
Quantum Error Correction Thresholds for the Universal Fibonacci Turaev-Viro Code

Alexis Schotte ,1,2,* Guanyu Zhu ,2,† Lander Burgelman ,1 and Frank Verstraete 1

1Department of Physics and Astronomy, Ghent University, Krijgslaan 281, 9000 Gent, Belgium
2IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA,

and IBM Almaden Research Center, San Jose, California 95120, USA

(Received 27 April 2021; revised 8 December 2021; accepted 15 February 2022; published 15 April 2022)

We consider a two-dimensional quantum memory of qubits on a torus which encode the extended
Fibonacci string-net code and devise strategies for error correction when those qubits are subjected to
depolarizing noise. Building on the concept of tube algebras, we construct a set of measurements and of
quantum gates which map arbitrary qubit errors to the string-net subspace and allow for the characterization
of the resulting error syndrome in terms of doubled Fibonacci anyons. Tensor network techniques then
allow us to quantitatively study the action of Pauli noise on the string-net subspace. We perform
Monte Carlo simulations of error correction in this Fibonacci code and compare the performance of several
decoders. For the case of a fixed-rate sampling depolarizing noise model, we find an error correction
threshold of 4.7% using a clustering decoder.
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I. INTRODUCTION

The biggest theoretical challenge in achieving scalable
quantum computation is the construction of more efficient
schemes for quantum error correction and fault tolerance
[1,2]. Topological quantum error correcting codes, with the
most famous representative being the surface code [3–7],
are among the most promising candidates for near-term
implementation due to their geometric locality which
makes them well suited for practical implementation using
state-of-the-art hardware technology such as superconduct-
ing or semiconducting qubits, ion traps, silicon photonics,
nitrogen-vacancy centers, and cold atoms, just to name a
few. Surface codes allow for high quantum error correction
thresholds but have the drawback that one needs a very
large overhead of magic states to make the scheme
universal for quantum computation [2,7,8].
In order to overcome this limitation, one has to consider

topological codes which allow for non-Clifford logical
gates. One approach in this direction is to consider
stabilizer codes in three and higher dimensions, which
allow for non-Clifford transversal gates [9–15]. This
approach also includes schemes based on 3D color codes

or 3D surface codes which simulate the third spatial
dimension using time within a 2D measurement-based
quantum computing architecture [14,15]. A perpendicular
direction is to look beyond the stabilizer formalism and
consider non-Abelian codes in 2D which are universal for
quantum computation without the need for magic-state
distillation [16]. In this paper, we follow this second path,
as we believe that this is a more natural setting for hardware
platforms currently being pursued.
Most conventional topological error correcting codes fall

within the framework of the stabilizer formalism [17] and
admit quasiparticle excitations which can be characterized
as Abelian anyons. However, braiding of these excitations
does not allow for a universal gate set. Similarly, double
semion topological codes [18,19], while going beyond the
stabilizer code class, exhibit Abelian topological order and
are not universal. In order to achieve universal topological
quantum computation, a necessary condition is to use
systems with a more intricate topological order allowing
for non-Abelian anyonic excitations, which have the
property that the fusion of two anyons can yield several
outcomes [16]. In particular, braiding of Fibonacci anyons
can be used to realize a fault-tolerant universal gate set [20].
Several lattice models supporting this non-Abelian topo-
logical order have been proposed, such as Kitaev’s quan-
tum double models [3] or the string-net models of Levin
and Wen [21]. While their ground space is still defined as
the simultaneous eigenspace of a set of mutually commut-
ing local check operators, their description falls beyond the
stabilizer formalism.
In recent years, there has been significant progress in

the study of quantum error correction and decoding for
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non-Abelian topological codes with a nonstabilizer struc-
ture, including numerical estimates of their error thres-
holds [22–26]. These works, however, assume the existence
of a protected anyonic fusion space and consider only
phenomenological noise models on this space while not
specifying a concrete underlying microscopic quantum
mechanical spin model suitable for the description of
realistic quantum computer implementations.
In this work, we remedy this shortcoming by considering

a non-Abelian error correcting code consisting of generic
qubits subjected to depolarizing noise. We focus on one
of the simplest of those codes, the Turaev-Viro code
constructed from the Fibonacci string-net model [21].
Building on the pioneering work of König, Kuperberg,
and Reichardt [27] and of Bonesteel and DiVincenzo [28],
we construct a set of measurements and quantum gates
which map arbitrary qubit errors to the Turaev-Viro sub-
space and make crucial use of the framework of tensor
networks for simulating the error correction process, giving
rise to surprisingly high quantum error correction thresh-
olds. Using a clustering decoder and a fixed-rate sampling
noise model, we obtain a 4.7% threshold for the code
subjected to depolarizing noise and a 7.3% threshold for
pure dephasing noise. These numbers are comparable to the
code-capacity error threshold of the surface code, which is
around 10% for independent identically distributed (IID)
bit-flip or phase-flip noise [4,29,30].
Before giving a summary of the paper, let us provide a

brief review of the history and current status of the Turaev-
Viro codes. Following the pioneering work by Jones in
1984 discovering the Jones polynomials [31], Reshetikhin
and Turaev generalized the Jones polynomials of links by
introducing the concept of ribbon graphs and the corre-
sponding invariants derived from quantum groups in their
influential work in 1990 [32]. Around the same time,
Witten [33] and Atiyah [34] introduced the formalism
of topological quantum field theory (TQFT). Turaev and
Viro introduced a path integral in terms of a discrete
state sum describing a wide class of 2þ 1D topological
quantum field theories in 1992, leading to new quantum
invariants of 3-manifolds [35]. Around 1997, Kitaev had
the crucial insight that the problem of constructing quantum
error correcting codes is effectively equivalent to the
one of constructing quantum spin systems providing a
Hamiltonian realization of such topological field theories.
He introduced a class of quantum double models [3], of
which the simplest Abelian version DðZ2Þ is the well-
known toric code. The non-Abelian codes in the quantum
double family can be used to implement universal fault-
tolerant logical gate sets without magic-state distillation.
In 2005, Levin and Wen generalized Kitaev’s quantum
doubles by introducing string-net models [21], which
provide a local Hamiltonian realization of all the unitary
Turaev-Viro TQFTs. Their original motivation of introduc-
ing the string-net condensation picture was to provide a

microscopic mechanism for spin liquid in the context of
condensed matter physics. The string nets can be viewed as
a planar special case of ribbon graphs introduced by
Reshetikhin and Turaev. The string-net models capture
all nonchiral topological orders (Abelian and non-Abelian)
in 2D, including topological orders of the toric code and
Kitaev’s quantum double model as specific examples. In
2010, König, Kuperberg, and Reichardt [27] studied a class
of Levin-Wen models with a modular input category from
the point of view of error correction and called them
Turaev-Viro codes. They developed the tube algebra for
this modular case and defined a complete basis of the
anyonic excitations. In 2012, Bonesteel and DiVincenzo
proposed the quantum circuits to measure the vertex and
plaquette projectors in the Fibonacci Levin-Wen model
[28] and, hence, made the first step toward practical
implementation of Turaev-Viro codes with ordinary qubits
by devising an error detection scheme.
Several technical difficulties had to be solved, however,

to turn their error detecting scheme into an error correcting
one. First, the original string-net model proposed by Levin
and Wen [36] does not admit an easy microscopic descrip-
tion of all types of anyonic excitations in the corresponding
topological phases, but only the fluxons (plaquette excita-
tions). As we see, a single vertex error in this model can
bring the system out of the string-net subspace such that the
created excitations are no longer anyons as in the case of
phenomenological anyon models [22,25,26], making error
correction and decoding quite challenging. For that pur-
pose, an extended string-net model was defined on a tailed
lattice [37,38] (see also Ref. [39], where tail qubits were
introduced for the purpose of incorporating charged and
dyonic excitations in topological phases). In the same work
[37,38], a scheme to trap vertex errors and a tadpole
swapping scheme to trap plaquette errors were introduced.
In this work, we adopt this tailed-lattice construction

and use a similar strategy to trap local vertex errors. We
introduce a measurement scheme in terms of tube alge-
bras or tube operators [40,41] whose outcomes contain
more syndrome information than the ones reported in
Refs. [37,38]. This tube algebra enables the definition of
an anyonic fusion basis, which can be used to effectively
describe the system evolution in the simpler language of an
anyon model. We then use the tensor network description
of those tube algebras to convert microscopic noise
processes such as Pauli errors into anyon-creation proc-
esses. The last step needed to calculate error correcting
thresholds then consists of simulating the error correcting
process.
It is tempting to think that an efficient classical simu-

lation of the error correction process for the Fibonacci
Turaev-Viro code is impossible, since braiding Fibonacci
anyons is universal for quantum computation. This issue is
addressed in Ref. [26] for a phenomenological Fibonacci
anyon model (in which the physical degrees of freedom are
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anyons as opposed to qubits), and it is demonstrated that it
is possible to simulate the error correction threshold with a
polynomial complexity. This is because, unlike the quan-
tum computation process where the computational anyons
are braided along topologically nontrivial worldlines, the
worldlines of noise-created anyons in the error correction
process are topologically trivial most of the time. As long as
the system is below the percolation threshold correspond-
ing to anyon generation, this classical simulation can be
performed in an efficient way. Our work extends the
applicability of that result to the case where the physical
degrees of freedom are qubits subject to arbitrary noise
processes and, hence, allows us to determine error thresh-
olds through classical simulations.

A. Summary

Before proceeding with the main exposition, we first
dedicate some space to convey the central ideas presented
in this paper, free of superfluous technical details. There
are, in essence, two main achievements detailed in this
work. The first is the construction of a non-Abelian
topological quantum error correcting code consisting of
regular qubits and the design of a complete protocol for
error detection and correction in this code. The second is
the classical simulation of this error correction procedure
using tensor network techniques resulting in an estimate for
the associated error correction threshold for a microscopic
noise model of Pauli errors.
We begin by introducing the central object in our

discussion, the extended string-net code. Our starting point
is the Fibonacci Levin-Wen string-net model [21] of qubits
arranged on a hexagonal lattice, defined from the algebraic
data of the Fibonacci unitary fusion category. More
specifically, we build on the work of König, Kuperberg,
and Reichardt [27], who illustrate that this model may be
used as a scheme for universal topological quantum
computation, giving rise to the concept of Turaev-Viro
codes. By adopting a continuum formulation of the model
in terms of trivalent ribbon graphs whose properties are
defined by the input category, it is shown that the
excitations in a Turaev-Viro code can be identified with
the central idempotents of the tube algebra [40,41], which
correspond to topological sectors labeled by the doubled
category. This tube algebra and the associated characteri-
zation of excitations as doubled anyons form the guiding
principle throughout the remainder of our discussion. In
this work, we adopt an extension of the string-net model
that serves as the basis for an error correcting code. This
extension has a twofold motivation. On the one hand, we
need a way of correcting violations of the ribbon graph
branching rules that can be induced by generic errors at the
level of the lattice qubits. Moreover, we also require a
concise way of characterizing the excitation spectrum in
terms of anyonic charges, by defining the action of the
tube algebra idempotents in the bulk of the lattice model.

Both of these requirements can be met by adding an
additional “tail edge” to each plaquette, inspired by the
constructions introduced in Refs. [37–39] for similar
reasons. These considerations then lead to a model of
qubits arranged on the edges of a tailed hexagonal lattice on
the torus whose fourfold degenerate ground space serves as
a topological quantummemory and effectively encodes two
logical qubits and whose excited states can be interpreted as
fusion states of doubled Fibonacci anyons. By generalizing
the torus setup (genus ¼ 1) to a higher-genus surface, one
can scale up the number of logical qubits, which grows
approximately linearly with the genus. One can, hence,
perform universal quantum computation via topological
operations corresponding to the elements of the mapping
class group of the high-genus surface, which can be
generated by Dehn twists [20,27,42]. Alternatively, one
can encode the logical information in the fusion basis of
computational anyons and perform universal quantum
computation via braiding these computational anyons
[20,27,43]. Both Dehn twists and braiding can be imple-
mented by local quantum circuit via F moves [27] or via
code deformation.
With this code definition, we proceed with defining the

protocols for error detection and correction. Generic errors
on the lattice qubits can cause violations of the string-net
(ribbon graph) branching rules. Such a violation can be
interpreted as a string ending in a vertex of the lattice,
resulting in a qubit state that lies outside of the string-net
subspace, which can, therefore, not be captured as an
anyonic fusion state. Adapting the circuits for detecting
these vertex violations first introduced in Ref. [28], we
define local unitary circuits that can correct an arbitrary
combination of vertex errors, by pulling the corresponding
string end onto the tail edge of the associated plaquette.
After returning the system to the string-net subspace in this
way, we then define circuits for syndrome extraction, again
guided by the concept of the tube algebra. Measuring the
idempotents of the tube algebra in each plaquette reveals
the location and charge of all anyonic excitations in the
system, yielding the error syndrome. Utilizing the ribbon
graph formalism, we naturally arrive at a local unitary
circuit which can perform these charge measurements.
Equipped with this protocol for syndrome extraction, we
are left with the task of recovery, which consists of moving
excitations on the lattice and fusing them to back to the
anyonic vacuum, thereby returning the system to the code
space. Similar to the Abelian case, a logical error occurs
when an anyon is wound along a nontrivial cycle of the
torus in this process. Building on and extending previous
works [27,37,38,42–44], we design protocols for the
necessary recovery operations at the level of the qubits.
For the decoding procedure itself, which entails deciding
which recovery operations should be carried out given an
error syndrome, we rely on recent advances in error
correction for non-Abelian anyon models [22,23,26] and
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tailor the decoders introduced there to our specific code, as
well as further design new decoders for our purpose. The
main difficulty that arises for the non-Abelian case is the
fact that error correction has to proceed in an iterative
fashion because of indeterminacy of fusion outcomes for
non-Abelian anyons. Specifically, we adapt a clustering
decoder to our setting and further design a fusion-aware
iterative matching decoder.
These considerations conclude our discussion of the

code definition and associated error correction protocol,
giving a complete scheme for error correction in an
extended Fibonacci Turaev-Viro code. We then move on
to our second main result: the classical simulation of the
error correction procedure and the estimate of the error
correction threshold.
The main problem to be tackled here is the question of

how to determine what distribution of anyonic excitations
is generated by Pauli errors acting at the level of the lattice
qubits. The complex description of the excited anyonic
fusion states in terms of qubit states makes this a highly
nontrivial task, however. Again relying on the concept of
the tube algebra, we extend the tensor network anyon
ansatz known from the matrix operator description of
topological order [41] to construct a projected entangled
pair state (PEPS) representation for the anyonic fusion
states that appear as excited states in our model. Armed
with these PEPSs, we utilize tensor network methods to
analyze the effect of Pauli noise on the code, which
effectively allows us to translate a physical error rate at the
level of the qubits to an anyon generation rate. We can,
hence, simplify the classical simulation of the decoding
problem to the simulation of noise-driven dynamics of
anyonic fusion states, which is infinitely more feasible
than directly simulating the full microscopic model itself
in the qubit basis. Having overcome this main difficulty,
we adapt recently developed techniques for simulating
non-Abelian error correction [26] to the hexagonal geom-
etry and doubled Fibonacci excitations relevant to our
model. We proceed to illustrate a scheme for the classical
simulation of error correction in our code and conclude
with an estimate of the error correction threshold using
different decoders.

B. Overview

The remainder of this paper is divided into six sections.
The first three deal with defining the error correcting code,
the necessary circuits for syndrome measurement, and
recovery operations and decoding algorithms to correct
detected errors. The second half of the paper deals with
the classical simulation of the code in order to obtain an
estimate for the error correction threshold. The structure is as
follows.
Section II contains a complete description of the

extended string-net model, which is the microscopic model
for the quantum error correcting code studied in this work.

In Sec. III, the error correction scheme is discussed in
detail, including all quantum circuits for the required
measurements and recovery operations.
Section IV describes the clustering decoder, which we

find to be the best performing decoder in this work. Two
more decoding algorithms, both based on minimum weight
perfect matching, are studied. Their descriptions are given
in Supplemental Sec. V [45].
Section V covers all technical details of the classical

simulation of the extended Levin-Wen code to obtain an
error threshold. This includes general remarks on simu-
lating (universal) non-Abelian codes, the precise defini-
tion of the noise model, a discussion on the qualitative
description of said noise model in terms of anyon creation
and hopping processes through the use of tensor network
methods, and an extensive overview of the Monte Carlo
simulation.
The numerical results of the classical simulation of the

code with the decoders described in Sec. IV and Supple-
mental Sec. V [45] are presented and discussed in Sec. VI.
Finally, in Sec. VII, we summarize our results and briefly

compare them to related works. We then conclude this
paper with an outlook on future research directions on non-
Abelian codes such as codes based on quantum double
models and the experimental realization of the Fibonacci
Turaev-Viro code.
Throughout this work, we regularly refer to sections,

equations, and figures appearing in Supplemental Material
[45]. References to equations and figures appearing in
the Supplemental Material are denoted with the letter S
[e.g., Eq. (SI.1)].

II. THE EXTENDED STRING-NET CODE

In this section, we introduce the error correcting code
which is studied in this paper. We start by giving the
technical definition of the code as the ground state of a
slightly modified Levin-Wen Hamiltonian in Sec. II A.
Then, we introduce a continuum picture of the model,
known as the fattened lattice picture, in Sec. II B. This
alternative viewpoint proves useful for understanding
certain operators and to describe excited states of the
underlying Hamiltonian. We proceed by briefly discussing
code deformation in Sec. II C and then discuss the relation
between excitations and anyons in Sec. II D. Specifically,
we introduce a family of projectors which define a
projective measurement of the anyonic charge of a single
plaquette. Finally, in Sec. II E, we introduce a basis for the
subspace where all vertex conditions are satisfied in terms
of fusion states of anyonic excitations residing in individual
plaquettes. The ability to describe certain excited states as
fusion states of anyons is essential throughout the rest of
this work, in particular, for the classical simulation of the
code in Sec. V.
The extended string-net model, which we introduce

below, is intimately related to topological quantum field
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theory. To improve readability of the main text, we omit
many details on this relation. As we believe some readers
might find it enlightening, we include a more extensive
discussion on this topic in Supplemental Sec. I [45].

A. Definition of the code

The extended string-net code is a microscopic realization
of a Turaev-Viro code [27]. Its code space is defined as the
ground space of the extended Levin-Wen string-net model
[21,39]. This is a microscopic model of qudits situated on
the edges of a tailed trivalent lattice Λ, obtained by
modifying the Levin-Wen Hamiltonian [21] to accommo-
date one additional “tail edge” in every plaquette as shown
in Fig. 1. The code space is, hence, denoted by HΛ. Such a
modification was first proposed in Ref. [39], with the
original goal of incorporating charged and dyonic excita-
tions in (doubled) topological order. Below, we give a brief
summary of its definition and of its most important
properties.
The model is defined starting from the algebraic data of a

unitary fusion category C. For simplicity, we limit ourselves
to multiplicity-free self-dual categories. The generalization
to generic unitary fusion categories is straightforward but
quite tedious. Since we work with the Fibonacci category
later (which is self-dual), we do not need the general case.
The algebraic data of such an object consist of the
following.
(1) String types.—A set of all possible string types

f1; i2;…; iNg. The label 1 is referred to as the
vacuum label and represents the absence of a string
on a particular edge.

(2) Branching rules.—The set of all triplets fi; j; kg that
are allowed to meet at a vertex (also known as fusion
rules). We introduce the symbol δijk defined by the
branching rules as

δijk ¼
�
1; if the tripletfi; j; kgis allowed;
0; otherwise:

ð1Þ

For every label i, there is unique dual label i�
satisfying δii�1 ¼ 1, and ði�Þ� ¼ i. Note that we
are considering self-dual categories, [46] which
satisfy i� ¼ i for every string type i.

(3) Numerical data.—For each string type i, a real
constant di, called the quantum dimension, satisfying

didj ¼
X
k

δijkdk; d1 ¼ 1; and di� ¼ di; ð2Þ

and a six-index symbol Fijm
kln , which is a complex

constant dependent on six string types i, j, k, l,m, and
n. These quantities are required to satisfy the follow-
ing consistency conditions:

physicality∶ Fijm
kln δijmδklm� ¼ Fijm

kln δilnδjkn� ; ð3Þ

pentagon equation∶
XN
n¼1

Fmlq
kpnF

jip�
mnsF

jsn
lkr ¼Fjip�

q�krF
r�iq�
mls ;

ð4Þ

unitarity∶ ðFijm
kln Þ� ¼ Flin

jkm� ; ð5Þ

tetrahedral symmetry∶ Fijm
kln ¼ Fjim

lkn� ¼ Flkm�
jin

¼ Fimj
k�nl

vmvn
vjvl

; ð6Þ

normalization∶ Fii�1
j�jk ¼

vk
vivj

δijk; ð7Þ

where vi ¼
ffiffiffiffi
di

p
.

Note that, for self-dual categories, the F symbols are real
valued.
We associate the string types to the elements of an

orthonormal basis of the qudit Hilbert space CN at each
edge. The extended Levin-Wen Hamiltonian is then
defined as

HΛ ¼ −
X
v

Qv −
X
p

Bp; ð8Þ

where v and p label the vertices and plaquettes of the
trivalent lattice Λ, respectively, and fQv; Bpg are a set of
commuting projectors whose support is shown in Fig. 1.
For every vertex v, the three-body projector Qv imposes

the branching rules

ð9Þ

The subspace Hsn of states that satisfy all vertex projectors
is known as the string-net subspace. States in Hsn can
be understood as superpositions of string nets, which
are defined as string configurations that obey the branching
rules.

FIG. 1. Qudits arranged on the tailed honeycomb lattice. The
support of Bp and Qv are indicated in blue and orange,
respectively. The red edges represent a valid string-net configu-
ration of qubits in the j1i state when using the Fibonacci input
category.
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We work with the tailed honeycomb lattice shown in
Fig. 1, for which the plaquette projector Bp is a 16-body
operator. On a generic trivalent tailed lattice, it is defined as

Bp ¼ 1

D2

X
s

dsOs
p; ð10Þ

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

i d
2
i

p
, and

ð11Þ

The error correction scheme and numerical simulations
described in Secs. III and Vare designed specifically for the
Fibonacci input category (C ¼ FIB), which contains only
two string types, 1 and τ. Hence, themodelwe consider in the
remainder of this paper is a system of qubits. We choose to
relate the string types to the standard computational basis
states: 1 → j0i and τ → j1i. The nontrivial fusion rule is
τ × τ ¼ 1þ τ, which leads to the following branching rules:

δijk ¼
�
1; if ðijkÞ ∈ f111; ττ1; 1ττ; τ1τ; τττg;
0; otherwise:

ð12Þ

The quantum dimensions are

d1 ¼ 1; dτ ¼ ϕ; ð13Þ

where ϕ ¼ 1þ ffiffi
5

p
2

is the golden ratio. The only nontrivial F
matrix is

½Fττ
ττ� ¼

�
ϕ−1 ϕ−1=2

ϕ−1=2 −ϕ−1

�
: ð14Þ

For all other combinations of indices, Fijm
kln is either 1 or 0,

depending on whether or not the corresponding indices in
Eq. (3) satisfy the branching rules.
The ground space of Hamiltonian (8) has a degeneracy

that depends on the genus of the surface on which the
model is defined. On a torus, and with the Fibonacci input
category, the code space is four-dimensional, which enables
one to encode the state of two logical qubits.

B. The fattened lattice picture

It is convenient to think about the string-net Hilbert space
as the lattice realization of the ribbon graph Hilbert space
on a punctured surface (see Supplemental Sec. I [45]). For
our purpose, it is sufficient to state that this is the space of

formal linear combinations of labeled trivalent graphs
which satisfy the branching rules in Eq. (1), modulo
continuous deformations and the following relations:

ð15Þ

ð16Þ

The second relation is known as an F move or 2-2
Pachner move.
These ribbon graphs are defined on a compact, orient-

able, surface Δ containing one puncture for every plaquette
in the lattice. Each boundary component has a unique
marked boundary point, and ribbons are allowed to end
only on these marked boundary points. We can relate
ribbon graphs on the surface Δ to string nets using the
“fattened lattice” picture, which represents an embedding
of the lattice Λ in the surface Δ as shown in Fig. 2(a).
Whenever ribbons have a more complicated shape that
cannot be smoothly deformed to the shape of the embedded
lattice, one can first deform them using 2-2 Pachner moves
and 1-3 Pachner moves. The latter are defined as

ð17Þ

where

Gijk
λμν ¼

1

vivλ
Fνjλ
kμi ¼

1

vνvk
Fijk
λμν: ð18Þ

The action ofOs
p, defined in Eq. (11), can be represented

in the fattened lattice picture as the inclusion of a loop with
label s around the puncture in plaquette p. Hence, the

(a) (b)

FIG. 2. (a) A ribbon graph on the fattened lattice. (b) The
corresponding string-net configuration on the lattice. The gray
edges correspond to qudits in the j0i state, while the state of the
black edges is given by the string type of the corresponding piece
of the ribbon graph in (a).
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action of the plaquette projector Bp can be represented on
the fattened lattice as follows:

ð19Þ

where

ð20Þ

The dashed loop is referred to as a vacuum loop. Note that
we omit the tail edge on the right-hand side in Eq. (19).
After resolving the loop into the lattice using a sequence of
F moves, a trivial tail edge should be included. Keep in
mind that Bp ¼ 0 whenever there is a (nontrivial) ribbon
ending in the puncture p, which corresponds to a nontrivial
tail edge.
Ground states (up to a normalization factor) then corre-

spond to ribbon graph configurations without any ribbons
ending in punctures and where a vacuum loop is added
around every puncture as shown in Fig. 3. A short calculation
shows that ribbons can be “pulled across” vacuum loops
without changing the corresponding string-net state, mean-
ing that one can obtain the same ground state by applying theQ

p Bp to different string-net states.

C. Code deformation using Pachner moves

The Pachner moves introduced above can be used to
relate string-net states defined on different lattice geo-
metries. In particular, when transforming the lattice Λ toΛ0,
Eqs. (16) and (17) give the appropriate map between the
corresponding code spaces HΛ and HΛ0 , defined as the
ground spaces of Hamiltonians HΛ and HΛ0 , respectively.
For instance, applying the unitary F move (see Fig. 11) to
the qudits on certain edges of a ground state transforms
this state to a ground state of the string-net Hamiltonian
defined on a new lattice obtained by recoupling these
edges in the original lattice. The recoupling of lattice
edges by a 2-2 Pachner move is shown in Fig. 4. The
lattice deformation corresponding to a 1-3 Pachner move
is shown in Fig. 5, where one adds a triangular loop on the

original vertex. The 1-3 Pachner move can be thought as a
fine- and coarse-graining process. In Fig. 5, one entangles
three ancilla qudits (white dots) from left to right and adds
them into the code space, which effectively fine-grains the
lattice. The inverse process from right to left disentangles
the qudits in the center out of the code space, which
effectively coarse-grains the lattice. Both 2-2 and 1-3
Pachner moves can be implemented via unitary circuits as
shown in Sec. III B.

D. Anyonic excitations

Localized excitations in the string-net model exhibit
anyonic statistics, described by the quantum double DC of
the input category C [21]. It is important to note that the
categorical double of a unitary fusion category is always
braided. Hence, the input category C does not need to include
any braiding structure for the excitations to havewell-defined
anyonic statistics. When the input category C is modular
(implying it is braided), such as for C ¼ FIB, the doubled
category has a special structure DC ≅ C ⊗ C̄, and its string

FIG. 3. Two ribbon graphs on the fattened lattice representing
the same string-net ground state.

FIG. 4. Lattice deformations by 2-2 Pachner moves on different
edges. The affected edge is highlighted in pink; the other edges
contained in the F matrix are highlighted in blue.

FIG. 5. Lattice deformation by 1-3 Pachner move. The white
dots on the left represent ancilla qudits. The fine-graining process
(left to right) entangles the three ancilla qudits into the code
space. The coarse-graining process (right to left) disentangles the
three central qudits out of the code space.
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types can be labeled by pairs aþa− with aþ; a− ∈ C (see
Supplemental Sec. I [45] for more details). For notational
simplicity, we drop the bar notation for labels in C̄, and we
indicate the string types of the doubled category with bold
labels: a ¼ aþa− ∈ DC.
The motivation for introducing the tail qudit in every

plaquette is that they allow us to define the action of an
operator algebra known as Ocneanu’s tube algebra [40] in

TQFT (see Supplemental Sec. I E [45]), at the level of the
lattice qudits. The central idempotents of the tube algebra
form projectors onto the different superselection sectors of
the theory. By defining their action on an individual
plaquette, one obtains a set of projectors corresponding
to the different possible values of the doubled anyonic
charge contained in that plaquette. The generators of this
algebra act on an individual plaquette as

ð21Þ

This corresponds to gluing the “tube’’

ð22Þ

onto the tail edge and resolving it into the lattice using a
sequence of 2-2 Pachner moves followed by a 1-3 Pachner
move, as shown in Fig. 6.
For the Fibonacci input category, the doubled category

(DFIB) contains the string types f11; 1τ; τ1; ττg, which
label the different corresponding projectors:

P11 ¼ 1

D2
ðO1111 þ ϕO11ττÞ; ð23Þ

P1τ ¼ 1

D2
ðOττ1τ þ e4πi=5Oτττ1 þ

ffiffiffiffi
ϕ

p
e−3πi=5OττττÞ; ð24Þ

Pτ1 ¼ 1

D2
ðOττ1τ þ e−4πi=5Oτττ1 þ

ffiffiffiffi
ϕ

p
e3πi=5OττττÞ; ð25Þ

Pττ ¼ 1

D2

�
ϕ2O1111 − ϕO11ττ þ ϕOττ1τ þ ϕOτττ1

þ 1ffiffiffiffi
ϕ

p Oττττ

�
: ð26Þ

Note that Bp ¼ P11; i.e., the ground space is precisely the
anyonic vacuum. The entry in Eq. (26) decomposes into
two simple idempotents: Pττ ¼ Pττ

1 þ Pττ
τ , with

Pττ
1 ¼ 1

D2
ðϕ2O1111 − ϕO11ττÞ; ð27Þ

Pττ
τ ¼ 1

D2

�
ϕOττ1τ þ ϕOτττ1 þ

1ffiffiffiffi
ϕ

p Oττττ

�
: ð28Þ

This decomposition of the central ττ idempotent into
two simple idempotents should be interpreted as the fact
that a ττ anyon charge in a plaquette does not fix the
state of its tail qubit. The corresponding projector has a
block-diagonal form with the two blocks corresponding to
a j0i or a j1i state for the tail qubit. We label these two cases
as ττ1 and τττ, respectively. Both are in the ττ anyon sector,
and their respective þ1 eigenspaces are related as follows:

Pττ̄
1τP

ττ̄
1 ¼ Pττ̄

1τ; Pττ̄
τ Pττ̄

1τ ¼ Pττ̄
1τ; ð29Þ

Pττ̄
τ1P

ττ̄
τ ¼ Pττ̄

τ1; Pττ̄
1 P

ττ̄
τ1 ¼ Pττ̄

τ1; ð30Þ

where

2-2 Pachner move
 (F-move)

1-3 Pachner move

(a) (b) (c)

(d) (e)

(f ) (g)

FIG. 6. Derivation of the expression for the tube operator.
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Pττ
1τ ¼ e−3πi=10

ϕ

D
O1τττ; ð31Þ

Pττ
τ1 ¼ e3πi=10

ffiffiffiffi
ϕ

p
D

Oτ1ττ ð32Þ

are nilpotent operators.

E. The anyonic fusion basis

An important property of the extended Levin-Wen model
is the fact that one can construct a basis of the string-net
subspaceHsn, whose elements are labeled by fusion states of
jPj anyons (of the doubled category DC), where jPj is the
number of plaquettes. This basis is called the anyonic fusion
basis. Below,wegive the expressions for these bases in terms
of ribbon configurations in the fattened lattice picture, for
modular input categories. More details are given in
Supplemental Secs. I D and I H [45].
For simplicity, we first show anyonic fusion basis states

on a sphere. Since we are considering the fusion space of
anyonic excitations in plaquettes, the corresponding fusion
diagram are labeled by the string types of the doubled
category DC (indicated by bold labels):

ð33Þ

As mentioned above, the anyon label of a plaquette alone
does not always fix the state of the tail qudit. Hence, to fully
specify the state, we must also fix the tail labels:

l⃗ ¼ ½l1;l2;…;ljPj�;

where l⃗ must be consistent with the anyon labels of all
plaquettes. For C ¼ FIB, the allowed combinations of
plaquette anyon (DFIB) labels a ¼ aþa− and tail labels
l are ðaþa−Þl ∈ f111; 1ττ; τ1τ; τ1; τττg, which are simply
all combinations satisfying δaþa−l ¼ 1.
Throughout the remainder of this work, we often adopt a

slight abuse of notation by also using a bold label to
indicate the joined labels of the plaquette anyon and tail
labels: a ¼ ðaþa−Þl. It is always clear from the context
whether or not a bold label includes the tail label. In
particular, only leaf labels can contain a tail label. Internal
branch labels of a doubled anyonic fusion tree never
include them, since they do not correspond to plaquettes.
An anyonic fusion basis is determined by fixing the

branching structure of the corresponding fusion tree and its
embedding in the fattened lattice. The basis states are then

labeled as jl⃗; a⃗; b⃗i, where l⃗ are the tail labels, a⃗ are the leaf
labels (corresponding to the anyon charge of each pla-

quette), and b⃗ are the internal branch labels. Before

embedding them into the fattened lattice, the corresponding
ribbon configurations are

ð34Þ

ð35Þ

where the coefficients Xl⃗;a⃗;b⃗
α⃗;β⃗;k⃗;⃗l

are found by resolving the

crossings in Eq. (34) using

ð36Þ

followed by a sequence of F moves and 1-3 Pachner
moves. The object Rij

k above is known as the R matrix of
the input category C and defines its braiding properties.
It must satisfy certain consistency equations, which are
listed in Supplemental Sec. I A [45]. For the Fibonacci
category, the only nonzero entries are

Rττ
1 ¼ e4πi=5; Rττ

τ ¼ e−3πi=5; R1a
a ¼ Ra1

a ¼ 1; ð37Þ

wherea ∈ f1; τg. The necessary calculations to obtainXl⃗;a⃗;b⃗
α⃗;β⃗;k⃗;⃗l

are performed explicitly in Supplemental Sec. I D [45].
After picking some embedding in the fattened lattice, we

find

ð38Þ
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where we choose not to draw the leaves with vacuum labels
explicitly but include vacuum loops in the corresponding
plaquettes instead. The fattened lattice state above corre-
sponds to the case where only four plaquettes carry a
nontrivial anyonic charge; other cases are analogous. The
final expression for the anyonic fusion basis states (as a
state of qudits) can then be found by resolving these ribbon
graph configurations into the lattice.
Different anyonic fusion bases (that is, bases correspond-

ing to trees with different branching structures, or different
embeddings in the fattened lattice) can be related using F
moves, braid moves, and Dehn twists defined by the
categorical data of DC:

ð39Þ

ð40Þ

ð41Þ

ð42Þ

ð43Þ

Because of the particular structure of the doubled category,
DC ≃ C ⊗ C̄, its numerical data can be deducted from that
of the input category C. In particular, one has

Fabe
cdf ¼ Faþbþeþ

cþdþfþF
a−b−e−
c−d−f−

; ð44Þ
Rab
c ¼ Raþbþ

cþ ðRb−a−
c− Þ�; ð45Þ

θa ¼ θaþðθa−Þ�: ð46Þ
We discussed how these are obtained for modular input
categories in more detail in Supplemental Sec. I D [45].
The constructionof anyonic fusion basis states on a torus is

similar. An important difference is that fusion states of
anyons on a torus require us to specify a handle label (see
Supplemental Sec. I D 2 [45] for more details), which
determines how the state transformswhen an anyon ismoved
along a noncontractible loop [47]. An example of such a
fusion state is shown inFig. 7.Anyonic fusion basis states are

then labeled as jl⃗; a⃗; b⃗; ci, where l⃗, a⃗, and b⃗ are again the tail,
leaf, and internal branch labels, respectively, and c is the
handle label. The corresponding ribbon configurations are

ð47Þ

FIG. 7. Fusion diagram of a system of anyons defined on a
torus. Note the line wrapping around the torus.
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where the gray box represents the periodic boundary con-
ditions of a torus. Note that the handle label must satisfy
δbn−1cc or, equivalently, δbþn−1cþcþ and δb−n−1c−c− for the corre-
sponding ribbon graph to obey the branching rules. The
crossings on the right-hand side in Eq. (47) must again be
resolved using Eq. (36), which leads to superposition of
ribbon configurations similar to Eq. (35). These ribbonsmust
then be embedded in the fattened lattice like in Eq. (38) and
resolved into the lattice using F moves.
Ground states of the model correspond to (linear

combinations of) configurations in which all plaquettes
carry a trivial charge (ai¼11, bj¼11, ∀ i; j). On a torus,
the degenerate ground space is spanned by the states

j1⃗; 1⃗1; 1⃗1;ci, where 1⃗ and 1⃗1 represent arrays containing
only trivial entries. One can show that these states are
indeed orthonormal. Hence, when storing the state of two
logical qubits (for C ¼ FIB), this information is encoded in
the handle label. The operations that affect the handle are
precisely those in which anyons interact along a noncon-
tractible path such as the process depicted in Fig. 8. As long
as no such operations are performed, the encoded informa-
tion is preserved. Local qudit errors create pairs, triplets, or
quadruplets of nontrivial anyons in neighboring plaquettes.
The initial ground state can then be recovered by fusing these
nontrivial anyons pairwise until none are left, without
creating any noncontractible loops in the process.

Clearly, all anyonic fusion basis states correspond to
exceedingly complicated superpositions of qudit states.
It would seem that this makes them highly impractical for
any actual computation. Fortunately, however, one can
formulate a tensor network representation for such states,
which enables us to use them for practical applications
(in particular, see Sec. V E). This tensor network repre-
sentation is derived in Supplemental Sec. III.

III. ERROR CORRECTION SCHEME

After defining the microscopic model used to define the
code and discussing its most important properties, we now
discuss the error correction scheme required to implement
the extended string-net code. Specifically, we present the
circuits to measure and fix arbitrary local errors.
Our overall error correction procedure is composed of

two major steps.
(1) Measure all the vertex operators Qv in the ex-

tended Levin-Wen model Eq. (8) and apply a
correction which fixes the vertex errors through
unitaries UV conditioned by a measurement pro-
jection PV . This measurement and correction
processes projects the many-body state onto the
string-net subspace Hsn.

(2) After projecting to the string-net subspace Hsn, we
apply additional measurement circuits to measure
the simple idempotents of the tube algebra
[Eqs. (23), (24), (25), (27), and (28)] and extract
the error syndromes, i.e., the anyon charges and tail
labels of all plaquettes. Based on these syndromes,
we use our decoders to identify the error location
(up to equivalence classes) and apply the corre-
sponding recovery maps to project the state back
to the code (ground) space HΛ. We note that the
code space is a subspace of the string-net sub-
space: HΛ ⊂ Hsn.

In this section, we discuss all measurement and recovery
operators required to implement these steps. In particular,
we discuss the vertex measurement and correction proc-
esses in Sec. III A and the anyon charge measurements in
Sec. III B. The recovery operations are discussed in
Supplemental Sec. II [45].
From here on, we work exclusively with the Fibonacci

input category; hence, we are working with a system of
qubits on a lattice.

A. Vertex measurements and correction

Certain types of errors, such as a single bit-flip error
σex or a coherent error generated by the Pauli-X operator,

(a)

(b)

FIG. 8. (a) Topologically nontrivial process which results in a
logical error: Two pairs of anyons ða; aÞ and ðb; bÞ are created by
local qudit errors. The anyons are then fused along the dotted
black paths with outcomes c and d. (b) The fusion diagram of the
resulting state winds around the torus.
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i.e., eiθσ
e
x , can cause a violation of the vertex projector

Qv for a vertex v adjacent to edge e. As illustrated in
Fig. 9, a vertex error corresponds to a broken string
ending at that vertex (in the string-net configurations of
the system wave function). Note that a generic error
such as eiθσ

e
x puts the system wave function in a

superposition of violating and not violating the vertex
condition at any adjacent vertex v. When we measure
the vertex operator Qv, we project to either of the two
situations. Vertex violations can be resolved by local
unitary operators, which take the system back to the
string-net subspace Hsn. Intuitively, one can think of
the action of these operators as pulling string ends into
the tail edge of a neighboring plaquette:

ð48Þ

Previously, the circuit for measuring the vertex errors
has been discovered in Ref. [28]. Here, we adopt this
circuit to measure the top, middle, and bottom vertices,
with three ancilla qubits (white dots) denoted by t, m,
and b, respectively, as shown in Figs. 10(a)–10(c). The
circuits for measuring the top and bottom are symmet-
ric, so we show only the top one in Fig. 10(a). For the
middle vertex m, we also apply a measurement of the
tail qubit at the end of the circuit. To respect the usual
convention of quantum circuits, we represent the unoc-
cupied edge as j0i, which corresponds to the vacuum
string label 1, and the occupied edge as j1i, correspond-
ing to the string label τ. The ancilla qubits are all
initialized in the state j0i.
We apply a correction UV , conditioned by the measure-

ment results of the three vertex operators and the tail qubit,
to fix the vertex error. This correction is selected out of 14
possible unitaries:

Note that we omit the mappings which are mirror sym-
metric (t ↔ b) to the listed ones.

FIG. 9. A configuration that violates the branching rules by
having string-endings in three vertices, indicated by the red dots.
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The corresponding quantum circuits of the above
unitaries are listed in Figs. 10(d)–10(l). For gates which
do not have overlap in qubit support, we can parallelize
them in a single time step, as indicated by the dashed
boxes. As we can see, most of the unitary circuits have
depth 1 or 2, while only one of them, Utb;τ in Fig. 10(i),
has depth 4. The overall measurement and correction
circuit is summarized in Fig. 10(m), where we parallelize
the measurement of the three vertex operators into a
depth-5 circuit (in terms of the unitary gates). When
taking into account the readout of the ancilla qubits

before applying UV , the depth is 6. Note that we neglect
the step of state preparation of the ancilla qubits in the
beginning, because, in the situation of repetitive syn-
drome measurements, the ancilla qubits can always be
prepared during the application of the correction unitary
UV . Overall, the depth of the measurement circuits ranges
from 5 to 9, or from 6 to 10 when taking into account the
measurement step.
A different scheme of fixing vertex errors has been

previously proposed in Refs. [37,38], which also uses tail
qubits and, hence, has a similar spirit.

(a)

(d)

(h)

(k)
(l)

(m)

(i)

(j)

(e) (f)

(g)

(b) (c)

FIG. 10. Measurement and correction circuit for the vertex errors. (a) The qubit labeling. The black dots represent data qubits, while
the white dots represent ancilla qubits for measurements. (b),(c) The measurement circuit for the top and middle vertex projectors. The
circuit for measuring the bottom vertex can be inferred by symmetry. (d)–(l) The circuits for pulling an open string into the tail edge
when certain vertices are violated. (m) The overall circuit for measuring and correcting vertex errors. The first part of the circuit
measures the three vertex projectors. The second part is the unitary UV conditioned on the measurement results which is summarized
in (d)–(l).
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B. Anyon charge measurements

After measuring the vertex operators and applying the
corresponding corrections on the extended string-net code,
we transform the many-body state to the string-net sub-
space Hsn, where it can be described in terms of anyonic
fusion states. The local qubit errors, including both the
Pauli-X and Z types, now result in the creation of anyonic
excitations inside Hsn.
As explained in Sec. II D, one can measure the anyonic

charge of a plaquette using the central idempotents of the
tube algebra. To fully characterize an excitation, we must
also measure its tail label. A joint measurement of the
anyonic charge and the tail label is achieved by measuring
the irreducible idempotents of the tube algebra, listed in
Eqs. (23)–(25), (27), and (28). Measuring these irreducible
idempotents is done in three steps.
(1) Grow a tube inside the plaquette by introducing

ancilla qubits and performing the appropriate quan-
tum circuit, as shown in Fig. 13.

(2) Measure the tube qubits in the appropriate basis.
(3) Either trace out the tube qubits immediately or first

resolve the tube back into the lattice before tracing
out the ancillas.

As a basic ingredient, the quantum circuit to implement
the F-move (2-2 Pachner move) operation Fabe

cdf in the
Fibonacci Turaev-Viro code is shown in Fig. 11. This circuit
was first proposed inRef. [28]. TheF-move operation can be
viewed as a controlled unitary operation, where the external
legs a, b, c, and d are control qubits determining the
resulting unitary Fab

cd, with the matrix elements being
½Fab

cd �ef. For the Fibonacci Turaev-Viro code, the F matrix
is given in Eq. (14). The circuit inside the red dashed box,
composed of a five-qubit Toffoli gate in between two single-
qubit rotations, applies the conditional unitary correspond-
ing to theFmatrixFττ

ττ, whereRyð�θÞ ¼ e�iθσy=2 are single-
qubit rotations about the y axis with angle θ ¼ tan−1ðϕ−1=2Þ.
Note that this conditional unitary is activated only if the
control qubits a, b, c, and d are all in the j1i state
corresponding to the string label τ. All the other conditional
unitaries are implemented by the rest of the quantum circuit.
Based on the circuit for the 2-2 Pachner move (F move),

one can also implement the 1-3 Pachner move with a

unitary circuit, as shown in Fig. 12. The protocol consists of
the following steps: (i) Initialize three ancilla qubits (white
dots) in state j0i. (ii) Apply a CNOT gate which entangles
the data qubit labeled j to the new ancilla qubit on the
same edge, CNOT: jjij0i ↦ jjijji, as shown in Figs. 12(a)
and 12(b). (iii) Apply a modular-S gate on one ancilla to
create a tadpole diagram, as shown in Fig. 12(b). The
modular S does the following transformation: S∶j0i ↦P

λðdλ=DÞjλi. For the Fibonacci Turaev-Viro code, the
modular S matrix is

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2þ ϕ

p
�
1 ϕ

ϕ −1

�
: ð49Þ

(iv) Apply anFmove to absorb the tadpole onto the edge, as
shown in Figs. 12(b) and 12(c). (v Apply another Fmove to
sweep edge λ to attach the right leg (with label k), as shown in
Figs. 12(c) and12(d).Fromleft to right, thecircuit effectively
finegrain the latticebyentangling the threeancillaqubits into
the code space. One can also reverse the circuit (from right to
left) which corresponds to a coarse-graining process disen-
tangling three qubits out of the code space.
The “growing” of a tube onto the tailed lattice can then

be implemented by a quantum circuit, as shown in Figs. 13
and 14. We start with the tailed lattice in Fig. 13(a) with
data qubits (black dots) residing on every edge. We then
introduce three ancilla qubits (white dots) in Fig. 13(b)
initialized at j0i. From Fig. 13(b) to Fig. 13(e), we apply a
series of operations to achieve a 1-3 Pachner move to add a
triangle loop below the tail: (i) Apply a CNOT gate which
entangles the data qubit on the tail to the new ancilla qubit

FIG. 11. Quantum circuit to implement the F-move (2-2
Pachnermove) operationFabe

cdf for the Fibonacci Turaev-Viro code.

(a) (b)

(d)(c)

FIG. 12. Quantum circuit to implement the 1-3 Pachner move
for the Fibonacci Turaev-Viro code. (a)-(b) A tadpole is created
by initializing three ancilla qubits in the j0i state, entangling one
of them with a qubit on an edge of the lattice using a CNOT gate,
and applying the modular S gate. (c)-(d) The resulting tadpole is
absorbed into the lattice using two F moves.
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on the tail, CNOT: jyij0i ↦ jyijyi, as shown in Figs. 13(b)
and 13(c). (ii) Apply a modular-S gate on one ancilla to
create a tadpole diagram, as shown in Fig. 13(b), i.e.,
S∶j0i ↦ P

αðdα=DÞjαi. (iii) Apply an F move to absorb
the tadpole onto the tail, as shown in Figs. 13(c) and 13(d).
(iv) Apply another F move to sweep edge α to attach the
left edge, as shown in Figs. 13(d) and 13(e). Afterward, we

apply a sequence of F moves to sweep edge α around the
whole plaquette, after which it ends up in the upper side of
the tail. In this way, we grow a tube. Note that, as a result,
the qubits on the plaquette and tail edges [with labels ki and
y in Fig. 13(a)] get rotated one position counterclockwise.
The details of the quantum gates in this circuit are shown in
Fig. 14. As we can see, in total nine F moves are applied.

F-move
(2-2 Pachner move)

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

FIG. 13. Protocol and circuit of growing a tube onto a puncture in a plaquette on a tailed lattice via a sequence of local gates and
Pachner moves.

FIG. 14. The complete quantum circuit for the joint measurement of the anyon charge and tail label of a plaquette. Note that, after the
grow circuit, qubit 13 corresponds to the tail edge.
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After growing the tube, the anyon charge can be inferred
by measuring the four qubits on the tube. In order to find
the appropriate basis for this measurement, we first note
that the growing procedure can be thought of as creating a
vacuum bubble [in Fig. 13(c)], stretching it out along the
boundary of the plaquette, and finally resolving only half of
it into the lattice. The remaining half then constitutes the
tube in Fig. 13(j). In terms of ribbon diagrams, the stretched
out vacuum bubble inside the plaquette can be written as

ð50Þ

The sequence of F moves appearing in the grow circuit
corresponds exactly to resolving only the outer tube into the
lattice [48]. If we denote the initial state of the lattice qubits
as jΨ0i ¼

P
y εyjϕyi ⊗ jyi and the ancillas are initially in

the j000i state, then the action of the grow circuit is

jΨ0i⊗ j000i↦
X
y

εy
X
α;β;x

1

D
vx
vy

Õyxαβðjϕyi⊗ jyiÞ⊗ jyαβi;

ð51Þ

where we use the following abbreviation for the tube state
vectors:

and where

Õyxαβ ≡
X
γ

Fαxβ
αyγOyxαγ ð52Þ

is the operator which corresponds to resolving a outer tube
[49] into the lattice. If a measurement projects the tube
qubits onto the state

jψi ¼
X
α;β

Aαβjxi ⊗ jyαβi; ð53Þ

then the full state gets projected onto

jΦi ⊗ jψi ¼ 1

N

�X
α;β

1

D
vx
vy

ðAαβÞ�ð1 ⊗ hxjÞÕyxαβðjϕyi ⊗ jyiÞ
�

⊗ jψi; ð54Þ

where N is a normalization factor. Hence, by selecting the basis for the measurement of the tube qubits carefully, we can
effectively apply the idempotent projectors Eqs. (23)–(28) or the nilpotent operators Eqs. (31) and (32).
We choose the following basis [50] for the measurement of the tube qubits:

ð55Þ

ð56Þ
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ð57Þ

ð58Þ

ð59Þ

ð60Þ

ð61Þ

Note that the coefficients appearing in the different states
are proportional to those in the corresponding irreducible
idempotents in Eqs. (23)–(25), (27), and (28) or nilpotents
in Eq. (31), respectively. In fact, these states are precisely
the anyonic fusion basis states on Σ2, as described in
Eq. (SI.51) in Supplemental Sec. I D [45].
The measurement of the tube qubits in Fig. 13(j) is done

in three steps.
(1) Measure the tail qubit (label x).
(2) Apply one of the following unitaries [51] condi-

tioned on the measurement of the tail qubit:
(a) if the tail qubit is in state j0i (string label 1):

U1 ¼ j0iðj00ihψ̃11jþ j11ihψ̃ ττ;1jþ j10ihψ̃ ττ;τ;1jÞ;

(b) if the tail qubit is in state j1i (string label τ):

Uτ ¼ j0iðj00ihψ̃ ττ;τj þ j11ihψ̃ ττ;1;τj
þj01ihψ̃1τj þ j10ihψ̃ τ1jÞ:

(3) Measure qubits 16 and 17 in Fig. 14 in the Z basis.
Once the tube qubits are measured in the basis

Eqs. (55)–(61) using the procedure above, we can trace

out the three ancilla qubits [15, 16, and 17 in Fig. 14,
constituting the inner three edges of the tube in Fig. 13(j)]
to return to the initial tailed lattice layout with a single tail
qubit in each plaquette [i.e., the configuration in Fig. 13(a)].
This results in the following positive operator-valued
measure (POVM):

�
P11;P1τ;Pτ1;

1

ϕ2
Pττ

1 ;
1

ϕ
Pττ

τ ;
1

ϕ
Pττ

1 ;
1

ϕ2
Pττ

τ

�
: ð62Þ

Note that both a ττ1 and a τττ excitation correspond to
two different measurement outcomes. However, within
each of these pairs, the postmeasurement states are not
identical. For instance, a ττ1 excitation can result in
measurement outcomes jψττ;1i and jψττ;1;τi. Obtaining
outcome jψττ;1i effectively applies the Pττ

1 idempotent,
meaning the postmeasurement state has trivial tail label 1.
On the other hand, the outcome jψττ;1;τi corresponds to the
application of the Pττ

1τ nilpotent. Since Pττ
1τ ¼ Pττ

τ Pττ
1τP

ττ
1 ,

this means the plaquette initially contains a ττ1 excitation,
which gets transformed to a τττ excitation in the post-
measurement state. The situation for a τττ excitation is
analogous. Hence, these measurements do not preserve the
tail label in the case of a ττ anyon, and a subsequent
measurement might yield a different outcome. It is impor-
tant to note that this affects only the tail label within one
anyon sector; the anyon label itself cannot be altered by
subsequent measurements.
In case one wishes to preserve the tail label of excitations

in subsequent measurements, [52] an additional step is
required before tracing out the three ancillas. This step
consists of resolving the tube into the lattice by applying
the gates of the grow circuit in reverse, as indicated in
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Fig. 15. For measurement outcome jψi defined Eq. (53),
the resolving process is equivalent to the following trans-
formation on the postmeasurement state in Eq. (54):

jΦi ⊗ jψi ↦
X
α;β

AαβOxyαβðjΦi ⊗ jxiÞ ⊗ j000i: ð63Þ

This guarantees that the initial tail label y indeed is
recovered. For instance, when obtaining the jψττ;1τi meas-
urement outcome, the resolving process results in the
application of the Pττ

τ1 nilpotent on top of the Pττ
1τ nilpotent

applied by the measurement, resulting in the combined
action Pττ

1 ¼ Pττ
τ1P

ττ
1τ, meaning that the tail label is now

preserved.
The same result can be achieved by using repeated

measurements with the circuit in Fig. 14. In case one
measures a ττ excitation but finds that the tail label gets
flipped [corresponding to the tube states in Eqs. (60) and
(61) and the last two entries in the POVM Eq. (62)], each
subsequent measurement [53] has a fixed probability of
flipping the tail label back to its initial value (as determined
by the first measurement). For a ττ1 excitation, it follows
from Eq. (62) that the probability that n measurements are
required before the postmeasurement state has a trivial tail
label is ϕ−ðnþ1Þ. Hence, on average, ϕ2 measurements are
required to ensure that the tail label is preserved for a ττ1
excitation. Likewise, for a τττ excitation, the probability of
needing n measurements to recover the initial tail label is
ϕ−ð2n−1Þ, resulting in an average of ϕ measurements.
Whether one should choose for the longer measurement
circuit depicted in Fig. 15 or for repeated measurements
with the shorter measurement circuit depicted in Fig. 14
depends on what types of excitation are more likely to
appear.

The procedure described above determines the anyon
charge of a single plaquette. By repeating it for all
plaquettes, we obtain the complete error syndrome (in
the form of the anyonic content of every plaquette), which
must then be passed to a decoding algorithm to determine
the appropriate recovery operations to be performed (see
Sec. IV). The quantum circuits for performing these
recovery operations are given in Supplemental Sec. II [45].

IV. DECODING ALGORITHMS

After the error syndromes (anyon charges) on all the
plaquettes are measured using the circuits discussed in the
previous section, this syndrome information is passed to a
decoder, which, in turn, outputs the recovery operations
required to correct the errors. This section contains a
detailed description of one of these decoding algorithms.
In this work we study two types of decoders. (A) The first

type is the clustering decoder which has been previously
applied to decode a phenomenological model of Fibonacci
anyons [26]. This decoder is based on a hierarchical
clustering algorithm [24] and shares a similar strategy to
the hard-decision renormalization-group decoder [54]. The
clustering decoder does not use the detailed syndrome
information corresponding to the anyon type. Instead, it
just uses the limited syndrome information of the presence of
absence of anyon, i.e., whether the anyon charge is nontrivial
or trivial (in the doubled vacuum sector 11).
(B) The second type is a fusion-aware iterativeminimum-

weight perfect matching (MWPM) decoder which modifies
the standard MWPM algorithm and incorporates the
detailed syndrome information corresponding to anyon
type into the decoding strategy. As a comparison, we also
show the results of a “blind” iterative MWPM decoder
which does not use the detailed syndrome information of

FIG. 15. Alternative quantum circuit for the joint measurement of the anyon charge and tail label of a plaquette, which does preserve
the tail label.
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anyon type but only the presence or absence of an anyon.
Because of the use of the detailed syndrome information,
the logical error rate of the fusion-aware iterative MWPM
decoder is lower than the other one.
Below, we give a detailed description of the clustering

decoder. Both the blind and fusion aware MWPM decoders
are discussed extensively in Supplemental Sec. V [45]. We
indicate the syndrome using a decoding graph, shown in
Fig. 16. This is a triangular lattice which is the dual of the
original trivalent graph on which the extended string-net
code is defined. Anyon charges located in the plaquettes of
the trivalent graph, correspond to syndromes on vertices of
this triangular decoding graph.
The spirit of the clustering decoder is based on the charge

conservation of anyons. As discussed in Sec. V D, local
noise can generate certain pairs or, more generally, clusters
of anyons. Since these anyon clusters are generated from
the vacuum sector 11, i.e., the ground space of the extended
string-net code, the total charge of each anyon cluster
should still be trivial (11) due to charge conservation.
Therefore, if we fuse all the anyons within a particular
cluster by moving them toward the same plaquette, we get a
total trivial vacuum charge 11; i.e., all the anyons are
annihilated back to the vacuum sector.
However, the decoder does not know which cluster each

anyons are generated from based on the syndrome infor-
mation. Therefore, the decoder may not always apply a
correct recovery operation to fuse all the anyons originating
from the same cluster. Instead, the decoder may fuse
anyons from different clusters, effectively joining the
two clusters. Because of the total charge conservation
and the fusion rule 11 × 11 ¼ 11, we know the total anyon
charge of the two clusters is still zero. If we fuse all the
anyons in these two clusters together, all the charges are

still annihilated into the vacuum 11. The same argument
applies to merging multiple clusters. As long as the size of
the joined cluster is much smaller than the system size, all
the errors can be corrected by merging them into the
vacuum 11. On the other hand, if the joined anyon cluster
forms a noncontractible (homologically nontrivial) region,
i.e., either wrapping around a cycle of a torus or, more
generally, a high-genus surface in the context of a closed
manifold or connecting two or more gapped boundaries in
the context of an open manifold, the recovery operation
with the merging procedure may still annihilate all the
anyons but end up applying a nontrivial logical operator
along a certain homologically nontrivial cycle, [55] which
causes a logical error and the decoder fails. It is also
possible that such a noncontractible anyon cluster has a
nonzero total charge; therefore, there is some residual
anyon after the merging procedure which cannot be
annihilated. In both cases, we claim a failure of the
clustering decoder. Therefore, in order to apply a successful
recovery operation, we need to make sure that the indi-
vidual clusters are annihilated before growing to a size
comparable to the system size, i.e., with a linear dimension
comparable to the code distance.
The clustering decoding algorithm for the Fibonacci

Turaev-Viro code defined on a torus is summarized below
by the pseudocode and is explained in detail with a concrete
example:

FIG. 16. The decoding graph of the extended string-net code.
By connecting the center of the plaquettes of the tailed lattice, we
obtain a triangular lattice (blue) as the decoding graph. The anyon
charges (gray circles) on the plaquettes of the tailed lattice serve
as the syndromes in the error correction scheme and are located
on the vertices of the triangular decoding graph.

Algorithm 1. Algorithm (clustering decoder).

#Measure the anyon charge of each plaquette on the tailed trivalent
lattice; store the nontrivial anyon charge in a list “anyon_charge”

anyon_charge = get_syndrome(state);

# Initialize a cluster for each plaquette with a nontrivial charge
clusters = Cluster(anyon_charge);

# Join any connected clusters
join(clusters, 1);

# While there is more than one nontrivial charge
while size(anyon_charge)>1

# Fuse all anyons within each cluster and measure the resulting
charge

for cluster in clusters
fuse_anyons(cluster);

# Check (in the classical simulation) whether any anyon path
becomes noncontractible, i.e., homologically nontrivial after
the fusion process
if anyon_path == noncontractible
# The decoder claims failure
return Failure

# Discard any empty cluster with trivial vacuum charge 11;
clusters = non_vac(clusters);

(Table continued)
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As described above, for a given state of the entire system,
we first measure the tube operator within each plaquette of
the tailed lattice using the circuit in Figs. 13 and 14 and
obtain the corresponding anyon charge as the syndromes
on the decoding graph. This process is defined as get_
syndrome() in the decoding algorithm, with the state
as the input and anyon_charge as the output. Now
we initialize a cluster on each nonzero anyon charge,
defined as clusters=Cluster(anyon_charge)
in the above algorithm. An example for the decoding
graph on a torus with the initial clusters (blue shadow)
is shown below:

In the next step, we call join(clusters, 1) to join
neighboring clusters which are separated by only one lattice
spacing. Within each cluster, we randomly choose a root
anyon, move all the other anyons to the root, and finally

fuse all of them into a single anyon. The move operation is
the recovery operation introduced in Supplemental
Sec. II B and Fig. S6 [45] and can be simulated classically
via modifying the curve diagram (see Sec. V F) as shown in
Eqs. (SIV.10) and (SIV.11) in Supplemental Sec. IV F [45].
We note that the order of moving and detailed path do not
affect the resulting state after fusing all the anyons within
each cluster, and, therefore, we could choose an arbitrary
order. The only requirement is that the chosen paths must
be inside each cluster. For simplicity, we choose the
shortest paths (with shortest graph distance) toward the
root anyons from all the remaining anyons (indicated by
the red arrows in the figure below) and start moving the
anyons in an order with an increasing graph distance
between the remaining and root anyons in our numerical
simulation:

During the classical simulation described below in
Sec. V, one needs to monitor whether the decoding process
itself induces a logical error. Therefore, after each fusion
process, we check (in the classical simulation) whether any
anyon path l forms a noncontractible (homologically non-
trivial) cycle, which gives rise to a logical error as previ-
ously illustrated in Fig. 8. The anyon path here is the sum of
the error path and the recovery path: l ¼ le þ lr. We note
that, although the decoder itself does not have access to
such information, the classical simulation does. We can,
hence, claim failure of the decoder in our Monte Carlo
simulation, if such noncontractible cycle occurs.
If the decoder does not fail, we continue to measure

all the charges of the root anyons. If the measured
charge in a particular cluster is zero, i.e., in the vacuum
sector 11, we discard the corresponding cluster. The list of
clusters, hence, gets updated via clusters=non_vac
(clusters):

Algorithm 1. (Continued)

# Grow each cluster by a unit length on the triangular decoding
graph

grow(clusters, 1);

# Join any overlapping clusters
join(clusters, 0);

end

# If the list of nontrivial anyon charge is empty, i.e., with no
remaining anyon

if anyon_charge == []
# The decoder declares success
return Success

# If there is a single nontrivial remaining charge
else

# The decoder claims failure
return Failure
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In the next step, we need to call grow(clusters, 1)
to grow each remaining cluster by one unit of lattice
spacing in all possible directions (six directions for each
vertex within the cluster), as indicated by the blue arrows
in the figure below. As shown in the figure, the remaining
two clusters (blue) grow to the larger clusters (green and
orange):

Next, we call join(clusters, 0) to join over-
lapping clusters—i.e., any two clusters sharing a common
set of vertices are joined into a single one—and this process
is done iteratively until there are no overlapping clusters. In
the current example, the green and red clusters in the above
figure are joined into a single bigger cluster (blue) in the
following figure:

After the merging of clusters, we repeat the above
process—i.e., fuse all the anyons within each cluster
(indicated by the red arrows in the above figure) and
discard the empty cluster with trivial total charge 11
(vacuum)—and then further grow and join the remaining
clusters. This iteration is stopped when we have zero or one
remaining nontrivial anyon charge.
After the end of the above iteration, we are at the final

stage of our decoding algorithm. If there is no any
remaining nontrivial anyon charge, i.e., anyon_charge
== [], we then have successfully corrected all the errors,
and the decoder declares success. In the other situation with
a single nontrivial remaining anyon, we end up with a
logical error and claim failure of the decoder.

V. THRESHOLD SIMULATION

Besides formulating an error correction scheme for the
extended Fibonacci string-net code, the main achievement
of this work consists of obtaining error correction thresh-
olds for this code with a microscopic noise model. This is
achieved through Monte Carlo simulations, in which the
quantum state of the system is updated to reflect the
application of noise, measurement, and recovery operations
until either the initial state is recovered successfully or a
logical error occurs. Because of the complicated nature of
the extended string-net code and the fact that our simu-
lations require the ability to simulate the dynamics of non-
Abelian anyons, this is a very nontrivial task. Below, we
discuss the various technical details of these simulations.
Note that the numerical simulations presented here are
independent of the specific circuits used to realize the
projective measurements and unitary transformations
required during the error correction process (assuming
these circuits can be carried out perfectly).
The structure of this section is as follows: We start by

going over some comments on the classical simulation of
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non-Abelian quantum error correction, made in
Refs. [22,23,26] in Secs. VA and V B. We then introduce
a microscopic noise model of Pauli errors in Sec. V C and
study the effect of individual qubit errors on anyonic fusion
states in Secs. V D and V E. Section V F describes the
framework of curve diagrams [56], which is used to
efficiently characterize anyonic fusion basis bases during
the simulation. Finally, in Sec. VG, we provide a detailed
outline of all steps performed for a single Monte Carlo
sample.

A. Simulating non-Abelian quantum error correction

The defining difference between Abelian and non-
Abelian anyon models is the fact that the fusion outcome
of a pair of anyons is no longer uniquely determined for
non-Abelian models. This fact makes simulating noise,
syndrome measurement, and error correction processes for
a system exhibiting non-Abelian anyonic excitations con-
siderably more complicated than for Abelian models such
as the surface code.
After anyonic excitations are created through the appli-

cation of noise, their locations and anyon labels can be
determined through a syndrome measurement. If we think
of the state in terms of fusion trees of anyons, the syndrome
measurement projects only onto fixed values for the leaf
labels. For non-Abelian anyons, the internal (branch) labels
of the fusion tree may still be in a superposition of different
configurations. One of the implications is that braiding
processes occurring during the recovery phase do not
necessarily result in a global phase. Hence, different paths
used to physically approach a pair of anyons in order to fuse
them might give rise to different fusion outcomes (more
precisely, to different probability distributions for the
measurement outcome of the total charge of the pair).
When simulating the error correction process, we must
therefore be very careful in specifying and keeping track of
the precise paths followed by the various anyons.
Another implication is that, for non-Abelian models, the

decoding process must happen in an iterative fashion.
Based on the initial positions and charges of the anyons,
a recovery step that consists of a number of fusion
processes is suggested. As the result of this recovery
cannot be predicted, all fusion processes must be performed
in the given order, after which the fusion outcomes must be
measured. These measured outcomes then give a new error
syndrome that serves as the basis for suggesting a next
recovery step, consisting of a new series of fusion proc-
esses. This cycle continues until all anyons are fused away
and decoding is successful or until some anyon is wound
along a nontrivial cycle during a recovery step resulting in a
decoding failure. Error correction, thus, proceeds as a
dialog between syndrome extraction and decoder, where
the new syndrome resulting from a given recovery step is
used to determine the next recovery step. This is in stark
contrast to Abelian models, where a single syndrome

measurement provides all the necessary information to
determine all fusion processes that must be carried out in
order to return the system to the code space.

B. Classical simulability

The ability to reliably simulate the general dynamics of
Fibonacci anyons implies the ability to simulate (and,
hence, perform) universal quantum computation. It is,
therefore, highly unlikely that such simulations are feasible
on a classical computer. However, typical noise and
recovery processes such as those that we simulate in the
remainder of this work exhibit structure that can be
exploited to classically simulate them in regimes where
we expect successful error correction to be possible.
Individual local error operations either create a distinct

connected group of anyons with vacuum total charge or
extend such an existing group (see Sec. V D). These groups
can be understood as anyons that have interacted at some
point during their lifetime. Since each disconnected group
has a trivial total charge, braiding between separate groups
is trivial. Hence, the total fusion space factorizes into a
tensor product of fusion spaces of individual connected
groups, and we are required only to simulate anyon
dynamics within each of these groups separately.
With regards to the creation of connected groups of

anyons, the noise process behaves as a kind of percolation
process. Hence, below the percolation threshold, one
expects that the size of the largest connected group scales
as O½logðLÞ� [with variance Oð1Þ], where L is the linear
system size [57]. As this is a probabilistic statement, there
are instances where the largest connected group has a size
larger than O½logðLÞ�, but the probability of such events is
suppressed exponentially with the system size L. This
logarithmic scaling of the largest cluster size s ¼ O½logðLÞ�
counters the exponential scaling of the dimension of the
fusion space d ¼ O½expðsÞ� for individual connected
groups. Therefore, the fusion spaces of individual connect
groups have dimension dim ¼ O½polyðLÞ�, meaning that
the dynamics within connected groups can be simulated
efficiently.
These arguments on the classical simulability of topo-

logical quantum error correction with a universal anyon
model were first made in Ref. [26]. The behavior of
connected clusters of anyons created in the phenomeno-
logical model studied there corresponds exactly to the bond
percolation model for which the logarithmic scaling men-
tioned above is verified numerically [57]. To ensure that
this still holds for the microscopic model studied here, we
explicitly verify the logarithmic scaling of the average size
of the largest connected group of anyons after subjecting all
qubits to a depolarizing noise model, using Monte Carlo
simulations. The results of these simulations are presented
and discussed in Supplemental Sec. VII [45].
During the iterative decoding procedure, anyons are

fused over increasing length scales, thereby potentially
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joining together connected groups of anyons through this
interaction. As long as large connected groups are sparsely
distributed (which is the case on average below the
percolation threshold), this should not pose a problem,
as the dimension of the fusion space is automatically
reduced once the fusion process is actually performed,
since this then reduces the number of anyons that must be
simulated. We can conclude that we expect efficient
simulation of the dynamics relevant to error correction
to be possible in the regime where the combined action of
noise and recovery does not percolate.
If noise is strong enough, connected groups of anyons

percolate and the fusion space no longer factorizes into
small disconnected parts. In this case, classical simulation
of braiding and fusion becomes intractable. However, this
is precisely the regime where we expect regular transport of
anyons along nontrivial cycles during recovery, leading to
failed error correction. Therefore, the error correction
threshold itself lies below this regime, and estimating its
value through classical simulations should be possible.

C. Noise model

Our goal is to stimulate the dynamics of a quantum-
computing architecture of qubits, which directly imple-
ments our error correcting code. We model noise in this
system as individual (either depolarizing or dephasing)
Pauli errors acting on random qubits, while the system is
constantly being monitored [58]. We treat the occurrence of
Pauli errors on individual qubits as independent Poisson
processes with a fixed rate p, which characterizes the noise
strength. The total number of qubit errors, denoted by T,
then follows a Poisson distribution with mean T0 ¼ jEjp,
where jEj is the total number of edges. (For a tailed
honeycomb lattice with periodic boundary conditions and a
total of L2 plaquettes, the total number of edges is
jEj ¼ 5L2, resulting in T0 ¼ 5L2p.) This fixed-rate sam-
pling noise model is similar to those used for the simulation
of non-Abelian quantum error correction with phenom-
enological models such as in Refs. [22,26]. For simplicity,
we assume that all measurements are perfect and are carried
out on timescales which are negligible compared to the
average time between individual qubit errors [approxi-
mately 1=ðjEjpÞ].
We simulate the dynamics of the system for T time steps,

each of which corresponds to the occurrence of a single
Pauli qubit error and where T is drawn from a Poisson
distribution with mean T0. Each individual time step
consists of the following.
(1) An edge e of the lattice is chosen at random, and a

Pauli operator σi is picked according to relative
probabilities fγx; γy; γzg. We specifically use depo-
larizing noise (γx ¼ γy ¼ γz ¼ 1=3), dephasing
noise (γz ¼ 1), and bit-flip noise (γx ¼ 1). The
operator σi is then applied on the qubit correspond-
ing to edge e.

(2) All vertex stabilizersQv and tail qubits are measured
(in the Z basis).

(3) The appropriate unitary operatorUV, conditioned on
the measurement outcome V from the measurements
above, is applied to fix any violated vertices.

(4) The anyon charge in each plaquette is measured.
The unitary operators used to locally correct violated
vertices are introduced in Sec. III; their purpose is to move
the system back to the string-net subspace Hsn. Inside this
subspace, states can be described in terms of anyonic fusion
states, and plaquette anyon charges are well defined. Note
that the measurement at the end of each time step means
that we never encounter any superpositions of different
anyonic charges in individual plaquettes. (In terms of
fusion states, this fixes all leaf labels.)
After the T error operations are applied, and if no logical

error is induced by the noise process, the syndrome is fed to
an iterative (classical) decoding algorithm, which returns a
list of anyons to be fused and paths to be followed when
doing so. We assume that all recovery operations and
additional syndrome measurements are perfect and instan-
taneous, meaning no additional errors happen during the
recovery process.
While the connection between percolation and logical

errors in topological codes is not exact [59] (i.e., not all
percolation events cause logical errors), all logical errors
are the result of events where a pair of anyons are fused
along a noncontractible loop. Our Monte Carlo simulations
(detailed below in Sec. VG) classify all such percolation
events as failures and, therefore, slightly overestimate the
logical failure rates. This provides a heuristic argument for
the validity of our noise model. The immediate collapse of
superpositions in the anyon charge of individual plaquettes
does not inhibit the occurrence of percolation processes.
We, therefore, do not expect our assumption of constant
syndrome measurement to significantly affect the obtained
decoder failure rates. Furthermore, in the low noise strength
limit, our noise model approximates an IID noise model, as
the random qubits affected by Pauli errors are unlikely to be
in each other’s vicinity. The existence of an error correction
threshold for our fixed-rate sampling noise model, there-
fore, implies the existence of a threshold for an IID noise
model as well.

D. Pauli noise in the anyonic fusion basis

We now investigate the effect of the application of noise
and subsequent measurement and vertex recovery opera-
tions performed in each of the T time steps of the
simulation as described above. Because of the syndrome
measurement performed at the end of every time step, the
quantum state of the system between these steps can always
be decomposed as a superposition of anyonic fusion basis
states, which all share the same set of leaf labels. It is,
therefore, sufficient to understand the action of these
different operations on an initial state
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jΨ0i ¼
X
t

αtjψ ti; ð64Þ

where the jψ ti represent anyonic fusion basis states
Eq. (38) and the states fjψ tijαt ≠ 0g all share the same
set of leaf labels.

1. Pauli-Z errors

We begin our analysis by studying the case where we act
with a σz operator on the qubit residing at edge e. One can
easily see that, for any edge e, σez commutes with all vertex
operators Qv defined in Eq. (9), since both operators are
diagonal in the same basis. Hence, a σz error does not take
the system out of the string-net subspace Hsn, and the
resulting state can again be decomposed in the anyonic
fusion basis:

jΨ1i ¼ σez jΨ0i ¼
X
t

αtσ
e
z jψ ti

¼
X
t0
jψ t0 i

�X
t

αthψ t0 jσez jψ ti
�
; ð65Þ

where we use that
P

t0 jψ t0 ihψ t0 j acts as the resolution of the
identity within Hsn. In particular, if we start from a
superposition of basis states jψ ti that all have the same
specific handle label (see Sec. II E), the states jψ t0 i in the
resulting superposition also have that same label, unless a
logical error occurs through the interaction of the thermal
anyons due to the noise operator. Since the simulation of
error correction is immediately aborted in the event of such
a logical error, it is sufficient to consider only basis states
that all have the same handle label as the initial state.
When the edge e is a tail edge, acting with σez results in a

global (�1) factor, which has no physical consequences.
On a general edge e different from a tail edge, the action of
σez commutes with the irreducible idempotents of the tube
algebra [Eqs. (23)–(25), (27), and (28)] acting on any
plaquette, except for the two that contain the edge e. This
means that a σez error on a general edge can modify the
anyon charge of at most two plaquettes. Furthermore, the
total charge of these two plaquettes cannot be changed by
the action of σez , since this is a collective property of the pair
that is insensitive to the local operator σze.
With these insights in mind, we pick an anyonic fusion

basis of the following form:

ð66Þ

where a1 and a2 are the charges of the two affected
plaquettes, b denotes their total charge, and c⃗ collectively
denotes all other leaf, branch, and handle labels. We can
then rewrite the initial state Eq. (64) as

jΨ0i ¼
X
b;c⃗

αb;c⃗jψ a⃗
b;c⃗i: ð67Þ

Note that we drop the summation over a⃗, which is allowed
because the initial state contains no superposition in
plaquette charges. Since the labels b and c⃗ are unaffected
by σez, the matrix elements appearing on the right-hand side
in Eq. (65) are block diagonal in these labels, and the
expression for the state jΨ1i ¼ σzjΨ0i can be reduced to

jΨ1i ¼
X
b;c⃗

X
a⃗0

jψ a⃗0
b;c⃗iðαb;c⃗hψ a⃗0

b;c⃗jσez jψ a⃗
b;c⃗iÞ: ð68Þ

The probability of finding outcome a⃗0 ¼ ða01; a02Þ when
performing a syndrome measurement in the two affected
plaquettes is then given by

pða⃗0Þ ¼
X
b;c⃗

jαb;c⃗hψ a⃗0
b;c⃗jσez jψ a⃗

b;c⃗ij2: ð69Þ

After performing this measurement, the state of the system
collapses to

jΨ2i ¼
1ffiffiffiffiffiffiffiffiffiffiffi
pða⃗0Þp X

b;c⃗

jψ a⃗0
b;c⃗iðαb;c⃗hψ a⃗0

b;c⃗jσez jψ a⃗
b;c⃗iÞ; ð70Þ

which is again a superposition of basis states with fixed leaf
labels. Note that the matrix elements on the right-hand side
in Eqs. (69) and (70) are independent of the unaffected
labels c⃗. Hence, we may replace them with matrix elements
of the form hψ a⃗0

b jσez jψ a⃗
bi, where jψ a⃗

bi are states that contain
only nontrivial anyon labels for the two affected plaquettes
and for their total charge. Also note that, since the total
charge of the affected plaquettes is a collective property, the
precise location of the third plaquette which contains this
total charge does not affect the value of the matrix elements,
and, furthermore, the tail label of that plaquette does not
affect the matrix elements.
When calculating the matrix elements, we must pick

some convention for the basis elements jψ a⃗
bi [i.e., for the

embedding of the fusion tree in Eq. (66) in the lattice], for
each of the possible orientations of e. Since σez has no
physical effect when e is a tail edge, we need to consider
only four orientations for e. Our choice of basis convention
for the σze matrix elements is given in Fig. 17.

2. Pauli-X and Y errors

The case of a σex error is similar but comes with some
additional complications. Since a σex operator does not
commute with the vertex operators Qv associated to the
vertices bounding e, the state

jΨ1i ¼
X
t

αtσ
e
xjψ ti ð71Þ
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does not necessarily belong to the string-net subspace Hsn
and, hence, cannot be expressed as a superposition of
anyonic fusion basis states. In particular, upon measuring
the vertex stabilizers for the vertices that bound e, one
might find that the ribbon graph branching rules are
violated in either of these vertices. Each violated vertex
belongs to a set of seven connected qubits on the lattice that
we call a segment:

The three vertices in each segment are denoted as t, m, and
b, corresponding to the top, middle, and bottom vertex,
respectively. For each segment with some violated vertices,
we also measure the label of the tail qubit (corresponding to
edge g in the diagram above). Depending on these
measurement outcomes V, a unitary operator UV is applied
to the segment in order to take it back to the þ1 eigenstate
of the three vertex operators Qt, Qm, and Qb associated to
the segment. The definitions and corresponding circuits for
these unitaries (conditioned on all possible measurement
outcomes) are given in Sec. III A.
The probability pðVÞ of a combined outcome V for the

vertex and tail qubit measurements in the relevant segments
is given by

pðVÞ ¼ hΨ1jPV jΨ1i
¼

X
t0;t

ðαt0 Þ�αthψ t0 jσexPVσ
e
xjψ ti; ð72Þ

where PV is the projector onto the total measurement
outcome V. For example, for the case of a σex acting on the

edge e bounded by vertices v1 and v2 where only v1 is
violated and the tail qubit q1 of the segment containing v1
has label τ, the associated projector PV is given by

PV ¼ ð1 −Qv1ÞðQv2Þðjτiq1hτjq1Þ: ð73Þ

After performing the vertex and tail qubit measurements
with outcome V and applying the appropriate unitary
operator UV to bring the system back to the string-net
subspace, the state is given by

jΨ2i ¼
1ffiffiffiffiffiffiffiffiffiffiffi
pðVÞp X

t

αtUVPVσ
e
xjψ ti

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
pðVÞp X

t0
jψ t0 i

�X
t

αthψ t0 jUVPVσ
e
xjψ ti

�
; ð74Þ

where we again insert the resolution of the identityP
t0 jψ t0 ihψ t0 j in Hsn on the right-hand side in order to

explicitly express the state as a superposition of anyonic
fusion basis states.
As in the case of a σze error, the expressions (72) and (74)

can be simplified by considering which plaquette charges
are actually affected by the combined action of the
operators UV , PV , and σex. Since a σx operator acting on
an edge e of the tailed lattice results in at most two violated
vertices, the combined action of UV , PV , and σex involves at
most two segments. These operators, therefore, commute
with any tube operators acting on plaquettes that have no
edges in common with these segments. This means that
only the charges associated to the plaquettes in the
immediate neighborhood of the error can be affected.
The number of affected plaquettes depends on the orienta-
tion of the edge e.
As before, we pick our anyonic fusion basis to reflect this

fact. In the case of four affected plaquettes, the basis states
have the form

ð75Þ

where, again, a⃗ denotes the charges of the affected
plaquettes, b denotes their total charge, and c⃗ collectively
denotes all other unaffected leaf, branch, and handle labels.

Note that we now need additional labels d⃗ to denote the
affected internal branch labels. With this choice of basis,
the sum over t in Eq. (64) is split into a sum over the
unaffected labels c⃗, the total charge b, and the branch labels

d⃗ of the affected part:

jΨ0i ¼
X
b;c⃗;d⃗

αd⃗b;c⃗jψ a⃗;d⃗
b;c⃗i: ð76Þ

FIG. 17. Basis convention for the affected plaquette charges for
all nontrivial orientations of the edge e (highlighted in blue) in the
case of a σz error.
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As all matrix elements are block diagonal in the
unaffected labels, the expression for the vertex measure-
ment outcome probability Eq. (72) reduces to

pðVÞ ¼
X
b;c⃗;d⃗

X
d⃗0

ðαd⃗0b;c⃗Þ
�
αd⃗b;c⃗hψ a⃗;d⃗0

b;c⃗ jσexPVσ
e
xjψ a⃗;d⃗

b;c⃗i: ð77Þ

The sum over t0 in Eq. (74) can again be split into a sum
over the unaffected labels c⃗0, the affected leaf labels a⃗0, and
the branch labels d⃗0 of the affected part, reducing the
expression to

jΨ2i ¼
1ffiffiffiffiffiffiffiffiffiffiffi
pðVÞp X

a⃗0;d⃗0

X
b;c⃗

jψ a⃗0;d⃗0

b;c⃗ i
�X

d⃗

αd⃗b;c⃗hψ a⃗0;d⃗0

b;c⃗ jUVPVσ
e
xjψ a⃗;d⃗

b;c⃗i
�
: ð78Þ

Measurement of the affected plaquette charges then yields charges a⃗0 with a probability pða⃗0Þ given by

pða⃗0Þ ¼ 1

pðVÞ
X
d⃗0

X
b;c⃗

����
X

d⃗
αd⃗b;c⃗hψ a⃗0;d⃗0

b;c⃗ jUVPVσ
e
xjψ a⃗;d⃗

b;c⃗i
����
2

: ð79Þ

The resulting state after this charge measurement is

jΨ3i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pða⃗0ÞpðVÞp X
d⃗0

X
b;c⃗

jψ a⃗0;d⃗0

b;c⃗ i
�X

d⃗

αd⃗b;c⃗hψ a⃗0;d⃗0
b;c⃗ jUVPVσ

e
xjψ a⃗;d⃗

b;c⃗i
�
: ð80Þ

Once again, the matrix elements on the right-hand side in
Eqs. (77), (79), and (80) are independent of the unaffected
labels c⃗, so we require only matrix elements of the form

hψ a⃗0;d⃗0

b jOjψ a⃗;d⃗
b⃗
i for fusion basis states involving up to four

plaquettes and their total charge.
Our choice of basis convention for the charges of the

affected plaquettes for all possible orientations ofe is given in
Fig. 18. In the case of a σx error, all five possible orientations
of e are nontrivial. By considering the potentially violated
vertices and the definition of the associated unitaries given in
Sec. III A for each orientation, it can easily beverified that the
depicted plaquettes are indeed the only affected ones and the
combined action of the error, measurements, and unitaries
commutes with all other tube operators.
The case of a σy error is entirely analogous to that of a σx.

The same operators PV and UV appear, and we use the
same basis convention as the one depicted in Fig. 18.
In summary, all that is required to capture the effect of

Pauli noise on the state of the system are the following
matrix elements:

hψ a⃗;d⃗0

b jσexPVσ
e
xjψ a⃗;d⃗

b⃗
i; ð81Þ

hψ a⃗0;d⃗0

b jUVPVσ
e
xjψ a⃗;d⃗

b⃗
i; ð82Þ

hψ a⃗;d⃗0

b jσeyPVσ
e
yjψ a⃗;d⃗

b⃗
i; ð83Þ

hψ a⃗0;d⃗0

b jUVPVσ
e
yjψ a⃗;d⃗

b⃗
i; ð84Þ

hψ a⃗0
b jσez jψ a⃗

bi: ð85Þ

These matrix elements must be calculated for all possible
orientations of the edge e in Figs. 17 and 18 and for all
possible combined outcomes V of the vertex and tail qubit
measurements in the case of a σx or σy error.

E. Computing the matrix elements

At first sight, calculating the matrix elements listed
in Eqs. (81)–(85) seems like an intractable job, due to
the highly entangled nature of the anyonic fusion basis
states on the tailed lattice. Fortunately, as detailed in
Supplemental Sec. III [45], this complex entanglement
structure can be captured using tensor network representa-
tions for anyonic fusion basis states. By using some key
insights together with tensor network techniques, we can
harness the computational power of tensor networks to
compute said matrix elements. Below, we illustrate this
procedure for the matrix element Eq. (81), where e is an
edge with the orientation depicted in Fig. 18(a). All other
matrix elements can be computed in an analogous manner.
For simplicity, we work with square PEPS tensors (see

Supplemental Sec. III C [45]), which each correspond to
one segment of the lattice as shown in the following
diagram:
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where we rotate the lattice by 60° counterclockwise. The
PEPS tensors are colored gray and red for segments of
which the tails end inside plaquettes containing trivial and

nontrivial DFIB charges, respectively. With this notation
(and after a counterclockwise rotation by 60°), the anyonic
fusion state represented in Fig. 18(a) looks as follows:

ð86Þ

The crossings and branchings in this diagram imply the
presence of certain crossing and fusion tensors. Details of
these are given in Supplemental Sec. III [45]. The total
charge b of the four leaf charges in Fig. 18(a) is assigned to
a neighboring segment. As mentioned before, since the
total charge of the group of anyons is a collective property,
the precise location of the excitation tensor encoding this
total charge does not affect the computation of the matrix
elements itself. Hence, we choose to place it next to the
other charges for convenience.
The matrix elements can then be computed by applying

the appropriate operators on the physical indices and then
contracting the result with the conjugate PEPS correspond-

ing to the bra vector hψ a⃗0;d⃗0

b⃗
j. In this specific case, the

operator PV that projects out the combined vertex and tail
qubit measurement outcome V can be decomposed into two
operators PA and PB that act on the segments of leaf
charges a2 and a4 and project out the measurement out-
comes for the vertices and tail edge in these segments,
respectively. The matrix element is then given by the
contraction

ð87Þ

(a) (b)

(c) (d)

(e)

FIG. 18. Basis convention for the affected plaquette charges for
the different orientations of edge e (highlighted in blue) in the
case of a σx or a σy error. Note that, depending on the orientation,
the charge in either four (a,c), three (b,d), or two (e) plaquettes
may be affected by the error.
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where

ð88Þ

In order to avoid too much clutter, we omit the different
labels in the graphical notation. The labels a⃗0, b, d⃗0 and a⃗, b,
d⃗ are always implied for the top and bottom layer,
respectively. Note that the σex operator is applied on two
different tensors. This is nothing more than a side effect of
the fact that the physical degrees of freedom are doubled in
the PEPS representation.
The result of the tensor contraction in Eq. (87) should be

independent of the size of the system and must be entirely
determined by the nontrivial anyonic charges of the colored

segment tensors. We may, therefore, assume the system to
be infinite, where all tensors except the colored ones
depicted in Eq. (87) correspond to segments with a trivial
charge. This infinite contraction can then be simplified by
determining the top fixed point matrix product state of the
double layer transfer matrix [60]:

ð89Þ

After finding a similar bottom fixed point matrix product
state, Eq. (87) can be reduced to

ð90Þ

In the same way, left and right fixed points can be
determined for this expression:

ð91Þ

and similarly for the right fixed point. This finally results in
the finite contraction

ð92Þ

which can be computed in the regular way. In Eqs. (89) and
(91), we implicitly assume that the PEPS tensors are
rescaled such that the leading eigenvalue of the relevant
transfer matrices in these expressions is equal to 1. Because

of these rescalings, the PEPS for the fusion basis states will
not have a unit norm, and the final expression Eq. (92)

should, therefore, be divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ a⃗;d⃗

b jψ a⃗;d⃗
b⃗
ihψ a⃗0;d⃗0

b⃗
jψ a⃗0;d⃗0

b i
q

in order to obtain a matrix element that is properly
normalized.

F. Storing and manipulating anyonic fusion basis states

As explained in Sec. II E, states in Hsn can be expressed
as linear combinations of anyonic fusion basis states. The
anyonic fusion basis itself is determined by picking a pants
decomposition of the surface and choosing a basis for each
handle if the genus is nonzero. To keep track of the
quantum state jΨi of the system, one could, in principle,
pick a basis fjψ iig for the entire string-net subspace and
then update all coefficients hψ ijΨi throughout the different
steps in the simulation. Such a naive approach is doomed to
fail, however, as implementing F moves and braiding in the
exponentially large Hilbert space Hsn quickly becomes
intractable as the system size grows. Instead, we need to
select a basis that reflects the factorization of the fusion
space discussed in Sec. V B. Hence, we require the ability
to dynamically introduce a basis for each of the connected
groups of anyons separately, in a way that takes into
account the specific structure of the relevant noise proc-
esses. The framework of curve diagrams [26,56] provides
exactly that. To improve readability, only a very concise
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introduction is given here. A more complete discussion,
including technical details of how curve diagrams are
manipulated in the numerical simulations, is given in
Supplemental Sec. IV [45].
A curve diagram is a set of (nonintersecting) directed

curves, each connecting the members of a single connected
group of anyons residing at the center of their respective
plaquettes. An example of a curve diagram is depicted in
Fig. 19. Each curve can be related (up to local Dehn twists in
individual plaquettes) to an anyonic fusion basis as depicted
below:

During the simulation, the curve diagram representing
the anyonic fusion basis in which the state vector is
expressed must be updated regularly. Specifically, when
neighboring anyons interact (either by an error process or
when they are being fused by the decoder), a basis change
must be performed in order for these anyons to appear
sequentially in their joint fusion tree (in such a way that the
corresponding curve follows the shortest path between
them; see Supplemental Sec. IV D [45] for details). Such a
basis transformation can always be expressed as a combi-
nation of two types of actions: merges, where two dis-
connected curves are joined (by connecting the end of one
with the beginning of the other), and swaps, which are
passive exchanges of the form

ð93Þ

ð94Þ

The corresponding transformations on the state vector
coefficients to reflect this basis change are given in
Supplemental Sec. IV C [45].
Since interacting anyons are always neighbors on

the lattice, a curve diagram where they appear sequen-
tially on the same curve can be obtained by repeatedly
moving one of them (or, rather, its position on the
curve) to the next piece of curve encountered while
going the boundary of the two tiles in a clockwise
fashion (merging the two curves first if they are
different), as illustrated below:

We refer to such operations as refactoring moves. Each
refactoring move is equivalent to a sequence of swaps,
which one can determine using the paperclip algorithm
[26] (see Supplemental Sec. IV D [45] for details).

G. Outline of the simulation

With all the groundwork completed, we are now ready
to sketch the outline of the entire error correction
threshold simulation, performed with the Fibonacci input
category on a tailed hexagonal lattice with periodic
boundary conditions in both directions (giving the lattice
the topology of a torus). The simulation consists of a
fixed number of Monte Carlo samples, each of which
simulates the application of noise and recovery processes
to an initial ground state. The quantum state of the
system is tracked throughout these processes until either
a topologically nontrivial process occurs, in which case
failure is declared, or all anyonic excitations are removed
(without any logical errors), in which case success is
declared.
For a given a system size and noise strength, the logical

failure rate PL is then found by the ratio of failures
compared to the total number of Monte Carlo steps.
Below, we describe in detail all the important aspects of
a single Monte Carlo step, with system size L × L and a
noise strength characterized by p.

FIG. 19. Example of a configuration of three connected curves
on a 4 × 4 periodic hexagonal lattice.
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1. Cutoff parameters

In addition to logical errors, failure is also declared
whenever any of two cutoff parameters are exceeded. The
first of these is the maximal allowed tree size Nmax. As
discussed in Sec. V B, the size of connected groups of
anyons can grow very large in some rare occasions. Since
the size of the associated fusion space grows exponentially,
such situations are extremely costly, both in terms of
memory usage and in computation time. Hence, we fix
some cutoff size Nmax, the simulation is aborted, and a
failure is declared, whenever the number of anyons on an
individual curve exceeds this value. Note that a similar
cutoff is used in Ref. [26].
The second cutoff parameter that we introduce is Vmax,

which is the maximal number of nonzero coefficients we
allow in the vector associated to any individual curve. The
motivation behind this cutoff rule is as follows. Since the
state vectors appearing during the simulation are generally
very sparse, these are stored as sparse arrays. This enables
us the keep the value of Nmax higher than one would naively
expect (as no memory is allocated to all zero entries, which
form the vast majority of the exponentially large state
vector). To avoid the extreme time and memory cost of the
rare cases where any state vector contains a very large
number of nonzero entries, such cases are aborted and a
failure is declared.
One must choose these cutoff parameters to be as high as

possible, in order to minimize the amount of triggered
cutoffs, while still keeping the memory and time cost of the
simulations reasonable. Of course, any finite values of these
parameters negatively affect the observed logical failure
rates, once we leave the regime in which events with very
large connected groups are sufficiently rare. However, we
argue that their influence can only lower the obtained
threshold, meaning our results provide a valid lower bound
on the actual error correction threshold, independent of the
values of Nmax and Vmax. For a fixed value of p, larger
system sizes (on average) result in higher values for the size
of the largest connected group of anyons (see Supplemental
Sec. VII [45]). Hence, it is clear that the cutoffs are
triggered more often for larger system sizes. Likewise,
for a fixed system size L, larger values of p also result in
more triggered cutoffs. When displaying the logical failure
rate as a function of p, the intersection of the curves
corresponding to different system sizes is shifted left
compared to its true value (had the cutoff parameters been
infinite), meaning that our obtained error correction thresh-
old is indeed a valid lower bound to its unknown true value.

2. Noise phase

The system is initialized in a ground state of the code
Hamiltonian Eq. (8), corresponding to the anyonic vacuum
with some specific handle labels. However, as explained in
Supplemental Sec. IV [45], there is no need to store these
handle labels, since they do not affect any relevant

processes. Processes in which the handle labels do affect
the outcome are precisely those that result in a logical error.
Because the Monte Carlo simulation automatically declares
a failure in those cases, such processes must never be
simulated on the level of state evolution.
The first half of the simulation consists of sequentially

applying T noise processes, described in Sec. V C, to this
initial ground state, where T is drawn from a Poisson
distribution with mean p5L2. For each of these T steps, an
edge e is chosen at random, and a Pauli operator σi is
selected according to the relative probabilities fγx; γy; γzg.
Before the matrix elements computed in Sec. V E can be
used to determine the state after the application of error σei ,
one must first rewrite the state vector in the appropri-
ate basis.
Given the orientation of e and the type of error σi, the

affected plaquettes can be read off from Figs. 17 or 18.
If none of them contain a nontrivial charge initially, we
simply create a new curve diagram with the appropriate
shape and with a corresponding trivial fusion state (con-
taining only vacuum charges). If only some of these
plaquettes contain a nontrivial charge, we can add vacuum
charges to the fusion state of one of the nontrivial charges
and modify (“grow”) the curve accordingly such that all
affected plaquettes are included in the same curve.
The desired basis is the one where the affected anyons

appear sequentially along the same curve, in the order
depicted in Figs. 17 or 18. This is obtained by applying a
series of refactoring moves and merges as described in
Sec. V F and performing the corresponding sequences
of swaps and merge operations on the affected state
vectors. If any of the required refactoring moves is
topologically impossible, for instance, the one depicted
in Fig. 20, this indicates that a logical error is caused, as
the joint path of the curve diagram and the interaction
path form a noncontractible loop. Whenever this happens,
the simulation declares failure and aborts the current
Monte Carlo step.
If all refactoring moves above are legal, a sequence of F

moves is performed to isolate the affected anyons from the
rest of the fusion tree. This transforms the standard fusion
tree shape to the one in Eq. (66), Eq. (75), or a similar shape
in the case of three affected plaquettes. In terms of ribbons

FIG. 20. An illegal refactoring move on a torus, which causes
the simulation to declare failure and abort.
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in the fattened lattice, the basis then locally looks like the
ones depicted in Fig. 17 or Fig. 18, depending on the type
of error. Note that such a basis can no longer be represented
using curve diagrams. This is not an issue, since we return
to a standard basis before the full machinery of curve
diagrams is required again.
For the case of a σz error, the coefficients in the state

vector and the matrix elements Eq. (85) are used to
calculate the probabilities Eq. (69) of the different possible
charge measurement outcomes. A result is picked accord-
ing to this probability distribution, after which the state
vector is updated using Eq. (70).
In the case of a σx error, the matrix elements (81) are

used together with the coefficients in the state vector to
compute the probabilities Eq. (77) for the outcome of the
vertex and tail measurements. A result is then sampled from
this distribution. Next, the matrix elements Eq. (82) are
used to compute the probabilities Eq. (79) for the various
outcomes of the charge measurement (that is performed
after the appropriate unitary vertex correction is applied).
We again pick a result according these probabilities and
update the state vector using Eq. (80). In the case of a σy
error, we proceed analogously to the σx case, using the
matrix elements Eqs. (83) or (84).
After the state vector is updated to reflect the collective

effect of the noise and the measurements (with the specific
outcomes that we pick at random above), we conclude the
current “noise step” by transforming the fusion basis back
to the one that corresponds to the curve diagram we ended
up with earlier (where all affected anyons appear sequen-
tially). This is done by a sequence of F moves that reverts
the transformation performed by the first series of F moves.

3. Recovery phase

After completing the process above T times, the error
syndrome is given by the locations and charges of all
thermal anyons on the lattice. The decoding algorithm (see
Sec. IV) is then used to determine an appropriate recovery
step. Such a recovery step can be broken down into a
sequence of pairwise fusion processes of anyonic excita-
tions. In each such pairwise fusion process, one member of
the pair is moved along a specific path on the lattice until it
neighbors the other. The moving procedure consists of
basic operations where the anyon is moved to a neighboring
tile and the curves are continuously deformed accordingly,
as described in Supplemental Sec. IV F [45]. This basic
moving step is repeated until the two anyons reside in
neighboring tiles. A sequence of refactoring moves and
merges is then performed to obtain a basis in which they are
direct neighbors on the same curve, and the corresponding
operations are applied to the affected state vectors. As
during the noise process, any illegal refactoring moves
cause the simulation to abort the current Monte Carlo step
and report a decoding failure. Note that this happens
precisely when the intended fusion would create a

noncontractible loop in terms of the curve diagrams, which,
in turn, corresponds to a logical error.
If necessary, an F move is applied to obtain a fusion tree

shape where the anyons are fused directly. Their resulting
charge is then projected according to the probabilities
dictated by the coefficients in the state superposition,
and it is placed in one of the two neighboring plaquettes
while the state vector and the curve diagram are updated
accordingly.
This basic pairwise fusion process is repeated until the

current recovery step is completed, at which point the
resulting error syndrome is used to determine the next
recovery step. This dialog is iterated until either all anyonic
excitations fused away and decoding is successful or a
logical error occurs during some fusion process and a
decoding failure is declared.
Note that, throughout the entire Monte Carlo step, the

system is constantly monitored for violations of the cutoff
parameters. If at any point an individual curve contains
more than Nmax anyons or a state vector contains more than
Vmax nonzero elements, the current Monte Carlo step is
automatically reported as a failure.

VI. NUMERICAL RESULTS

The Monte Carlo simulations described in Sec. V are
performed for the three different decoders described in
Sec. IV and Supplemental Sec. V [45]. Individual Pauli
errors are picked using relative probabilities corresponding
to the following noise models:

(i) depolarizing noise.—γx ¼ γy ¼ γz ¼ 1
3
;

(ii) dephasing noise.—γx ¼ γy ¼ 0, γz ¼ 1;
(iii) bit-flip noise.—γx ¼ 1, γy ¼ γz ¼ 0.
Simulations are performed for a wide range of physical

error rates. For depolarizing noise and pure bit-flip noise,
we consider the linear system sizes L ¼ 10, 12, 14, 16, 18.
For dephasing noise, the values L ¼ 12, 14, 16, 18, 20, 22
are used.
The logical failure rate for each ðp; LÞ pair is computed

by averaging over 105 Monte Carlo samples. For the lowest
error rates p ¼ 0.01 (or p ¼ 0.02 in the case of dephasing
noise), 106 Monte Carlo samples are used in order to
improve the accuracy of our results. As visible in the results
below, this is ample to guarantee sufficiently small (95%)
confidence intervals for the average logical failure rates.
All simulations are done with the following values for

the cutoff parameters:

Nmax ¼ 27;

Vmax ¼ 2.5 × 107:

For depolarizing noise and bit-flip noise with L ¼ 18, the
ratios of aborted Monte Carlo samples near the observed
thresholds are shown in Table I.
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We find that the ratio of aborted Monte Carlo samples
drops rapidly below the threshold. For instance, at p ¼ 0.04
less than 1.1% of Monte Carlo samples (7.4% of reported
failures) are aborted for depolarizing noise with L ¼ 18. For
dephasing noise, the ratio of aborted iterations is negligible
for all system sizes and noise strengths we study.

A. Determining the threshold

The error correction threshold is given by the critical
value pc below which the logical failure rate PL is
exponentially suppressed in terms of the system size L.
For large system sizes, the threshold manifests itself as the
physical error rate for which the logical failure rates of all
system sizes coincide. Hence, a rough estimate of the
threshold can be obtained by plotting PL as a function of p
for different system sizes and finding the error rate at which
the various curves intersect.
A more accurate estimate for the error correction thresh-

old can be obtained using the critical exponent method of
Ref. [61]. This method is introduced in the context of the
toric code, where an exact mapping to a statistical model is
known [4,61]. This model, the two-dimensional random-
bond Ising model (RBIM), undergoes a phase transition
from an ordered to a disordered phase as the parameter
corresponding to the physical error rate increases. This
implies a phase transition in the logical failure rate of the
toric code. Wang, Harrington, and Preskill demonstrate
that in the regime L ≫ jp − pcj−ν, where ν is the critical
exponent for the correlation length in the RBIM, the
logical failure rate PL depends only on the dimensionless
ratio Lðp − pcÞν.
While the statistical model corresponding to the

Fibonacci Turaev-Viro code is not known, it is expected
that a similar scale-invariant behavior occurs near the
threshold here as well. Specifically, for sufficiently large
system sizes, we define the rescaled variable

x ¼ ðp − pcÞL1=ν; ð95Þ

where ν is some critical exponent, such that the logical
failure rate PL as a function of x is explicitly scale invariant.
We can find the correct values for pc and ν by fitting the
values of PL to the quadratic ansatz

PLðxÞ ¼ Aþ Bxþ Cx2; ð96Þ

originating from a truncated Taylor expansion in the
neighborhood of x ¼ 0 (p ¼ pc). We perform this fit
explicitly with the data obtained for the clustering decoder
with depolarizing noise and dephasing noise.

B. Clustering decoder

The logical failure rate PL of the clustering decoder as a
function of the noise strengthp is shown in Figs. 21(a)–21(c)
for depolarizing, dephasing noise, and bit-flip noise, res-
pectively. These results clearly manifest threshold behavior.
For pure bit-flip noise, the threshold can be estimated from
the corresponding plot as pc ≈ 0.0375� 0.0025. A more
precise estimation, based on the finite-size ansatz dis-
cussed above, is made for depolarizing noise and dephasing
noise.
For depolarizing noise, the finite-size scaling ansatz

Eq. (96) is fitted to the logical failure rates for p ranging
from 0.045 to 0.05 in increments of 0.001 25. The follow-
ing values are found using a nonlinear least squares fit:

pc ¼ 0.0470� 0.0011;

ν ¼ 1.62� 0.33:

For dephasing noise, the ansatz is fitted to the logical failure
rates obtained for p ranging from 0.07 to 0.075 in incre-
ments of 0.001 25. With these data, we find

pc ¼ 0.0732� 0.0006; ð97Þ

ν ¼ 1.17� 0.08: ð98Þ

The confidence intervals are estimated using the jackknife
resampling method. In both cases, the obtained threshold is
compatible with the rough estimate based on the crossing of
the curves in Fig. 21. The logical failure rates in terms of
rescaled error rate x defined in Eq. (95) are shown in
Figs. 22(a) and 22(b) for depolarizing noise and dephasing
noise, respectively. One can see that the obtained param-
eters do indeed result in a clear “collapse” of the data, as
predicted by the finite-size scaling hypothesis.
It is no surprise that the highest threshold is found for

dephasing noise: No more than two anyonic excitations can
be created by a single σz error, while up to four anyons can
be created by a single σx or σy error. Hence, the average
number of new anyonic excitations created in each time
step is the lowest for dephasing noise and the highest for
pure bit-flip noise, with the value for depolarizing noise
lying somewhere in between these two extremes. The
discrepancy between the thresholds for dephasing and
bit-flip noise indicates that, for biased noise, there is a
preferred choice for the computational basis of the physical
qubits.

TABLE I. Ratio of aborted Monte Carlo samples with L ¼ 18
near the observed thresholds for the various decoders.
The corresponding ratios of aborted failures are indicated in
parentheses.

Clustering Fusion-aware MWPM Blind MWPM

Depolarizing 6.1% 0.6% 0.8%
Noise (17.4%) (2.1%) (2.9%)
Bit-flip 4.6% 0.3% 0.4%
Noise (15.1%) (1.3%) (1.7%)
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C. Iterative matching decoders

We consider two types of iterative MWPM decoders:
a fusion-aware one and a blind one (see Supplemental
Sec. V [45]). The performance of these decoders under both
types of noise is shown in Fig. 23. Note that the threshold
obtained with these two types of decoders are very close.
Under depolarizing noise, both decoders exhibit a threshold
around pc ≈ 0.0300� 0.0025. Under dephasing noise and
bit-flip noise, respectively, we find pc ≈ 0.0600� 0.0025
and pc ≈ 0.0250� 0.0025 for both decoders. However,

when closely comparing the results, as in Fig. 24, one finds
a slight overall advantage for the fusion-aware decoder in
the sense that its failure rates are lower than those obtained
with the blind decoder.
On the other hand, we see that both matching decoders

have worse performance and lower thresholds compared to
the clustering decoder which does not use the detailed
syndrome information of anyon types. This is related to the
fact that the clustering decoder seems to be more natural for
the Fibonacci code than the matching decoder. It remains
an open question whether the optimal decoder for the
Fibonacci Turaev-Viro code is fusion aware.

D. Discussion

The results above are expressed in terms of the average
qubit error rate p in the fixed-rate sampling noise model
described in Sec. V C. It is, therefore, not straightforward to
compare these results to those of Abelian models such as
the surface code, which are typically expressed in terms of
an independent and identically distributed binomial noise

(a)

(b)

FIG. 22. Logical failure rate PL as a function of the rescaled
error rate x ¼ ðp − pcÞLð1=νÞ for (a) depolarizing noise and
(b) dephasing noise. The solid line represents the best fit of
the model PL ¼ Aþ Bxþ Cx2.

(a)

(b)

(c)

FIG. 21. Logical failure rate PL as a function of the physical
error rate p for the clustering decoder with (a) depolarizing noise,
(b) pure dephasing noise, and (c) pure bit-flip noise.
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strengthpIID.However, forAbelian codes, both noisemodels
are equally valid, and their respective noise strengths can be
compared using the relation between the IID noise strength
pIID and the error ratep of a fixed-rate sampling noise model
derived in Supplemental Sec. VIII [45].
Using this relation, one finds that the thresholds obtained

for the clustering decoder under depolarizing (pc ≈ 0.047)
and dephasing (pc ≈ 0.073) noise correspond to IID noise

strengths of 4.6% and 7.0%, respectively. Remarkably,
despite the complexity of the extended string-net code and
the fact that it is not known whether or not the clustering
decoder is optimal for this code, these values compare very
favorably with the optimal thresholds for the surface code
[62] (under the assumption of perfect measurements),
which are 18.9% for depolarizing noise [64] and around
10% for dephasing noise [4,61].

(a) (b)

(c) (d)

(e) (f)

FIG. 23. (a),(c),(e) Logical failure rate PL as a function of the physical error rate p for the fusion-aware iterative MWPM decoder with
(a) depolarizing noise, (c) pure dephasing noise, and (e) pure bit-flip noise. (b),(d),(e) Logical failure rate PL as a function of the physical
error rate p for the blind iterative MWPM decoder with (b) depolarizing noise, (d) pure dephasing noise, and (e) pure bit-flip noise.
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VII. CONCLUSION AND OUTLOOK

In order to estimate the non-Abelian error threshold, we
combine concepts and techniques from three seemingly
distant fields: quantum error correction, topological quan-
tum field theory, and tensor networks. In particular, we
develop a complete error correction scheme and decoding
protocols for the Fibonacci Turaev-Viro code, which
supports a universal logical gate set via braiding or
Dehn twists in two dimension. Making use of the frame-
work of tensor networks and tube algebra, we are able to
estimate the code-capacity error correction threshold using
a clustering decoder and a fusion-aware iterative matching
decoder. The threshold of 4.75% obtained for the clustering
decoder is comparable to the code-capacity error threshold
of the Abelian surface code in 2D, which is around
10% [4,30].
The main potential advantage of the non-Abelian

Turaev-Viro code compared to the surface code is that
universal logical gate sets can be implemented just via
anyon braiding or Dehn twists without the need for magic-
state distillation, which requires significantly more resource
overhead. Nevertheless, when directly comparing the
resource overhead of the Fibonacci Turaev-Viro code
and the surface code, the situation is a bit tricky, since
they correspond to different logical gate sets. The surface
code uses a Clifford + T logical gate set, where the logical
Clifford gates are implemented by lattice surgery or
braiding topological defects such as punctures or twists
with an OðdÞ time overhead, and the logical T gate is
implemented using the magic-state distillation protocol. On
the other hand, the Fibonacci anyon braiding has a
completely different generating set of logical gates, which
requires a non-negligible circuit depth to approximate the
standard Clifford gates. Therefore, the overhead compari-
son depends on the particular quantum algorithm to be
implemented. There already exists a detailed comparison in

Ref. [65] for one of the most well-known algorithms,
Shor’s factoring algorithm, between braiding Fibonacci
anyon and the standard Clifford gate set with additional
magic-state distillation [66]. In Shor’s algorithm, the
main computational resource is used for the modular
exponentiation. As shown in Ref. [65], factoring a 128-
bit number requires approximately 103 Fibonacci anyons
(logical qubits), while the Clifford + magic-state distillation
scheme needs about 109 logical qubits. Therefore, when
implementing Shor’s algorithm, the scheme of braiding
Fibonacci anyons actually has a significant advantage. We
note that this is just a rough estimate mainly considering the
complexity of logical circuit compiling. It does not take
into account the detailed threshold values of the Fibonacci
and surface codes and assumes the logical gates in both
codes have the same logical error rate. Still, such an
assumption is reasonable when the physical error rate is
sufficiently small compared to the error thresholds of both
codes given that these thresholds do not differ by many
orders of magnitude.
We further emphasize that the logical gate compiling

complexity of braiding Fibonacci anyons should never be
the main concern of the practicality of Turaev-Viro codes.
Although the present paper focuses on the simplest type of
universal Turaev-Viro code hosting Fibonacci anyons, one
can simply generalize it to other types of Turaev-Viro codes
by changing the numerical data of the fusion category
(TQFT) defining the code, i.e., the fusion rules and F
matrices, etc. One example of such modification is to
implement the Ising Turaev-Viro code, for which the
excitations are Ising anyons. When implementing Ising
Turaev-Viro codes on a higher-genus surface or bilayer
systems, one can implement the T gate via a Dehn twist
along a handle [67,68] and, hence, form a universal gate set
by combining these with the Clifford gates implemented
via braiding and topological charge measurement using
Ising anyons. With this example, the comparison with the
standard magic-state distillation protocol using surface
codes becomes straightforward. In particular, the fault-
tolerant T gate can be applied via a linear depth circuit to
implement the Dehn twist, i.e., with OðdÞ time overhead,
which requires significantly less space-time overhead than
the case of implementing the logical T gate via magic-state
distillation in the surface code.
The main conceptual difference of our work and pre-

vious works which simulate the third spatial dimension of a
3D color code or 3D surface codes with the time dimension
using a just-in-time decoder in a 2D measurement-based
quantum architecture [14,15] is that the computational
power in our case comes from the 2D code space instead
of the 3D code space, and no additional code switching or
gauge fixing procedure is needed. Practically, the logical
gates in our case can be implemented by braiding via
continuous code deformation, and the error threshold and
logical error rate for fault-tolerant logical gates is, therefore,

FIG. 24. Comparison between the logical failure rates for the
fusion-aware and the blind iterative MWPM decoders under
depolarizing noise.
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expected to be the same as the fault-tolerant threshold for
memory storage. In particular, no extra decrease of the error
threshold (compared to the storage threshold) due to the
implementation of non-Clifford transversal gates, code
switching or gauge fixing with 3D surface codes or color
codes [10,11,14,15], or just-in-time decoding is expected in
our case. Another both fundamental and practical differ-
ence is that our scheme can also be implemented in a hybrid
approach of active and passive topological protection,
where the majority of noise source are passively protected
by a 2D Hamiltonian, while only the thermal noise will
need to be corrected via active error correction [69]. This
hybrid approach may greatly reduce the overhead of active
error corrections.
A natural future extension of the work presented here

will be the adaptation of our error correction protocols to
take into account measurement errors and to determine the
error threshold of the code in the presence of both
measurement and circuit-level noise. In this setting of full
fault-tolerant error correction, our measurement scheme
which allows one to distinguish the charges of different
anyonic excitations may prove useful, since this informa-
tion could help in identifying measurement errors when
performing repeated syndrome measurements through a
consistency check. Thus, while it is still an open question
what the optimal decoder for the Fibonacci Turaev-Viro
code is and whether it would make use of the detailed
charge information in the error syndrome, it is likely that
this charge information would yield a notable advantage in
the presence of measurement errors. More generally, the
tensor network representation used in the current work can
also be further used to simulate coherent noise in these non-
Abelian codes as well as in the usual surface code.
Another direction to explore is the application of our

techniques to different models. A first interesting route
would be to investigate other types of Turaev-Viro codes,
such as the Ising Turaev-Viro code, which has doubled
Ising anyons as excitations. Besides having the standard
Cliffordþ T logical gate set as mentioned above, this code
would have a simpler noncyclic fusion rule structure which
could lead to a higher threshold, especially in the presence
of measurement noise. In this context, our measurement
scheme to extract the specific anyon charges would be
particularly useful, since it is shown in Ref. [22] that
fusion-aware decoders can yield a significant advantage for
Ising-type anyons. A second important direction here will
be to investigate non-Abelian codes with a simpler struc-
ture, such as lower-weight syndrome operator and lower-
depth measurement circuits. The Levin-Wen string-net
models are sophisticated in the sense that their plaquette
syndrome operator has weight 16. On the other hand,
Kitaev’s non-Abelian quantum double models [3] can have
a weight-4 syndrome operator and could possibly be
analyzed using an adaptation of the techniques presented
in this work. It would, therefore, be interesting to further

explore the error threshold of these alternative models
which could be more practical in terms of an experimental
implementation.
A different avenue of further research would be the

investigation of planar string-net codes with suitable
gapped boundary conditions, where information is then
encoded in the fusion state of a number of well-separated
anyons rather than in the ground state degeneracy asso-
ciated to a closed manifold with a nontrivial topology
(high-genus surface). Alternatively, the logical information
can also be encoded in the boundary degeneracy of an open
manifold corresponding to a planar geometry in analogy
with the Abelian surface code with e and m boundaries.
This matter is of significant interest, since a planar
geometry is highly attractive regarding experimental reali-
zation. The classification of these gapped boundaries has
been performed in the language of (bi)module category
theory [70], and recent progress has been made in capturing
this formalism in terms of tensor network representations
[71]. While it does not seem that suitable boundaries for a
Fibonacci Turaev-Viro can be constructed in this language,
the investigation of these concepts in the context of error
correction using different non-Abelian codes would be of
great interest.
Besides the study of the quantum memory property of

the non-Abelian codes, an important direction is to study
and simulate the detailed implementation of a universal set
of logical gates in these codes. Besides the approach of
doing braiding and Dehn twists [20,27,42,43], one can also
perform transversal gates on a folded non-Abelian code
equivalent to elements in the mapping class group [72]. An
additional advantage of non-Abelian codes appears when
they are placed on a hyperbolic surface, which admits both
constant-rate encoding [Oð1Þ space overhead] and parallel
universal logical gates via constant-depth circuits [44].
A promising direction is to explore non-Abelian codes in
higher spatial dimension or on an expander graph. Along
this direction, the ultimate goal is to explore and achieve the
fundamental limit of space-time overhead. This is because,
in higher dimension such as 4D, one can obtain a self-
correcting quantum memory. In that case, local errors
created when implementing a logical gate with a constant
depth circuit [42–44] can be corrected locally inOð1Þ time.
Eventually, this direction could evolve into a flourishing
interface between quantum information and quantum
topology.
An important aspect in terms of experimental imple-

mentation of the Fibonacci Turaev-Viro code is the reali-
zation of multi-controlled-Z (multiqubit Toffoli) gates,
which are required for an efficient implementation of F
moves (see Sec. III B). Therefore, it would be interesting to
further explore hardware-efficient implementations of mul-
tiqubit gates, instead of always decomposing these into a
longer sequence of two-qubit gates. Such multiqubit gates
are widely studied in Rydberg-atom [73] and ion-trap
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systems, and significant progress was recently made in the
realization of these gates in superconducting qubits as well
[74–76].
Finally, besides the application to quantum error cor-

rection, the scheme developed in this paper also paves the
way for quantum simulation of topological quantum field
theory on a near-term quantum computer. In particular, the
measurement and correction schemes will be a crucial
ingredient for the state preparation of the TQFT wave
functions.
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