum circuit, with high probability of success over circuit
instance. The idea for a supremacy proposal based on RCS
originates from an email thread between several quantum
computing researchers in 2015, in which the participants
came to the conclusion that, for the purpose of performing a
supremacy experiment on a very near-term quantum
device, an experiment based on random circuits was better
than the alternative possibilities both from an engineering
standpoint [12] and due to the considerations from com-
plexity theory discussed in Sec. II A. In 2019, Google
announced a demonstration of quantum computational
supremacy on the basis of implementing a RCS experiment
using a 2D array of 53 superconducting qubits with nearest-
neighbor interactions [2].
RCS was an extremely natural candidate for a supremacy

proposal. Experimentally, it was amenable to implementa-
tion in the very near term. Theoretically, there was intuition
supporting the belief that random quantum circuits should
be hard for classical computers to simulate. The Terhal-
DiVincenzo result already implied that exactly simulating
random quantum circuits should be classically hard in the
worst case; that is, no classical algorithm should work on
all instances. Essentially, their result needed to be extended
from an “exact, worst-case” result to an “approximate,
average-case” result. This extension indeed felt plausible,
because (in the noiseless setting) efficient classical simu-
lation algorithms are generally known only for classes of
quantum circuits that are highly structured. Therefore, one
might expect that randomizing the gates of a quantum
circuit would wash out any structure that would allow for
an efficient classical simulation and make random gates
essentially the hardest possible to classically simulate.
After the idea of demonstrating quantum computational

supremacy via RCS was introduced, a number of groups
studied the computational complexity of RCS, collecting
evidence (detailed in the following section) that RCS
should be hard for a classical computer. Nonetheless, we
describe two classical algorithms for RCS for 2D random
circuits and give evidence for their efficiency on circuits of
sufficiently shallow depth. In fact, these algorithms are
efficient for some classes of quantum circuits for which
much of this prior evidence of classical hardness is
applicable. Arguably, in demonstrating that there exist
classes of random circuits for which RCS is classically

tractable yet some of these seeming pieces of evidence of
classical hardness apply, the previous intuition and theo-
retical underpinning for the classical hardness of RCS—
and, by extension, Google’s quantum supremacy claim—is
weakened. On the other hand, despite weakening some of
the previous reasons in believing in the classical hardness
of RCS, this paper could also be viewed as contributing
new evidence in support of the hardness of simulating
sufficiently deep 2D random quantum circuits. This is
because the two novel classical simulation algorithms that
we introduce appear to experience computational phase
transitions as the circuit depth is increased. Roughly
speaking, for a particular 2D circuit architecture, we find
evidence that there is a critical constant depth d� such that,
in performing random circuit sampling on a

ffiffiffi
n

p
×

ffiffiffi
n

p
square array of qubits of depth d, our algorithms run in time
polyðnÞ if d < d� and run in time approximately expðnOð1ÞÞ
if d > d�. We find a similar phase transition as a function of
the local Hilbert space dimension if more general qudits
of dimension possibly greater than two are used instead of
qubits. We hope that, in addition to showing that RCS may
be efficiently solved classically for sufficiently shallow 2D
circuits, this work may also help initiate a deeper line of
inquiry into how the hardness of classically simulating
random quantum circuits depends on architecture param-
eters such as the depth, local dimension, and number of
spatial dimensions.

II. OVERVIEW OF CONTRIBUTIONS

As discussed in the previous section, a fundamental
question in computer science and physics is to understand
where the boundary between classically intractable and
classically simulable quantum systems or quantum circuits
lies. A more specific question within the context of
quantum computational supremacy is to understand what
types of quantum gate sequences are hardest to classically
simulate. So far, our answers to these questions have been
informal or incomplete. On the simulation side, Markov
and Shi [13] show that a quantum circuit could be
classically simulated by contracting a tensor network with
cost exponential in the tree width of the graph induced by
the circuit. (Tree width is a measure of how far from a tree a
graph is; it is 1 for a tree and approximately LD−1 for a D-
dimensional lattice with side length L.) When applied to n
qubits in a line running a circuit with depth d, the
simulation cost of this algorithm is expfO½minðn; dÞ�g.
More generally, we could consider n ¼ L1L2 qubits
arranged in an L1 × L2 grid running for depth d, in which
case the simulation cost would be

expfO½minðL1L2; L1d; L2dÞ�g: ð1Þ

In other words, we can think of the computation as taking
up a space-time volume of L1 × L2 × d and the simulation
cost is dominated by the size of the smallest cut bisecting
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this volume. An exception is for depth d ¼ 1 or d ¼ 2,
which have simple exact simulations [5]. Some restricted
classes such as stabilizer circuits [14] or one-dimensional
systems that are sufficiently unentangled [15–17] may also
be simulated efficiently. However, the conventional
wisdom has been that, in general, for 2D circuits with
d ≥ 3, the simulation cost scales as Eq. (1).
These considerations led IBM to propose the benchmark

of “quantum volume” [18] which in our setting is
exp½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dminðL1; L2Þ
p �; this does not exactly coincide with

Eq. (1) but qualitatively captures a similar phenomenon.
The idea of quantum volume is to compare quantum
computers with possibly different architectures by evalu-
ating their performance on a simple benchmark. This
benchmark task is to perform n layers of random two-
qubit gates on n qubits, and being able to perform this with
≲1 expected gate errors corresponds to a quantum volume
of expðnÞ. [19] Google’s quantum computing group has
also proposed random unitary circuits as a benchmark task
for quantum computers [10]. While their main goal has
been quantum computational supremacy [2,21], random
circuits could also be used to diagnose errors including
those that go beyond single-qubit error models by more
fully exploring the configuration space of the system [18].
These proposals from industry reflect a rough consensus

that simulating a 2D random quantum circuit should be
nearly as hard as exactly simulating an arbitrary circuit with
the same architecture or, in other words, that random circuit
simulation is nearly as hard as the worst case, given our
current state of knowledge.
To the contrary, we prove (assuming standard complex-

ity-theoretic conjectures) that, for a certain family of
constant-depth architectures, classical simulation of typical
instances with a small allowed error is easy, despite worst-
case simulation being hard (by which we mean it is
classically intractable to simulate an arbitrary random
circuit realization with an arbitrarily small error). For these
architectures, we show that a certain algorithm exploiting
the randomness of the gates and the allowed small
simulation error can run much more quickly than the
scaling in Eq. (1), running in time OðL1L2Þ. While our
proof is architecture specific, we give numerical and
analytical evidence that, for sufficiently low constant values
of d, the algorithm remains efficient more generally. The
intuitive reason for this is that the simulation of 2D shallow
random circuits can be reduced to the simulation of a form
of effective 1D dynamics which includes random local
unitaries and weak measurements. The measurements
cause the 1D process to generate much less entangle-
ment than it could in the worst case, making efficient
simulation possible. Such dynamics consisting of random
local gates with interspersed measurements has, in fact,
recently become the subject of an intensive research focus
[22–49], and our simulation algorithm can be viewed as an
application of this line of work. Furthermore, the

measurement-strength-driven entanglement phase transi-
tions observed in these processes are closely related to
the computational phase transition we observe for our
algorithms.

A. Evidence from prior literature that simulating
random circuits is hard

Before discussing our results in greater detail, we briefly
review the main technical arguments for the prevailing
belief that random circuit simulation should be nearly as
hard as the worst case.

1. Evidence from complexity theory

A long line of work has shown that it is worst-case hard
to either sample from the output distributions of quantum
circuits or compute their output probabilities with an
exponentially small error [1,5,6,8,9,50,51]. While the
requirements of worst-case and near-exact simulation
are rather strong, these results do apply to any quantum
circuit family that becomes universal once postselection
[50] is allowed, thereby including noninteracting bosons
[6] and 2D depth-3 circuits [5]. The hardness results are
also based on the widely believed conjecture that the
polynomial hierarchy (PH) is infinite or, more precisely,
that approximate counting is weaker than exact counting.
Since these results naturally yield worst-case hardness,
they do not obviously imply that random circuits should
be hard. In some cases, additional conjectures can be
made to extend the hardness results to some form of
average-case hardness (as well as ruling out approximate
simulations) [6,9,11], but these conjectures have not
received widespread scrutiny. Besides stronger conjec-
tures, these hardness results usually require that the
quantum circuits have an “anticoncentration” property,
meaning roughly that their outputs are not too far from the
uniform distribution [52]. While random circuits are
certainly not the only route to anticoncentration (applying
a Hadamard gate to each qubit of j0i⊗n would do), they
are a natural way to combine anticoncentration with an
absence of any obvious structure (e.g., Clifford gates) that
might admit a simple simulation (however, note that
constant-depth random quantum circuits do not have
the anticoncentration property [53]). Furthermore, a line
of work beginning with Ref. [54] (see Refs. [55–57] for
subsequent improvements) has established that random
circuit simulation admits a worst-to-average-case reduc-
tion for the computation of output probabilities. In
particular, the ability to near-exactly compute the prob-
ability of some output string for a 1 − 1=polyðnÞ fraction
of Haar-random circuit instances on some architecture is
essentially as hard as computing output probabilities for
an arbitrary circuit instance with this architecture, which
is known to be #P-hard even for certain 2D depth-3
architectures.
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2. Near-maximal entanglement in random circuits

Haar-random states on n qudits are nearly maximally
entangled across all cuts simultaneously [58,59]. Random
quantum circuits on L × L × � � � arrays of qudits achieve
similar near-maximal entanglement across all possible cuts
once the depth is at least approximately L [52,60], and,
before this time, the entanglement often spreads “ballis-
tically” [61,62]. Random tensor networks with large bond
dimension nearly obey a min-flow and max-cut-type
theorem [63,64], again meaning that they achieve nearly
maximal values of an entanglementlike quantity. These
results suggest that, when running algorithms based on
tensor contraction, random gates should be nearly the
hardest possible gates to simulate.

3. Absence of algorithms taking advantage
of random inputs

There are not many algorithmic techniques known that
simulate random circuits more easily than worst-case
circuits. There are a handful of exceptions. In the presence
of any constant rate of noise, random circuits [65,66], IQP
circuits [51], and (for photon loss) boson sampling [67,68]
can be efficiently simulated. These results can also be
viewed as due to the fact that fault-tolerant quantum
computing is not a generic phenomenon and requires
structured circuits to achieve (see Ref. [51] for a discussion
in the context of IQP). Permanents of random matrices
whose entries have small nonzero mean can be approxi-
mated efficiently [69], while the case of boson sampling
corresponds to entries with zero mean and the approach of
Ref. [69] is known to fail there. A heuristic approximate
simulation algorithm based on tensor network contrac-
tion [70] was recently proposed and applied to random
circuits, although for this algorithm it is unclear how the
approximations made are related to the overall simulation
error incurred (in contrast, our algorithm based on matrix
product states can bound the overall simulation error it is
making, even when comparison with exact simulation is
not feasible). In practice, evidence for a hardness conjecture
often is no more than the absence of algorithms. Indeed,
while some approximation algorithms are known for
estimating output probabilities of constant-depth circuits
[71], IQP circuits [7], and boson sampling [6] up to additive
error δ in time polyðn; 1=δÞ, these are not very helpful for
random circuits where typical output probabilities are
approximately 2−n.
Despite the above intuitive arguments for why the

simulation of uniformly random circuits should be nearly
as hard as the worst case, we (i) prove that there exist
architectures for which this is not the case and (ii) give
evidence that this result is not architecture specific but is
rather a general property of sufficiently shallow random
circuits. To this end, we propose and implement a simu-
lation algorithm based on a 2D-to-1D mapping in con-
junction with tensor network methods. In Appendix B of

Supplemental Material [72], we introduce and study a
second simulation algorithm (referred to as Patching)
based on locally simulating spatially disconnected regions
which are then “stitched” together. The performance of
both algorithms is related to certain entropic quantities.
We also give evidence of computational phase transi-

tions for our proposed simulation algorithms driven by
circuit depth and qudit dimension. Previously, it was known
that phase transitions between classical and quantum
computation exist as a function of the noise parameter in
conventional quantum computation [73–79] as well as in
measurement-based quantum computing (MBQC) [80,81].
In the noiseless setting, besides the gap between depth-2
and depth-3 circuits [5], a computational phase transition as
a function of the rate of qubit loss during the preparation of
a resource state for MBQC [82] and (under additional
assumptions) as a function of the duration of time evolution
for simulating dynamics generated by quadratic bosonic
Hamiltonians [83,84] was also known.
For the case of constant depth, there have been some

quantum computational supremacy proposals that do not
use uniformly random circuits, mostly based on the
measurement-based quantum computing model [85].
This means first preparing a cluster state and then meas-
uring it in mostly equatorial bases or, equivalently, per-
forming eiθZ for various angles θ and then measuring in the
X basis. This is far from performing uniformly random
nearest-neighbor gates up to the same depth and then
measuring in a fixed basis. In many cases, the angles θ
are also chosen to implement a specific family of circuits
as well [86–88]. Previously, it had not been clear whether
this difference is important for the classical complexity
or not; our work suggests that it is, as the simulation
algorithms we describe crucially rely on the randomness of
the circuits for their efficiency and generally require
exponential time for the more structured circuits proposed
in these works.

B. Our results

We give two classes of results, which we summarize in
more detail below. The first consists of rigorous separations
in complexity between worst-case simulation [89] and
approximate average-case simulation (for sampling) and
between near-exact average-case simulation and approxi-
mate average-case simulation (for computing output prob-
abilities) for random circuit families defined with respect to
certain circuit architectures. While these results are rig-
orous, they are proved with respect to a contrived archi-
tecture and, therefore, do not address the question of
whether random shallow circuits are classically simulable
more generally. To address this issue, we also give con-
jectures on the performance of our algorithms for more
general and more natural architectures. Our second class of
results consists of analytical and numerical evidence
supporting these conjectures. A summary of these two
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classes of claims along with the evidence we present in their
favor appears in Table I.

1. Provable complexity separations

We now summarize our provable results for particular
circuit architectures. We first define more precisely what
we mean by an “architecture.”
Definition 1 (architecture).—An architecture A is an

efficiently computable mapping from positive integers L to
circuit layouts AðLÞ defined on rectangular grids with side
lengths L × fðLÞ for some function fðLÞ ≤ polyðLÞ. A
“circuit layout” is a specification of locations of gates in
space and time and the number of qudits acted on by each

gate. (The gate itself is not specified.) For any architecture
A, we obtain the associated Haar-random circuit family
acting on qudits of constant dimension q, CA;q, by
specifying every gate in A to be distributed according to
the Haar measure and to act on qudits of dimension qwhich
are initialized in a product state j0i⊗ðL×fðLÞÞ.
In this paper, we consider only architectures that are

constant depth and spatially 2-local (that is, a gate either
acts on a single site or two adjacent sites); therefore,
“architecture” for our purposes always refers to a constant-
depth spatially 2-local architecture. The above definition
permits architectures for which the layout of the circuit
itself may be different for different sizes. However, it is

TABLE I. Summary of results.

Statement Reference Proof or evidence

Rigorous complexity separation.—There exists
a (nonuniform) shallow 2D random quantum
circuit architecture that is efficiently
simulable approximately but not exactly in
the worst case.

Section IV Proof for “extended brickwork architecture” using the SEBD
algorithm.

Conjecture 1.—There exist uniform shallow 2D
random quantum circuit architectures that are
efficiently simulable approximately but not
exactly in the worst case.

Section III Reduction from 2D circuit to 1þ 1D process with
alternating layers of unitary gates and weak
measurements, which is efficiently simulable when
entanglement measures obey an area law. Prior literature
indicates area law holds when the weak measurements are
sufficiently strong.

Section V Numerical implementation of one of our algorithms for two
shallow 2D architectures on systems as large as 160 000
qubits; area-law scaling of entanglement entropy suggests
asymptotic efficiency.

Section VI E Mapping from 2D circuits to Ising-like stat-mech models;
whether these models are ordered or disordered
determines whether a certain “quasientropy” is in an area-
or volume-law phase. We sketch a heuristic argument that
sufficiently shallow circuits with sufficiently small local
dimension should be in the disordered phase, suggesting
algorithmic efficiency.

Section VI F Rigorous argument that the stat-mech system for a specific
depth-3 uniform 2D architecture is in the disordered phase
via direct comparison with the 2D Ising model.

Conjecture 10.—When a shallow 2D random
quantum circuit architecture is efficiently
simulable approximately, its run-time follows
a particular dependence on the error, circuit
fraction, and number of qubits.

Section III D Toy model, which predicts a particular entanglement
spectrum for states encountered by our algorithm.

Section V Numerical observation that entanglement spectrum is
consistent with the toy model from Sec. III D and run-time
estimate in Conjecture 10.

Conjecture 2.—Our algorithms undergo a
computational phase transition and become
inefficient when either the qudit local
dimension or circuit depth exceed some
critical value.

Section III Results from prior literature that similar 1þ 1D processes
undergo entanglement phase transitions.

Section VI E Heuristic analysis of stat-mech model for 2D circuits, which
predicts order-disorder phase transition and associated
entanglement transition for quasientropy.

Section VI F Rigorous argument that the stat-mech system for a specific
depth-3 uniform 2D architecture undergoes a disorder-
order phase transition when the local dimension is
increased via direct comparison with the 2D Ising model.
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natural for a circuit architecture to be spatially periodic and,
furthermore, for the “unit cells” of the architecture to be
independent of L. We formalize this as a notion of
uniformity, which we define more precisely below.
Definition 2 (uniformity).—We call a constant-depth

architecture A uniform if there exists some spatially
periodic circuit layout B on an infinite square lattice such
that, for all positive integers L, AðLÞ is a restriction of B to
a rectangular subgrid with side lengths L × fðLÞ for some
fðLÞ ≤ polyðLÞ. A random circuit family CA;q associated
with a uniform architecture A is said to be a uniform
random circuit family.
While uniformity is a natural property for a circuit

architecture to possess, our provable separations are with
respect to certain nonuniform circuit families. In particular,
we prove in Sec. IV that, for any fixed 0 < c < 1, there
exists some nonuniform circuit architecture A acting on n
qubits such that, if CA is the Haar-random circuit family
associated with A acting on qubits,
(1) Exact worst-case sampling is hard.—There does not

exist a polyðnÞ-time classical algorithm that exactly
samples from the output distribution of arbitrary
realizations of CA unless the polynomial hierarchy
collapses to the third level.

(2) Near-exact average-case computation of output
probabilities is hard.—Given an arbitrary fixed
output string x, there does not exist a polyðnÞ-time
classical algorithm for computing the probability
of obtaining x, jhxjCAj0i⊗nj2, up to additive error
≤ 2−cn logðnÞ for a constant c > 0, with probability at
least 1 − 1=polyðnÞ over choice of circuit instance,
unless a #P-hard function can be computed in
randomized polynomial time.

(3) Approximate average-case sampling is easy.—
There exists a classical algorithm that runs in time
OðnÞ and, with probability at least 1 − 2−n

c
over

choice of circuit instance, samples from the output
distribution of CA up to error at most 2−n

c
in total

variation distance.
(4) Approximate average-case computation of output

probabilities is easy.—There exists a classical
algorithm that runs in time OðnÞ and, for an
arbitrary output string x, with probability at least
1 − 2−n

c
over choice of circuit instance, estimates

jhxjCAj0i⊗nj2 up to additive error 2−n=2n
c
. (This

should be compared with 2−n, which is the average
output probability over choices of x.)

The first two points above follow readily from prior works
(respectively, Ref. [5] and Refs. [56,57]), while the latter
two follow from an analysis of the behavior of one of our
simulation algorithms for this architecture. These algo-
rithms improve on the previously best known simulation

time for this family of architectures of 2OðLÞ ¼ 2Oðnc0 Þ for
some constant c0ðcÞ < 1 based on an exact simulation
based on tensor network contraction. We refer to the

architectures for which we prove the above separations
as “extended brickwork architectures” (see Fig. 3 for a
specification), as they are related to the “brickwork
architecture” [90] studied in the context of MBQC.
Implications for quantum computational supremacy.—

The worst-case to average-case reductions that imply the
second item above [56,57] are widely cited as evidence for
the conjectures that underpin random-circuit-sampling-
based quantum computational supremacy proposals [2].
Yet, the items above show that these reductions—which
apply directly only to the task of computing output
probabilities—should not inherently be viewed as evidence
for the hardness of the sampling tasks of primary interest,
as there exist cases in which these reductions apply despite
the RCS task being classically tractable. On a more
technical level, the existence of an architecture for which
both the second and fourth items above are true implies
that the most obvious idea for extending these techniques to
the realm of sampling problems—namely, by improving
the robustness of the interpolations—is impossible. To
connect with sampling, the introduction of some new
technique that is sensitive to the circuit depth would be
required. Thus, although our algorithms can efficiently
simulate only shallow random circuits, they accentuate a
fundamental weakness in the main source of formal
evidence for hardness even in the case of deep circuits.
(See Appendix D of Supplemental Material [72] for further
discussion of the relationship to this line of work.)

2. Conjectures for uniform architectures

While the above results are provable, they are unfortu-
nately proved with respect to a unnatural nonuniform
architecture and, furthermore, do not provide good insight
into how the simulation run-time scales with simulation
error and simulable circuit fraction. An obvious question is
then whether efficient classical simulation remains possible
for more natural random circuit families that are sufficiently
shallow, and, if so, how the run-time scales with system size
and error parameters. We argue that it does but that a
computational phase transition occurs for our algorithms
when the depth (d) or local Hilbert space dimension (q)
becomes too large. Here, we are studying the simulation
cost as n → ∞ for fixed d and q. Intuitively, there are many
constant-depth random circuit families for which efficient
classical simulation is possible, including many “natural”
circuit architectures (it seems plausible that any depth-3
random circuit family on qubits is efficiently simulable).
However, we expect a computational phase transition
to occur for sufficiently large constant depths or qudit
dimensions, at which point our algorithms become ineffi-
cient. The location of the transition point will, in general,
depend on the details of the architecture. The conjectures
stated below are formalizations of this intuition.
We now state our conjectures more precisely. Conjecture

1 essentially states that there are uniform random circuit

EFFICIENT CLASSICAL SIMULATION OF RANDOM SHALLOW … PHYS. REV. X 12, 021021 (2022)

021021-7



families for which worst-case simulation (in the sense of
sampling or computing output probabilities) is hard but
approximate average-case simulation can be performed
efficiently. (Worst-case hardness for computing probabil-
ities also implies a form of average-case hardness for
computing probabilities, as discussed above.) This is stated
in more or less the weakest form that seems to be true and
would yield a polynomial-time simulation. However, we
suspect that the scaling is somewhat more favorable. Our
numerical simulations and toy models are, in fact, con-
sistent with a stronger conjecture, Conjecture 10, which if
true would yield stronger run-time bounds. Conversely,
Conjecture 2 states that if the depth or local qudit
dimension of such an architecture is made to be a
sufficiently large constant, our two proposed algorithms
experience computational phase transitions and become
inefficient even for approximate average-case simulation.
Conjecture 1.—There exist uniform architectures and

choices of q such that, for the associated random circuit
family CA;q, (i) worst-case simulation of CA;q (in terms of
sampling or computing output probabilities) is classically
intractable unless the polynomial hierarchy collapses, and
(ii) our algorithms approximately simulate CA;q with high
probability. More precisely, given parameters ε and δ, our
algorithms run in time bounded by polyðn; 1=ε; 1=δÞ and
can, with probability 1 − δ over the random circuit in-
stance, sample from the classical output distribution pro-
duced by Cq up to variational distance error ε and compute
a fixed output probability up to additive error ε=qn.
Conjecture 10.—For any uniform random circuit family

CA;q satisfying the conditions of Conjecture 1, efficient
simulation is possible with run-time replaced by

n1þoð1Þ · expfO½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=εδÞ

p
�g: ð2Þ

Conjecture 2.—For any uniform random circuit family
CA;q satisfying the conditions of Conjecture 1, there exists
some constant q� such that our algorithms become ineffi-
cient for simulating CA;q0 for any constant q0 > q�, where
CA;q0 has the same architecture as Cq but acts on qudits of
dimension q0. There also exists some constant k� such that,
for any constant k > k�, our algorithms become inefficient
for simulating the composition of k layers of the random
circuit, Ck

A;q ∘ � � � ∘C2
A;q ∘C1

A;q, where each Ci
A;q is inde-

pendent identically distributed and distributed identically to
CA;q. In the inefficient regime, for fixed ε and δ the run-time
of our algorithms is 2OðLÞ.
Our evidence for these conjectures, which we elaborate

upon in the following sections, consists primarily of the
following elements.
(1) A rigorous reduction from the 2D simulation prob-

lem to a 1D simulation problem that can be
efficiently solved with high probability if certain
conditions on expected entanglement in the 1D state
are met (Sec. III).

(2) Convincing numerical evidence that these conditions
are indeed met for a specific worst-case-hard
uniform random circuit family and that in this case
the algorithm is extremely successful in practice
(Sec. V).

(3) Heuristic analytical evidence for both conjectures
using a mapping from random unitary circuits to
classical statistical mechanical models (Sec. VI) and
for Conjecture 10 using a toy model which can be
more rigorously studied (Sec. III D).

The uniform random circuit family for which we collect
the most evidence for classical simulability is associated
with the depth-3 brickwork architecture [90] (see also
Fig. 3 for a specification).
In the remainder of the paper, we develop the evidence

for our conjectures outlined in the three items above and
also present our rigorous complexity separation in Sec. IV.

III. SIMULATION BY REDUCTION
TO 1D DYNAMICS

We reduce the problem of simulating a constant-depth
quantum circuit acting on a L × L0 grid of qudits to the
problem of simulating an associated “effective dynamics”
in 1D on L qudits which is iterated for L0 time steps or,
alternatively, on L0 qudits which is iterated for L time
steps. This mapping is rigorous and is related to previous
maps from 2D quantum systems to 1D system evolving in
time [85,91,92]. The effective 1D dynamics is then simu-
lated using the time-evolving block decimation algorithm
of Vidal [16]. By analogy, we call this algorithm space-
evolving block decimation (SEBD). In Sec. III A, we
specify the details of SEBD and rigorously bound the
simulation error made by the algorithm in terms of
quantities related to the entanglement spectra of the
effective 1D dynamics and give conditions in which it is
provably asymptotically efficient for sampling and estimat-
ing output probabilities with small error. SEBD is self-
certifying in the sense that it can construct confidence
intervals for its own simulation error and for the fraction of
random circuit instances it can simulate. This makes
numerically studying the algorithm’s performance feasible
and is a crucial difference between SEBD and heuristics
based on approximate tensor network contractions (e.g.,
Ref. [70]) in which the error incurred by truncating bonds
of the tensor network cannot be directly related to opera-
tional measures such as trace-distance error.
A 1D unitary quantum circuit on L qubits iterated for Lc

time stepswith c > 0 is generally hard to simulate classically
in polyðLÞ-time, as the entanglement across any cut can
increase linearly in time. However, the form of 1D dynamics
that a shallow circuit maps to includes measurements as well
as unitary gates. While the unitary gates tend to build
entanglement, the measurements tend to destroy entangle-
ment and make classical simulation more tractable. It is
a priori unclear which effect has more influence.
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Fortunately, unitary-and-measurement processes have
been studied in a flurry of recent papers from the
physics community [22–49]. The consensus from this
work is that processes consisting of entanglement-
creating unitary evolution interspersed with entanglement-
destroying measurements can be in one of two phases,
where the entanglement entropy equilibrates to either an
area law (constant) or a volume law (extensive). When we
vary parameters like the fraction of qudits measured
between each round of unitary evolution, a phase
transition is observed. The existence of a phase tran-
sition appears to be robust to variations in the exact
model, such as replacing projective measurements
on a fraction of the qudits with weak measurements
on all of the qudits [25,26] or replacing Haar-random
unitary evolution with Clifford [22,25,27,28] or Floquet
[24,25] evolution. This suggests that the efficiency of the
SEBD algorithm depends on whether the particular circuit
depth and architecture being simulated yields effective 1D
dynamics that falls within the area-law or the volume-law
regime. It also suggests a computational phase transition
in the complexity of the SEBD algorithm. Essentially,
decreasing the measurement strength or increasing the
qudit dimension in these models is associated with
moving toward a transition into the volume-law phase.
Since increasing the 2D circuit depth is associated with
decreasing the measurement strength and increasing the
local dimension of the associated effective 1D dynamics,
this already gives substantial evidence in favor of a
computational phase transition in SEBD.
SEBD is inefficient if the effective 1D dynamics are on

the volume-law side of the transition, and we expect it to be
efficient on the area-law side, because, in practice, dynam-
ics obeying an area law for the von Neumann entanglement
entropy are generally efficiently simulable. However,
definitely proving that SEBD is efficient on the area-law
side faces the obstacle that there are known contrived
examples of states which obey an area law but cannot be
efficiently simulated with matrix product states (MPSs)
[93]. We address this concern by directly studying the
entanglement spectrum of unitary-and-measurement proc-
esses in the area-law phase. To do this, we introduce a toy
model for such dynamics which may be of independent
interest. For this model, discussed more in Sec. III D, we
rigorously derive an asymptotic scaling of Schmidt values
across some cut as λi ∝ exp½−Θðlog2 iÞ�which is consistent
with the scaling observed in our numerical simulations.
Moreover, for this toy model, we show that with probability
at least 1 − δ, the equilibrium state after iterating the
process can be ε-approximated by a state with Schmidt
rank r ≤ expfO½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðn=εδÞp �g. Taking this toy model
analysis as evidence that the bond dimension of SEBD
when simulating a circuit whose effective 1D dynamics is
in an area-law phase obeys this asymptotic scaling leads to
Conjecture 10.

A. Specification of algorithm

In this section, we assume the reader is familiar with
standard tensor network methods, particularly algori-
thms for manipulating matrix product states (see, e.g.,
Refs. [94,95] for reviews).
For concreteness, we consider a rectangular grid of

qudits with local Hilbert space dimension q, although
the algorithm could be similarly defined for different
lattices. Assume without loss of generality that the grid
consists of n ¼ L1 × L2 qudits, where L1 is the number of
rows, L2 is the number of columns, and L1 ≤ L2. For each
qudit, let jii; i ∈ ½q� ≔ f0; 1;…; q − 1g, label a set of basis
states which together form the computational basis.
Assume all gates act on one site or two neighboring sites,
and the starting state is j0i⊗n. Let d denote the circuit depth,
which should be regarded as a constant. For a fixed circuit
instance C, the goal is to sample from a distribution close to
DC, defined to be the distribution of the output of C upon
measuring all qudits in the computational basis. For an
output string x ∈ ½q�n, we let DCðxÞ denote the probability
of the circuit outputting x after measurement. The high-
level behavior of the algorithm is illustrated in Fig. 1.
Recall that C can always be exactly simulated in time
L2qΘðdL1Þ using standard tensor network algorithms [13].
Since all of the single-qudit measurements commute, we

can measure the qudits in any order. In particular, we can

FIG. 1. Schematic depiction of SEBD simulating a shallow 2D
circuit. In all figures, the 2D circuit is depicted as a spacetime
volume, with time flowing upward. The blue regions correspond
to sites for which measurements have been simulated, while
green regions correspond to unmeasured sites. In (a), we apply all
gates in the light cone of column 1, namely, those gates
intersecting the spacetime volume shaded red. In (b), we simulate
the computational basis measurement of column 1. In (c), we
apply all gates in the light cone of column 2 that were previously
unperformed. (d) depicts the algorithm at an intermediate stage of
the simulation, after the measurements of about half of the qudits
have been simulated. The algorithm stores the current state as an
MPS at all times, which may be periodically compressed to
improve efficiency. (e) depicts the algorithm at completion: The
measurements of all n of the qudits are simulated.
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first measure all of the sites in column 1, then those in
column 2, and iterate until we have measured all L2

columns. This is the measurement order we take. Now,
consider the first step in which we measure column 1.
Instead of applying all of the gates of the circuit and then
measuring, we may instead apply only the gates in the light
cone of column 1, that is, the gates that are causally
connected to the measurements in column 1. We may
ignore qudits that are outside the light cone, by which we
mean qudits that are outside the support of all gates in the
light cone.
Let ρ1 ¼ j0ih0j⊗L1 denote the trivial starting state that is

a tensor product of j0i states in column 1, which the
algorithm represents as anMPS. Let V1 denote the isometry
corresponding to applying all gates in the light cone of this
column. The algorithm simulates the application of V1 by
adding qudits in the light cone of column 1 as necessary
and applying the associated unitary gates, maintaining the
description of the state as an MPS of length L1 as illustrated
in Fig. 2. Since there are up to dþ 1 columns in the light
cone of column 1, each tensor of the MPS after the
application of V1 has up to dþ 1 dangling legs corre-
sponding to physical indices, for a total physical dimension
of at most qdþ1. Since in the application of V1 there are up
to Oðd2Þ gates that act between any two neighboring rows,

the (virtual) bond dimension of the updated MPS is at
most qOðd2Þ.
We now simulate the computational basis measurement

of column 1. More precisely, we measure the qudits of
column 1 one by one. We first compute the respective
probabilities p1; p2;…; pq of the q possible measurement
outcomes for the first qudit. This involves contracting the
MPS encoding V1ρ1V

†
1. We now use these probabilities to

classically sample an outcome i ∈ ½q� and update the MPS
to condition on this outcome. That is, if (say) we obtain
outcome 1 for site i, we apply the projector j0ih0j to site i of
the state and subsequently renormalize. After doing this for
every qudit in the column, we have exactly sampled an
output string x1 ∈ ½q�L1 from the marginal distribution on
column 1 and are left with an MPS description of the pure,
normalized, postmeasurement state ρ2 proportional to
trcolumn 1ðΠx

1V1ρ1V
†
1Πx

1Þ, where Πx
1 denotes the projection

of column 1 onto the sampled output string x ¼ x1. Using
standard tensor network algorithms, the time complexity of
these steps is L1qOðd2Þ.
We next consider column 2. At this point, we add the

qudits and apply the gates that are in the light cone of
column 2 but were not applied previously. Denote this
isometry by V2. It is straightforward to see that this step
respects causality. That is, if some gate U is in the light
cone of column 1, then any gate W that is in the light cone
of column 2 but not column 1 cannot be required to be
applied before U, because if it were, then it would be in
the light cone of column 1. Hence, when we apply gates
in this step, we never apply a gate that is required to be
applied before some gate that is applied in the first step.
After this step, we apply all gates in the light cone of
columns 1 and 2, and we also project column 1 onto the
measurement outcomes we observe.
By simulating the measurements of column 2 in a similar

way to those of column 1, we sample a string x2 from the
marginal distribution on column 2, conditioned on the
previously observed outcomes from column 1. Each time
an isometry Vj is applied, the bond dimension of the MPS
representation of the current state, in general, increases by a
multiplicative factor. In particular, if we iterate this pro-
cedure to simulate the entire lattice, we eventually encoun-
ter a maximal bond dimension of up to qOðdL1Þ and obtain a
sample x ¼ ðx1;x2;…;xL2

Þ ∈ ½q�n from the true output
distribution.
To improve the efficiency at the expense of accuracy, we

may compress the MPS in each iteration to one with smaller
bond dimension using standard MPS compression algo-
rithms. In particular, in each iteration j before we apply the
corresponding isometry Vj, we first discard as many of the
smallest singular values (i.e., Schmidt values) associated
with each cut of the MPS as possible up to a total truncation
error per bond of ϵ, defined as the sum of the squares of the
discarded singular values. The bond dimension across any

FIG. 2. Iteration of SEBD. In (a), we begin with an MPS
describing the current state ρj. In (b), the MPS is compressed via
truncation of small Schmidt values. This generally decreases the
bond dimension of the MPS, depicted in the cartoon by a
reduction in the thickness of the lines between tensors. In (c),
qudits acted on by Vj that are not already incorporated into the
current state are added to the MPS (increasing the physical bond
dimension of the MPS) and initialized in j0i states. In (d), the
unitary gates associated with Vj are applied. (e) depicts the MPS
after the application of Vj; the virtual bond dimension generally
is increased by the application of Vj. In (f), the measurement of
column j is performed, and the outcome 0110 is obtained.
Subsequently, column j is projected onto the outcome 0110,
removing the physical legs associated with these sites from the
MPS. The resulting state is ρjþ1.
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cut is reduced by the number of discarded values. This
truncation introduces some error that we quantify below.
If the maximal bond dimension of this truncated version

of the simulation algorithm is D, the total run-time of the
full algorithm to obtain a sample is bounded by (taking q
and d to be constants) OðnD3Þ using standard MPS
compression algorithms.
We assume that for a specified maximal bond dimension

D and truncation error per bond ϵ, if a bond dimension ever
exceeds D, then the algorithm terminates and outputs a
failure flag fail. Hence, the run-time of the algorithm when
simulating some circuit C with parameters ϵ and D is
bounded by OðnD3Þ, and the algorithm has some proba-
bility of failure pf;C. We summarize the SEBD algorithm in
Algorithm 1.
The untruncated version of the algorithm presented

above samples from the true distribution DC of the
measurement outcomes of the original 2D circuit C.
However, due to the MPS compression which we perform
in each iteration and the possibility of failure, the algorithm
incurs some error which causes it to instead sample from
some distribution D0

C. Here, we bound the total variation
distance between these distributions, given by

1

2
kD0

C −DCk1 ¼
1

2

X
x

jD0
CðxÞ −DCðxÞj þ

1

2
pf;C; ð3Þ

where the sum runs over the qn possible output strings (not
including fail), in terms of the truncation error made by the
algorithm.

We first obtain a very general bound on the error made
by SEBD with no bond dimension cutoff in terms of
the truncation error. Note that the truncation error may
depend on the (random) measurement outcomes and is
itself, therefore, a random variable. See Appendix E in
Supplemental Material [72] for a proof.
Lemma 1.—Let ϵi denote the sum of the squares of all

singular values discarded in the compression during iter-
ation i of the simulation of a circuit C with output
distribution DC by SEBD with no bond dimension cutoff,
and let Λ denote the sum of all singular values discarded
over the course of the algorithm. Then, the distribution D0

C
sampled from by SEBD satisfies

1

2
kD0

C −DCk1 ≤ E
XL2

i¼1

ffiffiffiffiffiffi
2ϵi

p
≤

ffiffiffi
2

p
EΛ; ð4Þ

where the expectations are over the random measurement
outcomes.
From Lemma 1, we immediately obtain two corollaries.

The first is useful for empirically bounding the sampling
error in total variation distance made by SEBD when
the algorithm also has a bond dimension cutoff. The second
is a useful asymptotic statement. The corollaries follow
straightforwardly from the coupling formulation of varia-
tional distance, Markov’s inequality, and the triangle
inequality.
Corollary 1.—Let A denote a SEBD algorithm with

truncation error parameter ϵ and bond dimension cutoff D.
Consider a fixed circuit C, and suppose that A applied to
this circuit fails with probability pf;C. Then A samples
from the output distribution of C with total variation
distance error bounded by L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf;C.
If the failure probability of A averaged over random

choice of circuit instance and measurement outcome is pf,
then for any δ, on at least 1 − δ fraction of circuit instances,
A samples from the true output distribution with a total
variation distance error bounded by L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf=δ.
In practice, the variational distance error of SEBD with

truncation error ϵ applied to the simulation of some circuit
C can be bounded by constructing a confidence interval for
pf;C and applying the above bound.
Corollary 2.—Let A denote a SEBD algorithm with

truncation error parameter ϵ and no bond dimension cutoff.
Suppose that, for some random circuit family with q ¼
Oð1Þ and d ¼ Oð1Þ, the expected bond dimension across
any cut is bounded by polyðn; 1=ϵÞ. Then, SEBDwith some
choice of ϵ ¼ 1=polyðnÞ and D ¼ polyðnÞ runs in time
polyðn; 1=ε; 1=δÞ and, with probability at least 1 − δ over
the choice of circuit instance C, samples from the output
distribution of C with variational distance error less than ε.
Thus, to prove the part of Conjecture 1 about sampling

up to total variation distance error ε for uniform random
circuit families, it would suffice to show that there is a 2D

Algorithm 1. SEBD

Input: circuit instance C, truncation error ϵ, bond
dimension cutoff D

Output: string x ∈ ½q�n or fail

Run-time: OðnD3Þ [q and d assumed to be constants]

1: initialize an MPS in the state j0ih0j⊗L1 , corresponding to
column 1

2: for t ¼ 1…L2 do

3: compress MPS describing state by truncating small
singular values, up to error ϵ per bond

4: apply Vt, corresponding to gates in the light cone of
not yet applied

5: if some bond dimension is greater than D, terminate
and output fail

6: simulate measurement of all qudits in column t via
MPS contraction and sampling

7: apply Πxt
t to condition on measurement string xt

observed for that column
return ðx1;…;xL2

Þ ∈ ½q�n
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constant-depth uniform random quantum circuit family
with the worst-case-hard property for which the expected
bond dimension across any cut while running SEBD with
truncation parameter ϵ is bounded by polyðn; 1=ϵÞ. Later,
we introduce two candidate circuit families for which we
can give numerical and analytical evidence that this
criterion is indeed met.
In the next subsection, we show how the other part of

Conjecture 1, regarding computing output probabilities,
also follows from a polyðn; 1=ϵÞ bound on the bond
dimension of states encountered by SEBD on uniform
worst-case-hard circuit families.

B. Computing output probabilities with SEBD

In the previous section, we describe how a SEBD
algorithm with a truncation error parameter ϵ and a bond
dimension cutoff D applied to a circuit C samples from a
distribution D0

C satisfying kD0
C −DCk1 ≤ 2L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ
2pf;C, where pf;C is the probability that some bond
dimension exceeds D and the algorithm terminates and
indicates failure. Expanding the expression for the 1-norm
and rearranging, we have

1

qn
X
x

jD0
CðxÞ −DCðxÞj ≤

2L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf;C

qn
: ð5Þ

SEBD with bond dimension cutoff D can be used to
compute D0

CðxÞ for any output string x in time OðnD3Þ
(taking q and d to be constants). To do this, for a fixed
output string x, SEBD proceeds similarly to the case in
which it is being used for sampling, but, rather than
sampling from the output distribution of some column, it
simply projects that column onto the outcome specified by
the string x and computes the conditional probability of
that outcome via contraction of the MPS. That is, at
iteration t, the algorithm computes the conditional prob-
ability of measuring the string xt ∈ ½q�L1 in column t,
D0

Cðxtjx1;…;xt−1Þ, by projecting column t onto the
relevant string via the projector Πxt

t and then contracting
the relevant MPS. If the bond dimension ever exceeds D,
then it must hold that D0

CðxÞ ¼ 0, and so the algorithm
outputs zero and terminates. Otherwise, the algorithm
outputsD0

CðxÞ ¼
QL2

t¼1D
0
Cðxtjx1;…;xt−1Þ. We summarize

this procedure in Algorithm 2.
We have therefore shown the following.
Lemma 2.—Let pf;C be the failure probability of SEBD

when used to simulate a circuit instance C with truncation
error parameter ϵ and bond dimension cutoff D. Suppose
x ∈ ½q�n is an output string drawn uniformly at random.
Then Algorithm 2 outputs a number D0

CðxÞ satisfying

ExjD0
CðxÞ −DCðxÞj ≤

2L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf;C

qn
: ð6Þ

The above lemma bounds the expected error incurred
while estimating a uniformly random output probability for
a fixed circuit instance C. We may use this lemma to
straightforwardly bound the expected error incurred while
estimating the probability of a fixed output string over a
distribution of random circuit instances. The corollary is
applicable if the distribution of circuit instances has the
property of being invariant under an application of a final
layer of arbitrary single-qudit gates. This includes circuits
in which all gates are Haar-random (as long as every qudit
is acted on by some gate) but is more general. In particular,
any circuit distribution in which the final gate to act on any
given qudit is Haar-random satisfies this property. This fact
is relevant in subsequent sections.
Corollary 3.—Let pf be the failure probability of SEBD

when used to simulate a random circuit instance C with
truncation error parameter ϵ and bond dimension cutoff D,
where C is drawn from a distribution that is invariant under
application of a final layer of arbitrary single-qudit
gates. Then for any fixed string x ∈ ½q�n the output of
Algorithm 2 satisfies

ECjD0
CðxÞ −DCðxÞj ≤

2L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf

qn
: ð7Þ

Proof.—Averaging the bound of Eq. (6) over random
circuit instances, we have

EyECjD0
CðyÞ −DCðyÞj ≤

2L2

ffiffiffiffiffiffiffiffiffiffi
2ϵL1

p þ pf

qn
: ð8Þ

Let Ly denote a layer of single-qudit gates with the
property that Lyjxi ¼ jyi. By assumption, C is distributed

Algorithm 2. SEBD for computing output probabilities.

Input: circuit instance C, truncation error ϵ, bond
dimension cutoff D, string x ∈ ½q�n

Output: D0
CðxÞ

Run-time: OðnD3Þ [q and d assumed to be constants]

1: initialize an MPS in the state j0ih0j⊗L1 , corresponding
to column 1

2: for t ¼ 1…L2 do

3: compress MPS describing state by truncating
small singular values, up to error ϵ per bond

4: apply Vt, corresponding to gates in the light cone
of column t not yet applied

5: if some bond dimension is greater than D, terminate
and output zero

6: apply Πxt
t to condition on string xt

7: compute D0
Cðxtjx1;…;xt−1Þ via MPS contraction

return D0
CðxÞ ¼

QL2

t¼1 D
0
Cðxtjx1;…;xt−1Þ
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identically to the composition of Cwith Ly , denoted Ly ∘C.
Together with the observation that DLy ∘CðyÞ ¼ DCðxÞ, we
have

EyECjD0
CðyÞ−DCðyÞj ¼EyECjD0

Ly ∘CðyÞ−DLy ∘CðyÞj ð9Þ

¼ ECjD0
CðxÞ −DCðxÞj; ð10Þ

from which the result follows. ▪
The following asymptotic statement follows straight-

forwardly.
Corollary 4.—Let A denote a SEBD algorithm with

truncation error parameter ϵ and no bond dimension cutoff.
Suppose that, for some random circuit family with q ¼
Oð1Þ and d ¼ Oð1Þ, the expected bond dimension across
any cut is bounded by polyðn; 1=ϵÞ. Then, SEBDwith some
choice of ϵ ¼ 1=polyðnÞ and D ¼ polyðnÞ runs in time
polyðn; 1=ε; 1=δÞ and, with probability at least 1 − δ over
the choice of circuit instance C, estimates DCðxÞ for some
fixed x ∈ ½q�n up to additive error bounded by ε=qn.
Corollary 4 shows how the part of Conjecture 1 about

computing arbitrary output probabilities to error ε=qn

would follow from a bound on the bond dimension across
any cut when SEBD runs on a uniform worst-case-hard
circuit family.

C. Example: SEBD applied to cluster state with
Haar-random measurements (CHR)

To illustrate the connection between SEBD and random-
unitary-and-measurement dynamics, we now study the
SEBD algorithm in more detail for a simple uniform family
of 2D random circuits that possesses the worst-case-hard
property required by Conjecture 1. The model we consider
is the following: Start with a 2D cluster state of n qubits
arranged in a

ffiffiffi
n

p
×

ffiffiffi
n

p
grid, apply a single-qubit Haar-

random gate to each qubit, and then measure all qubits in
the computational basis. Recall that a cluster state may be
created by starting with the product state jþi⊗n before
applying CZ gates between all adjacent sites. An equivalent
formulation which we find convenient in the subsequent
section is to measure each qubit of the cluster state in a
Haar-random basis. We refer to this model as CHR, for
“cluster state with Haar-random measurements.”
Following Ref. [8], it is straightforward to show that

sampling from the output distribution of CHR is classically
worst-case hard assuming the polynomial hierarchy (PH)
does not collapse to the third level. It can also be readily
shown, following Ref. [54], that near-exactly computing
output probabilities of CHR is #P-hard in the average case.
These results rule out, under standard conjectures, the
existence of a classical sampling algorithm for CHR that
succeeds for all instances or a classical algorithm for
efficiently computing most output probabilities of CHR
near exactly. A natural question is then whether efficient

approximate average-case versions of these algorithms
may exist. We formalize these questions as the prob-
lems CHRsamp=prob

� .

Problem 1 (CHRsamp=prob
� ).—Given as input a random

instance C of CHR (specified by a side length
ffiffiffi
n

p
and a set

of n single-qubit Haar-random gates applied to the
ffiffiffi
n

p
×ffiffiffi

n
p

cluster state) and error parameters ε and δ, perform the
following computational task in time polyðn; 1=ε; 1=δÞ.

(i) CHRsamp
� .—Sample from a distribution D0

C that is ε-
close in total variation distance to the true output
distribution DC of circuit C, with probability of
success at least 1 − δ over the choice of measure-
ment bases.

(ii) CHRprob
� .—Estimate DCð0Þ, the probability of

obtaining the all-zeros string upon measuring the
output state of C in the computational basis, up to
additive error at most ε=2n, with probability of
success at least 1 − δ over the choice of measure-
ment bases.

We now show that SEBD solves CHRsamp=prob
� if a certain

form of 1D dynamics involving local unitary gates and
measurements is classically simulable. We first consider the
sampling variant of SEBD. Specializing to the CHR model,
the algorithm takes on a particularly simple form due to the
fact that the cluster state is built by applying CZ gates
between all neighboring pairs of qubits, which are initial-
ized in jþi states. Because of this structure, the radius of
the light cone for this model is simply one. In particular, the
only gates in the light cone of columns 1–j are the Haar-
random single-qubit gates acting on qubits in these col-
umns, as well as CZ gates that act on at least one qubit
within these columns. This permits a simple prescription
for SEBD applied to this problem.
Initialize the simulation algorithm in the state ρ1 ¼

jþihþj⊗ ffiffi
n

p
corresponding to column 1. To implement

the isometry V1, initialize the qubits of column 2 in the
state jþihþj⊗ ffiffi

n
p

and apply CZ gates between adjacent
qubits that are both in column 1 and between adjacent
qubits in separate columns. Now, measure the qubits of
column 1 in the specified Haar-random bases (equivalently,
apply the specified Haar-random gates and measure in the
computational basis), inducing a pure state ρ2 with support
in column 2. Iterating this process, we progress through
a random sequence of 1D states on

ffiffiffi
n

p
qubits

ρ1 → ρ2 → � � � → ρ ffiffi
n

p , which we see can be equivalently
understood as arising from a 1D dynamical process con-
sisting of alternating layers of random unitary gates and
weak measurements.
It is helpful to introduce notation. Define jθ;ϕi ≔

cosðθ=2Þj0i þ eiϕ sinðθ=2Þj1i. In other words, let jθ;ϕi
denote the single-qubit pure state with polar angle θ and

azimuthal angle ϕ on the Bloch sphere. Let θðtÞi and ϕðtÞ
i

specify the measurement basis of the qubit in row i and
column t; that is, the projective measurement on the qubit in
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row i and column t is fΠ0

θðtÞi ;ϕðtÞ
i

;Π1

θðtÞi ;ϕðtÞ
i

g with Π0

θðtÞi ;ϕðtÞ
i

≔

jθðtÞi ;ϕðtÞ
i ihθðtÞi ;ϕðtÞ

i j and Π1

θðtÞi ;ϕðtÞ
i

≔ I − Π0

θðtÞi ;ϕðtÞ
i

. We also

define

M0ðθ;ϕÞ ≔
�
cosðθ=2Þ 0

0 e−iϕ sinðθ=2Þ

�
; ð11aÞ

M1ðθ;ϕÞ ≔
�
sinðθ=2Þ 0

0 eiϕ cosðθ=2Þ

�
: ð11bÞ

Note that fM0ðθ;ϕÞ;M1ðθ;ϕÞg defines a weak single-
qubit measurement. We now describe, in Algorithm 3, a
1D process which we claim produces a sequence of states
identical to that encountered by SEBD for the same
choice of measurement bases and measurement outcomes
and also has the same measurement statistics.
Lemma 3.—For a fixed choice of fθðtÞi ;ϕðtÞ

i g para-

meters, the joint distribution of outcomes fXðtÞ
i gi;t is

identical to that of fYðtÞ
i gi;t, where fYðtÞ

i gi;t are the
measurement outcomes obtained upon measuring all
qubits of a

ffiffiffi
n

p
×

ffiffiffi
n

p
cluster state, with the measure-

ment on the qubit in row i and column t being
fΠ0

θðtÞi ;ϕðtÞ
i

;Π1

θðtÞi ;ϕðtÞ
i

g. Furthermore, for any fixed choice

of measurement outcomes, φj ¼ ρj for all j ∈ f1;…;
ffiffiffi
n

p g,
where ρj is the state at the beginning of iteration j of the
SEBD algorithm.
Proof.—The lemma follows from the above descrip-

tion of the behavior of SEBD applied to CHR, as well
as the following identities holding for any single-qubit
state jξi which may be verified by straightforward
calculation:

ðΠ0
θ;ϕ ⊗ IÞCZðjξi ⊗ jþiÞ ¼ jθ;ϕi ⊗ HM0ðθ;ϕÞjξi;

ð12Þ

ðΠ1
θ;ϕ ⊗ IÞCZðjξi ⊗ jþiÞ ¼ jπ − θ;−ϕi ⊗ HM1ðθ;ϕÞjξi:

ð13Þ

▪
We see that, for a fixed choice of single-qubit measure-

ment bases fθðtÞj ;ϕðtÞ
j gt;j associated with an instance C, we

can define an associated 1D process consisting of alter-
nating layers of single-qubit weak measurements and local
unitary gates, such that simulating this 1D process is
sufficient for sampling from DC.
Now, recall that, in the context of simulating CHR, each

single-qubit measurement basis is chosen randomly accord-
ing to the Haar measure. That is, the Bloch sphere angles

ðθðtÞi ;ϕðtÞ
i Þ are Haar-distributed. If we define xðtÞi ≡ cos θðtÞi ,

we find that xðtÞi is uniformly distributed on the interval

½−1; 1�. The parameters ϕðtÞ
i are uniformly distributed on

½0; 2π�. Using these observations, as well as the observation
that the outcome probabilities of the measurement of qubit i

in iteration t are independent of the azimuthal angle ϕðtÞ
i

when t <
ffiffiffi
n

p
, we may derive effective dynamics of a

random instance.
Define the operators

NðxÞ ≔

0
BB@

ffiffiffiffiffiffi
1þx
2

q
0

0
ffiffiffiffiffiffi
1−x
2

q
1
CCA; x ∈ ½−1; 1�:

Note that fNðxÞ; Nð−xÞg defines a weak measurement.
Also, define the phase gate

PðϕÞ ≔
�
1 0

0 eiϕ

�
; ϕ ∈ ½0; 2π�:

By randomizing each single-qubit measurement basis
according to the Haar distribution, one finds that the
dynamics of Algorithm 3 (which applies for a fixed choice
of measurement bases) may be written as Algorithm 4
below, where the notation x ∈U ½−1; 1� means that x is a
random variable uniformly distributed on ½−1; 1�. That is,
the distribution of random sequences φ1 → φ2 → � � � →
φ ffiffi

n
p and distribution of output statistics produced by

Algorithm 4 is identical to that produced by SEBD applied
to CHR.
Hence, if time-evolving block decimation (TEBD) can

efficiently simulate the process of Algorithm 4 with high
probability, then SEBD can solve CHRsamp

� and CHRprob
� .

We formalize this in the following lemma.
Lemma 4.—Suppose that TEBD can efficiently simulate

the process described in Algorithm 4 in the sense that the
expected bond dimension across any cut is bounded by

Algorithm 3. Effective 1D dynamics of a fixed instance of
CHR.

1: φ1 ← jþihþj⊗ ffiffi
n

p
.

2: for t ¼ 1…
ffiffiffi
n

p
− 1 do

3: apply a CZ gate between every adjacent pair of qubits

4: measure fM0ðθðtÞi ;ϕðtÞ
i Þ;M1ðθðtÞi ;ϕðtÞ

i Þg on qubit i,

obtaining XðtÞ
i , for i ∈ f1;…;

ffiffiffi
n

p g
5: apply a Hadamard transform

6: φtþ1 ← resulting state
7: measure fΠ0

θð
ffiffi
n

p Þ
i ;ϕð ffiffinp Þ

i

;Π1

θð
ffiffi
n

p Þ
i ;ϕð ffiffinp Þ

i

g on qubit i, obtaining

Xð ffiffi
n

p Þ
i , for i ∈ f1;…;

ffiffiffi
n

p g
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polyðn; 1=ϵÞ, where ϵ is the truncation error parameter.
Then, SEBD can be used to solve CHRsamp

� and CHRprob
� .

Proof.—The proof follows from Corollary 2,
Corollary 4, and the equivalence to Algorithm 4 discussed
above. ▪
We have shown how SEBD applied to CHR can be

reinterpreted as TEBD applied to a 1D dynamical process
involving alternating layers of random unitaries and weak
measurements. Up until this point, there has been little
reason to expect that SEBD is efficient for the simulation of
CHR. In particular, with no truncation, the bond dimension
of the MPS stored by the algorithm grows exponentially as
the algorithm sweeps across the lattice.
We now invoke the findings of a number of related recent

works [22–49] to motivate the possibility that TEBD can
efficiently simulate the effective 1D dynamics. These
works study various 1D dynamical processes involving
alternating layers of measurements and random local
unitaries. In some cases, the measurements are considered
to be projective and occur only with some probability p. In
other cases, similarly to Algorithm 4, weak measurements
are applied to each site with probability one. The common
finding of these papers is that such models appear to exhibit
an entanglement phase transition driven by measurement
probability p (in the former case) or measurement strength
(in the latter case). On one side of the transition, the
entanglement entropy obeys an area law, scaling as Oð1Þ
with the length L. On the other side, it obeys a volume law,
scaling as OðLÞ.
Based on these works, one expects the entanglement

dynamics to saturate to an area-law or volume-law phase.
And in fact, our numerical studies (presented in Sec. V)
suggest that these dynamics saturate to an area-law phase.
The common intuition that 1D quantum systems obeying
an area law for the von Neumann entropy are easy to
simulate with matrix product states therefore suggests that
SEBD applied to this problem is efficient. While counter-
examples to this common intuition are known [93], they are
contrived and do not present an obvious obstruction for our

algorithm. To better understand the relationship between
maximal bond dimension and truncation error when the
effective dynamics is in the area-law phase as well as
rule out such counterexamples, in the following section,
we describe a toy model for a unitary-and-measurement
process in the area-law phase, which predicts a super-
polynomial decay of Schmidt values across any cut and,
therefore, predicts that a polynomial run-time is sufficient
to perform the simulation to 1=polyðnÞ error. Our numeri-
cal results (presented in Sec. V) suggest that the effective
dynamics of the random circuit architectures we consider
are indeed in the area-law phase, with entanglement
spectra consistent with those predicted by the toy model
dynamics. Further analytical evidence for efficiency is
given in Sec. VI.
Note that, although we explicitly derive the effective 1D

dynamics for the CHR model and observe it to be a simple
unitary-and-measurement process, the interpretation of the
effective 1D dynamics as a unitary-and-measurement
process is not specific to CHR and is, in fact, general.
In the general case, SEBD tracks OðrÞ columns simulta-
neously where r is the radius of the light cone correspond-
ing to the circuit. In each iteration, new qudits that
have come into the light cone are added, unitary gates
that have come into the light cone are performed, and
finally projective measurements are performed on a single
column of qudits. Similarly to the case of CHR, this entire
procedure can be viewed as an application of unitary gates
followed by weak measurements on a 1D chain of qudits of
dimension qOðrÞ. Intuitively, increasing the circuit depth
corresponds to both increasing the local dimension in the
effective 1D dynamics and decreasing the measurement
strength. The former is due to the fact that, in general, the
light cone radius r increases as depth is increased, and
the local dimension of the effective dynamics is qOðrÞ. The
latter is due to the fact that, as r increases, the number of
tracked columns increases but the number of measured
qudits in a single round stays constant. Hence, the fraction
of measured qudits decreases, and, intuitively, we expect
this to correspond to a decrease in effective measurement
strength. This intuition together with the findings of prior
works on unitary-and-measurement dynamics suggests that
the effective dynamics experiences an entanglement phase
transition from an area-law to volume-law phase as q or d is
increased, and, therefore, SEBD experiences a computa-
tional phase transition, supporting Conjecture 2. While this
analogy is not perfect, we provide further analytical
evidence in Sec. VI that the effective 1D dynamics indeed
undergoes such a phase transition.

D. Conjectured entanglement spectrum of unitary-and-
measurement dynamics in an area-law phase

Numerical (Sec. V) and analytical (Sec. VI) evidence
suggests that the effective 1D dynamics corresponding
to the uniform 2D shallow random circuit families we

Algorithm 4. Effective 1D dynamics of CHR.

1: φ1 ← jþihþj⊗
ffiffi
n

p
.

2: for t ¼ 1…
ffiffiffi
n

p
− 1 do

3: apply a CZ gate between every adjacent pair of qubits

4: for i ¼ 1…
ffiffiffi
n

p
do

5: measure fNðxÞ; Nð−xÞg on qubit i with x ∈U ½−1; 1�
6: apply the gate PðϕÞ with ϕ ∈U ½0; 2π� to qubit i

7: apply a Hadamard transform

8: φtþ1 ← resulting state
9: perform a projective measurement on each qubit in a

Haar-random basis
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consider are in the area-law phase, making efficient
simulation via SEBD very plausible. However, it is desir-
able to have clear predictions for the scaling of the
entanglement spectra for states of the effective 1D dynam-
ics, as this allows us to make concrete predictions for error
scaling of SEBD and rule out (contrived) examples of states
[93] which cannot be efficiently represented via MPS
despite obeying an area law for the von Neumann entan-
glement entropy.
To this end, we study a simple toy model of how

entanglement might scale in the area-law phase of a
unitary-and-measurement circuit. Consider a chain of n
qubits where we are interested in the entanglement across
the cut between 1;…; n=2 and n=2þ 1;…; n (assume n is
even). We model the dynamics as follows.
The qubits are initialized to the unentangled product state

j0i⊗n. Then, in each time step we perform the following
three steps:
(1) Set the state of sites n=2 and n=2þ 1 to be an

Einstein-Podolsky-Rosen (EPR) pair jΦi ¼ ðj00i þ
j11iÞ= ffiffiffi

2
p

.
(2) Perform the cyclic permutations of qubits

ðn=2; n=2 − 1;…; 1Þ and ðn=2þ 1;n=2þ 2;…;nÞ.
That is, move each qubit one step away from the
central cut, except for qubits 1 and n, which are
moved to n=2 and n=2þ 1, respectively.

(3) Perform a weak measurement on each qubit
with Kraus elements M0ðθÞ ¼ cosðθ=2Þj0ih0j þ
sinðθ=2Þj1ih1j and M1ðθÞ ¼ sinðθ=2Þj0ih0j þ
cosðθ=2Þj1ih1j. This is based on Eq. (11), but the
phases do not matter here so we drop them for
simplicity.

Without the measurements, this would create one EPR
pair in each time step until the system has n=2 EPR pairs
across the cut after time n=2. However, the measurements
have the effect of reducing the entanglement. For this
process, we derive the functional form of the asymptotic
scaling of half-chain Schmidt coefficients λ1 ≥ λ2 ≥ � � �.
Moreover, bounds on the scaling of the entanglement
spectrum allow us to derive a relation between the
truncation error (sum of squares of discarded Schmidt
values) ϵ incurred upon discarding small Schmidt values
and the rank r of the post-truncation state. The bounds are
given in the following lemma, which is proved in
Appendix E in Supplemental Material [72].
Lemma 5.—Let λ1 ≥ λ2 ≥ � � � denote the half-chain

Schmidt values after at least n=2 iterations of the toy
model process. Then, with probability at least 1 − δ

the half-chain Schmidt values indexed by i ≥ i� ¼
expfΘ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðn=δÞp �g obey the asymptotic scaling

λi ∝ − expfΘ½log2ðiÞ�g: ð14Þ

Furthermore, upon truncating the smallest Schmidt coef-
ficients up to a truncation error of ϵ, with probability at least

1 − δ, the half-chain Schmidt rank r of the post-truncation
state obeys the scaling

r ≤ expfΘ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðn=εδÞ

p
�g: ð15Þ

This is the basis for our Conjecture 10. More precisely, we
take this analysis as evidence that the bond dimension D,
truncation error ϵ, and system size n obey the scaling D ≤
expfΘ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðn=ϵδÞp �g with probability 1 − δ over random
circuit instance and random measurement outcomes when
SEBD simulates a random constant-depth 2D circuit whose
effective 1D dynamics lie in the area-law phase. Recalling
that the run-time of SEBD scales likeOðnD3Þ for a maximal
bond dimension of D and using the relationship between
truncation error, failure probability, variational distance
error, and simulable circuit fraction given in Corollary 1,
we conclude that SEBD with a maximal bond dimen-
sion cutoff scaling as expfΘ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðn=ϵδÞp �g runs in time
n1þoð1ÞexpfΘ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logð1=εδÞp �g and simulates 1 − δ fraction of
random circuit instances up to variational distance error ε.
It is important to note what this heuristic argument leaves

out. While a 1D unitary-and-measurement circuit indeed
createsOð1Þ ebits across any given cut in each round, these
do not remain in the form of distinct pairs of qubits. The
unitary dynamics within each side of the cut have the effect
of transforming the Schmidt bases into entangled ones.
This makes the measurements less effective at reducing the
entanglement, for reasons that can be understood in terms
of quantum state merging [27,96]. Another simplification
of the toy model is that the measurement angle θ is taken to
be a fixed constant rather than random. Finally, in the toy
model, we assume for simplicity that the EPR pairs move
cyclically. We expect that, if this effect is significant, it is
more likely to make the toy model overly pessimistic
compared with the real situation. Despite these simplifi-
cations, we believe this model is qualitatively accurate in
the area-law phase. Indeed, the scaling of Schmidt values
predicted by our toy model analysis is consistent with the
scaling we find numerically in Fig. 5.

IV. RIGOROUS ANALYSIS OF SEBD FOR THE
EXTENDED BRICKWORK ARCHITECTURE

In this section, we show that SEBD is provably efficient
for certain random circuit families that are worst-case
hard. We define the circuit architecture in Fig. 3. It follows
readily from prior works that exactly sampling from the
output distribution of this random circuit family for
arbitrary circuit instances or near-exactly computing
a specific output probability with high probability is
classically hard under standard complexity theoretic
assumptions. We summarize these observations in the
following lemma.
Lemma 6.—Let rðLÞ and vðLÞ be any polynomially

bounded functions, with vðLÞ ≥ La for some a > 0.
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Suppose that there exists a classical algorithm that runs in
time polyðnÞ and samples from the output distribution of
an arbitrary realization of Brickwork½L; rðLÞ; vðLÞ�, as
defined in Fig. 3. Then, the polynomial hierarchy collapses
to the third level. Suppose there exists a classical algorithm
that runs in time polyðn; 1=δÞ and, for an arbitrary fixed
output string x, with probability at least 1 − δ over choice
of random instance, computes the output probability of x
up to additive error 2−Θ̃ðn2Þ. Then, there exists a probabi-
listic polynomial-time algorithm for computing a #P-hard
function.
Proof.—We first note that Brickwork½L; rðLÞ; vðLÞ�

supports universal MBQC, in the sense that a specific
choice of gates can create a resource state that is universal
for MBQC. This is an immediate consequence of the proof
of universality of the “standard” brickwork architecture
(corresponding to r ¼ 1) proved in Ref. [90]. Indeed, when
using the extended brickwork architecture for MBQC,
measurements on the long 1D stretches of length 2r
may be chosen such that the effective state is simply
teleported to the end when computing from left to right
(i.e., measurements may be chosen such that the long 1D
segments simply amount to applications of identity gates on
the effective state). The scaling v ≥ La ensures that MBQC
with an extended brickwork resource state suffices to
simulate any bounded-error quantum polynomial time
computation with polynomial overhead. Since a specific
choice of gates creates a resource state for universal
MBQC, an algorithm that can simulate an arbitrary circuit
realization can be used to simulate arbitrary single-qubit
measurements on a resource state universal for MBQC.
Under postselection, such an algorithm can, therefore,
simulate post-bounded-error quantum polynomial time
[85] and, hence, cannot be efficiently simulated classically
unless the polynomial hierarchy collapses to the third
level [8].
Similarly, for some subsets of instances, it is #P-hard to

compute the output probability of an arbitrary string, since
(by choosing gates to create a resource state for universal
MBQC) this allows one to compute output probabilities
of universal polynomial-size quantum circuit families

which are known to be #P-hard. The result of Ref. [55]
is then applicable, which implies that if the gates are chosen
Haar-randomly, efficiently computing the output probabil-
ity of some fixed string with probability 1 − 1=polyðnÞ over
the choice of instance up to additive error bounded by
2−Θ̃ðn3Þ implies the ability to efficiently compute a #P-hard
function with high probability. ▪
Our goal is to prove that SEBD can efficiently approx-

imately simulate the extended brickwork architecture in the
average case for choices of extension parameters for which
the above hardness results apply. To this end, we first show
a technical lemma which describes how measurements
destroy entanglement in 1D shallow random circuits. In
particular, given a 1D state generated by a depth-2 Haar-
random circuit acting on qubits, after measuring some
contiguous region of spins B, the expected entanglement
entropy of the resulting postmeasurement pure state across
a cut going through B is exponentially small in the length of
B. We defer the proof to Appendix E in Supplemental
Material [72].
Lemma 7.—Suppose a 1D random circuit C is applied

to qubits f1;…; ng consisting of a layer of two-qubit
Haar-random gates acting on qubits ðk; kþ 1Þ for odd
k ∈ f1;…; n − 1g, followed by a layer of two-qubit
Haar-random gates acting on qubits ðk; kþ 1Þ for even
k ∈ f1;…; n − 1g. Suppose the qubits of region B ≔
fi; iþ 1;…; jg for j ≥ i are measured in the computational
basis, and the outcome b is obtained. Then, letting jψbi
denote the postmeasurement pure state on the unmeasured
qubits, and letting A ≔ f1; 2;…; i − 1g denote the qubits to
the left of B,

ESðAÞψb
≤ cjBj ð16Þ

for some universal constant c < 1, where the expectation
is over measurement outcomes and choice of random
circuit C.
We now outline the argument for why SEBD should be

efficient for the extended brickwork architecture for suffi-
ciently large extension parameters; full details may be
found in Appendix E in Supplemental Material [72].

FIG. 3. Extended brickwork architecture with n qubits. Here, circles represent qubits initialized in the state j0i⊗n, blue lines represent
the first layer of gates to act, orange lines represent the second layer, and black lines represent the third and final layer. All gates are
chosen Haar-randomly. We let Brickwork ðL; r; vÞ denote the corresponding random circuit with circuit layout depicted in the figure
above with vertical side length L, “extension parameter” 2r (which gives the distance between vertical gates acting on adjacent pairs of
rows), and number of pairs of columns of vertical gates v. In the above example, r ¼ 7 and v ¼ 4. The standard brickwork architecture
corresponds to r ¼ 1. Note that n ¼ ΘðLrvÞ.
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During the evolution of SEBD as it sweeps from left to
right across the lattice, it periodically encounters long
stretches of length 2r in which no vertical gates are applied.
We call these “1-local regions,” since the maps applied in
the corresponding effective 1D dynamics are 1-local when
the algorithm is in such a region. Hence, in the effective 1D
dynamics, no two-qubit maps are applied, and, therefore,
the bond dimension of the associated MPS cannot increase
during these stretches. It turns out that in 1-local regions,
not only does the bond dimension needed to represent the
state not increase, but it in fact rapidly decays in expect-
ation. If r is sufficiently large, then the effective 1D state at
the end of the 1-local region is very close to a product state
with high probability, regardless of how entangled the state
is before the region. Hence, when SEBD compresses the
MPS describing the effective state at the end of the region,
it may compress the bond dimension of the MPS to some
fixed constant with a very small incurred error. The two-
qubit maps that are performed in between 1-local regions
only increase the bond dimension by a constant factor.
Hence, with high probability, SEBD can use a Oð1Þ
maximal bond dimension cutoff and simulate a random
circuit with extended brickwork architecture with high
probability. More precisely, it turns out that the scaling r ≥
Θ½logðnÞ� is sufficient to guarantee efficient simulation with
this argument. A more precise statement of the efficiency of
SEBD for this architecture is given in the below lemma,
whose proof may be found in Appendix E in Supplemental
Material [72].
Lemma 8.—Let C be an instance of Brickwork ðL; r; vÞ.

Then, with probability at least 1 − 2−ΘðrÞ over the circuit
instance, SEBD running with maximal bond dimension
cutoff D ¼ Θð1Þ and truncation error parameter ϵ ¼ 2−ΘðrÞ
can be used to (i) sample from the output distribution of C
up to error n2−ΘðrÞ in variational distance and (ii) compute
the output probability of an arbitrary output string up to
additive error n2−ΘðrÞ=2n in run-time ΘðnÞ.
With an appropriate choice of r ¼ Θ½logðLÞ�, the above

result implies that SEBD can perform the simulation with
error 1=polyðnÞ for at least 1 − 1=polyðnÞ fraction of
instances. Similarly, choosing r to be a sufficiently large
polynomial in L, SEBD can perform the simulation with

error 2−n
1−δ

for 1 − 2−n
1−δ

fraction of instances, for any
constant δ > 0. We summarize these observations as the
following corollary.
Corollary 5.—For any choice of polynomially bounded

v; p1; p2, for any sufficiently large constant c SEBD can
simulate 1 − 1=p1ðnÞ fraction of instances of Brickwork
fL; ⌈c logðLÞ⌉; vðLÞg up to error ε ≤ 1=p2ðnÞ in time
OðnÞ. For any choice of δ > 0 and vðLÞ ≤ polyðLÞ, for
any sufficiently large constant c SEBD can simulate 1 −
2−n

1−δ
fraction of instances of Brickwork fL; ⌈Lc⌉; vðLÞg

up to error ε ≤ 2−n
1−δ

in time OðnÞ. Here, “simulate with
error ε” implies the ability to sample with variational

distance error ε and compute the output probability of
some fixed string x with additive error ε=2n.

V. NUMERICAL RESULTS

We implement SEBD on two families of random circuits:
one consisting of depth-3 random circuits defined on a
brickwork architecture consisting of three layers of two-
qubit Haar-random gates (Fig. 3 with parameter r ¼ 1) and
the other being the random circuit family obtained by
applying single-qubit Haar-random gates to all sites of a
cluster state—we referred to this problem as CHR pre-
viously. Note that the former architecture has depth three
(not including the measurement layer) and the latter
has depth four, and both architectures support universal
measurement-based quantum computation [90], meaning
they have the worst-case-hard property relevant for
Conjecture 1. We do not implement Patching, due to its
larger overhead.
Implementing SEBD on a standard laptop, we could

simulate typical instances of the 409 × 409 brickwork
model with truncation error 10−14 per bond with a run-
time on the order of one minute per sample and typical
instances of the 34 × 34 CHR model with truncation error
10−10 per bond with a run-time on the order of five minutes
per sample (these truncation error settings correspond to
sampling errors of less than 0.01 in variational distance as
derived previously in Sec. III). We, in fact, simulate
instances of CHR with grid sizes as large as 50 × 50,
although due to the significantly longer run-time for such
instances we do not perform large numbers of trials for
these cases. In the case of the 409 × 409 brickwork model,
performing over 3000 trials (consisting of generating a
random circuit instance and generating a sample from its
output distribution using a truncation error of 10−14) and
finding no trials for which the bond dimension became
large enough for the algorithm to fail, then with 95% con-
fidence, we may conclude that the probability that a random
trial fails, pf, is less than 0.001. Using the bound derived in
Sec. III, we can, therefore, conclude with 95% confidence
that, for greater than a 0.9 fraction of 409 × 409 circuit
instances, we can sample from that circuit instance’s output
distribution with variational distance error less than 0.01.
Intuitively, we expect the true simulable fraction to be much
larger than this statistical guarantee, as it appears that the
entanglement in the effective 1D dynamics grows exten-
sively only for highly structured instances. Note that, for
both models, the run-time for a fixed truncation error is
qualitatively highly concentrated around the mean. We
expect that substantially larger instances of both random
circuit families could be quickly simulated with more
computing power, although 409 × 409 simulation of the
brickwork architecture is already far beyond what could
have been achieved by previous simulation methods that
we are aware of.
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To make this more precise, it is useful to compare our
observed run-timewithwhat is possible bypreviouslyknown
methods. The previously best-known method that we are
aware of for computing output probabilities for these
architectureswould be towrite the circuit as a tensor network
and perform the contraction of the network [97]. The cost of
this process scales exponentially in the tree width of a graph
related to the quantum circuit [13], which, for a 2D circuit, is
thought to scale roughly as the surface area of theminimal cut
slicing through the circuit diagram, as in Eq. (1). Under this
metric for the simulation cost,we can assert that a circuit with
brickwork architecture on a 400 × 400 lattice using tensor
network contraction would be roughly equivalent to simu-
lating a depth-40 circuit on a 20 × 20 lattice with the
architecture considered in Ref. [97], where the entangling
gates are CZ gates. Note that general two-qubit gates can be
written as a pair of tensors connected by a bond with
dimension 4, but CZ gates require bond dimension only 2,
meaning their contribution to the surface area is half of a
random gate. With this in mind, the equivalence follows
because the product of the dimensions of all the bonds
crossing theminimal cut is equal to 2200 in both cases: For the
400 × 400 brickwork circuit, 100 gates cross the cut if we
orient the cut horizontally through the diagram in Fig. 3 (with
r ¼ 1) and each gate contributes a factor of 4;meanwhile, for
the depth-40 circuit on a 20 × 20 lattice, only one-fourth of
the 40 unitary layers contain gates that cross theminimal cut,
and each of these layers has 20 CZ gates that each contribute a
factor of 2. The task of simulating a depth-40 circuit on a
7 × 7 lattice is reported to require more than two hours using
tensor network contraction on the 281 petaflop supercom-
puter Summit [97], and the exponentiality of the run-time
suggests scaling this to 20 × 20 would take many orders of
magnitude longer, a task that is decidedly intractable.

The discrepancy between maximal lattice sizes achieved
for the twoarchitectures is a result of the fact that the twohave
very different effective 1D dynamics. In particular, the
entanglement of the effective dynamics for the brickwork
architecture saturates to a significantly smaller value than that
of the cluster state architecture. And even more directly
relevant for prospects of fast simulation, the typical spectrum
of Schmidt values across some cut of the effective 1D
dynamics for the brickwork architecture decays far more
rapidly than that of the 1D dynamics for CHR. For this
reason, the slower-decaying eigenvalue spectrum of CHR is
significantly more costly for the run-time of the algorithm.
(In fact, the eigenvalue spectrum of the brickwork model
decays sufficiently quickly that we are primarily limited not
by the run-time of our algorithm, but by our numerical
precision, which could, in principle, be increased.) But while
the slower decay of the spectrum for the CHR model
necessitates a longer run-time for a given side length, it
allows us to study the functional form of the spectrum and, in
particular, compare against the predictions of the toy model
in Sec. III D as we discuss below.
While we are computationally limited to probing low-

depth and small-size models, our numerical results point
toward SEBD having an asymptotic running time for both
models bounded by polyðn; 1=ε; 1=δÞ in order to sample
with variational distance ε or compute output probabilities
with additive error ε=qn with probability 1 − δ, suggesting
that Conjecture 1 is true. Our numerical evidence for this is
as follows.
(1) We find that the effective 1D dynamics associated

with these random circuit families appear to be in
area-law phases, as displayed in Fig. 4. That is, the
entanglement does not grow extensively with the
side length L but rather saturates to some constant.

FIG. 4. Rényi half-chain entanglement entropies Sk versus side length L in the effective 1D dynamics for the CHR and brickwork
models, after 80 (respectively, 550) iterations. Each point represents the entanglement entropy averaged over 50 random circuit instances
and over the final ten (respectively, 50) iterations for the CHR (respectively, brickwork) model. Dashed lines depict the half-chain
entanglement entropy scaling of a maximally entangled state, which can be created with a “worst-case” choice of gates for both
architectures. The maximal truncation error per bond ϵ is 10−10 for CHR and 10−14 for the brickwork model. (a) CHR (b) Brickwork.
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We furthermore observe qualitatively identical
behavior for some Rényi entropies Sα with α < 1.
It is known [93] that this latter condition is suffi-
cient to imply that a 1D state may be efficiently
described by an MPS, indicating that SEBD is
efficient for these circuit families and that Conjec-
ture 1 is true.

(2) For further evidence of efficiency, we study the
functional form of the entanglement spectra of the
effective 1D dynamics. For the effective 1D dynam-
ics corresponding to CHR, we observe superpoly-
nomial decay of eigenvalues (i.e., squared Schmidt
values) associated with some cut, displayed in Fig. 5,
indicating that choosing a maximal bond dimension
of D ¼ polyð1=ϵÞ is more than sufficient to incur
less than ϵ truncation error per bond. The observed
spectrum tends toward a scaling which is qualita-
tively consistent with the asymptotic scaling of λi ∼
2−Θ½log2ðiÞ� predicted by the toy model in Sec. III D
and consistent with our Conjecture 10. Note that this
actually suggests that the required bond dimension
of SEBD may be even smaller than polyð1=ϵÞ,
scaling like D ¼ 2Θ½

ffiffiffiffiffiffiffiffiffiffiffiffi
logð1=ϵÞ

p
�.

While these numerical results may be surprising given
the prevalence of average-case hardness conjectures for
quantum simulation, they are not surprising from the
perspective of the recent works (discussed in previous
sections) that find strong evidence for an entanglement
phase transition from an area-law to volume-law phase for
1D unitary-and-measurement processes driven by meas-
urement strengths. Since the effective dynamics of the
2D random shallow circuits we study are exactly such
processes, our numerics simply point out that these

systems are likely on the area-law side of the transition.
(However, no formal universality theorems are known, so
the various models of unitary-and-measurement circuits
that have been studied are generally not known to be
equivalent to each other.) In the case of the brickwork
architecture, we are also able to provide independent
analytical evidence (Sec. VI F) that this is the case by
showing the “quasientropy” S̃2 for the 1D process is in the
area-law phase. We leave the problem of numerically
studying the precise relationship between circuit depth,
qudit dimension, properties of the associated stat-mech
models (including “quasientropies”) as discussed in sub-
sequent sections, and the performance of SEBD for future
work. In particular, simulations of larger depth and larger
qudit local dimension could be used to provide numerical
support for Conjecture 2, which claims that as these
parameters are increased the circuit architectures even-
tually transition to a regime where our algorithms are no
longer efficient.

VI. ANALYTICAL EVIDENCE
FOR CONJECTURES FROM
STATISTICAL MECHANICS

A. Overview

In the previous section, we provide strong numerical
evidence that SEBD is efficient when acting on certain
sufficiently shallow architectures. Here, we provide com-
plementary, analytical evidence that bolsters the case for
SEBD’s (and, in Appendix C in Supplemental Material
[72], Patching’s) efficiency. The method is based on a
technique developed in Refs. [29,30,98–101] that maps
random quantum circuits to classical statistical mechanical

FIG. 5. Typical half-chain entanglement spectrum λ1 ≥ λ2 ≥ � � � observed during the effective 1D dynamics of CHR. These plots are
generated from an instance with side length L ¼ 44 after running for 44 iterations, with squared Schmidt values smaller than
approximately 10−15 truncated. The left figure shows a spectrum of half-chain eigenvalues. The downward curvature in the log-log scale
indicates superpolynomial decay. The right figure displays the same data (minus the few largest values) on a loglog-loglog scale. The toy
model predicts that the blue curve asymptotes to a straight line with slope two in the right figure, illustrated by the dashed orange line,
corresponding to scaling like λi ∼ 2−Θ½log2ðiÞ�. The plot is qualitatively consistent with this prediction. The spectrum for the brickwork
model decays too quickly to obtain as useful statistics without going to much higher numerical precision.
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models. We describe how the method can be applied
generally to different 2D architectures, but we give special
attention to the depth-3 brickwork architecture, because it is
a worst-case-hard uniform architecture which is simple
enough for concrete conclusions to be drawn that act as
evidence that the algorithms are efficient. The stat-mech
mapping also provides evidence of computational phase
transitions as qudit dimension and circuit depth are
increased.
The mapping produces a classical stat-mech model for

which the entanglement properties of the underlying
random circuit are related to thermodynamic properties
of the model. In particular, we examine a quantity we call
the “quasi-k entanglement entropy” S̃k to quantify the
entanglement of the 1D state “tracked” by SEBD at any
given point in time throughout the effective 1D dynamics;
the mapping relates S̃k to the free energy cost incurred by
twisting boundary conditions of the stat-mech system.
The expression for quasi-k entropy resembles that of the
Rényi-k entanglement entropy averaged over random
circuit instances and measurement outcomes, denoted by
hSki, and exactly yields the expected von Neumann entropy
in the limit of k → 1. To rigorously prove that SEBD is
efficient, it would suffice to upper bound Sk ≤ Oðlog nÞ
for any 0 < k < 1. [102] To show that the algorithm is
inefficient, it would suffice to lower bound Sk ≥ ΩðnΘð1ÞÞ
for any k ≥ 1. These entropy bounds need to hold for the
majority of randomly chosen circuit instances, and, in case
the entropy varies throughout the algorithm, a proof of
efficiency would need low entropy for all states across all
cuts, and a proof of inefficiency would need high entropy at
only one point.
The stat-mech mapping we use gives us access to the

quasientropies S̃k for integer k ≥ 2. The calculations are
especially tractable for k ¼ 2, and this mostly suffices for
higher k, since S2 ≥ Sk ≥ ½S2=ðk − 1Þ� for k > 1. While
examples exist where Sk for k < 1 can differ dramatically
from S2, our numerical studies described in the pre-
vious section do not find large differences between these
quantities.
Changing the qudit dimension q of the random circuit

model corresponds to changing the interaction strengths in
the associated stat-mech model, which drives a phase
transition. We see that the ordered (disordered) phases
of the stat-mech model correspond to volume-law (area-
law) entanglement for S̃2 in the effective 1D dynamics.
According to the above discussion, this suggests but does
not prove that SEBD is inefficient (efficient) when the stat-
mech model is ordered (disordered).
In the remaining subsections, we define the quasien-

tropy, explain the stat-mech map (with special attention
for the case of k ¼ 2), apply it generally to 2D circuits
to reason heuristically about order-disorder behavior,
and finally conclude by applying it more rigorously
to the depth-3 brickwork architecture, where we observe

a q-driven order-disorder phase transition in the corre-
sponding stat-mech model. A more general and more
detailed formulation of the stat-mech mapping, including
its mathematical justification, is given in Appendix A in
Supplemental Material [72].

B. Quasientropy

Given an ensemble of pure quantum states, the quasien-
tropy is a quantity that is related to the expected amount of
entanglement in the state. In our case, the ensemble is
generated by a random quantum circuit followed by a
projective measurement on some subset of the qudits, and
the quasientropy is computed as follows.
Suppose we fix a random quantum circuit instance drawn

according to some specified architecture, as well as a
known outcome for a projective measurement performed
on some subset of the output qudits. Let ρ be the pure
output state on the unmeasured qudits associated with the
instance and measurement outcome, and fix the normali-
zation TrðρÞ to be equal to the probability of obtaining the
specified measurement outcome. Then, for any k ≥ 0 and
for some subregion A of the unmeasured qudits, we define

Zk;∅ ¼ trðρÞk; ð17Þ

Zk;A ¼ trðρkAÞ; ð18Þ

where ρA is the reduced density matrix of ρ on region A.
Letting EU denote expectation over choice of instance and
uniformly random measurement outcome, the quasi-k
entropy S̃kðAÞ for the random circuit ensemble is defined as

S̃kðAÞ ≔
1

1 − k
log

�EU½trðρÞk Zk;A

Zk;∅
�

EU½trðρÞk�
�

ð19Þ

¼ 1

1 − k
log

�
EUðZk;AÞ
EUðZk;∅Þ

�
ð20Þ

¼ Fk;∅ − Fk;A

1 − k
; ð21Þ

whereFk;X ≔ − log½EUðZk;XÞ� forX ∈ f∅; Ag is associated
with the “free energy” of the classical stat-mech model that
the circuit maps to. Virtually identical quantities are also
considered in two other recent works [29,30].
Note the similarity of the above expression to the average

Rényi-k entanglement entropy:

hSkðAÞρi ≔
EU½trðρÞSkðAÞρ�

EU½trðρÞ�
ð22Þ

¼ 1

1 − k

EU½trðρÞ log Zk;A

Zk;∅
�

EU½trðρÞ�
: ð23Þ
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Indeed, the two formulas are the same, except that the
quasientropy weights instances by TrðρÞk instead of TrðρÞ
and takes the logarithm after taking the expectation.
Also note that, in the limit k → 1, both S̃k and hSki

approach the expected von Neumann entropy

hSðAÞi ¼ −EU

�
tr

�
ρA
trðρÞ log

�
ρA
trðρÞ

���
: ð24Þ

This limit is a manifestation of the replica trick
[29,30,100], where S̃k is computed for integer values of
k ≥ 2 and hS1i is subsequently inferred by analytic con-
tinuation to k ¼ 1. By formally connecting S̃k to more
meaningful entropic quantities, this observation justifies
our study of S̃k as an indicator of the efficiency of our
algorithms.

C. Mapping

We now describe the procedure for mapping a random
quantum circuit family to a classical statistical mechanical
model, such that quantities EUðZk;∅Þ and EUðZk;AÞ for
integers k ≥ 2 are given by partition functions of the stat-
mech model. This follows work in Refs. [29,30,98–101],
although our presentation is for the most part self-
contained. Here, we present merely how to perform the
mapping, leaving the details of its justification to
Appendix A in Supplemental Material [72]. In that
Appendix, we also present a more generalized version of
the mapping that accounts for the possibility of weak
measurements acting in between Haar-random gates.
To define the stat-mech model, we must specify two

ingredients: first, the nodes and edges that form the
interaction graph on which the model lives and, second,
the details of the interactions between nodes that share an
edge. The graph, which is the same for all k, is formed from
the circuit diagram as follows. First, we replace each Haar-
random unitary (labeled by integer u) in the circuit diagram

with a pair of nodes, which we refer to as the incoming
node tu and outgoing node su for that unitary, and we
connect nodes tu and su by an edge. Then, we add edges
between the outgoing node su1 of unitary u1 and the
incoming node tu2 of another unitary u2 when u2 acts
immediately after u1 on the same qudit. Finally, we
introduce a single auxiliary node xa for each qudit a ∈
f1; 2;…; ng that is not measured (recall ρ is the output only
on the unmeasured qubits), and we add a single edge
connecting xa to the outgoing node su for unitary u if u is
the final unitary of the circuit to act on qudit a. Thus, all of
the incoming and outgoing nodes have degree equal to
three, unless they are associated with the first unitary to act
on a certain qubit or the last unitary to act on a measured
qubit. We provide a simple example of this mapping
in Fig. 6.
Each node in the graph may now be viewed as a spin that

takes on one of k! values, corresponding to an element of
the symmetric group Sk. A spin configuration is given by an
assignment ðσu; τuÞ ∈ Sk × Sk for each pair of nodes
ðsu; tuÞ, as well as an assignment χa ∈ Sk to each auxiliary
node xa. The main utility of the stat-mech mapping is then
given by the following equation, expressing the quantity
EUðZk;XÞ for X ¼ ∅ or X ¼ A as a sum over spin
configurations on this graph:

EUðZk;XÞ ¼
X

fσugu;fτugu

Y
u

weightðhsutuiÞ
Y

hsu1 tu2 i
weightðhsu1tu2iÞ

Y
hsuxai

weightðhsuxaiÞ: ð25Þ

This is a partition function—a weighted sum over spin
configurations where the weight of each term is given by a
product of factors that depend only on the spin value of a
pair of nodes ðs; tÞ connected by an edge, denoted hsti. In
this case, the sum runs only over the values σu and τu, of the
incoming and outgoing nodes; the values χa of the auxiliary
nodes are fixed across all the terms and encode the
boundary conditions that differ between EUðZk;∅Þ and
EUðZk;AÞ. We define the free energy to be the negative
logarithm of this partition function [see Eq. (21)], mirroring
the standard relationship F ¼ −kBT logðZÞ between the

free energy and the partition function from statistical
mechanics, with kBT set to 1.
We now specify the details of the interaction by defining

the weight function for different edges. There are only two
different kinds of interactions. Edges hsutui between
incoming and outgoing nodes of the same unitary have

weightðhsutuiÞ ¼ wgðτuσ−1u ; q2Þ; ð26Þ

where wgðπ; q2Þ is the Weingarten function. The
Weingarten function arises from performing the

FIG. 6. Example of stat-mech mapping applied to a circuit
diagram with four qudits and five Haar-random gates. Thick
orange edges carry Weingarten weight. Black edges carry weight
equal to qC, where C is the number of cycles in the product of the
two adjacent permutations.
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expectations over the Haar measure in evaluation of the
expressions for Zk;∅ and Zk;A, and one formula for it is
given in Supplemental Material [72] in Eq. (A19). Note that
there exist permutations π for which wgðπ; q2Þ < 0, so the
overall weight of a configuration can be negative and our
stat-mech model corresponds only to a physical model with
complex-valued energy.
Meanwhile, edges hsu1tu2i connecting nodes of succes-

sive unitaries u1 and u2 (respectively, edges hsuxai con-
necting outgoing nodes to auxiliary nodes) have weight that
depends only on the number of cycles in the product of the
permutations assigned to each of the nodes:

weightðhsu1tu2iÞ ¼ qCðσu1 τ
−1
u2
Þ; ð27Þ

weightðhsuxaiÞ ¼ qCðσuχ−1a Þ; ð28Þ

where CðπÞ returns the number of cycles that make up the
permutation π. This weight function becomes more com-
plicated when weak measurements are applied in between
gates u1 and u2, a generalization we discuss further in
Appendix A in Supplemental Material [72].
The final piece of this prescription is setting the value χa

for each of the auxiliary nodes xa at the end of the circuit,
which can be seen as fixing the boundary conditions for the
stat-mech model. These nodes are fixed to the same value
for each term in the sum and depend on whether we are
calculating EUðZk;∅Þ or EUðZk;AÞ and whether the qudit a
is in the region A. For EUðZk;∅Þ, the value χa is fixed to
the identity permutation e for every a. Meanwhile, for
EUðZk;AÞ, we “twist” the boundary conditions and change
χa to be the k-cycle ð1…kÞ if a is in A, leaving χa ¼ e if a is
in the complement of A.

D. Special case of k = 2

When k ¼ 2, the symmetric group Sk has only two
elements, identity (denoted by e) and swap [denoted by
(12) in cycle notation], so the quantities EUðZ2;∅Þ and
EUðZ2;AÞ map to partition functions of Ising-like classical
stat-mech models where each node takes on one of
two values. Furthermore, in the k ¼ 2 case with no
measurements, it is shown in Refs. [98,99] (see also
Refs. [100,101]) that one can get rid of all negative terms
in the partition function by decimating half of the nodes,
i.e., explicitly performing the sum over the values of the
incoming nodes fτugu in Eq. (25). This continues to be true
even when there are measurements in between unitaries in
the circuit, as discussed in Supplemental Material [72].
However, the decimation causes the two-body interactions
to become three-body interactions between any three nodes
su1 , su2 , and su3 when unitary u3 succeeds unitaries u1 and
u2 and shares a qudit with each. This interaction is intrin-
sically three-body; if one attempts to decompose it into
three two-body interactions, they find these interactions

need to have infinite strength [see Eqs. (A37) and (A38) in
Supplemental Material [72] with the substitution w ¼ 1=q].
The lack of negative weights for k ¼ 2 is convenient,
because it allows one to view the system as a classical spin
model at a real temperature and can, therefore, be analyzed
with well-studied numerical techniques like Monte Carlo
sampling.

E. Mapping applied to general 2D circuits

We now apply the mapping directly to a depth-d circuit
acting on a

ffiffiffi
n

p
×

ffiffiffi
n

p
lattice of qudits consisting of nearest-

neighbor two-qudit Haar-random gates. This is the relevant
case for the algorithms presented in this paper. In this
section, we assume for concreteness that the first unitary
layer includes gates that act on qudits at grid points ði; jÞ
and ði; jþ 1Þ for all odd i and all j, the second layer
on ði; jÞ and ði; jþ 1Þ for all even i and all j, the third
layer on ði; jÞ and ðiþ 1; jÞ for all i and all odd j, and
the fourth layer on ði; jÞ and ðiþ 1; jÞ for all i and all
even j. Subsequent layers then cycle through these four
orientations.

1. The classical stat-mech model

Replacing the unitaries in the circuit diagram with pairs
of nodes and connecting them as described previously
yields a graph embedded in three dimensions. The nodes in
this graph still have degree three, so locally the graph looks
similar to the honeycomb lattice (the lattice that arises from
a 1þ 1D circuit as discussed in Refs. [29,30,98,101] and in
Supplemental Material [72]), but globally the nodes form a
3D lattice that can be viewed roughly as a

ffiffiffi
n

p
×

ffiffiffi
n

p
× d

slab, although the details of how these nodes connect is not
straightforward to visualize. We include pictures of the
graph in Fig. 7.
Recall that edges between nodes originating from the

same unitary are assigned a weight equal to the Weingarten
function and edges between successive unitaries follow the

FIG. 7. The graph produced by the stat-mech mapping on
shallow 2D circuits. (a) A close-up view of the graph reveals that
the degree of most nodes is three, similar to the honeycomb
lattice. (b) A far-away view reveals that globally the graph looks
like a two-dimensional slab of thickness roughly d.
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interaction weightðhsu1tu2iÞ ¼ qCðσu1 τ
−1
u2
Þ. For k ¼ 2 this

amounts to a ferromagnetic Ising interaction where

weightðhsu1tu2iÞ ¼
�
q2 if σu1τu2 ¼ e;

q if σu1τu2 ¼ ð12Þ: ð29Þ

To analyze the output state, we divide the n qudits into
three groups A, B, and C. We suppose that, after the d
unitary layers are performed, a projective measurement is
performed on the qudits in region B. Qudits in regions A
and C are left unmeasured, and we wish to calculate
quantities like EUðZk;∅Þ and EUðZk;AÞ. The mapping calls
for us to introduce an auxiliary node for each unmeasured
qudit in the circuit, i.e., an auxiliary node for qudits in
regions A and C. For EUðZk;∅Þ, all of the auxiliary nodes
are set to identity e, while for EUðZk;AÞ, the auxiliary nodes
for region A are set to the k-cycle ð1…kÞ.

2. Eliminating negative weights via decimation when k = 2

The quantities EUðZk;∅=AÞ are now given by classical
partition functions on this graph with appropriate boundary
conditions for the auxiliary nodes in regions A and C.
We wish to understand whether this stat-mech model is
ordered or disordered. We are faced with the issue that the
Weingarten function can take negative values and, thus,
some configurations over this graph could have negative
weight. For k ¼ 2, as previously discussed, we can rectify
this by decimating all the incoming nodes. The resulting
graph has half as many nodes and interactions between
groups of three adjacent nodes su1 , su2 , and su3 , whenever
unitary u3 acts after u1 and u2. There is a simple formula for
the weights:

weightðhsu1su2su3iÞ ¼

8>><
>>:

1 if σu1 ¼ σu2 ¼ σu3 ;
1

qþq−1 if σu2 ≠ σu3 ;

0 if σu1 ≠ σu2 ¼ σu3 :

ð30Þ

Now, all the weights are non-negative. Moreover, the
largest weight occurs when all the nodes agree, indicating a
generally ferromagnetic interaction between the trio of
nodes. If either σu1 or σu2 disagrees with the other two
values, the weight is reduced by a factor of qþ q−1. When
σu3 disagrees, the weight is 0; these configurations are
forbidden and contribute nothing to the partition function.
Given an assignment of e or (12) to each node σu, we can

associate a pattern of domain walls, that is, a set of edges
connecting nodes with disagreeing values. These domain
walls partition the 2D slab into contiguous domains of
adjacent nodes all given the same value.

3. Allowed domain wall configurations and
disorder-order phase transitions

Using this observation, we can understand the kinds of
domain wall structures that appear in configurations that
contribute nonzero weight. Recall that the stat-mech model
occupies a 2D slab of constant thickness in the direction of
time, which we orient vertically. In this setting, domain
wall structures are membranelike, since the graph is
embedded in 3D. Membranes that have upward curvature,
shaped like a bowl, are not allowed, because somewhere
there would need to be an interaction where the upper node
disagrees with the two below it, a situation that leads to 0
weight as in Eq. (30). On the other hand, cylindrically
shaped domain wall membranes do not have this issue, nor
do dome-shaped membranes with downward curvature.
These three cases are illustrated in Fig. 8. The weight of a
configuration is reduced by a factor of qþ q−1 for each unit
of domain wall, an effect that acts to minimize the domain
wall size when drawing samples from the thermal distri-
bution (energy minimization). On the other hand, larger
domain walls have more configurational entropy—there are
many ways to cut through the graph with a cylindrically
shaped membrane—an effect that acts to bring out more
domain walls in samples from the thermal distribution
(entropy maximization). The question is, which of these
effects dominates? For a certain setting of the depth d (slab
thickness) and local dimension q, is there long-range order,
or is there exponential decay of correlations indicating
disorder? Generally speaking, increasing depth magnifies
both effects: Cylindrical domain wall membranes must be

FIG. 8. Cartoon depiction of forbidden and allowed domain
wall structures in the stat-mech model for a shallow 2D circuit.
Time is oriented vertically. For a particular spin configuration,
domain walls mark the boundary between regions assigned e and
regions assigned (12), forming a membrane. If this membrane has
upward curvature, it is forbidden (contributes 0 weight to the
partition function), whereas if it does not have upward curvature,
it is allowed. For allowed configurations, the contribution
decreases exponentially in the total domain wall area.
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longer—meaning larger energy—when the depth is larger;
however, longer cylinders also have more ways of propa-
gating through the graph. Meanwhile, increasing q only
magnifies the energetic effect, since it increases the
interaction strength and, thus, the energy cost of a domain
wall unit but leaves the configurational entropy unchanged.
Thus, in the limit of large qwe expect the energetic effect

to win out and the system to be ordered for any fixed circuit
depth d and any circuit architecture. What about small q?
Physically speaking, q must be an integer at least 2, since it
represents the local Hilbert space dimension of the qudit.
However, the statistical mechanical model itself requires no
such restriction, and we can allow q to vary continuously in
the region ½1;∞Þ. Then, for q → 1, the energy cost of one
unit of domain wall becomes minimal (but it does not
vanish). Depending on the exact circuit architecture and the
depth of the circuit, the system may experience a phase
transition into the disordered phase once q falls below some
critical threshold qc. The depth-3 circuit with brickwork
architecture that we present later in Sec. VI F provides an
example of such a transition that can be more explicitly
analyzed, because it can be directly related to the well-
studied 2D Ising model. It is disordered when q ¼ 2 and
experiences a phase transition as q increases to the ordered
phase at a transition point we estimate to be roughly qc ≈ 6.
When q is fixed and d is varied, it is less clear what to

expect. Suppose for small d the system is disordered. Then,
increasing d amplifies both the energetic and entropic
effects but likely not in equal proportions. If the amplifi-
cation of the energetic effect is stronger with increasing
depth, then we expect to transition from the disordered
phase to the ordered phase at some critical value of the
depth dc. Without a better handle on the behavior of the
stat-mech model, we cannot definitively determine if and
when this depth-driven phase transition happens.
However, we have other reasons to believe that there

should be a depth-driven phase transition. In particular, we
now provide an intuitive argument for why a disorder-order
transition in the parameter q should imply a disorder-order
transition in the parameter d. Consider fixed d and another
fixed integer r ≥ 1 such that d=r ≫ 1. We may group
together r × r patches of qudits to form a “supersite” with
local dimension qr

2

. Similarly, we may consider a “super-
layer” of OðrÞ consecutive unitary layers. Since OðrÞ
layers are sufficient to implement an approximate unitary
k design on a r × r patch of qudits [taking k ¼ Oð1Þ] [52],
we intuitively take each superlayer to implement a Haar-
random unitary between pairs of neighboring supersites.
Thus, a depth-d circuit acting on qudits of local dimension
q is roughly equivalent to a depth-Oðd=rÞ circuit acting on
qudits of local dimension qr

2

in the supersite picture. If, for
a fixed d, we observe a disorder-order phase transition for
increasing q, then, for fixed q and fixed d=r, we should also
observe a disorder-order phase transition with increasing r.
Equivalently, we should see a transition for fixed q and

increasing d. This logic is not perfect, because superlayers
do not exactly map to layers of Haar-random two-qudit
gates between neighboring supersites, but nonetheless we
take it as reason to expect a depth-driven phase transition.

4. Efficiency of SEBD algorithm from stat mech

The efficiency of the SEBD algorithm relies on the error
incurred during the MPS compression being small. If the
inverse error has a polynomial relationship (or better) with
the bond dimension of truncation, then the algorithm’s time
complexity is polynomial (or better) in the inverse error and
the number of qudits. This is the case if the MPS prior to
truncation satisfies an area law for the k-Rényi entropy for
some 0 < k < 1. The stat-mech mapping is unable to probe
these values of k. However, we hypothesize that the
behavior of larger values of k is indicative of the behavior
for k < 1, since the examples where the k-Rényi entropy
with k ≥ 1 satisfies an area law but efficient MPS trunca-
tion is not possible require contrived spectrums of Schmidt
coefficients. Although some physical processes give rise to
situations where the von Neumann and k-Rényi entropies
with k > 1 exhibit different behavior [see, e.g., Ref. [103],
which shows that, for random 1D circuits without mea-
surements but with the unitaries chosen to commute with
some conserved quantity, after time t the entropy isOðtÞ for
k ¼ 1 but Oð ffiffiffiffiffiffiffiffiffiffiffi

t log t
p Þ for k > 1], the numerical evidence

we give in Sec. V, where the scaling of all the k-Rényi
entropies appears to be the same, suggests our case is not
one of these situations.
Previously, we discussed how for 1D circuits with

alternating unitary and weak measurement dynamics there
has been substantial numerical evidence in prior literature
for a phase transition from an area-law phase to a volume-
law phase as the parameters of the circuit are changed.
There has also been analytic work [29,30] on this model
using the stat-mech mapping (and, in Appendix A in
Supplemental Material [72], we use a similar approach
to analyze 1D circuits with a different form of weak
measurement, inspired by the CHR problem discussed
earlier, and show there is a q-driven phase transition from
a disordered phase to an ordered phase).
The SEBD algorithm simulating a 2D circuit of constant

depth made from Haar-random gates may be viewed as a
system with very similar dynamics—an alternation
between entanglement-creating unitary gates and entangle-
ment-destroying weak measurements. However, none of
the unitary-and-measurement models that have been pre-
viously studied capture the exact dynamics of SEBD, one
reason being that SEBD tracks the evolution of several
columns of qudits at once (recall it must include all qudits
within the light cone of the first column). The Haar-random
unitaries create entanglement within these columns of
qudits but not in the exact way that entanglement is created
by Haar-random nearest-neighbor gates acting on a single
column. Nonetheless, we expect the story to be the same for
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the dynamics of SEBD, since the main findings of studies
of these unitary-and-measurement models are quite
robust to variations in which unitary ensembles and which
measurements are being implemented; we expect that
varying parameters of the circuit architecture like q and
d can lead to entanglement phase transitions and, thus,
transitions in computational complexity.
Indeed, the discussion from the previous section sug-

gests precisely this fact. When we apply the stat-mech
mapping directly to 2D circuits instead of to 1D unitary-
and-measurement models, we expect disorder-order phase
transitions as both q and d are varied. To make the
connection to entanglement entropy explicit here, we note
that, after t steps of the SEBD algorithm, all

ffiffiffi
n

p
qudits in

the first t columns of the
ffiffiffi
n

p
×

ffiffiffi
n

p
lattice are measured,

and we have an MPS representation of the state on columns
tþ 1 through tþ r, where r ¼ OðdÞ is the radius of the
light cone (which depends on circuit architecture but cannot
be larger than d). To calculate the entropy of the MPS, we
take the region A to be the top half of these r columns and
regionC to be the bottom half. Region B consists of the first
t columns, which experience projective measurements. The
prescription for computing S̃2ðAÞ calls for determining the
free energy cost of twisting the boundary conditions in
region A, which creates a domain wall along the A∶C
border. If the bulk is in the ordered phase, then this domain
wall membrane originating at the A∶C boundary penetrates
through the graph a distance of t, leading to a domain wall
area of OðtdÞ. If the bulk is in the disordered phase, it
penetrates only a constant distance, on the order of the
correlation length ξ of the disordered stat-mech model,
before being washed out by the disorder, leading to a
domain wall area of onlyOðξdÞ. This is the key observation
that connects order-disorder to the quasientropy; the
observation is inspired by a similar transition for random
tensor networks (as opposed to random quantum circuits),
studied in Ref. [104]. The typical domain wall configura-
tions before and after twisting boundary conditions in
the ordered and disordered phases are reflected in the
cartoon in Fig. 9. As elaborated upon in Appendix A in

Supplemental Material [72], we expect there to be a
correspondence between the scaling of the domain wall
size and the free energy cost after twisting the boundary
conditions of the stat-mech model.
This implies that the quasientropy S̃2 is in the area-

(respectively, volume-) law phase when the classical stat-
mech model is in the disordered (respectively, ordered)
phase. Heuristically, we might expect the run-time of the
SEBD algorithm to scale like polyðnÞ exp½OðS̃2Þ�, sug-
gesting that the disorder-to-order transition is accompanied
by an efficient-to-inefficient transition in the complexity
of the SEBD algorithm. Furthermore, near the transition
point within the volume-law phase, the quasientropy scales
linearly with system size but with a small constant
prefactor, suggesting that the SEBD run-time, though
exponential, could be considerably better than previously
known exponential-time techniques.

F. Depth-3 2D circuits with brickwork architecture

Now, we turn our attention specifically to the depth-3
brickwork architecture that we also numerically simulate.
In this architecture, three layers of two-qudit gates are
performed on a 2D lattice of qudits as shown in Fig. 10(a).
Note that this architecture is also introduced in Sec. IV; the
architecture we consider here is exactly the extended
brickwork architecture of that section with the extension
parameter r fixed to be one.
As previously discussed in Sec. IV, this structure is

known to be universal in the sense that one may simulate
any quantum circuit using a brickwork circuit (with
polynomial overhead in the number of qudits) by judi-
ciously choosing which two-qudit gates to perform and
performing adaptive measurements [90]. Thus, it is hard to
exactly sample or compute the output probabilities of
brickwork circuits in the worst case assuming the poly-
nomial hierarchy does not collapse, and we expect neither
the SEBD algorithm nor the Patching algorithm to be
efficient. However, we now give evidence that these
algorithms are efficient in the “average case,” where each
two-qudit gate is Haar random, by considering the order

(a) (b)

FIG. 9. The stat-mech mapping yields nodes arranged within a roughly
ffiffiffi
n

p
× t × d prism. (a) In the ordered phase, twisting the

boundary conditions at the right boundary introduces a domain wall between the two phases (indicated by red and blue) that propagates
through the bulk for a total area ofOðtdÞ. (b) In the disordered phase, boundary conditions introduce bias that is noticeable only within a
constant OðξÞ distance of the boundary, and the domain wall membrane introduced by twisting the boundary conditions is quickly
washed out by the bulk disorder (dotted purple). The total area is OðξdÞ.
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and disorder properties of the stat-mech model that the
brickwork architecture maps to.

1. Stat-mech mapping for general k

The stat-mech mapping proceeds as previously discussed
for 2D circuits, but we see that the brickwork architecture
allows us to make some important simplifications. Each
gate in the circuit is replaced by a pair of nodes, which are
connected with an edge. Then, the outgoing nodes of the
first (red) layer are connected to the incoming nodes of the
second (green) layer, and the outgoing nodes of the second
(green) layer are connected to the incoming nodes of
the third (blue) layer. The resulting graph is shown in
Fig. 10(b). Edges connecting incoming and outgoing nodes
of the same layer are shown in color (red, green, and blue)
and carry weight equal to the Weingarten function. Edges
connecting subsequent layers are black. These edges carry
weight given by weightðhsu1tu2iÞ ¼ qCðσuτ

−1
u2
Þ.

To perform the full mapping, we also add a layer of
auxiliary nodes for any unmeasured qudits and connect
them to the third layer. However, we are interested
primarily in the bulk order-disorder properties of the system
and suppose that all the qudits, except perhaps those at the
boundary of the 2D system, are measured after the third
layer, so we need not consider auxiliary nodes.
Looking at Fig. 10(b), we see that some of the nodes

have degree 1 and connect to the rest of the graph via a (red
or blue) Weingarten link. We can immediately decimate
these nodes from the graph. For any τ, we have [105]

X
σ∈Sk

wgðτσ−1; q2Þ ¼
X
σ∈Sk

wgðσ; q2Þ ¼ ðq2 − 1Þ!
ðkþ q2 − 1Þ! ; ð31Þ

which is independent of τ, so decimating these spins merely
contributes the above constant to the total weight. This
constant appears in both the numerator and denominator of
quantities like EUðZk;AÞ=EUðZk;∅Þ, and we ignore them
henceforth. The remaining graph can be straightened out,
yielding Fig. 11(a). The fact that Fig. 11(a) is a graph
embedded in a plane that includes only two-body interactions
is one upshot of studying the brickwork architecture, as it
makes the analysis more straightforward and the stat-mech
model easier to visualize. This property and the fact that the
brickwork architecture is universal for MBQC constitute the
primary reasonswe studied this architecture in the first place.
Architectures with larger depth lead to stat-mechmodels that
cannot be straightforwardly collapsed onto a single plane
while maintaining the two-body nature of the interactions.

2. Simplifications when k = 2

As in previous examples, we examine the k ¼ 2 case. In
this case, we might as well decimate all the degree-2 nodes
in the graph in Fig. 11(a). This yields a graph with entirely
degree-3 nodes, as shown in Fig. 11(b). The graph has two
kinds of links, both carrying standard Ising interactions.
The vertical blue links have weights given by

weightðhsusu0 iÞ ¼
�
q2ðq2 þ 1Þ if σuσu0 ¼ e;

q2ð2qÞ if σuσu0 ¼ ð12Þ; ð32Þ

while the horizontal light green links have weights given by

weightðhsusu0 iÞ

¼
( 1

q2ðq4−1Þ2 ðq6þq4 − 4q3þq2þ 1Þ if σuσu0 ¼ e;

1
q2ðq4−1Þ2 ð2q5− 2q4− 2q2þ 2qÞ if σuσu0 ¼ ð12Þ:

ð33Þ

FIG. 10. (a) Brickwork architecture. Qudits lie at the location of
black dots. Three layers of two-qudit gates act between nearest-
neighbor qudits—first qudits linked by a vertical red edge, then
vertical green, and then horizontal blue. In our SEBD simulation
of this circuit architecture, we sweep from left to right. (b) Result
of stat-mech mapping applied to brickwork architecture depicted
in (a). Nodes are implied to lie at the end points of each edge.
Red, green, and blue edges carry Weingarten weight. Black edges
carry weight given by weightðhsu1 tu2iÞ ¼ qCðσu1 τ

−1
u2
Þ.

FIG. 11. (a) The graph that results from decimating degree-1
nodes in Fig. 10(b). Each thin black link carries weight equal to
the function qCðστ−1Þ, while each thick green link carries weight
equal to wgðστ−1; q2Þ. (b) The graph that results from decimating
nodes of the graph in (a). For k ¼ 2, both the horizontal light
green and the vertical blue links are ferromagnetic but have
different strengths.
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Both of these interactions are ferromagnetic and become
stronger as q increases. We may think of the model as the
square lattice Ising model for which 1=2 of the links carry a
ferromagnetic interaction of one strength, 1=4 of the links
carry ferromagnetic interactions of another strength, and
the final 1=4 of the links have no interaction at all. The
energy functional can be written

E=ðkTÞ ¼ −Jvert
X
hiji

sisj − Jhoriz
X
hiji

sisj; ð34Þ

where si take on values in fþ1;−1g. For q ¼ 2, we have
Jvert ¼ logð5=4Þ=2 ¼ 0.112 and Jhoriz ¼ logð53=28Þ=2 ¼
0.319. Both of these values are weaker than the critical
interaction strength for the square lattice Ising model of
Jsquare ¼ logð1þ ffiffiffi

2
p Þ=2 ¼ 0.441. This indicates that the

graph generated by the stat-mech mapping on 2D circuits of
depth 3 with brickwork architecture is in the disordered
phase when q ¼ 2. This remains true for q ¼ 3. For q ¼ 4,
Jhoriz ¼ 0.500 > Jsquare, but Jvert ¼ 0.377 < Jsquare. Recall
that 1=4 of the links can be thought to have J ¼ 0, since
they are missing. Taking this into account, the value of J
averaged over all the links remains below Jsquare for q ¼ 5

and slightly exceeds it for q ¼ 6.
This indicates that when we run SEBD on these uniform

depth-3 circuits with Haar-random gates, the quasientropy
satisfies S̃2 ¼ Oð1Þ (independent of the number of qudits
n) when q ¼ 2 or q ¼ 3 (and probably also for q ¼ 4 and
q ¼ 5). We take this as evidence that SEBD would be
efficient for these circuits.

VII. FUTURE WORK AND OPEN QUESTIONS

Our work yields several natural follow-up questions and
places for potential future work. We list some here.
(1) Can ideas from our work also be used to simulate

noisy 2D quantum circuits? Roughly, we expect that
increasing noise in the circuit corresponds to de-
creasing the interaction strength in the correspond-
ing stat-mech model, pushing the model closer
toward the disordered phase, which is (heuristically)
associated with efficiency of our algorithms. We
therefore suspect that if noise is incorporated, there
will be a three-dimensional phase diagram depend-
ing on circuit depth, qudit dimension, and noise
strength. As the noise is increased, our algorithms
may therefore be able to simulate larger depths and
qudit dimensions than in the noiseless case.

(2) Can one approximately simulate random 2D circuits
of arbitrary depth? This is the relevant case for
Google’s quantum computational supremacy experi-
ment [2]. Assuming Conjecture 2, our algorithms are
not efficient once the depth exceeds some constant,
but it is not clear if this difference in apparent
complexity for shallow vs deep circuits is simply an

artifact of our simulation method, or if it is inherent
to the problem itself.

(3) Our algorithms are well defined for all 2D circuits,
not only random 2D circuits. Are they also efficient
for other kinds of unitary evolution at shallow
depths, for example, evolution by a fixed local 2D
Hamiltonian for a short amount of time?

(4) Can we rigorously prove Conjecture 1? One way to
make progress on this goal would be to find a worst-
case-hard uniform circuit family for which it would
be possible to perform the analytic continuation of
quasientropies S̃k in the k → 1 limit using the
mapping to stat-mech models.

(5) Can we give numerical evidence for Conjecture 2,
which claims that our algorithms undergo computa-
tional phase transitions? This would require numeri-
cally simulating our algorithms for circuit families
with increasing local Hilbert space dimension and
increasing depth and finding evidence that the
algorithms eventually become inefficient.

(6) How precisely does the stat-mech mapping inform
the efficiency of our algorithms? Is the correlation
length of the stat-mech model associated with the
run-time of our simulation algorithms? How well
does the phase transition point in the stat-mech
model (and accompanying phase transition in qua-
sientropies) predict the computational phase transi-
tion point in the simulation algorithms? If such
questions are answered, it may be possible to predict
the efficiency and run-time of the simulation algo-
rithms for an arbitrary (and possibly noisy) random
circuit distribution via Monte Carlo studies of the
associated stat-mech model. In this way, the perfor-
mance of the algorithms could be studied even when
direct numerical simulation is not feasible.

(7) In the regime where SEBD is inefficient, i.e., when
the effective 1D dynamics it simulates are on the
volume-law side of the entanglement phase transi-
tion, is SEBD still better than previously known
exponential-time methods? Intuitively, we expect
this to be the case close to the transition point.

(8) Can SEBD and/or Patching be generalized to simulate
shallow circuits in three or higher dimensions? For
SEBD the natural approach would be to use pro-
jected entangled pair states (higher-dimensional
generalization of MPS) and simulate action of
unitary gates and measurements, but projected en-
tangled pair states cannot be efficiently contracted or
truncated exactly in the same way as MPS.

The code for our implementation is available [106].

ACKNOWLEDGMENTS

We thank Richard Kueng, Saeed Mehraban, Anand
Natarajan, Mehdi Soleimanifar, Nicole Yunger Halpern,

NAPP, LA PLACA, DALZELL, BRANDÃO, and HARROW PHYS. REV. X 12, 021021 (2022)

021021-28



and Tianci Zhou for helpful discussions and feedback.
Numerical simulations were performed using the ITensor
Library. This work was funded by NSF Grants No. CCF-
1452616, No. CCF-1729369, No. PHY-1818914, and
No. DGE-1745301, the NSF QLCI program through
Grant No. OMA-2016245, as well as ARO Contract
No. W911NF-17-1-0433, the MIT-IBM Watson AI Lab
under the project Machine Learning in Hilbert space, and
the Dominic Orr Fellowship at Caltech. The Institute for
Quantum Information and Matter (IQIM) is an NSF
Physics Frontiers Center (PHY-1733907). This work was
done prior to A. D. joining the AWS Center for Quantum
Computing.

[1] A.W. Harrow and A. Montanaro,Quantum Computational
Supremacy, Nature (London) 549, 203 (2017).

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R.
Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell
et al., Quantum Supremacy Using a Programmable
Superconducting Processor, Nature (London) 574, 505
(2019).

[3] H.-S. Zhong et al., Quantum Computational Advantage
Using Photons, Science 370, 1460 (2020).

[4] Y. Wu et al., Strong Quantum Computational Advantage
Using a Superconducting Quantum Processor, Phys. Rev.
Lett. 127, 180501 (2021).

[5] B. M. Terhal and D. P. DiVincenzo, Adaptive Quantum
Computation, Constant Depth Quantum Circuits and
Arthur-Merlin Games, Quantum Inf. Comput. 4, 134
(2004).

[6] S. Aaronson and A. Arkhipov, The Computational
Complexity of Linear Optics, in Proceedings of the
Forty-Third Annual ACM Symposium on Theory of
Computing, STOC ’11 (Association for Computing
Machinery, New York, 2011), pp. 333–342.

[7] D. Shepherd and M. J. Bremner, Temporally Unstructured
Quantum Computation, Proc. R. Soc. A 465, 1413 (2009).

[8] M. J. Bremner, R. Jozsa, and D. J. Shepherd, Classical
Simulation of Commuting Quantum Computations Implies
Collapse of the Polynomial Hierarchy, Proc. R. Soc. A
467, 459 (2011).

[9] M. J. Bremner, A. Montanaro, and D. J. Shepherd,
Average-Case Complexity versus Approximate Simulation
of Commuting Quantum Computations, Phys. Rev. Lett.
117, 080501 (2016).

[10] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N.
Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H.
Neven, Characterizing Quantum Supremacy in Near-Term
Devices, Nat. Phys. 14, 595 (2018).

[11] S. Aaronson and L. Chen, in Proceedings of the 32nd
Computational Complexity Conference, CCC ’17 (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany,
2017), pp. 22:1–22:67.

[12] S. Aaronson, Scott’s Supreme Quantum Supremacy
FAQ!—shtetl-optimized: The Blog of Scott Aaronson
[online; accessed 1 April 2021].

[13] I. L. Markov and Y. Shi, Simulating Quantum Computa-
tion by Contracting Tensor Networks, SIAM J. Comput.
38, 963 (2008).

[14] D. Gottesman, The Heisenberg Representation of Quantum
Computers, in Proceedings of the XXII International Col-
loquium on Group Theoretical Methods in Physics, 1998
(International Press, Cambridge, MA, 1998), pp. 32–43.

[15] G. Vidal, Efficient Classical Simulation of Slightly
Entangled Quantum Computations, Phys. Rev. Lett. 91,
147902 (2003).

[16] G. Vidal, Efficient Simulation of One-Dimensional Quan-
tum Many-Body Systems, Phys. Rev. Lett. 93, 040502
(2004).

[17] T. J. Osborne, Efficient Approximation of the Dynamics of
One-Dimensional Quantum Spin Systems, Phys. Rev. Lett.
97, 157202 (2006).

[18] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and
J. M. Gambetta, Validating Quantum Computers Using
Randomized Model Circuits, Phys. Rev. A 100, 032328
(2019).

[19] Our calculation of quantum volume for 2D circuits above
uses the additional fact that, assuming for simplicity that
L1 ≤ L2, we can simulate a fully connected layer of gates
on L2x qubits (for x ≤ L1) with OðxL2=L1Þ locally
connected 2D layers using the methods of Ref. [20]. Then,
x is chosen to maximize min½L2x; d=ðxL2=L1Þ�.

[20] D. J. Rosenbaum, Optimal Quantum Circuits for Nearest-
Neighbor Architectures, in Proceedings of the 8th
Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2013)
(Dagstuhl Publishing, Saarbrücken/Wadern, 2013), Vol. 22,
pp. 294–307.

[21] C. Neill et al., A Blueprint for Demonstrating Quantum
Supremacy with Superconducting Qubits, Science 360,
195 (2018).

[22] Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno Effect
and the Many-Body Entanglement Transition, Phys. Rev.
B 98, 205136 (2018).

[23] A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith,
Unitary-Projective Entanglement Dynamics, Phys. Rev. B
99, 224307 (2019).

[24] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
Induced Phase Transitions in the Dynamics of Entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[25] Y. Li, X. Chen, and M. P. A. Fisher, Measurement-Driven
Entanglement Transition in Hybrid Quantum Circuits,
Phys. Rev. B 100, 134306 (2019).

[26] M. Szyniszewski, A. Romito, and H. Schomerus, Entan-
glement Transition from Variable-Strength Weak
Measurements, Phys. Rev. B 100, 064204 (2019).

[27] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, Quantum Error
Correction in Scrambling Dynamics and Measurement-
Induced Phase Transition, Phys. Rev. Lett. 125, 030505
(2020).

[28] M. J. Gullans and D. A. Huse, Dynamical Purification
Phase Transition Induced by Quantum Measurements,
Phys. Rev. X 10, 041020 (2020).

[29] Y. Bao, S. Choi, and E. Altman, Theory of the Phase
Transition in Random Unitary Circuits with Measure-
ments, Phys. Rev. B 101, 104301 (2020).

EFFICIENT CLASSICAL SIMULATION OF RANDOM SHALLOW … PHYS. REV. X 12, 021021 (2022)

021021-29

https://doi.org/10.1038/nature23458
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.26421/QIC4.2-5
https://doi.org/10.26421/QIC4.2-5
https://doi.org/10.1098/rspa.2008.0443
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.97.157202
https://doi.org/10.1103/PhysRevLett.97.157202
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1126/science.aao4309
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.98.205136
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevB.99.224307
https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevB.100.064204
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PhysRevB.101.104301


[30] C.-M. Jian, Y.-Z. You, R. Vasseur, and A.W.W. Ludwig,
Measurement-Induced Criticality in Random Quantum
Circuits, Phys. Rev. B 101, 104302 (2020).

[31] M. J. Gullans and D. A. Huse, Scalable Probes of Meas-
urement-Induced Criticality, Phys. Rev. Lett. 125, 070606
(2020).

[32] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan,
D. A. Huse, and J. H. Pixley, Critical Properties of the
Measurement-Induced Transition in Random Quantum
Circuits, Phys. Rev. B 101, 060301(R) (2020).

[33] Q. Tang and W. Zhu, Measurement-Induced Phase Tran-
sition: A Case Study in the Nonintegrable Model by
Density-Matrix Renormalization Group Calculations,
Phys. Rev. Research 2, 013022 (2020).

[34] A. Nahum and B. Skinner, Entanglement and Dynamics of
Diffusion-Annihilation Processes with Majorana Defects,
Phys. Rev. Research 2, 023288 (2020).

[35] K. Agarwal and N. Bao, Toy Model for Decoherence in
the Black Hole Information Problem, Phys. Rev. D 102,
086017 (2020).

[36] R. Fan, S. Vijay, A. Vishwanath, and Y.-Z. You, Self-
Organized Error Correction in Random Unitary Circuits
with Measurement, Phys. Rev. B 103, 174309 (2021).

[37] Y. Li, X. Chen, A. W.W. Ludwig, and M. P. A. Fisher,
Conformal Invariance and Quantum Nonlocality in Hybrid
Quantum Circuits, Phys. Rev. B 104, 104305 (2021).

[38] A. Lavasani, Y. Alavirad, and M. Barkeshli,Measurement-
Induced Topological Entanglement Transitions in Symmet-
ric Random Quantum Circuits, Nat. Phys. 17, 342 (2021).

[39] S. Sang and T. H. Hsieh,Measurement Protected Quantum
Phases, Phys. Rev. Research 3, 023200 (2021).

[40] M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse,
and V. Khemani, Entanglement Phase Transitions in
Measurement-Only Dynamics, Phys. Rev. X 11, 011030
(2021).

[41] Y. Fuji and Y. Ashida, Measurement-Induced Quantum
Criticality under Continuous Monitoring, Phys. Rev. B
102, 054302 (2020).

[42] M. Szyniszewski, A. Romito, and H. Schomerus, Univer-
sality of Entanglement Transitions from Stroboscopic to
Continuous Measurements, Phys. Rev. Lett. 125, 210602
(2020).

[43] S. Vijay, Measurement-Driven Phase Transition within a
Volume-Law Entangled Phase, arXiv:2005.03052.

[44] O. Lunt and A. Pal, Measurement-Induced Entanglement
Transitions in Many-Body Localized Systems, Phys. Rev.
Research 2, 043072 (2020).

[45] Y. Li and M. P. A. Fisher, Statistical Mechanics of
Quantum Error-Correcting Codes, Phys. Rev. B 103,
104306 (2021).

[46] X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-
Induced Criticality in (2þ 1)-Dimensional Hybrid Quan-
tum Circuits, Phys. Rev. B 102, 014315 (2020).

[47] L. Fidkowski, J. Haah, and M. B. Hastings, How
Dynamical Quantum Memories Forget, Quantum 5, 382
(2021).

[48] A. Nahum, S. Roy, B. Skinner, and J. Ruhman, Measure-
ment and Entanglement Phase Transitions in All-to-All
Quantum Circuits on Quantum Trees, and in Landau-
Ginsburg Theory, PRX Quantum 2, 010352 (2021).

[49] M. Ippoliti and V. Khemani, Postselection-Free Entangle-
ment Dynamics via Spacetime Duality, Phys. Rev. Lett.
126, 060501 (2021).

[50] S. Aaronson, Quantum Computing, Postselection, and
Probabilistic Polynomial-Time, Proc. R. Soc. A 461,
3473 (2005).

[51] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Achiev-
ing Quantum Supremacy with Sparse and Noisy Commut-
ing Quantum Computations, Quantum 1, 8 (2017).

[52] A. W. Harrow and S. Mehraban, Approximate Unitary
t-Designs by Short Random Quantum Circuits Using
Nearest-Neighbor and Long-Range Gates, arXiv:
1809.06957.

[53] A. M. Dalzell, N. Hunter-Jones, and F. G. Brandão,
Random Quantum Circuits Anti-concentrate in Log Depth,
arXiv:2011.12277 [PRX Quantum (to be published)].

[54] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, On
the Complexity and Verification of Quantum Random
Circuit Sampling, Nat. Phys. 15, 159 (2019).

[55] R. Movassagh, Quantum Supremacy and Random
Circuits, arXiv:1909.06210.

[56] A. Bouland, B. Fefferman, Z. Landau, and Y. Liu, Noise
and the Frontier of Quantum Supremacy, arXiv:2102
.01738.

[57] Y. Kondo, R. Mori, and R. Movassagh, Fine-Grained
Analysis and Improved Robustness of Quantum Supremacy
for Random Circuit Sampling, arXiv:2102.01960.

[58] D. N. Page, Average Entropy of a Subsystem, Phys. Rev.
Lett. 71, 1291 (1993).

[59] P. Hayden, D.W. Leung, and A. Winter, Aspects of
Generic Entanglement, Commun. Math. Phys. 265, 95
(2006).

[60] O. C. Dahlsten, R. Oliveira, and M. B. Plenio, The Emer-
gence of Typical Entanglement in Two-Party Random
Processes, J. Phys. A 40, 8081 (2007).

[61] H. Liu and S. J. Suh, Entanglement Tsunami: Universal
Scaling in Holographic Thermalization, Phys. Rev. Lett.
112, 011601 (2014).

[62] B. Bertini, P. Kos, and T. c. v. Prosen, Entanglement
Spreading in a Minimal Model of Maximal Many-Body
Quantum Chaos, Phys. Rev. X 9, 021033 (2019).

[63] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter,
and Z. Yang, Holographic Duality from Random Tensor
Networks, J. High Energy Phys. 11 (2016) 009.

[64] M. B. Hastings, The Asymptotics of Quantum Max-Flow
Min-Cut, Commun. Math. Phys. 351, 387 (2017).

[65] M.-H. Yung and X. Gao, Can Chaotic Quantum Circuits
Maintain Quantum Supremacy under Noise?, arXiv:
1706.08913.

[66] X. Gao and L. Duan, Efficient Classical Simulation of
Noisy Quantum Computation, arXiv:1810.03176.

[67] G. Kalai and G. Kindler, Gaussian Noise Sensitivity and
Boson Sampling, arXiv:1409.3093.

[68] M. Oszmaniec and D. J. Brod, Classical Simulation of
Photonic Linear Optics with Lost Particles, New J. Phys.
20, 092002 (2018).

[69] L. Eldar and S. Mehraban, in Proceedings of the 2018
IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS) (IEEE, New York, 2018),
pp. 23–34.

NAPP, LA PLACA, DALZELL, BRANDÃO, and HARROW PHYS. REV. X 12, 021021 (2022)

021021-30

https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevLett.125.070606
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevResearch.2.013022
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevD.102.086017
https://doi.org/10.1103/PhysRevD.102.086017
https://doi.org/10.1103/PhysRevB.103.174309
https://doi.org/10.1103/PhysRevB.104.104305
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevX.11.011030
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevB.102.054302
https://doi.org/10.1103/PhysRevLett.125.210602
https://doi.org/10.1103/PhysRevLett.125.210602
https://arXiv.org/abs/2005.03052
https://doi.org/10.1103/PhysRevResearch.2.043072
https://doi.org/10.1103/PhysRevResearch.2.043072
https://doi.org/10.1103/PhysRevB.103.104306
https://doi.org/10.1103/PhysRevB.103.104306
https://doi.org/10.1103/PhysRevB.102.014315
https://doi.org/10.22331/q-2021-01-17-382
https://doi.org/10.22331/q-2021-01-17-382
https://doi.org/10.1103/PRXQuantum.2.010352
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.22331/q-2017-04-25-8
https://arXiv.org/abs/1809.06957
https://arXiv.org/abs/1809.06957
https://arXiv.org/abs/2011.12277
https://doi.org/10.1038/s41567-018-0318-2
https://arXiv.org/abs/1909.06210
https://arXiv.org/abs/2102.01738
https://arXiv.org/abs/2102.01738
https://arXiv.org/abs/2102.01960
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1088/1751-8113/40/28/S16
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevLett.112.011601
https://doi.org/10.1103/PhysRevX.9.021033
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/s00220-016-2791-8
https://arXiv.org/abs/1706.08913
https://arXiv.org/abs/1706.08913
https://arXiv.org/abs/1810.03176
https://arXiv.org/abs/1409.3093
https://doi.org/10.1088/1367-2630/aadfa8
https://doi.org/10.1088/1367-2630/aadfa8


[70] F. Pan, P. Zhou, S. Li, and P. Zhang, Contracting Arbitrary
Tensor Networks: General Approximate Algorithm and
Applications in Graphical Models and Quantum Circuit
Simulations, Phys. Rev. Lett. 125, 060503 (2020).

[71] S. Bravyi, D. Gosset, and R. Movassagh, Classical
Algorithms for Quantum Mean Values, Nat. Phys. 17,
337 (2021).

[72] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.12.021021 for deferred
proofs, additional study of our simulation algorithm,
additional details and analysis of the stat-mech mapping,
and a proposal and analysis of an alternative simulation
algorithm.

[73] P. W. Shor, in Proceedings of the 37th Conference on
Foundations of Computer Science (IEEE, New York,
1996), pp. 56–65.

[74] D. Aharonov and M. Ben-Or, in Proceedings of the 37th
Conference on Foundations of Computer Science (IEEE,
New York, 1996), pp. 46–55.

[75] A.W. Harrow and M. A. Nielsen, Robustness of Quantum
Gates in the Presence of Noise, Phys. Rev. A 68, 012308
(2003).

[76] A. A. Razborov, An Upper Bound on the Threshold
Quantum Decoherence Rate, Quantum Inf. Comput. 4,
222 (2004).

[77] S. Virmani, S. F. Huelga, and M. B. Plenio, Classical
Simulability, Entanglement Breaking, and Quantum
Computation Thresholds, Phys. Rev. A 71, 042328
(2005).

[78] H. Buhrman, R. Cleve, M. Laurent, N. Linden, A.
Schrijver, and F. Unger, in Proceedings of the 2006
47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06) (IEEE, New York, 2006),
pp. 411–419.

[79] J. Kempe, O. Regev, F. Unger, and R. De Wolf, in
Proceedings of the International Colloquium on Automata,
Languages, and Programming (Springer, New York,
2008), pp. 845–856.

[80] R. Raussendorf, S. Bravyi, and J. Harrington, Long-Range
Quantum Entanglement in Noisy Cluster States, Phys. Rev.
A 71, 062313 (2005).

[81] S. D. Barrett, S. D. Bartlett, A. C. Doherty, D. Jennings,
and T. Rudolph, Transitions in the Computational Power
of Thermal States for Measurement-Based Quantum
Computation, Phys. Rev. A 80, 062328 (2009).

[82] D. E. Browne, M. B. Elliott, S. T. Flammia, S. T.
Merkel, A. Miyake, and A. J. Short, Phase Transition
of Computational Power in the Resource States for One-
Way Quantum Computation, New J. Phys. 10, 023010
(2008).

[83] A. Deshpande, B. Fefferman, M. C. Tran, M. Foss-
Feig, and A. V. Gorshkov, Dynamical Phase Transitions
in Sampling Complexity, Phys. Rev. Lett. 121, 030501
(2018).

[84] G. Muraleedharan, A. Miyake, and I. H. Deutsch, Quan-
tum Computational Supremacy in the Sampling of Bosonic
Random Walkers on a One-Dimensional Lattice, New J.
Phys. 21, 055003 (2019).

[85] R. Raussendorf and H. J. Briegel, A One-Way Quantum
Computer, Phys. Rev. Lett. 86, 5188 (2001).

[86] X. Gao, S.-T. Wang, and L.-M. Duan, Quantum
Supremacy for Simulating a Translation-Invariant Ising
Spin Model, Phys. Rev. Lett. 118, 040502 (2017).

[87] J. Miller, S. Sanders, and A. Miyake, Quantum Supremacy
in Constant-Time Measurement-Based Computation:
A Unified Architecture for Sampling and Verification,
Phys. Rev. A 96, 062320 (2017).

[88] J. Bermejo-Vega, D. Hangleiter, M. Schwarz, R.
Raussendorf, and J. Eisert, Architectures for Quantum
Simulation Showing a Quantum Speedup, Phys. Rev. X 8,
021010 (2018).

[89] Unless specified otherwise, we use worst-case simulation
to refer to the problem of exactly simulating an arbitrary
circuit instance.

[90] A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceed-
ings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science (IEEE, New York,
2009), pp. 517–526.

[91] I. H. Kim, Holographic Quantum Simulation, arXiv:1702
.02093.

[92] I. H. Kim, Noise-Resilient Preparation of Quantum Many-
Body Ground States, arXiv:1703.00032.

[93] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac,
Entropy Scaling and Simulability by Matrix Product
States, Phys. Rev. Lett. 100, 030504 (2008).

[94] R. Orús, A Practical Introduction to Tensor Networks:
Matrix Product States and Projected Entangled Pair
States, Ann. Phys. (Amsterdam) 349, 117 (2014).

[95] J. C. Bridgeman and C. T. Chubb, Hand-Waving and
Interpretive Dance: An Introductory Course on Tensor
Networks, J. Phys. A 50, 223001 (2017).

[96] M. Horodecki, J. Oppenheim, and A. Winter, Quantum
State Merging and Negative Information, Commun. Math.
Phys. 269, 107 (2006).

[97] B. Villalonga, D. Lyakh, S. Boixo, H. Neven, T. S.
Humble, R. Biswas, E. G. Rieffel, A. Ho, and S. Mandrà,
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