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The second law of thermodynamics states that work cannot be extracted from thermal equilibrium,
whose quantum formulation is known as complete passivity; a state is called completely passive if work
cannot be extracted from any number of copies of the state by any unitary operations. It has been
established that a quantum state is completely passive if and only if it is a Gibbs ensemble. In physically
plausible setups, however, the class of possible operations is often restricted by fundamental constraints
such as symmetries imposed on the system. In the present work, we investigate the concept of complete
passivity under symmetry constraints. Specifically, we prove that a quantum state is completely passive
under a symmetry constraint described by a connected compact Lie group, if and only if it is a generalized
Gibbs ensemble including conserved charges associated with the symmetry. Remarkably, our result applies
to noncommutative symmetry such as SU(2) symmetry, suggesting an unconventional extension of the
notion of generalized Gibbs ensemble. Furthermore, we consider the setup where a quantum work storage
is explicitly included, and prove that the characterization of complete passivity remains unchanged. Our
result extends the notion of thermal equilibrium to systems protected by symmetries, and would lead to
flexible design principles of quantum heat engines and batteries. Moreover, our approach serves as a
foundation of the resource theory of thermodynamics in the presence of symmetries.
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I. INTRODUCTION

The second law of thermodynamics, also known as
Kelvin’s principle, dictates that a positive amount of work
can never be extracted by any cyclic operation from a single
heat bath at a uniform temperature [1]. Ever since its
establishment in the 19th century, the second law has
served as the most fundamental constraint on our capability
of energy harvesting, which prohibits the perpetual motion
of the second kind. In recent years, the frontier of
thermodynamics is extended to the quantum regime due
to the development of quantum technologies. Quantum heat
engines have been experimentally realized by quantum
technologies such as ion traps [2,3], superconducting qubits
[4–6], and NMR [7,8], which have opened new oppor-
tunities of power generation by utilizing quantum effects.
On the theory side, quantum information theory sheds

new light on quantum thermodynamics. In particular, an
information-theoretic framework called resource theory has
attracted much attention [9–19], which identifies work with
resources and thermal equilibrium states with resource-free

states. From this perspective, a concept called passive state
plays a key role [20,21], from which positive work cannot
be extracted by any unitary operation. It is known, however,
that one can extract a positive amount of work from
multiple copies of a certain passive state, and thus the
concept of passivity is not sufficient to characterize thermal
equilibrium from which energy harvesting should be
strictly prohibited. The full characterization of thermal
equilibrium is given by complete passivity: A positive
amount of work cannot be extracted from any number of
copies of a completely passive state. It is known that a state
is completely passive if and only if it is a Gibbs ensemble,
which suggests that complete passivity provides a physi-
cally meaningful, as well as information-theoretically
accurate, definition of thermal equilibrium.
In the above approach to characterize thermal equilibrium,

a central assumption is that all unitary operations are allowed
for work extraction. In real physical situations, on the other
hand, several constraints are often imposed on possible
unitary operations, which often make the class of physically
plausible unitary operations strictly smaller than all unitary
operations. Among such constraints, we here focus on the
symmetry of quantum systems. There are various kinds of
symmetry and the corresponding conservation laws [22],
such as U(1) symmetry and particle number conservation,
SU(2) symmetry and spin (magnetization) conservation, and
Z2 symmetry and parity conservation.
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Once the class of possible unitary operations is restricted
by such symmetries, thermal equilibrium states are no
longer necessarily Gibbs ensembles. In fact, there are some
non-Gibbs ensembles from which one cannot extract
positive work by symmetry-respecting unitaries. In other
words, a broader class of states looks like effective thermal
equilibrium, as long as the symmetry is respected (see
Fig. 1). We call this extended notion of thermal equilibrium
symmetry-protected thermal equilibrium. In terms of re-
source theory [23], the above observation implies that the
class of free states is expanded if the class of free operations
is restricted. Therefore, the conventional Gibbs ensemble
would be insufficient to represent all symmetry-protected
thermal equilibrium states. Then, a natural question raised
is, what are concrete expressions of symmetry-protected
thermal equilibrium states? More specifically, how should
the notion of complete passivity be extended if only
symmetry-respecting unitaries are considered?
In this paper, we answer this question by proving that a

quantum state is completely passive under a symmetry
constraint, if and only if it is a generalized Gibbs ensemble
(GGE) that involves conserved charges associated with the
symmetry. This result is applicable to noncommutative
symmetry such as SU(2) symmetry, which leads to an
unconventional extension of the notion of GGE.
More explicitly, consider a continuous symmetry

described by a connected compact Lie group, and let
Qi’s be its conserved charges such as the particle number
operator or the spin operators. Then, what we prove is that
any completely passive state is given in the form

ρGGE ≔
1

ZGGE
exp

�
−βH −

X
i

μiQi

�
; ð1Þ

where ZGGE ≔ tr½expð−βH −
P

i μiQiÞ� is the generalized
partition function, β ≥ 0 is the inverse temperature, and μi’s
are generalized “chemical potentials.” In the commutative
U(1) case, the GGE is reduced to the conventional grand
canonical ensemble. Furthermore, we consider the setup
where a quantum storage that stores work is explicitly
introduced [24,25], and prove that the above characteriza-
tion of symmetry-protected complete passivity remains
unchanged from the setup where work is treated as a
classical variable.
Our result establishes that any state other than the GGE is

not completely passive and thus cannot be regarded as
thermal equilibrium in terms of work extraction. From the
experimental point of view, this would lead to a more
flexible design principle of quantum heat engines [2–8] and
quantum batteries [26–29]. From the theoretical point of
view, our result would serve as a foundation of the resource
theory of thermodynamics under symmetry constraints, as
our result specifies the free states of such a resource theory.
In the context of thermalization, the GGE has been

investigated as a state describing equilibration in integrable
systems [30–33]. Most of the previous works consider the
case where conserved charges are commutative with each
other (but see also Refs. [34–36]). A noncommutative
extension of the GGE has been proposed by Yunger
Halpern et al. in Ref. [37], and our result supports that the
expression proposed by them is a proper form of the
noncommutative GGE. We emphasize, however, that our
setup is different from the setup of Ref. [37]; in the present
paper, we consider the purely energetic work extraction
(instead of the chemical work extraction) under a symmetry
constraint that is imposed only on the system (instead of
including charge storages). Therefore, we adopt a tighter
constraint on the operations than Ref. [37]. Our setup is
physically plausible given that heat engines and external
systems are often very different (e.g., matter and light) [2–8],
where it would be natural to suppose that symmetries are
imposed only on the system of interest.
This paper is organized as follows. In Sec. II, we give the

definition of symmetry-protected complete passivity and
show our main theorem, stating that only GGEs are com-
pletely passive states under symmetry constraints. Since the
proof of this theorem is highly involved, we leave the full
description of the proof to Supplemental Material [38].
Instead,we illustrate the physical implications of the theorem
by some examples. In Sec. III, we consider a setup including
a quantum work storage. In Sec. IV, we discuss the relation
between the present study and other relevant previous
studies. In the Appendix A, we show the condition for
symmetry-protected passivity. In Appendix B, we describe
the full proof of the main theorem in Sec. II only for a
simplest nontrivial example of a dimer model. In
Appendix C, we deal with the cases of some finite-group
symmetries and time-reversal symmetry, where only conven-
tional Gibbs states are symmetry-protected completely
passive states.

FIG. 1. Symmetry constraints on unitary operations and com-
pletely passive states. When the class of allowed operations is
restricted, the class of quantum states from which positive work
cannot be extracted is expanded. This leads to the question of
identifying the states that behave as effective thermal equilibrium
under symmetry constraints. In this paper, we completely identify
the class of such effective thermal equilibrium states, which we
name as symmetry-protected thermal equilibrium states, by prov-
ing that those states are always given by GGEs of the form Eq. (1),
including the case that the conserved charges are noncommutative.
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II. SETUP AND THE MAIN THEOREM

In this section, we discuss the setup and the main result
of this paper. In Sec. II A, we describe our definition of
passivity and complete passivity under symmetry con-
straints. In Sec. II B, we present our main theorem, stating
that any completely passive state under a symmetry
constraint is a GGE. In Sec. II C, we illustrate the setup
and the theorem by some examples.

A. Complete passivity under symmetry constraints

As a preliminary, we first formalize ordinary passivity
without symmetry constraints [20,21]. Let H be the initial
and final Hamiltonians of the system, which should be the
same because we consider cyclic processes. The time
evolution of the system is represented by a unitary operator
U. Note that U is an arbitrary unitary operator and is not
necessarily given by expð−itHÞ, because the Hamiltonian
can be time dependent during the operation. Then, the
average work extracted from the system is defined by

Wðρ; UÞ ≔ trðρHÞ − trðUρU†HÞ: ð2Þ

Now, a stateρ is called passive ifWðρ; UÞ ≤ 0 holds for allU.
It is proved [20,21] that a state is passive, if and only if the
state ρ is diagonal in the energy eigenbasis as ρ ¼P

j pjjEjihEjj, and the probabilities fpjg and the energy
eigenvalues fEjg satisfy p1 ≥ p2 ≥ … and E1 ≤ E2 ≤ ….
Even if a state ρ is passive, there remains the possibility

to extract positive work from multiple copies of ρ. In such a
case, ρ cannot be regarded as truly thermal equilibrium,
because one must not extract positive work from any
number of copies of an equilibrium state. We therefore
define ρ as completely passive, if ρ⊗N is passive for all
N ∈ N. It has been proved in Refs. [20,21] that ρ is
completely passive if and only if it is the Gibbs ensemble
ρ ¼ e−βH=Z for some β ≥ 0.
In the foregoing conventional definition of passivity, any

unitary operators are allowed to be implemented for work
extraction. In order to describe symmetry constraints, we
restrict the class of possible unitary operations in the
following manner. Consider a group G that describes a
symmetry, and fix a unitary representation of G. Let Ug be
the unitary labeled by g ∈ G, which should satisfyUgUg0 ¼
Ugg0 for any g; g0 ∈ G. We do not assume that the unitary
representation is irreducible, but technically, we assume
that the representation is faithful. (If a unitary representa-
tion is not faithful, the structure ofG is not fully represented
by the representation. Physically, therefore, we can suppose
that a unitary representation is faithful without loss of
generality.)
When G is a Lie group (a smooth continuous group), we

can introduce the generators of the symmetry operators,
which is the representation of the basis of the Lie algebra.
Physically, those generators are conserved charges

fQigni¼1, which are Hermitian operators linearly indepen-
dent of each other. If G is connected and compact, they
can generate all the symmetry operators as Ug ¼
expðiPn

i¼1 αiQiÞ with some α1;…; αn ∈ R determined
by g. In the following, we assume that G is a connected
compact Lie group unless stated otherwise.
Now we say that a unitary U respects the symmetry, if it

commutes with all symmetry operators, that is, ½U;Ug� ¼ 0

holds for all g ∈ G. Or equivalently, U commutes with all
conserved charges, that is, ½U;Qi� ¼ 0 holds for all i.
Moreover, we suppose that the Hamiltonian H also respects
the symmetry: ½H;Ug� ¼ 0 for all g ∈ G, or equivalently
½H;Qi� ¼ 0 for all i.We then defineρ as symmetry-protected
passive ifWðρ; UÞ ≤ 0 for all symmetry-respecting unitaries
U, where Wðρ; UÞ is defined by Eq. (2).
It is more nontrivial to properly define complete pas-

sivity under symmetry constraints, because we need to
specify the physically feasible class of symmetry oper-
ations on the multiple copies ρ⊗N . For this purpose, we here
adopt the global symmetry, which collectively acts on all
the copies. That is, we consider the unitary representation
of the form U⊗N

g , by which all the copies are independently
operated with the same symmetry operation Ug (see also
Fig. 2). Then, we say that an operator U acting on N copies
respects the global symmetry, if it satisfies ½U;U⊗N

g � ¼ 0

for all g ∈ G. We can also introduce the total charges,

QðNÞ
i ≔

XN
k¼1

I⊗k−1 ⊗ Qi ⊗ I⊗N−k; ð3Þ

FIG. 2. Schematics of passivity and complete passivity under
symmetry constraints. The work W is extracted by the unitary
operation U. (a) A state ρ is called symmetry-protected passive if
one cannot extract positive work from a single state by any
symmetry-respecting unitary U, which commutes with all Ug.
(b) A state ρ is called symmetry-protected completely passive if
one cannot extract positive work from any number of copies of it
by any symmetry-respecting unitary U, which commutes with all
U⊗N

g for all N ∈ N. Here, the symmetry is supposed to be global;
i.e., the symmetry operations collectively act on all the copies.
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with I being the identity operator. By using this notation,
we can say that U respects the global symmetry if the total
charges are conserved: for all i,

½U;QðNÞ
i � ¼ 0: ð4Þ

Meanwhile, the work extracted from the N copies is
defined by

WðNÞðρ⊗N;UÞ ¼ trðρ⊗NHðNÞÞ − trðUρ⊗NU†HðNÞÞ; ð5Þ

where

HðNÞ ≔
XN
k¼1

I⊗k−1 ⊗ H ⊗ I⊗N−k ð6Þ

is the total Hamiltonian without interaction (as is the case for
ordinary complete passivity). We also suppose that the
HamiltonianH respects the symmetry for individual copies;
i.e., ½H;Ug� ¼ 0 holds for all g ∈ G. Finally, ρ is called
symmetry-protected completely passive ifWðNÞðρ⊗N;UÞ≤ 0
holds for allN ∈ N and for all symmetry-respecting unitaries
U satisfying Eq. (4).

B. Main theorem

We now state our main theorem of this paper, which gives
the complete characterization of symmetry-protected com-
plete passivity. Note that the characterization of symmetry-
protected (not complete) passivity is given in Appendix A.
We first exclude the trivial situation where the

Hamiltonian H is of the form of α0I þ
P

n
i¼1 αiQi with

some α0; α1;…; αn ∈ R. This is because in such a case, the
energy is conserved under any symmetry-respecting uni-
tary and thus all states are trivially completely passive. We
also suppose that ρ is positive definite. Then, the main
theorem is stated as follows.
Theorem 1.—Let G be a connected compact Lie group,

fUggg∈G be its (faithful) unitary representation, and fQig
be the corresponding conserved charges. A state ρ is
symmetry-protected completely passive with respect to a
symmetry-respecting Hamiltonian H, if and only if ρ is
given by the GGE Eq. (1) with some β ≥ 0 and μi ∈ R.
The mathematically rigorous proof of this theorem is

presented in Supplemental Material [38] (Theorem S3). In
particular, the proof of the only if part is quite complicated
and requires advanced tools from mathematical theory of
Lie groups. However, we describe the proof for a special
example in Appendix B.
At this stage, we only mention the proof of the if part,

which is much easier than the only if part. That is, we here
show that the GGE Eq. (1) is symmetry-protected com-
pletely passive. To see this, we remark that for given β; μi,
the GGE Eq. (1) can be seen as the Gibbs ensemble of the

“Hamiltonian” H0 ≔ H þ β−1
P

i μiQi and is completely
passive with respect to H0. If unitary U respects the
symmetry, it does not change the expectation value of
the second term of H0, and thus the extracted work defined
by H0 and H are the same. This implies that the GGE
Eq. (1) is symmetry-protected completely passive with
respect to H. Note that here we did not use the assumption
that H also respects the symmetry. The above argument is
essentially the same as a part of Ref. [37], while in our
setup this kind of argument cannot be applied to the
converse part (i.e., the main part of this paper).
Meanwhile, we can determine the parameters β and fμig

in the GGE Eq. (1) in the following manner. First, we
consider the Hilbert-Schmidt inner product and orthonorm-
alize the conserved charges I; H;Q1;…; Qn by the Gram-
Schmidt orthonormalization into I=

ffiffiffi
d

p
; Q0

0; Q
0
1;…; Q0

n that
satisfy trðQ0

iÞ ¼ 0 and trðQ0
iQ

0
jÞ ¼ δij for i; j ¼ 0; 1;…; n,

where d is the dimension of the Hilbert space of the
system. Then, the GGE is written as ρGGE ¼
expð−P

n
i¼0 μ

0
iQ

0
iÞ=Z0

GGE with μ00; μ
0
1;…; μ0n ∈ R and the

normalization constant Z0
GGE. Here, μ

0
0; μ

0
1;…; μ0n can be

regarded as the coefficients of the orthonormalized
basis fQ0

ig in − logðρGGEÞ, and are given by μ0i ¼
−tr½logðρGGEÞQ0

i�. By expressing Q0
i by a linear combina-

tion of I, H, and Qi, we obtain β and fμig.

C. Examples

We show some illustrative examples. In the case of
G ¼ Uð1Þ, there is a single charge Q. It often describes the
particle numberN, where Eq. (4) means the conservation of
total particle number [see Fig. 3(a)]. We note that the
particle number of an individual ρ is not necessarily
conserved, but that of the multiple copies is globally
conserved. In this case, Theorem 1 states that a state is
symmetry-protected completely passive, if and only if it is
the grand canonical ensemble,

ρGGE ¼ 1

ZGGE
expð−βH − μNÞ; ð7Þ

with inverse temperature β ≥ 0 and chemical poten-
tial μ ∈ R.
In the case of G ¼ SUð2Þ, there are three charges,

Qx, Qy, Qz. They often describe the spin operators in
the x, y, z directions, where Eq. (4) means the total spin
(magnetization) conservation in all the directions. We
write Q ≔ ðQx;Qy;QzÞ.
In the following, let us elucidate the SU(2) case by

considering a “dimer” model [see Fig. 3(b)]. Suppose that
the system consists of two spin-1=2 systems with the spin
operators s1, s2. The unitary representation of SU(2) on this
system is generated by Q ≔ s1 ⊗ I þ I ⊗ s2, which con-
sists of two irreducible sectors with the total spin 0 and 1.
We consider the Hamiltonian of the system with the

isotropic Heisenberg-type interaction between the two
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spins, H ¼ s1 · s2. It is straightforward to check that H
commutes with all the components of Q, implying the total
spin conservation. We consider N copies of this system
(i.e., 2N spin-1=2 systems). Let s1;k; s2;k be the spin
operators of the kth copy. The total Hamiltonian is given
by HðNÞ ¼ P

N
k¼1 s1;k · s2;k, which describes a trivial

sequence of the dimers without interaction.
A simple example of symmetry-respecting unitaries is

given by U ¼ expð−iH0Þ with H0 being the 1D XXX
Hamiltonian. That is, H0 is obtained by quenching the
interaction between the dimers:

H0 ¼ HðNÞ þ
XN−1

k¼1

s2;k · s1;kþ1: ð8Þ

It is again straightforward to check that H0 conserves the
total spin of N copies.
In this dimer example, Theorem 1 states that a state is

symmetry-protected completely passive, if and only if it is
the GGE,

ρGGE ¼ 1

ZGGE
exp

�
−βH −

X
α¼x;y;z

μαQα

�
; ð9Þ

with inverse temperature β ≥ 0 and generalized chemical
potentials μx; μy; μz ∈ R. We give a full proof of Theorem 1
for the case of this dimer model in Appendix B.
We note that the conserved charges already satisfy the

orthogonal relation, and thus we only need to normalize
the charges. Then, β and μα’s are simply given by

β¼−tr½logðρGGEÞH�=trðH2Þ¼−4tr½logðρGGEÞH�=3, μα ¼
−tr½logðρGGEÞQα�=tr½ðQαÞ2� ¼ −tr½logðρGGEÞQα�=2.
Finally, we remark on the ways of connecting dimers by

interaction Hamiltonians. Since we consider the total
magnetization as the conserved charge in the above
example, it is conserved in both the cases where we
connect dimers in a 1D geometry by Eq. (8) and we
connect them in a 2D geometry. On the other hand, only in
the 1D case the spin chain has many local conserved
charges other than the total magnetization, which character-
izes the integrability of the 1D XXX model. Since those
conserved charges play a crucial role in isolated quantum
systems [32,33,39], it would be interesting to investigate
the role of the charges in our setup. We consider, however,
that it is not straightforward to apply those charges to the
setup like Fig. 3(b), because those charges (except for the
total magnetization) cannot be written as the sum of
operators each of which acts on a single dimer, while in
our setup we treat conserved charges in the form of Eq. (3).
It is an important future issue to generalize our framework
to more general conserved charges and to clarify the
relation between complete passivity and integrability.

III. ROLE OF WORK STORAGE

Thus far, we have considered the setup where the work is
defined as the difference of the average energies of the
system before and after a unitary operation. On the other
hand, there is another setup that reflects the first law of
thermodynamics more explicitly [9–11,24,25,40–42],
where a quantum work storage is introduced in addition
to the system of interest, and unitary operations on the total
system should conserve the total energy. In this section, we
consider this setup with the fully quantum treatment of the
work storage.
In Sec. III A, we describe our setup of the work storage.

In Sec. III B, in the absence of symmetry constraints, we
show the relationship between the maximal works with and
without the work storage, which is of separate interest. In
Sec. III C, we prove that even in the presence of the work
storage, a state is completely passive under a symmetry
constraint if and only if it is a GGE, independently of the
initial state of the work storage.

A. Setup

We introduce a work storage attached to the system of
interest in line with Refs. [24,25,40–42]. The work storage
is a continuous system described by position and momen-
tum, and its Hamiltonian is given by the position operator x.
We impose the following two conditions on implement-

able unitary operator V that acts on the composite
system including the work storage: (I) V conserves the total
energy, i.e.,

½V;H ⊗ I þ I ⊗ x� ¼ 0; ð10Þ

FIG. 3. Toy examples of multiple copies of the system under
global symmetry constraints. (a) U(1) symmetry and the particle
number conservation. The total particle number should be
conserved, while individual copies can exchange particles with
each other. (b) SU(2) symmetry and the spin conservation. Each
copy of the system is represented by a “dimer” consisting of two
spin-1=2 systems. We consider the situation where the total spin
is conserved in all the spatial directions, while each spin is not
necessarily conserved. Such symmetry-respecting interaction
between the dimers can be induced, for example, by quenching
the second term on the Hamiltonian Eq. (8).
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and (II) V is invariant under energy translation of the work
storage, i.e.,

½V; I ⊗ p� ¼ 0; ð11Þ

where p is the momentum operator (the generator of energy
translation) of the work storage. Note that the canonical
commutation relation is given by ½x; p� ¼ i.
We also suppose that there is no correlation between the

system and the work storage in the initial state. Then, we
define the extracted work as the difference of the average
energies of the work storage before and after an operationV:

WWSðρ; ρW; VÞ
≔ tr½Vðρ ⊗ ρWÞV†ðI ⊗ xÞ� − tr½ðρ ⊗ ρWÞðI ⊗ xÞ�;

ð12Þ

where ρ and ρW are the initial states of the system and the
work storage, respectively. From condition (II), the extracted
work is invariant under energy translation of the initial state
of the work storage.
We note that the average work extraction adopted here is

different from a protocol investigated in Ref. [9], which can
be referred to as almost deterministic work extraction. We
also note that we adopted strict energy conservation
Eq. (10) as in Refs. [24,40], but not the average energy
conservation in the sense of Ref. [25].

B. Without symmetry constraints

We consider work extraction in the case without sym-
metry constraints. We clarify the relation between the
maximal extracted works with and without work storage.
Moreover, we show that in the presence of the work
storage, only Gibbs states are completely passive states.
First, we consider the correspondence between the

implementable unitary operations in the setups with and
without the work storage. For a unitary operator U on the
system of interest, we can construct a unitary operator that
acts on the composite system including the work storage
and satisfies conditions (I) and (II) by the following Kitaev
construction [43]:

CðUÞ ¼
Z

∞

−∞
dqeiqHUe−iqH ⊗ jqihqj; ð13Þ

where jqi represents the momentum eigenstate of the work
storage with eigenvalue q. This unitary operator is equiv-
alent to the one that appears in Refs. [40,41]. It is shown in
Ref. [40] that all the unitary operators that satisfy con-
ditions (I) and (II) are represented by CðUÞ with some
unitary operator U. In Ref. [43], the operator CðUÞ is
introduced as an operator that simulates U by giving the
same action on ρ if ρ is symmetry respecting. However, we
note that if the state ρ is not symmetry respecting, the action

of CðUÞ on the system of interest is not necessarily the
same as that of U, and moreover, the extracted work from
ρ ⊗ ρW by the action of CðUÞ is not necessarily the same as
that from ρ by the action of U.
By using the Kitaev construction Eq. (13), we derive the

relation between the maximal extracted works with and
without the work storage. The maximal extracted work
from a state ρ in the setups with and without the work
storage are respectively defined as

WWS
maxðρ; ρWÞ ≔ max

V
WWSðρ; ρW; VÞ; ð14Þ

WmaxðρÞ ≔ max
U

Wðρ; UÞ; ð15Þ

where V ranges over all the unitaries on the composite
system that satisfy conditions (I) and (II), and U ranges
over all the unitaries on the system of interest (see Fig. 4).
Since any V can be represented as CðUÞ for some U,
WWS

maxðρ; ρWÞ is also written as

WWS
maxðρ; ρWÞ ¼ max

U
WWS½ρ; ρW; CðUÞ�: ð16Þ

From Eq. (13), the extracted work is given as

FIG. 4. Work extraction in the setups (a) with and (b) without
the work storage. CðUÞ is a unitary operator acting on the
composite system of the system and the work storage, which
is defined by a unitary operator U acting only on the system
through the Kitaev construction Eq. (13). CðUÞ is constructed
such that it satisfies energy conservation of the composite system
and energy translation invariance of the work storage. Moreover,
CðUÞ gives a one-to-one correspondence between the possible
operations in the setups with and without the work storage. As
shown in Eqs. (19) and (20), the maximal extracted work with the
work storage is no greater than that without the work storage. IfU
satisfies ½U†HU;H� ¼ 0, the extracted work from ρ without the
work storage is the same as that from ρ with the work storage by
unitary operation CðUÞ independently of the work storage ρW,
which is stated in Proposition 2.
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WWS½ρ; ρW; CðUÞ�

¼
Z

∞

−∞
dqhqjρWjqiWðe−iqHρeiqH; UÞ

¼ W½DρWðρÞ; U�; ð17Þ

where DρW is defined as

DρWðρÞ ≔
Z

∞

−∞
dqhqjρWjqie−iqHρeiqH: ð18Þ

From Eqs. (16) and (17), we obtain

WWS
maxðρ; ρWÞ ¼ Wmax½DρWðρÞ�: ð19Þ

We next prove that this value is no greater than the
maximal extracted work from ρ in the setup without the
work storage:

Wmax½DρWðρÞ� ≤ WmaxðρÞ: ð20Þ

This inequality is proved as follows:

Wmax½DρWðρÞ�

¼ Wmax

�Z
∞

−∞
dqhqjρWjqie−iqHρeiqH

�

≤
Z

∞

−∞
dqhqjρWjqiWmaxðe−iqHρeiqHÞ

¼
Z

∞

−∞
dqhqjρWjqiWmaxðρÞ

¼ WmaxðρÞ; ð21Þ

where we used the concavity ofWmaxðρÞ to obtain the third
line. Here, the concavity of WmaxðρÞ is shown as follows.
Take arbitrary s ∈ ½0; 1� and arbitrary states ρ1 and ρ2. We
take one of the unitary operators U0 that extract the
maximal extracted work from ρ ¼ sρ1 þ ð1 − sÞρ2. Then,

WmaxðρÞ ¼ tr½ðρ −U0ρU
†
0ÞH�

¼ str½ðρ1 −U0ρ1U
†
0ÞH�

þ ð1 − sÞtr½ðρ2 −U0ρ2U
†
0ÞH�

≤ sWmaxðρ1Þ þ ð1 − sÞWmaxðρ2Þ; ð22Þ

which implies the concavity of WmaxðρÞ.
We consider two extreme examples of DρW. When ρW is

a momentum eigenstate, DρW is the identical mapping. In
this case, Eq. (19) states that WWS

maxðρ; ρWÞ ¼ WmaxðρÞ, i.e.,
the extracted works are the same in the setups with and
without work storage, which is consistent with the result in
Ref. [24]. On the other hand, when ρW is a position
eigenstate, DρW is the dephasing mapping Δ defined as

ΔðρÞ ≔ P
EΠEρΠE, where ΠE is the projection operator

onto the energy eigenspace of E. In this case, Eq. (19) states
that WWS

maxðρ; ρWÞ ¼ Wmax½ΔðρÞ�. This means that we can-
not extract work from coherence, which is reminiscent of a
phenomenon called work locking [9]. It is shown, however,
in Refs. [9,40] that if we have infinitely many copies of the
state, we can again extract work from coherence.
We now prove that only Gibbs states are completely

passive states in the presence of the work storage, which is
of separate interest. For that purpose, we prepare the
following two propositions.
The first proposition states that in the setup without work

storage, we can extract positive work from multiple copies
of any state other than the Gibbs state, even if we further
impose constraints ½U†HU;H� ¼ 0 on the possible oper-
ations U. This is a stronger statement than the conventional
characterization of complete passivity [20,21].
Proposition 1.—Let ρ be a state such thatWðρ⊗N;UÞ ≤ 0

holds for any N ∈ N and any unitary operator U acting on
ρ⊗N satisfying ½U†HðNÞU;HðNÞ� ¼ 0, whereHðNÞ is defined
by Eq. (6). Then, ρ is the Gibbs ensemble at positive
temperature.
The proof is the simplest case of that of Theorem 1

without symmetry constraints (see also Appendix B).
Proof.—We define a sequence of unitary operators

fUmgm∈N that satisfies ½U†
mHð2mþ1ÞUm;Hð2mþ1Þ� ¼ 0, and

consider the extracted work from ρ⊗2mþ1 by Um. Since the
Hamiltonian is not trivial, there exist energy eigenstates
jEk0i; jEk1i with different eigenvalues Ek0 < Ek1 . For any l,
we define Rij ≔ 1

2
½I − ð−1ÞiT�½jElihElj ⊗ ðI − jElihEljÞ�

½I − ð−1ÞjT� with the swapping operator T between two
copies of the system. We consider unitary operator
Um ≔ I −

P
i;j∈f0;1gð−1Þi−jR⊗m

ij ⊗ jEkiihEkj j, which satis-
fies ½U†

mHð2mþ1ÞUm;Hð2mþ1Þ� ¼ 0 and

Hð2mþ1Þ − U†
mHð2mþ1ÞUm

¼ ðEk1 − Ek0ÞðR⊗m
11 ⊗ jEk1ihEk1 j − R⊗m

00 ⊗ jEk0ihEk0 jÞ:
ð23Þ

Therefore, the extracted work is given by

Wðρ⊗2mþ1; UmÞ ¼ tr½ρ⊗2mþ1ðHð2mþ1Þ −U†
mHð2mþ1ÞUmÞ�

¼ ðEk1 − Ek0Þ½trðρ⊗2R11ÞmhEk1 jρjEk1i
− trðρ⊗2R00ÞmhEk0 jρjEk0i�

¼ a

�
1 − b

�
trðρ⊗2R00Þ
trðρ⊗2R11Þ

�
m
�

¼ a½1 − bð1þ ck½ρ; jElihElj�k2HSÞ−m�;
ð24Þ
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where a≔ ðEk1 −Ek0Þ½trðρ⊗2R11Þ�mhEk1 jρjEk1i> 0, b ≔
hEk0 jρjEk0i=hEk1 jρjEk1i > 0, c ≔ ½trðρ⊗2R00Þ�−1 > 0, k ·
kHS is the Hilbert-Schmidt norm, and we used

trðρ⊗2R11Þ − trðρ⊗2R00Þ ¼ k½ρ; jElihElj�k2HS: ð25Þ

From Eq. (24), if Wðρ⊗2mþ1; UmÞ ≤ 0 holds for all m,
then k½ρ; jElihElj�kHS ¼ 0; i.e., ½ρ; jElihElj� ¼ 0 must be
satisfied. Therefore, ρ can be written as ρ ¼ P

l pljElihElj
with pl ∈ ð0; 1Þ. It is proved in Ref. [44] that we can extract
positive work from multiple copies of such a state by a
unitary operator U that satisfies ½U†HðNÞU;HðNÞ� ¼ 0 for
some N ∈ N, unless the state is the Gibbs ensemble at
positive temperature. ▪
The second proposition states that if a unitary operatorU

satisfies ½U†HU;H� ¼ 0, we can extract the same amount
of work for both the cases where U is implemented without
the work storage and CðUÞ is implemented with the work
storage, independently of its initial state.
Proposition 2.—If U satisfies ½U†HU;H� ¼ 0, the

extracted work from a state ρ of the system of interest
by the action of U without the work storage is the same as
that from the state ρ with the work storage by the action of
CðUÞ acting on the composite system with any state ρW of
the work storage.
It is proved in Ref. [41] that if a work-extracting unitary

operator U only permutes energy eigenstates, the extracted
work without the work storage equals the corresponding
extracted work with the work storage. Since we find that a
unitary operator U satisfies ½U†HU;H� ¼ 0 if and only
if U only permutes energy eigenstates, we can prove
Proposition 2 However, we can also prove it without using
the fact that U only permutes energy eigenstates, as shown
in the direct proof below.
Proof.—Since U satisfies ½U†HU;H� ¼ 0, we obtain for

any q ∈ R,

Wðe−iqHρeiqH; UÞ ¼ tr½ρeiqHðH − U†HUÞe−iqH�
¼ tr½ρðH − U†HUÞ�
¼ Wðρ; UÞ: ð26Þ

Therefore, for any ρW, we get

WWS½ρ; ρW; CðUÞ� ¼
Z

∞

−∞
dqhqjρWjqiWðe−iqHρeiqH; UÞ

¼
Z

∞

−∞
dqhqjρWjqiWðρ; UÞ

¼ Wðρ; UÞ: ð27Þ

▪
From Propositions 1 and 2, if a state is completely passive

in the setup with the work storage, the state is the Gibbs
ensemble independently of the initial state of the work

storage. The converse is obvious from Eqs. (19) and (20).
Therefore, we finally obtain the following proposition.
Proposition 3.—For any initial state ρW of the work

storage, a state ρ of the system of interest is completely
passive in the setup with the work storage, if and only if the
state ρ is the Gibbs ensemble at positive temperature.
We here remark on the relation between the above

proposition and some known results. In fact, essentially
the same result has been proved in Ref. [9] by allowing for
the introduction of any number of auxiliary heat baths,
while in our setup we do not allow for it. Reference [45]
also addresses a similar problem without allowing for
auxiliary heat baths but by assuming that the work storage
is initially in the uniform superposition of energy eigen-
states, while in our setup we consider an arbitrary initial
state of the work storage.

C. With symmetry constraints

We consider symmetry-protected completely passive
states in the setup with the work storage and show that
only GGEs are symmetry-protected completely passive.
Since we consider the work extraction that is purely defined
by the energy, we introduce the work storage that only
stores the energy but does not store other conserved charges
associated with symmetry constraints, in contrast to
Ref. [37]. For example, we can imagine the situation where
the system consists of atoms with the conserved particle
number, which is coupled to light in a cavity as an external
system. In such a situation, it is natural to impose U(1)
symmetry only on the system of interest, instead of the total
system.
We consider a symmetry-respecting unitary V in the

setup with the work storage, which is supposed to satisfy
not only conditions (I) and (II) mentioned in Sec. III A, but
also the following: (III) V respects the symmetry of the
system of interest, i.e.,

½V;Ug ⊗ I� ¼ 0: ð28Þ

This reflects the fact that the work storage does not store the
conserved charges. We note that this condition implies that
charges are locally conserved only in the system of interest,
and is tighter than the condition used inRef. [37], which only
requires global charge conservation in the total system
including the storage. Then, we define that a state is
symmetry-protected completely passive, if we cannot extract
positive work from any number of copies of the state by any
unitary V that satisfies conditions (I), (II), and (III).
The condition for symmetry-protected complete passiv-

ity in the setup with the work storage is now stated as the
following theorem.
Theorem 2.—For any initial state of the work storage, a

state of the system of interest is symmetry-protected
completely passive in the setup with the work storage, if
and only if the state is the GGE.
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We can prove Theorem 2 in the following manner. From
Eqs. (19) and (20), it is obvious that we cannot extract
positive work from multiple copies of the GGE with the
work storage under symmetry constraints. Then, we only
need to show that we can extract positive work from
multiple copies of any other state than the GGE by some
unitary that satisfies conditions (I), (II), and (III). In the
proof of Theorem 1 (see Proposition S8 of Supplemental
Material [38]), we construct a unitary operator U that
extracts positive work from any state other than the GGE
and satisfies ½U†HðNÞU;HðNÞ� ¼ 0, which is the generali-
zation of Proposition 1 to the setup under symmetry
constraints. From Proposition 2, in the setup with the work
storage, we can extract the same amount of work by
implementing CðUÞ for any initial state of the work storage.
We can also check that if U is symmetry respecting, CðUÞ
satisfies condition (III). Therefore, if a state is not sym-
metry-protected completely passive in the setup without the
work storage, then the state is not symmetry-protected
completely passive in the setup with the work storage
independently of the state of the work storage.

IV. DISCUSSION

In this paper, we have provided the characterization of
complete passivity for systems under symmetry constraints,
which is referred to as symmetry-protected thermal equi-
librium. We proved that a state is symmetry-protected
completely passive if and only if it is a GGE of the form
Eq. (1), which is the main result of this paper (Theorem 1).
Remarkably, our result applies to noncommutative sym-
metries, as illustrated by the dimer model with SU(2)
symmetry discussed in Sec. II C. While we leave the full
proof of Theorem 1 to Supplemental Material [38], that for
the special case of the dimer model is provided in
Appendix B. In Appendix C, we also show that under a
certain class of finite group symmetry constraints, only
Gibbs states are completely passive.
Moreover, we proved that the same characterization of

symmetry-protected complete passivity holds true, by
explicitly including the work storage as a quantum system
(Theorem 2). As a by-product (Proposition 3), we proved
that, in a stronger form than the known results in literature,
only Gibbs ensembles are completely passive without
symmetry constraints in the presence of the work storage.
We note that the energy levels of the work storage
introduced in our setup are unbounded from below, but
we expect that we can extend our argument for the work
storage bounded from below by following the idea
of Ref. [24].
We here discuss the relationship between the present

work and other approaches to symmetries and GGEs. Let
us first clarify the difference between our study and a
previous study by Yunger Halpern et al. [37], where
noncommutative GGE Eq. (1) also appears. In our study,

a symmetry constraint is imposed solely on the system of
interest, while in Ref. [37] it is imposed on the entire
system including external charge storages. That is, the
charges of the system are solely conserved in our setup,
while the charges can be transferred to the storages in their
setup. It should also be emphasized that our definition of
work is given purely by the energy (i.e., the Hamiltonian),
while they adopted a generalized notion called chemical
work. Related to this point, a characteristic of our approach
to symmetry-protected (complete) passivity lies in the fact
that its definition (Sec. II A) itself does not involve the
parameters μi of the GGE Eq. (1). Therefore, our setup is
different from theirs, and our result complements their
result by providing a further support that Eq. (1) is a proper
form of the GGE including the noncommutative cases.
In more detail, the results of Theorem 2 and Ref. [37] are

summarized in Table I, where the classes of completely
passive states are classified by the charge conservation
constraints and the definitions of work. The charge con-
servation constraint is tighter in an upper row, because local
charge conservation in the system of interest implies global
charge conservation in the total system including the
storage (given that the charges are conserved in the
storage). The definitions of extracted work in the left-
and right-hand columns are, respectively, the change in the
expectation value of the energy hHi and that of a linear
combination of the energy and the charges hH þP

i ξiQii.
Correspondingly to these definitions of the work, allowed
unitary operators commute with the total Hamiltonian Htot

of the system and the storage in the left-hand column, while
they commute with the linear combinationHtot þP

i ξiQ
tot
i

of the total Hamiltonian and the total charges in the right-
hand column. The result of Theorem 2 is shown in (a1) in
Table I, where completely passive states are defined based
on the extraction of hHi under local charge conservation.
On the other hand, the result of Ref. [37] is shown in (b2) in
Table I, where completely passive states are defined based on
the extraction of hH þP

i ξiQii under global charge con-
servation. We note that, in contrast to Theorem 1, Theorem 2
includes the storage, allowing us to fairly compare our work
and Ref. [37].
The class of completely passive states in our work is

strictly larger than that in Ref. [37]. This reflects the fact
that the class of operations is strictly smaller in our work
than in Ref. [37]. For the purpose of comparison, we
consider the setup of (a2) in Table I. The class of states in
(a2) is strictly larger than that in (b2) in Table I, because μi’s
in (a2) can be chosen independently of ξi ’s in the definition
of work, while ξi’s in (b2) must be the same as those in the
definition of work. We note that the class of completely
passive states in (a2) is the same as that in (a1), because the
expectation values of charges hQii are invariant, and the
change in hH þP

i ξiQii is the same as that in hHi. We
also note that as for (b1), the class of completely passive
states is the Gibbs ensemble, which is obtained by
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substituting ξi ¼ 0 into (b2). In addition, the class of
allowed operations in (b1) is strictly smaller than that in
(c1) in Table I, because only operations satisfying global
charge conservation are allowed in (b1).
In Refs. [46,47], other types of passivity in the presence

of conserved charges are defined and investigated. In these
studies, however, (complete) passivity is defined with a
focus on extracting charges themselves instead of the
energy (see also Ref. [45]), which is the opposite case
to our setup of purely extracting energy.
Next, let us discuss some possible applications of our

study. Since symmetry constraints restrict the class of
operations, the amount of work that one can extract from
a particular state is reduced by symmetry constraints as
shown in Eq. (A9). This observation has also been made in
the context of thermalization of many-body systems by
quench [48,49] and by Bragg scattering [50]. While this
implies that the presence of symmetry can be a disadvant-
age for heat engines, we would emphasize that it can be an
advantage at the same time: symmetry constraints expand
the class of thermally stable states. If one attempts to
construct a heat engine operating under symmetry con-
straints, the equilibrium state of the heat bath can be chosen
to be a GGE, which cannot be thermally stable without
symmetry constraints. This would lead to a more flexible
design principle of quantum heat engines than the conven-
tional approach where the equilibrium state must be the
Gibbs ensemble [2–8].
Meanwhile, quantum batteries proposed in Ref. [26]

make use of the fact that one can extract work frommultiple
copies of a state if it is passive but not completely passive.
Correspondingly, our result provides a designing principle
of symmetry-protected quantum batteries, which make use
of symmetry-protected passive states. They offer a wider
choices of states than the conventional quantum batteries,
and thus may have the potential to store more work. In fact,
we have explicitly constructed the protocol by which one
can extract work from multiple copies of a state that is
symmetry-protected passive but not symmetry-protected
completely passive (see Appendix B for the dimer model

and Supplemental Material for the general case [38]). This
result suggests a concrete method to design symmetry-
protected quantum batteries.
Our work characterizes the noncommutative GGE

Eq. (1) in a different setup from Refs. [37,46,47], and
suggests that this form of GGE would be useful in the
context of thermalization. For example, in symmetric
systems, the noncommutative GGE can be used in the
investigation of the eigenstate thermalization hypothesis
(ETH) [51], which states that even a single energy
eigenstate presents thermalization properties. One of the
future research directions would be to compare the equili-
brated value of an observable for a single energy eigenstate
and the predicted value from the GGE of the form Eq. (1) in
a system that has noncommutative symmetry such as
SU(2). As a relevant study, Ref. [52] investigates the
relation between the ETH and passivity by considering
work extraction from a single energy eigenstate. This study
numerically shows that it is impossible to extract work from
any eigenstates in a nonintegrable system and from most
eigenstates in an integrable system by simple unitary
operations such as quench protocols. Combining this study
and the present work may lead to a future study of work
extraction from an eigenstate under symmetry constraints.
Adding a locality constraint to the symmetry constraints

in our work is another future perspective. About work
extraction under a locality constraint, Refs. [53,54] show
that the difference between the maximal extracted work by
local and global operations is related to entanglement.
These studies and our work motivate us to study how
entanglement is related to the difference between extracted
work by local and global operations under symmetry
constraints, as our Theorem 3 identifies the maximal
extracted work under symmetry constraints from arbitrary
systems. This direction of study may reveal a new insight
into the relation between entanglement and symmetry.
We finally note that the resource theory of asymmetry

adopts a broader class of free operations [55,56] than our
setup. The resource theory that adopts our smaller class
of free operations would also be useful in quantum

TABLE I. The classes of completely passive states classified by charge conservation constraints and the definitions of work. In the left-
hand column, the total energy Htot is conserved, while in the right-hand column, a linear combination Htot þP

i ξiQ
tot
i of the total

energy and the total charges is conserved. In Theorem 2, the charges are locally conserved in the system of interest, leading to the form of
GGE shown in (a1). In Ref. [37], the charges are globally conserved in the total system including the storage, leading to the form of GGE
shown in (b2). Note that the class of operations is strictly smaller than that in the lower row. In particular, the classes of states shown in
(a1) and (a2) are strictly smaller than those in (b1) and (b2), respectively. We can obtain the result for (c2) by changing the definition of
the Hamiltonian H to H þP

i ξiQi in (c1).

Definition of work

Change in hHi Change in hH þP
i ξiQii

Charge conservation Local (Theorem 2) (a1) ð1=ZÞ expð−βH −
P

i μiQiÞ (a2) ð1=ZÞ expð−βH −
P

i μiQiÞ
μi’s are freely chosen μi’s are freely chosen

Global (Ref. [37]) (b1) ð1=ZÞ expð−βHÞ (b2) ð1=ZÞ exp½−βðH þP
i ξiQiÞ�

None (c1) ð1=ZÞ expð−βHÞ (c2) ð1=ZÞ exp½−βðH þP
i ξiQiÞ�
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thermodynamics in the presence of conserved charges,
because our setup requires the conservation of the expect-
ation values of the charges, but their setup does not. For
example, in their setup the operation that increases the
particle number independently of the initial state is allowed,
while in our setup such operation is not allowed. From a
general perspective of resource theories, we can say that our
result has determined the class of free states of the resource
theory of thermodynamics with conserved charges, and
thus would serve as a foundation of a new class of resource
theories in the presence of symmetries.
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APPENDIX A: SYMMETRY-PROTECTED
PASSIVITY

In this Appendix, we reveal the characterization of
symmetry-protected (not complete) passivity. Symmetry-
protected passive states are defined as the states from
which no positive amount of work can be extracted by
any symmetry-respecting unitary operations [see also
Fig. 2(a)]. We prove that a state is symmetry-protected
passive, if and only if every sector of the symmetrized
density operator of the state is passive with respect to the
corresponding Hamiltonian.
First, we specify the form of symmetry-respecting

operators. We follow the method in Ref. [57] and make
use of the decomposition of the Hilbert space induced by a
representation of a group:

H ¼ ⨁
λ∈Λ

Rλ ⊗ Mλ; ðA1Þ

where Λ is the set of the labels of inequivalent irreducible
representations that appear in a given representation, Rλ is
a space carrying an irreducible representation, and Mλ is a
space carrying a trivial representation. We note that a
representation is called irreducible if it cannot be seen as the
composition of simpler representations, or equivalently, it
does not have any invariant subspace. Correspondingly, the
symmetry representation Ug can be decomposed in the
following form [see Fig. 5(a)]:

Ug ¼ ⨁
λ∈Λ

Uλg ⊗ IMλ
; ðA2Þ

where fUλggg∈G is an irreducible representation ofG acting
on Rλ, and IMλ

is the identity operator on Mλ. For
example, SU(2) symmetry representation on the system
composed of two spin-1=2 systems can be decomposed
into spin-0 representation on the singlet space and spin-1
representation on the triplet space. Under the decomposi-
tion Eq. (A2), Schur’s lemma (e.g., Proposition 4.8
of Ref. [58]) states that every symmetry-respecting
Hamiltonian H and symmetry-respecting unitary operator
U can be written as

H ¼ ⨁
λ∈Λ

IRλ
⊗ Hλ; U ¼ ⨁

λ∈Λ
IRλ

⊗ Uλ; ðA3Þ

with some Hermitian operator Hλ and unitary operator Uλ

on Mλ, where IRλ
is the identity operator on Rλ [see

Fig. 5(b)].
In order to describe the characterization of symmetry-

protected passivity, we introduce the following sym-
metrized state:

σ ≔
Z
G
dgUgρU

†
g; ðA4Þ

where dg is the group-invariant (Haar) measure over G.
This symmetrizing mapping is studied in the resource
theory of asymmetry [57]. Since σ is symmetry respecting,
σ can be written as

σ ¼ ⨁
λ∈Λ

IRλ
⊗ σλ; ðA5Þ

with some Hermitian operator σλ on Mλ [see Fig. 5(c)].
Now, symmetry-protected passivity of ρ is equivalent to

passivity of all σλ’s. This can be formally stated as the
following theorem.

FIG. 5. (a) Schematic of the irreducible decomposition of a
unitary representation. (b) The corresponding form of a sym-
metry-respecting Hamiltonian. (c) The effective density operator
corresponding to the irreducible representation.

CHARACTERIZING SYMMETRY-PROTECTED THERMAL … PHYS. REV. X 12, 021013 (2022)

021013-11



Theorem 3.—Let G be a group and fUggg∈G be its
unitary representation. A state ρ is symmetry-protected
passive with respect to a symmetry-respecting Hamiltonian
H, if and only if σλ defined by Eq. (A5) is passive with
respect to Hλ for all λ ∈ Λ.
Proof.—First, for any symmetry-respecting unitary oper-

ator U, we show that the extracted work from ρ and σ by U
are the same. From Eq. (A4),

Wðσ; UÞ ¼ tr½σðH −U†HUÞ�

¼ tr

��Z
G
dgUgρU

†
g

�
ðH −U†HUÞ

�

¼
Z
G
dgtr½UgρU

†
gðH −U†HUÞ�

¼
Z
G
dgtr½ρU†

gðH − U†HUÞUg�

¼
Z
G
dgtr½ρðH − U†HUÞ�

¼ tr½ρðH − U†HUÞ�
¼ Wðρ; UÞ: ðA6Þ

We next show that the extracted work from σ can be written
by the extracted work from σλ. From Eqs. (A3) and (A5),

Wðσ; UÞ ¼ tr½σðH −U†HUÞ�
¼ trfð⨁

λ∈Λ
IRλ

⊗ σλÞ½⨁
λ∈Λ

IRλ
⊗ ðHλ −U†

λHλUλÞ�g

¼ tr½⨁
λ∈Λ

IRλ
⊗ σλðHλ − U†

λHλUλÞ�

¼
X
λ∈Λ

tr½IRλ
⊗ σλðHλ −U†

λHλUλÞ�

¼
X
λ∈Λ

trðIRλ
Þtr½σλðHλ − U†

λHλUλÞ�

¼
X
λ∈Λ

rλWðσλ; UλÞ; ðA7Þ

where rλ is the dimension of Rλ. By comparing Eqs. (A6)
and (A7), the extracted work from ρ is written as

Wðρ; UÞ ¼
X
λ∈Λ

rλWðσλ; UλÞ: ðA8Þ

Therefore, the maximal extracted work from ρ under the
symmetry constraint is given by

Wmax;GðρÞ ¼
X
λ∈Λ

rλWmaxðσλÞ; ðA9Þ

where WmaxðσλÞ is the maximal extracted work from σλ
under no symmetry constraints and Wmax;GðρÞ is the
maximal extracted work from ρ under the symmetry

constraint. This shows that ρ is symmetry-protected passive
with respect toH, if and only if σλ is passive in the ordinary
sense with respect to Hλ. ▪
Finally, we remark on the setup with the work storage

discussed in Sec. III. From Eq. (17), we can prove that ρ is
symmetry-protected passive with the initial state ρW of the
work storage, if and only if DρWðρÞ is symmetry-protected
passive in the setup without the work storage. In order to
prove this, we can prove (Lemma S12 of Supplemental
Material [38]) that the Kitaev construction Eq. (13) gives a
one-to-one correspondence between symmetry-respecting
unitaries in the setups with and without the work storage.
Therefore, theproof goes in the sameway as that inSec. III B,
and even under symmetry constraints, themaximal extracted
work from ρ with the work storage ρW equals the maximal
extracted work from DρWðρÞ without the work storage.

APPENDIX B: PROOF OF THEOREM 1 FOR THE
DIMER MODEL

In this Appendix, we present a full proof of Theorem 1 in
the special case of the dimer model introduced in Sec. II C,
as a simplest nontrivial example that has noncommutative
symmetry. See Supplemental Material [38] for the complete
proof for the general case.
In the proof of the only if part of Theorem 1, we consider

work extraction by a series of symmetry-respecting unitary
operators. We prove that if we cannot extract positive work
from multiple copies of a state by any of those operations,
then the state is a GGE at positive temperature. This is a
generalization of the proof of Proposition 1 in Sec. III B.
We use the same notations as in Sec. II C for the dimer

model. Specifically, the Hamiltonian is given by
H ¼ s1 · s2, and we denote the total spin operator in the
α direction of the dimer by Qα ≔ sα1 ⊗ I þ I ⊗ sα2 for
α ¼ x, y, z. Let ρ be the initial state of the dimer.
Proof.—To prove Theorem 1 for the dimer setup, we

consider the following three steps.
Step 1: (Proposition S3 of Supplemental Material [38])

First, we prove that if a state ρ is completely passive,
then ρ⊗2 commutes with the spin inner product
Q · Q ≔

P
α¼x;y;z Q

α ⊗ Qα. For that purpose, we construct
a series of unitary operators such that if positive work
cannot be extracted from any number of multiple copies of
a state ρ by the operations, then ρ⊗2 commutes with Q · Q.
Let the spectral decomposition of Q · Q be written as

Q · Q ¼ P
ω ωPω, where ω is an eigenvalue and Pω is the

projection operator onto the eigenspace of ω. We take
arbitrary Pω and consider unitary operators Um ≔
I −

P
i;j∈f0;1gð−1Þi−jR⊗m

ij ⊗ jΨiihΨjj acting on 4mþ 3

copies of the system for m ∈ N, where Rij ≔ 1
2
½I −

ð−1ÞiT�½Pω ⊗ ðI − PωÞ�½I − ð−1ÞjT� with the swapping
operator T of the states of the two pairs of dimers, and
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jΨ0i ≔ jsijsijsi, jΨ1i≔ ð1= ffiffiffi
6

p ÞPi;j;k∈f1;2;3g ϵijkjtiijtjijtki
with the singlet state jsi, the triplet states jt1i; jt2i; jt3i of a
dimer, and the Levi-Civita symbol ϵijk. Um is symmetry
respecting becausePω and T commutewithQαð2Þ andQαð4Þ,
respectively, and jΨii is an eigenstate of Qαð3Þ with eigen-
value 0 for α ¼ x, y, z, where QαðNÞ is defined by Eq. (3).
We calculate the extracted work Wðρ⊗4mþ3; UmÞ from

ρ⊗4mþ3 by Um. Since Rij commutes with Hð4Þ defined by
Eq. (6) and jΨii satisfies Hð3ÞjΨ0i ¼ − 9

4
jΨ0i, Hð3ÞjΨ1i ¼

3
4
jΨ1i, we obtain

Hð4mþ3Þ −U†
mHð4mþ3ÞUm

¼ 3ðR⊗m
11 ⊗ jΨ1ihΨ1j − R⊗m

00 ⊗ jΨ0ihΨ0jÞ: ðB1Þ

Therefore, Wðρ⊗4mþ3; UmÞ is given by

Wðρ⊗4mþ3; UmÞ ¼ tr½ρ⊗4mþ3ðHð4mþ3Þ −U†
mHð4mþ3ÞUmÞ�

¼ 3½trðρ⊗4R11ÞmhΨ1jρ⊗3jΨ1i
−trðρ⊗4R00ÞmhΨ0jρ⊗3jΨ0i�

¼ a

�
1 − b

�
trðρ⊗4R00Þ
trðρ⊗4R11Þ

�
m
�

¼ a½1 − bð1þ ck½ρ⊗2; Pω�k2HSÞ−m�; ðB2Þ

where a ≔ 3½trðρ⊗4R11Þ�mhΨ1jρ⊗3jΨ1i > 0, b ≔
hΨ0jρ⊗3jΨ0i=hΨ1jρ⊗3jΨ1i > 0, c ≔ ½trðρ⊗4R00Þ�−1 > 0,
and we used

trðρ⊗4R11Þ − trðρ⊗4R00Þ ¼ k½ρ⊗2; Pω�k2HS: ðB3Þ

If Wðρ⊗4mþ3; UmÞ ≤ 0 holds for all m, then
k½ρ⊗2; Pω�kHS ¼ 0; i.e., ½ρ⊗2; Pω� ¼ 0 must be satisfied.
Since this holds for all Pω, ρ⊗2 commutes with Q · Q. Note
that b ≥ 1 is shown later, implying that k½ρ⊗2; Pω�kHS ¼ 0

is sufficient for Wðρ⊗4mþ3; UmÞ ≤ 0.
Step 2: (Proposition S5 of Supplemental Material [38])

Next, we prove that if ρ⊗2 commutes with Q · Q, then ρ can
be written as the product of a symmetry-respecting operator
and the exponential of a linear combination of the con-
served charges fQαgα¼x;y;z. We define ξ ≔ − logðρÞ,
PðξÞ ≔ P

α
1
2
trðξQαÞQα and η ≔ ξ − PðξÞ. PðξÞ can be

seen as the projection of ξ onto the linear subspace spanned
by fQαg in terms of the Hilbert-Schmidt inner product in
the operator space. ξ and η satisfy the following relation for
α ¼ x, y, z:

trH2
fðI ⊗ QαÞ½ξ ⊗ I þ I ⊗ ξ;Q · Q�g
¼

X
β

trH2
ð½ξ; Qβ� ⊗ QαQβ þQβ ⊗ Qα½ξ; Qβ�Þ

¼
X
β

ftrðQαQβÞ½ξ; Qβ� − trðξ½Qα; Qβ�ÞQβg

¼
X
β

�
2δαβ½ξ; Qβ� − tr

�
ξ
X
γ

ϵαβγQγ

�
Qβ

�

¼ 2½ξ; Qα� −
X
γ

�
trðξQγÞ

X
β

ϵγαβQβ

�

¼ 2½ξ; Qα� −
X
γ

trðξQγÞ½Qγ; Qα�

¼ 2

�
ξ −

X
γ

1

2
trðξQγÞQγ; Qα

�

¼ 2½ξ − PðξÞ; Qα�
¼ 2½η; Qα�; ðB4Þ

whereH2 is the Hilbert space of the second dimer and ϵαβγ
is the Levi-Civita symbol with ϵxyz ¼ 1. If ρ⊗2 commutes
with Q · Q, ξð2Þ ¼ − logðρ⊗2Þ also commutes with Q · Q.
Then from Eq. (B4), we get ½η; Qα� ¼ 0; i.e., η is
symmetry respecting. Therefore, ρ can be written as
ρ ¼ expð−ξÞ ¼ expð−ηÞ expð− P

α¼x;y;z μαQ
αÞ, where

μα ≔ 1
2
trðξQαÞ.

Step 3: (Proposition S4 of Supplemental Material [38])
Finally, we combine the results in steps 1 and 2, consider
work extraction again, and prove Theorem 1. Suppose that ρ
is symmetry-protected completely passive. From steps 1 and
2, ρ can be written as ρ ¼ expð−ηÞ expð−P

α¼x;y;z μαQ
αÞ

with some symmetry-respecting operator η and μα ∈ R.
Since the total spin symmetry operators irreducibly act on
the singlet space and the triplet space, Schur’s lemma implies
that symmetry-respecting η can be written as η ¼ csjsihsj þ
ct
P

3
i¼1 jtiihtijwith some cs; ct ∈ R. SinceH ¼ − 3

4
jsihsjþ

1
4

P
3
i¼1 jtiihtij, η can be written as η ¼ μI þ βH with some

μ; β ∈ R. Note that such a simple relation between η and
H is specific to this dimer model that has only two energy
levels. Then ρ can be written as ρ ¼ expð−μI − βHÞ×
expð− P

α¼x;y;z μαQ
αÞ ¼ expð−βH −

P
α¼x;y;z μαQ

αÞ=
expðμÞ. From the normalization condition, expðμÞ ¼
tr½expð−βH −

P
α¼x;y;z μαQ

αÞ� ¼ ZGGE and we obtain
ρ ¼ expð−βH −

P
α¼x;y;z μαQ

αÞ=ZGGE. In order to prove
that β ≥ 0, we consider the case where m ¼ 0 in Eq. (B2).
In this case, the extracted work is given by
Wðρ⊗3; U0Þ ¼ að1 − bÞ ¼ a½1 − expð3βÞ�. Since ρ is
symmetry-protected completely passive, Wðρ⊗3; U0Þ ≤ 0,
and thus we get β ≥ 0 (i.e., b ≥ 1). ▪
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In the proof for the general case (see Supplemental
Material [38]), we decompose a connected compact Lie
group into a compact Abelian Lie group and a semisimple
Lie group by Levi decomposition (Theorem 4.29 of
Ref. [58]). When we deal with the semisimple Lie group,
we use a Casimir operator (Lemma 3.3.7 of Ref. [59]) as a
generalization of the spin inner product Q · Q along with a
generalized version of totally antisymmetric states jΨii. We
also use the fact that every conserved charge Q associated
with a semisimple Lie group symmetry satisfies trðQÞ ¼ 0.
When we deal with the Abelian Lie group, we use the
notion of virtual temperature introduced in Ref. [44] under
symmetry constraints.

APPENDIX C: FINITE-GROUP SYMMETRY AND
TIME-REVERSAL SYMMETRY

We consider the case where symmetry constraints on the
operations are described by some finite groups.
Specifically, we prove that if the symmetry group is a
finite cyclic group or a dihedral group, every symmetry-
protected completely passive state is just a conventional
Gibbs ensemble. We note that in a one-dimensional lattice
with the periodic boundary condition, spatial translation
generates a finite cyclic group, and the combination of
spatial translation and inversion generates a dihedral group
(see Fig. 6). In addition, we investigate the case of time-
reversal symmetry without spin degrees of freedom, which
is an antiunitary symmetry (class AI). In this case, every
symmetry-protected completely passive state is again a
conventional Gibbs ensemble.
First, we consider the case of finite-group symmetry. As

for passivity, the same argument as in Appendix A can be
applied, where the symmetrizing mapping Eq. (A4) can be
replaced with ð1=jGjÞPg∈G UgρU

†
g, with jGj being the

order of G. Then, ρ is symmetry-protected passive if and
only if all σλ’s are passive.

As for complete passivity, we restrict ourselves to the
cases of finite cyclic group symmetry and dihedral group
symmetry, and prove that only Gibbs ensembles at positive
temperature are symmetry-protected completely passive.
The proof is parallel to that in Appendix B except for step 2.
The reason why the same argument as step 2 cannot be

applied is that for finite groups, there does not exist an
explicit counterpart of Casimir operators in Lie groups.
Instead, we can show (Proposition S9 in Supplemental
Material [38]) that if ρ is symmetry-protected completely
passive, then ρ is symmetry-respecting; i.e., ½ρ; Ug� ¼ 0 for
all g ∈ G. In the case of a finite cyclic group, the proof of
this statement is straightforward. Since Ug’s are symmetry
respecting, by a similar argument as step 1 of Appendix B,
every symmetry-protected completely passive state com-
mutes with all Ug’s. On the other hand, in the case of a
dihedral group, the proof is more complicated due to its
noncommutativity. We can construct symmetry-respecting
operators with the projection operators onto the eigenspa-
ces of a symmetry operator Ut, where t is an element of a
dihedral group of order 2n and satisfies tn ¼ 1 (see
Supplemental Material [38] for details).
We note that for the case of general finite groups, the

characterization of completely passive states is an open
problem, while we conjecture that only Gibbs ensembles
are symmetry-protected completely passive as in the fore-
going cases.
Next, we consider the case of time-reversal symmetry

without spin degrees of freedom. In this case, time-reversal
operator T is represented by the complex conjugation
operator with respect to some basis of the Hilbert space of
the system. We can prove (Theorem S2 of Supplemental
Material [38]) that a state ρ is passive under the time-
reversal symmetry, if and only if the time-reversal sym-
metrized state σ ≔ ðρþ T ρT −1Þ=2 is passive in the
ordinary sense.
We illustrate time-reversal symmetry-protected passi-

vity by the following translation-symmetric five-site
spinless fermion system with the periodic boundary con-
dition. Let the Hamiltonian of the system be H ¼P

2
j¼1

P
5
i¼1½−tjðc†i ciþj þ c†iþjciÞ þ Vjniniþj�, where ci

and ni are the annihilation and the number operators at site
i, and tj; Vj > 0 are parameters for intersite hopping and
Coulomb repulsion. The ground state of this system is
denoted as jϕ0i, and the first excited states are denoted
as jϕ�1i when V1 > V2 > 5t1 > 15t2, where jϕki ≔P

5
i¼1 exp½ið2π=5Þik�c†i j0i=

ffiffiffi
5

p
for k ¼ 0;�1;�2 with j0i

being the vacuum. Then, one can see that jψi ≔ ð ffiffiffi
3

p jϕ0i þ
ijϕ1iÞ=2 is passive under the time-reversal symmetry con-
straint, but not without the constraint. In fact, we can extract
work by a unitary operator that transforms jψi into jϕ0i,
while this operator does not respect the time-reversal
symmetry.

FIG. 6. An example of dihedral group symmetry in a one-
dimensional lattice with the periodic boundary condition. The
system is invariant under spatial translation and inversion; these
two operations generate a dihedral group.
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The outline of the proof of the above statement is as
follows. For any symmetry-respecting unitary U, the
extracted work from ρ and σ by U are the same, which
implies that the maximal extracted work from ρ and σ under
the time-reversal symmetry are the same. Since both of σ
and H are symmetry respecting, σ can be converted to an
ordinary passive state by a symmetry-respecting unitary
operation. This implies that the maximal extracted work
from σ with and without the time-reversal symmetry are the
same. By combining these two relations, the maximal
extracted work from ρ under the time-reversal symmetry
and that from σ without the time-reversal symmetry are the
same. Therefore, ρ is symmetry-protected passive if and
only if σ is passive.
We can also prove (Theorem S5 of Supplemental

Material [38]) that only Gibbs ensembles are completely
passive under the time-reversal symmetry. It is obvious that
Gibbs ensembles are symmetry-protected completely
passive, and therefore we only need to prove the converse.
Since the Hamiltonian is symmetry respecting, all the
projection operators onto the energy eigenspaces are
symmetry respecting. In the same way as step 1 of
Appendix B, every symmetry-protected completely passive
state commutes with all symmetry-respecting operators,
and thus it commutes with all the projection operators onto
the energy eigenspaces. This implies that the density
operator of the state is diagonal in the energy eigenbasis.
The rest of the proof can be constructed by a standard
technique considering virtual temperatures [44].
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