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Driving a many-body system out of equilibrium induces phenomena such as the emergence and decay of
transient states, which can manifest itself as pattern and domain formation. The understanding of these
phenomena expands the scope of established thermodynamics into the out-of-equilibrium domain. Here,
we experimentally and theoretically study the out-of-equilibrium dynamics of a bosonic lattice model
subjected to a strong dc field, realized as ultracold atoms in a strongly tilted triangular optical lattice. We
observe the emergence of pronounced density-wave patterns—which spontaneously break the underlying
lattice symmetry—using a novel single-shot imaging technique with two-dimensional single-site resolution
in three-dimensional systems, which also resolves the domain structure. Our study suggests that the short-
time dynamics arises from resonant pair tunneling processes within an effective description of the tilted
Hubbard model. More broadly, we establish the far out-of-equilibrium regime of lattice models subjected to

a strong dc field, as an exemplary and paradigmatic scenario for transient pattern formation.

DOI: 10.1103/PhysRevX.12.021014

I. INTRODUCTION

The appearance of patterns, which spontaneously break
the spatial symmetry of the underlying potential land-
scapes, belongs to the most fascinating aspects in physics.
Famous examples range from sand dune ripples to soliton
trains in shallow water, where macroscopic patterns appear
in driven systems on a homogeneous background landscape
with continuous symmetry [1]. Such phenomena can be
probed in the quantum regime using ultracold atoms, where
pattern formation arises, e.g., due to periodic driving [2] or
due to long-range interactions as supersolid stripe pattern
[3]. Of special interest are periodic potentials, in which
density waves or spin waves can spontaneously break the
underlying lattice symmetry in a discrete fashion as
observed, e.g., for tilted Bose-Hubbard models [4-8] or
for spin chains formed by Rydberg-atom arrays [9].

Here we observe the formation of a pronounced density
wave for a Bose-Einstein condensate in a two-dimensional
triangular lattice of tubes after applying a strong tilt, i.e., a
spatially periodic modulation of the lattice occupations.
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The observed density wave can be attributed to the resonant
pair tunneling and nearest-neighbor interaction terms that
emerge as dominant terms in the effective Hamiltonian of
the dc driven system and it appears on a timescale of
~30 ms. At later times, the interplay of the direct tunneling
and the emergent terms leads to an intriguing open-system
dynamics, where the density-wave period increases. While
density waves can appear as ground states for extended
Hubbard models [10], the ground state for our parameters
has no density wave and the observed pattern formation
occurs far from equilibrium after the quench into the tilted
system. For a conceptual understanding of the early-time
dynamics, we derive the effective Hamiltonian for bosons
on the strongly tilted triangular lattice and use a c-field
simulation to confirm both the experimental observations
and the scalings of the effective Hamiltonian.

We employ a novel microscopy technique [11]
(Appendix C) as an indispensable tool to directly image
the density-wave order and its domains in the 2D lattice of
tubes with single-site resolution. This microscopy directly
reveals the spontaneous symmetry breaking in the pattern
formation and domains thereof. Our striking observation of
spontaneous pattern formation is very distinct from recent
experiments in tilted optical lattices in the regime of unit
occupation [12,13], where a suppressed decay of initially
prepared density waves due to Stark many-body localiza-
tion or kinetic constraints, but no pattern formation, was
observed. In contrast, occupation of period-doubled states
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was previously inferred from momentum-space images in
the regime of large bosonic filling factors in an array of
tubes, similar to our system that we resolve in real space
with the novel microscopy technique. However, this pattern
formation was triggered by the different mechanism of
dynamical instability in fully coherent systems, which
occurs both in moving lattices [14,15] and in periodically
driven lattices [16].

II. EXPERIMENTAL SETUP

Our experiments start with a Bose-Einstein condensate
(BEC) of ~5 x 10* 8’Rb atoms in a triangular optical lattice
with tunnel coupling J = h x 13 Hz and transverse con-
finement @, = 27 x 30 Hz, for which we estimate an
equivalent Hubbard interaction term U ~h x 2.3 Hz
[Fig. 1(a)]. The lattice laser wavelength is 4 = 1064 nm
yielding a lattice constant @ = 24/3 and a distance between
lattice sites in the tilt direction of & = a+/3/2. We apply a
tilt by shifting the magnetic trap, let the system evolve, and
image the real-space distribution with the quantum gas
magnifier [11], i.e., by magnifying the distribution using
matter-wave optics prior to optical imaging. The shift of the
trap is realized by switching off a magnetic offset field on
the timescale of few tens of microseconds, i.e., much faster
than all other timescales including the tunneling time, and
we therefore consider this quench instantaneous in the
analysis. Note that this protocol leads to a nonuniform tilt
due to the curvature of the trap (Appendix C). While such a
nonuniformity was found to have profound effects in the
regime of many-body localization [17,18], we do not find
significant effects in our regime of large bosonic occupa-
tions when comparing to a system with homogeneous tilt in
numerical simulations (Appendix A).

We identify the relevant regime of tilts, where the atoms
are Stark localized and form a metastable system on the
slope of the potential [19,20], while still showing suffi-
ciently strong pair tunneling driving the density-wave
formation. We work at a tilt of F = h x2.3 kHz/um,
which leads to an energy offset between neighboring lattice
sites of A = Fa = h x 1.4 kHz and to a large suppression
of tunneling J/A = 0.009. The resulting density distribu-
tions are presented in Fig. 1(d) and show the pronounced
density waves with random phase constituting spontaneous
symmetry breaking, as we discuss below. We model the
system with extensive c-field simulations (Appendix A)
and find qualitative agreement when comparing the site
occupations [Fig. 1(e)], as also discussed below.

III. THEORETICAL MODELING

To describe the system, we introduce an effective
Hamiltonian (Appendix B): the energy offset A introduces
arelative phase evolution, which can be treated in a Floquet

picture yielding an effective Hamiltonian A in a high-
frequency approximation. H . contains new processes with
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FIG. 1. Bose-Einstein condensates in strongly tilted optical
lattices. (a) The system consists of a triangular lattice of tubes
with a tilt applied perpendicularly to a lattice vector. (b) The
system can be described by a Hubbard model with tunnel
coupling J, on-site interaction U, and energy offset A along
the tilt direction. (c) In the large tilt limit the system can be
described by an effective Hamiltonian with no tilt and no single-
particle tunneling in the tilt direction, but pair tunneling P and
nearest-neighbor interaction V with a strength set by sU with
s = (J/A)?. Tunneling perpendicular to the tilt J, and the
effective on-site interaction Uy remain approximately un-
changed. (d) Experimental images of the spatial density show
the spontaneous formation of charge density waves with wave
vector parallel to the tilt direction. The two example images are
for identical parameters of a hold time of 60 ms and tilt with
energy offset A = h x 1.4 kHz, but one shows a domain wall in
the center of the cloud and the other does not, directly reflecting
the spontaneous nature of the pattern. The tunnel coupling is
J = h x 13 Hz throughout the paper. (e) c-field simulation for
the same parameters as in (d). The simulation does not model the
density modulation within the lattice sites and the density
distribution is therefore shown as tiled hexagons.

a scale s = (J/A)> a center-of-mass-conserving pair
tunneling, where one atom goes up the tilt and the other
goes down, with strength P = sU, and a next neighbor
interaction with strength V = 4sU [Figs. 1(b) and 1(c)].
These processes are dominant, because the direct tunneling
J along the tilt is suppressed and vanishes in H ;. The
choice of the triangular lattice enhances the pair tunneling
dynamics, because each lattice site has two neighbors on
top and below, which gives rise to four possible pair
tunneling terms. To motivate why the pair tunneling terms
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give rise to the density-wave pattern in the quench
dynamics, we evaluate the density correlation function
averaged over all states that are connected to an initial
homogeneous state via a finite number of pair tunneling
processes and find the staggered correlations indicative of
the density wave (Appendix B).

The effective Hamiltonian features a density wave as
ground state in a regime of larger P and V (see Monte Carlo
studies in Appendix B), whereas here, interestingly, the
density wave appears as a transient nonequilibrium phe-
nomenon after the quench, and for this dynamics, the pair
tunneling P sets the relevant scale. This observation also
suggests an interpretation as a prethermalized state [21] of
the time evolution triggered by the quench, in which the
system does not directly relax to a thermal state of either the
underlying or the effective Hamiltonian, but rather relaxes
in a two-step process via a density-ordered state.

IV. SPONTANEOUS SYMMETRY BREAKING

The density wave has twice the period of the underlying
lattice and can therefore spontaneously choose between
two positions, giving rise to a discrete symmetry breaking.
We quantify this by a density-wave order of positive or
negative sign, depending on whether the density wave is in
or out of phase with a globally fixed reference pattern. This
is realized by multiplying the residues with this reference
pattern of alternating positive and negative sign [Fig. 2(a)].
We find that this density-wave order forms large domains
of a random sign of the order [Fig. 2(b)], demonstrating the
spontaneous nature of the symmetry breaking. The double-
peak structure of a histogram of the local density-wave
order values reflects the spontaneous symmetry breaking as
well [Fig. 2(c)]. This is further supported by the persistence
of the double-peak structure after postselection on the
position of the lattice relative to the initial cloud center
(Appendix E), which is not triggering the symmetry
breaking. For longer hold times we observe a pinning of
the density wave, which we discuss in Appendix E.

V. EMERGENCE AND DECAY
OF DENSITY-WAVE ORDER

Moving further, we study the intriguing dynamics of the
density-wave order, which is characterized by a sponta-
neous emergence and a very long-lived decay. First, we
quantify the period of the density-wave pattern via the
power spectral density (PSD) |n;|> = |(Fn,)(k)|?/NZ, of
the column populations n, normalized by the total atom
number Ny, which captures the spectrum of the density-
density correlations [Fig. 3(a)]: we find an initial peak at
ka/(2z) = £1/2 (period 2), which splits and moves to
ka/(2z) ~+1/3 (period 3) at longer times when the
single-particle tunneling starts a transport down the slope.

We define the density-wave contrast as the relative
integrated PSD in this peak:
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FIG. 2. Spontaneous symmetry breaking. (a) The local density-
wave order is quantified by calculating the residues after
subtracting the mean density of about 130 identically prepared
clouds. Multiplying by a staggering of fixed phase yields the
staggered residues, which act as domain identifier. (b) Staggered
residues for typical individual images with A = h x 1.4 kHz
energy offset and 60 ms hold time illustrating the spontaneous
formation of domains in the density-wave order with typically
one or two large domains. (c) Histogram of the staggered residues
for all lattice sites within a region of interest [dashed circle of
radius 3 sites in (b)]. The dashed line represents the histogram for
a numerical simulation with kzT/J = 250 and a peak density of
900 atoms per tube.

C:1/15/2|nk|2d(kfl/2ﬂ:)//)l/2|nk|2d(ka/2n_)‘ 0

This signal appears within ~30 ms, reaches a maximum at
around ~200 ms, and then shows almost no sign of decay
for over 1.6 s [Fig. 3(b)]. The long lifetime is captured
well by a c-field simulation, when the atom number loss of
the experiment is added to the simulation (Appendixes A
and C). This behavior points to the interaction-driven
nature of the density-wave dynamics, which is frozen
when the density drops (Appendix F).

Concerning the structure of the patterns there are
differences between the experiment and the simulations
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FIG. 3. Formation dynamics and decay of the density wave.

(a) The normalized power spectral density of the column occupations
for a tilt with energy offset A = & x 1.4 kHz initially develops a
peak at ka/(2z) = +1/2 (period 2), which splits and moves to
ka/(2x) ~ £1/3 (period 3) at longer time. The dots show the exact
parameters for which data were taken. The dashed lines mark
ka/(2m) = £1/5, which is used in the computation of the density-
wave contrast (see main text). (b) Dynamics of the density-wave
contrast ¢ for different evolution times after the quench into the tilted
system showing the fast buildup and slow decay of the patterns. The
color encodes the tilt strength of A = h x 1.1 kHz (blue), A =
h x 1.4 kHz (red), A = h x 1.7 kHz(black). The experimental data
(circles) are compared to a numerical c-field simulation including the
atom number loss (dashed lines) and without loss (dash-dotted lines).
The numerical simulation without atom loss shows a faster decay.
The simulation uses atemperature of kg7 /J = 100. The insets show
example single-shot density distributions from the experiment (top
row, hold time is 1, 60, and 1600 ms) and the simulation with atom
loss (bottom row, hold time is 0, 64, and 1560 ms). All error bars
correspond to the 68% confidence interval. (c) The density-wave
order of the simulated data without atom loss follows the scaling of
the effective Hamiltonian and collapses on a curve when the time axis
isrescaled by the pair tunneling time #,, and the density-wave order is

scaled by the energy offset squared AZ.

at long times: the evolution toward period 3 patterns for
these times [Fig. 3(a)] is not quantitatively reproduced by
the simulation, where this change is less pronounced.
This intriguing dynamics remains to be explained. The
difference between experiment and simulation might be
due to occupations of higher bands after the quench, which
are not included in the simulation. Note that in our finite
system, an interpretation of a period 3 pattern cannot
be clearly distinguished from a period 2 pattern with
several domain walls. This motivates the analysis via the
period-independent measure of the density-wave contrast
defined above.

For the understanding of the dynamics, it is instructive to
refer to the effective Hamiltonian introduced above. It
defines a timescale (Appendix B) t, =h/(16NP)=
210 ms for the density-wave formation dynamics, where
we used A =h x 1.4 kHz and where N = 1500 is the
number of atoms in the central tube for the data in Fig. 3.
The scaling 7, « A? fits well with the density-wave
dynamics in the c-field simulation without atom number
loss [Fig. 3(c)], which therefore confirms this Floquet
picture. The dependence of 7, on N explains why the
dynamics is frozen with atom loss leading to long-lived
density-wave patterns and why the simulation needs to
include the atom number loss to reproduce the slow decay.
We also study the influence of coherence between the
lattice sites by realizing different temperatures and find that
initial coherence is required for the formation of the density
wave (Appendix F).

VI. EFFECT OF TRANSVERSE TUNNELING

In another set of experiments we study the effect of
transverse tunneling, i.e., tunneling perpendicular to the tilt.
We compare the situation of two different tilt directions,
which have equal tight-binding models except for a very
different strength of the transverse tunneling within the
triangular lattice [Figs. 4(a) and 4(b)]. The resulting images
reveal that the density-wave pattern becomes more irregular
without the transverse tunneling [Figs. 4(c) and 4(d)],
which is directly reflected in the density correlations
[Figs. 4(e) and 4(f)]. In both cases, we find staggered
density correlations of the density-wave order along the tilt
and monotonically decaying correlations perpendicular to
the tilt, but with different ranges [Figs. 4(g) and 4(h)]. We
heuristically fit the decay and state the decay lengths L |
and L in units of the number of lattice sites (Appendix D).
Interestingly, the range of the staggered density-wave order
along the tilt has the same decay length L of 2.1(7) and
2.3(5) sites for the strong and weak transverse tunneling,
respectively. The correlation length perpendicular to the
tilt L, however, is drastically reduced from long-range
order to short-range order with decay length L, of 1.2(3)
sites when changing the tilt direction. The analysis shows
that strong transverse tunneling aligns the phase of the
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FIG. 4. Dependence on the tilt direction. (a) Sketch of the
triangular lattice geometry and the columns (gray and blue bars)
perpendicular to the tilt for the two situations with different
values of transverse tunneling J . (b) Sketch of the situation with
the tilt in the perpendicular direction. Here tunneling within the
columns only appears as a higher-order process. For an easier
comparison, we have rotated the system, such that the tilt always
points to the right. (c),(d) Typical experimental images for the two
tilt directions with energy offset A = h x 1.4 kHz, a hold time of
60 ms, and a maximum atom number per tube of 900 and 850,
respectively. The orientation of the images and the tilt direction
(red arrow) are as in (a) and (b), respectively. (e),(f) The density
correlation functions (Appendix D) for the two cases. (g),(h) Cuts
of the density correlation functions show the density-wave order
measured along a zigzag path along the tilt direction [dashed line
in (a) and (b)] and a monotonic decay within the columns [dotted
line in (a) and (b)]. The red lines show heuristic fits (Appendix D)
to the data, the light blue lines result from the same analysis on
pictures from numerical simulations with k37 /J = 50. All error
bars correspond to the 68% confidence interval. Note that while
(d) and (f) give the visual impression of horizontal stripes, they
should be thought of as vertical stripes [as sketched by the blue
and gray coloring in (b)]. This is because the horizontal bonds
(which would connect the supposed horizontal stripes) are
suppressed by 2A in the effective model.

symmetry breaking density waves across the system while
the range of the staggered order along the tilt is not affected.

VII. CONCLUSION

In conclusion, we have observed the appearance of
long-lived density-wave patterns for a BEC in a strongly
tilted two-dimensional optical lattice and confirmed their
spontaneous breaking of the discrete lattice symmetry.
The dynamics is supported by a Floquet picture, which
introduces correlated pair tunneling processes and sets the
density-dependent timescale. The findings continuously
connect to the charge density wave observed in a tilted
bosonic Mott insulator in the unit-filling regime [4—6,8],
with its mapping to quantum spin models. By going
away from solvable models toward full-fledged high-
dimensional many-body systems, we identify an intriguing
regime of many-body dynamics.

With these experiments we establish the quantum gas
magnifier for imaging spontaneously formed pattern on the
scale of single lattice sites in 3D systems. The technique
can in principle also image the coherence properties with
high resolution [11], and in the future it could be used to
observe other exotic states such as the twisted superfluid
[22] or to resolve domains of spontaneous symmetry
breaking of phase patterns in driven lattices [23,24] and
in higher bands [25]. With the observation of spatial
symmetry breaking in a nonequilibrium situation, we set
the stage for observing density-wave ground states by
engineering stronger nonstandard Hubbard terms [26,27].

The description of the observed dynamics by the terms of a
Floquet picture points a way to use dc driven systems [28-30]
as opposed to ac driven systems for Floquet engineering of
relevant extended Hubbard models [31]. While for ac driven
Floquet systems many-body localization has been proposed
for stabilization against heating, dc driven systems require
Stark localization (and potentially many-body Stark locali-
zation [17]) for stabilization and our experiments show that it
is promising to identify suitable regimes. Of particular
interest would be extended Hubbard models in the strongly
correlated regime featuring exotic states such as topological
Mott insulators [32] or other density-assisted tunneling terms
for engineering artificial magnetic fields [33]. Furthermore,
the dc drive could be combined with an ac drive leading to
rich phenomena such as topological band gap solitons [34] or
Stark time crystals [35].
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APPENDIX A: NUMERICAL SIMULATION
OF THE EXPERIMENT

1. c-field simulation

We simulate the dynamics of tube condensates arranged
in a 2D triangular geometry using the classical-field
method of Ref. [36]. The system is described by the
Bose-Hubbard model,

ﬁl:_zjlj l/A/ l/A/ T 22 +Zvnz’

where \/; (12/?) is the bosonic annihilation (creation) operator

(A1)

and 7; = zi/j'zi/, is the occupation operator at site i. (ij)
denotes nearest-neighbor bonds and J;; are the correspond-
ing tunneling energies. U is the on- s1te interaction energy
and V,; is the harmonic trap potential. The lattice site
locations r; = (xj, y;,z) represent a 3D system, which is
continuous in the z direction. We choose the primitive
vectors a; = ae, and a, = V3/2e, + 1 /2e, resulting in
r; = i1a; + iha, —|— ze,, with @ = 709 nm being the lattice
constant. We have the same tunneling energy J =
h x 13 Hz for all 6 neighbors. The 3D repulsive interaction
is determined by gsp = h*a,/(xm), where a, is the s-wave
scattering length and m is the atomic mass. For the tubes, this
results in an effective 1D interaction g;p = g3p/(27a2),
with a,. being the oscillator length determined by the lattice
depth and the recoil energy. Using the experimental param-
eters we obtain g;p = 7.06J pum. For numerical simulations
we discretize the z direction with a discretization length of
¢, = 0.4 ym. This introduces an additional effective cou-
pling in z direction, J, = h?/(82°m#?) = 27.9J, and the
on-site interaction is rescaled to Ug, = gip/¢, = 17.6J
(Refs. [23,37]). We use the same trap frequencies w, , =
2m x 135 Hz and w, = 27 x 30 Hz as in the experiments.
The atom number of the central tube is chosen according to
the experimental values. The temperature is more difficult to
determine in the experiment and the temperature in the
numerics is chosen to match the experimental results as
stated in the respective captions (Figs. 2—4, 12, and 13).
We simulate this system using a numerical lattice of size
N, x N, x N, where N, and N, are chosen between 50
and 100 and N, is fixed at N, = 81. In our c-field
representation we replace the operators y in Eq. (Al)
and in the equations of motion by complex numbers . We
sample the initial states in a grand-canonical ensemble of
temperature 7 and chemical potential u via a classical
Metropolis algorithm. We then propagate each state using

the classical equations of motion. We calculate the observ-
able such as the tube density n(x, y, ) and average over the
initial ensemble. For tilting the system, we adopt the
experimental procedure and therefore abruptly displace
the harmonic trap by a displacement d either along the
lattice direction or perpendicular to the lattice direction. To
implement atom loss, we additionally include the term —yn;
in the equations of motion, where y is the loss rate. We use
the experimentally determined y from the time evolution of
density up to 100 ms (see Appendix C). We note that the
measured y varies depending on the value of d.

2. Derivation of the Hubbard interaction strength

We estimate an effective Hubbard interaction strength U
using the ansatz for the wave function in a single lattice site
@(x,y,2) = @ap(x,y)@-(z), where gyp(x,y) is the wave
function in the lattice plane and it is determined by the lattice
depth, and ¢, (z) is the wave function in z direction which we
assume to be a Thomas-Fermi profile. We determine
¢(x,y,z) for N = 1000 atoms and extract the total inter-
action energy as Ej = N2gsp [ |p(x,y,2)|[*dxdydz. We
obtain an effective Hubbard strength U = (2/N?)E;,, of
~h x 2.3 Hz. This derivation neglects the change of the
Thomas-Fermi profile with the atom number per tube, which
is valid for small relative atom number changes during the
initial dynamics. This effective Hubbard U is only used for
the computation of 7, via the effective Hamiltonian, but not
for the description via the c-field simulation, where a
different Hubbard Uy, appears for the description with
discretized z direction.

3. Simulations with homogeneous tilt

In order to investigate the role of the inhomogeneity of
the tilt due to the curvature of the magnetic trap, we
perform c-field simulations with a homogeneous tilt with
hard walls to keep the system finite. We use an energy
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FIG. 5. Simulation of a homogeneously tilted lattice. Time
series of the on-site populations for a BEC in a lattice with hard
wall boundary conditions homogeneously tilted along the x
direction. The hold times after initialization are 0, 10, 60, 100,
300, and 600 ms, from left to right and top to bottom. The
dynamics are similar to that of the inhomogeneous system studied
in the main text [Fig. 3(a)].
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offset of A = 1.3 kHz, a tunneling energy of / = 10 Hz, a
temperature of kzT/J = 100, N = 700 atoms per tube, and
keep the value of U as in the main text. The density-wave
pattern forms in a similar manner compared to the situation
with inhomogeneity (Fig. 5). We do not include any atom
loss, which is why the density-wave contrast decays at long
times as in the inhomogeneous system.

APPENDIX B: EFFECTIVE
HAMILTONIAN PICTURE

1. Derivation of the effective Hamiltonian

We describe the 2D triangular lattice by the Bose-
Hubbard Hamiltonian,

Hy = -7 (bjb; + bjb;
(jk)

S VIR

where b is the bosonic annihilation operator and 72; = bTb
is the number operator at site j. (jk) denotes nearest
neighbors. We add the lattice tilt perpendicular to a
primitive lattice vector by the term A, = A > ;x;ji;, where
x; is the x coordinate of site j. The tilt energy A is the
dominant energy scale, since A > J, U. To include the
effect of the tilt in the system, we go to the interaction

picture with respect to A, and obtain

(B1)

FI] = exp(i]:]At)]:]O exp(—i]:]At), (BZ)
b;(t)=exp(iH zt)b exp(—ifl st) = b exp(—ix;At), (B3)
lsj( ) = exp(zHAt)b exp(—iH 1) = B; exp(ix;Ar). (B4)
This results in
H;=Hy + H, + H exp(—iAt) + H_, exp(iAt),  (B5)
with

N U A
HUZEZnJ(n,—l), (B6)
j
B, =) (B}Ek + @;@,), (B7)
(k)
It]l - —J E;Bk, (BS)
(K) e

(jk), denotes nearest neighbors in the y direction, (jk),.
are the nearest neighbors in x directions such that the tilt
potential on site k is bigger (smaller) than at site j.

Equation (BY) is the form of a periodically driven system
with frequency A, which allows us to use a Magnus
expansion [38-40]. We consider Magnus expansion to
second order:

N 1 N PN N
22
Hﬁff )= _WHHU +H,; H|,H_]

([Hy + H, H_,].H,]. (B10)

T 2A?

We note that the first-order term vanishes in the

expansion. We solve the double commutators and obtain
the effective Hamiltonian:

Fleff:ﬁU+Hl+He(:§£2) (B11)
= Hyex+ H,y, + Hp, (B12)

where
Hy o = <%—4SU>Zﬁj(ﬁ,—1)+4sUZn]nk, (B13)

Hy ==Y (Jbjby + sUbji;by + sUb by + Hec.)
(o,

+2sUZ

(jkl)

+ biiyb;). (B15)

(Jk)+(y) denotes nearest neighbors in the x(y) direction,
(jkl), are all pairs of bonds with one bond up and one
down the tilt, and (jkl), denotes triangular plaquettes such
that j and k are nearest neighbors in the y direction.

Compared to the original model, most lattice parameters
are slightly renormalized by the tilt. The interaction scales
as U — U — 8sU. The hopping transverse to the tilt scales
as J, = J—2sUn, where this correction comes from
second-order tunneling processes and n is the mean-field
density. The single-particle hopping along the tilt does not
appear in the effective Hamiltonian. In & Uefr and Hp, the
new terms are nearest-neighbor repulsion and pair hopping.
The second term in Eq. (B15) is a density induced
tunneling term, which appears transverse to the tilt [41].

For a tilt along one lattice vector [Figs. 6(b) and 6(d)] the
general idea stays the same. In this case Eq. (B5) contains
additional terms with exp(+2iAr) and therefore additional
terms appear in the effective Hamiltonian. On the other hand,
the direct hopping perpendicular to the tilt does not exist and
coherence in this direction can only be built by second-order
processes. To describe the effective Hamiltonian for this
case, we define the tilt energy offset A as indicated in Fig. 6.
We obtain the effective Hamiltonian,
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FIG. 6. Effective Hamiltonian for the tilted lattice. Visualization
of the tight-binding model of the tilted lattice with energy offset
A, on-site interaction U, and direct hopping J (a),(b) and of the
respective effective models including nearest-neighbor inter-
actions V and pair tunneling P as well as transverse tunneling
J | and effective on-site interaction energy U (c),(d). Compared
to the usual tilt direction (a),(c), the perpendicular tilt direction
(b),(d) gives rise to a smaller perpendicular hopping J | as well as
additional terms arising from resonances across two lattice sites
(the primed quantities V' and P’). The expression for the
perpendicular hopping J, in mean-field approximation contains
the mean on-site occupation n.

I:I||.eff:ﬁ1/u,eff+ﬁlﬁo+ﬁlu‘quA, (B16)

Aj(h;—1)+4sUY Ay, (B17)

J (k)
R <z;;z;;z;k;;, + ;;;;;;;;,@), (B18)
(jkl)
H/J = —SU Z (Ej}ﬁ][;[ +Bjﬁlgl
(jklm)
—2biiy by - 2b%h,,b; + H.e.), (B19)

(B20)

where s = J?/A? has the same form as before. (jk), are
nearest neighbors in x direction. Because of the geometry of
the lattice these have an energy difference of A. (jkl), are

pairs of bonds with one bond up and one down the tilt and
(jkim) , denotes diamond-shaped plaquettes such that sites
Jj and [ are at the same tilt energy. (jk) , are nearest neighbors
in y direction and (jkl), are pairs of bonds in y direction.
The interaction rescales as U — U — 9sU. Effective single-
particle hopping perpendicular to the tilt is present with
strength J | = —2sUn, where n is the mean-field density. In
this case the hopping is to next nearest neighbors.

2. Motivation for density-wave formation due to
pair tunneling

We motivate why the pair tunneling terms lead to the
formation of the density wave by analyzing a simple 1D
lattice model. We consider all states that are connected to an
initial homogeneous situation consisting of an N-atom
Fock state on each tube by application of Ny pair
tunneling events. We find that these states have a tendency
to feature period 2 density modulations, as intuitively
expected from the structure of the correlated pair tunneling
processes. The quantitative analysis of the density corre-
lation function averaged over all accessible states is given
in Fig. 7 and it shows the growth of the staggered
correlations indicative of the density wave. The correlation
at a given distance d for a particular state with occupations
relative to homogeneous filling SN; is computed as
cov(d) = 1/(Nges = 1) 15 6N 16N 4.

The correlations in this analysis have a finite exponential
decay length of 1.3(2) lattice sites with a hard cutoff beyond
2 lattice sites for all N, considered. The correlations
observed in the experiment have a longer decay length of
2.1(7) and 2.3(5) lattice sites (Fig. 4 of main text), because
the true dynamics is not captured by considering all
accessible states. In the simple analysis, we neglect the

Covariance

Number of pair tunneling steps

Distance (sites)

FIG. 7. Pair tunneling as mechanism for density-wave forma-
tion. The figure shows the mean covariance of all states con-
nected to an initial homogeneous state of a system of 9 lattice
sites with periodic boundary conditions with N, pair tunneling
events (color coded starting from Nge,s =1 in blue up to
Ngeps =5 in orange). The covariance shows clear staggered
correlations for up to 2 lattice sites distance.
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slightly different coupling strengths between the different
states as well as the effect of the nearest-neighbor inter-
actions. We also neglect coherences by starting in Fock
states, which is a reasonable approximation because most
coherence is rapidly lost after the quench (Appendix F).
The initial atom number N per tube does not enter in the
analysis, it only influences the timescale on which the pair
tunneling events take place.

3. Explanation of #,

From the pair tunneling we estimate a timescale of 7, =
h/(16NP) until the maximal amplitude of the density
wave, where P is the strength of the pair tunneling derived
above. Compared to a standard two-level system with
coupling Q reaching maximal transfer after h/(4Q), we
added an additional factor of 4N here, where 4 is the
number of possible pair tunneling processes in the tilted
triangular lattice and N accounts for the density depend-
ence of the process in mean field taking into account the
bosonic enhancement. We expect the bosonic enhancement
to be reduced due to excitations in the z direction building
up after the quench, but we include the full factor N here
resulting in a lower bound on the timescale.

4. Short-time dynamics

To understand the emergence of the density wave we
consider a 1D lattice system. The initial dynamics are
dominated by the fast phase rotation with frequency A. The
system is described by the Hamiltonian [see Eq. (BS)]:

I
J
U s
+52n1(n1 -
J

To analyze the density-wave order we calculate the density-

density correlation function (72; 71;,). Within a perturbative

i nJ2 we have

e~ iA! + ];'leBjeiAz)

(B21)

expansion, for 0=n,
A A t A A
o) = O + i/ an[f(n), 0]

- [Fan [ anf

where we considered expansion to second order. We solve
the commutators and then take the expectation value. The
first-order term drops out and the second-order term has the
form:

[7(1)). 0]l (B22)

<b bhb;bﬁ)
~ g(lj1 = j21)9(ljs = jal)g(ljr = jal)g(lj> = jal)

g(lj1 = J31)g(lj2 = jal)

(B23)

9(j) = (bb;) ~ nyexp(~|j|/ro), where ny is the equilib-
rium particle number and r, is the correlation length. We
calculate the time averaged correlations (7 7;,) by keeping
the constant terms and obtain

(j,n;,) = g°(0) + sg*(1) <8F(R) “FR) T 4F(R+1)
D ) 0

where we used R = alj, — j,| as the distance between sites
with the lattice spacing a and s = J?/A?. We define

g*(R)
gR+1)gR-1)"

F(R) = (B25)

We have F(R) = 6z0[¢*(0)/¢*(1) = 1]+ 1 and 1/F(R) =
Sr0lg?(1)/g*(0) — 1] 4+ 1. In momentum space the corre-
lations are

Z exp(ikR)(

=4sn[1 —cos(ka)](2—

(PrPi) (B26)

/1 12>

e 2aln0 —g=4alr0)  (B27)
This yields a density-density correlation peak at k = 7/a,
corresponding to the density pattern of period 2. The
magnitude of the correlations scales with s and thus

A% (pypy) is independent of A, as we describe in Fig. 3(c).

5. Monte Carlo simulation of the effective model

We perform Monte Carlo simulations to determine the
equilibrium states of the 2D effective model for a wide
range of the tilt strength. For convergence of Monte Carlo
simulation, we consider a homogeneous density and a
triangular lattice of size 24 x 24. We use the same J =
h x 13 Hz and the same U/J = 0.18 as in the experiments
and the temperature k3T /J = 25. We vary the energy offset
A in the range A/J = 2-1000 and sample the correspond-
ing initial state via classical Metropolis Monte Carlo as in
the c-field simulations. For each A we carry out 1 x 10°
Monte Carlo steps per site to obtain the equilibrium state. In
Fig. 8, we show the density along the y direction of the
equilibrium state of a single sample. The density displays a
density-wave pattern for A up to a critical value of
A/J ~4.4. Above this critical value, no density wave is
visible and we only observe a fluctuating density of the
sample. This is in contrast to our experiments, where a
density wave appears as a transient state for the tilt energies
that are about 100 times larger than the effective model.
Such small values of A/J are hard to realize via the
effective model of a tilted system, because the derivation
relies on large A/J > 1.

021014-9



H.P. ZAHN et al.

PHYS. REV. X 12, 021014 (2022)

Position x/a

Positiony/a

Tilt strength log,, (A/J)

fE; (b)
[ ——
0 02 04 06 08 1

Normalized density n/n,,,

Position x /a in cut through system

FIG. 8. Monte Carlo simulations. (a),(b) Density distributions
n(x,y) of single Monte Carlo samples of the effective model for
tilt energy A and tunnel energy J with log,o(A/J) = 2.0 (a) and
logio(A/J) = 0.5 (b). The density is normalized by the maxi-
mum density n,,,, for each image. (c) Cuts through images as in
(a) and (b) as a function of A/J. The density-wave pattern is
visible below a critical value of A/J ~ 4.4, and above this critical
tilt the density is randomly fluctuating.

APPENDIX C: EXPERIMENTAL SETUP
AND METHODS

1. Optical lattice setup

Our optical triangular lattice setup consists of three
linearly polarized running waves [42,43] of wave vector
k; with |k;| = 2z/4 intersecting under an angle of 120°.
The resulting potential can be written as

Viaap(r) = _2V1atz cos|(k; — kj)r}v

i>j

(C1)

where the lattice depth V, is proportional to the intensity
of the lattice beams. We neglected the phases of the beams
with respect to each other because they only result in a
global shift of the lattice.

2. Site-resolved imaging

We use the technique introduced in Ref. [11] to magnify
the density distributions prior to imaging. We freeze the
density distribution in a deep lattice of Vi, ~ 6E,, with
E, = h?/(2mA?), m =87 u being the mass of ¥Rb,
resulting in a tunnel coupling of J ~h x 1073 Hz. This
allows us to ramp to a magnetic confinement of
@puise ~ 2 X 300 Hz, which in combination with a

subsequent time of flight #por ~20 ms yields typical
matter-wave magnification of ~40. We extract the on-site
populations by fitting a triangular lattice to the data and
subsequently summing over the Wigner-Seitz cells around
the individual sites. For the images with tilt, we shift back
the magnetic trap center for the matter-wave magnification,
in order to reduce anharmonic matter-wave aberrations.

3. Parameter calibration

We calibrate the lattice depth Vy, via Kapitza-Dirac
scattering and determine the corresponding tunneling
element J via a band structure calculation. The atom loss
rate is determined to be y = [2.3(2),2.9(2),3.6(2)] s~! for
energy offsets A = h x (1.1,1.4,1.7) kHz from an expo-
nential fit to the first 100 ms of the experiment. Note that
the atom loss measures the number of atoms that get lost
from the slope, thus it includes atoms that fall to the trap
center, which is the reason for the tilt dependence. The
experiments are performed with 8’Rb atoms in the F = 2,
mp = 2 state in a loffe-Pritchard-type magnetic trap with a
coil winding pattern in between a cloverleaf and a 4D
configuration and with trapping frequencies w, , = 2z x
135 Hz in plane calibrated via an oscillation and @, =
27 x 30 Hz transversally, in the latter direction dominated
by the optical lattice beams. The tilt is produced by shifting
the position of the magnetic trap using additional magnetic
field coils. We determine the tilt from the measured shift
distance of typically d = 15 ym and cross-check with the
period of Bloch oscillations induced by the tilt. The
variation of the tilt over 10 lattice sites resulting from
the unchanged harmonic confinement is around +20% and
is also included in the c-field simulation by modeling the
full trap.

APPENDIX D: DATA EVALUATION METHODS

1. Residue computation

To compute the residues 5N§.Q at site (j, k) we proceed

for every single shot i in the following way. We average all
images corresponding to the same experimental parameters
and read out the lattice site populations of this mean image
with the same masks as the ones used for the shot we want
to compute the residues of. The masks of different shots
differ by the phase of the optical lattice (Appendix E). The
resulting populations are used as reference and are sub-
tracted from the on-site populations of the single shot.

2. Correlation computation

The first step in the evaluation is to compute the

covariance cov i = 1/(N—1)3 5N§;€)5N§f,)(, of the
residues. This is done for every site within 3 sites of
the center with respect to every other site satisfying the
same condition. Subsequently, the covariance is averaged

for pairs of points having the same or exactly opposite
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distance vector and is eventually normalized to the mean
maximal tube population for the corresponding para-
meters. The error of the covariance is computed as
N (i) 2 o _
1/\/N\/Zi:1(covjkj,k, —COVp)”,  Where COV iy =
(1) sps(0)
ON 6N}
the mean.

This error is then propagated when computing

3. Heuristic description of correlation functions

The staggered density correlation functions along the
tilt are fitted with a staggered exponential decay c; =
co(—=1) exp(=i/Ly), with an amplitude c, and the corre-
lation length L as free parameters. For the case of weak
transverse tunneling we have added a small background
Gaussian function to account for an artifact from slight
displacements of the clouds between measurements. The
monotonic density correlation functions perpendicular to
the tilt are fitted with an exponential ¢; = ¢y exp(—i/L )
for the case of weak transverse tunneling, and with a
Gaussian ¢; = ¢ exp(—i*/ Lﬁ) for the case of strong trans-

verse tunneling.

APPENDIX E: FURTHER ANALYSIS
OF EXPERIMENTAL DATA

1. Postselection of lattice-phase drifts

The lattice phase, i.e., the exact position of the optical
lattice below a lattice site relative to the initial cloud
center, is stable during one experimental preparation, but
random between different experimental images. The high-
resolution imaging allows us to read out this phase and to
postselect on it [11]. For the investigation of the
spontaneous symmetry breaking, it is important to verify
that the apparently random position of the density wave
is not simply triggered by this lattice phase. To do so,
we repeat the analysis of the domains in Fig. 2(c)
after postselection on the lattice phase and present

0.8

Probability of domain wall occurrence
o
n
Lattice phase (2r)

x Position (lattice sites)

FIG. 10. Spatial distribution of the domain walls. Spatially
resolved analysis of the data of Fig. 2. The curves show the
probability of finding a domain wall at a given position in the
cloud after integrating along the direction of the stripes. The color
denotes the postselected phase of the lattice and the dashed line is
the average over all data. The probability is almost homogeneous
in the central region (example density shown by black curve) and
trivially increases at the edge of the cloud where the density-wave
pattern vanishes. The error bars denote the standard deviation of
the mean.

lattice-phase resolved histograms in Fig. 9. While the
statistics of the individual histograms is less extensive
now, one can still recognize the double-peak structure
in all histograms, which confirms that the symmetry
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FIG. 9. Lattice-phase resolved histogram. The histogram of
local density-wave order of Fig. 2(c) with separate analysis for
the different lattice phases (color coded) still shows the double-
peak structure reflecting the spontaneous symmetry breaking.

FIG. 11. Spontaneous symmetry breaking and pinning. Long-
term dynamics of the density waves illustrated by the populations
integrated along the columns. Exemplary single-shot profiles (red
line) show the density-wave formation while the absence of a
density wave in the average profile (blue line) for early times
confirms the spontaneous nature of the symmetry breaking. The
average profile is continuous due to the varying lattice phases of
the individual images. For later times, the average profile
develops density waves as well, indicating the onset of pinning,
which we attribute to self-trapping.
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breaking of the density wave is spontaneous and not
triggered by the random lattice phase.

2. Spatial distribution of the domain walls

To further confirm the spontaneous nature of the sym-
metry breaking, we analyze the spatial distribution of the
domain walls (Fig. 10). To do so we integrate the staggered
residues (see Fig. 2) along the y direction, assuming no
domain walls being present in this direction. For each shot
we track the sign changes which we interpret as domain
walls. Subsequently, for every position, we divide the
number of domain walls that we obtain by the number
of shots with the same parameters to compute a local
probability.

We find that this probability is almost homogeneous
across the relevant region of significant density-wave
pattern, as expected for spontaneous symmetry breaking,
with a value around 10%—-20%. There is, however, a slight
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increase in the number of domain walls at the outer part of
the cloud in the direction of the trap center, which might be
due to the atoms slowly falling down the slope. Outside this
relevant region of about 10 lattice sites containing clear
density waves, the signal sharply rises reflecting the
absence of the pattern, which makes domain walls ill
defined. In this outer region, the analysis is more sensitive
to systematic effects arising, e.g., from the density
envelope, and therefore does not exactly yield the proba-
bility of 0.5 expected for uncorrelated fluctuations.

3. Pinning of the density-wave pattern
for long hold times

For longer hold times (Fig. 11), we find an intriguing
interplay of pair tunneling and single-particle tunneling: the
average profile develops density waves as well, which we
attribute to steep density gradients formed due to self-
trapping [44]. This pins the density wave at a fixed position
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Influence of coherence on the density-wave formation. (a) Density-wave pattern for different initial temperatures of the BEC

before the quench into the tilted system (upper row). The coherence of the initial system is evidenced by the visibility of the Bragg peaks
in a time-of-flight (TOF) measurement before the quench (lower row). The temperature is increased deliberately by a hold time in the
lattice of (from left to right) (0.1, 750, 1200, 1800) ms leading to a visibility of (0.79, 0.42, 0.17, 0.006). (b) Density-wave order as a
function of the Bragg-peak visibility in the experiment for a hold time of 100 ms and an energy offset of A = & x 1.4 kHz. All error bars
correspond to the 68% confidence interval. (¢) Simulation of the density-wave order for the experimental parameters, plotted as a
function of 1 — T/T ., where T is the critical temperature of a noninteracting gas. (d) TOF measurements for (0.1, 1.1, 2.1, 1200) ms
(from left to right) hold time after the quench and A = & x 1.1 kHz. The hold times are approximately stroboscopic with respect to the
Bloch oscillation period. (e) The condensate density n, versus time in the numerical simulation for different temperatures reproduces the
rapid loss of coherence and shows that a very small coherent fraction remains, which is not experimentally detectable. (f) The density-
wave order for the parameters in (e) shows that this residual coherence is crucial for the density-wave formation. The different colors
stand for different initial temperatures of 7/T,. = 0.28, 0.32, 0.39, 0.45, and 0.53 (top to bottom).
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making the symmetry breaking not spontaneous anymore.
We observe experimentally an inward propagation of the
pinning, starting from the edge at the lower end of the
slope. This behavior seems reminiscent of the spontaneous
formation and later stabilization also observed for super-
solid droplets in continuous systems [45].

APPENDIX F: ADDITIONAL MEASUREMENTS

1. Influence of coherence

We study the importance of coherence for the formation
of the density-wave order. As a first point, we compare the
density-wave order for different initial temperatures before
the quench into the tilted system and find that the density-
wave order vanishes when no initial coherence is present
[see Figs. 12(a)-12(c)].

As a second point, we investigate the coherence after
the quench and find that while most coherence is rapidly
lost after a few Bloch oscillation periods [Fig. 12(d)], a
residual coherence is detectable in the simulation results
and the density-wave formation vanishes as a function of
temperature together with this residual coherence
[Figs. 12(e) and 12(f)]. The simulated condensate density
ng, which is a measure of the coherence between the
lattice sites, is determined by averaging the complex field
y; within a central region with a radius of 6 sites and then
averaging the absolute value squared over the thermal
ensemble, i.e., nyg = <|1/Nr Zi l//i|2>ensemble’ with Nr
being the number of sites in the region of interest. The
data in Fig. 12(d) are for the tilt perpendicular to a lattice
vector, where the residual coherence also shows in the
experimental data as a small anisotropy of the time-of-
flight distribution. For the other tilt direction with the
much smaller tunneling along the columns, the coherence
is smaller and we do not observe an anisotropy in the
time-of-flight images. Because of the small coherent
fraction, our density wave would not be visible as a
second Bragg peak in time-of-flight measurements as in
Refs. [14-16] and therefore explicitly requires the novel
microscopy technique of Ref. [11].

2. Confirmation of the interaction-driven dynamics

In Fig. 3, we have observed the interaction-driven nature
of the density-wave formation via the slowing-down of the
long-time dynamics due to atom losses. Here, we further
strengthen this point, by studying the formation dynamics
of the density wave for different initial atom numbers
(Fig. 13). Indeed, we find much faster buildup of the
density-wave order with increasing atom number both in
the experiment and the numerical simulation.

The atom-number dependence of the density-wave
build-up time is consistent with the atom-number depend-
ence of the pair tunneling time, which drives the formation.
Furthermore, also the atom-number dependence of the
maximal contrast of the density wave can be attributed
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FIG. 13. Atom-number dependence. (a) Experimental density-

wave order dynamics as a function of the initial atom number
(color coded using the biggest tube population at ¢~ 0). The
energy offset was A = h x 1.4 kHz. All error bars correspond to
the 68% confidence interval. (b) Simulation for the corresponding
parameters and kpg7'/J = 100, without including atom loss.

to this atom-number dependence of the density-wave
build-up time, which is competing with the slow single-
particle tunneling.

3. Incommensurate tilt directions

We also study incommensurate tilt directions, which
are not along or perpendicular to a direct lattice vector, by
shifting the magnetic trap in the appropriate directions.
The dynamics for a tilt direction 10° rotated against the
direction perpendicular to a direct lattice vector is shown
in Fig. 14. Because the tilt is produced by the shifted
magnetic trap, its direction changes with position. The
force from the tilt can be decomposed into a component
perpendicular to a lattice vector, where the atoms are
Stark localized, and a component along a lattice vector,
where the atoms can move. Indeed, a fraction of the
atoms moves along the latter direction. For the given
geometry, the component along the lattice vector vanishes
after the atoms have moved by about 5 lattice sites and
the motion stops there. The atoms automatically align
with a commensurate tilt direction.

This splitting is reminiscent of early experiments in
Josephson junction arrays finding that the superfluid
fraction can move through the lattice, while the thermal
fraction is pinned [46,47]. The observed separation might
therefore point a way to distill the zero-temperature part of
the cloud. The formation of the density wave is restricted
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Tms 100 ms 300 ms

Density (arb. units)

FIG. 14. Incommensurate tilt direction. Experimental images
for different hold times after quenching to a tilt, which is 10 tilted
against the direction perpendicular to a direct lattice vector. The
red arrows indicate the local tilt direction, the orange arrows show
the projection of the tilt onto a lattice vector and onto the direction
perpendicular to it. A fraction of the cloud moves from the initial
position (circles) to a position where the tilt is again commensu-
rate (topmost arrow in the last panel) and forms a density wave
with large contrast.

to a small region with minimal tilt along the stripe pattern
and reaches a larger contrast than in the commensurate
situations discussed in the main text. This is in line with the
observed relevance of coherence discussed above.
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