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Stochastic processes play a key role for modeling a huge variety of transport problems out of
equilibrium, with manifold applications throughout the natural and social sciences. To formulate models of
stochastic dynamics, the conventional approach consists in superimposing random fluctuations on a
suitable deterministic evolution. These fluctuations are sampled from probability distributions that are
prescribed a priori, most commonly as Gaussian or Lévy. While these distributions are motivated by
(generalized) central limit theorems, they are nevertheless unbounded, meaning that arbitrarily large
fluctuations can be obtained with finite probability. This property implies the violation of fundamental
physical principles such as special relativity and may yield divergencies for basic physical quantities like
energy. Here, we solve the fundamental problem of unbounded random fluctuations by constructing a
comprehensive theoretical framework of stochastic processes possessing physically realistic finite
propagation velocity. Our approach is motivated by the theory of Lévy walks, which we embed into
an extension of conventional Poisson-Kac processes. The resulting extended theory employs generalized
transition rates to model subtle microscopic dynamics, which reproduces nontrivial spatiotemporal
correlations on macroscopic scales. It thus enables the modeling of many different kinds of dynamical
features, as we demonstrate by three physically and biologically motivated examples. The corresponding
stochastic models capture the whole spectrum of diffusive dynamics from normal to anomalous diffusion,
including the striking “Brownian yet non-Gaussian” diffusion, and more sophisticated phenomena such as
senescence. Extended Poisson-Kac theory can, therefore, be used to model a wide range of finite-velocity
dynamical phenomena that are observed experimentally.
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I. INTRODUCTION

A. From infinite to finite-velocity stochastic processes

Stochastic processes are used extensively as theoretical
models in the natural and social sciences [1]. They enable
powerful coarse-grained mathematical descriptions of
generic dynamical phenomena over a wide range of time
and length scales [2–4], where all the underlying

microscopic physical processes are effectively integrated
out. To illustrate this concept, we consider the famous
example of a tracer particle immersed in a fluid. The motion
of this tracer can be determined, in principle, by specifying
its own deterministic Newtonian equation of motion and
those of all fluid particles, as well as a suitable potential
describing their mutual interactions. Solving these equa-
tions equipped with initial conditions for all particle
velocities and positions yields the exact temporal evolution
of the tracer kinematic variables [5]. Nevertheless, this
approach is often analytically intractable and numerically
extremely demanding. Alternatively, the tracer motion can
be modeled by a much simpler equation where a stochastic
noise term with prescribed statistical properties is intro-
duced, which describes effectively the force on the tracer
resulting from its microscopic interactions with the fluid
particles. This approach has the advantage that we do not
need to resolve the motion of the fluid particles. In
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particular, by assuming their velocities to be Gaussian
distributed, the noise term can be shown to yield a Wiener
process [6,7]. In the absence of additional external forces,
the tracer position distribution is also Gaussian, which is
expected as a result of the averaging of independent and
identically distributed random displacements with finite
variances that are induced by the microscopic interactions
between the tracer and the fluid particles. This is a
manifestation of the celebrated central limit theorem [4].
When these displacements follow instead distributions with
infinite variances, the generalized central limit theorem
prescribes that the statistics of the position process is
modeled by a Lévy stable distribution [8]. Awide spectrum
of stochastic processes is thus modeled by drawing random
variables from one of these special probability density
functions (PDFs), depending on the underlying physical
properties of the system under investigation. All these
distributions share the property of being unbounded, i.e., of
noncompact support, which means that arbitrarily large
random variables can potentially be sampled with finite
probability.
However, this property is never satisfied in physical

reality. For instance, in the previous example, it is clear that
the velocities of the fluid particles cannot be arbitrarily
large. Indeed, by sampling the propagation velocities from
the unbounded tails of a Gaussian PDF, one may generate
rare random realizations of the particle velocity that exceed
the speed of light, thus violating fundamental principles of
physics, most notably the theory of special relativity [9],
even though the probability of such events is small enough
that they are never realized in practice. While the relativistic
constraint of a finite propagation velocity is most prominent
on large astrophysical scales [10,11], there are also major
consequences on small scales. Examples are the ballistic
motion of a tracer in a rarified gas observed at very small
timescales [12], the deviations from the diffusion approxi-
mation for photon scattering in random media [13], the
breakdown of Fourier’s law in nanosystems [14,15], and
the propagation of heat waves in superfluidic helium [16].
These violations become particularly prominent for all

stochastic processes generating anomalous diffusion
[17,18], where deviations from the normal diffusive behav-
ior characteristic of Brownian motion are often modeled by
sampling random variables from power-law-tailed PDFs
[18–22]. When these distributions particularly describe
fluctuations in the position of a random walker, the second
moment of the resulting position distribution may grow
faster in the long-time limit than for conventional Brownian
motion, hjrj2i ∼ ta with a > 1 instead of a ¼ 1. This
“superdiffusive” spreading is observed experimentally for
a huge variety of natural phenomena in physical, chemical,
and biological systems (see Refs. [22–24] for reviews).
Historically, such striking anomalous dynamics was first
modeled by Lévy flights [20,25]. These are Markovian
random walks with instantaneous jumps, whose lengths are

sampled from a stable Lévy distribution [19,20,26].
However, because of the power-law tails of this distribu-
tion, the second and all higher-order moments of the walker
position statistics are mathematically not well defined [22].
Consequently, all corresponding physical quantities like
energy would diverge.
To cure this deficiency, Lévy walks (LWs) are intro-

duced. In this model, the random walker is required to
spend an amount of time for each jump that is proportional
to the sampled jump length [27–32]. From a different
perspective, this is equivalent to requiring the random
walker to move with constant velocity (the proportionality
constant above) and change its direction after a random
time sampled from a prescribed power-law-tailed distribu-
tion (this is then the counterpart of the jump length
distribution in the Lévy flight model). These processes
are most conveniently modeled as a special case of the
broad class of continuous time random walks (CTRWs)
with the additional constraint that the velocity is constant
[17,22,29,33]. An extension of CTRWs to include persis-
tent (or antipersistent) motion as a memory effect was also
developed [34]. LWs thus provide a paradigmatic example
of a stochastic process exhibiting finite propagation veloc-
ities, a crucial requirement to give this mathematical
formalism physical meaning. Owing to the intrinsic spa-
tiotemporal coupling, these processes exhibit intricate
mathematical properties in terms of the shape of the
corresponding position PDFs as well as the generalized
(fractional) diffusion equations governing them [35–39].
Over the past two decades, LWs have been used widely to
understand a wealth of phenomena particularly in the
physical and biological sciences, many of them being
observed experimentally (see Refs. [22,24,40], and further
references therein).
A second fundamental class of stochastic dynamics

possessing finite propagation velocities, which has been
developed in parallel to LWs, is represented by Poisson-
Kac (PK) processes. These models were originally for-
mulated by Taylor in the context of turbulent diffusion [41].
But their first mathematical characterisation was given by
Goldstein, who referred to them as persistent random
walks. He showed that their statistics satisfy the telegra-
pher’s equation [42]. These processes became later estab-
lished in the formulation proposed by Kac in a famous
lecture from 1956 (reprinted in 1974 [43]). A PK process is
defined therein as a one-dimensional random walk, where
the direction of the walker’s velocity is flipped at random
instances of time. The switching of the velocity direction is
assumed to be governed by a Poisson counting process,
which thus induces an exponential PDF of the times
between successive direction changes or transitions. Kac
then showed that in one dimension the Cattaneo equation
(here identical to the telegrapher’s equation) can be derived
for the walker position distribution, thus providing a
stochastic interpretation of this equation [44]. In contrast
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to the classical parabolic diffusion equation, the Cattaneo
equation is a hyperbolic generalized diffusion equation
stipulating a finite propagation velocity by satisfying
special relativity [9,47].
Starting from this basic analysis, PK processes are

exploited in different ways. Perhaps their most prominent
application is as a model to generate dichotomous
noise, which is bounded and colored (in contrast to the
classical Wiener-induced white noise), as represented by its
exponentially decaying two-point correlation function (see
Refs. [48,49] for comprehensive reviews). Two-dimen-
sional generalizations of PK processes have been studied
in mathematical works by Kolesnik and collaborators
[50,51]. On more physical grounds, these processes are
used to derive the one-dimensional Dirac equation for a free
electron [52] and for generalizing conventional hydro-
dynamic theories [53]. Furthermore, by means of the
Cattaneo equation, an interesting relation between PK
processes and the theory of extended thermodynamics
has been proposed [54]. This connection motivated, among
others, the formulation of generalized PK processes. These
processes extend the conventional theory formalized by
Kac to general n spatial dimensions, while accounting for a
d-dimensional set (d ≤ n; either discrete or continuous) of
different velocity states parametrized by a stochastic
parameter whose dynamical evolution is modeled by a
Poisson field, i.e., a continuous Markov chain process. As
such, each state transition of this Poisson field corresponds
to a transition of the generalized PK process to a different
velocity state. These processes are defined with the long-
term goal to provide a micro- or mesoscopic stochastic
dynamical basis for extended thermodynamics by clarify-
ing the consequences of a finite propagation velocity
[45,55,56]. Along these lines, the modeling of atomic
processes in the presence of quantum fluctuations related
to transitions among the energy levels and to the second
quantization of the electromagnetic field could also be
investigated [57,58]. For a more detailed review of gener-
alized PK processes and their applications, we refer
to Ref. [45].

B. Toward a unifying theory of finite-velocity
stochastic processes

So far, these two basic classes of stochastic models, LWs
and generalized PK processes, coexist independently, with-
out exploring any cross-links between them. However, both
share the same fundamental feature that the propagation
velocity is finite, which crucially distinguishes them from
other, more common coarse-grained models of stochastic
dynamics that instead can exhibit potentially infinite
propagation speed. We furthermore remark that even the
classical simple lattice randomwalk (respectively, all lattice
models [59]) can be formulated in terms of finite propa-
gation velocity processes [60]. The main purpose of our
article is, therefore, to first formally establish the

connection between LWs and PK processes. On this basis,
we formulate a comprehensive theory of stochastic proc-
esses with finite propagation velocity and finite transition
rates. We then explore the mathematical and physical
consequences of such a theoretical framework.
We address the first problem in two different ways: We

start by enquiring to which extent PK processes can be
understood within the framework of LWs. A full answer to
this question is obtained through the statistical description
of LWs in terms of partial probability density waves
(PPDWs) developed by Fedotov and collaborators
[37,61]. Within this formalism, it can be demonstrated
that, by assuming an exponential distribution of transition
times, a one-dimensional LW is equal to the classical one-
dimensional PK model with two states and equal-
in-modulo and opposite-in-direction velocities [43].
From this argument, it follows that the one-dimensional
PK process can be viewed as a special case of a LW;
and Cattaneo-like fractional differential equations (i.e.,
Cattaneo in time and fractional regarding spatial operators)
can be derived for LWs possessing power-law statistics of
the transition times [35,37]. Clarifying this relation
between LWs and PK processes yields our first main result.
However, this represents only an application of the

PPDW formalism already established in Refs. [37,61].
Much more inspiring is the other direction of embedding
LWs into a suitably amended theory of generalized PK
processes. The formulation of such a theoretical framework
is our second main result. We show that LWs can be viewed
as a “nonautonomous” extension of PK processes, reflect-
ing the explicit dependence of the transition rates on the
time elapsed after the latest velocity transition. Upon a lift
of the transition time, coordinate LWs in Rn can then be
obtained from a new form of generalized PK processes in
Rnþ1. Here, the additional variable both behaves as a state
variable and modulates the stochastic Poisson field gov-
erning the randomization dynamics of the generalized PK
process. In practice, this transitional age variable can
perform discontinuous transitions at each transition instant
of the prescribed Poisson field. To emphasize the comple-
mentary nature of the lifted variable, we refer to this class of
models as overlapping PK processes. Within this formal-
ism, the age theory of LWs follows as a particular case [62].
By using this generalized theory of overlapping PK

processes, we are able to explore entirely new classes of
stochastic processes possessing finite propagation velocity,
which we denote collectively as extended PK (EPK)
processes. These are determined by spatiotemporal inho-
mogeneities, transitional asynchronies among the state
variables, and correlations of the microscopic transition
rates. The latter are quantities that can be measured
experimentally [63–65] and, thus, can be specified ad hoc
for the particular system under study. Our third main result
is, thus, to illustrate the power of this new theoretical
framework by presenting three relevant examples of EPK
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processes, each characterized by different settings in their
transitional structure. First, we employ our formalism to
model random walks where the age of the walker after any
velocity transition (i.e., the time elapsed) increases as a
function of the number of transition events that occur (a
feature that we call senescence). Second, we show that the
transitional structure characterizing an EPK model natu-
rally allows one to account for a hierarchical (multilevel)
structure of the fluctuations that can capture Brownian yet
not Gaussian diffusion (at short timescales) [66,67]. Third,
we discuss how an EPK process possessing a continuous
distribution of transition rates, which undergo uncorre-
lated Markov chain dynamics, also reproduces the long-
term diffusive properties of a standard LW. Even more
intriguingly, by introducing correlations in the transition
dynamics of the rates, we demonstrate that the EPK model
generates a subdiffusive LW dynamics.

C. Outline of the article

The presentation of our results is organized as follows. In
Secs. II A–II C, we review PK processes and LWs. We then
show that the former ones can be regarded as a special case
of the latter ones. In Sec. II D, we formalize this connection
by explicitly defining the concepts of state variables and
transitional parameters. We discuss how the structure of
PK processes (and, consequently, also of LWs) can be
understood by identifying in the model what are the state

variables and what are instead the transitional parameters.
In Secs. III A and III B, we generalize conventional PK
processes by defining overlapping state variables, a neces-
sary conceptual equipment in order to formally embed LWs
into a generalized PK formalism. Section III C further
clarifies the concept of overlap in comparison to models
where the dynamics of the relevant variables (i.e., those
previously overlapping) are fully transitional independent.
By modulating the transitional asynchrony between these
and the othermain state variables of the model, we define the
most general formofEPKprocesses. InSec. IV,wediscuss in
detail the three case studies of EPK processes mentioned
previously and investigate their novel statistical features.
These examples demonstrate the modeling power of our
theoretical framework, which is sufficiently flexible to
accommodate many unique features and, thus, encompasses
awidevariety of stochasticmodels.We concludewith Sec.V,
where we summarize our results and outline a spectrum of
further applications of our theoretical framework to transport
and collective phenomena in biology, as well as to classical
and fundamental problems in statistical physics.
For any reader who wants to learn only about the

physical essence of the new theory that we propose, we
recommend to read through Secs. II A–II C explaining the
connection between LWs and PK processes. Section III A
then gives the basic idea of how to generalize ordinary PK
processes leading to our extended theory. The main
message of our work is summarized in Fig. 1.

FIG. 1. Schematic representation of the increasing level of generalization in stochastic kinematics with finite propagation speed, from
Wiener processes (W), to Poisson-Kac processes (PK), to Lévy walks (LW), and finally to extended Poisson-Kac processes (EPK). The
latter define the new class of stochastic models introduced in Sec. III. Overlapping Poisson-Kac processes, which are discussed
specifically in Sec. III B, are one particular instance of these processes. Example orbits of realizations of these processes in two spatial
dimensions are shown correspondingly. For two-dimensional LWs, we simulate the two-state model (see Sec. II C) with the transition
rate Eq. (7) where ξ ¼ 1.5. For the class of EPK processes, we choose a senescent LW (see Sec. IVA) with ξ ¼ 1 and τ0 ¼ 1.
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II. POISSON-KAC PROCESSES AS A SPECIAL
CASE OF LÉVY WALKS

In this section, we review the PPDW approach first
introduced by Fedotov and collaborators as a model to
describe the stochastic dynamic of a conventional LW
[37,61]. We then employ it to establish a connection
between LWs and PK processes. We demonstrate this
relation by showing that the Cattaneo equation, which
describes the temporal evolution of the PDF of a PK
process, can be obtained as a special case in this
framework. Without loss of generality, we discuss only
the one-dimensional setting. Higher-dimensional exten-
sions of both these processes are considered else-
where [38,45,50,51,68–70], and our considerations extend
straightforwardly to these settings. As a preparatory step
for the derivation of EPK processes in Sec. III, we also
discuss here how to identify (and formalize) the math-
ematical structure of PK processes (and likewise LWs).
This discussion, although trivial when applied to such
simple models, is valuable for constructing more complex
stochastic dynamics with finite propagation speed.

A. Poisson-Kac processes in a nutshell

A classical one-dimensional PK process is defined by the
stochastic differential equation [43,45,48,49]

dxðtÞ ¼ bð−1Þχðt;λÞdt; ð1Þ

where x denotes the position of the random walker on the
line at time t, b is a positive constant that represents its
propagation speed, and χðt; λÞ is a Poisson process char-
acterized by the transition rate λ. For Eq. (1) to specify a
temporal dynamic, at the initial time t ¼ 0 we must equip
the Poisson process χ with a suitable initial condition,
which is specified by choosing the probabilities for which
χð0; λÞ is equal to either zero or one. It is illustrative to
compare the dynamic modeled by Eq. (1) with the one
generated by a standard Wiener process. In the physics
literature, this is described by the overdamped Langevin
equation

dxðtÞ ¼
ffiffiffiffiffiffiffi
2D

p
ζðtÞdt; ð2Þ

where ζðtÞ is a Gaussian white noise with null ensemble
average, hζðtÞi ¼ 0, and two-point correlation function
hζðtÞζðt0Þi ¼ δðt − t0Þ. Hence, a Wiener walker moves over
constant time intervals dt with Gaussian-distributed ran-
dom velocities possessing zero mean and variance equal to
2Ddt. By construction, therefore, the propagation speed of
the Wiener walker is unbounded, but the probabilities of
sampling large velocities decay exponentially. In contrast,
the PK walker moves with constant propagation speed and
switches the direction of its velocity after random time
intervals, whose duration is determined by the change of

parity governed by the Poisson counting process χ. By
taking b; λ → ∞ while keeping the ratio D ¼ b2=ð2λÞ
fixed, the so-called Kac limit, one can show that the
Wiener process can be recovered as a limiting case of
the PK process [43,45]. In that sense, the PK process
Eq. (1) can be considered as a generalization of the Wiener
process Eq. (2).
The PK process is characterized by an exponential

distribution of interevent times and an exponential
correlation function decay. Its position PDF Pðx; tÞ≡
≺ δðx − XðtÞÞ≻, where ≺ ·≻ denotes averaging over inde-
pendent realizations of the Poisson process χ, obeys the
Cattaneo equation [43]

1

2λ

∂2Pðx; tÞ
∂t2 þ ∂Pðx; tÞ

∂t ¼ D
∂2Pðx; tÞ

∂x2 : ð3Þ

The second moment hx2i ¼ R
x2Pðx; tÞdt of this PDF

grows linearly in the long-time limit; thus, it describes
normal diffusive dynamics. Note that in the limit of λ → ∞
the ordinary diffusion equation is recovered from Eq. (3).

B. Lévy walks as specific continuous time randomwalks

A one-dimensional LW is a continuous stochastic
processes possessing a bounded, constant propagation
speed b; thus, the walker velocity attains values �b.
With speed b, a Lévy walker moves in one direction for
a “running” time τ after which it either definitely, or
randomly, changes its direction of motion, called the
velocity model or two-state model, respectively [33].
Accordingly, τ may also be called the transition time.
In full generality, we assume this variable to be sampled
from a prescribed probability distribution TðτÞ, where
τ ∈ ½0;∞Þ. Crucially, for a LW, TðτÞ is chosen to possess
power-law tails [17,22,28,29,32,33]. These fat tails
enhance the probability of long directed jumps, in contrast
to the Wiener process Eq. (2) where the probability of such
jumps decays exponentially.
To characterize the statistics of this process, the main

object to calculate is the position PDF Pðx; tÞ. Here, the
underlying ensemble averaging is made over all random
realizations of velocity transitions. Historically, for LWs the
former has been achieved first within the framework of
CTRWs. As is shown in the Appendix A, the CTRW
description of a two-state LW [71] is specified by the
equations for the walker position, xn, and the total elapsed
time at each transition, tn:

xnþ1 ¼ xn þ bs0ð−1Þnτn; tnþ1 ¼ tn þ τn; ð4Þ

where s0 is a random variable attaining values �1 with
equal probability that specifies the initial direction of
motion of the random walker, with a power-law-tailed
transition time PDF such as, e.g.,
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TðτÞ ¼ ξ

ð1þ τÞξþ1
; ξ > 0: ð5Þ

Clearly, we can choose many different functions for TðτÞ,
but we remark that the qualitative statistical behavior of the
resulting stochastic dynamic is solely determined by the
power-law scaling of TðτÞ for τ → ∞.
On the level of the position PDFPðx; tÞ, a master equation

for Pðx; tÞ can be derived and solved spatially in Fourier
and temporally in Laplace transform. By using this analyti-
cal result, one can calculate straightforwardly the second
moment of the process, hx2ðtÞi ¼ R∞

0 x2Pðx; tÞdx, and
derive its characteristic scaling in the long-time limit
[17,22,33]. For TðτÞ specified as in Eq. (5), the second
moment hτ2i ¼ R∞

0 τ2TðτÞdτ diverges if ξ ≤ 2. In this case,
the fundamental condition underlying the central limit
theorem is violated; consequently, LWs are characterized
by the superdiffusive scaling hx2ðtÞi ∼ tγ , where γ ¼ 2 for
0 < ξ < 1 and γ ¼ 3 − ξ for 1 < ξ < 2 [22,28–33].
Although the traditional formalisms defining PK proc-

esses and LWs are thus quite different [compare Eqs. (1)
and (4)], our qualitative descriptions in this and the
previous subsection should make intuitively clear that
PK processes are nothing else but LWs, where one chooses
for the transition time PDF TðτÞ an exponential distribu-
tion. This particular model has already been introduced as a
“Brownian creeper” in Ref. [72], but there the authors do
not elucidate further the connection with the mathematical
formalism of PK processes.

C. Establishing the connection between Poisson-Kac
processes and Lévy walks through the partial

probability density wave function representation

The starting point of the statistical analysis formulated
by Fedotov and collaborators [37,61] is the following, more
general, expression for the transition time probability
distribution TðτÞ:

TðτÞ ¼ λðτÞ exp
�
−
Z

τ

0

λðθÞdθ
�
; ð6Þ

where λðτÞ denotes a generalized transition rate. By setting
λðτÞ ¼ λ ¼ const, Eq. (6) identifies the transition proba-
bility TðτÞ with the familiar Poissonian exponential dis-
tribution. In contrast, by setting

λðτÞ ¼ ξ

1þ τ
; ð7Þ

we obtain the power-law-tailed transition time probability
distribution Eq. (5). This equation has a very neat physical
interpretation: It models a peculiar type of persistence,
where the probability of a transition decreases the longer
the random walker moves in one specific direction [61].
We further highlight that λðτÞ can alternatively be defined

by the equation λðτÞ ¼ TðτÞ=ΛðτÞ [73], where ΛðτÞ ¼
exp ½− R

τ
0 λðθÞdθ� denotes the survival probability of the

process. Even if at first glance this is just a rewriting of
Eq. (6), this definition is very advantageous in practice,
because it enables us to employ a huge toolbox of statistical
methods that have been developed in other branches of the
sciences for the estimation of the survival function Λ from
empirical data [74].
Considering time-dependent transition rates, one can

write down balance equations for the two PPDW functions
p�ðx; τ; tÞ [in Refs. [37,61], these quantities are called
structural probability density functions, denoted by
n�ðx; t; τÞ]. These represent the probability distributions
of finding a random walker at the position x at time t with
positive or negative (�) orientation of the velocity and
transitional age τ, with which we denote the time interval
after the latest transition in the velocity direction. The
evolution equations for p�ðx; τ; tÞ follow directly from
their definition and are given by [37,61]

∂p�ðx; τ; tÞ
∂t ¼ −

∂p�ðx; τ; tÞ
∂τ ∓ b

∂p�ðx; τ; tÞ
∂x

− λðτÞp�ðx; τ; tÞ: ð8Þ

In order to solve these partial differential equations, we
need to equip them with suitable initial and boundary
conditions. As regards the former, we need to specify the
initial spatial probability distribution of the random walker,
p0ðxÞ, the probabilities for each velocity direction, π0�, and
the corresponding initial distributions of transitional ages,
ϕ0
�ðτÞ. This yields

p�ðx; τ; 0Þ ¼ π0�p0ðxÞϕ0
�ðτÞ: ð9Þ

In the original Refs. [37,61], it is assumed that the walker,
at the initial time, possesses a transitional age τ ¼ 0 and
uniformly distributed velocity directions. This means that,
in Eq. (9), π0� ¼ 1=2 and ϕ0

�ðτÞ ¼ δðτÞ, i.e.,

p�ðx; τ; 0Þ ¼
1

2
p0ðxÞδðτÞ: ð10Þ

We remark that our general initial conditions enable the
investigation of more subtle aspects of these stochastic
dynamics, such as aging [62]. As regards the latter,
boundary conditions for the PPDW functions p�ðx; t; τÞ
are related to the details of the transition dynamics. As an
example, let us assume that at any transition time τ all
walkers reverse the velocity direction. In this case, the
boundary conditions at τ ¼ 0 are given by

p�ðx; 0; tÞ ¼
Z

∞

0

λðτ0Þp∓ðx; τ0; tÞdτ0: ð11Þ
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Under these assumptions, the resulting process is called a
“two-state model,” as it consists of an alternating switching
between two states [33]. Other cases, like the “velocity
model,” where particles choose their new direction ran-
domly at any transition time, can also be modeled within
this framework by generalizing Eq. (11).
Having well defined the model [75], we can now

establish the connection between PK processes and LWs.
For this purpose, we define the auxiliary PPDW functions
P�ðx; tÞ, i.e., the marginals of p�ðx; τ; tÞwith respect to the
transitional age τ:

P�ðx; tÞ ¼
Z

∞

0

p�ðx; τ0; tÞdτ0: ð12Þ

Integrating Eq. (8) with respect to τ while enforcing the
boundary conditions Eq. (11), we obtain the following
evolution equations for P�ðx; tÞ:

∂P�ðx;tÞ
∂t ¼∓ b

∂P�ðx;tÞ
∂x

∓
Z

∞

0

λðτ0Þ½pþðx;τ0; tÞ−p−ðx;τ0; tÞ�dτ0: ð13Þ

In Refs. [37,61], Eqs. (13) with the initial condition
Eq. (10) are shown to generate LW dynamic. Interestingly,
the authors also derive a closed fractional integro-
differential evolution equation for the position statistics,
Pðx; tÞ ¼ Pþðx; tÞ þ P−ðx; tÞ. However, this derivation
cannot easily be extended to account for the more general
initial conditions Eq. (9). The structural stiffness of this
equation suggests that the spatial density Pðx; tÞ is not the
most natural and complete statistical description of this
process. In contrast, only the PPDW functions p�ðx; τ; tÞ
provide the primitive statistical description of finite-
velocity processes, as evidenced by the fact that, by
including explicitly the transition time τ as an additional
independent coordinate, the corresponding evolution
equations (8) are Markovian and local in time. This
formulation therefore provides a big advantage for math-
ematical analyses.
We consider now the particular case of λðτÞ ¼ λ ¼ const;

remarkably, this reproduces the simplest two-state PK
process first considered by Kac [43]:

∂P�ðx; tÞ
∂t ¼∓ b

∂P�ðx; tÞ
∂x ∓ λ½Pþðx; tÞ − P−ðx; tÞ�: ð14Þ

It is straightforward to derive from Eq. (14) the Cattaneo
equation (3) for the distribution Pðx; tÞ ¼ Pþðx; tÞ þ
P−ðx; tÞ. This argument demonstrates that classical one-
dimensional PK processes form a subset of LWs [37].
The relation between Wiener processes, PK processes,

and LWs as discussed above is our first main result, which

is schematically summarized in Fig. 1. Conversely, one
may now raise the question whether we can exploit this
connection in order to embed LWs into a suitably gener-
alized PK formalism and, correspondingly, what novel
diffusive features can be described within such a general-
ized theory. This problem is addressed in the following
Sec. III yielding the new fourth outer layer depicted
in Fig. 1.

D. Dissecting the structure of Poisson-Kac processes

Let us reconsider the process defined by Eq. (1). In fully
general terms, this involves a set of state variables ΣX,
which in our specific case contains only the process XðtÞ
itself (note that uppercase letters refer to the stochastic
processes while lowercase to their realization). These state
variables are defined in some prescribed domain DX ⊆ Rn,
with n being the total number of such variables. In the case
considered here, DX ¼ R. The dynamics of these state
variables is controlled by a set of driving stochastic
processes, also called transitional parameters, ΣT , which
can assume values in the set DT ⊆ Rm, with m being the
total number of such values. The transitional parameters are
chosen such that their joint process with the state variables
is Markovian, while instead the state variables alone are
non-Markovian. For Eq. (1), in particular, the only transi-
tional parameter is the process SðtÞ ¼ ð−1Þχðt;λÞ, which
attains values in DT ¼ f−1; 1g. In agreement with the
condition above, we have shown previously that, while
XðtÞ alone is non-Markovian, the couple ½XðtÞ; SðtÞ� is
Markovian instead. The dynamics of the state variables
may also depend on a set of physical parameters ΣP, such as
b and λ for the PK process Eq. (1), generically defined in
the domain DP ∈ Rp, with p being the dimensionality of
these parameters. Finally, the stochastic dynamic is given as
a vector field f∶DX ×DT ×DP → DX, expressing the
temporal evolution of the state variables and depending
on the elements of the set ΣX ∪ ΣT ∪ ΣP. Within this
framework, it becomes clear how we can formulate
correctly the primitive statistical description of this
dynamic. This is achieved in terms of the PPDW functions
of the state variables, which are additionally parametrized
by the attainable values of the transitional parameters,
owing to the Markovian recombination mechanism that
they provide.
According to this framework, in its essence the

structure of a PK process is constituted by the system
ðΣX;ΣT;ΣP; fÞ, where ΣX ¼ fXg, ΣT ¼ fSg, ΣP ¼ fb; λg,
and f is specified by Eq. (1). The transitional parameter S
parametrizes the statistical description of the process, thus
determining the system of PPDW functions pðx; t; sÞ,
s ∈ DT ¼ f−1; 1g. In our previous discussion, to simplify
the notation, we identify pðx; t; 1Þ ¼ Pþðx; tÞ and
pðx; t;−1Þ ¼ P−ðx; tÞ. The statistics of the process is then
fully determined by theMarkovian evolution equations (14)
for the PPDW functions.
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III. FROM LÉVY WALKS TO EXTENDED
POISSON-KAC PROCESSES

Motivated by the connection between LWs and PK
processes just established through the PPDWapproach, in
this section, we formalize the family of EPK processes,
the new class of stochastic processes with finite propa-
gation speed that constitute the fourth layer of generali-
zation in Fig. 1. All the other processes discussed so far
can thus be recovered from them as special cases.
We choose this terminology to distinguish them from
the generalized PK processes previously discussed in the
literature [45,55,56]. In fact, these processes can be
obtained within our formalism.
First, we define the concept of overlap. This consists in

introducing an additional coordinate to the classical
description of PK processes. This coordinate is a state
variable that can be interpreted as an internal time repre-
senting the transitional age of the process, i.e., the time
elapsed from the last velocity transition. Simultaneously,
this coordinate also plays the role of a transitional
parameter, as it directly controls the stochastic machinery
of the random velocity switches. We call this coordi-
nate overlapping, as it belongs to both sets ΣX and
ΣT . The overlapping variable undergoes deterministic
dynamics between different transitions and discontinuous
Markovian jumps at each transition instant. Remarkably,
we demonstrate that this formalism can capture a generic
functional form for the transition time PDF, such as the
power-law-tailed Eq. (5) characteristic of LW processes.
This coupling between the state variables and the driving
stochastic processes is, therefore, the key ingredient in
order to embed LWs within a generalized theory of PK
processes. We then derive the statistical description of
general overlapping PK processes in terms of partial
differential equations for their PPDW functions. These
processes are, however, not the most general form of
stochastic processes with finite propagation velocities and
transition rates. For overlapping PK processes, in fact, the
Markovian jump dynamics of the overlapping and state
variables is assumed to be fully synchronized by defi-
nition. Clearly, different processes can be obtained if we
relax this condition, e.g., by fully desynchronizing the
transitional dynamics of overlapping and state variables.
In fact, we provide a recipe for how the transitional
synchronization between these processes can be modeled
explicitly. We denote as EPK processes the stochastic
models generated within this framework.

A. Formulating a stochastic equation for generalized
Poisson-Kac processes

With the knowledge of the PPDW approach (see
Sec. II C), it is worthwhile to return to the basic stochastic
equation of motion (1) defining the classical one-
dimensional PK process. This equation yields PK dynamics

by using a constant transition rate λ for the corresponding
Poisson counting process χðt; λÞ. In contrast to this, Eq. (6),
which is used to define the transition time PDF TðτÞ more
generally, involves a generalized transition rate λðτÞ that
depends on the transition time τ. This simple observation of
having intrinsically different transition rates for PK proc-
esses and LWs suggests that LWs can be expressed in the
form of the suitably amended PK process

dxðtÞ ¼ bð−1Þχft;λ½τðtÞ�gdt; ð15Þ

dτðtÞ ¼ dt: ð16Þ

Here, χ½t; λðτÞ� represents a generalized Poisson process
whose transition rate λ depends generically on the value
attained by the additional coordinate τ, the transitional age,
which stands for the time elapsed after the last velocity
transition. In turn, τ is coupled to the physical time t by
Eq. (16). For example, using the time-dependent transition
rate Eq. (7) yields a generalized Poisson process charac-
terized by the power-law transition time PDF Eq. (5) [76].
Equations (15) and (16) are valid only in the time interval

between two velocity transitions. In order to extend them
over the entire history of the process, we need to supple-
ment them with boundary conditions at the transition times.
Intuitively, these boundary conditions must involve the
auxiliary variable τ and be discontinuous. In fact, whenever
a transition in χft; λ½τðtÞ�g occurs, the transitional age τ is
reset to zero. In contrast, because the transition changes
only the velocity direction, the stochastic process xðtÞ is
continuous at the transition time. In mathematical terms,
assuming that a transition occurs at the time instant t�, we
then set

xðt�þÞ ¼ xðt�−Þ and τðt�þÞ ¼ 0; ð17Þ

with the shorthand notation fðt��Þ ¼ limϵ→0 fðt� � ϵÞ and
f any smooth or continuous function. For the transition rate
Eq. (7), the PK process defined by Eqs. (15) and (16)
equipped with the boundary conditions Eq. (17) generates a
LW dynamics. This is demonstrated formally by calculat-
ing the evolution equations for the PPDW functions of the
process x, which can be shown to be equal to Eqs. (8) (see
Appendix C). Within this setting, a LW can, therefore, be
interpreted as a form of nonautonomous PK process
depending explicitly on the internal time coordinate τ.
The observations above further suggest that LWs can be

reformulated within the theory of PK processes by defining
the new state variable

y ¼
�
x

τ

�
: ð18Þ

This formulation is analogous to the lift of the time
coordinate that is employed to transform a nonautonomous
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one-dimensional dynamical system into an autonomous
one in two dimensions [79]. It, thus, trivially leads to
studying these processes in a space of dimension higher
than one, for which we adapt the generalization of the
theory of PK processes to higher-dimensional state spaces
described in Refs. [45,80,81]. We note that this reformu-
lated process belongs to the well-known class of renewal
processes [82], which presents a big advantage. Since our
process x admits only two states with velocities �b, for the
lifted state variable y we define the two generalized velocity
vectors

bð1Þ ¼
�
b

1

�
; bð−1Þ ¼

�−b
1

�
: ð19Þ

Using the setting Eqs. (18) and (19) and assuming λ to
depend on only the transitional age variable τ, the equations
of motion (15) and (16) can be compactly expressed as

dyðtÞ ¼ b½ð−1Þχft;λ½τðtÞ�g�dt; ð20Þ

equipped with the boundary conditions Eqs. (17) at each
time instant when a state transition occurs. More general
choices are also possible. For example, if we assume the
dynamics of the transitional age T ðtÞ to be a stochastic
process possessing a Markovian transitional structure, the
boundary condition for τðt�þÞ becomes

τðt�þÞ ¼ τ0 with probability k½τ0; τðt�−Þ�: ð21Þ

Evidently, we need to assume the following conditions on
the transition probability kðτ0; τÞ:

kðτ0; τÞ ≥ 0 and
Z

∞

−∞
kðτ0; τÞdτ0 ¼ 1: ð22Þ

The particular case of Eq. (17) corresponds to setting
kðτ0; τÞ ¼ δðτ0Þ.
The formulation provided by Eqs. (18)–(20) elucidates

the following characteristic features of the multivariate
process YðtÞ: On the one hand, it possesses an evident
skew product structure, because we can formally write
YðtÞ ¼ fX½t; T ðtÞ�;T ðtÞg. In fact, while the transitional
age process T ðtÞ does not incorporate the position process
XðtÞ, the latter, in contrast, depends explicitly on time t and
is simultaneously a nonlinear functional of T ðtÞ through
the Poissonian transition rate λ. On the other hand, in
Eq. (20), the noise is manifestly governed by the state
variable τ. This coupling, thus, modulates the very funda-
mental stochastic structure of the fluctuations, as is made
evident by the fact that the transition rate λðτÞ controls the
correlation properties of the resulting dynamics [83]. These
properties reveal a striking change of paradigm with respect
to conventional PK processes, which is determined by the
overlap between the state variable y and the transitional

parameters controlling the randomisation dynamics as just
described. This peculiar feature defines a new class of
stochastic processes with finite propagation velocity, called
overlapping PK processes (OPK), that includes LWs as a
special case.

B. Overlapping Poisson-Kac processes

We now formalize the concept of overlap introduced
previously by specifying the formal structure of the
multivariate stochastic process YðtÞ (see Sec. II D). In
fully general terms, we define a PK process to be over-
lapping if the following conditions hold true: (i) The sets of
state variables, ΣX, and of transitional parameters, ΣT ,
possess a nonempty intersection

ΣO ¼ ΣX ∩ ΣT ≠ ∅: ð23Þ

(ii) The transition dynamics of the variables in ΣT depend
exclusively on the dynamics of those in its set comple-
mentary to ΣO, i.e., the set ΣT=ΣO, which contains all
variables belonging to ΣT but not to ΣO. Furthermore, we
assume the dynamics of these variables to be Markovian.
We acknowledge that non-Markovian dynamics for these
variables can also be considered but are not discussed in
this context. These two properties imply that the transi-
tional mechanism of an OPK process is essentially con-
trolled by the Markovian transition dynamics of the
variables in ΣT=ΣO, while those in ΣO are characterized
by a smooth evolution equation unless when a transition
occurs, at which time instant they perform discontinuous
jumps. In this overlapped transition process, all the physical
parameters characterizing the Markovian dynamics of the
variables in ΣT=ΣO can be potentially modulated not only
by the local state of the variables in ΣO, but also by that of
the state variables belonging to ΣX.
This is the basic mechanism characterizing the evolution

of a LW process, as defined by Eqs. (15) and (16) with
the boundary conditions Eq. (17). For this stochastic
model, we have ΣX ¼ fYg ¼ fX; T g and ΣT ¼ fS; T g,
with the generalized Poisson process SðtÞ ¼ ð−1Þχft;λ½τðtÞ�g.
Consequently, we identify ΣO ¼ fT g and ΣT=ΣO ¼ fSg.
In agreement with our previous argument, in a LW, there-
fore, the transitional age process T exhibits a smooth
temporal dynamic (a linear growth in this specific case)
except for randomly distanced discontinuities occurring at
all times when the transitional parameter S performs a
transition (here, specifically a sign flip).
With these definitions at our disposal, we can now derive

the statistical characterization of a general OPK process.
To keep our formalism general, we assume n spatial
dimensions for the position process, XðtÞ, with domain
DX ⊆ Rn, and m ≤ n dimensions for the overlapped
variables, T ðtÞ, with domain Dτ ⊆ Rm. Correspondingly,
we set ΣX ¼ fYg ¼ fX;T g. Stochasticity is generated in
the model by defining a set of n-dimensional velocity
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vectors bðαÞ, which depend on a stochastic parameter α ∈
Dα ⊆ Rd (d ¼ 1; 2;…; n). The setDα can be either discrete
or continuous, thus providing us with several modeling
opportunities for the underlying stochastic dynamics of the
overlapping PK process. The stochastic temporal evolution
of these variables is specified by introducing a Poisson field
Ξðt; λ; AÞ in Rd, such that

αðtÞ ¼ Ξðt; λ; AÞ; ð24Þ
where Ξð0; λ; AÞ ¼ α0 ∈ Dα. The Poisson field is a con-
tinuous stochastic process attaining values in Dα whose
statistical description satisfies a continuous Markov chain
dynamics defined by the transition rate function λ ≥ 0 and
by the transition probability kernel A. We specify the
functional dependence of these parameters below; further
details on Poisson fields are given in Appendix B. In this
setting, we therefore define ΣT ¼ fΞ;T g, ΣO ¼ fT g,
and ΣT=ΣO ¼ fΞg.
Finally, we assume for the lifted process YðtÞ the

following stochastic differential equation:

dyðtÞ ¼ ṽ½yðtÞ�dtþ b̃½ΞðtÞ; yðtÞ�dt; ð25Þ
where we introduce a deterministic biasing velocity field
and a stochastic perturbation defined as, respectively,

ṽðyÞ ¼
�
vðx; τÞ
wðx; τÞ

�
; b̃ðα; yÞ ¼

�
bðα;x; τÞ

0

�
: ð26Þ

The stochastic velocity vectors b∶Dα ×DX ×Dτ ↦ Rn,
parametrized with respect to the states α of the Poisson field
ΞðtÞ, are also further modulated by an explicit dependence
on the model state variables. If we neglect this dependence
of the stochastic perturbation on the state variables and the
deterministic field ṽ and we identify the Poisson field ΞðtÞ
with SðtÞ, Eq. (26) is fully analogous to Eq. (20). In
addition, even the constitutive properties of the Poisson
field ΞðtÞ, i.e., the transition rate λ and the probability
kernel A, can be specified more generally as depending on
the variables belonging to the set ΣX ∪ ΣT , i.e.,

λ ¼ λðx; τ;αÞ; ð27Þ

A ¼ Aðx;α; τ;α0; τ0Þ: ð28Þ

The local functional dependence of the kernel A on the state
variables x preserves the validity of a locality principle for
the stochastic process XðtÞ; i.e., nonlocal action at a
distance is not allowed in our model. This would not be
preserved if A also depended on x0; if such a dependence
existed, it would, in fact, imply the possible occurrence of
discontinuous spatial jumps x0 ↦ x. At each transition
time t� of the Poisson field Ξ, we equip Eq. (25) with the
boundary condition

τðt�þÞ ¼ τ0 with probability A½xðt�−Þ;α; τðt�−Þ;α0; τ0�: ð29Þ

Equations (25) and (26) explicitly state that, in any time
interval in which no transitions in the Poisson field ΞðtÞ
occur, the dynamics of the overlapped variable T ðtÞ
follows a strictly deterministic kinematics. In agreement
with our previous arguments, the overlapped variables,
thus, do not depend explicitly on the main transitional
parameter, here ΞðtÞ, but only implicitly through its
transition dynamics. Moreover, we remark that if
Aðx;α; τ;α0; τ0Þ is different from zero for τ ≠ τ0, at any
transition instant of the stochastic process ΞðtÞ the over-
lapped variables T ðtÞ may perform a discontinuous jump
τ0 ↦ τ. Consequently, T ðtÞ can display nonlocal dynam-
ics, which is fully consistent with the locality principle of
space-time interactions, provided that the τ variables do
not correspond to any space-time coordinate or physical
field (otherwise, the principle of bounded propagation
velocity would be violated) but solely internal nongeo-
metrical variables of the system (such as the transi-
tional age).
The statistical characterization of Eq. (25) is

formally identical to that of conventional generalized
PK processes that is derived in Refs. [45,80,81]. In our
case, this is obtained in terms of the PPDW functions
pðy; t;αÞ ¼ pðx; τ; t;αÞ. Introducing the notation x ¼
ðx1;…; xnÞ, τ ¼ ðτ1;…; τmÞ, ∇x ¼ ð∂x1 ;…; ∂xnÞ, and
∇τ ¼ ð∂τ1 ;…; ∂τmÞ and assuming the domains Dτ and
Dα to be continuous, we obtain the evolution equation

∂pðx; τ; t;αÞ
∂t ¼ −∇x · ½vðx; τÞpðx; τ; t;αÞ� −∇x · ½bðx; τ;αÞpðx; τ; t;αÞ� −∇τ · ½wðx; τÞpðx; τ; t;αÞ�

− λðx; τ;αÞpðx; τ; t;αÞ þ
Z
Dτ

�Z
Dα

λðx; τ0;α0ÞAðx;α; τ;α0; τ0Þpðx; τ0; t;α0Þdα0
�
dτ0; ð30Þ

where
Z
Dτ

�Z
Dα

Aðx;α; τ;α0; τ0Þdα
�
dτ ¼ 1 ð31Þ

for any τ0 ∈ Dτ and α0 ∈ Dα. Likewise, if the set Dα is
discrete, Eqs. (30) and (31) still hold with the correspond-
ing integral terms suitably substituted by summations. We
note that, in this case, the function pðx; τ; t;αÞ is to be
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interpreted as a probability (not a density) with respect to
the stochastic variables α. It is straightforward to show that
this general framework can generate LW dynamic as a
special case; see Appendix C for the derivation.

C. Transitional asynchrony lines the route to extended
Poisson-Kac processes

We now develop our EPK theory in its most general
form by introducing the concept of transitional asyn-
chrony. Let us illustrate this concept by reconsidering
the dynamics of the variable τ, which we introduce
for LWs to denote the transitional age. We now assume
that τ follows a Markovian transition dynamics with rate

μðx; τÞ and transition probability kernel Mðx; τ; τ0Þ (see
Appendix B). By construction, this is a left stochastic
kernel, i.e., Mðx; τ; τ0Þ ≥ 0,

R
Dτ

Mðx; τ; τ0Þdτ ¼ 1 for all
τ0 ∈ Dτ. Potentially, a further deterministic evolution can
be superimposed to this Markovian transitional dynamics.
Here, for simplicity, we keep the same one as in Eqs. (25)
and (26). The stochastic equation of motion for the state
variable xðtÞ is equal to that encapsulated in Eq. (25). Its
statistical description involves the PPDW functions
pðx; t;α; τÞ, where now both α and τ are to be interpreted
as stochastic parameters, which are solutions of the hyper-
bolic equations (as expressed in the form of first-order
equations with respect to time t, position x, and τ)

∂pðx; τ; t;αÞ
∂t ¼ −∇x · ½vðx; τÞpðx; τ; t;αÞ� −∇x · ½bðx; τ;αÞpðx; τ; t;αÞ� −∇τ · ½wðx; τÞpðx; τ; t;αÞ�

− λðx; τ;αÞpðx; τ; t;αÞ þ
Z
Dα

λðx; τ;α0ÞAðx;α; τ;α0; τÞpðx; τ; t;α0Þdα0

− μðx; τÞpðx; τ; t;αÞ þ
Z
Dτ

μðx; τ0ÞMðx; τ; τ0Þpðx; τ0; t;αÞdτ0: ð32Þ

In formal terms, this generalized PK process is specified
by the sets of state and transitional variables ΣX ¼ fXg and
ΣT ¼ fΞ;T g, respectively. In contrast, the overlapping PK
process Eq. (25) is defined by the sets ΣX ¼ fX;T g and
ΣT ¼ fΞ;T g. Interestingly, these two different formal
structures (in particular, characterized by different transi-
tional mechanisms) lead to different statistical properties
[compare Eqs. (30) and (32)]. Both are characterized by the
interplay of the main transitional parameters ΞðtÞ and T ðtÞ
to determine the stochastic dynamic of the position process
XðtÞ. The difference between the two formulations is a
consequence of the different synchronization between the
processes Ξ and T . This concept is made evident by
defining for each of the two transitional parameters the
marginal transition time density TΞðt1Þ and TT ðt2Þ, respec-
tively. Likewise, for the joint process ½ΞðtÞ;T ðtÞ�, we can
specify the corresponding bivariate transition time density
function TΞ;T ðt1; t2Þ. Correspondingly, we can define the
conditional transitional time density TT jΞðt2jt1Þ by the
relation

TΞ;T ðt1; t2Þ ¼ TT jΞðt2jt1ÞTΞðt1Þ: ð33Þ

This quantity elucidates the different physics underlying
the generalized PK process defined by Eqs. (32) and the
OPK process Eq. (30). For the former,

TT jΞðt2jt1Þ ¼ TT ðt2Þ; ð34Þ

meaning that the processes ΞðtÞ and T ðtÞ are transitionally
independent. Clearly, in this case, the variable τ loses its

physical meaning of an elapsed time from the previous
transition. For the latter,

TT jΞðt2jt1Þ ¼ δðt2 − t1Þ; ð35Þ

i.e., the two processes are transitionally synchronized. In
this case, τ is indeed an elapsed time, or transitional age.
Remarkably, all the previous considerations can be

applied as well to any model parameters. For simplicity,
let us consider a one-dimensional PK process (extending
these arguments to the three-dimensional setting is straight-
forward), which is specified formally by the sets of state
variables, transitional parameters, and model parameters
ΣX ¼ fXg, ΣT ¼ fSg, and ΣP ¼ fb; λg, respectively. We
then assume b ¼ b0βðtÞ and λ ¼ λ0λðtÞ. A new family of
EPK processes can then be obtained by considering a
subset of the model parameters as transitional variables,
i.e., ΣX ¼ fXg, ΣT ¼ fS;Λ; Bg, and ΣP ¼ fb0; λ0g.
Similarly, a new family of OPK processes can be obtained
by considering them as both state and transitional variables,
i.e., ΣX ¼ fX;B;Λg, ΣT ¼ fS; B;Λg, and ΣP ¼ fb0; λ0g.
Each of these classes of finite propagation velocity proc-
esses is characterized by different transitional structures,
thus leading to different statistical properties. However, the
argument above highlights that these two processes are
particular cases of a wider class of models, where transi-
tional asynchronies between the state variables and the
main generator of microscopic stochasticity are encapsu-
lated in the transitional time conditional density, for the
example considered Tfβ;ΛgjS.
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We denote these general models of stochastic dynamics
with finite propagation velocity as EPK processes. The
formulation of EPK theory that includes OPK processes
(and LWs among them) as special cases is our second main
result. Figure 1 pictorially describes the inclusive relation-
ship between the main classes of stochastic kinematics
formulated so far. The common denominator between all
these stochastic models, except for Wiener processes
(which are in this sense a singular limit), is the assumption
of a finite propagation speed and finite transition rates. The
main difference resides in the statistics of the transition
times, which is exponential for PK processes, power-law
tailed for LWs and fully generic for EPK processes, and in
the existence (or absence) of transitional asynchronies
among the state variables and the microscopic stochastic
generator.
This analysis elucidates the physical meaning and the

broad range of applications of our extension of conven-
tional PK theory. Transitionally independent PK models
generically yield microscopic processes subjected to
external (environmental) fluctuations that influence their
local dynamics, but they can be considered independent
of the fluctuations in the local microscopic motion.
Conversely, OPK models capture complex microscopic
fluctuations, the statistical description of which requires
the introduction of inner transitionally synchronized
degrees of freedom. This is, for example, the case of
the transitional age τ for LW processes. In between these
two limiting cases, a spectrum of intermediate situations
can be defined ad hoc, by specifying the transitional time
conditional density between the state variables and the
main transitional process.

IV. EXTENDED POISSON-KAC PROCESSES:
CASE STUDIES

We now discuss three specific examples of one-
dimensional EPK processes. First, we introduce a transi-
tional senescent random walk, where the transitional
dynamic depends explicitly on the number of total
transitions that already occurred. We specifically study
an EPK model where the age to which the walker is reset
following a velocity transition is parametrized as an
increasing function of the total number of transitions.
Second, we discuss an EPK model that can reproduce
“Brownian yet non-Gaussian” diffusion [66]. This behav-
ior can be obtained by considering an EPK process where
the walker velocity follows a Markovian jump dynamic
transitionally independent from the corresponding
dynamic of the Poisson field. Differently from other
phenomenological approaches [67], our model provides
a clear microscopic interpretation of this dynamics.
Finally, we formulate an EPK process with correlated
transitional dynamic. If these correlations are neglected,
the model generates LW dynamic. If the correlations lead
to increasing transition rates over time, the model yields a

dynamic characterized by a sub- to superdiffusive cross-
over in the mean square displacement. The variety of
diffusive dynamics that can be captured by EPK processes
highlights the modeling power of our theory. We remark
that in this work we discuss only examples of OPK and
transitionally independent EPK processes. The analysis of
further EPK processes, requiring the occurrence of more
nontrivial multivariate distributions of joint transition
times (which is an intricate problem even for finite
Markov chains [84,85] and associated counting processes
[86]) will be developed in future communications.

A. Transitional senescent random walks

In 1961, Hayflick and Moorhead reported that cultured
proliferating human diploid cells stop cellular division after
a limited number of mitotic events [87,88] showing that this
phenomenon is related to senescence, i.e., to an aging
process occurring at a cellular level [89,90]. Apart from its
biological and biochemical relevance, senescence is
remarkable from a statistical mechanical perspective, where
it translates to the formulation of random walk processes
whose dynamic and transitional properties can decay as the
number of transitions increases. In analogy with the
terminology established in the biological context, we call
this feature transitional senescence. Correspondingly, we
refer to transitionally senescent random walk processes
implementing this feature. A particular example is dis-
cussed in the context of LWs in Ref. [62], where a
progressive decrease of the walker velocity b with the
number of transitions is shown to yield qualitative effects
for the statistics of motion. Here, we show how this feature
can be easily accommodated within our general theory of
EPK processes.
Transitional senescence can be represented by the

fact that either the transition rate λ and/or the walker
velocity b can become functions of the underlying
stochastic counting process NðtÞ, associated with the
Markovian transitional structure of the process. The
process NðtÞ enumerates the transitions that occur up to
the time interval ½0; tÞ. As a pedagogical example, we
consider first the case of a general transitionally senescent
PK process. The system of transitional parameters for this
process is ΣT ¼ fS;Ng. Moreover, the system of state
variables is ΣX ¼ fX;Ng, albeit the dynamics of NðtÞ is
elementary. In fact, dNðtÞ=dt ¼ 0 in any time interval
between two transitions, and NðtÞ ↦ NðtÞ þ 1 at any
transition instant. Because counting process NðtÞ is
transitionally synchronized with SðtÞ, this is for all intents
and purposes an OPK process. Its statistical description

involves the family of PPDW functions pðnÞ
s ðx; tÞ≡

pðx; n; t; sÞ with s ¼ � and n ∈ Z≥0. To model in full
generality the transitional senescence, we assume both the
transition rate λn and the velocity bn to be functions of the
counting state n. The evolution equations for the asso-
ciated OPK process are, thus, expressed by
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∂pð0Þ
� ðx; tÞ
∂t ¼∓ b0

∂pð0Þ
� ðx; tÞ
∂x − λ0p

ð0Þ
� ðx; tÞ;

∂pðnÞ
� ðx; tÞ
∂t ¼∓ bn

∂pðnÞ
� ðx; tÞ
∂x − λnp

ðnÞ
� ðx; tÞ

þ λn−1p
ðn−1Þ∓ ðx; tÞ: ð36Þ

The generalization to a senescent LWis now straightforward,
as we just need to include the transitional age among the
overlapping variables. Therefore, ΣX ¼fX;T ;Ng, ΣT ¼
fS; T ; Ng, and, thus, ΣO¼fT ;Ng. The PPDW functions

for this process are pðnÞ
s ðx; τ; tÞ≡ pðx; τ; n; t; sÞ, which,

similar to Eq. (36), now read

∂pð0Þ
� ðx; τ; tÞ
∂t ¼∓ b0

∂pð0Þ
� ðx; τ; tÞ
∂x −

∂pð0Þ
� ðx; τ; tÞ
∂τ

− λ0ðτÞpð0Þ
� ðx; τ; tÞ;

∂pðnÞ
� ðx; τ; tÞ
∂t ¼∓ bn

∂pðnÞ
� ðx; τ; tÞ
∂x −

∂pðnÞ
� ðx; τ; tÞ
∂τ

− λnðτÞpðnÞ
� ðx; τ; tÞ

þ
Z

∞

0

knðτ; τ0Þλn−1ðτ0Þpðn−1Þ∓ ðx; τ0; tÞdτ0:

ð37Þ

Here, the transitional senescence of the process is expressed
by the Markovian transition kernels knðτ; τ0Þ, which are
assumed to depend on the counting state n. The kernel
knðτ; τ0Þmay be an impulse Dirac delta function in τ or may
admit a nonatomic support in τ, consisting in an interval of
values of τ for which knðτ; τ0Þ > 0.
Equations (37) represent the statistical characterization

of a general transitionally senescent LW. To illustrate how

these processes can reveal novel dynamical features, we
specify the senescing process such that, after any transition,
the walker transitional age is not reset to zero but to a
prescribed larger value. In this respect, we introduce a
diverging sequence of non-negative numbers fτ0ng∞n¼0 with
τ00 ¼ 0 and τ0n < τ0nþ1, such that

knðτ; τ0Þ ¼ δðτ − τ0nÞ; λnðτÞ ¼ λðτÞ; ð38Þ

where λðτÞ is specified by Eq. (7). Clearly, each λnðτÞ is
defined in the age interval ðτ0n;∞Þ, which implies that the
corresponding transition time densities also depend on n.
According to Eqs. (38), the age boundary conditions are

pðnÞ
� ðx; τ0n; tÞ ¼

Z
∞

τ0n−1

λðτ0Þpðn−1Þ∓ ðx; τ0; tÞdτ0: ð39Þ

We simulate numerically the stochastic process associated
with Eqs. (37) by further assuming constant velocities bn ¼
b and τ0n ¼ ðn − 1Þτ0 (for n > 0), where τ0 is a constant
positive parameter. In Fig. 2(a), we present the temporal
evolution of the mean square displacement of this dynamic,
σ2xðtÞ ¼

R
∞
−∞ x2Pðx; tÞdx, obtained from stochastic simu-

lations. Here, we define the walker position distribution as

Pðx; tÞ ¼ P∞
n¼0

P
s¼� PðnÞ

s ðx; tÞ with the marginal PPDW

functions PðnÞ
s ðx; tÞ ¼ R∞

τ0n
pðnÞ
s ðx; τ0; tÞdτ0. We simulate 107

trajectories, all initialized at the origin, with b ¼ 1 and ξ ¼
1.5 for different values of the parameter τ0. For τ0 ¼ 0, we
recover the conventional LW, in which case σ2xðtÞ ∼ tγ

with γ ¼ ð3 − ξÞ. In contrast, for τ0 ≠ 0, we find the
different long-term scaling σ2xðtÞ ∼ tγeff , characterized by
the effective exponent γeff > γ. This result is physically
intuitive, because the transitional senescence induces a
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FIG. 2. Superdiffusion for the model of a transitionally senescent LW; see Eq. (38) and further specifications in the text. Here, τ0

defines the senescence time. The special case τ0 ¼ 0 corresponds to the conventional LWmodel without senescence. ξ is the exponent of
the power-law distributed transition times; see Eqs. (5) and (7), respectively. For the speed of the walker, we choose b ¼ 1. (a) Temporal
evolution of the mean square displacement σ2xðtÞ for ξ ¼ 1.5. We see that senescence enhances superdiffusion beyond the conventional
LW solution. (b) The scaling exponent γeff as a function of ξ increases by increasing the senescence time τ0 ¼ 0.
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slowing-down in the transitional mechanism, which
determines a more pronounced superdiffusive behavior.
In Fig. 2(b), we present results for γeff for different values of
the parameter ξ predicted by the stochastic simulations.
Remarkably, we observe that γeff > 1 even for values ξ > 2

for which the corresponding LW (τ0 ¼ 0) displays an
Einsteinian scaling, γ ¼ 1. For 0 < ξ < 1, the senescent
LW exhibits ballistic diffusion, γeff ¼ 2, similar to its
nonsenescing counterpart. To analytically predict how
γeff depends on ξ is an open problem left to further studies.

B. Brownian yet non-Gaussian diffusive extended
Poisson-Kac processes

Brownian yet non-Gaussian diffusion is the hallmark
of a specific class of transport phenomena in out-of-
equilibrium systems [91,92]. It has recently been
observed, among others, for beads diffusing on lipid
tubes and networks [91,93–96], for passive tracers
immersed in active suspensions [97], for heterogenous
populations of moving nematodes [98], and in the context
of intracellular transport [99]. The terminology refers
generically to dynamics where the position mean square
displacement scales linearly for long times, while the
position statistics exhibits non-Gaussian tails. Clearly, this
stochastic dynamic cannot be modeled by standard
Brownian motion. Hence, the formulation of suitable
stochastic processes that can capture this peculiar dif-
fusive feature was subject to numerous theoretical inves-
tigations in recent years. According to the observation
that a Laplace distribution with a linearly scaling second
moment can be derived from a superstatistical approach
[100], where Gaussian distributions are averaged over
Laplace distributed diffusion coefficients [98], a family of
“diffusing diffusivity” models has been proposed
[67,101]. For these models, the position process is
described by standard Brownian motion with a diffusion
coefficient performing a prescribed stochastic dynamic.
We note that microscopic derivations of this dynamic
have recently been considered in the context of active
matter [102]. Here, we show that EPK processes can
naturally account for the hierarchical level of fluctuations
generating Brownian yet non-Gaussian diffusion by
allowing the walker speed to change over time according
to a given Markov chain dynamics.
For simplicity, we consider a PK process and assume

bðtÞ ¼ b0βðtÞ, where b0 > 0 is a constant parameter
and βðtÞ is a stochastic process attaining values in
Dβ ¼ ½0; bmax�, which is characterized by a Markovian
transition dynamics with a constant transition rate μ and the
transition probability kernel Aðβ; β0Þ (see Appendix B). If
we denote as Pbðβ; tÞ the probability density at time t
associated to this dynamic, we assume the process to admit
the stationary distribution P⋆

bðβÞ ¼ limt→∞ Pðβ; tÞ. This
requires the condition Aðβ; β0Þ ¼ P⋆

bðβÞ. Consequently,
we define the EPK process

dxðtÞ
dt

¼ b0βðtÞð−1Þχðt;λÞ: ð40Þ

Under these assumptions, ΣX ¼ fXg, ΣT ¼ fS; βg,
and ΣP ¼ fb0; λg.
The statistical description of the EPK process Eq. (40)

involves the PPDW functions psðx; t; βÞ≡ pðx; t; β; sÞ.
They are parametrized with respect to s ¼ �, correspond-
ing to the “microstochasticity” in the local particle move-
ments associated with the Poissonian parity switching
process, and with respect to β ∈ Dβ, corresponding to
the “superstatistical structure” superimposed to the micro-
scopic randomness [100]. Given the transitional independ-
ence of the parameters S and β, the evolution equations for
p�ðx; t; βÞ can be derived similarly to Eq. (32), i.e.,

∂p�ðx;t;βÞ
∂t ¼∓ b0β

∂p�ðx;t;βÞ
∂x

∓ λ½pþðx;t;βÞ−p−ðx;t;βÞ�

−μp�ðx;t;βÞþμP⋆
bðβÞ

Z
Dβ

p�ðx;t;β0Þdβ0:

ð41Þ

We now assume initial equilibrium conditions with
respect to the transitional parameters ðs; βÞ and that all
the particles are initially located at x ¼ 0. This implies the
initial condition p�ðx; 0; βÞ ¼ P⋆

bðβÞδðxÞ=2. The solution
of Eq. (41) with the above initial conditions admits a
characteristic (and nontrivial) short-term behavior, pro-
vided that λ ≫ μ, i.e., that a separation of timescales exists
between the two stochastic contributions modulating the
walker dynamic Eq. (40). For short timescales t ≪ 1=μ,
the recombination among the velocities is negligible, and,
consequently, the short-time solution is simply the propa-
gation of the initial condition via the PK mechanism.
Thus,

p�ðx; t; βÞ ¼
P⋆
bðβÞ
2

½G�;þðx; t; b0β; λÞ þ G�;−ðx; t; b0β; λÞ�;
ð42Þ

where Gs1;s2ðx; t; b0β; λÞ (s1; s2 ¼ �) are the entries of the
tensorial Green functions for the PPDW equations of
the PK process with velocity equal to b0β and transition
rate λ [103]. If λ is large enough, keeping fixed the
ratio b20=2λ ¼ D0, the PK process approaches its Kac
limit, which is the parabolic diffusion equation. For
each β, ½G�;þðx;t;b0β;λÞþG�;−ðx;t;b0βÞ;λ�→GDðβÞðx;tÞ,
where GDðβÞðx; tÞ is the parabolic heat kernel for the
value DðβÞ ¼ D0β

2 of the diffusivity. Thus, the overall
marginal density Pðx;tÞ¼R

Dβ
½pþðx;t;β0Þþp−ðx;t;β0Þ�dβ0

approaches, in the Kac limit, the expression
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Pðx; tÞ ¼
Z
Dβ

P⋆
bðβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πD0β
2t

p exp

�
−

x2

4D0β
2t

�
dβ0: ð43Þ

Remarkably, if we assumeP⋆
bðβÞ to be a generalizedGamma

distribution, i.e., P⋆
bðβÞ¼2κAβe−κβ

2

with κ ¼ D0=D� and
the normalization constant A ¼ ð1 − e−κβ

2
maxÞ−1, we recover

at short timescales the Laplace distribution

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4D�t

p exp

�
−

jxjffiffiffiffiffiffiffiffi
D�t

p
�
; ð44Þ

which is the object of extensive investigations using a
variety of phenomenological diffusing diffusivity models
[66,67,98,101]. Our argument demonstrates that the process
Eq. (40) can be regarded as the archetype of such models,
with the advantage that the superstatistical effect has a clear-
cut physical interpretation in terms of the Markovian
recombination of the microscopic velocities of the random
walker.
In Fig. 3, we validate our theoretical predictions on the

short-time behavior of our model through stochastic sim-
ulations of Eq. (40). We set D0 ¼ 1, D� ¼ 1, μ ¼ 1=2, and
bmax ¼ ∞. We use two different values of the transition
rate: λ ¼ f10; 102g. We run 107 independent trajectories,
each initially located at x ¼ 0. In agreement with our
theoretical considerations, we observe an excellent agree-
ment between the simulation data and the Laplace distri-
bution Eq. (44) for λ ¼ 102 [Fig. 3(a)] up to t ≤ 2 ¼ 1=μ.
For longer times, the approach toward the long-term
asymptotics starts to appear, driven by the recombination
dynamics associated with the transition mechanism of the
stochastic process βðtÞ. For λ ¼ 10 [Fig. 3(b)], the early
short-time behavior, specifically the data at t ¼ 0.2, shows
a significant deviation from Eq. (44). For this λ and at this
timescale, the recombination mechanism of the velocity
switching process SðtÞ is not fast enough to allow the PK

dynamics to be accurately approximated by its parabolic
Kac limit.
The asymptotic (long-term) behavior of Eq. (40) corre-

sponds to the Kac limit of Eq. (41). In this limit,
p�ðx; t; βÞ ≃ Pðx; tÞP⋆

bðβÞ=2 and, following identical cal-
culations developed in Refs. [45,80,81], one recovers the
parabolic diffusion equation ∂tPðx; tÞ ¼ Deff∂2

xPðx; tÞ,
with an effective diffusivity Deff ¼ D0hβ2i=ð1 − e−κβ

2
maxÞ,

where hβ2i ¼ R
Dβ

β02P⋆
bðβ0Þdβ0. Correspondingly, the long-

time asymptotics of Eq. (41) is expressed by the Gaussian
heat kernel

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDefft

p exp

�
−

x2

4Defft

�
: ð45Þ

Figure 4 confirms these predictions numerically. The
simulation protocol and model parameters used are the
same as for Fig. 3. We present only the case λ ¼ 10, since
the long-term asymptotic behavior is the same for any value
of λ. In this case,D0 ¼ 1, and hβ2i ¼ 1, so thatDeff ¼ 1. In
Fig. 4(a), the agreement between our prediction Eq. (45)
and the simulation data is excellent. In Fig. 4(b), we show
that the scaling of the mean square displacement σ2xðtÞ is
linear in time over all the timescales considered. We note
that for finite bmax a ballistic scaling for the mean square
displacement σ2xðtÞ ∼ t2 for times t ≤ 1=λ is also observed
due to the bounded propagation speed. This demonstrates
that our model Eq. (40) can successfully reproduce
Brownian yet non-Gaussian diffusive behavior.

C. Subdiffusive Lévy walks

In their original formulation based on CTRWs, LWs are
shown to capture ballistic, normal, and superdiffusive
behavior, according to the scaling properties of their
transition time density distribution [22]. Other diffusional
features, such as particularly subdiffusion, could be

(a) (b)

FIG. 3. Short-time diffusive properties of the EPK model Eq. (40). All model and simulation parameters are given in the text. Shown is
the position probability density function Pðx; tÞ for the transition rates λ ¼ f10; 102g [(b) and (a), respectively]. Symbols correspond to
the results of stochastic simulations at increasing values of time t as given in the legends. Lines represent the Laplace distribution
Eq. (44).
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achieved only in a generalized version of LW dynamics,
where a power-law kinematic relation between the dis-
placement of the walker and the transition time is imposed
[70]. We remark that the occurrence of long-term sub-
diffusive scaling in stochastic processes possessing finite
propagation velocity has also already been obtained for
symmetric random walks on fractals [104] or generalized
PK processes in prefractal media [105]. Motivated by these
results, in this section, we show that we can formulate an
EPK process that can capture short-term subdiffusion
solely as the result of microscopic correlations among its
transition rates.
We consider an EPK process where the transition rate of

the Poissonian switching process S is described by the
stochastic process ΛðtÞ attaining values in the bounded
interval Dλ ¼ ½0; λmax�. Specifically, we assume Λ to
generate a Markov chain dynamics, with transition rate
μðλÞ and probability transition kernel Mðλ; λ0Þ (see
Appendix B). The corresponding extended PK process
can then be defined as

dxðtÞ
dt

¼ bð−1Þχ½t;λðtÞ�: ð46Þ

The PPDW functions for this process, psðx; t; λÞ≡
pðx; t; λ; sÞ, are parametrized with respect to all the transi-
tional parameters, here s ¼ � and λ ∈ Dλ. The transitional
parameters are transitionally independent as in the previous
example. The temporal evolution equations can then be
obtained similarly to Eq. (32), i.e.,

∂p�ðx;t;λÞ
∂t ¼∓b

∂p�ðx;t;λÞ
∂x

∓ λ½pþðx;t;λÞ−p−ðx;t;λÞ�−μðλÞp�ðx;t;λÞ

þ
Z

λmax

0

μðλ0ÞMðλ;λ0Þp�ðx;t;λ0Þdλ0: ð47Þ

Solutions of these equations are uniquely determined by the
initial condition p�ðx; λ; 0Þ ¼ p0

�ðx; λÞ.
First, we demonstrate that the process Eq. (46) generates

a dynamic that shares the long-time statistical character-
istics of the conventional LW. Let us assume Mðλ; λ0Þ ¼
π�ðλÞ, where π�ðλÞ is the equilibrium density function of
the transition rate process. Under these assumptions, the
transition time density for this process is given by

TðτÞ ¼
Z
Dλ

λe−λτπ�ðλÞdλ: ð48Þ

This equation follows by recalling that, once we fix λ, the
time τ elapsed before the next transition is a random
variable sampled from an exponential distribution with
mean λ. We now specify the equilibrium density as

π�ðλÞ ¼ ð1þ αÞλα ð49Þ

with α > −1 and λmax ¼ 1. In this case, TðτÞ ∼ τ−ðαþ2Þ for
large τ. Therefore, this process reproduces qualitatively all
the characteristic long-term diffusive features of the con-
ventional LW as defined in Sec. II, provided we set
ξ ¼ αþ 1. In particular, we can show that (i) for
−1 < α < 0, the process is ballistic, i.e., σ2xðtÞ ∼ t2; (ii) for
0 < α < 1, the process is superdiffusive, σ2xðtÞ ∼ t2−α;
and (iii) for α > 1, the process exhibits a linear
Einsteinian scaling, σ2xðtÞ ∼ t. Furthermore, we can show
that (iv) the invariant function p�ðzÞ ¼ σxðtÞPðx; tÞjx¼zσxðtÞ,
with the probability density function for the process
Pðx; tÞ ¼ R

1
0 ½pþðx; t; λÞ þ p−ðx; t; λÞ�dλ, is the same as

that of the conventional LW. We verify all these results
in numerical simulations; see Figs. 5(a) and 5(b) for some
representative examples. We note that the different tran-
sition time densities for the process Eq. (46) and the LW
Eq. (16) affect only their short-time statistical properties.

(a) (b)

FIG. 4. Long-time diffusive properties of the EPK model Eq. (40). Here, we consider only the transition rate λ ¼ 10, and all the other
model and simulation parameters are the same as in Fig. 3; see also the text. Symbols correspond to the results of stochastic simulations.
(a) Position probability density function Pðx; tÞ at different times t as given in the legend. Lines represent the Gaussian long-time limit
Eq. (45). (b) Mean square displacement σ2xðtÞ. The solid line corresponds to the Einsteinian scaling σ2xðtÞ ¼ 2Deff t, with Deff ¼ 1.
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Remarkably, the formulation Eq. (46) of LW dynamics
enables the explicit modeling of highly nontrivial transi-
tional correlations through the full transition kernel
Mðλ; λ0Þ. In particular, we assume that the transition rate
process Λ does not possess an invariant density. This is
ensured by the condition

Z
Dλ

λMðλ; λ0Þdλ > λ0: ð50Þ

In physical terms, this condition induces a progressive shift
over time toward higher and higher values of the transition
rate. As a specific example, we assume Mðλ; λ0Þ ¼
ðλ0Þν=ða2 þ a1Þ for λ ∈ ½λ0 − a1=ðλ0Þν; λ0 þ a2=ðλ0Þν� and
zero otherwise, where a1, a2 > 0 (a2 > a1) and ν > 0
are constant. The shift is clearly determined by the fact that
λ at each transition is sampled uniformly from an asym-
metric interval ½λ0 − cðλ0Þa1; λ0 þ cðλ0Þa2�, where cðλ0Þ ¼
ðλ0Þ−ν decreases progressively. This function is introduced
to slow down the shift that would, otherwise, rapidly stop
the motion. This shift toward higher values of λ determines
a progressive decrease of the local diffusivity, leading
potentially to subdiffusive behavior. This is verified in
Fig. 5(c), where we plot σ2x for this process obtained from
numerical simulations. We run 105 independent trajecto-
ries. Starting from a ballistic scaling for short times, as
typical of all processes possessing finite propagation
velocity, the mean square displacement for t > 102 exhibits
an anomalous long-time scaling with subdiffusive exponent
γ ¼ 0.8. We note that this scaling is observed over more
than four decades, t ∈ ½102; 106�.

V. CONCLUSIONS AND PERSPECTIVES

Stochastic processes form a cornerstone of our math-
ematical description of physical reality. They enable the

modeling of a wide variety of transport phenomena in the
natural and social sciences, such as the random movements
of cells, bacteria, and viruses, the fluctuations of climate,
and the volatility of financial markets [1,18,23]. Typical
stochastic models considered, however, fail to ensure finite
velocities, thus violating Einstein’s theory of special
relativity. While these models still capture the correct
statistics of motion on sufficiently long timescales, their
representation of the real world is thus intrinsically defec-
tive. Partially, they also lead to mathematical problems like
diverging moments for the probability distributions of a
random walker, with direct implications for physical
observables obtained from such models. To solve this deep
conceptual problem, stochastic processes with finite propa-
gation speed have been introduced. Paradigmatic examples
are PK processes [41–43] and LWs [27–32] yielding
normal and anomalous diffusion, respectively. Despite
their joint feature of finite propagation speeds, however,
these two fundamental classes of stochastic processes
have so far coexisted without exploring any cross-links
between them.
Inspired by the novel formulation of LW dynamics

proposed by Fedotov and collaborators [37,61], in this
article we explored the connection between LWs and PK
processes by showing that the latter models can be under-
stood as a particular case of the former ones. Clarifying the
relation between these two dynamics, by including Wiener
processes as a special case, yielded our first main result.
This is represented in Fig. 1 by the first three inner circles.
In turn, this observation suggested the most natural
stochastic differential equations describing LW path
dynamics, Eqs. (15) and (16), which are obtained from
suitably generalizing the formalism of PK processes. This
formulation neatly results from the definition of a LW
process and, in this sense, greatly differs from other
phenomenological models published in the literature that

(a) (b) (c)

FIG. 5. Statistical characterization of the EPK model Eq. (47) for equilibrated transition rate dynamics (a),(b) and for the general
nonequilibrated case (c) (see the main text for details). (a) Mean square displacement σ2xðtÞ for α ¼ f0.1; 0.3; 0.5; 0.7; 0.9g, where α is
the exponent of the power law determining the equilibrium density of the transition rates; see Eq. (49). Lines are generated by numerical
simulations of the stochastic dynamic. Dashed lines indicate the scaling predictions for the extremal values of α in the range considered.
(b) Invariant long-time density p�ðzÞ [z ¼ x=σxðtÞ] at α ¼ 0.5 (symbols), compared with the distribution of its corresponding LW (solid
lines). (c) Mean square displacement σ2xðtÞ for the same EPK model in nonequilibrated conditions. Three different diffusive regimes are
indicated by straight lines. Markers represent the results of numerical simulations. Solid lines indicate the different scaling regimes
exhibited by this dynamic.

EXTENDED POISSON-KAC THEORY: A UNIFYING FRAMEWORK … PHYS. REV. X 12, 021004 (2022)

021004-17



rely on subordination techniques [106,107] or fractional
derivatives [108], as the statistical characterization involves
first-order evolution equations in time and space, whose
mathematical structure resembles the linear Boltzmann
equation [109]. Owing to this analogy and to the analogy
between the evolution equations for the partial densities
and the mathematics of radiative transfer [110], the
mathematical approaches developed in these two fields
can be consistently transferred to the study of EPK
processes [109,110]. With a reverse-engineering approach,
we then used the cross-link between these processes to
formulate a very general theoretical framework for sto-
chastic models with finite propagation speed, which we
called EPK theory. This theory contains LWs as a special
case, as is depicted again in Fig. 1 by the fourth most outer
circle. This is our second main result.
Motivated by experimental applications, we then dem-

onstrated by three explicit, practical examples the potential
and the modeling power offered by our novel theory. We
showed that EPK processes can capture senescing phe-
nomena, where the mechanism for velocity changes
depends explicitly on the number of transitions occurred.
From EPK theory, we also obtained a microscopic inter-
pretation of the intriguing and very actively explored
transport phenomenon associated with Brownian yet
non-Gaussian diffusion [66,67]. Finally, we demonstrated
that LWs may be not only superdiffusive but also sub-
diffusive, depending on more subtle microscopic details of
the LW dynamic as captured by EPK theory. These novel
diffusional features (anomalies) are ultimately obtained by
exploiting the internal coupling between state variables and
transitional parameters characteristic of EPK processes.
In this paper, we outlined the general framework of EPK

theory in unbounded domains and in the absence of biasing
fields (potential and/or pressure-driven velocity fields). The
extension of our theory to transport problems in bounded
settings can be achieved straightforwardly by applying the
boundary conditions (absorbing, reflecting, or of mixed
nature) already developed for hyperbolic transport prob-
lems involving PK processes and LWs [62,111,112]. The
effects of external biasing fields can be included in two
ways: The first one is to consider the EPK counterparts of
the classical Ornstein-Uhlenbeck model, as discussed in
Ref. [81] for simple PK processes. The second one is to
consider the effect of the external potential on the transi-
tional properties of the EPK model, by allowing for a
dependence of the transition rates on the positional state
variables. A number of important open problems and
consequences still remain to be addressed, especially
concerning the mathematical features of EPK models
and their experimental applications.
From the perspective of stochastic theory, the first

intriguing open problem is the formulation of a spectral
theory of finite propagation speed processes (most notably,
LWs among them). We have preliminary evidence that the

constraint imposed by the finite velocity may manifest itself
as a lower bound in the real part of the spectrum. If
confirmed, it would be interesting to investigate whether
this is a universal property of all stochastic processes
possessing finite propagation velocity. In this direction, a
second top-priority problem is to develop a homogeniza-
tion theory for EPK processes. This is fundamental, as it
could enable one to calculate the hierarchy of moments and
correlation functions associated with these stochastic proc-
esses. These are essential quantities to explore theoretically
the ergodic and aging properties of a given class of
stochastic processes. In addition, these results are also
relevant from the perspective of experimental applications.
Indeed, both moments and correlations are observables that
can often be measured with great accuracy in experiments.
Therefore, by comparing experimental data with model
predictions of these observables, they could be employed to
discern the most suitable finite propagation speed stochas-
tic model for a given empirical diffusion dynamics. To
complement this argument, our considerations further
suggest that experimentalists should make an effort to
measure the probability distribution of diffusive observ-
ables (such as position and/or velocity) with sufficiently
large statistics to assess reliably the tails of these distribu-
tions. While stochastic processes with or without finite
propagation speed might exhibit the same long-term
asymptotic scaling of moments and/or correlations, the
presence of ballistic peaks in the tails of these distributions
is a hallmark that the diffusion observed empirically
possesses finite velocities. Finally, while in this work we
have focused on the single-particle case, another relevant
research direction is the study of the emerging collective
behavior in ensembles of EPK particles potentially inter-
acting among themselves. Along these lines, and by
introducing persistence in terms of correlations, one may
cross-link finite-velocity stochastic theory with the very
recent field of active matter [113–117]. Given the addi-
tional biologically motivated features that can be included
in EPK theory, it will be interesting to systematically
investigate what EPK models can further reproduce in
terms of biologically significant dynamics.
We conclude by highlighting that EPK processes are not

only of fundamental importance as models of transport
phenomena, but also that they can be applied to basic and
fundamental problems of statistical physics, providing a
novel view of the latter. The boundedness of the transition
rates characteristic of EPK processes allows one to describe
the dynamics of processes controlled by elementary events
occurring at random transition times. This is the case of the
quantum phenomenology associated with the interaction
between molecules and photons. In this case, the elemen-
tary processes involve emission and absorption of
energy quanta [57]. In this class falls also the stochastic
representation of quantum systems interacting with an
external environment [58]. At sufficiently high (ambient)

GIONA, CAIROLI, and KLAGES PHYS. REV. X 12, 021004 (2022)

021004-18



temperatures, these processes can be described by a
Poissonian statistics of the transition times [57,58]. In
the limit of very low temperatures, reachable, e.g., by
means of laser cooling techniques, the transitional statistics
becomes more complex and correlated [118], providing a
natural application for EPK processes.
Another important field of application is the hydrody-

namics of colloidal systems whenever particle-fluid inter-
actions are accounted for in detail. Physically, this implies the
transition from the Einstein-Langevin picture of Brownian
motion (Stokes regime) to the realm where fluid inertia is no
longer negligible (time-dependent Stokes regime) [119,120].
These effects, originally discovered by Stokes in 1851 [119],
determine the occurrence of long-term power-law tails in the
velocity autocorrelation functions, recently observed exper-
imentally [121–123] for Brownian particles in a liquid.
Preliminary results on a velocity-based representation of
fluctuation-dissipation theorem indicates that EPK processes
possessing a continuous velocity distribution can be among
the simplest candidates for representing the thermal or
hydrodynamic fluctuations controlling Brownian and colloi-
dal particle motion in inertial fluids both in the free space and
in confined geometries.
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APPENDIX A: CONTINUOUS-TIME RANDOM
WALKS AND THEIR RELATION

TO LÉVY WALKS

A one-dimensional continuous-time random walk is a
stochastic process that describes the dynamic of a random
walker on the real line that can wait for a random time τ at
its current position before jumping over a random distance
Δ either to the left or to the right. The pair of jump length
and waiting time, ðΔ; τÞ, is sampled from a prescribed
joint PDF ϕðΔ; τÞ. The jump length distribution is
wðΔÞ ¼ Rþ∞

0 ϕðΔ; τÞdτ, where Δ ∈ R; likewise, the wait-
ing time distribution is TðτÞ ¼ Rþ∞

−∞ ϕðΔ; τÞdΔ. Hence, a
CTRW dynamic can be more naturally defined with respect
to an operational time n ∈ N, which simply counts the
jump events that occur. The particle position xn at the
physical time tn is then given by the equations of motion

xnþ1 ¼ xn þ Δn; tnþ1 ¼ tn þ τn; ðA1Þ

with the pairs ðΔh; τhÞ and ðΔk; τkÞ being independent of
each other for h ≠ k. Traditionally, jump lengths and

waiting times are further assumed to be independent,
meaning that we can factorize the joint distribution as
ϕðΔ; τÞ ¼ wðΔÞTðτÞ. Under this assumption, the CTRW
dynamic resembles that of the Wiener process Eq. (2)
[which can be recovered in fact by assumingwðΔÞ and TðτÞ
to be Gaussians [17]], in the sense that the walker can
perform potentially unbounded random displacements
depending on the prescribed jump length distribution
wðΔÞ. This is manifest particularly in the Lévy flight
model [25,124,125], where the probabilities of sampling
very large displacements are enhanced by assuming a
power-law-tailed jump length distribution.
In order to model a LW, we impose on Eqs. (A1) the

constraint of a finite and constant propagation speed b
[27–33]. This implies introducing a relation between Δn
and τn in the form of

Δn ¼ snbτn; ðA2Þ

where sn are random variables attaining values �1 with
equal probability. We highlight that this is not just a
technicality, but it implies a complete change of perspec-
tive. Within this different interpretation, the waiting time τ
in the original CTRW formulation becomes in the LW the
transition time for a velocity change in one direction. In the
special case of a two-state model, the direction of motion is
inverted at each transition event [33], Δn ¼ bs0ð−1Þnτn,
where s0 ¼ �1with equal probability determines the initial
direction of motion.

APPENDIX B: POISSON FIELDS: DEFINITION
AND EVOLUTION EQUATION

A d-dimensional Poisson field is a continuous stochastic
process attaining values in a set, Dα, whose statistical
description satisfies a continuous Markov chain dynamic
defined by the transition rate function λðαÞ ≥ 0 and by the
transition probability kernel Aðα;α0Þ. The symbols α;α0
denote d-dimensional vectors inDα. Let us now assumeDα

to be continuous. Thus, the probability Prob½fΞðtÞ ∈
ðα;αþ dαÞg� ¼ P̂ðα; tÞdα (dα denotes a d-dimensional
infinitesimal volume in Dα) is determined by the density
function P̂ðα; tÞ that satisfies the linear evolution equation

∂P̂ðα; tÞ
∂t ¼ −λðαÞP̂ðα; tÞ þ

Z
Dα

λðα0ÞAðα;α0ÞP̂ðα0; tÞdα0:

ðB1Þ

The transition probability kernel Aðα;α0Þ is a left
stochastic kernel; i.e., Aðα;α0Þ ≥ 0,

R
Dα

Aðα;α0Þdα ¼ 1

for all α0 ∈ Dα. If Dα is discrete instead, the statistical
description of the Poisson field ΞðtÞ is obtained directly in
terms of the probability Pðα; tÞ ¼ Prob½fΞðtÞ ¼ α ∈ Dαg�,
which satisfies an equation similar to Eq. (B1) with
the integral term substituted by the summation
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P
α0∈Dα

λðα0ÞAðα;α0ÞPðα0; tÞ. Naturally, the condition on
the transition kernel becomes

P
α∈Dα

Aðα;α0Þ ¼ 1 for
every α0 ∈ Dα. We remark that any continuous Markov
chain transition dynamic satisfies an equation similar to
Eq. (B1) with given rate and kernel functions.

APPENDIX C: LÉVY WALKS AS SPECIFIC
OVERLAPPING POISSON-KAC PROCESSES

For a one-dimensional LW (see Sec. II C), our general
framework boils down to n ¼ m ¼ 1, x ¼ x, τ ¼ τ, and
α ¼ α, which attains only the discrete values Dα ¼ f�g.
Moreover, vðx; τÞ ¼ 0, λ ¼ λðτÞ, wðx; τÞ ¼ 1, and
bðx; τ; αÞ ¼ bðαÞ, with bð�Þ ¼ �b. Given the atomic
nature of the transitional parameter SðtÞ, we can define

pðx; τ; t; αÞ ¼
X
s¼�

psðx; τ; tÞδðα − sÞ; ðC1Þ

Aðx; τ; α; τ0; α0Þ ¼
X
s;q¼�

Âsqðτ; τ0Þδðα − sÞδðα0 − qÞ; ðC2Þ

in which the 2 × 2 transition kernel A does not depend on
the state variable x. In order to recover a LW, it is sufficient
to consider the factorization

Âsqðτ; τ0Þ ¼ Asqkðτ; τ0Þ; ðC3Þ

where A ¼ ðAsqÞs;q¼� is a left stochastic matrix and
kðτ;τ0Þ ¼ δðτÞ (see Sec. II C). For the matrixA, we consider
the simplest form defining a two-state process, i.e.,

A ¼
�
0 1

1 0

�
: ðC4Þ

Implementing all these simplifications in Eq. (30), we
obtain the equations for the PPDW functions psðx; τ; tÞ:

∂psðx;τ; tÞ
∂t ¼−sb

∂psðx;τ; tÞ
∂x −

∂psðx;τ; tÞ
∂τ −λðτÞpsðx;τ; tÞ

þδðτÞ
Z

∞

0

λðτ0ÞpπðsÞðx;τ0; tÞdτ0; ðC5Þ

where πðsÞ represents the index flipping operation
πð�Þ ¼∓, which accounts for the structure of the
Markovian transition matrix A. For any τ > 0, the term
∝ δðτÞ is null, such that Eq. (C5) reduces to the Eq. (8)
previously derived for LW processes (see Sec. II C). The
impulsive forcing term ∝ δðτÞ in Eq. (C5) affects only the
behavior of psðx; τ; tÞ near τ ¼ 0. The resolution of this
impulsive discontinuity can be achieved by integrating
Eq. (C5) in the transitional age τ over an interval ½−ε; ε�,
with arbitrary ε → 0. This interval contains τ ¼ 0 as its
internal point. In doing this, we are implicitly extending the
domain of the PPDW functions psðx; τ; tÞ to negative τ.

Performing the integration, the Oð1Þ contributions stem
solely from the convective term along the age abscissa,
∂ps=∂τ, and from the last impulsive recombination term
∝ δðτÞ, while all other remaining terms are OðεÞ. Thus,
they are negligible in the limit ϵ → 0. In this way, Eq. (C5)
yields

−
Z

ε

−ε

∂psðx;τ; tÞ
∂τ dτþ

Z
∞

0

λðτ0ÞpπðsÞðx;τ0; tÞdτ0 ¼ 0: ðC6Þ

Since limε→0psðx;ε; tÞ¼psðx;0; tÞ and limε→0þ psðx;
−ε; tÞ ¼ 0, Eq. (C6) reduces to the boundary condition
Eq. (11). In point of fact, Eq. (C5) represents in a compact
form both the evolution equations (8) and the age boundary
condition (11). This equation possesses the typical integro-
differential structure of a generalized PK process in the
presence of an impulsive recombination in τ, in which the
dynamics for τ ∈ ð0;∞Þ gives rise to Eqs. (8), whereas
the impulsive discontinuity at τ ¼ 0 can be resolved by the
boundary condition Eq. (11).
We highlight that within our generalized theory LWs can

be defined straightforwardly in higher spatial dimensions.
In contrast, only a fewmodels in two spatial dimensionswith
ad hoc assumptions on the transitional dynamics have been
obtained by using the conventional formalism of CTRWs
[69]. As a matter of fact, all these models can be naturally
recovered as special cases of our Eq. (30), as follows:
First, in the product model, we assume that the random
walker performs completely independent one-dimensional
LWs in both the x and y directions. Therefore, within our
formalism, the PPDW functions can be factorized as
pðx; τ; t;αÞ ¼ pðx; τx; t; αxÞpðy; τy; t; αyÞ, where we intro-
duce transitional age variables τx and τy and independent
stochastic parametrizations αx andαy in each direction. If we
assume that all other characteristic parameters of these
processes are the same as those of the one-dimensional
LW discussed above, each PPDW function then satisfies the
sameEq. (C5) in its corresponding spatial direction. Second,
in the XY model, we assume that the random walker can
move only along the x or y axis in either direction. In this
case, we therefore set τ ¼ τ, α ¼ α with Dα ¼ f0; 1; 2; 3g,
and bðx; τ; αÞ ¼ bðαÞ ¼ b½cos ðαπ=2Þ; sin ðαπ=2Þ�. As the
stochastic parameter can attain only discrete values, we can
make assumptions similar to Eqs. (C2) and (C3) with the
only difference being in the definition of the Markovian
transitional matrix; in this case, this is defined as

A ¼ 1

3

0
BBB@

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1
CCCA: ðC7Þ

Finally, in the uniform model, we assume that the random
walker at each transition can choose any random new
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direction. We therefore set τ ¼ τ, α ¼ α withDα ¼ ½0; 2πÞ,
and bðx; τ; αÞ ¼ bðαÞ ¼ b½cosðαÞ; sinðαÞ�. As the stochas-
tic parameter here attains values in a continuous set, Eq. (30)
applies directly with the transitional matrix

Aðx; α; τ; α0; τ0Þ ¼ δðτÞ
2π

: ðC8Þ
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Waves, Relaxation and First Passage Time Statistics,
J. Phys. A 52, 384001 (2019).

[63] K. Chen, B. Wang, and S. Granick, Memoryless Self-
Reinforcing Directionality in Endosomal Active Transport
within Living Cells, Nat. Mater. 14, 589 (2015).

[64] M. S. Song, H. C. Moon, J. H. Jeon, and H. Y. Park,
Neuronal Messenger Ribonucleoprotein Transport
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