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One manifestation of quantum chaos is a random-matrix-like fine-grained energy spectrum. Prior to the
inverse level spacing time, random matrix theory predicts a “ramp” of increasing variance in the connected
part of the spectral form factor. However, in realistic quantum chaotic systems, the finite-time dynamics of
the spectral form factor is much richer, with the pure random matrix ramp appearing only at sufficiently late
time. In this article, we present a hydrodynamic theory of the connected spectral form factor prior to the
inverse level spacing time. We first derive a general formula for the spectral form factor of a system with
almost-conserved sectors in terms of return probabilities and spectral form factors within each sector. Next
we argue that the theory of fluctuating hydrodynamics can be adapted from the usual Schwinger-Keldysh
contour to the periodic time setting needed for the spectral form factor, and we show explicitly that the
general formula is recovered in the case of energy diffusion. We also initiate a study of interaction effects in
this modified hydrodynamic framework and show how the Thouless time defined as the time required for
the spectral form factor to approach the pure random matrix result is controlled by the slow hydrodynamics
modes. We then extend the formalism to Floquet systems, where a ramp is expected but with a different
coefficient, and we derive a crossover formula from the Hamiltonian ramp to the Floquet ramp when
the Floquet drive is weak. Taken together, these results establish an effective field theory of chaotic
spectral correlations which predicts the random matrix ramp at late time and computes corrections to it at
earlier times.
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I. INTRODUCTION

There has been a surge of recent interest [1–3] in the
statistics of energy levels of “chaotic” quantum systems.
Quantum chaos in this loose sense is typically invoked
when quantizing a classically chaotic system and in the
context of quantum systems that effectively thermalize. It is
widely believed that ensembles of such chaotic systems
have the same Hamiltonian spectral statistics as ensembles
of Gaussian Hermitian random matrices, with examples
from nuclear systems [4,5] to condensed matter systems
[6–8] to holographic theories [9,10]. One line of thought
even proposes to take random-matrix-like spectral statistics
as a definition of quantum chaos, which then denotes a
superclass of physical systems that includes many-body
systems like nuclear matter (which were Wigner’s moti-
vation for introducing the random matrix ansatz) and

quantized few-body systems (where the connection to
classical chaos is clear). From this point of view, classical
chaos still has an important relation to quantum chaos, but
it is only directly relevant for a subset of all quantum
chaotic systems with a recognizable semiclassical limit.
These ideas also raise a fundamental question: How do

we tell which physical systems possess quantum chaos in
the spectral sense? Of course, if we have access to the fine-
grained energy levels, then it is easy to check from the
definition, but what if we have only access to more coarse-
grained information (as is very often the case in experi-
ment)? For example, thermalization is a widely observed
phenomenon that is also closely associated with quantum
chaos in the above loose sense, so one can wonder whether
chaos in the sense of exhibiting thermalization implies
chaos in the sense of random-matrix-like spectral statistics
(and vice versa). In this paper, we argue that if an isolated
quantum system thermalizes, then it possesses quantum
chaos in the spectral sense.
We do this by building an effective description that

predicts the apparent universality of random matrix spectral
correlations and computes corrections to the pure random
matrix answer in the presence of structure in the physical
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Hamiltonian. The idea of our approach is that corrections to
pure random matrix behavior should be controlled by the
slow “hydrodynamic” modes of the system since these are
what distinguish a Hamiltonian with structure from one
without. Then, starting from a proper effective theory of
these slow modes, we propose a principled modification of
that theory which predicts random matrix behavior at late
time and can compute corrections to it at earlier times.
Although one might have thought that these slow modes
control only corrections to pure random matrix behavior,
the same effective theory is able to produce the random
matrix behavior itself. Thermalization is built into the
approach from the start, since we assume that all other
modes decay rapidly in time and the effective theory of the
slow modes is generic in the sense of effective field theory.
To explain more precisely what our effective theory

computes, we first need to specify what we mean by
spectral correlations. Suppose fHðJÞg is an ensemble of
Hamiltonians depending on some random variables (“dis-
order”) collectively denoted J. We say that the ensemble
fHðJÞg is random-matrix-like if the statistical properties of
the eigenvalues of HðJÞ reproduce those of a Gaussian
random matrix ensemble with the same symmetry. The
spectral statistics of the ensemble can be defined using the
density of energy eigenvalues ρðEÞ. The simplest object to
consider is the ensemble-averaged eigenvalue density ρðEÞ,
but as we review below, this quantity depends on all the
details of the randommatrix ensemble and does not provide
a universal signature. However, the ensemble-averaged pair
correlation ρðE1ÞρðE2Þ is universal across a wide variety of
ensembles (even non-Gaussian ones), so it provides a
useful diagnostic of randomness in the spectrum.
However, such comparisons between the physical spectra
of fHðJÞg and the predictions of random matrix theory
must be applied with care, since a particular chaotic
quantum system will typically have only random-matrix-
like spectral correlations for energy levels that are suffi-
ciently close in energy. This is because physical systems
typically have structure in the Hamiltonian, such as con-
straints arising from spatial locality, which is not present in
standard random matrix ensembles and which must be
effectively washed out by the dynamics. The effective loss
of structure can happen only at long times after the system
has come to global equilibrium. For this reason, it is
convenient to think about spectral correlations in the time
domain by considering the Fourier transform of
ρðE0 þ ΔE=2ÞρðE0 − ΔE=2Þ with respect to the relative
energy ΔE. Then, longer times correspond to increasingly
closely spaced energy levels.
In this paper, we study the Fourier-transformed pair

correlation, which is known as the spectral form factor
(SFF), and present a hydrodynamic theory of the inter-
mediate-time spectral properties of generic quantum cha-
otic systems. By hydrodynamics, we mean the recently
developed formal effective field theory that governs the

slow modes of the system [11–15]. The relevant modes
control the late-time behavior of the system as it approaches
global equilibrium, and our theory makes a sharp con-
nection between hydrodynamics and the spectral form
factor. Moreover, symmetries and hydrodynamics are an
inescapable part of the story because time-independent
Hamiltonian systems always have at least time translation
symmetry and energy conservation, so in a spatially local
system there is always at least one slow mode. The
hydrodynamic approach we develop predicts that the
late-time spectral correlations are random-matrix-like and
gives quantitative tools to compute corrections to pure
randommatrix behavior at earlier times. As such, the theory
we propose can be viewed as an effective field theory of
chaotic spectral correlations.
Before proceeding, we briefly highlight the context of

our work. There is a very large amount of literature on
quantum chaos extending back many decades. One key
paper is Ref. [16], which showed that the variance of the
number of single-particle energy levels in an energy
window was random-matrix-like for energies smaller than
the inverse Thouless time defined from particle diffusion.
This time originally arose in the context of mesoscopic
transport as a measure of the sensitivity of the system to
boundary conditions, but it has come to refer to the
timescale beyond which quantum dynamics looks random-
matrix-like. Other prior investigations of the Thouless time
in a many-body setting include Refs. [17–21], with one
result being that the Thouless time can depend on the
observable used to define it. There are also a growing
number of exact diagonalization studies and analytic results
on many-body spectral statistics and spectral form factors
including Refs. [8,10,22,23]. One useful recent review on
various aspects of quantum chaos is Ref. [24].
To set up a more precise statement of our main results,

we first review the basics of random matrix theory (RMT)
and the observables of interest. After this short review, we
outline our results at the end of the Introduction and give a
guide to the paper.

A. Random matrix theory and spectral form factor

A “single-trace” random matrix ensemble is character-
ized by two pieces of data. The first datum is the type
of matrix (orthogonal, unitary, symplectic) and corres-
ponding Dyson index b ¼ 1, 2, 4. In physical terms, this
relates to the number and nature of antiunitary symmetries.
The second datum is a potential VðEÞ, where we choose
matrix H with probability dP ∝

Q
ij dHij exp ½−trVðHÞ�.

These data give a joint probability for the eigenvalues fEig
equal to

dP ¼ 1

Z

Y
i<j

jEi − Ejjb
Y
i

e−VðEiÞ; ð1Þ

where Z is a normalization.
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This probability distribution can be conveniently inter-
preted in terms of a “Coulomb gas” of eigenvalues as
follows. Equation (1) has the form of a Boltzmann
distribution at unit temperature for a gas of 1D particles
at positions Ei with logarithmic Coulomb interactions
Uij ¼ b log jEi − Ejj subject to an external potential V [3].
In this way of thinking, the correlations of the density of
particles or eigenvalues

ρðEÞ ¼
X
i

δðE − EiÞ ð2Þ

form a natural set of observables. The most basic of these
observables is the density of states ρðEÞ, where the overline
denotes an average over the random matrix ensemble. For
example, in a Gaussian random matrix ensemble in which
the potential V is quadratic, this average is well approxi-
mated by the famous Wigner semicircle law. However, the
average density of states is nonuniversal since it depends on
the potential V. The simplest observable that probes
spectral correlations and which does not depend strongly
on V is the two-point function of the density ρðE1ÞρðE2Þ.
It is common [25,26] to package this two-point function

into an object in the time domain called a SFF defined here
to include a filter function f,

SFFðT; fÞ ¼ jtrfðHÞe−iHT j2 ¼
X
i;j

fðEiÞfðEjÞeiðEi−EjÞT:

ð3Þ
Very often we choose fðHÞ ¼ expð−βHÞ, which we call
the SFF at inverse temperature β. (In this paper, b is the
Dyson index and β is inverse temperature. T is time and
never temperature.) Another useful choice for f is a
Gaussian function zeroed in on a part of the spectrum of
interest. The filtered SFF is then the ensemble average of
the squared magnitude of the T component of the Fourier
transform of fðEÞρðEÞ,

SFFðT; fÞ ¼
����
Z

∞

−∞
dEfðEÞρðEÞe−iET

����
2

: ð4Þ

The SFF of a random matrix breaks into three regimes.
First, a slope region, where Eq. (3) is dominated by the
disconnected part of the two-point function of ρ. Once the
system reaches the Thouless time tTh when all macroscopic
degrees of freedom have relaxed, we reach a new stage.
This second state is the ramp, where the disorder-averaged
SFF is linear in T. In this regime, the SFF is given by

SFFramp ¼
Z

dE
T
πb

f2ðEÞ: ð5Þ

The ramp continues until the Heisenberg time is set
by the inverse level spacing. At such long times, the

off-diagonal terms in Eq. (3) average to zero and the
SFF is a flat plateau. An example log-log plot of a random
matrix SFF is shown in Fig. 1.
It is further useful to decompose the SFF into connected

and disconnected pieces. In terms of the thermodynamic
partition function evaluated at imaginary inverse temper-
ature iT,

ZðiT; fÞ ¼
X
i

fðEiÞe−iEiT ; ð6Þ

the SFF is

SFFðT; fÞ ¼ ZðiT; fÞZ�ðT; fÞ ¼ SFFconn þ SFFdisc; ð7Þ

where

SFFdisc ¼ jZðiT; fÞj2; ð8Þ

and

SFFconn ¼ SFF − SFFdisc

¼ ðZðiT; fÞ − ZðiT; fÞÞðZðiT; fÞ − ZðiT; fÞÞ�:
ð9Þ

Figure 2 shows the very different behaviors of these two
pieces of the SFF. The disconnected part is controlled just
by the density of states, so we can more cleanly access the
spectral correlations by focusing on the connected part.

B. Overview of results

Given this background and notation, we can now state
our main results. We first fix some terminology used in the
paper. The ramp typically refers to the linear-in-time part of
the connected spectral form factor. In a many-body system

FIG. 1. The SFF of a simple random matrix system in the
Gaussian unitary ensemble (GUE) displaying slope, ramp, and
plateau behaviors.
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of N degrees of freedom with no symmetries or slow
modes, the ramp is expected to onset after a relatively short
time of order logN (this is the time it takes for an
exponentially decaying mode of the form e−λt to reach a
1=N suppressed amplitude provided the rate λ is not N
dependent). The main topic of this article is the modifica-
tion of the random matrix ramp due to slow modes and
nonrandom matrix features of the system. One could
conceivably speak about a “time-dependent ramp coeffi-
cient,” but we prefer to consider the time period prior to the
pure random matrix ramp as a distinct regime. In this view,
there are four time periods: (1) the very early regime prior
to a time of order logN, when all the details matter, (2) the
hydrodynamic regime, when the spectral form factor is
determined by the symmetries and slow modes of the
system, but is insensitive to other details, (3) the pure
random matrix ramp regime, and (4) the plateau regime.
In this paper, we study in detail the connected spectral

form factor in the hydrodynamic regime (regime 2) and the
pure random matrix ramp regime (regime 3). By contrast,
the very-early-time regime (regime 1) is totally nonuniver-
sal, and the very-late-time regime (regime 4) is straightfor-
ward to understand microscopically (albeit potentially
mysterious from other points of view). We define the
Thouless time to be the time it takes for the SFF to come
close the pure random matrix ramp, i.e., the crossover time
from regime 2 to regime 3. One of our key results is an
expression relating the connected SFF to return probabil-
ities [Eqs. (13) and (15)], giving precise meaning to the
notion that RMT behavior takes over when the system has
had time to fully explore Hilbert space [17].
The remainder of the paper is organized as follows. In

Sec. II, we discuss the case of approximate symmetries
corresponding to slowly decaying modes in general

quantum-mechanical terms. We show that the connected
spectral form factor can be computed in terms of return
probabilities for the slow modes. Next, in Sec. III, we argue
that the theory of fluctuating hydrodynamics convention-
ally formulated on the Schwinger-Keldysh contour can be
adapted to the periodic time contour defining the spectral
form factor. Focusing on the case of energy diffusion, we
show that this “closed-time-path” (CTP) formalism modi-
fied with periodic boundary conditions recovers the ramp at
late time and the return probability formula at interme-
diate time. Then, in Sec. IV, we discuss in more detail the
effects of interactions and study a partial resummation of
perturbative diagrams. Next, in Sec. V, we study driven
Floquet systems, deriving general formulas for their behav-
ior, rederiving a number of known results, and correctly
predicting the crossovers between different regimes of the
Floquet drive.

II. NEARLY BLOCK HAMILTONIANS

As we discuss above, a particular quantum chaotic
system will approach only the random matrix prediction
at sufficiently late time. At earlier times, the presence of
structure in the Hamiltonian typically implies a significant
deviation from the pure random matrix result. In this
section, we derive a general formula for the spectral form
factor of such systems assuming a certain decomposition
into weakly coupled random-matrix-like blocks. This
section should be viewed as an introduction to the effects
of slow modes on the spectral correlations, one in which the
results can be obtained from physically transparent assump-
tions and elementary manipulations of quantum states.
Later in Sec. III, we show how these results are recovered
from our hydrodynamic effective theory.
So, suppose the Hamiltonian decomposes into two

pieces,H ¼ H0 þ V, such thatH0 breaks intom decoupled
blocks and V causes transitions between the blocks. We
take the V-induced transitions to be slow and theH0 blocks
to be random-matrix-like. To compute ZðiTÞ ¼ trðe−iHTÞ
(we add the filter function later), we want to sum over all
return amplitudes. Consider a basis for the Hilbert space
jψ ðα;iÞi labeled by the pair ðα; iÞ where α denotes the block
and i indicates a basis vector within a block. Given an
initial state jψ ðα;iÞi, write its time development as

jψ ðα;iÞðTÞi ¼
Xm
β¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pα→βðTÞ

q
jϕβ;ðα;iÞðTÞi; ð10Þ

where pα→βðTÞ is the probability to transition to sector β
after starting in sector α (assumed to be independent of the
within-sector label i), and jϕβ;ðα;iÞðTÞi is the normalized
state in sector β originating from jψ ðα;iÞi. The return
amplitude is

FIG. 2. The connected (orange) and disconnected (blue) parts
of the spectral form factor plotted on a log-log plot. The ramp and
plateau come entirely from the connected bit, and the slope
entirely from the disconnected bit. This graph appears to show
some small ramplike behavior for the connected part of the SFF,
but that is just because the sample variance (controlled by the
connected SFF) is going up, so the distribution of values gets
wider.
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hψ ðα;iÞð0Þjψ ðα;iÞðTÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pα→αðTÞ

p
hψ ðα;iÞð0Þjϕα;ðα;iÞðTÞi:

ð11Þ

The SFF is assembled by summing these amplitudes,
taking the squared magnitude, and then averaging over the
ensemble. Now, since the dynamics within each sector is
random-matrix-like at the timescales of interest, the diago-
nal terms should reduce to the within-sector SFF and the
off-diagonal terms should be small,

X
i;j

hψ ðα;iÞð0Þjϕα;ðα;iÞðTÞihψ ðβ;jÞð0Þjϕβ;ðβ;jÞðTÞi�

¼ δα;βSFFαðTÞ: ð12Þ

Hence, the filtered SFF reduces to

SFFðT; fÞ ¼
X
α

fðEαÞ2pα→αðtÞSFFαðtÞ: ð13Þ

When the individual blocks are random-matrix-like, then
SFFα is just a linear ramp with a known coefficient, and the
evaluation of the SFF reduces to summing over the return
probabilities.

A. Path-integral example

To understand the return probabilities in more detail and
to introduce a useful rate-matrix formalism, consider the
instructive example of a particle stuck in one ofm potential
wells, in a kinematic space complicated enough such that
the Hamiltonian within each well is well approximated by a
random matrix. The single almost-conserved quantity is an
index a ranging from 1 to m.
We can solve this using doubled-system worm-

hole techniques like those in Ref. [10], reviewed in
the Appendix A. As a first glimpse of this technology,
imagine that the particle dynamics is governed by some
classical action such that the trace of the time-evolution
operator is obtained from a path integral constructed from
said action. The SFF is then obtained by doubling this
path integral, with one copy for the forward time
evolution e−iHT and one copy for the backward time
evolution. We do not need the details of this description,
just some general properties. In particular, we do not
keep track of the detailed dynamics within a well, but we
follow the dynamics of the discrete variable a denoting
which well the particle is in.
Now, the simplest solutions to the equations of motion in

a doubled system are ones where a is constant over the
entire doubled contour. There are also solutions where a is
different on the two contours, but their contributions
average to zero because of our assumption that the
within-well dynamics is chaotic. Hence, the first rule is
that the well index must agree between the two contours.
This is analogous to Eq. (12). There are also tunneling

events or instantons which take the system from well to
well, and we can put all their probabilities into a transition
rate matrix MðEÞ. Here, E denotes the energy at which the
transition is happening. MðEÞ also has elements on the
diagonals to make sure probability is conserved. Note that
because these tunneling events happen on a doubled
system, the pair of amplitudes, one from each copy of
the system, naturally combine to form probabilities. It is
these probabilities which are the matrix elements of MðEÞ.
An illustration of one configuration which contributes to
the path integral is given in Fig. 3. Note that M is not a
Hermitian matrix. It has all negative eigenvalues, except for
one zero eigenvalue whose left eigenvector is (1; 1; 1…)
corresponding to conservation of probability.
To get from the transition matrix to the SFF, the key point

is that the same instanton gas that gives us the probability of
transfer also shows up in a wormholelike path-integral
calculation of the SFF. We start with a thermofield double
(TFD) for the various approximately disconnected sectors
of the Hamiltonian. At each time step from t to tþ dt, there
is some amplitude (probability from the point of view of a
single copy of the system) that the system will go from
sector a to sector b. This is justMabdt. Multiplying over all
time steps, and requiring that the doubled system start and
end in the same sector gives

factor from approximate symmetries

¼ tr
YT=dt
1

ðI þMdtÞ ¼ treMT: ð14Þ

This means that the SFF is given by

FIG. 3. The SFF is calculated on a doubled contour for the
system. In this configuration, there are three instantons, one
taking from well a to well b, one shortly after going from b to c,
then eventually one taking the system from c back to a. In
between wells, the system is well described by the dynamics
within a single sector.
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SFF ¼
Z

dE
T
πb

f2ðEÞtr exp½MðEÞT�; ð15Þ

where the T in front still comes from an overall displace-
ment of one side relative to the other. Relative to the pure
randommatrix result, the coefficient in Eq. (15) starts out as
m for m wells and goes down to 1 at long time. It is also
worth noting that if there are truly conserved quantities,
formula (15) will still give correct results. One interpreta-
tion of Eq. (15) is as a precise version of the claim that one
gets the pure RMT result once enough time has passed for a
state to explore all of Hilbert space [17].
To illustrate the working of formula (15), suppose we

have a random Hermitian matrix of the following form: an
mN ×mN complex symmetric matrix decomposed into
N × N blocks, with elements of variance J2 on the diagonal
blocks and variance k2J2 on the off-diagonal blocks. We
can use Fermi’s golden rule to get transition rates: The
squared matrix element is just k2J2 and the density of states
is ρðEÞ ¼ ½ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NJ2 − E2

p
Þ=2πJ2� (semicircle law), so the

overall rate is 2k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NJ2 − E2

p
. Figure 4 shows three

increasingly complicated scenarios. In the first one, there

are two blocks connected with k ¼ 0.04. In the second,
there are three blocks of different sizes. In the third, a chain
of blocks where only neighboring blocks are connected.
This is analogous to a particle slowly diffusing, where its
position is approximately conserved. In each graph, we
show the realized ratio of the connected SFF to the
predicted single-block SFF, and also treMðEÞT .

III. HYDRODYNAMICS

We now turn to the main topic of this paper, the
hydrodynamic theory of the connected spectral form factor.
Let us quickly recap why hydrodyamics is relevant. As the
theory of a system’s slow modes, hydrodynamics provides
a natural framework in which to evaluate the return
probabilities entering the general formula in Eqs. (13)
and (15). One might have thought that the late-time pure
random matrix ramp must still be input by hand, as in the
argument in the previous section. However, we see that the
theory developed in this section actually predicts the late-
time pure random matrix ramp as well. We first motivate
the discussion using energy diffusion, then describe our
theory in detail in a series of subsections.

FIG. 4. Comparison of treMT (orange) vs numerical realization of SFF=fR dE½T=ðπbÞ�f2ðEÞg where f is chosen to be a tightly
bunched Gaussian.
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A. Energy diffusion and almost conserved quantities

Energy diffusion is interesting not only as a simple test
case, but because it is very generic: Any spatially local
Hamiltonian system which thermalizes and which does not
have additional conserved quantities (the generic case, e.g.,
due to disorder-breaking translation symmetry) is described
by this theory at long time or distance. This class of systems
fits the previous setting because in the limit of large volume
at a fixed time T, such a hydrodynamic system has an
extensive set of approximate conservation laws.
As a first step, let us count the number of approximately

conserved charges. For linear diffusion, the amplitude of a
long-wavelength energy fluctuation with wave vector k
decays at rate Dk2, where D is the energy diffusion
constant. In this case, all modes with wave vector less
than kT ∼ ðDTÞ−1=2 have not appreciably decayed up to
time T. In spatial dimension d, the number of such modes is

NT ∼
X
k

θðkT − jkjÞ ∼ V
Z

ddk
ð2πÞd ¼

VSd
ð2πÞd

kdT
d
; ð16Þ

which is extensive in the system size V. Hence, since the
amplitude of each energy fluctuation with wave vector
jkj < kT is almost conserved, we have an extensive set of
almost conserved quantities. The approximately decoupled
sectors are then labeled by a choice of amplitude for each
mode with jkj < kT . Moreover, within a given sector, all
other excitations have decayed, so each sector is plausibly
random-matrix-like. Hence, we are in the situation con-
sidered in Sec. II.
To go beyond this crude counting of almost conserved

modes, we appeal to the formal description of energy
diffusion as a problem in fluctuating dissipative hydro-
dynamics [11,27–29]. The particular toolset we use is a
modification of the CTP formalism [14,30], which itself is a
special case of the Schwinger-Keldysh formalism [31–33].
We include a lightning review of this formalism in
Appendix C, and it is described in great detail in the
references. In essence, we couple the conserved energy
density and energy current to background fields collec-
tively denoted Ai (with i labeling the forward or backward
part of the contour). Suppose the Hamiltonian is modified
to H½A� in the presence of background field A (which can
depend on time), such that the time evolution is obtained
from a time-ordered exponential U½A�. Then, hydrody-
namic correlation functions of the energy density and
energy current can be obtained from a generating function
of the form Z½A1; A2� ¼ TrðU½A1�ρU½A2�†Þ by differentiat-
ing with respect to A1 and A2 and setting A1 ¼ A2 ¼ 0 at
the end of the calculation.
The CTP formalism is an effective theory of Z½A1; A2� in

which all fast degrees of freedom have been integrated and
only the slow hydrodynamic modes are retained. As we
review in Appendix C, it is particularly natural to formulate

this theory using fields that are symmetric and antisym-
metric between the two contours, i.e., Ar ¼ ½ðA1 þ A2Þ=2�
and Aa ¼ A1 − A2, instead of A1 and A2. These are called
r-type or classical variables and a-type or quantum vari-
ables, respectively. The key idea is that while Z½A1; A2� is a
nonlocal object since we integrate over slow modes, we can
write it as a path integral over just the slow modes with a
local action built from the slow modes.
In more detail, we can introduce slow variables σ1;2

and write

Z½A1; A2� ¼
Z

Dσ1Dσ2eiShydroðB1;B2Þ; ð17Þ

where Bi ¼ Ai þ ∂σi, and Shydro is a local effective action
(distinct from the microscopic action defining the system).
Within the CTP formalism, the hydro effective action obeys
numerous constraints that allow its form to be deduced
from effective field theory reasoning.
To ground the discussion with a concrete example, we

continue to focus on energy diffusion, but we emphasize
that the connection between hydrotheories and the SFF is
more general. In the CTP framework, the theory of linear
diffusion is given by a Lagrangian of the form [14]

L ¼ −σað∂tϵ −D∇2ϵÞ þ iβ−2κð∇σaÞ2; ð18Þ

where D is the diffusion constant, κ is the thermal
conductivity, and ∇2 is the spatial Laplacian. One can
also define the specific heat c ¼ κ=D, in terms of which
ϵ ¼ cβ−1∂tσr. One physical interpretation of the fields σa;r
is in terms of maps between physical time and an “internal
fluid time.” However, even without appealing to any
particular interpretation, the basic mechanics of the hydro
action are comprehensible. Ignoring for a moment the σa
quadratic term, σa plays the role of a Lagrange multiplier
enforcing the diffusion equation for the energy density ϵ.
The effect of the quadratic term in σa is to introduce
stochastic fluctuations in the diffusion equation. This can
be seen by uncompleting the square by introducing another
fluctuating field with a specially chosen quadratic term.
Then, σa is again a Lagrange multiplier, but now it enforces
a diffusion equation with a stochastic source that generates
fluctuations in the amplitudes of the nearly conserved
modes. Such fluctuations must be present due to the dissi-
pative nature of the diffusive decay and the fluctuation-
dissipation relation.

B. Connecting fluctuating hydrodynamics
to spectral statistics

Now, the straightforward view of the role of the CTP
formalism in the computation of SFFs is in terms of the
return probability in Eqs. (13) and (15). Considering again
the example of energy diffusion, we can say that
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treMT ¼
Z

Dϵðx; t ¼ 0Þ Pr½ϵðx; t ¼ TÞ ¼ ϵðx; t ¼ 0Þ�;

ð19Þ

where ϵðx; tÞ is the energy density at position x and time t,
and we exclude the spatial zero mode. This can be
converted into a path integral over all periodic histories,

treMT ∝
Z

Dϵðx; tÞDσaðx; tÞeiShydro½ϵ;σa�; ð20Þ

where ϵ is an r-type variable and σa is the antisymmetric
counterpart of ϵ in the CTP formalism. In other words, we
use the hydro effective action Shydro to compute the return
probabilities. Of course, the zero mode of energy is exactly
conserved. In the CTP formalism, it is set by the initial
state, but in the SFF case, it should be integrated over,
weighted by the filter function. The limitation of this point
of view is that we seem to be putting in the RMT behavior
of individual blocks by hand.
A more general way to look at Eq. (20) is to view it as a

path integral which will have wormholelike solutions as in
Ref. [10] (see Appendix A). In particular, it is a path
integral over two contours going in opposite directions, and
it focuses on a set of states that (locally) look like an
equilibrium thermal state. This connection is summarized
in Fig. 5. The key idea is that the contour which defines the
generating function of fluctuating hydrodynamics is almost
identical to the contour which defines the spectral form
factor. They differ only in their boundary conditions in the
past and future. In the case of fluctuating hydro, there is an

initial state and a future trace, and in the case of the SFF, we
have periodic boundary conditions and possibly a filter
function. Hence, it is natural to suppose that the same hydro
effective action can be used to compute both the CTP
generating function and the SFF, provided we use the
appropriate boundary conditions. We call our periodic time
modification of the CTP formalism the doubled-periodic-
time (DPT) formalism.
To be completely explicit, here are the assumptions

underlying the following analysis of the DPT formalism.
Consider a system with “bare” hydrodynamic action
Shydro ¼

R
ddxdtLhydro defined on the conventional CTP

contour. By bare action, we mean that we integrate out all
the fast modes above some energy scale Λfast, but we do not
integrate over any slow modes. Then we assume the
following:

(i) First, that the same bare hydro action on the CTP
contour can be placed on the SFF contour by simply
changing the boundary conditions in time, up to
corrections of order e−ΛfastT. Physically, the expect-
ation is that the fast modes cannot wrap efficiently
around the time circle, and hence, the action ob-
tained from integrating them out is not sensitive to
the boundary conditions. Note that this statement
can apply only to the bare action: Once we integrate
out modes which can effectively wrap the time
circle, then we can get new terms in the action.

(ii) Second, that the bare CTP action with SFF boundary
conditions gives the dominant saddle point or phase
for the connected SFF for a wide window of time.
Specifically, it should be the dominant saddle after

FIG. 5. Top left: the microscopic Schwinger-Keldysh contour which can be used to compute the generating function Z½A1; A2� that
gives hydrodynamic response functions. Note that the two contours are not explicitly coupled except in the past (from the initial state)
and the future (from the trace). Bottom left: the effective CTP action describing hydrodynamic observables. It can have explicit coupling
between the contours, denoted by the gray shading, arising from integrating out fast modes. Top right: the microscopic SFF contour,
again with no explicit coupling between the contours. Bottom right: our central hypothesis, that the long-time SFF can be computed
using the hydro effective action by modifying the boundary conditions and summing over energies. To rationalize the coupling of
contours indicated by the gray shading, there must be an ensemble average which couples the contours.
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times of order Λ−1
fast log (system size) and before the

inverse many-body level spacing time. Note that we
are relying on the thermodynamic limit to evaluate
the SFF by finding the dominant saddle point and
computing fluctuations around it.

(iii) Third, that there is some averaging over disorder
which effectively connects the decoupled SFF con-
tours and rationalizes the interactions between con-
tours in the hydro action. Such averaging is required
to make sense of the SFF as a smooth function of
time, otherwise one would find an erratic time
dependence. While this disorder average is certainly
required, it remains somewhat mysterious from the
hydro point of view since the disorder does not
explicitly appear in the hydro action. Note that the
CTP contour already has connectivity between the
contours due at least to the future boundary con-
dition, so averaging is not required there if the
observables of interest are self-averaging.

To the point about boundary conditions, one can object
that the boundary conditions should not matter in either
case (CTP vs DTP) as far as the fast modes are concerned
since they decay rapidly in time. This is almost true, but
misses two crucial effects provided by the boundary
conditions in the CTP case. The past boundary condition
(the initial state) sets the values of the conserved quantities.
The future boundary condition (the trace) guarantees that,
no matter the initial state, the particular fine-grained states
that contribute to Z are equal in the far future. This latter
condition gives an important fine-grained correlation
between the contours. In the DPT theory, we do not have
the initial state (although we can include a filter function) or
the final trace. This means we need to sum over the values
of conserved charges (since these are not fixed and the SFF
involves sums over all states), and we need some averaging
which produces a similar kind of correlation of fine-grained
states on the two contours.

C. Hydrodynamics, wormholes,
and the thermofield double

To begin to flesh out the hydrodynamic theory of the
SFF, we first elaborate on the connection to the thermofield
double and wormholes. As is pointed out in Ref. [10] and
summarized in Appendix A, there are two significant
classes of saddle points of a path integral on the SFF
contour. One class corresponds to two decoupled saddle
points for the two time circles. The other class derives from
TFD solutions, which are correlated between the two
contours and which exhibit a free relative time shift and
a free total energy. Though the existence of these two
classes is general, in the case of holographic systems the
TFD solutions also have an interpretation as wormholes. As
such, they are literally the “connected” part of the SFF. In
this context, hydrodynamics appears naturally because it
can be viewed as the theory of expanding around a

thermofield double solution. Moreover, it is necessary to
use hydrodynamics to get a quantitative one-loop or higher
understanding of the size of these contributions. We also
caution the reader that for general systems, we must include
the fluctuations around the saddle point to get the correct
answer (in contrast to large-N systems where the saddle
point itself is often sufficient).
To calculate the SFF, we need to do a saddle-point

expansion for a thermofield double solution on a forward
and backward contour. In this subsection, we discuss the
spatial zero modes of the hydrodynamic action. This can be
viewed as a theory of zero-dimensional systems (such as
those with all-to-all interactions) or as the late-time limit of
a finite-dimensional system in finite volume. The path
integral with a quadratic action, in terms of the local relative
time shift between the contours σaðtÞ and total energy Eaux
(the aux notation is chosen to emphasize similarity to
Ref. [10]), is

SFF¼
Z

DEauxDσa
2π

f2ðEauxÞexp
�
−i

Z
dtσaðtÞ∂tEauxðtÞ

�
:

ð21Þ

The reader unfamiliar with the CTP formalism should
think of this as the simplest action that enforces energy
conservation, with σaðtÞ playing the role of a Lagrange
multiplier requiring ∂tEaux ¼ 0. Indeed, the integrals over
nonzero frequency modes yield delta functions which
enforce energy conservation from moment to moment.
On the other hand, the integral over the zero-frequency
modes give exactly the linear ramp,

T
2π

Z
dEauxf2ðEauxÞ: ð22Þ

It is instructive to compare this answer with the tradi-
tional path integral on the CTP contour. In the CTP case,
the zero-frequency relative time shift is constrained to be
zero due to the future boundary condition connecting the
contours, but in the DPT case, this relative time shift is
naturally unconstrained. Similarly, the total energy integral
is weighted by a thermal factor (or the energy distribution
of the initial state) in the CTP case, but it is unconstrained
(apart from the imposed filter function) in the DPT case.
In the case of a time-reversal invariant Hamiltonian with

GOE symmetries, an extra factor of 2 comes from the
possibility of reversing time for one of the contours relative
to another, so time t on contour 1 maps to time −t on
contour 2. For physical Hamiltonians with GSE symmetries
cannot be realized without the SFF picking up at least one
factor of 2 in the numerator from degeneracies or blocks,
and then we get the Gaussian unitary ensemble (GUE)
answer.
Similar logic can be applied to higher-order moments of

ZðiT; fÞ with respect to the disorder average, with the
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assumption that the relevant saddle points are copies of the
dominant DPT saddle point. There are different cases
depending on the symmetry. When the symmetry matches
the GUE ensemble, then Z is a complex number and the
moments of interest are ZkZ�k. There are k forward
contours and k backward contours. Thus, there are k! ways
to connect the forward and backward contours into pairs.
Once this is done, each one has a free Eaux and a free
relative time shift. Thus, the 2kth moment of Z (assuming
there are no additional symmetries) is

ZkðT; fÞZ�kðT; fÞ ¼ k!

�
T
2π

Z
dEf2ðEÞ

�
k
: ð23Þ

In another case, there is an operator O which anticom-
mutes with H, and the spectrum has E ↔ −E symmetry.
Provided f is even, Z is always real, and there is no
difference between forward and backward contours of the
SFF. So, there are ð2kÞ!! pairings, and the answer is

ZkðT; fÞZ�kðT; fÞ ¼ ð2kÞ!!
�
T
bπ

Z
dEf2ðEÞ

�
k
: ð24Þ

These are exactly the moments one would get for complex
or real Gaussian variables, respectively, which is also what
one would get from RMT. More surprisingly, we get this
without specifying the type of disorder, which indicates that
hydrodynamics knows about universal features of disor-
dered systems provided the disorder is not so strong that it
changes the structure of the hydrotheory.

D. SFF of fluctuating diffusive hydrodynamics

Having seen that the hydrotheory does in fact predict a
linear ramp at late time, we now evaluate the quantity
expðMTÞ for the linear theory of energy diffusion. As we
see above, the ramp comes from the spatial zero modes, and
the sum over return probabilities comes from the other
spatial modes. Most of the calculation about to be shown is
generic for any diffusing substance, but for concreteness,
we continue to use the language of energy diffusion. In the
CTP framework, the theory of linear diffusion is given by a
Lagrangian of the form [14]

L ¼ −σað∂tϵ −D∇2ϵÞ þ iβ−2κð∇σaÞ2; ð25Þ

where D is the diffusion constant, κ is the thermal
conductivity, and ∇2 is the Laplacian. One can also define
the specific heat c ¼ κ=D, in terms of which ϵ ¼ cβ−1∂tσr.
Note that since these physical properties typically vary with
temperature or energy density, they should be regarded as
functions of the zero mode Eaux, and we must integrate the
final result over energy. For the analysis in this subsection,
we consider the total energy of the system to be fixed
and known.

Now, because the action is quadratic, the path integral
breaks up into a product over different spatial wave vectors.
Hence, the sum over return probabilities is

treMT ¼
Y
k

Z
dϵk;initpðϵk;final ¼ ϵk;initÞ: ð26Þ

Looking at a particular wave vector k, let the amplitude at
time t ¼ 0 be ϵk. At time t ¼ T, the amplitude is given by
some probability distribution with mean e−γkTϵk, where γk
is the decay rate, and variance σ2ðTÞ. For the linear theory
above, this distribution is a Gaussian,

pðϵk;final; TÞ ¼
exp ð− ðϵk;final−e−γkTϵkÞ2

2σ2ðTÞ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðTÞ

p ; ð27Þ

although the precise shape turns out not to matter. The
return probability integrated over the initial condition is

Z
dϵkpðϵk;final ¼ ϵk; TÞ ¼

1

1 − e−γkT
; ð28Þ

independent of the variance σ2ðTÞ.
For the DPT theory above with periodic boundary

conditions, γk ¼ Dk2, and the allowed values of k are k ∈
ð2π=LÞZd where L is the linear size, so that V ¼ Ld. This
implies that

treMT ¼
Y

k∈ð2π=LÞZd

1

1 − e−Dk2T
: ð29Þ

For more general shapes, the decay rates are given by the
eigenvalues λ of the Laplacian ∇2 (which are nonpositive).
Hence, the general formula is

treMT ¼
Y

λ∈specð∇2Þ

1

1 − eDλT : ð30Þ

Considering times that are short enough that many
modes have not decayed, so that we may ignore the
discreteness of the spectrum of ∇2, the result for a box
of volume V is

log treMT ¼ V
ð2πÞd

Z
ddk

X∞
j¼1

expð−jDk2TÞ
j

¼ V
ð2πÞd

X
j

1

j

�
π

jDT

�
d=2

¼ V
�

1

4πDT

�
d=2

ζð1þ d=2Þ: ð31Þ

When specialized to one dimension, this agrees exactly
with the result in Ref. [19] obtained for a particular Floquet
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model where the diffusing substance was a conserved U(1)
charge. At longer times, we see that the slowest modes
control the approach to the linear pure randommatrix ramp.
In particular, when T is large compared to the Thouless
time tTh ∼ V2=d=D, the trace is exponentially close to
unity, treMT ∼ 1þOðe−T=tThÞ.

E. Direct evaluation of the SFF path integral

Equation (30) can also be derived by directly computing
the path integral taking into account the periodic boundary
conditions in time. Note that the zero mode k ¼ 0 requires
special attention. It corresponds to the exactly conserved
quantity, and the divergence in ð1 − e−γTÞ−1 when γ ¼ 0
should be replaced with a sum over the allowed values of
the conserved charge, as follows from the trace formula.
This all follows directly from the path integral, as we
now show.
The SFF integral is

SFF ¼
Z

DϵDσa expðiShydroÞ;

Shydro ¼
Z

dVdtð−σað∂t −DΔÞϵþ iDκσaΔσaÞ: ð32Þ

If we break the time circle into T=Δt segments, then the
measure is

DϵDσa ¼
Y
x

YT=Δt−1
l¼0

dϵðx; t¼ lΔtÞdσaðx; t¼ lΔtÞ
2π

: ð33Þ

The 2πs are to enforce proper normalization of delta
functions imposing the hydroequations.
Shydro is a translation-invariant Gaussian function, so we

can break path integral (32) into a product over spatial
modes k with DΔ ¼ λk, and then over temporal frequen-
cies. These dimensionless frequencies, the eigenvalues of
the dt∂t matrix, are the T=Δt complex numbers iω obeying
ðiωþ 1ÞT=Δt ¼ 1. Going to the basis of these modes, we
have

SFF ¼
Y
k

SFFk;

SFFk ¼
Y
ω

1

iω − λkΔt
: ð34Þ

Note that SFFk is a product over roots of unity of the formQ ½iωþ 1 − ð1þ λkΔtÞ�. For odd T=Δt, the result is

SFFk ¼ ð1 − ð1þ λkΔtÞT=ΔtÞ−1 ¼Δt→0 ð1 − eλkTÞ−1: ð35Þ

After multiplying together the contribution from different
momentum modes, we precisely recover the return prob-
ability formula.

The one mode which cannot be evaluated this way is the
hydrodynamic zero mode corresponding to the total energy,
since it has a vanishing action. Instead, one is forced to
do the full integral

R ½ðdEdσaÞ=2π� with R
dσa ¼ T. For

systems with time-reversal symmetry, there is an additional
solution where contour 2 is reversed, so the 2π in the
denominator becomes π. Thus, the quadratic hydrotheory
with periodic temporal boundary conditions correctly
recovers Eq. (15) and does not require the random matrix
ramp to be put in by hand.

F. Subdiffusive hydrodynamics

As an aside, for some systems, such as fracton systems
with multipole conservation [34,35] or systems near a
localization transition, one can get subdiffusive dynamics
of a conserved density. This can be taken into account by
replacing∇2 with∇2n. In this case, the analog of Eq. (31) is

log treMT ¼ V
ð2πÞd

Z
ddk

X∞
j¼1

expð−jDnk2nTÞ
j

¼ V
ð2πÞd

Sd
2n

Γ
�
d
2n

�X
j

1

j

�
1

jDnT

�
d=2n

¼ Vð2πÞd Sd
2n

Γ
�
d
2n

��
1

DnT

�
d=2n

ζð1þ d=2nÞ;

ð36Þ

which agrees with the result obtained in Ref. [36] for such a
system.

IV. INTERACTION EFFECTS

In this section, we investigate interaction effects. We
make some general comments and exhibit one class of
diagrams which can be summed to give a qualitative
modification of the diffusive scaling inherent in the
quadratic theory of diffusion. We restrict ourselves to a
discussion based on perturbation theory. To set up a
perturbation theory, we must first obtain the quadratic
Green’s functions. For the DPT formalism, these are
obtained from the conventional CTP Green’s functions
by summing over images. Then, one can consider a variety
of loop diagrams using vertices from the hydro action and
the DPT-modified quadratic Green’s functions.
Among the effects present in these diagrams, we expect

all the usual effects present in the conventional CTP
formalism. These include modifications of various trans-
port coefficients and modifications of the complex structure
of various Green’s functions arising from loops of the slow
modes [37]. However, in the DPT case, there are qualita-
tively new effects arising from time periodicity, including
classes of diagrams such as the tadpole in Fig. 6 which
would identically vanish in the CTP formalism. This
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section is devoted to a first study of such DPT-specific
interaction effects in the context of diffusion.

A. Deformations of the Hamiltonian

To give a simple warm-up, we first discuss how
deformations of the Hamiltonian manifest in the DPT
formalism. Consider a Hamiltonian H ¼ H0 þ gδH. The
derivative of ZðiTÞZð−iTÞ with respect to g is

δjZj2 ¼ trðiδHeiHTÞtre−iHT − treiHT trðiδHe−iHTÞ: ð37Þ

Viewing the two contours as two copies of the system, this
expression can be thought of as inserting iδH ⊗ I − I ⊗
iδH into the DPT path integral. Because it is antisymmetric
between the two contours, it corresponds to an a-type
variable in DPT formalism, so the expression for δjZj2 is
given by the expectation value of an a variable. In the
standard CTP case, such an expectation value would be
exactly zero. But in the DPT case, one can get a nonzero
result. This had to be so, given our result above, since such
a perturbation can certainly change the value of the
diffusion constant, and thus the overall answer.
To show how this comes about in the formalism,

consider an arr-type interaction. This vertex allows for
diagrams such as in Fig. 6, which give a nonzero imaginary
expectation value to a-type variables due to propagators
that wrap around the T circle. When T is less than the
Thouless time, such wrapping effects are not suppressed,
and the DPT formalism predicts that the SFF is sensitive to
the deformation. However, at times long compared to the
Thouless time, the effects of the periodic identification
are exponentially small, and the formalism predicts that
a-type variables should have approximately zero average.
This observation gives additional insight into how the

hydrodynamic DPT formalism encodes the universality of
the pure random matrix ramp at late time.

B. Comments on renormalization-group approaches

We next discuss how the conventional scaling analysis of
the CTP formalism is modified by time periodicity. To
begin, let us recall a simple version of a renormalization-
group transformation on the hydro-Lagrangian for diffu-
sion. Recall that the quadratic Lagrangian is

L0 ¼ −σað∂tϵ −D∇2ϵÞ þ iβ−2κð∇σaÞ2: ð38Þ

We focus on the leading perturbations as encoded in

ΔL ¼ λ

2
∇2σaϵ

2 þ λ0

3
∇2σaϵ

3 þ icβ−2ð∇σaÞ2ðλ̃ϵþ λ̃0ϵ2Þ:
ð39Þ

We want a scaling transformation which leaves this
quadratic action invariant. From the σa∇2ϵ and ð∇σaÞ2
terms, we see that σa and ϵ should be taken to have the same
scaling dimension. Similarly, comparing the σa∂tϵ and
σa∇2ϵ terms, we see that time and space should scale with
relative power of 2. Under a rescaling

x → λx; ð40Þ

t → λ2t; ð41Þ

ðσa; ϵÞ → λ−Δ0ðσa; ϵÞ; ð42Þ

the quadratic action goes into

I ¼
Z

ddxdtL0 →
Z

ddxdtλdþ2λ−2−2Δ0L0: ð43Þ

Hence, the quadratic action is invariant if Δ0 ¼ d=2.
With this scaling, the dimensions of the nonquadratic

operators in ΔL are

2þ 3Δ0; 2þ 4Δ0: ð44Þ

All these operators are irrelevant since

2þ 4Δ0 > 2þ 3Δ0 > dþ 2: ð45Þ

Of course, these irrelevant operators can still have impor-
tant effects, but the theory is weakly coupled at low
energies in this RG sense.
Now, how is this picture modified by time periodicity?

When formulating a RG of the DPT path integral, we
expect some general features:

(i) The system size L and time T will flow under the
RG. When using diffusive scaling to define the flow,

FIG. 6. An arr-type vertex with an a-type variable (dashed line
propagator) and an r-type variable (solid line propagator)
contracted together. In the traditional CTP formulation this would
be impossible, but with periodic time there is a contribution from
one or more wrappings around the time circle. At long times,
contributions from nontrivial wrappings are suppressed by factors
of e−T=tTh .
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the combination L2=T will be preserved under
the RG.

(ii) The bare action is defined with a cutoff in momen-
tum of Λk ∼ 1=l0 and a cutoff in frequency of
Λω ∼ 1=τ0. Here, l0 and τ0 are some sort of mean
free path and scattering time, respectively.

(iii) The bare action with this cutoff should be identical
to the CTP bare action up to corrections of the form
e−T=τ0 , since we integrate out only modes with
frequencies higher than Λω.

(iv) Upon integrating out additional modes at frequency
ω, we expect any new terms in the action to respect
CTP rules up to e−Tω corrections since these
modes cannot effectively wrap the time circle. This
approximation breaks down if we reach a point
where ωT ∼ 1.

These expectations are in essence an elaboration of the
arguments made in Sec. III B for use of the CTP bulk
Lagrangian on the SFF contour.

C. A first Feynman diagram

We now compute some novel effects of interactions that
arise due to time periodicity in an interacting version of
Eq. (25). We focus on simple one-loop effects in this
subsection. Following the conventions in Refs. [14,37], we
consider the Lagrangian

L ¼ iβ−2κð∇σaÞ2 − σað∂tϵ −D∇2ϵÞ þ λ

2
∇2σaϵ

2

þ λ0

3
∇2σaϵ

3 þ icβ−2ð∇σaÞ2ðλ̃ϵþ λ̃0ϵ2Þ: ð46Þ

These interactions arise from a variety of sources, including
the fact that the parameters of the effective theory depend
on the background density. Hence, local fluctuations in the
density will induce variations in the parameters of the
Lagrangian. Such effects can be captured by including non-
Gaussian terms in the effective action.
Our interest is in the new classes of diagrams allowed by

periodic time. One interesting diagram is the dumbbell in
Fig. 7. This diagram diverges unless λ ¼ 0. This condition
is equivalent to requiring we expand around an energy
density which is an extremum of diffusivity. This makes
perfect sense in light of the SFF formula in Eq. (31), which
suggests that the dominant contribution should come from

the minimum of diffusivity. If instead we add a filter
function which localizes the total energy integral around
some Ē, then this effectively adds a mass to the zero mode
and removes the divergence.
Suppose we consider an extremum of the transport

coefficients (e.g., the case of charge diffusion at half
filling). Then the dumbbell diagram is set to zero, and
the leading-order corrections to the action simplify to

ΔL ¼ λ0

3
∇2σaϵ

3 þ icβ2λ̃0ð∇σaÞ2ϵ2: ð47Þ

We have the propagators

Garðk; tÞ ¼ i
eDk2ðt−TÞ

1 − e−Dk2T
; ð48Þ

Graðk; tÞ ¼ i
e−Dk2t

1 − e−Dk2T
; ð49Þ

and

Grrðk; tÞ ¼
β−2κ

D

�
e−Dk2t

1 − e−Dk2T
þ e−Dk2ðT−tÞ

1 − e−Dk2T

�
: ð50Þ

The leading perturbative correction to the DPT path
integral requires that we evaluate the expectation value of
ΔS ¼ R

ΔL with respect to the quadratic theory, with path
integral ZDPT;0. This corresponds to the diagram in Fig. 8.
The DPT path integral is then approximately

ZDPT ≈ ZDPT;0eihΔSi0 : ð51Þ
The expectation of ΔI contains two terms, one proportional
to λ0 and one proportional to λ̃0. The leading λ̃0 vanishes by
symmetry [∇Graðr ¼ 0; 0Þ ¼ 0]. The λ0 term gives

FIG. 7. Two λ vertices. The propagator along the dumbbell is
infinite, and the diagram diverges unless λ ¼ 0, and thus we are at
a local extremum of diffusivity.

FIG. 8. A diagram contributing to the zero-point energy. In the
case of normal hydrodynamics, this contribution would vanish
since the ra propagator would vanish at zero time difference.
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hiΔSi0 ¼ iλ0VT½∇2Gra�ð0; 0ÞGrrð0; 0Þ: ð52Þ

With the convention that σa appears slightly ahead of ρ in
the action, the two Green’s functions are

½∇2Gra�ð0; 0Þ ¼
1

V

X
k

ð−k2Þi e−Dk2T

1 − e−Dk2T
ð53Þ

and

Grrð0; 0Þ ¼
1

V

X
k

β−2κ

D
1þ e−Dk2T

1 − e−Dk2T
: ð54Þ

We exclude k ¼ 0 from these sums which corresponds to
fixing the total charge, e.g., using a filter function. In the
continuous wave-vector regime, the contribution is

hiΔSi0 ¼ iλ0VT
�
−i

1

ð2πÞd
1

2DT

�
π

DT

�
d=2

ζð1þ d=2Þ
�

×

�
ΩdΛd

k

dð2πÞd þ 2
1

ð2πÞd
�

π

DT

�
d=2

ζðd=2Þ
�
; ð55Þ

where Λk is a momentum cutoff.
To interpret this result, note that the quadratic term (still

in the continuous wave-vector regime) can be written solely
as a function of the scaling variable u ¼ DT=L2 where
V ¼ Ld,

ZDPT;0 ¼ exp

�
c1
ud=2

�
: ð56Þ

However, the correction term violates this scaling collapse
since

eihΔSi0 ¼ exp

�
c2
ud=2

þ c3
Vud

�
; ð57Þ

but at fixed u in the large-V limit, the second term goes to
zero. To get stronger effects, one has to consider the
resummations discussed in the context of energy diffusion.

D. Interaction effects and resummation

Still considering the Lagrangian

L ¼ iβ−2κð∇σaÞ2 − σað∂tϵ −D∇2ϵÞ þ λ

2
∇2σaϵ

2

þ λ0

3
∇2σaϵ

3 þ icβ−2ð∇σaÞ2ðλ̃ϵþ λ̃0ϵ2Þ; ð58Þ

we now perform a more sophisticated analysis than in
Sec. IV C. The behavior of the rr propagator should be
modified by the existence of the rr self-energy.
This self-energy comes from diagrams like the one in

Fig. 9. This diagram would normally vanish in the CTP

setup, but here it contributes a nonvanishing rr self-
energy. We treat this term self-consistently by adding an
undetermined self-energy to the action and fixing it self-
consistently. Since σa self-interactions still need to have a
derivative in front of them by CTP rules, a constant rr self-
energy Σ is indeed the most IR-important term we can add.
Then the propagators are

Grrðω; kÞ ¼
β−2κk2

ΣDκk2 þ ðD2k4 þ ω2Þ ;

Graðω; kÞ ¼
iωþDk2

ΣDκk2 þ ðD2k4 þ ω2Þ ;

Gaaðω; kÞ ¼
Σ

ΣDκk2 þ ðD2k4 þ ω2Þ : ð59Þ

To solve for the self-energy, we need to sum Gra over all
frequencies ω ¼ 2πn=T. The sum is

X
ω¼2πn=T

Graðω; kÞ ¼
Dk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2k4 þ ΣDκk2
p

×
expð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4 þ ΣDκk2

p
TÞ

1 − expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4 þ ΣDκk2

p
TÞ ;

ð60Þ

which gives an expression for Σ:

Σ ¼ λ0
X
n

Z
ddk
ð2πÞd k

2
Dk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2k4 þ ΣDκk2
p

× expð−n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4 þ ΣDκk2

p
TÞ: ð61Þ

There is not an IR divergence on the right-hand side, so to
leading order in large T, the Σ dependence on the right-
hand side can be dropped. We are left with

Σ ¼ λ0
X
n

Z
ddk
ð2πÞd k

2 expð−nDk2TÞ

¼ λ0
d

2DT

ffiffiffiffiffiffiffiffiffiffiffiffi
1

4πDT

r
d

ζð1þ d=2Þ; ð62Þ

FIG. 9. A diagram contributing to the rr self-energy. In the case
of normal hydrodynamics, there would be no rr self-energy.
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where for the last equality we work in the time regime
where the wave vector may be treated as continuous. This
result also has an intuitive interpretation. At a minimum of
diffusivity, the result (31) gets a quadratic dependence on ϵ
which is exactly the self-energy.
When is this self-energy term important? Ignoring

factors of κ and D (which are effectively unit conversions),
the two terms in the square root are comparable when
k ∼ kΣ and

k2Σ ∼ Σ ∼ λ0kdþ2
T ; ð63Þ

where again kT ∼ T−1=2. This gives kΣ ∼
ffiffiffiffi
λ0

p
T−½ðdþ2Þ=4�.

Hence, at long time there is an emergent length scale set by
k−1Σ which is parametrically longer than k−1T .
If we now add Σ to the action and take a determinant,

we get

det

�
Σ iðiωþDk2Þ=2

ið−iωþDk2Þ=2 Dκk2

�

¼ D2k4=4þ ΣDκk2 þ ω2=4: ð64Þ

From a calculation similar to that in Sec. III E, it follows
that the coefficient of the ramp is modified to

logcoeffðTÞ ¼−
V

ð2πÞd
Z

ddk ln

×
h
1− exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4þ 4ΣDκk2

p
T
	i

: ð65Þ

or

log coeffðTÞ ¼ V
ð2πÞd

Z
ddk

×
X∞
j¼1

expð−j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4 þ 4ΣDκk2

p
TÞ

j
: ð66Þ

Since kΣ ≪ kT , the integrand is always controlled by the
diffusive scaling at large k, and it is smoothly cut off for
jkj ≫ kT . When the self-energy contribution can be
ignored, we therefore find the usual result

log coeffΣ¼0 ∼ VkdT ∼ VT−d=2: ð67Þ

The important question is whether the self-energy contri-
bution significantly modifies this scaling. The self-energy
contribution is only important for jkj < kΣ, so restricting
to that region of k space and dropping the diffusive part,
we find

log coeffonlyΣ ∼ V
Z

kΣ

0

djkjjkjd−1 ln

× ½1 − expð−
ffiffiffiffiffiffiffiffiffiffiffiffi
4DκΣ

p
TjkjÞ�: ð68Þ

The typical size of the argument of the exponential is

ffiffiffiffiffiffiffiffiffiffiffiffi
4DκΣ

p
TkΣ ∼ TΣ ∼ T−d=2 ≪ 1: ð69Þ

Hence, up to logarithmic corrections, the magnitude of the
coefficient is just

log coeffonlyΣ ∼ VkdΣ: ð70Þ

This is always smaller than VkdT .
A more complete picture of the integral is obtained by

adding and subtracting the pure diffusive answer. Then,
because the argument of the exponential is close to zero for
all k where the Σ term is important, we can approximate the
logarithm as lnð1 − e−uÞ ≈ ln u to give

log coeff ¼ log coeffΣ¼0 −
V

ð2πÞd
Z

ddk ln

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2k4 þ 4ΣDκk2

p

Dk2
: ð71Þ

The second term is indeed proportional to VkdΣ. The result is

log coeff ¼ V

�
Ad

Td=2 −
Bd

Tðd2þ2dÞ=4

�
: ð72Þ

In d ¼ 1, this reduces to

log coeffd¼1 ¼ L

�
A1

T1=2 −
B1

T3=4

�
: ð73Þ

We conclude that the diffusive behavior dominates at late
time, but there is a significant power-law correction to the
diffusive behavior. Moreover, the correction is larger than
what we find to leading order in perturbation theory.

V. EXTENSION TO FLOQUET SYSTEMS

In this section, we extend the previous theory to Floquet
systems. There are several points to note. First, one can still
define a SFF-like object in a Floquet system by restricting
the time T to be an integer multiple of the drive period.
Chaotic Floquet systems are then expected to have a SFF
which is given by a random unitary ensemble. Such
ensembles still give rise to a ramp, but with a different
coefficient. One of our results is to point out that the hydro
effective action can still correctly compute this coefficient.
Second, one can still formulate a version of the CTP
formalism even at infinite temperature, and one can use it to
compute the approach to the late-time ramp, e.g., due to
slow modes arising from a conserved charge. Third, one
can also derive a hydrolike formula for the crossover from
the Hamiltonian ramp to the Floquet ramp. We treat these
three points in turn in the subsections below.
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A. The circular unitary ensemble

Consider first a Floquet system with no symmetry. If the
Floquet dynamics is generated by a local time-dependent
Hamiltonian HðtÞ with period 2π=Ω, then the Floquet
unitary is

U0 ¼ T exp

�
−i

Z
2π=Ω

0

dsHðsÞ
�
; ð74Þ

where T denotes time ordering and we integrate over a
single period. The dynamics for ΩT=2π periods is given by

UðTÞ ¼ ðU0ÞΩT=2π: ð75Þ

Now, it is standard to define the Floquet Hamiltonian
HF by

U0 ¼ e−i2πHF=Ω: ð76Þ

Note that the energies of the Floquet Hamiltonian are
defined only modulo Ω. If the Floquet spectral form factor
is defined as

SFF ¼ jTr½UðTÞ�j2; ð77Þ

then we see that the Floquet SFF evaluated at ΩT=2π
periods is identical to the SFF of the Floquet Hamiltonian at
time T. The important point about HF is that it is expected
to be a very nonlocal object with no local conserved
quantities.
We can thus obtain the predicted ramp coefficient using

the DPT formalism as follows. Assuming all modes have
nonvanishing lifetime as the system size goes to infinity, we
can describe the SFF dynamics using just the spatial zero-
mode action

I0 ¼ −
Z

T

0

dtσa∂tEF; ð78Þ

where now EF is the Floquet energy, and Δ is proportional
to the zero mode of σa. The DPT path integral is

ZDPT ¼
Z

DEFDσa
2π

eiI0 : ð79Þ

As in the Hamiltonian case, the action merely indicates that
EF is conserved (modulo Ω), and we are left with
integrations over the zero-frequency components of Δ
and EF. These are the relative time shift and the total
Floquet energy. Using the same path-integral normalization
as in the Hamiltonian case, we find

ZDPT ¼ T
2π

Z
dEF: ð80Þ

This is the correct result if the Floquet Hamiltonian is in the
unitary class, otherwise there will be minor modifications
to account for the symmetry structure. The final point is that
the spectrum ofHF is defined only moduloΩ, so the energy
integral is just Ω. Hence, the spectral form factor is

SFF ¼ ZDPT ¼ ΩT
2π

¼ number of periods; ð81Þ

exactly as expected for the circular unitary ensemble. This
immediately gives the late-time result in Ref. [19].

B. The Floquet chain with a conserved charge

Now suppose the Floquet model has a U(1) symmetry
described by diffusive dynamics at the quadratic level. We
first define the analog of the CTP formalism. The main
issue is just that, at infinite temperature, some of the CTP
formalism degenerates and needs to be slightly modified.
Consider the conserved charge

Q ¼
X
r

qr; ð82Þ

and the associated lattice currents jr;ê, where ê denotes a
direction on the d-dimensional hypercubic lattice. We
couple these currents to the components of a background
gauge field such that the time-dependent Hamiltonian
becomes

H½A;t� ¼HðtÞ− Ω
2π

X
r;ê

Ar;êðtÞjr;ê−
Ω
2π

X
r

Ar;0ðtÞqr: ð83Þ

We assume for simplicity thatHðtÞ commutes with the total
charge at each time t (one can also consider Floquet models
where only the integrated time evolution conserves the
charge, but in this case we must slightly modify the
definition of the coupling to A). A key point is that these
gauge fields have unconventional units, since they are
dimensionless.
Now, as in conventional CTP, we assume there is a long-

wavelength description of

ZCTP ¼
1

TrðIÞTr½U
†ðA2ÞUðA1Þ�; ð84Þ

where UðAÞ denotes a product of time-evolution steps as
above. To quadratic order in fields and leading order in
derivatives, the effective action is

S0 ¼
Z

ddxdt½iχ2ð∇ϕaÞ2 − ϕað∂tρ −D∇2ρÞ� ð85Þ

with ρ ¼ χ1∂tφr þ � � �. Based on this effective action, the
analysis above in the context of energy diffusion will
essentially carry over.

MICHAEL WINER and BRIAN SWINGLE PHYS. REV. X 12, 021009 (2022)

021009-16



It is instructive to compare this result with the findings in
Ref. [19]. That work derived the leading-order diffusive
approximation, what we call the quadratic theory, from a
different analysis method that is valid in the limit of large
local dimension. Then it was shown that numerical data on
spin chains also exhibited an approximate data collapse in
the expected scaling variable T=L2. Our analysis rederives
the same leading behavior from a different point of view.
We also show in Sec. IV that the leading effects of
hydrointeractions in the periodic time setting are sublead-
ing compared to the dominant diffusive behavior. This
further justifies the validity of the diffusive form, which in
Ref. [19] is technically justified only at large local
dimension and in our case is naively predicated on linear
diffusion.

C. Floquet hydro with weak drive

Let us now use hydrodynamics to study the relationship
between the Hamiltonian ramp and the Floquet ramp. We
now remove again the conserved U(1) and consider a
Floquet system with no exact conservation laws. One might
think that hydro has no role to play here, apart from the
zero-mode calculation discussed above. However, there are
two scenarios where such a driven system can be treated
using hydrodynamics: a Taylor expansion in the strength
of the driving force, or in the scenario where the period of
the driving force is much longer than the equilibration time.
In this paper, we investigate only the first of those
possibilities.
We eventually focus on the case of periodic driving, but

for now we are more general. Without the driving, we have
energy conservation. In hydrolanguage, this means we have
a fluid time σ in addition to the physical time t. It will be
useful to define δt ¼ t − σ (in some other works, this is
called ϵ, but in this work, ϵ is already defined as energy
density). We set σa ¼ δt1 − δt2.
Let us assume we have a time-dependent function AðtÞ

coupled to a (fast) mode ϕ. At first, we consider an A with
period T, later we consider the specific case where it has
angular frequency Ω ¼ 2πn=T with n the number of
periods. Now, in addition to the usual hydro-Lagrangian
L ¼ σa∂tEþ ϕaQϕr þ � � �, we have an insertion of

Ar(tðσÞ)ϕaðσÞ þ Aa(tðσÞ)ϕrðσÞ ⊂ L: ð86Þ

Remembering that t is the physical time and σ is
hydrodynamic time, we can expand to leading order in
δt. This becomes

Ar(tðσÞ)ϕaðσÞ þ Aa(tðσÞ)ϕrðσÞ ≈ AðtÞϕaðtÞ þ A0ðtÞσaϕr:

ð87Þ

At this point, we integrate out the field ϕ. We can shift ϕ to
have an expectation value of zero. To leading order in the

perturbation, we are concerned only with the two-point
function. Inputting two-point functions Gra; Grr from the
microscopic theory, we get

Z
dt1dt2Grrðt1− t2ÞA0ðt1Þσaðt1ÞA0ðt2Þσaðt2Þ

þ
Z

dt1dt2Graðt1− t2ÞAðt1ÞA0ðt2Þσaðt2Þ⊂ Shydro: ð88Þ

One thing we need to remember is that at infinite
temperature, Gra is zero because when the density
matrix ρeq is proportional to the identity, all commutators
vanish, trfρeq½ϕðt1Þ;ϕðt2Þ�g ¼ 0. Perturbatively in the
driving force, it makes sense to perform a Taylor expan-
sion around infinite temperature. Expanding around
E ¼ E∞, the surviving term becomes

R
dt1dt2∂EGra×

ðt2 − t2ÞAðt1ÞA0ðt2ÞðE − E∞Þσaðt2Þ. Integrating out t1, this
becomes ic

R
dt2ðE − E∞Þσa. This can be thought of as a

term allowing energy to relax toward E∞ as the system is
driven. Including the normal E∂tσa term, we get that the
quadratic path integral is

SFF ¼ 1

1 − e−cT
: ð89Þ

If we now assume an angular frequency for the drive
Ω ¼ 2πn=T, then there are n saddle points corresponding
to Δ ¼ jT=n for 0 ≤ j < n. So our formula becomes

SFF ¼ 1

1 − e−cT
ΩT
2π

; ð90Þ

where, again, c is the rate of energy relaxation near infinite
temperature. This is something we can calculate for a
particular model.
To give a simple example, consider two Sachdev-Ye-

Kitaev (SYK) Hamiltonians [38–41] (defined and dis-
cussed in Appendix B) H1, H2 with their microscopic
couplings correlated by some amount r, meaning the
microscopic couplings for the same set fermions in H1

and H2 obey J1J2 ¼ rðJ1Þ2. We can alternate the two
Hamiltonians, applying them for times T1, T2, respectively,
then repeat. The overall period is ½ð2πÞ=Ω� ¼ T1 þ T2.
If T1 and T2 are both longer than the Thouless time ofH1

and H2 separately, then we can calculate c fairly easily.
Suppose the system starts at energy Ei according to H1.
When the Hamiltonians flip, the system now has average
energy rEi according to H2. The system then thermalizes,
and after the second flip it has energy r2Ei according toH1.
Equating this reduction in energy to the accumulated decay
rate over a single period, we get

e−2πc=Ω ¼ r2: ð91Þ

For this system, we thus have
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SFF ¼ 1

1 − r−ΩT=π
ΩT
2π

: ð92Þ

This is illustrated in Fig. 10.

D. A trace formula for Floquet systems

The full hydrodynamic path integral with a time-depen-
dent action (88) is highly complicated and nonuniversal.
There are, however, still some statements we can make. For
instance, we have a generalization of the trace formula in
Eq. (15). We need to modify our definition of sectors so that
they are not weakly coupled sectors of the Hamiltonian
with the same energy, but weakly coupled sectors of the
unitary with the same phase. For instance, in undriven

systems we can consider states with energy separated by
kΩ to be in different sectors, since they have the same phase
and will not mix. Driving then allows mixing between
sectors with energy differing by a multiple of Ω. The SFF
(with general Dyson index restored) is then

SFF ¼ T
Z

dEF

bπ
tr expMðEFÞT; ð93Þ

where MðEFÞ is the transfer matrix connecting different
sectors with the same quasienergy EF. In the limit of an
undriven Hamiltonian with no internal structure, M is
diagonal in energy. The trace then just counts how many
energies correspond to a given quasienergy. When we
integrate this factor over the range of quasienergies, we get
the range of energies, as expected.
In another limit, after enough driving, all states with

energies differing by a multiple of Ω will be fully mixed.
The trace in Eq. (93) will then be unity, and the corre-
sponding SFF is proportional to the number of periods up
to a factor of the Dyson index,

SFF ¼ T
Z

dEF

bπ
¼ 2

b
ΩT
2π

: ð94Þ

The trace formula also generalizes Eq. (90) to general times
given the explicit transition matrix M.
Finally, note that the formula makes a sharp prediction at

long times. If the range of energies in the unperturbed
spectrum is δE, then we have a ramp coefficient per cycle
of minðδE=Ω; 1Þ. Figure 11 is a graph illustrating this
numerically.

VI. DISCUSSION

In this paper, we develop a theory of the connected
spectral form factor using tools from both RMT and
hydrodynamics. This framework provides a number of

FIG. 11. When the Floquet driving period is shorter than
2π=energy range, the ramp coefficient per period (blue) after
many cycles is proportional to the period, being equal to the
period times the energy range over 2π (graphed in green). When
this quantity exceeds 1, the coefficient per cycle is instead 1
(orange). This sharp crossover seen here in numerical data is also
predicted by the theory.

FIG. 10. We numerically calculate the SFF for the driven system corresponding to two SYK Hamiltonians with microscopic couplings
correlated at r ¼ 0.99=r ¼ 0.96 alternating back and forth. In both cases the numerical result for SFF=½ðΩTÞ=2π� (blue) lines up with
the predicted 1=ð1 − r−ΩT=πÞ (orange).
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key results, including formulas like Eq. (15) in cases with
nearly conserved quantities exemplified by Eq. (20). This
allows us to rederive results previously obtained only for
Floquet systems [19,36] using general hydrodynamic
principles. We are also able to give new formulas that
include nonlinear effects as in Eq. (73). Such nonlinearities
are typically associated with long-time tails in hydro-
dynamics [42,43], and here we see them manifest in the
spectral form factor. Our results shed light on how spatial
locality in Hamiltonians interacts with ergodicity. Finally,
while we focus on the simplest case of energy diffusion for
simplicity, analogous results can be obtained in a wide
variety of hydrodynamic theories. Quite generally, the
Thouless time can be read off from the decay rates of
the slowest hydrodynamic modes. And in a system without
slow modes, the Thouless time should scale like the
logarithm of the system size, since any mode with a
system-size-independent decay rate will have a system-
size-suppressed amplitude after logarithmic time.
One emerging lesson highlighted by our work is that

quantum chaos should be viewed as a robust property of a
(dynamical) phase of matter. In particular, the emergence of
a pure random matrix ramp after the Thouless time is a
feature that is stable to small perturbations. In fact, as we
emphasize, the linear growth with time as well as the exact
coefficient of the ramp are seemingly universal. What
evidence is there for this? First, when considering defor-
mations H ¼ H0 þ gδH, the derivative of the SFF with
respect to g is an expectation of an a-type variable and such
expectations are suppressed by factors of e−T=tTh . Thismeans
the SFF is unaffected up to exponentially small corrections.
Second, the addition of an ETH-obeying perturbation to the
Hamiltonian corresponds to a stretching of the spectrumplus
the addition of a random matrix. Hence, if the system had a
linear ramp without this perturbation, it will also have one
with the perturbation (see Appendix D). Third, the basic
phenomenon of the linear ramp comes from a symmetry-
breaking effect arising from the spontaneous breakdown of
the relative time translation between the two SFF contours.
Because this relative time translation symmetry cannot be
explicitly broken by any time-independent Hamiltonian
perturbation (i.e., without completely changing the prob-
lem), the corresponding symmetry-broken phase should be
both distinct from the unbroken phase and stable.
When we glimpse at different manifestations of quantum

chaos like hydrodynamics and ETH connecting to the
emergence of RMT, it suggests to us that a larger synthesis
may be possible. Certainly, there are many connections
between chaos, random matrix statistics, and eigenstate
thermalization, e.g., as reviewed in Ref. [24], as well as
connections to notions of complexity, e.g., Ref. [44].
However, work remains to understand how all the different
timescales obtained from various manifestations of chaos
fit together, e.g., Ref. [45]. We hope to elaborate on these
points in future work.

There are several issues that are still not fully under-
stood, leaving room for further work. One is whether
hydrodynamic methods can derive plateau behaviors in
SFFs. Such a path-integral derivation would need to
be very unusual to reproduce the fact that plateau
behavior is nonperturbative in the Heisenberg time
THeisenberg ∼ eS. Perhaps inspiration could be taken from
other path-integral derivations of plateaus such as
Refs. [23,46,47]. Another question is the role of disorder.
It seems that hydrodynamic SFFs naturally spit out
values consistent with disorder averaging, despite there
being no explicit disorder averaging in the definition of
the CTP formulation. Certainly for nonperiodic times, the
CTP formulation does not require disorder averaging to
get correct real-time dynamics [30,48]. We need some
disorder in order to make sense of the CTP action on the
SFF contours, but this disorder can be small when the
system size is large so that no intensive quantities, like
transport parameters, are modified.
Finally, it is important to fully understand the possible

effects of interactions in our modified CTP formalism. In
the conventional CTP context, power counting indicates
that interactions are irrelevant in the renormalization-
group sense. Interactions do generate novel effects not
present in the Gaussian fixed-point theory, but these
effects can be captured in perturbation theory. The
possibility of genuinely nonperturbative effects is not
currently well understood. We show that there are new
effects arising from time periodicity and carry out a
partial resummation of diagrams to explore such effects.
We find that they are subleading to the dominant
quadratic behavior. However, it would be interesting to
formulate a generalized renormalization-group analysis to
better understand the situation.

ACKNOWLEDGMENTS

We thank Subhayan Sahu and Christopher White for
helpful discussions throughout this process. This work is
supported in part by the Simons Foundation via the It From
Qubit Collaboration (B. S.) and by the Air Force Office of
Scientific Research under Grant No. FA9550-17-1-0180
(M.W.). M.W. is also supported by the Joint Quantum
Institute.

APPENDIX A: REVIEW OF THE SSS
WORMHOLE SOLUTION

In Ref. [10], the authors (SSS) evaluate the ramp con-
tribution exactly for the SYKmodel (see Appendix B). They
start by noting that the SFF is a partition function on two
contours. In particular, if we denote the collective fields of a
single copy of the system by Ψ, the SFF is given by a path
integral on two copies of the system with periodic time
coordinates,
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SFF(T; fðEÞ ¼ 1) ¼
Z

DΨ1DΨ2 exp

�
i
Z

ddx

×
Z

T

0

dtfL½Ψ1� − L½Ψ2�g
�
: ðA1Þ

The essential insight in their paper is that for systems with
many degrees of freedom, like the SYKmodel at largeN, this
path integral can be evaluated by saddle-point methods and
that a nontrivial family of saddle points give the ramp. These
are thermofield double solutions at inverse temperature βaux,
suitably adjusted using images to account for the different
boundary conditions that correlate the two contours. At large
T, such solutions always approximately solve the SFF two
contour equations ofmotion because they solve the equations
of motion on an e−βauxHeiHTe−iHT contour (where the time
evolutions trivially cancel), and the contours are identical in
the “bulk” of the forward and backward legs. Implicitly, we
are appealing to the forgetfulness of chaotic systems, which
here means that the solutions are exponentially insensitive to
the boundary conditions.

APPENDIX B: REVIEW OF THE SYK MODEL

The SYK model is a disordered 0þ 1D system made of
Majorana fermions with q-body interactions (q is even)
[38–41]. The SYK Hamiltonian is given by

H½ψ � ¼ iq=2
X

1≤j1<;…;<jq≤N
Jj1j2;…;jqψ

j1ψ j2 ;…;ψ jq ; ðB1Þ

where ψ i; i ¼ 1;…; N represents the Majorana fermions
and satisfy the anticommutation relation fψ i;ψ jg ¼ δij,
and each Jj1;…;jq is a Gaussian variable with mean zero and

variance hJ2j1;…;jq
i ¼ f½J2ðq − 1Þ!�=Nq−1g.

It is often convenient to perform a series of exact
manipulations on Hamiltonian (B1) to get a mean-field
Lagrangian description of the SYK model in terms of
bilocal variables consisting of a Green’s function G and
self-energy Σ. In particular, one can write an expression for
the imaginary temperature partition function of the SYK
model as

ZðiTÞ ¼
Z

DGDΣ expN

�
1

2
tr logð∂t − iΣÞ

þ 1

2

Z
dt1dt2(iΣðt1; t2ÞGðt1; t2Þ−

J2

q
Gqðt1; t2Þ)

�
:

ðB2Þ
The SFF can be thought of as a partition function of a
doubled system living on two contours, with one contour
running forward in time (corresponding to e−iHT in the
SFF) and one contour running backward in time (corre-
sponding to eiHT in the SFF). Generalizing the result for
ZðiTÞ, one can write the SFF as

SFFðT;β¼ 0Þ

¼
Z

DGDΣexpN
�
1

2
Tr logð∂t− iΣ̂Þ

þ 1

2

X
α;β¼1;2

Z
dt1dt2(iΣαβGαβ −

J2

q
ð−1ÞαþβGq

αβ)

�
; ðB3Þ

where a hat above a variable signals a matrix representa-
tion, ðΣ̂Þαβ ≡ Σαβ. Because of the antiperiodic boundary
conditions on the fermions, both Gαβ and Σαβ are antiperi-
odic under time shifts by T. Note also that the measures
DG and DΣ each integrate over the space of two-index
functions of two variables.

APPENDIX C: CTP FORMULATION OF
HYDRODYNAMICS

The CTP formalism [14,30] is an effective theory of
hydrodynamics on the Schwinger-Keldysh contour. In
Ref. [37], a simplified version describing just energy
diffusion is used to derive long-time tails for two-point
functions in hydrodynamics. We largely follow their con-
ventions. One starts with a partition function

ZCTP½Aμ
1ðt; xÞ; Aμ

2ðt; xÞ�

¼ 1

tre−βH
trPe−βH exp

�
−iHT þ

Z
dxdtAμ

1J1μ

�

× exp

�
iHT −

Z
dxdtAμ

2J2μ

�
; ðC1Þ

where A can be thought of as an external gauge field
coupling to the conserved currents.
We express ZCTP as eI½A1;A2�, where I is a nonlocal action.

The main assumption is that after “integrating in” slow
modes, the action will become local. In a standard hydro-
dynamic system, the only slow modes correspond to
conservation laws, and these modes are brought in to
enforce those laws. We have

expðI½Aμ
1; A

μ
2�Þ ¼

Z
Dϕ1Dϕ2 exp

�
i
Z

dtdxL½Bμ
1

¼ Aμ
1 þ ∂μϕ1; B

μ
2 ¼ Aμ

2 þ ∂μϕ2�
�
; ðC2Þ

where L is a (generally complex) action functional.
As Eq. (C2) makes manifest, the action does not depend

on the ϕ’s except through the modified gauge fields
Aμ þ ∂μϕ. If we change the variables to

ϕr ¼
ϕ1 þ ϕ2

2
;

ϕa ¼ ϕ1 − ϕ2; ðC3Þ
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we can derive additional identities. For instance, unitary
implies that


Y
i

ϕiðtiÞϕað0Þ
�

¼ 0 ðC4Þ

will always be zero whenever ∀ iti < 0. In other words, if
the chronologically latest insertion is a-type, the expect-
ation value is zero. This theorem is called the last time
theorem and is explored in detail in Ref. [49]. This, in turn,
can be used to derive the fact that all terms in L have at least
one factor of an a field. It is also worth explicitly noting the
implications of the last time theorem for two-point func-
tions. We also always have

GaaðtÞ ¼ 0;

GraðtÞ ¼ θþðtÞfðtÞ: ðC5Þ

Additional constraints on CTP Lagrangians derived in other
works include the fact all factors of the rvariables comewith
at least one time derivative and the Kubo-Martin-Schwinger
condition that S½ϕ1ðtÞ;ϕ2ðtÞ� ¼ S½ϕ2ðiβ − tÞ;ϕ1ð−tÞ�.
It is also worth noting that we can formulate in terms of

slightly different variables, replacing ∂tϕr with the energy
density ϵ. For the theory in Ref. [37] used in the main text,
at the Gaussian level ϵ is equal to cβ−1∂tϕr plus higher-
derivative corrections. The general formula for ϵ is obtained
by differentiating the action with respect to A0

a, since it
couples to ϵ. For one conserved quantity at leading order
in derivatives, the most general quadratic Lagrangian
consistent with the requirements of derivatives and
Kubo-Martin-Schwinger symmetry is

L ¼ −ϕað∂tϵ −D∇2ϵÞ þ iβ−2κð∇ϕaÞ2: ðC6Þ

To make the physics more transparent, it is useful to
introduce an auxiliary variable Fðx; tÞ. We can rewrite our
action as

L ¼ −ϕað∂tϵ −D∇2ϵ − FÞ þ i
1

4β−2κ
F∇−2F: ðC7Þ

The action is now linear in ϕa, meaning that ϕa serves as a
Lagrange multiplier enforcing the stochastic partial differ-
ential equation

∂tϵ −D∂2
xϵþ F ¼ 0; ðC8Þ

where F is now interpreted as a fluctuating force. This then
leads to the probability distribution of energy modes
discussed in the main text.

APPENDIX D: FOLDED SPECTRA

Here we comment on the case of stretched and folded
spectra. To start with, consider a random Hamiltonian
H0 ¼ fstretchðHÞ, where H is a random matrix chosen from
distribution (1), and fstretch is a smooth function with
everywhere positive derivative. The quantum mechanics
of such deformations have been considered recently in
Ref. [50]. Another motivation to study folded spectra
comes from the eigenstate thermalization hypothesis
(ETH). ETH asserts that any local observable O can be
written as a sum of a smooth function of energy fOðHÞ
(related to the microcanonical expectation value) and a
randomlike erratic part R [51,52]. Under this hypothesis,
the SFF of a Hamiltonian perturbed by a local operator is
then equivalent to the SFF of a stretched spectrum plus a
random matrix, H0 ¼ H þ ϵO ∼H þ ϵfOðHÞ þ R.
Studies of the SFFs of folded systems are common

[18,53–55]. One reason is that a folding procedure (often
called “unfolding”) can be used to get semicircle statistics
out of other level distributions in order to more easily
compare numerical results with RMT. In this section, we
show analytically that nonsingular folds indeed leave ramps
invariant. For a comparison of folding versus filters as a
way to look at parts of the spectrum, see Ref. [21].
Returning to H0 ¼ fstretchðHÞ, there is generically no V 0

such that H0 is distributed according to Eq. (1). Rather, the
probability density function for H0 is given by

dP ¼ 1

Z

Y
i<j

jf−1stretchðλiÞ

− f−1stretchðλjÞjβ
Y
i

e−V(f
−1
stretchðλiÞ)þlog f−1

0
stretchðλiÞ: ðD1Þ

Nonetheless, the spectral statistics of H0 are very similar to
those given by Eq. (1). This is because nearby eigenvalues
still repel with repulsion term ½f−1stretchðE0

1Þ − f−1stretchðE0
2Þ�b

which is roughly proportional to ðE0
1 − E0

2Þb. As such, the
ramp still exists with the coefficient given by Eq. (5).
Another way to see this is to consider a Gaussian filter

function. If the variance σ in the filter function is small
compared to the scale of variation in fstretch (for example, if
fstretch is a slowly varying function of the energy density),
then for the small window around Ē, the stretching simply
rescales all the differences between eigenvalues by
f0stretchðĒÞ, which is a trivial change. The effect on SFFs
with broader filter functions can be obtained by integrating
over Ē.
Figure 12 shows coefficient plots of 5000 by 5000 GUE

matrices after transformations fstretchðEÞ ¼ Eþ 0.1E3 and
fstretchðEÞ ¼ Eþ E3, accompanied by histograms of their
spectral density.
The next natural is question to ask is what happens when

we choose a function fstretch which doubles back on itself,
for instance, fstretchðEÞ ¼ E − E3. In these cases, we can
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FIG. 13. Ramp coefficient plots and spectral densities for fstretchðEÞ ¼ E2 and fstretchðEÞ ¼ E − E3.

FIG. 12. Ramp coefficient plots and spectral densities for fstretchðEÞ ¼ Eþ 0.1E3 and fstretchðEÞ ¼ Eþ E3.

MICHAEL WINER and BRIAN SWINGLE PHYS. REV. X 12, 021009 (2022)

021009-22



have multiple “species” of eigenvalues near E0, correspond-
ing to which branch of f−1stretch the original E lies on. There is
almost no repulsion between different species of eigenval-
ues, so the ramp part of the SFF is given by

Z
dEf2ðEÞ T

πb
ð# of species at EÞ: ðD2Þ

Figure 13 shows the matching between Eq. (D2)
and numerical experiment for fstretchðEÞ ¼ E2 and
fstretchðEÞ ¼ E − E3. One question that remains open is
what the behavior is like near the turning points, charac-
terized by ½d=ðdEÞ�fstretchðEÞ ¼ 0, where the repulsion
term becomes singular. Might there be a strong enough
contribution to change the overall behavior?
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