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Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating
and flavor-polarized physics in mirror-symmetric twisted-trilayer graphene, we study the effects of
interactions in this system close to the magic angle, using a combination of analytical and numerical
methods. We identify asymptotically exact correlated many-body ground states at all integer filling
fractions ν of the flat bands. To determine their fate when moving away from these fine-tuned points, we
apply self-consistent Hartree-Fock numerics and analytic perturbation theory, with good agreement
between the two approaches. This allows us to construct a phase diagram for the system as a function of ν
and the displacement field, the crucial experimental tuning parameter of the system, and study the spectra
of the different phases. The phase diagram is dominated by a correlated semimetallic intervalley coherent
state and an insulating sublattice-polarized phase around charge neutrality ν ¼ 0, with additional spin
polarization being present at quarter (ν ¼ −2) or three-quarter (ν ¼ þ2) fillings of the quasiflat bands. We
further study the superconducting instabilities emerging from these correlated states, both in the absence
and in the additional presence of electron-phonon coupling, also taking into account possible Wess-
Zumino-Witten terms. In the experimentally relevant regime, we find triplet pairing to dominate, possibly
explaining the observed violation of the Pauli limit. Our results have several consequences for experiments
as well as future theoretical work and illustrate the rich physics resulting from the interplay of almost-flat
bands and dispersive Dirac cones in twisted-trilayer graphene.
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I. INTRODUCTION

Graphene-based moiré superlattice systems have
attracted considerable interest in the last few years, moti-
vated by the strongly correlated physics they display [1–6].
While originally driven by the experimental realization
of near-magic-angle twisted-bilayer graphene (TBG) [7,8],
related strongly correlated moiré superlattices have
emerged, such as twisted-double-bilayer graphene [9–12]
and ABC-trilayer graphene on hexagonal boron nitride
[13–15]. All of these systems exhibit low-energy bands
which are energetically separated from the rest of the
spectrum and can be tuned to be flat [16–18], enhancing the
impact of correlations. The resulting correlated phenomena
include interaction-induced insulating states [7,9–11,13],
superconductivity [8–10,14], and nematic order [5,19–22],
which are also integral parts of the phase diagrams of

paradigmatic strongly correlated materials such as the
cuprates. Furthermore, TBG has demonstrated that gra-
phene moiré systems can also exhibit additional cascades of
transitions that “reset” the band structure in an entire range
of electron filling fractions [23,24]. This is likely related to
the polarization of certain combinations of the internal
“flavor” quantum numbers of the electrons in the quasiflat
bands [25,26], with interesting consequences for super-
conductivity [25,27].
In addition to the twist angle between the layers as a

tuning knob in TBG, the spectrum of twisted double-
bilayer graphene can be efficiently tuned by applying a
perpendicular electric displacement field D0. Notwith-
standing the interesting consequences for the correlated
physics in the system [9–12,21,28,29], including the
possibility of electrical control of the nematic director
[22], its superconducting properties [9,10] have been found
to be more fragile than in TBG. Fortunately, mirror-
symmetric twisted-trilayer graphene (MSTG), which con-
sists of three layers of graphene with alternating relative
twist angles [see Fig. 2(a)], has very recently been reali-
zed experimentally [30–32] and combines the best of
both worlds: It can be tuned significantly by applying a
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perpendicular displacement field D0 while exhibiting
strong and reproducible superconductivity. These experi-
ments indicate that MSTG also exhibits both interaction-
induced resistive states around integer filling fractions ν as
well as the aforementioned spontaneous band resetting in
an extended region of ν with 2≲ jνj≲ 3, akin to the
cascades in TBG [23,24]. As a function of D0 and ν,
the largest superconducting region is found to emerge out
of this reconstructed normal state. Remarkably, Ref. [32]
finds that the superconductor can sustain an in-plane
magnetic field much larger than simple estimates of the
Pauli limit. One additional crucial difference between
MSTG and all of the other graphene moiré systems
mentioned above is that MSTG exhibits not only quasiflat
bands but, at the same time, dispersive Dirac cones
[30,31,33–38]. The interplay between these different types
of bands and interactions likely gives rise to rich physics
but also provides theoretical challenges.
So far, only very few theoretical studies of interactions in

MSTG exist [39–44], and a systematic understanding of the
nature and origin of possible particle-hole and supercon-
ducting instabilities as a function of ν and D0 is still
missing. The goal of this work is to help fill this gap by
providing a detailed theoretical study of electron-electron
interactions in the normal state of MSTG, allowing for a
large class of possible instabilities, which is then used to
analyze the order parameter and origin of the different
superconducting phases of the system. In order to tackle the
challenges associated with the simultaneous presence of
flat and dispersive bands, we use a combination of
analytical and numerical approaches.

A. Summary of theoretical approach and results

Because of the length of the paper, here we provide a
concise description of the theoretical approach taken and
the results obtained; the latter are further described and
discussed in the context of recent experiments [30–32] on
MSTG in Sec. I B below.
We start from the limit without displacement field

D0 ¼ 0, where the noninteracting band structure of the
system is just that of TBG and single-layer graphene [33–
38]; these two “subsystems” are, however, coupled by the
Coulomb interaction. In the limit where the TBG bands are
perfectly flat, we construct exact eigenstates of the inter-
acting Hamiltonian of MSTG at all integer ν, which are also
shown to be ground states for a finite range of the strength
of the interaction between the two subsystems. This
analysis shows that, in certain limits, also the interacting
ground states of MSTG are given by those of TBG and
single-layer graphene. This is consistent with experiment
[30,31] observing a graphene Dirac cone at small D0.
To be able to address D0 ≠ 0 and more realistic system

parameters, we use Hartree-Fock (HF) numerics and
analytic perturbation theory. Our HF approach is motivated
by the success of this approach in TBG [45–50] and the fact

that the exact ground states at D0 ¼ 0 are Slater-determi-
nant states (in the TBG sector). In the analytic perturbation
theory, we start from the exact ground states and study the
D0-induced deformations of the interaction matrix elements
and band structure, the possible ordering in the graphene
bands, the mixing between the graphene and TBG sectors
for D0 ≠ 0, as well as the finite bandwidth of the TBG
bands as perturbations. This analysis complements our HF
numerics, as it allows us to pinpoint the novel energetic
contributions in MSTG as compared to TBG and serves as
an important validation of our numerics—in particular,
concerning the fate of the graphene Dirac cones, which
provides a challenge to any numerical study as they are
energetically degenerate with the TBG bands only in a
small fraction of the moiré Brillouin zone (MBZ). In our
analytics, we take advantage of this fraction being small
and use it as an expansion parameter. Overall, we find good
agreement between the HF numerics and the perturbation
theory, both confirming the form of the exact eigenstates at
D0 ¼ 0 (but with realistic system parameters); discrepan-
cies between the approaches are traced back to the impact
on the energetics coming from additional remote bands
taken into account only in the numerics.
Having established the correlated nature and possible

particle-hole instabilities in the normal state of MSTG as a
function of D0 and ν, we analyze the consequences for
superconductivity. We study superconductivity both in the
additional presence and absence of flavor polarization.
Motivated by experiments [51–53] on TBG, which indicate
that electron-phonon coupling is important for pairing,
we follow Ref. [54] and assume that electron-phonon
coupling stabilizes superconductivity but leaves singlet
and triplet almost degenerate. Informed by the results for
particle-hole instabilities in MSTG, we can then investigate
which of the two will be favored due to additional particle-
hole fluctuations. We also discuss purely electronic pairing
and comment on the relevance of Dirac cones and asso-
ciated Wess-Zumino-Witten (WZW) terms, as studied
previously in TBG [25,55].

B. Connection with experiment and phase diagram

To further describe and illustrate our main findings, here
we discuss their consequences for the phase diagram of
MSTG (see Fig. 1) and their relation to experiment
[30–32]. Based on our exact ground states, perturbation
theory, and HF numerics, the (for ν ≠ 0 slightly doped)
semimetallic nature of the graphene sector is expected to be
stable against interactions for D0 ¼ 0. At charge neutrality
ν ¼ 0, the leading instability is found to be an intervalley
coherent state (IVC) in the TBG sector. While the two
sectors start to mix when D0 ≠ 0, the semimetallic char-
acter of the bands is retained; the Landau fan sequence of
this state �2;�6;�10;… is consistent with that observed
in Ref. [31]. Once D0 increases beyond a certain critical
value Dc

0 [which depends on the relaxation parameter
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w0=w1 in Eq. (2.3)], the IVC state transitions into a
sublattice-polarized (SLP) phase, where all Dirac cones
are gapped out, leading to an insulator. For realistic
parameters, we expectDc

0 to be of the order of or potentially
slightly larger than the range of the experimentally applied
fields [30–32].
At jνj ¼ 2, we find self-consistent HF solutions with

spin polarization, which coexists with additional particle-
hole instabilities. At small D0, the leading additional
symmetry-breaking state is again an IVC phase. Here,
the TBG bands are completely spin polarized, while the
graphene cones’ polarization is only partial and approaches
zero as D0 → 0. The spin polarization is our proposed
mechanism for the experimentally observed band reset and
reduced flavor number [30,31]. At larger D0, the IVC
transitions into a SLP state. In Sec. VI B, we discuss how
the band structures we find can give rise to the exper-
imentally observed [30] additional sign change of the Hall
density at sufficiently large D0. Our obtained behavior at
jνj ¼ 0, 2 also agrees with another experimental feature:
The conductance is suppressed [30,31] at ν ¼ 0 for both
D0 ¼ 0 andD0 > 0, while the suppression at jνj ¼ 2 sets in
only above a finite critical value of D0, which is consistent
with the IVC (SLP) being semimetallic (insulating) at
ν ¼ 0 and metallic (semimetallitc) at jνj ¼ 2.
As we discuss in detail in Sec. V F, the relative spin

orientation of these orders in the two valleys depends on the
sign of the intervalley Hund’s coupling JH [see Eq. (3.16)],
which is not part of the Hamiltonian for our Hartree-Fock
computations; the value or sign of JH is not determined in

our computations. For JH < 0, which is expected for
Coulomb interactions, both the SLP and SP have the same
spin polarization in the two valleys, while the IVC order
parameter does not carry any spin.
As indicated in blue in Fig. 1, we investigate three

different regimes of superconducting phases. For super-
conductivity (SC I) in the presence of spin polarization
with or without additional IVC order, the order parameter
will be a nonunitary triplet for JH < 0 and an admixed
singlet-triplet phase [27] for JH > 0. For superconducting
phases (SC II) close to or in the range 2≲ jνj≲ 3 but not
coexisting with additional particle-hole instabilities, we
expect triplet (a singlet-triplet admixed phase) to dominate
for JH < 0 (JH > 0). All of these superconducting states are
consistent [27] with the observed [32] behavior in low to
intermediate magnetic fields. Finally, our analysis indicates
that a superconducting phase (if present) close charge
neutrality (SC III) should be in a singlet state for JH < 0.

C. Organization of the paper

The remainder of the paper is organized as follows. In
Sec. II, we introduce the model for the MSTG we study, its
symmetries, and establish the basic notation used in this
work. We begin our discussion of correlated physics in the
limit of vanishing displacement field in Sec. III, where we
construct exact ground states. These build the starting point
for our HF numerics (see Sec. IV for ν ¼ 0 and Sec. VI for
jνj ¼ 2) and our analytical perturbation theory presented in
Sec. V. Furthermore, superconducting instabilities are
analyzed in Sec. VII. Finally, Sec. VIII contains a short
summary and discussion of the results.
For a streamlined reading of the manuscript, we recom-

mend starting with Secs. I A and I B and then continuing
with Sec. VIII. The latter contains references to the
different parts of the manuscript, where more details on
the respective findings can be found.

II. MODEL AND SYMMETRIES

In this section, we introduce the interacting model we
consider in this work, which consists of a continuum model
to describe the moiré bands supplemented by Coulomb
repulsion. We further discuss its symmetries and define the
notation used in the remainder of the paper.

A. Continuum model and symmetries

MSTG is constructed from three parallel sheets of
graphene where the top (l ¼ 1) and bottom (l ¼ 3) gra-
phene layers are aligned with one another, and the middle
(l ¼ 2) layer of graphene is twisted at a relative angle θ
with respect to the top and bottom layers, as shown in
Fig. 2(a). To compute the noninteracting band structure, we
employ a continuum-model description, which is just a
three-layer extension of the frequently applied continuum
model for TBG [16–18]. Denoting the electronic creation

FIG. 1. Schematic phase diagram for MSTG based on our
analysis, as a function of displacement field D0 and filling
fraction ν. Because of particle-hole symmetry of our model, the
phase diagram depends only on jνj. We show the form of the
dominant particle-hole instabilities, the intervalley-coherent
(IVC) semimetallic phase, and a sublattice-polarized (SLP)
insulator at ν ¼ 0 (charge neutrality); the IVC and SLP state
coexist with spin polarization (SP) around jνj ¼ 2. We discuss
three different types of superconducting regimes labeled SC I–III.
We indicate in black their respective spin structure for the
expected sign of the intervalley Hund’s coupling JH resulting
from Coulomb interactions alone (with opposite sign in gray).
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operator for an electron at position r ∈ R2, in sublattice
ρ ¼ 1, 2, layer l ¼ 1, 2, 3, valley η ¼ �, and of spin s ¼
↑;↓ by c†r;ρ;l;η;s, the Hamiltonian reads in the absence of a
displacement field as [33–36]

Hfull
0;1 ¼

Z
r
c†r;ρ;l;η;sð−ivFðρηθlÞρ;ρ0 · ∇Þcr;ρ0;l;η;s

þ
Z
r
½c†r;ρ;l;η;sðTη;rÞρ;ρ0cr;ρ0;lþ1;η;s þ H:c:�; ð2:1Þ

where summation over repeated indices is implied,
θl ¼ ð−1Þlθ=2, ðρη¼þ

θ Þj ¼ eiθρz=2ρje−iθρz=2, with ρj repre-
sentingPaulimatrices in sublattice space (throughout,weuse
the same symbol for Pauli matrices and their indices, i.e., sj,
ηj are Pauli matrices in spin and valley space), and
ρη¼−
θ ¼ −ðρη¼þ

θ Þ�.While the first term in Eq. (2.1) describes
the Dirac cones of the two valleys η ¼ � of each individual
graphene layer in the continuum expansion around their
respective Kg and K0

g points, the second line captures the
tunneling between adjacent graphene layers parametrized by
Tη;r (the direct hopping process between the outer two layers
is neglected). As a consequence of the moiré superlattice,
these tunneling matrix elements are modulated spatially. As
is common, we focus on the lowest moiré-lattice harmonics
for which symmetry allows for only two independent
parameters w0 and w1 in Tη;r. It can be written as [17]

Tþ;r ¼ e−iq1r½T 1 þ T 2e−iG
M
1
r þ T 3e−iðG

M
1
þGM

2
Þr�; ð2:2Þ

andT−;r¼ðTþ;rÞ�.Here,q1¼kθð0;−1Þ, kθ¼2jKgjsinðθ=2Þ
connects the K and K0 points of the moiré lattice, and
GM

1 ¼ −
ffiffiffi
3

p
kθð1;

ffiffiffi
3

p ÞT=2 and GM
2 ¼ ffiffiffi

3
p

kθð1; 0ÞT are the

basis vectors of the reciprocal lattice (RL) of the moiré
lattice RL ≔ fPj¼1;2 njG

M
j ; nj ∈ Zg. The matrices T j in

sublattice space in Eq. (2.2) are given by

T j ¼ w0ρ0 þ w1

�
0 ωj−1

ω−ðj−1Þ 0

�
;

ω ¼ e−2πi=3: ð2:3Þ

While rigidly rotated graphene layers correspond to
w0 ¼ w1, lattice relaxation [56,57] leads to w0 ≠ w1. Here
we considerw0 as a free parameter and study the physics as a
function of it.
As a result of the moiré modulations in Eq. (2.2), the

tunneling matrix elements between the layers couple
momenta related by RL vectors, which reconstructs the
graphene cones of the first line in Eq. (2.1), leading to a
(technically infinite) set of bands; the band energies are
denoted by ϵn;ηðkÞ, n ∈ Z, where k is in the first MBZ and
we already used that Eq. (2.1) is diagonal in the valley η and
trivial in the spin index s; this symmetry of the tunneling
matrix elements makes the band energies independent of
spin and allows us to label them by their valley index.
MSTG is distinguished from other moiré systems, such

as TBG or twisted-double-bilayer graphene by a reflection
symmetry σh under exchange of the top and bottom layers
of MSTG, with action σh∶cr;ρ;l;η;s → cr;ρ;σhðlÞ;η;s where
σhð2Þ ¼ 2, σhð1Þ ¼ 3, and σhð3Þ ¼ 1. We note that a
recent experiment [58] has demonstrated that this reflection
symmetry is restored locally by lattice relaxation, even if
the top and bottom layers are not perfectly aligned. Since σh
acts trivially in all internal indices (ρ, η, s) and r, the
Hamiltonian (2.1) can be decomposed into sectors with

(a)

(b)

(c)

FIG. 2. (a) Schematic of the geometry of MSTG. The top and bottom layers shown in red and green, respectively, are aligned, while
the middle layer (blue) is twisted at relative angle θ to the top and bottom layers. (b) Band structure of MSTG at D0 ¼ 0 (left) and
D0 > 0 (right) for w1 ¼ 124 meV and twist angle θ ¼ 1.53° along the one-dimensional cut through the MBZ shown in (c). We represent
the spin-degenerate bands in the two different valleys η ¼ � with solid (η ¼ þ) and dotted (η ¼ −) lines. At D0 ¼ 0, the band structure
is given by that of TBG and single-layer graphene, and we color the (two per spin and valley) quasiflat TBG bands red. ForD0 > 0, the
bands of these two subsystems mix, but we continue to label the two bands per spin and valley closest to the Fermi as “TBG-like” bands
indicated in red.
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different mirror eigenvalues σh ¼ �1 by performing a
unitary transformation V ∈ Uð3Þ in layer space only,
cr;ρ;l;η;s ¼ Vl;lψ r;ρ;l;η;s. As was pointed out before [33]
and detailed in the Supplemental Material [59] Sec. A. 1,
the Hamiltonian in the mirror-even sector (σh ¼ þ1, l ¼ 1,
2) turns out to be that of TBG with an interlayer hopping
renormalized by a factor of

ffiffiffi
2

p
. In the mirror-odd sector

(σh ¼ −1, l ¼ 3), the Hamiltonian is that of single-layer
graphene (without any moiré modulation). This can be
clearly seen in the spectrum shown in Fig. 2(b), which
exhibits two almost-flat TBG-bands (shown in red) per spin
and valley and unreconstructed Dirac cones at K (K0)
associated with the graphene sector of valley η ¼ þ
(η ¼ −). As such, there are three Dirac cones at K (and
three at K0), one belonging to the graphene sector of MSTG
in a single valley only and two Dirac crossings belonging to
the TBG sector of both valleys. As can be seen, there are
additional remote bands of both subspaces due to back-
folding into the MBZ.
In addition to reflection symmetry, the Hamiltonian in

Eq. (2.1) has more point symmetries forming the group
C6h: The model is invariant under threefold rotational
symmetry C3z with action C3z∶cr → ei½ð2πÞ=3�ρzηzcC3zr,
which is also an exact symmetry of the moiré lattice in
Fig. 2(a). While not an exact lattice symmetry, twofold
rotation perpendicular to the plane C2z is a good approxi-
mate symmetry for small twist angles; in fact, it is an exact
symmetry of the continuum in Eq. (2.1) which can be
verified by applying its action C2z∶cr → ηxρxc−r.
In addition to these point symmetries, the model also

exhibits the following exact internal symmetries: Since
there is no coupling between the valleys, it is invariant
under a valley U(1) transformation, Uð1Þv∶cr → eiηzφcr. In
combination with the absence of spin-orbit coupling, it is
further invariant under the separate spin rotation in each
valley, forming the group SUð2Þþ × SUð2Þ− with SUð2Þ�
acting as cr → eiφ·sðη0�ηzÞ=2cr. Furthermore, there is time-
reversal symmetry, which is associated with the antiunitary
operator Θ with ΘcrΘ† ¼ ηxcr; unless stated otherwise, we
always refer to this form of (spinless) time-reversal sym-
metry throughout the text, although combinations with spin
rotations (spinful time reversal) Θs and with Uð1Þv rota-
tions Θ̃ play a role further below. Since the mirror
symmetry protects any mixing between the graphene and
TBG subspaces and Uð1Þv any mixing between the two
valleys, the aforementioned Dirac crossings at K and K0 are
protected by the combination C2zΘ, exactly as in graphene
and TBG.
Focusing on specific limits, there are also additional

internal symmetries similar to TBG [46,60,61]: When
w0 ¼ 0, Hfull

0;1 in Eq. (2.1) changes its sign Hfull
0;1 → −Hfull

0;1
if we apply the chiral symmetry operator C∶cr → ρzLCcr
where LC is a matrix in layer space given by LC ¼
Vdiagð1; 1;−1ÞV†. Therefore, w0 ¼ 0 is referred to as
the chiral limit [60]. Among other consequences for the

interaction terms to be discussed below, the band structure
has to be symmetric about zero energy at every given
momentum k when w0 ¼ 0, i.e., speck;η ¼ −speck;η,
with speck;η ¼ fϵn;ηðkÞ; n ∈ Zg.
Finally, when the additional rotation of the sublattice

matrices in the first line of Eq. (2.1) is neglected,
ρηθl → ρηθ¼0, the “unitary particle-hole symmetry” previ-
ously discussed in TBG [46,61] can be extended to
MSTG: Defining the unitary operator P which acts as
Pψ r;l¼1P† ¼ ηzψ−r;l¼2, Pψ r;l¼2P† ¼ −ηzψ−r;l¼1, and
Pψ r;l¼3P† ¼ iρyηyψ−r;l¼3, one finds PHfull

0;1P
† ¼ −Hfull

0;1 ,
showing that the spectrum must obey speck ¼ −spec−k
where speck ¼∪η speck;η. Since we focus on small twist
angles θ below, we always assume that ρηθl has been
replaced by ρηθ¼0 in Eq. (2.1) when analyzing symmetries.
We also later set θ ¼ 0 in our numerics.
For the detailed form of the model and the action of the

symmetries in momentum space, we refer the reader to the
Supplemental Material [59] Secs. A 1 and A 2, respectively.
A brief list of the symmetries of H0 and when they apply
can be found in Table I.
The primary interaction term we consider in Eq. (2.8)

will preserve the symmetries of the continuum model.
However, we also consider the consequences of Hund’s
coupling in Eq. (3.16), which will break the SUð2Þþ ×
SUð2Þ− symmetry down to a more realistic SUð2Þs (the
group of simultaneous spin rotations in the two valleys).

B. Adding a displacement field

Motivated by recent experimental discoveries of electric-
field-tunable correlated physics in MSTG [30–32], we now
extend the model for MSTG in Eq. (2.1) and include a
perpendicular displacement field D0. Finite D0 results in a
potential difference between the top and bottom layers of
graphene. Suppressing all indices except layer l, a dis-
placement field is represented in the continuum model as

Hfull
0;2 ¼ D0

X
r

½c†r;l¼1cr;l¼1 − c†r;l¼3cr;l¼3�; ð2:4Þ

and the full Hamiltonian becomesHfull
0 ¼ Hfull

0;1 þHfull
0;2 . The

displacement field D0 breaks the mirror symmetry σh,
resulting in hybridization between bands in the TBG and
graphene sectors; this hybridization can take place only
between graphene and TBG bands of the same valley and
spin flavor, as Uvð1Þ and spin-rotation symmetry [in fact,
the full SUð2Þþ × SUð2Þ−] are preserved by Hfull

0;2.
Furthermore, when D0 is finite, the system retains C2z,

C3z, leading to the point group C6. Time-reversal symmetry
Θ, and in the limit w0 ¼ 0, chiral symmetry C, also persist.
However, the unitary particle-hole symmetry P is no longer
an exact symmetry for finite D0.
At the K (K0) point of the MBZ, the Dirac crossings

which belong to the valley η ¼ þ (η ¼ −) will hybridize as
D0 increases with the graphene bands of the same valley
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which also exhibit a Dirac cone at the Fermi level; this
results in the Dirac points, which are pinned at the Fermi
level at D0 ¼ 0, being pushed away from the Fermi level.
As C2zΘ symmetry is preserved for D0 ≠ 0, these Dirac
crossings cannot be gapped out. As a consequence of the
absence of a graphene cone to hybridize with, the Dirac
point of TBG in the other valley η ¼ − (η ¼ þ) remains
pinned at the Fermi level as D0 increases. These features
can be clearly observed in the band structure of MSTGwith
finite displacement field shown in Fig. 2(b).

C. Projected low-energy model

In order to make the analytical and numerical study of
interactions feasible in the system, we restrict our
Hamiltonian to a finite set of bands in the vicinity of the
Fermi level. Going forward, we denote the two bands
closest to the Fermi level per spin and valley as TBG-like
bands and the next two closest bands per spin and valley as
graphenelike bands. All other bands at energies further
away from the Fermi level are referred to as remote bands.
When D0 ¼ 0, the TBG-like bands are labeled by mirror-
symmetry eigenvalue σh ¼ þ1 and can be identified
exactly with the two flat bands of TBG. The graphenelike
bands atD0 ¼ 0 are identified exactly with the bands of the
continuum model of graphene in the vicinity of the K and
K0 points. For finite D0, the bands with different eigen-
values hybridize, but we retain our naming convention for
the four bands closest to the Fermi level; i.e., the bands
indicated in red in Fig. 2 are TBG-like bands.
Note that away from the K points, the graphenelike

bands are technically identified with the first remote bands
of TBG with σh ¼ þ1 for D0 ¼ 0 within this convention.
In our analytical calculations below, however, we restrict
the analysis to the TBG-like bands in the full MBZ and to
the graphenelike bands only in the vicinity of the K and K0
points where they retain their graphenelike identity.
Denoting the associated creation operators in these two
sets of bands by b†k;p;η;s and g†k;p;η;s, where k ∈ MBZ is the
momentum, p ¼ þ (p ¼ −) labels the upper (lower) band
in each sector, η is the valley, and s the spin quantum
number of the electrons, the noninteracting Hamiltonian
projected to these bands becomes

H0 ¼
X

k∈MBZ

WTBGϵðb;pÞ;ηðkÞb†k;p;η;sbk;p;η;s

þ
X

k∈MBZ0
ϵðg;pÞ;ηðkÞg†k;p;η;sgk;p;η;s: ð2:5Þ

Here, the extra prime in MBZ0 in the second line indicates
that we restrict the graphenelike degrees of freedom to the
vicinity of the K and K0 points in our analytical calcu-
lations. Note that we further introduce the dimensionless
parameter WTBG ∈ ½0; 1� that allows us to organize the
perturbation theory of Sec. V D in the TBG-like bandwidth.
While the physical system corresponds to WTBG ¼ 1, we

define the flat limit asWTBG ¼ 0, which plays an important
role below. Note that the Hamiltonian in Eq. (2.1) realizes
the flat limit exactly ϵðb;pÞ;ηðkÞ ¼ 0, only when w0 ¼ 0, θ is
at the magic angle, and when D0 ¼ 0.
In our numerics, we keep all momenta of both sets of (in

total 16) bands in Eq. (2.5) and continue to use g†k;p;η;s as
creation operators for the second lowest set of bands
throughout the MBZ. To check convergence, we also study
the impact of adding additional remote bands, as described
in the Supplemental Material [59] Sec. C 3.
In order to fix the phases of the wave functions of the

TBG-like and graphenelike bands, we specify how they
transform under the action of the various discrete sym-
metries discussed above or, equivalently how they act
on the electronic operators b†k;p;η;s and g†k;p;η;s. While a
thorough discussion can be found in the Supplemental
Material [59] Sec. A 2, these representations are summa-
rized in Table I.
Based on these symmetry representations, one finds that

the dispersions are constrained to have the form

ϵðb;pÞ;ηðkÞ ¼ pĒb
0ðkÞ þ ηĒb

1ðkÞw0

þ pηĒb
2ðkÞD0 þ Ēb

3ðkÞw0D0 ð2:6Þ

and

ϵðg;pÞ;ηðkÞ ¼ pĒg
0ðk; ηÞ þ Ēg

1ðk; ηÞw0D0: ð2:7Þ

To illustrate the changes of the form of the band structures
when symmetries are broken by w0 ≠ 0 and D0 ≠ 0, we
introduce Ēb

j ðkÞ and Ēg
jðk; ηÞ, which are functions of w0

and D0 that stay finite when w0; D0 → 0.

TABLE I. Summary of discrete single-particle symmetries
(denoted S) of our model and when they apply (last column).
For convenience of the reader and future reference, we show a
redundant set of symmetries. We also indicate whether they are
unitary or antiunitary symmetries (second column) and whether
they commute þ or anticommute − (third column) with the
noninteracting Hamiltonian Hfull

0 . Finally, we specify their action
on the low-energy field operators in order to fix the phase of the
Bloch states, using σj to denote Pauli matrices acting on the upper
or lower bands subspace.

S Unitary ½·; ·�� SbkS† SgkS† Condition

C2z ✓ þ η1σ0b−k η1σ0g−k None
C3z ✓ þ η0σ0bC3zk η0σ0gC3zk None
σh ✓ þ η0σ0bk −η0σ0gk D0 ¼ 0

Θ ✗ þ η1σ0b−k η1σ0g−k None
Θs ✗ þ s2η1σ0b−k s2η1σ0g−k None
Θ̃ ✗ þ η2σ0b−k η2σ0g−k None
C ✓ − η3σ2bk η3σ2gk w0 ¼ 0
P ✓ − −iη3σ2b−k iη1σ2g−k D0 ¼ 0, ρθ→0

C2zΘ ✗ þ η0σ0bk η0σ0gk None
C2zP ✓ − η2σ2bk iσ2gk D0 ¼ 0, ρθ→0
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As can be seen, the two terms in the first row of Eq. (2.6)
just correspond to the TBG band structure (with w0 ¼ 0, or
without w0 ≠ 0, chiral symmetry). The second line shows
that the hybridization with the graphene bands for D0 ≠ 0
distorts the TBG band structure in a way not present in
TBG, which is related to the D0-induced breaking of C2zP
symmetry. One of these additional terms leads to super-
exchange processes in the TBG-like bands that are not
present in TBG and are discussed in Sec. V D. In Eq. (2.7),
the first term Ēg

0ðk; ηÞ simply becomes the graphene Dirac
dispersion for D0 → 0. We further see that the property
ϵðg;þÞ;ηðkÞ ¼ −ϵðg;−Þ;ηðkÞ is violated only if w0 and D0 are
simultaneously nonzero. This is expected, as the graphene-
like bands can “feel” only the broken chiral symmetry if
they hybridize with the TBG-like bands. For the parameters
in Fig. 2(b), this change in dispersion is a rather weak effect
around the Dirac cones.

D. Interactions and form factors

As our goal is to study the interacting behavior
of MSTG, we next add interaction terms to the
Hamiltonian. We assume that these interactions in the full
continuum model are of the density-density form. Our full
interaction Hamiltonian thus reads as

Hfull
1 ¼ 1

2N

X
q

VðqÞ∶ρfullq ρfull−q ∶; ð2:8Þ

where ∶…∶ denotes normal ordering, N is the number of
moiré sites, and ρfullq is the density operator of momentum q
of the continuum electron operators cr in Eq. (2.1). Note
q ∈ R in the sum in Eq. (2.8), which is not restricted to the
MBZ. For our analytical discussions below, we do not have
to specify the explicit form of VðqÞ but use only VðqÞ> 0
and VðqÞ ¼ Vð−qÞ; consequently, our analytical results are
valid regardless of the details of the screening processes at
high energies and of nearby gates and/or substrates that
affect the detailed form VðqÞ. For our numerics, we use the
single-gate-screened Coulomb potential:

VðqÞ ¼ 1 − e−2jqjds

2Amoiréϵ0ϵjqj
; ð2:9Þ

where we normalize by the real-space area of the moiré
unit cell Amoiré. We vary the screening length ds in our
numerical calculations from ds ¼ 10 to 80 nm and find
relatively little dependence of the relative energies between
phases and no qualitative change in the ground states. We
therefore take ds ¼ 40 nm as our default value. We also
vary the dielectric constant ϵ from ϵ ¼ 4 to ϵ ¼ 15. We find
the phase boundaries depend on ϵ, though no new phases
emerge as ϵ is varied (the effect of varying interaction
parameters is further discussed in the Supplemental
Material [59] Sec. C 3, especially Fig. S 2). Unless other-
wise specified, we take ϵ ¼ 7.

We note that the above interaction term has all the
symmetries of the continuum model introduced in Sec. II,
including the SUð2Þþ × SUð2Þ− symmetry. In the realistic
system, there is Hund’s coupling JH ≠ 0, which breaks
SUð2Þþ × SUð2Þ− down to SUð2Þs. We discuss the form of
Hund’s coupling in the Supplemental Material [59] Sec. F 5
and Eq. (3.16), and note its consequences in Sec. III C.
Neglecting normal ordering and replacing ρfullq → ρ̃fullq ¼

ρfullq − const × δq;0 in Eq. (2.8) leads to a new form of the
interaction H̃full

1 , which, however, can be rewritten as Hfull
1

by a redefinition of the chemical potential (and energy
reference point). This equivalence does not hold anymore
after projecting ρfullq and ρ̃fullq in Hfull

1 and H̃full
1 , respectively,

to a finite set of bands ofH0. As we describe in more detail
in the Supplemental Material [59] Sec. A 3, we follow
Refs. [46,61] and rewrite the interaction before projection
such that it exhibits particle-hole symmetry with respect to
the charge-neutrality point before and after projection.
Denoting the electronic creation operators for band n, of
valley η, spin s, and with momentum k ∈ MBZ by f†k;n;η;s,
the projected interaction becomes

H̃1 ¼
1

2N

X
q

VðqÞδρqδρ−q; ð2:10aÞ

with the symmetrized density operators

δρq ¼
X

k∈MBZ

�
f†MBZðkþqÞFk;qfk −

1

2

X
G∈RL

δq;GtrðFk;GÞ
�
:

ð2:10bÞ
Here, MBZðkÞ ≔ k − Gk ∈ MBZ for the unique reciprocal
lattice vectorGk ∈ RL.We suppress all indices of fk and f

†
k,

which should be viewed as column and row vectors in band,
valley, and spin space and introduce the matrix-valued form
factors Fk;q, which contain all the microscopic details of the
wave functions of the bands of H0 [see Eq. (S25) in the
Supplemental Material [59] for a formal definition]. Note
that Eq. (2.10) holds for any subset of bands that we want to
keep. As already discussed in Sec. II C above, we keep only
the TBG-like bands and graphenelike bands (around the K
and K0 points) in the analytics, while we allow for more
bands in the HF numerics.
We refer the interested reader to the Supplemental

Material [59] Sec. A 3, where a detailed discussion of the
constraints on Fk;q resulting from symmetries, Hermiticity,
and the structure ofH0 can be found, and here we state only
a few properties of the form factors that we explicitly refer
back to in the main text. First, as a consequence of Uð1Þv
and spin-rotation symmetry, the form factors can have only
nondiagonal matrix structure in band space,

ðFk;qÞðn;η;sÞ;ðn0;η;sÞ ¼ δs;s0δη;η0 ðFη
k;qÞn;n0 : ð2:11Þ

In accordance with our notation in Eq. (2.5), we use
the multi-index notation n ¼ ðt; pÞ where the “type” t
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distinguishes between the graphenelike t ¼ g and TBG-like
t ¼ b bands, and p ¼ þ (p ¼ −) labels the upper (lower)
band; for instance, for the electronic operators, it holds
fk;ðb;pÞ;η;s ¼ bk;p;η;s and fk;ðg;pÞ;η;s ¼ gk;p;η;s. As a conse-
quence of the σh symmetry for D0 ¼ 0, the form factors
become block diagonal in the sectors with different σh
eigenvalue. As such, Ftt0

k;q defined via

ðFtt0
k;qÞðp;η;sÞ;ðp0;η0;s0Þ ¼ δs;s0δη;η0 ðFη

k;qÞðt;pÞðt0;p0Þ ð2:12Þ

obeys

Ftt0
k;q ∝ δt;t0 for D0 ¼ 0: ð2:13Þ

Consequently, the entire interacting Hamiltonian H0 þ H̃1

preserves the charge in the graphene and TBG system
separately. This leads to simplifications, which are
exploited in Sec. III below. For D0 ≠ 0, this separate
conservation of charge in the graphene and TBG sectors
no longer holds, as the form factors in Eq. (2.12), and
hence, the density operators in the interaction will not be
diagonal in the t index and scatter electrons between the
two different types of bands.
In the limit D0 ¼ 0, one can also compute the form

factors in the graphene sector analytically [see Eq. (S39) in
the Supplemental Material [59] for the full expression].
Most importantly for our purposes here, one finds that

Fgg
k;G ¼ δG;0σ0η0s0; G ∈ RL for D0 ¼ 0; ð2:14Þ

where σ0 are Pauli matrices in the “band space” (with
indices p ¼ �). Here, only the G ¼ 0 component is finite,
which is related to the fact that the graphene bands do not
feel the moiré superlattice for D0 ¼ 0.

III. EXACT GROUND STATES AT D0 = 0

We begin our discussion of the interacting physics in the
decoupled limit defined as D0 ¼ 0, where all bands can
be labeled by their mirror eigenvalue σh ¼ �1, and the
low-energy bands are those of TBG and single-layer
graphene. While one might intuitively expect that the
presence of the additional graphene Dirac cones, which
have a much lower density of states than the (almost) flat
bands close to the magic angle of TBG, is not strong
enough to change the symmetry of the correlated insulating
phase of TBG, it is a priori not clear whether the density-
density coupling between the two subsystems can also
induce the same symmetry-breaking order (and potentially
gap out) the graphene Dirac cones. It is further not clear
whether exact interacting ground states of MSTG can be
identified in certain limits similar to TBG [46,62,63]. These
aspects are addressed in this section.

A. Hamiltonian and construction of eigenstates

To this end, let us focus on the flat limit WTBG ¼ 0 and
postpone the perturbative treatment of the finite TBG
bandwidth to Sec. V D. From our discussion in Sec. II,
we can read off that the low-energy Hamiltonian of MSTG
in the flat-decoupled limit is given by

HFD ¼ Hg þHb þ λHgb ð3:1Þ

consisting of three terms: Hg is the Hamiltonian of (both
valleys of) single-layer graphene with Coulomb repulsion
[see Eq. (S44) in the Supplemental Material [59]], and
Hb the interacting Hamiltonian of TBG in the flat limit
given by

Hb ¼ 1

2N

X
q

VðqÞδρbqδρb−q; ð3:2Þ

where we define the projected subsystem density operators

δρtq ¼
X

k∈MBZ

�
t†MBZðkþqÞðFtt

k;qÞtk −
1

2

X
G∈RL

δq;GtrðFtt
k;GÞ

�
;

ð3:3Þ

where t ¼ g, b. Finally, the last term in Eq. (3.1) describes
the coupling between the two subsystems via a density-
density interaction,

λHgb ¼ λ

N

X
q

VðqÞδρg−qδρbq; ð3:4Þ

where the additional prefactor λ ∈ ½0; 1� is introduced to
adiabatically turn on the Hgb interaction (the physical
system corresponds to λ ¼ 1).
For λ ¼ 0, the Hamiltonian is just the sum Hg þHb of

the two commuting subsystem Hamiltonians, so its eigen-
states are just given by (all combinations) of the indivi-
dual eigenstates of graphene and TBG with the correct
particle number. Let us fix a certain integer filling νb ¼
0;�1;�2;�3;�4 of the TBG system. Then, the graphene
system will be at a corresponding filling, which we write
formally as νg ¼ νgðνbÞ, and its ground state will be a
semimetal with (νg ¼ 0) or without (νg ≠ 0) doping, that
exhibits correlations but does not spontaneously break any
symmetries; these properties are well established (theoreti-
cally and experimentally) for graphene [64]. Let us denote
the ground state of the graphene system at filling νg ¼
νgðνbÞ by jΨg

0ðνbÞi and its (gapless) excited states with the
same particle number by jΨg

jðνbÞi, j > 0. In the hypotheti-
cal absence of any correlations in the graphene sub-
space, jΨg

0ðνbÞi [jΨg
jðνbÞi] would just be Slater-determinant

state(s) with the Dirac cones filled up to the chemical
potential (and some additional particle-hole excitations).
Exact ground states of the flat-band TBG Hamiltonian in

Eq. (3.2) have been discussed previously [46,62,63], which
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we very briefly review here using our notation in order to
set the stage for the extension to MSTG. Upon defining
new operators according to (referred to as “chiral basis”
in Ref. [61]; in this basis, the chiral form factors [see
Eq. (S47) in the Supplemental Material [59]] are diagonal)

b̃k;c;η;s ¼ Uc;pbk;p;η;s; U ¼ 1ffiffiffi
2

p
�
1 −i
1 i

�
; ð3:5Þ

consider the set of states

jΨb
0ðνbÞi ¼

Y
k∈MBZ

Y
c¼�

Yνc
jc¼1

b̃†k;c;ηcjc ;s
c
jc
j0bi ð3:6Þ

with arbitrary combinations of occupied flavors fη�j ; s�j g
such that νþ þ ν− ¼ 4þ νb. It was shown in Ref. [62] that

δρbqjΨb
0ðνbÞi ¼

X
G∈RL

δq;GRGjΨb
0ðνbÞi; ð3:7Þ

with RG ¼ νb
P

k tr½Fbbðk;GÞ�=8 when w0 ¼ 0, i.e., in the
chiral limit. As such, all of these states are exact eigenstates
of Hb in Eq. (3.2). References [46,62] further showed that
these states will always be ground states of Hb for νb ¼ 0;
the same holds for all other integers νb as long as the flat-
metric condition

Fbb
k;G ¼ 1fðGÞ; ∀ k;G ð3:8Þ

is not violated by a significantly large amount.
Furthermore, when turning on w0 ≠ 0, the subset of states
in Eq. (3.6) with ηþj ¼ η−j and sþj ¼ s−j , which are neces-
sarily at even integer νb, still obey Eq. (3.7) and remain
ground states of Hb [unless νb ¼ �2 and Eq. (3.8) is
sufficiently violated]. The additional states which obey
Eq. (3.7), like the sublattice-polarized states, are disfavored
away from the chiral limit as they acquire energy penalties
proportional to w0 (as we also explicitly see in Sec. VA and
Table III below).
Having established the spectrum of HFD in Eq. (3.1) for

λ ¼ 0, let us next discuss what happens once λ is turned on.
Using the fact that the graphene form factors obey
Eq. (2.14), one can rewrite Hgb in the low-energy spectrum
of MSTG as (see the Supplemental Material [59] Sec. B 1
for details)

Hgb ¼ 1

N

X
q

VðqÞδρg−q
�
δρbq −

X
G∈RL

δq;GRG

�
þ E0ðνbÞ:

ð3:9Þ

In the above, E0ðνbÞ is proportional to the filling of the
graphene Dirac cones νg when the flat metric condition
holds, and is therefore a constant at integer fillings where
the TBG bands are known (and verified in our numerics) to
be gapped. So we immediately see that the property (3.7) of

all of the exact TBG states jΨb
0ðνbÞi defined above

implies

HgbjΨg
jðνbÞijΨb

0ðνbÞi ¼ E0ðνbÞjΨg
jðνbÞijΨb

0ðνbÞi: ð3:10Þ

Consequently, all of the states jΨg
jðνbÞijΨb

0ðνbÞi remain
exact eigenstates of the full MSTG Hamiltonian HFD in the
flat-decoupled limit at arbitrary λ.
Whether the states jΨg

0ðνbÞijΨb
0ðνbÞi will also remain the

exact ground states is a more subtle question: Since the
states jΨb

0ðνbÞi break symmetries, HFDjλ¼0 will have a
gapless Goldstone spectrum. In principle, an arbitrarily
small λ could lower the energy of some of those states
below that of jΨg

0ðνbÞijΨb
0ðνbÞi. However, we show in

Supplemental Material [59] Sec. B 2 that is not the case if
νb ¼ 0 or w0 ¼ 0, or if Eq. (3.8) holds. Therefore, a finite
λ> 0 is required before jΨg

0ðνbÞijΨb
0ðνbÞi cease to be the

exact ground states.

B. Discussion of ground states

Taken together, we show that the states jΨg
jðνbÞijΨb

0ðνbÞi
where jΨg

jðνbÞi is just the spectrum of single-layer graphene
at filling νg ¼ νgðνbÞ and jΨb

0ðνbÞi is any of the states in
Eq. (3.6) are exact eigenstates of the MSTG Hamiltonian
in the chiral-flat-decoupled limit (w0 ¼ WTBG ¼ D0 ¼ 0),
HFDjw0¼0, for any integer νb. Furthermore, there is a finite
region of λ for which jΨg

0ðνbÞijΨb
0ðνbÞi will remain a

ground state of MSTG if jΨb
0ðνbÞi is a ground state of

TBG [recall that jΨb
0ðνbÞi is guaranteed to be a ground

state of TBG for νb ¼ 0without further assumptions while it
requires that the flat-metric condition is not too strongly
violated for νb ≠ 0]. Finally, away from the chiral limit
w0 ≠ 0, the subset of states in Eq. (3.6) with ηþj ¼ η−j and
sþj ¼ s−j are known to be ground states of TBG in the
flat limit for integer νb and if the flat metric condition
holds [62]. Our analysis shows that these states remain
exact eigenstates for λ ≠ 0 and also ground states
for jλj< λc > 0 in the non-chiral-flat-decoupled limit
(WTBG ¼ D0 ¼ 0, w0 ≠ 0).
In all of these limits, we see that the graphene subsystem

retains its (correlated but symmetry-unbroken and, depend-
ing on νb, doped) semimetallic properties for all integer
filling fractions νb. This is consistent with experiment,
where quantum oscillations indicate a dispersive Dirac
cone at D0 ¼ 0 [30,31]. Furthermore, the exact eigenstates
established above are used as our starting point for further
analytical considerations in Sec. V and their product-state
nature motivates our HF numerical study of the problem in
Sec. IV. Both numerics and analytics complement the
discussion presented above by (i) validating the stability
of the Dirac cones at D0 ¼ 0 in schemes that do not rely on
λ being small and (ii) by tuning away from the exactly
solvable limits (WTBG ¼ D0 ≠ 0) and (iii), for the
numerics, including additional remote bands.
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C. Resultant candidate states

To build the foundation for these additional analytical
and numerical computations, we use the exact (and highly
degenerate) ground states established above in the chiral-
flat-decoupled limit to construct a finite set of candidate
phases and their respective order parameters.
We first define the correlation matrix Pk with elements

ðPkÞðt;p;η;sÞ;ðt0;p0;η0;s0Þ≔ hΨ0jf†k;ðt;pÞ;η;sfk;ðt0;p0Þ;η0;s0 jΨ0i ð3:11Þ

to characterize a given ground state jΨ0i of MSTG.
Hermiticity implies P†

k ¼ Pk. As is common, we further
write Pk ¼ 1

2
ð1þQkÞ and useQk as our “order parameter”

to characterize the (potentially symmetry-broken) structure
of jΨ0i. It must obey

Q†
k ¼ Qk;

1

N

X
k

tr½Qk� ¼ νb þ νg ≡ ν: ð3:12Þ

As we see above, the ground states of MSTG in the flat-
decoupled limit (WTBG ¼ D0 ¼ 0) obey

ðQkÞðt;p;η;sÞ;ðt0;p0;η0;s0Þ ¼ δt;t0 ðQt
kÞðp;η;sÞ;ðp0;η0;s0Þ; ð3:13Þ

i.e., they do not exhibit any “coherence” between the
graphene and TBG sectors. This is expected, as the
presence of σh requires any order parameter to be either
even (diagonal in t space) or odd (off-diagonal) under σh;
due to the large density of states in the TBG sector, we
expect the former mirror-symmetry-even order parameters
to dominate. Once D0 ≠ 0, mixing is allowed, as we see in
our numerics below and discuss in detail analytically in
Sec. V B. Furthermore, the analysis above reveals that the
ground state in the TBG sector will be of the form of
Eq. (3.6). For instance, for νb ¼ 0 with ηþj ¼ η−j ¼ ð−1Þj
and sþj ¼ s−j ¼↑, j ¼ 1, 2, it holds Q̃b

k ¼ σ̃0η0sz where
Q̃b

k ¼ U�Qb
kU

T is the order parameter Qb
k in Eq. (3.13)

in the TBG subspace transformed to the chiral basis of
Eq. (3.5); in the basis of Eq. (3.11), it holds Qb

k ¼ σ0η0sz,
which we refer to as the spin-polarized (SP) state. Here and
in the following, we use σj (σ̃j) to denote Pauli matrices in
the band space with index p (in the chiral basis with index
c). In addition to the SP state, Eq. (3.6) describes many
other possible ground states that are exactly degenerate in
the chiral-flat-decoupled limit. A systematic way of seeing
this proceeds by noting that the Uð4Þ × Uð4Þ identified
[46,61,63] for TBG also persists as a symmetry of MSTG
in the chiral-flat-decoupled limit [36]; this immediately
follows from the structure of HFD in Eq. (3.1). Here, we
refer to this symmetry group as ½Uð4Þ × Uð4Þ�b;CF, and its
action is particularly simple in the chiral basis [61]

b̃k → Ub̃k; U ¼ ei
P

j¼0;3

P
3

μ;μ0¼0
φj;μ;μ0 σ̃jημsμ0 : ð3:14Þ

The form of these transformations is readily inferred from
Eq. (S48) in the Supplemental Material [59], which
indicates that all U with ½U; σ̃3� ¼ 0 will leave HFD
invariant. Under Eq. (3.14), the order parameter defined
above transforms as Q̃b

k → U�Q̃b
kU

T , which allows us to
generate the entire (continuous) set of exactly degenerate
ground states from one “seed” state, such as the SP state,
Q̃b

k ¼ σ̃0η0sz. Since this seed state and U commute with σ̃3,
we know that ½Q̃b

k; σ̃3� ¼ 0 for all ground states. Further
noting that ðQ̃b

kÞ2 ¼ 1 (physically related to the Slater-
determinant nature), we can thus summarize the properties
in the original basis as

Qb
k ¼ Qb; ½Qb; σ2� ¼ 0;

ðQbÞ2 ¼ 1; tr½Qb� ¼ 0 ð3:15Þ

at charge neutrality.
The actual Hamiltonian of MSTG is not in the chiral-flat-

decoupled limit and does not exhibit an exact ½Uð4Þ ×
Uð4Þ�b;CF symmetry. Intuitively, this can be thought of as
generating an easy axis in this multidimensional space of
degenerate states, favoring a specific (subspace of) state(s)
in Eq. (3.15). While energetics is required to decide which
phase is ultimately preferred by the system—the aim of the
subsequent sections—we can use symmetries to derive
the discrete and finite set of possible “candidate states”: To
this end, we impose only Uð1Þv and global spin rotations
SUð2Þs as exact continuous symmetries. We then know that
the candidate order parameters must transform under the
irreducible representations of these symmetry groups (and
be even or odd under the exact discrete symmetries C2z and
Θ), leading to the 11 options listed in Table II. In order to
connect smoothly to the limit D0 → 0, here we take Qg

k ¼
−σz in the graphene subspace but emphasize that these
order parameters are used only to define the different states
and characterize their symmetries. For our numerical and
analytical discussion below, they are taken to be only the
starting point, and we allow for (and also find) mixing
between the TBG-like and graphenelike sectors whenD0 ≠
0 as well as momentum dependence in Qk.
Finally, we point out that the model introduced in Sec. II,

and in which we study energetics below, has an exact
SUð2Þþ × SUð2Þ− symmetry. Therefore, certain pairs of
states, which we call Hund’s partners following Ref. [27],
have to be exactly degenerate; see Table II. As we noted
earlier, in the realistic system, there is a nonzero intervalley
Hund’s coupling JH ≠ 0, which will break SUð2Þþ ×
SUð2Þ− down to SUð2Þs, albeit weakly, and favor one
member of each of the pairs over the other. For most of the
following study, we focus on the SUð2Þþ × SUð2Þ− limit,
and hence, we can, without loss of generality, restrict the
discussion to the first seven states in Table II. However, one
has to keep in mind that the real system will realize only
one state of each Hund’s pair, which will depend on the
(unknown) sign of JH and precise form of Hund’s coupling
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(see the Supplemental Material [59] Sec. F 5 for more
details). Taking, for concreteness, the intervalley Hund’s
coupling to be of the form

H2 ¼
JH
N

X
q

Sþq ·S−−q; S�q ¼ 1

2
c†kþqð1�ηzÞck; ð3:16Þ

we can, in the chiral-flat-decoupled limit, uniquely asso-
ciate a single state of each Hund’s pair with a given sign of
JH; this is indicated in the last column in Table II.

IV. HARTREE-FOCK NUMERICS

As it facilitates the presentation of the results, we begin
the discussion of correlated phases away from the chiral-
flat-decoupled limit with the HF numerics and postpone the
complementary analytics to Sec. V. Furthermore, we first
focus on the charge-neutrality point ν ¼ 0.

A. Hartree-Fock method

In the HF approximation, one focuses on Slater-deter-
minant states jΨ½Pk�i characterized by the correlation
matrix Pk as defined in Eq. (3.11). Consequently, it holds
P2
k ¼ Pk or, equivalently, Q2

k ¼ 1; this is also true for the
exact candidate ground states constructed in Sec. III C for
the chiral-flat-decoupled limit, and hence, the HF approxi-
mation is expected to provide reliable results.
The goal of our HF numerics is to determine the optimal

Qk that yields the lowest-energy expectation value with
respect to the interacting Hamiltonian for MSTG intro-
duced in Sec. II. To be more specific, we start from the full
Hamiltonian H ¼ Hfull

0;1 þHfull
0;2 þH1 consisting of the con-

tinuum model in Eq. (2.1), the displacement-field term in
Eq. (2.4), supplemented by the density-density interaction
in Eq. (2.8), and perform a mean-field decoupling. Using

the same notation as in Eq. (2.10b), the resulting HF mean-
field Hamiltonian reads as

HMF ¼
X

k∈MBZ

ϵn;ηðkÞf†k;n;η;sfk;n;η;s

þ
X

k∈MBZ

f†k[hH½P�ðkÞ þ hF½P�ðkÞ]fk

−
1

2

X
k∈MBZ

Tr[hH½P�ðkÞPT
k þ hF½P�ðkÞPT

k ]; ð4:1Þ

where the Hartree and Fock contributions to the mean-field
Hamiltonian can be written in terms of the projector Pk as

hH½P�ðkÞ ¼
1

N

X
G∈RL

VðGÞFk;G

X
k0∈MBZ

Tr½F�
k0;GPk0 � ð4:2Þ

and

hF½P�ðkÞ ¼ −
1

N

X
q

VðqÞF†
k;qP

T
kþqFk;q; ð4:3Þ

respectively. This form of the HFmean-field Hamiltonian is
valid for an arbitrary number of bands kept. In the numerics
presented here, we focus on the four bands for each spin
and valley flavor that are closest to the Fermi level, which
contains the graphenelike and TBG-like bands we focus on
in the analytics. We verify for representative values of D0

and w0 that the solutions we obtain are stable against
doubling the number of remote bands in our self-consistent
calculation in the Supplemental Material [59] Sec. C 3.
As pointed out in several HF works on TBG [45–48],

it is important to note that the continuum model Hfull
0;1

already references electron-electron interactions in the

TABLE II. We list the different candidate phases in the TBG-like subspace constructed as the discrete set of states that are part of the
large manifold of exact ground states in the chiral-flat-decoupled limit (see Sec. III) but transform under the irreducible representations
of the symmetries of the real system. Here, 1 (3) is the singlet (triplet) representation of SUð2Þs and 0 (1) the one (two)-dimensional
representation of Uð1Þv. For future reference, in Sec. VII we list the behavior (� denoting even and odd, and ✗ indicating absence) under
both spinful (Θs) and valley (Θ̃) time-reversal symmetry; see Table I. The last two columns indicate which states are Hund’s partners
[27], i.e., transform into each other when reversing the sign of Hund’s coupling JH while being exactly degenerate in the
[SUð2Þþ × SUð2Þ−]-symmetric limit, and which sign of JH favors the respective state.

Type Short form Qb Q̃b SUð2Þs Uð1Þv C2z Θs=Θ̃ Hund’s partner JH

Spin polarized SP σ0η0s σ̃0η0s 3 0 ✓ −=✗ SVP <0
Valley polarized VP σ0ηzs0 σ̃0ηzs0 1 0 ✗ −=− None 0
Θ-even IVC IVCþ σ0ηx;ys0 σ̃0ηx;ys0 1 1 ✓ þ=− SIVCþ >0
Θ-odd IVC IVC− σyηx;ys0 σ̃zηx;ys0 1 1 ✓ −=þ SIVC− >0
Θ-odd, sublattice pol. or Hall SLP− σyη0s0 σ̃zη0s0 1 0 ✓ −=− None 0
Θ-even, sublattice pol. or valley Hall SLPþ σyηzs0 σ̃zηzs0 1 0 ✗ þ=þ None 0
Θ-odd, spin-sublattice-pol. or spin Hall SSLP− σyη0s σ̃zη0s 3 0 ✓ þ=✗ SSLPþ <0

Spin-valley polarized SVP σ0ηzs σ̃0ηzs 3 0 ✗ þ=✗ SP >0
Θ-even, spin-pol. IVC SIVCþ σ0ηx;ys σ̃0ηx;ys 3 1 ✓ −=✗ IVCþ <0
Θ-odd, spin-pol. IVC SIVC− σyηx;ys σ̃zηx;ys 3 1 ✓ þ=✗ IVC− <0
Θ-even, spin-subl. pol. or spin-valley Hall SSLPþ σyηzs σ̃zηzs 3 0 ✗ −=✗ SSLP− >0
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experimentally determined values for microscopic model
parameters, and therefore, we must define a reference
subtraction projector P0 such that interactions will not
be double counted in our numerics. Here we choose P0

such that the projected low-energy Hamiltonian exhibits
the manifestly particle-hole-symmetric interaction in
Eq. (2.10). As shown in Ref. [61] for TBG, this ansatz
has the natural interpretation of effectively taking into
account the HF contributions from all remote bands that
have been projected out.
To determine the optimal Pk, we start with an initial

guess for it with the symmetries of a given candidate order
in Table II. We then use the HF Hamiltonian in Eq. (4.1) to
compute a new projector Pk and iterate until Pk converges.
More details on our iterative HF procedure and subtraction
point are given in the Supplemental Material [59] Sec. C 2.

B. Band structures

In this section, we discuss the band structures of the self-
consistent solutions we find atD0 ¼ 0 for each of the states
in Table II and how these band structures evolve as D0

increases.

1. Self-consistent band structures at D0 = 0

At D0 ¼ 0, we can separately describe the behavior of
the graphenelike and TBG-like bands for each type of state,
since, for all states we consider, the graphenelike bands
near the Fermi level at D0 ¼ 0 do not mix with any other
bands near the K and K0 points. They have a bandwidth
larger than the scale of Coulomb interactions. For this
reason, the Dirac cones of the graphenelike bands prefer a
Qg

k which equally fills the lower bands of the continuum
model and preserves all point-group symmetries for every
class of solution we study. The Dirac cones thus remain
semimetallic and are, in this sense, “spectators” at D0 ¼ 0,
in agreement with Sec. III. On the other hand, the TBG-like
bands have a bandwidth (5–10 meV) smaller than the scale
of the Coulomb energy at D0 ¼ 0 and therefore become
insulating as they are polarized for a given symmetry
breaking Pk.
We find converged solutions for each ansatz in Table II

and show representative band structures for those states
which have the lowest energy in the leftmost panels of
Fig. 3. Additional band structures for solutions not shown
in Fig. 3 can be found in the Supplemental Material [59]
Sec. C 3. We note the similarity of the IVC− band structure
in the TBG-like bands to the band structure of the ground
state in Ref. [46].

2. Self-consistent band structures for D0 > 0

All the solutions described for D0 ¼ 0 are insulating in
the TBG-like bands and semimetallic in the graphenelike
bands. However, as D0 increases and the TBG-like and

graphenelike bands begin to hybridize, the graphenelike
bands begin to play a more important role.
For the SP and VP states which preserve C2zΘ and

Uð1Þv, the hybridized Dirac crossings are protected (and
pinned to the K and K0 points due to C3z), meaning if the

FIG. 3. HF band structures in the limit D0 ¼ 0 (left) and
nonzero D0 (right) as obtained from Eq. (4.1) for the optimal Pk
in the respective symmetry-breaking channel defined in Table II.
We show only the states which are either ground states or
subleading energy states for some region of our phase diagram,
with a full set of band structures available in the Supplemental
Material [59] Sec. C 3. Each band of the HF Hamiltonian is
colored according to the expectation value of the mirror-sym-
metry operator within each band as a function of k, with the
expectation value ranging from −1 (red) to þ1 (blue).
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TBG-like bands acquire a spin or valley polarization, the
Dirac crossings of the graphenelike bands must connect to
these polarized bands as they are pushed away from the
Fermi level. Away from the K points of the MBZ, the
graphenelike bands will likely still prefer to fill the lowest
bands of the noninteracting model. Therefore, the VP and
SP are generically expected to be metallic for D0 > 0. This
is indeed what we find, as shown in the right panels for the
SP and VP states in Fig. 3.
The band structures of the IVC� states also retain Dirac

crossings at the K and K0 points for nonzero D0, as they
exhibit C3z and a k-local antiunitary symmetry that com-
mutes with C3z (for the IVCþ and IVC− these are C2zΘ and
C2zΘ̃, respectively). However, unlike the SP and VP states,
the IVC� states also preserve SUð2Þs and C2z, which pin
the Dirac crossings at the Fermi level at ν ¼ 0. We therefore
expect the intervalley coherent states will remain semi-
metallic as D0 increases. We observe this to be true for the
self-consistent solutions, as can be seen in the right IVC−
panel in Fig. 3.
The last class of states is the sublattice-polarized, C2zΘ-

symmetry-breaking states (SLP�, SSLP−) which preserve
Uð1Þv. We expect these states will generally be insulating
for nonzero D0 as there are no protected Dirac crossings,
and both the TBG-like and graphenelike bands can be
gapped out. This is indeed seen in our numerics, with
insulating band structures for the SLPþ, SLP−, and SSLP−
states. The band structure of the SLP− state is shown
in Fig. 3.

C. Energies and phase diagram

Having established the band structures of the different
possible phases, we next turn to their relative energetics
and discuss which states are expected to be favored
energetically.
The evolution of the energies of each of our self-

consistent solutions as a function of w0 and D0 is shown
in Fig. 5 (see also Supplemental Material [59] Fig. S2). As
mentioned before, at D0 ¼ 0, the Hamiltonian of the
system is given by the sum of the Hamiltonian of TBG
and that of graphene, both with Coulomb interactions,
which are further coupled to each other by a density-density
interaction. While we construct only exact eigenstates in
Sec. III for the chiral-flat-decoupled limit, we expect a
similar picture when w0;WTBG ≠ 0: Given that the band-
width of the graphenelike bands is large compared to the
scale of the Coulomb interactions, we expect the graphene
bands will prefer to fill the lower bands of the continuum
model. As the graphene density of states is small compared
to that of the flat bands of TBG, it should not crucially alter
the ground state in the TBG sector—at least close to the
magic angle. Based on previous work [46,48], we thus
expect that the IVC− state has the lowest energy forD0 ¼ 0
(though with a smaller energy difference than in previous
works between our IVC− and spin-polarized phase due to

our choice of subtraction point). Both expectations for the
graphenelike and TBG-like bands are confirmed by our
numerics which finds the IVC− state has the lowest energy
of all our candidates for all values of w0 studied in the
decoupled limit, D0 ¼ 0. We also recover these observa-
tions analytically in Sec. V.
The lowest-energy state for D0 ≠ 0 cannot be directly

inferred from knowledge of the physics of TBG as a
finite D0 induces hybridization between the TBG-like and
graphenelike bands near the K and K0 points of the MBZ; it
further breaks symmetries in the TBG sector, and hence,
changes the basic form of its dispersion and interaction
matrix elements (form factors). Consequently, it is not clear
whether the ground state in the TBG-like and/or graphene-
like sector changes with increasing D0. As can be seen in
Fig. 5 as well as in the corresponding phase diagram in
Fig. 4, we find within HF that the IVC− remains the ground
state for an extended range of D0, which increases with w0.
For reference, the range of D0 in Figs. 4 and 5 when
combined with additional studies at larger D0 in the
Supplemental Material [59] Sec. E corresponds roughly
to the range of displacement fields studied experimentally
in Ref. [30].
Beyond the critical value of D0 for the IVC−, the SLP

group of states (SLP�, SSLP−) dominates. While these
latter three states are almost degenerate for all parameters
D0, w0 studied, there is a slight preference toward the time-
reversal-odd SLP− (quantum Hall), predominantly associ-
ated with the Hartree energy. While a SP or VP phase
does not appear as a ground state in Fig. 4, we find the

FIG. 4. Phases obtained by self-consistent HF method as a
function of w0 and D0. Both the leading instability (red) and the
subleading ones (black, in parentheses) are shown. The phases
are identified by the symmetries they break (see Table II), and
representative band structures can be found in Fig. 3. We show
only one state as a representative of each pair of Hund’s partners
which are degenerate in our Hartree-Fock procedure. We label the
nearly degenerate SLPþ, SLP−, SSLPþ, and SSLP− phases with
“SLP,” though note the preference in our numerics is for the SLP−
state from a Hartree contribution.
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energetically close SP or VP states are either the second or
third lowest energy state to the IVC− and SLP group across
the phase diagram. In the next subsection, we recover many
of these features analytically by investigating the afore-
mentioned energetic contributions perturbatively.

V. ANALYTICAL PERTURBATION THEORY

Finally, we complement the HF numerics with an
analytical study of the behavior of the energies and the
order parameters of the degenerate ground states of the
chiral-flat-decoupled limit (w0¼WTBG¼D0¼0) of Sec. III
and Table II when turning on WTBG, D0, and w0. We first
investigate the ordering tendencies of the graphenelike
bands (Sec. VA) and their mixing with the TBG-like bands
(Sec. V B), before addressing the energetic contributions
coming from the D0,w0-induced distortion of the TBG-like
form factors (Sec. V C) and band structure (Sec. V D).

A. Ordering in the graphenelike bands

Since the graphene and graphenelike bands in Fig. 2(b)
are highly dispersive, starting from a flat-band limit, as is
natural for the TBG-like sector, is not possible for the
graphene(like) bands. Their bands are coupled, without any
band gap, to the TBG-like bands with a high density of
states, and thus, treating the interactions between the two
subsystems as a perturbation is also not necessarily con-
trolled for realistic parameters. Instead, here we use a
different control parameter: Based on the band structure,
we expect the effect of the TBG(-like) bands on the
graphene(like) bands to be the strongest around the K
and K0 points and very weak away from it. To formalize
this, let us assume that the graphenelike bands remain in

their filled-lower-bands state away from the K and K0
points but allow them to be “deformed” in the region A ¼
Aþ ∪ A− of the MBZ, where Aþ (A−) are simply con-
nected and centered on the K (K0) point. As explained in
detail in the Supplemental Material [59] Sec. F 3, we study
the energy of symmetry-allowed ordering tendencies of the
graphenelike bands for the different candidate phases in
Table II in the limit where the area ofA is small (compared
to that of the MBZ).
To illustrate this procedure, let us consider the SP state.

Since the TBG-like bands break spin-rotation symmetry, it is
natural to assume that the same happens to the graphenelike
bands in A; postponing the discussion of mixing between
the bands to Sec. V B, this means that ðQg

kÞη;η0 ¼ δη;η0σ0s,
k ∈ Aη, in the notation introduced in Sec. III C, while
ðQg

kÞη;η0 ¼ −δη;η0σ3 for all other k. Herewe already anticipate
(as is also readily checked within this formalism) that it is
energetically more favorable if only the graphene valley η ¼
þ (η ¼ −) that is at low energies in the region Aþ (A−)
exhibits spin polarization. Denoting the linear size ofA� by
Δk > 0, the structure of the energetic change associatedwith
the deformation of the graphene order is asymptotically
given by

ΔE ∼ d1jD0jðΔkÞ2 þ d2ðΔkÞ3
þ IggðΔkÞ3 − IgbD2

0ðΔkÞ2 ð5:1Þ
for small Δk and D0; here, d1;2 > 0 are positive constants
(independent ofΔk andD0, but dependent onw0) associated
with the graphenelike dispersion, while Igg depends on the
graphene-graphene form factors Fgg and Igb > 0 on Fgb and
Fgg. The explicit form and derivation can be found in the
Supplemental Material [59] Sec. F 3.

(b)(a)

FIG. 5. (a) Line cuts for fixed w0 showing the energy of our self-consistent solutions relative to a SP state as a function of D0. We use
w0 ¼ 124 meV and four bands per spin and valley, with dielectric constant ϵ ¼ 7 and screening distance d ¼ 40 nm. Full energies as a
function of w0 and D0 can be found in the Supplemental Material [59] Fig. S2. Note that the SLP� and SSLP− are not exactly
degenerate, as we discuss in the main text, but are plotted as a single line here since the splitting is too small to be visible on the scale of
the plot. (b) Matrix form of our converged IVC− and SLP− orders Pk for k near the Γ point and near the K point. The matrix structure of
Pk is organized such that the largest block outlined in blue denotes spin flavor, the next largest block outlined in red denotes valley
flavor, the green block denotes upper and lower bands in the continuum model, and the final two boxes denote the graphenelike and
TBG-like band in the upper-band box and the TBG-like then graphenelike bands in the lower-band box.
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From Eq. (5.1), we can read off the behavior of the
graphenelike bands of the SP state. ForD0 ¼ 0, we see that
ΔE > 0 (deformation is energetically disfavored) as long as
d2 > Igg. While this is what our numerics shows, we point
out that d2 < Igg would imply that single-layer graphene
spontaneously magnetizes, which is known to be not the
case. This agrees with our result in Sec. III based on
adiabatically turning on the coupling between the TBG and
graphene system and our numerics which displays unpo-
larized graphene Dirac cones in Fig. 3 at D0 ¼ 0. When
D0 ≠ 0, we see that the energetic cost coming from the
dispersion in the first line of Eq. (5.1) will always over-
compensate the energetic gain coming from the scattering
between the graphene- and TBG-like bands (at least in a
finite range of D0 ≠ 0). This is also consistent with our HF
numerics: As can be seen in the band structure in Fig. 3, the
graphenelike bands are not spin polarized for nonzero D0

(see also Fig. S11 in the Supplemental Material [59] where
Qk as obtained in HF are shown).
In the same way, all the other states in Table II can be

analyzed (see the Appendix A 1) with results summarized
in Table III. Most importantly, we see that only the SLP�
states can benefit from, and hence, develop order in the
graphenelike bands.

B. Mixing between the bands

We next look into the mixing between the TBG-like and
graphenelike bands. While it is clear by symmetry that the
mixing has to vanish for D0 ¼ 0 and be generically present
for D0 ≠ 0, here we investigate the associated energetic
gain and precise form of the band mixing for our candidate
states in Table II.

Let us take the IVC− state as an example. We show in
Appendix A 2, that only two different mixing matrices
defined as

ðMQ
k Þðp;η;sÞ;ðp0;η0;s0Þ ≔ ðQkÞðb;p;η;sÞ;ðg;p0;η0;s0Þ ð5:2Þ

are possible:

MQ
k ¼ 2

ffiffiffi
2

p
iðσxP� � σ0η

∓Þφk; k ∈ A� ð5:3aÞ

and

MQ
k ¼ 2

ffiffiffi
2

p
iðσzP� � iσyη∓Þφk; k ∈ A�: ð5:3bÞ

Here, we define P� ¼ ðη0 � ηzÞ=2 and η� ¼ ðηx � iηyÞ=2.
Intuitively, the first mixing matrix means that the lower
(upper) graphenelike bands of the valley that is at low
energies at K or K0 mixes with the upper (lower) and lower
(upper) TBG-like bands of the same and opposite valley,
respectively. The second option in Eq. (5.3b) describes the
“twisted” situation where the lower (upper) graphenelike
band mixes with the lower (upper) TBG-like bands of the
same valley and the upper (lower) band in the opposite
valley. The HF result for Qk close to the K point shown in
Fig. 5(b) is consistent with Eq. (5.3a). As we discuss in
Appendix A 2, the associated energetic gain is of the form
ΔEgb ∼ −g3ðΔkÞ2D2

0, where g3 > 0; this is indicated in
Table III.
In the same way, all other candidate states can be

studied (see Supplemental Material [59] Sec. F 4). In
accordance with our expectation based on symmetry, we
find no mixing and vanishing energetic gain ΔEgb ¼ 0

TABLE III. Summary of the different energetic contributions, as discussed in Sec. V, for the candidate orders in Table II when tuning
away from the chiral-flat-decoupled limit (w0 ¼ WTBG ¼ D0 ¼ 0). By construction, the energies are identical for the respective Hund’s
partners and are hence omitted. Here, ΔEbbðWTBG ¼ 0Þ is the change of energy relative to SP phase coming from the modifications of
the form factors in the TBG-like bands when turning on w0 and D0 in the flat limit (WTBG ¼ 0). As indicated in the column labeled
ΔEgg, only the SLP� states gain energy by ordering in the graphenelike bands immediately when D0 ≠ 0. In all cases, D0 ≠ 0 leads to
mixing between the bands with energetic gain, as listed in the chiral limit w0 ¼ 0 in the column ΔEgb. Here, Δk is the linear size of the
fraction A� of the MBS where ordering in the graphenelike bands and mixing take place. The four columns with Ēb

j indicate which of
the four contributions to the TBG dispersion in Eq. (2.6) can lower the energies to second order inWTBG. Finally, in the last columns, we
list the energy change associated with a finite value of Hund’s coupling in Eq. (3.16) for the respective state (ΔEJ) and its Hund’s partner
(ΔEH

J ), if it exists, in the chiral-flat-decoupled limit. All coefficients obey cj; g�; gj; βj > 0 and explicit expressions can be found in the
Supplemental Material [59] Sec. F.

Type Qb Q̃b ΔEbbðWTBG ¼ 0Þ ΔEgg ΔEgb Ēb
0 Ēb

1w0 Ēb
2D0 Ēb

3w0D0 ΔEJ ΔEH
J

SP σ0η0s σ̃0η0s 0 (by definition) 0 −g1ðΔkÞ2D2
0 ✗ ✗ ✗ ✗ 2JHβ1 −2JHβ1

VP σ0ηzs0 σ̃0ηzs0 0 0 −g1ðΔkÞ2D2
0 ✗ ✗ ✗ ✗ 0 0

IVCþ σ0ηx;y σ̃0ηx;y c1D4
0 þ c3w2

0 0 −g2ðΔkÞ2D2
0 ✗ ✓ ✓ ✗ −3JHβ2 JHβ2

IVC− σyηx;y σ̃zηx;y c1D4
0 þ c4w2

0D
4
0 0 −g2ðΔkÞ2D2

0 ✓ ✓ ✗ ✗ −3JHβ2 JHβ2
SLP− σy σ̃z c3w2

0 þ c4w2
0D

4
0 −g−ðΔkÞ2jD0j3 −g1ðΔkÞ2D2

0 ✓ ✗ ✓ ✗ 0 0

SLPþ σyηz σ̃zηz c2D4
0 þ c3w2

0 þ c4w2
0D

4
0 −gþðΔkÞ2jD0j3 −g3ðΔkÞ2D2

0 ✓ ✗ ✓ ✗ 0 0

SSLP− σysz σ̃zsz c3w2
0 þ c4w2

0D
4
0 0 −g1ðΔkÞ2D2

0 ✓ ✗ ✓ ✗ 2JHβ3 −2JHβ3
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when D0 ¼ 0, while mixing immediately sets in and
ΔEgb < 0 once D0 ≠ 0. In all cases, ΔEgb scales as ΔEgb ∼
−gjðΔkÞ2D2

0, gj > 0, as D0 → 0. While gj ¼ gjðw0Þ
depend on w0, we list ΔEgb in the chiral limit w0 ¼ 0 in
Table III, as it reveals some structure: We see that the
energetic gain coming from hybridization is identical for
the two IVCs, and it is the same for the four states SP, VP,
SLP−, and SSLP− in the chiral limit.
To provide a second example, we find a mixing matrix

for the SLP− given by

MQ
k ¼ 2iðσy þ σzÞP�φk; k ∈ A�: ð5:4Þ

This means that there is only mixing in the valley for which
the graphenelike bands are at low energies and that both
upper and lower graphenelike bands mix with both TBG-
like bands. This is consistent with the Qk in Fig. 5(b) that
we find for the SLP− in HF close to the K point.

C. Deforming the form factors

Apart from the mixing with and the “proximity-induced”
order in the graphenelike bands, there are also important
energetic contributions directly within the TBG-like bands
when tuning away from the chiral-flat-decoupled limit.
While some of these contributions are analogous to TBG
[46,62], others are not: Nonzero D0 strongly breaks P (see
Table I), and hence, induces terms in the TBG-like band
structure [see second line in Eq. (2.6)] without any analog
in TBG. It also leads to terms in the form factors [see
Eq. (S33a) in the Supplemental Material [59] for details]
that cannot be present in TBG and have not been studied in
the literature.
Here we begin with the impact of the form factors and

restrict ourselves for now to the flat limitWTBG ¼ 0. In the
column labeledΔEbb in Table III we show the energy of the
candidate states for nonzero w0 and D0 relative to the SP
(see the Supplemental Material [59] Sec. F 1 for explicit
expressions for the prefactors cj > 0). First, forD0 ¼ 0, we
recover the previous result [46] that the IVC− and VP are
the only states besides the SP that are not penalized when
turning on w0. Second, we see that this changes once
D0 ≠ 0: If w0 ¼ 0, it is the SLP group of states that is not
suppressed by breaking P with D0 [65], while both IVCs
have increasing energy. When both w0 and D0 are simulta-
neously nonzero, the SLP group is also suppressed (by the
exact same amount as the IVC−) compared to the SP and
VP. Algebraically, this is related to the fact that the SP and
VP order parameters are the only ones that commute with
all form factors once w0; D0 ≠ 0 [cf. Eq. (S33a) in the
Supplemental Material [59]].

D. Finite TBG bandwidth

Finally, we take into account the finite bandwidth of the
TBG-like bands by doing perturbation theory in WTBG in
Eq. (2.5), starting from the product states associated with

the candidate orders of Table II. We outline only the results
here and refer the interested reader to the Supplemental
Material [59] Sec. F 2.
Since the correction to the relative energies of the different

candidate orders vanishes to first order inWTBG, we focus on
second-order perturbation theory, which, if nonzero, will
always lower the energy of the states and can be thought of as
“superexchange.”We consider the superexchange processes
associatedwith all four termsEb

j , j ¼ 0, 1, 2, 3 in Eq. (2.6) of
the TBG-like dispersion; the corresponding energetic gain
will scale as W2

TBG=U for j ¼ 0, W2
TBGw

2
0=U for j ¼ 1,

W2
TBGD

2
0=U for j ¼ 2, and W2

TBGw
2
0D

2
0=U for j ¼ 3 to

leading order in D0 and w0, where U is the energy scale
associated with occupying a k state of an unoccupied flavor
in a given ground state. Which of these four superexchange
processes are “active” for the candidate states is listed in
Table III. We find that, by virtue of being proportional to the
identity in Eq. (2.6), Eb

3 does not affect the energy of the
states. Furthermore, we see that the displacement-induced
superexchange process favors the IVCþ and the SLP group
of states.

E. Comparison of energetics

Taken together, the energetics obtained analytically as
summarized in Table III agrees well with the numerics in
several aspects: We can see that the energies of the SLPþ,
SLP−, and SSLP− are expected to be very close, exactly as
seen in HF; see Fig. 5. There is a very small splitting among
the three associated with the fact that the SSLP− cannot
benefit from ordering in the graphenelike bands, that effect
is weaker for the SLPþ than for the SLP− (recall g− > gþ
for small w0), and that the SLPþ is slightly suppressed by
the Hartree term. We see that there is a small energetic
preference toward the SLP− in the numerics as well. In
addition, we can also read off from Table III that the SLP
group of states should be preferred for small w0 and large
D0, which is consistently seen in our HF phase diagram
in Fig. 4.
Notwithstanding the good agreement between the HF and

the analytics concerning the graphene ordering, mixing
between the bands, and the energetics, there are also
differences. These differences can be traced back to the
additional presence of remote bands, in particular, the bands
with σh eigenvalues þ1 just above (below) the almost-flat
TBG-like band p ¼ þ (p ¼ −) away from the K and K0
points. While these remote bands are included in our HF
numerics, they are not taken into account in the analytics.
Most notably, we see that mixing between these bands and
the almost-flat TBG-like bands further lowers the energy of
IVC− state relative to the SP and VP states.

F. Breaking SUð2Þ+ × SUð2Þ−
Finally, we come back to the fact that certain Hund’s

partners of states are degenerate in the model we have
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focused on so far and defined in Sec. II; this can be traced
back to the presence of the SUð2Þþ × SUð2Þ− spin sym-
metry. Turning on a finite Hund’s coupling JH ≠ 0 will lift
this degeneracy and also slightly affect the relative ener-
getics of the candidate states. For the form of Hund’s
coupling defined in Eq. (3.16), we compute the respective
change of energy. With more general and explicit expres-
sions available in the Supplemental Material [59] Sec. F 5,
we present their impact on the energies of the states in the
last two columns of Table III in the chiral-flat-decoupled
limit. Here, βj are positive constants obeying β2 > β1; β3.
While estimates based on the Coulomb interaction yield an
energy change (per unit cell) of 2JHβ1 ≃ −0.2 meV for the
SP state in TBG [66], its actual effective value might be
smaller due to screening processes and additional electron-
phonon coupling, which can also change the sign of JH.
However, irrespective of the sign of JH and its precise
magnitude, we see that it will favor the SSLP� states in the
otherwise almost-degenerate SLP group of states, since the
SLP� cannot lower their energy with JH ≠ 0. This is due to
the fact that SLP� are their own Hund’s partners. Similarly,
the SP and SVP states will be favored over the VP phase.
Finally, we note that the energetic gain coming from JH is
of the same order of magnitude (even larger) for the SIVC−
(IVC−) compared to the SP (SVP) state. Consequently, we
do not expect that JH will change the fact that the IVC−
dominates over the SP in the phase diagram in Fig. 4.

VI. NUMERICS FOR ν = � 2

In this section, we discuss the numerical results for
correlated states at half filling of the lower or upper TBG-
like bands ν ¼ �2. As we see in Sec. VII below, the
normal-state behavior at these fillings is crucial for our
understanding of superconductivity in MSTG.

A. Procedure and results

We find self-consistent HF solutions with energies lower
than the symmetry-unbroken normal state where, atD0 ¼ 0
(D0 ≠ 0), the TBG (TBG-like and graphenelike) bands are
spin polarized and, on top of this, exhibit any of the
candidate orders defined for ν ¼ 0 in Table II. The obtained
spin polarization is our explanation for the observed
[30,31] reduced flavor degeneracy setting in around
jνj ¼ 2. We justify choosing spin polarization to reduce
the degeneracy at jνj ¼ 2 by noting that of the options for
flavor polarization (spin or valley polarization), only the
spin-polarized state has a distinct Hund’s partner (the
spin-valley-polarized state), meaning that either the spin-
polarized state or its Hund’s partner will have a lower
energy than the valley-polarized state in the presence of
nonzero Hund’s coupling.
To be more explicit, our self-consistent solutions are

found by starting, say, for ν ¼ −2, from a correlator
Pb
ν¼−2 ¼ 1

2
ð1þ szÞ 12 ð1þQbÞ in the TBG-like subspace,

where Qb is any of the candidate orders in Table II; the
initial correlator for the graphenelike sector is taken to be
filled lower bands of the continuum model at charge neu-
trality, Pg ¼ 1

2
ð1 − σzÞ. The corresponding correlator at

ν ¼ þ2 in the TBG-like sector is simply given by Pb
ν¼þ2 ¼

18×8 − Pb
ν¼−2. We apply the same iterative procedure as for

ν ¼ 0 to obtain self-consistent solutions, with the addi-
tional implementation of a chemical potential which is
adjusted to fix the filling at ν ¼ þ2. As at ν ¼ 0, we allow
for solutions with arbitrary momentum-dependent bands,
including metallic, semimetallic, and insulating solutions.
We show the band structures resulting from our self-

consistent calculation for the spin-polarized IVC− and spin-
polarized SLP states in Fig. 6. The energies we obtain up to
D0=w1 ¼ 0.5 are shown in the Supplemental Material [59]
Sec. D, but are qualitatively similar to the numerical
energies we compute at ν ¼ 0; we note though, the spin-
valley-polarized and spin-polarized IVC− are closer in
energy at ν ¼ 2 than the SVP and IVC− state at ν ¼ 0.
As can be seen in Fig. 6, the graphene bands at D0 ¼ 0
remain unpolarized, in agreement with the analytics in
Sec. III. Once a finite displacement field is applied, also the
graphenelike bands develop some small polarization.
However, exactly as for ν ¼ 0, the Dirac cones of the
IVC− state are not gapped out. We note the IVC−, which
was semimetallic at ν ¼ 0, is metallic at ν ¼ �2 (albeit
with small Fermi surfaces). This follows from the addi-
tional spin polarization at jνj ¼ 2, breaking SUð2Þs which
guaranteed its semimetallic character at ν ¼ 0. In Figs. 6(a)
and 6(b), we see that the SLP state, which was insulating at
ν ¼ 0, becomes semimetallic at jνj ¼ 2, since the spin

(a) (b)

(c) (d)

FIG. 6. HF band structures at ν ¼ 2 for the spin-polarized SLP−
state (a) at D0 ¼ 0 and (b) D0 > 0 and spin-polarized IVC− state
(c) at D0 ¼ 0 and (d) D0 > 0.
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polarization of the TBG-like bands allows only for SLP
order in one of the spin species of the graphenelike bands.

B. Connection to experiment

An important feature in the experimental data on MSTG
[30,31], which may be related to our numerics, is the
observation of enhanced resistivity at ν ¼ 0 for both D0 ¼
0 andD0 > 0 and a state with high resistivity observed only
at a finite value of D0 at ν ¼ 2. Taking our results for band
structures at ν ¼ 0 and jνj ¼ 2 together, we note that at
ν ¼ 0, the leading phase in our numerics is either a
semimetallic IVC− state or an insulating SLP state, both
of which may be compatible with the observed high-
resistivity state at ν ¼ 0. At ν ¼ 2, we find our leading
solution is a metallic IVC− state for small values of D0 and
a semimetallic SLP state for large enough D0—a possible
explanation for why high resistivity at jνj ¼ 2 sets in only
above a finite value of D0 in experiment.
Another notable experimental observation is that the

reset of the band structure at jνj ¼ 2 splits into a Dirac-like
feature at jνj ¼ 2 and a van Hove singularity, associated
with a rapid increase and sign change in the Hall density, at
jνj ¼ 2 − δðD0Þ, δðD0Þ ≪ 1 [30]. If we assume that the
spin polarization we find persists for a finite range of jνj
below 2, the band structures in Fig. 6 provide a natural
explanation: Lowering the chemical potential, e.g., in Fig. 6
(d), until it hits the lower, almost-flat set of bands will lead
to a Lifshitz transition where the hole pockets around the K
and K0 points merge. This could explain the observed
behavior of the Hall density. We note that the tendency,
visible in Fig. 6, that increasingD0 pushes these almost-flat
bands away from the Fermi level at jνj ¼ 2, is consistent
with this feature being visible only at nonzero D0 and the
associated δðD0Þ increasing with jD0j in experiment [30].
The numerical results for larger values of D0 are discussed
in the Supplemental Material [59] Sec. E.
Finally, experimental samples of graphene moiré sys-

tems typically exhibit finite heterostrain, and the assumed
C3 symmetry in our analysis is only an approximate
symmetry. While sufficiently strong heterostrain can sta-
bilize other phases [67,68], weak strain will not lead to
qualitative changes in the phase diagram in Fig. 4 or affect
which of our states is metallic, semimetallic, or insulating.

VII. SUPERCONDUCTIVITY

Having established the nature of the correlated phases in
MSTG at various filling fractions, we next study the
consequences for the superconducting states.

A. Pairing in the presence of polarization

Let us begin with the range of electron filling
2< jνj< 3, where superconductivity is most prominently
observed in experiment [30–32]. We see in Sec. VI that spin
polarization supplemented with IVC− order is favored for

realistic parameters at jνj ¼ 2. Because the associated
reduction of the number of flavors in the normal state is
seen in experiment over the entire or most of the super-
conducting range of ν, we assume that spin polarization and
superconductivity coexist at least in part of the phase
diagram. As follows from the analysis in Ref. [27], where a
classification of pairing in almost [SUð2Þþ × SUð2Þ−]-
symmetric graphene moiré systems in the presence and
absence of flavor polarization can be found, the super-
conducting state has to be in a nonunitary triplet phase,
irrespective of the precise pairing mechanism. We empha-
size that this also holds if the additional IVC− ordering
found in the HF at jνj ¼ 2 coexists with superconductivity
in a finite range of ν: The bands above the Fermi level in the
IVC− band structure in Fig. 6 still exhibit Kramers partners
at momenta k and −k with the same spin, due to the
preserved spinless Θ̃ symmetry; these degenerate states can
form Cooper pairs with a nonunitary triplet vector. Note
that this would not be the case, e.g., for the VP state (shown
in Fig. S7 of the Supplemental Material [59]), which does
not exhibit exactly degenerate energy levels at k and −k
above the Fermi level. Given the strong tendency of MSTG
toward superconductivity, this VP phase is thus a less
natural candidate order. Indeed, we find it to be subleading
in our HF numerics; see Sec. VI.
It is important to note, however, that the spin polarization

(and additional IVC− state) is realized only for JH < 0.
While this is expected to be the case if JH stems entirely
from the Coulomb interaction, its sign is unknown. For
JH > 0, we would instead obtain the SVP phase with
additional SIVC− order (cf. Table II). In that case, the
associated superconductor would also be the corresponding
Hund’s partner, which is an admixture between a singlet
and unitary triplet [27]. In the presence of a magnetic field
there is a crucial difference between the two scenarios:
While for JH < 0, the SP will just align with the Zeemann
field and the superconductor will remain a nonunitary
triplet, the two antiparallel spin polarizations in the two
valleys of the SVP state will be canted gradually. A
coexisting singlet-unitary-triplet superconductor will con-
tinuously transition into a nonunitary triplet [27]. For
completeness, we demonstrate this explicitly in the
Supplemental Material [59] Sec. G 2. Based on the estimate
JH ≲ 0.2 meV [66], we obtain 3 T as the characteristic
magnetic field strength of the transition.

B. Pairing without polarization

In experiment [30–32], there are also regions of ν andD0

with superconductivity but without any signs of flavor
polarization in the corresponding normal state (SC II in
Fig. 1). Here we discuss the nature and origin of these
superconducting phases.
In light of recent experiments in TBG [51–53], which

indicate that electron-phonon coupling plays an important
role for pairing in graphene moiré systems, the picture
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proposed in Ref. [54] provides a very promising micro-
scopic scenario: While electron-phonon coupling is likely
important to stabilize superconductivity and crucially
determines the critical temperature, it might predominantly
mediate an [SUð2Þþ × SUð2Þ−]-symmetric pairing inter-
action. This symmetry of the pairing mechanism leads to
the near degeneracy of singlet and triplet pairing. In the
additional presence of flavor polarization, its structure
determines whether singlet or triplet is realized, as we
discuss above. In the absence of polarization, electron-
phonon coupling by itself can never favor triplet over
singlet and at most make the two degenerate [69,70];
however, additional Cooper-channel interactions coming
from the fluctuation of particle-hole orders can determine
whether the superconductor will be in a singlet or triplet
state [54]. To analyze this, we consider the action

S ¼ S0 þ Sϕ þ Sϕf þ Sphonon; ð7:1Þ

which consists of the bare noninteracting action S0 asso-
ciated with H0 in Eq. (2.5) and Sϕ given by

Sϕ ¼ 1

2

Z
q
ϕj
q½χ−1ðiΩn; qÞ�j;j0ϕj0

−q; ð7:2Þ

where ϕj
q is the set of real bosonic fields (labeled by j)

describing the fluctuations of a given candidate particle-
hole order in Table II. We use q ¼ ðiΩn; qÞ labeling
bosonic Matsubara frequencies Ωn and momentum q,
introduce the shortcut

R
q …≡ T

P
Ωn

P
q…, and denote

the (fully renormalized, low-energy) susceptibility in the
particle-hole channel under consideration by χðiΩn; qÞ. The
bosons ϕj

q are coupled to the low-energy electron fields
fk;n;η;s, with k ¼ ðiωn; kÞ via

Sϕf ¼
Z
q

Z
k
f†kþqλ

jðkþ q; kÞfkϕj
q: ð7:3Þ

Note that the coupling vertex λjðkþ q; kÞ is in general a
matrix in valley, spin, and band space. For instance, a
minimal description of fluctuations of the IVC− state is
given by the two-component boson ϕj

q, j ¼ x, y, with
½χðiΩn; qÞ�j;j0 ∝ δj;j0=ðΩ2

n þ c2q2 þ ξ−2Þ, where the coher-
ence length ξ parametrizes the proximity to the critical point.
Furthermore, λjðk; k0Þ ¼ s0ηjfk;k0 , where fk;k0 is a matrix in
band space (p ¼ �, t ¼ b, g) only, which obeys fk;k0 ¼
f†k0;k ¼ −fTk0;k due to Hermiticity and ΘC2z symmetry.
Finally, the last part Sphonon in Eq. (7.1) stands for the action
of the phonons and their coupling to the electrons.
We integrate out the bosonic modes ϕj

q in the action of
Eq. (7.1), leading to an interaction between the fermions f.
In the saddle-point equations of the Cooper channel,
this interaction can be viewed as an [SUð2Þþ × SUð2Þ−]-
symmetry-breaking correction to the [SUð2Þþ × SUð2Þ−]-
symmetric interaction coming from the phonons in Sphonon.

As shown in Ref. [54], whether this symmetry breaking
tips the balance toward singlet or triplet is determined by
the behavior of the fluctuating modes ϕj

q under spinful
time reversal Θs: If the bosonic mode is even (odd) under
Θs, as indicated by þ (−) in the column Θs in Table II, it
will generically favor singlet (triplet) over triplet (singlet)
pairing; in the presence of fine-tuning or additional
symmetries, the two might remain degenerate. We empha-
size that this conclusion does not depend on microscopic
details such the precise form of χ in Eq. (7.2) or of λj in
Eq. (7.3). Because of Uð1Þv symmetry, the system also
exhibits the spinless time-reversal symmetry Θ̃; see
Table I. We generalize the analysis of Ref. [54] in the
Supplemental Material [59] Sec. G to also include this
form of time-reversal symmetry and prove that any ϕj

q that
is even (odd) under Θ̃ will generically favor triplet
(singlet). This also implies that any ϕj

q which has the
same behavior under Θs and Θ̃ will keep singlet and triplet
degenerate. As expected, this is precisely the case for all
order parameters in Table II that are their own Hund’s
partner.
First, we focus on the superconducting domes (indicated

by SC II in Fig. 1) that emerge just outside of the region
with flavor polarization and reconstructed band structure
[30]. As we mention above, with Coulomb interactions
only, the IVC− order with additional spin polarization is
favored over Hund’s partner, the SIVC− with additional
SVP order. We can read off from Table II that triplet will
then be favored over singlet pairing. As shown in Ref. [27],
the resulting triplet will be unitary within mean-field theory
but can become nonunitary when spin fluctuation correc-
tions become significant. These two scenarios can be
distinguished experimentally since the unitary triplet will
exhibit a Berezinskii–Kosterlitz–Thouless transition (of a
charge-4e, spin-rotation-invariant order parameter combi-
nation), while the nonunitary state will not. For the other
sign of JH, singlet pairing (if mean-field theory applies) or
a mixed singlet-triplet phase (if the SVP fluctuations
dominate) will be realized [27].
Second, we also comment on possible pairing phases

close to charge neutrality, although these have not been
seen experimentally. For the same sign JH < 0 that favors
SP at ν ¼ 2, we obtain the SIVC− at ν ¼ 0 as the dominant,
semimetallic instability at smallD0 and large w0; see Fig. 4.
As can be seen from Table II, it is even under Θs and will
hence favor singlet pairing. Among the SLP group of states
realized for largerD0, only fluctuations of the SSLP� states
will break the SUð2Þþ × SUð2Þ− symmetry; the SSLP−
realized for JH < 0 will also favor singlet.
Finally, if electron-phonon coupling does not play any

role for pairing in MSTG, i.e., the term Sphonon in Eq. (7.1)
can be neglected, we still obtain the same results (see the
Supplemental Material [59] Sec. G 1 for a derivation): If ϕj

q

are even or odd (odd or even) underΘs (Θ̃), singlet or triplet
pairing will be favored. Consequently, the above statements
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about the singlet-triplet competition still apply in this
scenario as well.

C. Relevance of Dirac cones and topology

Motivated by recent theoretical works [25,55,71] dis-
cussing the potential importance of WZW terms for super-
conductivity and insulating behavior in TBG, here we
analyze under which conditions this can also be relevant for
MSTG. We note that the WZW term is a purely kinematic
term associating a Berry phase with spatiotemporal textures
of the orders defined on the TBG-like bands, and is
independent of the interactions between the electrons in
these bands. The presence of such a topological term has
crucial consequences for direct transitions between super-
conductivity and correlated insulators, without closing a
single-particle gap at integer fillings. We explain in the
Supplemental Material [59] Sec. H how the following
results can be formally derived from the exhaustive
classification of WZW physics in TBG in Ref. [25] and
focus here on the main picture and implications.
Although the main superconducting phase is found

between jνj ¼ 2 and jνj ¼ 3 in experiment [30–32], we
begin our analysis at the charge-neutrality point ν ¼ 0 with
associated superconducting phase labeled SC III in Fig. 1.
Since we expect superconductivity to survive finite dis-
placement fields, we focus on Dirac cones that remain close
to the Fermi level for D0 ≠ 0. Inspection of the band
structure in Fig. 2(b) reveals that the effect of D0 is to push
the two Dirac cones of the graphene and TBG bands of
valley η ¼ þ (η ¼ −) at K (K0) away from the Fermi level,
leaving only a single TBG-like Dirac cone of valley η ¼ −
(η ¼ þ) at low energies. Denoting the fermionic fields by
ψq of these two Dirac cones (per spin), their Hamiltonian
reads as

HD
0 ¼

X
q

ψ†
q½ρxμzs0qx þ ρys0qy�ψq; ð7:4Þ

where q is the momentum measured relative to the K (K0)
point for the Dirac cone at “minivalley” μz ¼ þ (μz ¼ −).
Furthermore, ρj are Pauli matrices acting in the Dirac
space, which are related to the band-space matrices σj used
above. In this notation, C2z and (antiunitary) spinful time
reversal act as C2z∶ψq → ρxμxψ−q and Θs∶ψq → Tψ−q,
T ¼ syμx, respectively.
Similar to Ref. [25], we ask what different types of

particle-hole orders mj and superconducting order param-
eters Δ coupling to ψq as

HD
1 ¼

X
q;j

ψ†
qmjψq þ

X
q

ðψ†
qΔTψ†

−q þ H:c:Þ ð7:5Þ

can form WZW terms. The Hamiltonian HD
0 þHD

1 is
equivalent to the low-energy Dirac Hamiltonian for TBG
projected into a valley-minivalley-locked subspace,

meaning that all pairings and insulating orders with
WZW derived in Ref. [25] which survive projection to
the same subspace will also be viable in MSTG. This
projection is also the reason why the number of possible
WZW terms we find here is significantly reduced as
compared to Ref. [25].
Based on our analysis of particle-hole instabilities, the

Dirac cones in Eq. (7.4) can either be those of the
noninteracting bands or those of our leading instability
at small D0—the semimetallic IVC− state with band
structure shown in Fig. 3—which could persist for an
extended range of jνj> 0. The resulting WZW terms we
discuss next are identical in both scenarios.
Because of spin-rotation invariance, triplet pairing is not

consistent with a WZW term [25]. We find that singlet
pairingΔ ¼ ρ0μ0s0, which transforms under the irreducible
representation A of the point group, is the only possible
superconducting state with a WZW term at ν ¼ 0. This is
consistent with the singlet we establish in Sec. VII B near
ν ¼ 0 due to electron-phonon coupling and particle-hole
fluctuations. Considering all possible compatible insulating
orders mj, we find there are two types: a spin Hall order of
the form μzρzsx;y;z, which aligns with our SSLP− order in
Table II, and a moiré density wave (MDW) state ρxμx;y,
which breaks translations on the moiré lattice scale together
with an SLPþ state (ρz); see Table IV. We note that since
this order is defined in the minivalley-valley-locked space
and, in the full space of MSTG, thus also breaks Uð1Þv
symmetry in the same way as our IVC states. Interestingly,
the SSLP− is precisely our leading instability for larger D0

and, hence, constitutes indeed a natural candidate mj. The
MDW state goes beyond our analysis in this work, as we do
not consider states which break moiré translational sym-
metry. We leave this for future work.
At jνj ¼ 2, the situation is more complicated because the

entire band structure is reconstructed as a consequence of
interaction-induced flavor polarization. Nonetheless, we
expect the low-energy Dirac theory to be still of the form of
Eq. (7.4). While there are other possible microscopic
realizations, this is true for our leading instability of the
SP (or SVP) with additional IVC− (or SIVC−) order with
band structure in Figs. 6(c) and 6(d). Neglecting the small-
D0-induced SP (or SVP) in the graphenelike bands,
Eq. (7.4) still applies.
As summarized in Table IV, all options for insulators

with singlet pairing then carry over to jνj ¼ 2. A difference
between the two cases is the broken SUð2Þs spin symmetry,
which also allows for triplet pairing. In this case, there are
two additional options compatible with the unitary triplet
Δ ¼ μzsz: one set with insulating orders ρzsx;y and ρzμzsz
and another set with ρxszμx;y and ρz. The first two orders
correspond to our SSLPþ and SSLP−, respectively. The
second two states are a spin-polarized MDW state and the
SLPþ state. We find no nonunitary state to be consistent
with WZW terms. Since only either singlet or unitary triplet
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are possible, the underlying flavor polarization of the TBG-
like bands in Figs. 3(c) and 3(d)must be SVP rather than SP.
Consequently, the WZW terms at jνj ¼ 2 are more likely
relevant if JH > 0.

VIII. CONCLUSION AND DISCUSSION

To summarize, we study particle-hole instabilities and
superconductivity in MSTG for different filling fractions ν
and displacement-field values D0, using a combination of
analytical arguments and HF numerics. We start in Sec. III
in the limit D0 ¼ 0, where the noninteracting band struc-
ture is just given by the spectrum of TBG and single-layer
graphene. In the interacting Hamiltonian (3.1), these
two subsystems are coupled by the density-density inter-
action in Eq. (3.4). We show that states of the form
jΨg

jðνbÞijΨb
0ðνbÞi, where jΨg

jðνbÞi are the correlated semi-
metallic eigenstates of single-layer graphene and jΨb

0ðνbÞi
are the eigenstates [62] in Eq. (3.6) of the TBGHamiltonian
in the flat limit, are also exact eigenstates of the MSTG in
Eq. (3.1). Furthermore, if jΨb

0ðνbÞi are ground states of the
TBG Hamiltonian, jΨg

jðνbÞijΨb
0ðνbÞi are shown to be exact

ground states of MSTG for a finite range of the coupling
strength quantified by λ in Eq. (3.4) between the two
sectors. In this sense, not only the bare band structure but
also the interacting physics of MSTG can be separated
into that of single-layer graphene and TBG in the flat-
decoupled limit.
We use these results to construct the set of candidate

particle-hole orders summarized in Table II, which are
exactly degenerate in the chiral-flat-decoupled limit
[defined by further setting w0 ¼ 0 in Eq. (2.3)]. We take
these states as our starting point of the HF numerics and
analytical perturbation theory, which are not based on λ
being small and allow to tune away from the chiral-flat-
decoupled limit. The resulting band structures for ν ¼ 0 of
the most important candidate orders are shown in Fig. 3 for
zero and nonzero D0, with w0 close to what is believed to

describe the real system [56,57] and finite TBG bandwidth.
We see three distinct types of behavior with different
experimental signatures when turning on D0: The IVC�
and their Hund’s partners SIVC� retain their semimetallic
behavior for D0 ≠ 0, while the graphene Dirac cones of the
SLP� and SSLP− (and its Hund’s partner SSLPþ) are
gapped out when turning on D0. Interestingly, for the VP
and SP (and its Hund’s partner SVP), a finite D0 induces
small Fermi surfaces. In combination with further transport
and, in particular, scanning tunneling microscopy experi-
ments, which are sensitive to the local spectrum of the
system, the computed spectra could help shed light on the
correlated physics of MSTG.
The relative energetics between these candidate states as

a function of D0, w0, and the TBG bandwidth is very rich:
As summarized in Table III, there are many contributions
without any analog in TBG—the mixing between the TBG
and graphene bands, additional ordering in the graphene
bands, and the D0-induced breaking of symmetries in the
TBG sector, which changes interaction matrix elements and
induces new superexchange processes. The resultant phase
diagram in the D0 − w0 plane with leading and subleading
phases is presented in Fig. 4: At small D0, a semimetallic
intervalley coherent phase is favored, which transitions into
a sublattice-polarized phase at larger D0. Among the latter
set of states, we expect the SSLP� to dominate as they are
the only states in this otherwise almost-degenerate mani-
fold that can benefit from the intervalley Hund’s coupling
JH in Eq. (3.16).
At jνj ¼ 2, we find self-consistent HF solutions for all of

the candidate states in Table II, which coexists with
additional spin polarization (either of the SP or SVP type,
depending on the sign of JH). This can explain the
experimentally observed [30,31] band resetting for
2≲ jνj≲ 3. For instance, the spectrum for the intervalley
coherent state is shown in Figs. 6(c) and 6(d) for ν ¼ 2:
Increasing the filling fraction ν slightly will lead to Fermi
surfaces of completely spin-polarized TBG-like bands, i.e.,
with half the number of flavors. In magnetic fields, the SP
band resetting (JH < 0) will not change its form, while the
SVP-related resetting (JH > 0) will continuously develop a
finite canting and transform into a SP configuration. We
estimate the associated magnetic field scale to be of order of
3T. Since JH < 0 follows for pure Coulomb interactions
[66], we expect the SP to be a more natural candidate;
however, JH > 0 is also possible, both theoretically and
experimentally, and so we study both signs of JH in our
analysis.
Building on our results for the correlated normal states

of MSTG, we analyze the superconducting order para-
meters in Sec. VII in the different regimes indicated by
SC I–III in Fig. 1: When superconductivity coexists with
flavor polarization (SC I), the nature of the pairing state
depends crucially on the form of the flavor reduction;
for the SP (JH < 0) and SVP (JH > 0) polarization that we

TABLE IV. Possible particle-hole mj and superconducting
order parameters Δ that can exhibit mutual WZW terms at the
indicated filling fractions ν ¼ 0 and jνj ¼ 2. Here we use the
Dirac notation of Eqs. (7.4) and (7.5). As in Ref. [25], moiré
density wave (MDW) indicates that the state breaks moiré
translational symmetry; A and B refer to the irreducible repre-
sentations of the point group C6 of the superconductor (SC). The
MDWwith singlet pairing row below corresponds to the first row
of Table IV in Ref. [25], while the MDW with triplet SC
corresponds to the first row of Table VII (or more explicitly,
in lines 5 and 9 of Table XV).

jνj mj Type Δ SC type

0,2 μzρzs SSLP− 1 A singlet
0,2 ρxðμx; μyÞ; ρz MDW; SLPþ 1 A singlet
2 ρzðsx; syÞ; ρzμzsz SSLPþ=SSLP− μzsz B unit. triplet
2 ρxszðμx; μyÞ; ρz MDW=SLPþ μzsz B unit. triplet
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find around jνj ¼ 2, we obtain, respectively, a nonunitary
triplet and its Hund’s partner—a singlet-unitary-triplet
admixed phase [27]. For the superconducting phases
(SC II) close to but not in the flavor-polarized region,
we find triplet pairing to dominate for JH < 0, while the
state will either be a singlet or admixed singlet-triplet
phases for JH > 0.
The behavior of these superconducting phases in in-

plane magnetic fields Bk follows from Ref. [27] where
their respective phase diagrams in the temperature-Bk
plane have been worked out: In the presence of SP
polarization (JH < 0), the critical temperature Tc of the
nonunitary triplet is not affected by the Zeemann cou-
pling and suppressed in quadratic order in the in-plane
orbital coupling. This naturally explains the strong
violation of the Pauli limit [32]. In the other case of
SVP polarization (JH > 0), the behavior of Tc of the
associated singlet-triplet phase is the same, with the only
difference that also the singlet-triplet admixture will
gradually transform into a nonunitary triplet with increas-
ing magnetic field. Understanding the reentrant super-
conducting behavior seen at even larger magnetic fields
[32] will require understanding the fate of the correlated
parent states, e.g., in Fig. 6, in large magnetic fields,
which we leave for future work. Irrespective of whether
the order parameter of SC II is a triplet or a singlet-triplet
admixed phase, it will continuously transform into a
nonunitary triplet [27] upon applying Bk, while being
eventually suppressed by the orbital coupling. We empha-
size that all of the superconducting states we find,
including the triplets, are protected [54] against non-
magnetic impurities on the moiré scale, i.e., exhibit an
analog of the “Anderson theorem,” which is typically
expected only for singlet superconductors [72].
For completeness, we also investigate superconductiv-

ity close to the charge-neutrality point (SC III), although
not prominently seen in current experiments. Here we
predict singlet pairing to dominate for the same sign of
Hund’s coupling JH > 0, and we find triplet pairing
near ν ¼ 2.
Because the band structure of MSTG also exhibits

Dirac cones, a subset of which persist in most of our
dominant particle-hole instabilities [see, e.g., IVC− in
Fig. 3 and Figs. 6(c) and 6(d)related to the preserved
C2zΘ symmetry], we also study the possible WZW terms
between superconducting and insulating orders. As dis-
cussed in Refs. [25,55] for TBG, these topological
terms are associated with and sensitive to the chirality of
the Dirac cones in the normal-state band structure. We
show here that the set of possibilities in MSTG is greatly
reduced as compared to TBG [25], resulting from the
reduced flavor degeneracy at jνj≳ 2 and the impact of the
displacement field at ν ¼ 0. As compiled in Table IV,
only s-wave singlet pairing is consistent with WZW
terms close to ν ¼ 0 (SC I), while both singlet and triplet

pairing can have WZW terms in the flavor-polarized
region (SC III). The corresponding particle-hole order
parameters that form a mutual WZW term with these
superconductors feature the sublattice-polarized states
that we find to dominate at finite D0 (in particular,
the SSLP− state) and intervalley-coherent MDW phases.
Unlike all the states studied in the HF analyses of this

paper, the MDW phases break translational symmetry at the
scale of the moiré period. These MDW states were
previously studied [25] in the context of WZW terms in
TBG, break the moiré translational symmetry and the
valley Uð1Þv symmetry. A closely related “incommensurate
Kekulé spiral” appeared in a recent HF numerics study [68]
of TBG. (We also note that Kekulé states have been
observed in single-layer graphene on a Cu substrate [73]
and in the zeroth Landau level [74].) Motivated by these
results and our study of WZW terms here, we believe that
these types of states are very promising possible additional
instabilities in MSTG as well, in models which include the
breaking of the SUð2Þþ × SUð2Þ− symmetry to the physi-
cal SUð2Þs spin-rotation symmetry; for instance, this could
be done in microscopic tight-binding models [43,75–77].
Furthermore, the presence of sufficiently large strain
[67,68] might stabilize these MDW states. We leave a
detailed energetic study of MDW phases in MSTG for
future work.
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Note added.—Recently, two experiments [78,79] appeared
online which are consistent with our findings and approach:
First, Ref. [78] confirms our conclusion that the graphene-
like Dirac cones are stable against interactions. Second,
Ref. [79] concludes that spin-polarization (rather than
valley polarization) is present around ν ¼ 2, and super-
conductivity is enhanced by screening the Coulomb repul-
sion, which is consistent with our pairing mechanism
described by Eq. (7.1).

APPENDIX A: MORE ON PERTURBATION
THEORY

In this Appendix, we provide more details on the
analytical analysis of ordering tendencies in the graphene-
like bands and mixing with the TBG-like bands.
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1. Order in graphenelike bands

To begin with the analysis of ordering in the graphenelike
bands, herewe supplement Sec. VA,where only the SP state
is discussed. The SLP group of states (SLP� and SSLP�)
behave differently from the other states, which is why we
focus on these state here (the remaining states are analyzed
in the Supplemental Material [59] Sec. F 3). To begin with
SLP�, we have ðQg

kÞη;η0 ¼ δη;η0 ð−σ3 cos θk þ σ2 sin θkÞ,
k ∈ Aη, and we need to determine θk with θk ¼ ∓θ−k for
SLP� due toΘandC2z byminimizing theenergy.Thechange
of the energy as a consequence of this “deformation” is of the
form

ΔEgg½θk� ¼
X
η

X
k∈Aη

½Ak;ηð1 − cos θkÞ þ Bk;η sin θk� ðA1Þ

for both SLPþ and SLP−. The explicit expressions for Ak;η
and Bk;η, which are functions of w0 andD0, are given in the
Supplemental Material [59] Sec. F 3. From these expres-
sions, it follows that Bk;η ¼ 0 and Ak;η > 0 forD0 ¼ 0 such
that ΔE½θk� is minimized when sin θk ¼ 0 (with ΔE ¼ 0),
and there is no order in the graphene bands—again in
agreement with Sec. III and the HF numerics. Once
D0 ≠ 0, we get Bk;η ≠ 0 and ΔE < 0 by choosing a profile
with sin θk ≠ 0. In other words, the graphenelike bands will
develop SLP� order for any nonzero D0, as is visible in the
Qk for the SLP− state close to theK point shown in Fig. 5(b).
This ordering in the graphenelike bands gaps out the
graphene cone, as can also be seen in our HF band structure
in Fig. 3. The energetic gain scales as g�ðΔkÞ2jD0j3, g� > 0,
for small D0 and Δk for the SLP� state; the prefactors
differ gþ ≠ g− due to the symmetry-imposed constraint
θk ¼ ∓θ−k. For small w0, we can show that Bk;η > 0 such
that g− > gþ; i.e., the SLP− state can gain more energy than
the SLPþ.
For the SSLP− state and its Hund’s partner SSLPþ, which

we discuss here explicitly for reasons that become clear
shortly, we have ðQg

kÞη;η0 ¼ δη;η0 ð−σ3 cos θk þ σ2s sin θkÞ,
k ∈ Aη. Symmetry imposes θk ¼ ∓θ−k for SSLP�.
The deformation-related energy change ΔE is found to
be again of the form of Eq. (A1); however, here we
obtain Bk;η ¼ 0 for any D0 or w0. This is consistent with
SUð2Þþ × SUð2Þ−which requires that SSLP� have the same
energy. Hence, we show that the graphenelike bands do not
develop any direct SSLP� order and gain energy in the
process. They will, however, hybridize with the TBG-like
bands, as we discuss in Sec. V B, which also gaps out the
Dirac cones.

2. Mixing between the graphene and TBG sector

In this part of the Appendix, we outline how the mixing
matrices and associated energetic gain, discussed in Sec. V
B, can be derived; we refer to the Supplemental Material
[59] Sec. F 4 for more details.

Our starting point is product states characterized by a
correlator with Qk as given in Eq. (3.13), i.e., without any
coherence between the TBG-like and graphenelike bands.
In accordance with our analysis of Sec. III, we take Qg

k ¼
−σz and let Qb

k be any of the candidate orders. To introduce
momentum-dependent coherence between these sets of
bands, we “deform” Qk by a unitary transformation Uk
and take

Q0
k ¼UkQkU

†
k; Uk¼ eiΛk ; Λ†

k¼Λk ∈C16×16 ðA2Þ

as an ansatz for the correlator. Our goal is to find the
optimal momentum-dependent Λk to minimize the energy.
Since we are interested in band mixing, we restrict Λk to act
as a superposition of ζ1 and ζ2, Λk ¼

P
j¼1;2Mk;jζj,

Mk;j ∈ C8×8, with ζj denoting Pauli matrices acting in
the space of TBG-like and graphenelike bands (with index
t ¼ b, g). Furthermore, Λk will be constrained by the
symmetries of the state under consideration.
To illustrate the procedure, let us focus on the IVC− since

this state is found to be dominant in the HF numerics.
Choosing Qb

k ¼ σyηy for concreteness, this state preserves
the C2zΘ symmetry of Table I, which forces Λk to obey
ðΛkÞ� ¼ −Λk. Furthermore noting that the IVC− state does
not break the SUð2Þs symmetry (while postponing the
consequences of C2z which will relate Λk and Λ−k), it
follows that Λk has to be a momentum-dependent super-
position of the 16 generators

ζxσyη0;x;z; ζxσ0;x;zηy; ζyσ0;x;zη0;x;z; ζyσyηy: ðA3Þ
To simplify further, we can focus on those eight linear
combinations [see Eq. (S126) in the Supplemental Material
[59] for their explicit form] of the terms in Eq. (A3) that
anticommute rather than commutewithQk of the IVC− state.
The first energetic constraint we take into account is

related to the fact that the graphenelike bands of valley
η ¼ − (η ¼ þ) are far away from the Fermi level at the K
(K0) point; see Fig. 2. This means that all mixing processes
in Λk that induce a finite occupation of the upper or
unoccupied states in the lower graphenelike band of valley
η ¼ − (η ¼ þ) at the K (K0) point are suppressed. In the
Supplemental Material [59] Sec. F 4, we show that this is
equivalent to demanding that ðMkÞðp0;η0;s0Þ;ðp;∓;sÞ ¼ 0 for
k ∈ A�. This reduces the number of generators further
from eight to only four [given in Eq. (S132) of the
Supplemental Material [59]]. For each of these four
generators Λj, j ¼ 1, 2, 3, 4, we compute the change of
energy associated with the deformation in Eq. (A2) where
Uk ¼ eiφkΛj . It is found to be of the form

ΔEgb½φk� ¼
X
k∈Aþ

αk sin2 φk þ βk sinφk cosφk; ðA4Þ

where αk and βk are expressions involving the form factors,
the interaction VðqÞ, and the band structure (see the
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Supplemental Material [59] Sec. F 4 for explicit form) and
thus depend on D0 and w0. In Eq. (A4), we already take
into account the C2z constraint that allows us to write it as a
sum over k ∈ Aþ only.
First, we find βk ¼ 0 for D0 ¼ 0, and hence, no mixing

between the bands as expected by symmetry. However,
even when D0 ≠ 0, we still obtain βk ¼ 0 for two of the
four generators, while βk ≠ 0 for the other two (say,Λ1;2) in
the chiral limit (w0 ¼ 0). Consequently, at least when w0 is
not too large, the generators Λ1;2 have to dominate. Which
of those remaining two is dominant cannot be determined
purely analytically, as it will depend on nonuniversal values
of the form factors. The mixing matrix (5.2) for these two
candidate generators, Λ1 and Λ2 is given by Eqs. (5.3a) and
(5.3b), respectively.
Minimizing Eq. (A4) and noting that βk scales linearly

with D0 for small D0 while αk > 0 at D0 ¼ 0, we find the
scaling of the energetic gain to be ΔEgb ∼ −g3ðΔkÞ2D2

0, as
stated in the main text.
In the Supplemental Material [59] Sec. F 4, we perform

the analogous analysis for all other candidate states. The
mixing matrices MQ in Eq. (5.2) for these states provide
some additional consistency checks between analytics and
numerics. For instance, the IVCþ’s analysis closely paral-
lels the one outlined above for the IVC−: Out of 16
symmetry-allowed generators, only two candidate combi-
nations remain. Interestingly, their associated αk and βk in
Eq. (A4) are the same (to leading order in D0) as those of
the two IVC− candidates. Having identifiedMQ

k in Eq. (5.3)
as being dominant by comparison with numerics, we can
read off which of the two analytical candidates for the
IVCþ must be realized; indeed, we find the same one in
numerics [compare Eq. (S139) and Fig. S11 in the
Supplemental Material [59]].
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