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We numerically study the zero-temperature relaxation dynamics of several glass-forming models to their
inherent structures, following quenches from equilibrium configurations sampled across a wide range of
initial temperatures. In a mean-field Mari-Kurchan model, we find that relaxation changes from a power
law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field
p-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a
nontrivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures.
We demonstrate that this apparent evolution is controlled by a temperature-dependent population of
localized glassy excitations. Our work unifies several recent lines of studies aiming at a detailed
characterization of the complex potential energy landscape of glass formers, and challenges both mean-

field and real space descriptions of glasses.
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I. INTRODUCTION

Many systems of scientific interest are described as
“complex,” even though definitions of complexity may
vary across scientific fields [1]. For many-body interacting
systems, the potential energy landscape E({r}), which
describes the potential energy E of the system as a function
of the complete set of coordinates {r} of its constituents, has
become a central object of study [2,3]. It serves both
empirical goals, for instance, to picture the dynamic evolu-
tion of a system in a “rugged” landscape [4], but can also be
described mathematically very precisely [2,5,6]. The detailed
characterization and dynamic exploration of complex poten-
tial energy landscapes are important problems for amorphous
materials [4,7,8], optimization problems [9], machine learn-
ing algorithms [10,11], and other disordered systems [12].

Since the work of Goldstein [13], the physics of glassy
systems is often described in terms of the properties of their
potential energy landscapes. The large number of energy
minima connected by complex dynamic pathways is
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typically invoked in introductory lectures about amorphous
media [4], and the sketch of complex energy landscapes
very often accompanies the interpretation of experimental
measurements [14], which makes this object more than a
pure theoretical curiosity. Analytically, the properties of the
potential energy landscape of glass-forming models have
been studied extensively at the mean-field level through the
analysis of fully connected disordered spin models, such as
p-spin models. In this limit, the phase space can be divided
into long-lived metastable states (or, pure states), and both
free-energy and energy landscapes can be studied in great
detail, thus providing a firm relation between the landscape
structure and the thermodynamics and dynamics of the
system [5,6,15]. Current efforts in this area concern the
analysis of dynamic pathways [16], or corrections to mean
field [17].

In finite dimensions, the study of energy minima, or
inherent structures, first gained momentum when Stillinger
and Weber transformed Goldstein’s ideas into concrete
tools to both explore and exploit the potential energy
landscape of glasses [4,18]. A key step is the tiling of
the equilibrium configuration space, pertinent to describe
physical properties, into basins of attraction surrounding
energy minima. It is this mapping which putatively con-
nects the thermodynamic and dynamic properties of glass
formers to the topography of their potential energy
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landscape, although the relevance of such an approach has
often been debated [19,20], because the pure states defined
in the mean-field limit do not exist in finite dimensions
[21]. The analysis of energy minima has been used to
estimate the configurational entropy [7], while saddle
points were discussed in connection with the dynamic
mode-coupling crossover [22-25]. However, these
approaches do not have the same level of rigor as those
in p-spin models since inherent structures are different
from pure states [21,26,27]: inherent structures are con-
figurations that are energetically stable against infinitesimal
particle moves, whereas the pure states are defined as free-
energy minima. The structure of the potential energy
landscape and its precise relationship with dynamics and
thermodynamics remain under intense scrutiny [8,28]. In
particular, the role of excitations in the potential energy
landscape has been discussed in connection with sound
propagation [29], specific heat [30], and vibrational [31]
and mechanical properties [32].

Virtually all studies of glassy landscapes start by
“instantaneously” relaxing configurations to the “nearest”
energy minimum, following known numerical recipes [33].
Strangely, however, only a few studies have been dedicated
to the physical processes at play during the energy
minimization itself [34—40]. In our view, this represents
an important vacuum because this relaxation dynamics in
fact provides a convenient way to navigate the potential
energy landscape and explore its geometry and the nature
as well as interactions between excitations that are relevant
to describe glassy materials. Suppose, for instance, that the
landscape is simple and smooth. Using steepest descent
dynamics, the system should then settle in an inherent
structure very quickly while, on a rugged landscape, the
system meanders and crosses many saddles during relax-
ation [41]. Similarly, the steepest descent dynamics
obtained within kinetically constrained lattice models
simply stems from a noninteracting set of excited defects
and is therefore unremarkable [19,42]. Thus, in the context
of glassy systems, the steepest descent dynamics probes the
detailed structure of the potential energy landscape, poten-
tially illuminates its connection to the physical dynamics,
and provides novel constraints on physical descriptions of
glassy excitations.

Recently, the analysis of steepest descent in mixed mean-
field p-spin glass models revealed the existence of two
important characteristic temperatures [35]. First, starting
from initial states prepared at high temperatures 7, the
energy density of the final inherent state is constant for
T > Tynet» and it decreases with decreasing 7 when
T < Tonser- This sharp onset temperature does not affect
the relaxation dynamics itself which obeys a nontrivial
power-law time dependence as long as T > Tgr. By
contrast, the decay is exponentially fast below 7T'sg (where
SF is state following). This implies that the system is

always close to an energy minimum for 7 < T'gg in which it
converges very quickly by steepest descent. The critical
temperature Tggp < Tone also reflects a change in the
structure of the potential energy landscape, as inherent
states have a marginal density of states above Tgg, which
becomes gapped below. Within p-spin models, these two
characteristic temperatures are unrelated to the equilibrium
dynamics, which becomes nonergodic at the mode-
coupling temperature Tycr, distinct from both Tsg and
T onset» Showing that even at mean-field level free-energy
and energy landscapes are different objects.

In numerical studies, the relaxation dynamics in D = 2
and 3 (D is the space dimension) harmonic spheres just
above jamming was recently studied starting from high
temperatures including random configurations at 7 = oo
[34], and a power-law time decay was found with a
nontrivial, dimension-dependent exponent. Another recent
work [36] explores the statistics of single particle displace-
ments between initial and final configurations in several
three-dimensional models and reports the existence of a
crossover temperature separating high-temperature from
low-temperature behaviors. These interesting studies do not
provide a complete physical picture of the relaxation
dynamics toward energy minima, neither do they assess
the existence of the critical temperature 7'sg found in mean-
field approaches. The universality of the power-law time
dependence found near jamming across models, and even
the effect of spatial dimension and initial temperatures,
were not fully elucidated either.

Here, we provide a comprehensive numerical study of
the steepest descent dynamics in generic glass-forming
liquids. We address its dimensionality, universality, and
initial stability dependences by studying a mean-field
Mari-Kurchan (MK) model and three finite-dimensional
models in two, three, four, and eight dimensions using a
wide range of initial states obtained through the swap
Monte Carlo algorithm. We numerically detect the pre-
dicted mean-field transition at Tsg in the Mari-Kurchan
model. However, the transition is absent in all finite-
dimensional models, where it is replaced by a smooth
temperature evolution between two nontrivial limits that
we analyze in detail. We show that this crossover is
controlled by a finite population of localized defects
where particle rearrangements take place during the
minimization, with the overall concentration of these
defects decreasing at lower temperatures. Therefore,
finite-dimensional glass-forming systems at finite temper-
atures cannot be seen as inherent structures excited by
small thermal fluctuations, since they are described
neither by mean-field energy landscapes nor by a simple
picture of noninteracting localized defects. Our results
provide a complete picture of the relaxation dynamics in
glassy landscapes and illuminate the role, nature, and
interactions of localized defects in finite-dimensional
structural glasses.
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II. RESULTS

A. Steepest descent dynamics

We numerically solve the equations of motion of steepest
descent dynamics,

—-5 (1)

starting at time ¢t = 0 from an equilibrium configuration
prepared at initial temperature 7', where ¢ is the damping
coefficient and F is the potential energy. The time unit is
79 = (€7 /vy, where £ is the unit length scale and v, is the
unit energy for particle interactions. In Eq. (1), energy is
dissipated via a uniform background. We have not tested
more complicated dissipation mechanisms such as used in
dense particle suspensions [43]. Note that the dynamics in
Eq. (1) is fully athermal (there is no noise term) and the
temperature 7' that we vary only controls the Boltzmann
distribution from which initial conditions for the dynamics
are drawn.

We monitor the mean energy (E(¢)) and the root mean

squared velocity,
2
) @)

1
v(O)) =( ([=
ol = (/53
during the relaxation dynamics, where the brackets re-
present an average over initial equilibrium configurations,
and N is the number of particles. We define an exponent
for the time decay [34] as

(@) ~ 7. (3)

For the dynamics in Eq. (1), the energy decay is exactly
related to the velocity decay as (1/N)[d/(dt)|{E(t)) =
—¢(|v(1)]?). As aresult, the energy decay can be expressed
using the same exponent: (E(t) — E(t — o0)) ~ t~(2/=1),
Therefore, we focus on the velocity relaxation and Eq. (3).

We consider several structural glass models in various
dimensions and interaction potentials over a wide range of
preparation temperatures. We study a soft-sphere version of
the mean-field Mari-Kurchan model [44], polydisperse
soft-sphere models in two [45] and three dimensions
[46], harmonic spheres [47] in two, three, four, and eight
dimensions, and the Kob-Andersen model [48] for two and
three dimensions. Note that soft-sphere models have a steep
repulsive interaction with an r~'? core and a short cutoff
(we have checked that extremely few rattler particles [49]
are found in the corresponding inherent structures),
whereas the harmonic potential models have a very soft
core, which may affect the 7 — oo limit for initial con-
ditions. The Kob-Andersen model uses the Lennard-Jones
potential with a steep repulsive core and attractive forces at
larger distances.

dr;
dt

To prepare equilibrium configurations in a wide range of
temperatures, we use the planting method [50] for the Mari-
Kurchan model and the swap Monte Carlo algorithm [46]
for some of the finite-dimensional systems, which should
allow us to detect any of the putative transitions predicted
from mean-field landscapes. Further details about the
models and simulation protocols are provided in the
Appendix A and Supplemental Material (SM) [51].

B. Mean-field Mari-Kurchan model

Thanks to its mean-field nature, we can apply the replica
liquid theory to the Mari-Kurchan model, as detailed in SM
[51], and obtain the dynamical mode-coupling transition
temperature: Tycr =~ 0.0084. We also studied the equilib-
rium dynamics using a simple Metropolis algorithm, and
find that the theoretical estimate of Tycr describes the
numerical data reasonably well. This study allows us to
also estimate the onset temperature for slow dynamics:
T onset == 0.015.

We study the steepest descent starting from equilibrium
configurations in the range 7' € [0.0001, 0.015]. Figure 1
shows the velocity decay (|v(¢)|) for various temperatures
and system sizes. Figure 1(a) shows that the relaxation

dynamics strongly depends on initial equilibrium
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FIG. 1. (a) Velocity (|v(7)]) as a function of time ¢ in the Mari-

Kurchan soft-sphere model at several temperatures with
N = 16384. (b) Velocity decay at two selected initial equilibrium
temperatures and several system sizes. The dashed line indicates
p=0.75.
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temperature. For high temperatures, T 2 0.006, (|v(7))
follows a clear power-law decay with an exponent that
we estimate as f ~ 0.75. In a finite-size system, this power-
law decay is interrupted at long times. On the other hand, at
low temperatures, an exponential decay occurs. These
results suggest that the high- and low-temperature relax-
ation dynamics are qualitatively different, and are separated
by a critical temperature.

To fully confirm the distinct occurrence of power-law
and exponential decays, we analyze finite-size effects. In
Fig. 1(b), we show the velocity (|v(z)|) for several system
sizes at two selected temperatures. At high initial temper-
ature 7 = 0.015, (|v|) has a strong system-size dependence.
Larger systems take longer times to reach energy minima
and follow the power-law decay with f~0.75 over a
broader time window. The system-size dependence sug-
gests that in the thermodynamic limit, N — oo, the velocity
decay has a genuine power-law behavior with a diverging
timescale. At very low initial temperature, 7 = 0.0001
instead, the velocity decay has almost no system-size
dependence, implying that the time to reach energy minima
remains finite in the thermodynamic limit, confirming the
exponential decay.

Therefore, in the initial temperature regime between
0.0001 and 0.006, the Mari-Kurchan model displays a
transition characterizing the nature of the relaxation
dynamics akin to the behavior reported at the temperature
Tsg discussed in p-spin models. Interestingly, for the MK
model, the T'sr is noticeably smaller than the estimated

Twmer = 0.0084, confirming that these two temperatures
should be distinguished (they are equal in some versions of
p-spin models).

While the existence of the transition is compatible with
results for the mixed p-spin glass model, the decay
exponent f#~0.75 at high temperatures observed for the
Mari-Kurchan model differs slightly from the spin glass
model where f ~ 0.83 [60], or the random Lorentz gas in
d — oo where f~ 1 [40]. A broader class of mean-field
models and even more extensive numerics should be
explored to settle the relevance of this small difference.

C. Finite-dimensional models

For finite D systems, we first consider the relaxation
dynamics starting from the high-temperature limit, 7 — oo,
in various models and spatial dimensions. Figure 2(a)
shows the results for monodisperse harmonic spheres in
dimensions D =2, 3, 4, and 8. In all dimensions, we
observe a power-law decay, but the exponent 5 depends on
D. We find ~0.92 for D=2 and f ~0.85 for D = 3,
which are consistent with previous work [34]. For D = 4
and 8, on the other hand, the results are described by the
same exponent £ ~(0.75. This suggests that a mean-field
value # = 0.75 in the high-temperature regime is reached
for D > 4. Interestingly, this exponent is close to the one
observed in the Mari-Kurchan model at high temperatures.
In SM, we discuss the system-size dependence of (|v()])
[51]. Larger systems always take a longer time to reach
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FIG. 2. The velocity (|v(t)

) as a function of time ¢ for the harmonic spheres in two, three, four, and eight dimensions (a), the three-

dimensional soft spheres (b), the Kob-Andersen Lennard-Jones model (KALJ) (c), the two-dimensional harmonic spheres (d), the soft
spheres (e), and the Kob-Andersen Lennard-Jones model (f). In (a), the number of particles is N = 64000 for D =2, N = 65536 for
D =3and D =4, and N = 16384 for D = 8 (data are shifted vertically for clarity). In (b) and (d)—(f), N = 96000, 64000, 64000, and
125000, respectively. In (¢), N =27135 at T = 0.37 and N = 76800 for other temperatures.
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energy minima, which is consistent with a pure power-law
decay in the thermodynamic limit N — oo at large times.

To investigate universality, we look at the results at high
temperatures for various models. Figures 2(b)-2(f) show
the velocity decay for harmonic and soft spheres, and the
Kob-Andersen model. Note that for soft spheres and Kob-
Andersen models, the influence of the repulsive core can be
felt at arbitrarily large temperatures. Nevertheless, all
models at higher initial temperatures asymptotically show
f~092 and 0.85 in D=2 and D = 3, respectively.
Therefore, we conclude that the value of f is universal,
irrespective of the details of the interaction potentials, size
polydispersity, or the proximity of a jamming transition.

We then study the effect of the initial stability on the
relaxation dynamics. We first consider D = 3 polydisperse
soft spheres. Using the swap Monte Carlo algorithm, we
vary initial equilibrium temperature quite significantly,
T € [0.062, 1.0], which includes Tycr 0.1 and T gy =
0.18 determined by standard methods [46]. The model
reproduces the universal exponent in D = 3, f = 0.85, at
finite but high temperatures; see Fig. 2(b). With decreasing
temperature, the velocity relaxation (|v(¢)|) becomes faster,
as expected from the physical intuition that the system
starts closer to an energy minimum in a smoother land-
scape. However, even at temperatures much below Tyicr,
the velocity relaxation (|v(¢)|) displays a power-law decay,
but with a larger apparent exponent, f~ 1.25. The same
exponent at low T is found in the D = 3 Kob-Andersen
model [see Fig. 2(c)], suggesting that f~1.25 is also
universal. We vary the initial stability for D = 2 harmonic
spheres, soft spheres, and the Kob-Andersen model in
Figs. 2(d)-2(f). The data demonstrate the same trend as in
D =3 models, yet the low-temperature velocity decay
exponent is now £ ~ 1 in all three models, different from
the D =3 value. Importantly, we do not observe an
exponential decay at any studied temperatures in any of
the finite-dimensional models, in contrast to the mean-field
spin glass and Mari-Kurchan models. Instead, we find that
the high- and low-temperature regimes are both charac-
terized by universal power laws, with an exponent which
only depends on the spatial dimension.

D. Harmonic limit

We can rationalize our numerical observations at low
temperatures using a harmonic dynamical description [61].
At very low initial temperatures, the initial equilibrium
configuration is located nearer to the final inherent state.
Thus, it makes sense to approximate the energy during the
steepest descent dynamics using a harmonic expansion,

E() ~ E(t — o) —|—%Ar(t) H-AMD),  (4)

with Ar(t) = r(t — o) —r(t) and H the Hessian matrix in
the energy minimum. Let us assume that the phononic

modes following the Debye law and quasilocalized modes
following the non-Debye quartic law coexist in the low-
frequency region of the vibrational density of states [52].
By linearizing the equations of motion, we can relate the time
decay of the velocity to the properties of the Hessian matrix
and we find that the velocity should decay with an exponent
Prarm = D/4 + 1/2, yielding By = 1 and 1.25 for D =2
and D = 3, respectively. (See Appendix B for a more
detailed discussion of the harmonic approximation, which
also shows that quasilocalized modes provide a subdominant
contribution to the velocity decay for D < 5.) These values
are fully consistent with our numerical observations, which
means that the low-temperature relaxation dynamics appears
to be well described, at least over the simulated timescales
and system sizes, by a simple harmonic approach, for all
types of particle interactions.

E. Localized defects

The harmonic analysis shows that, because of phonons,
the mean-field transition at T'sr to gapped energy minima
reached exponentially fast cannot exist in finite D, and
relaxation dynamics is in fact necessarily algebraic, even in
a harmonic, ‘“state following” limit. Our numerics is
nevertheless compatible with two distinct temperature
regimes, with nonharmonic effects becoming predominant
at high initial 7. Is a sharp transition separating these two
regimes?

To address this question, we must understand the micro-
scopic relaxation mechanism beyond the harmonic limit. At
very low temperatures, we expect that the initial configu-
ration and the final inherent state differ by small displace-
ments which do not affect much the geometry of the
particle packing. Figures 3(a)-3(c) show the displacement

FIG. 3.

Two-dimensional soft spheres. (a)—(c) Nonaffine dis-
placements D2, and (d)—(f) defects for three different configu-
rations. In (d)—(f), defects are shown in red, other particles are in
blue. In all panels, the displacement vectors r;(t = 0) —r;(f —
o) (arrows) are amplified by a factor of 3. The temperature is
T = 0.035 in (a) and (d), 0.2 in (b) and (e), and 0.8 in (¢) and (f).
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and nonaffine displacement fields [62] between initial and
final configurations for the D = 2 soft-sphere system. For
T = 0.035, where the harmonic description works well
(and f = Pham = 1.0 is measured), particle displacements
are indeed very small, implying that most particles interact
with the same neighbors in initial and final states; see
Fig. 3(a). For T = 0.2, however, larger displacements are
observed, and the most mobile particles are spatially
correlated; see Fig. 3(b). Large nonaffine displacements
are associated with localized particle rearrangements occur-
ring during the steepest descent, which we call “defects.”
As the temperature is increased further, more particles have
large nonaffine displacements, see Fig. 3(c), and the initial
and final configurations become substantially different.

To quantify particle rearrangements during minimiza-
tion, we introduce a variable ¢; for each particle defined
such that ¢; = 0 if particle i neither loses nor gains any
neighbor during steepest descent, and ¢; = 1 otherwise
(see SM for precise definitions [51]), and denote ¢ =
(I/N) >, ¢; the concentration of such defects in a given
configuration with N particles. The field ¢; thus identifies
the location of particle rearrangements, as shown in
Figs. 3(d)-3(f). Red particles with ¢; = 1 are found in
high D2, regions, which validates the proposed identi-
fication of defects. The defects are also observed in the
displacement field |r;(r) —r;(c0)|; see SM for further
discussion. In Ref. [34], similar defects were visualized
using the nonaffine velocity field.

In Fig. 4, we show the average concentration of defects,
(), for D=2 and D =3 soft-sphere models, and the
collective susceptibility of defects, y = N((¢?) — (¢)?).
The average defect density is a smooth function of temper-
ature which seems to remain finite at any initial 7 > 0. The
susceptibility shows a well-defined peak, whose shape and
location are independent of the system size; see Fig. 4(b).
These results indicate that no sharp phase transition (with a
vanishing (¢)) separates the relaxation dynamics between
high and low temperatures. The defect density has a
sigmoidal shape as it saturates to unity at large 7" and
decreases very rapidly to small values as 7 — 0. It displays
an inflection point at a temperature 74 that also corre-
sponds to the peak of the susceptibility. Physically, T'y.¢
represents the temperature where (¢) varies more strongly
with 7" and has the largest fluctuations, thus separating the
high-T regime where (¢) approaches unity, from low T
where it is very small. The gradual disappearance of
localized rearrangements presumably explains the temper-
ature evolution of the self-part of the van Hove function
[36]. The discussion of the harmonic limit in Sec. IID
showed that the defects revealed by steepest descent
dynamics at lower temperatures do not simply result from
the harmonic excitation of the quasilocalized modes pop-
ulating the low-frequency part of the density of states
(which would lead to a different power-law decay),
although a more complicated relation could exist.

(a) _ 5§
0.8 | yd ]
¥
0.6 e ]
o0
<
=
504
< 2D, N = 16000 =
0.2 4000 o
3D, N=12000 -~
0 < 1500
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Susceptibility y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Temperature T

FIG. 4. Soft spheres. (a) Average concentration (¢) and
(b) collective susceptibility y of defects, as a function of initial
equilibrium temperature. The temperature evolution of the defect
concentration is smooth, with a maximum variation near 7 g.; &
0.25 and T4 ~ 0.15 for D = 2 and 3, respectively.

II1. DISCUSSION

We studied the physical dynamics during steepest
descent energy minimization for various glass-forming
models in spatial dimensions D =2 to D = 8 and also
in the mean-field limit, for a wide range of initial con-
ditions. Focusing on the exponent f characterizing the
algebraic decay of the average velocity, we identified its
universal, finite-dimensional features. First, we showed that
the mean-field transition at temperature 7'sr to an expo-
nential decay cannot exist in finite D due to the presence of
phonons. More importantly, we showed that the measured
evolution of f from its high-temperature universal value
toward a larger harmonic value pfp,m = D/4+1/2,
observed at low temperatures, reflects in fact the gradual
suppression of a population of localized defects with
decreasing 7. The relative importance of defects and plane
waves explains the observed evolution of . Since fy,m 18
larger than its high-T value, we expect the latter exponent to
dominate the long-time limit of the velocity decay at any
finite temperature in the thermodynamic limit. In this view,
the harmonic regime is only a transient which lasts longer at
lower temperature when there are less defects. As a result,
the mean-field critical temperature 7Tsg has no analog in
finite D. This implies that, at finite temperature, an
instantaneous configuration of a finite-dimensional glass-
forming system can never be seen as an inherent structure
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excited by small thermal fluctuations. It would be interest-
ing to explore theoretical models alternative to mean-field
glass models, such as elastoplastic models [63], to better
account for our numerical observations, in particular, the
value of the exponent /.

Our results have broad physical consequences. First,
they imply that the defect dynamics leading to the coars-
ening of the nonaffine velocity field described in Ref. [34]
(see also SM [51]) is actually relevant for generic finite D
glass-forming liquids, and is unrelated to the athermal
jamming transition. The observed universal exponent f3
implies similarly universal geometrical features of the
potential energy landscapes of generic structural glasses.
Interestingly, an experimental realization of the steepest
descent dynamics has recently been proposed [64]. By
perturbing a stable foam configuration in two dimensions,
localized defects during the relaxation were also observed.
Such experiments could validate our numerical findings,
especially the universal exponent $ found at high initial
temperatures. More generally, our observations about
defects at lower initial temperatures is another supporting
evidence of the existence of localized excitations in stable
glasses relevant for metallic and molecular glasses [65].

Second, together with recent analytic and numerical
works [35,66], our results shed new light on the connection
between equilibrium glassy dynamics and stationary points
of the potential energy landscape. The interpretation of the
mode-coupling temperature Tyct as a topographic change
in the potential energy landscape does not hold in mixed
p-spin models [35]. Our simulations of the Mari-Kurchan
model confirm that the saddle-to-minima transition occurs
at a temperature Tgg distinct from T'ycr, already at mean-
field level. The emergence of localized defects in finite
dimensions found here is consistent with the recent con-
clusion [66] that the critical transition at 7' is replaced in
finite D by a smooth crossover. A similar scenario con-
trolled by noninteracting localized defects was also found
in kinetically constrained models [42], thus suggesting a
potential connection between the defects revealed by
steepest descent dynamics and those discussed in the
context of dynamic facilitation [67]. However, the
power-law decay revealed by our study cannot result from
the deexcitation of a noninteracting gas of isolated defects,
and steepest descent dynamics in kinetically constrained
models would instead be unremarkable. It is also unclear
whether elastoplastic models where relaxation events are
coupled by elasticity can account for our findings.

Third, our finding that a finite concentration of defects
controls the nonharmonic relaxation from equilibrated
configurations to inherent states suggests that the potential
energy landscape of glass formers is both rugged and
chaotic. To test this idea numerically, we applied a very
small random perturbation to the initial configuration and
monitored the subsequent steepest descent dynamics. We
found that a slight perturbation typically leads to different

inherent structures (not shown), consistent with earlier
work [68,69]. The strong chaoticity of the minimization
dynamics implies that the energy minimum reached from a
given equilibrium configuration in fact strongly depends on
the minimization algorithm itself [70]. The steepest descent
dynamics we used is just the simplest algorithm for
numerical optimization, but there are several other (usually
more efficient) ways to reach the bottom of the potential
energy landscape, such as conjugate gradient (CG) [71] and
fast inertial relaxation engine (FIRE) [53]. Indeed, we find
that starting from the same initial configuration, the
steepest descent, CG, and FIRE dynamics typically con-
verge to different inherent structures, as quantified by their
mutual distances (see SM [51]). The evolution of this
distance mirrors the temperature evolution of the defect
concentration in Fig. 4(a), higher initial temperatures
leading to larger separations. In Fig. 5, we show represen-
tative snapshots of the displacement field between two
inherent structures obtained by two different algorithms
starting from a unique initial configuration. A single
localized defect can be seen at low 7, which naturally
gives rise to a quadrupolar Eshelby-like displacement field.
Defects proliferate at higher temperature. This shows that
mapping an equilibrium liquid state to an inherent structure
is a fully dynamical problem, which becomes uniquely
defined only after a specific choice for the minimization
algorithm is made. Localized defects, which had been used
by Stillinger [72] to construct an argument against the
existence of a Kauzmann transition (see the discussion in
Ref. [73]), instead weaken the thermodynamic significance
of a tiling of configuration space directly based on inherent
states.

In recent years, localized glassy defects have
been reported from the study of harmonic [31] and non-
harmonic excitations, in the fields of plasticity [32] and
low-temperature transport properties [30], and in connec-
tion with secondary relaxations in deeply supercooled
liquids [74,75] and dynamic facilitation [67]. Steepest

FIG. 5. Displacement fields, r¢¢ —rf'RE between pairs of
minima obtained via conjugate gradient ({r¢“}) and FIRE
algorithms ({rf™RE}), following a quench from the same initial
configuration at 7 = 0.07 (a) and T = 0.15 (b), for 2D soft
spheres with N = 64000. Arrows magnified by a factor 40 and 2
for (a) and (b), respectively.
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descent dynamics thus corresponds to another situation
where localized excitations control structural rearrange-
ments at the particle scale and reveal that they interact in
a nontrivial manner. Future work should establish the
similarities and differences between these disparate obser-
vations. Ultimately, we expect that a unifying picture of
localized defects with specific interactions will soon become
available and applicable to a host of different physical
situations.
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APPENDIX A: METHODS
1. Models

We study the steepest descent dynamics of models with
three different interaction potentials: soft spheres, harmonic
spheres, and Lennard-Jones interactions. The dimension-
ality dependence, including the mean-field limit, of this
dynamics is studied by using the models in two, three, four,
eight dimensions, and the mean-field Mari-Kurchan
model [44,76].

a. Soft spheres

The two- and three-dimensional soft-sphere models
[45,46] consist of particles with purely repulsive inter-
actions and a continuous size polydispersity. Particle
diameters d; are randomly drawn from a distribution of
the form f(d) = Ad~3, for d € [dpin, dmax), Where A is a
normalization constant. The size polydispersity is quanti-

fied by 6 = (d* — d*)'/?/d, where the over line denotes
an average over the distribution f(d). Here we choose
6 =0.23 by imposing dp,/dmax = 0.449. The average
diameter d sets the unit of length. The soft-sphere inter-
actions are pairwise and described by an inverse power-law
potential,

di)\ 12 \ 2 O\ 4
Uij(r>:7]0<7> +CO+C1<Z’]> +Cz<d—ij>,

) (A1)

where v, sets the unit of energy (and of temperature with
the Boltzmann constant kz = 1) and ¢ = 0.2 quantifies the
degree of nonadditivity of particle diameters. We introduce
€ > 0 in the model to suppress fractionation and thus to
enhance the glass-forming ability. The constants cg, ¢y,
and ¢, enforce a vanishing potential and continuity of its

first- and second-order derivatives at the cutoff distance
Teuoff = 1.25d;;. We simulate a system with N particles
within a square cell of area (volume) V = L? (V = L),
where L is the linear box length, under periodic boundary
conditions, at a number density p = N/V =1 (1.02) for
2D (3D).

We prepare equilibrium configurations using the swap
Monte Carlo algorithm [46]. With probability Py, = 0.2,
we perform a swap move where we randomly pick two
particles (i and j) having similar diameters (|d; — d;| < 0.2)
and attempt to exchange their diameters. With probability
l = Pgyap = 0.8, instead, we perform conventional
Monte Carlo translational moves, where we pick one
particle and displace it within a box with linear length
Smax = 0.12d.

b. Harmonic spheres

We study the harmonic sphere model [47,77] in two,
three, four, and eight dimensions. The harmonic sphere
model has an interaction potential,

v ri; 2
Uyry) =2 (1- 22 (2
4]
(di +d;)

where v, is again the unit of the energy scale. For the two-
dimensional model, to avoid crystallization at low temper-
ature, we use the continuously polydisperse nonadditive
model with the same distribution of the particle diameters
used in the soft-sphere model and ¢ = 0.2 in two dimen-
sions. The unit length scale for the two-dimensional model
is d as well as the soft-sphere model. We again use the swap
Monte Carlo algorithm with the same setting and param-
eters as for the polydisperse soft spheres to equilibrate
down to very low temperatures. In three, four, and eight
dimensions, crystallization is highly suppressed, and the
simple additive (¢ = 0) monodisperse model is enough to
study the relaxation dynamics to disordered states. Because
of the finite range of the interaction, the system has a
critical jamming transition at finite density, below which
the relaxation dynamics shows an exponentially fast decay
toward zero energy states [78]. Since in other models we
study the relaxation dynamics toward energy minima with a
finite energy, a direct comparison is possible when the
inherent structures of harmonic spheres have finite energies
as well. We thus set the volume fraction above the jamming
transition to ¢p = 1.2, 0.73, 0.5, 0.1 in two, three, four, and
eight dimensions, respectively, so that the final energies are
always finite.
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c¢. Kob-Andersen Lennard-Jones model

For the case of the well-studied Kob-Andersen binary
Lennard-Jones (KALJ) model, the interaction between two
particles has the following form:

for r < reyort = 2.50;j, and particles i, j can belong to
either A or B species which constitute the binary mixture.
Feutott 18 the cutoff distance at which the potential U;(r;;) is
truncated. The different interaction parameters for the
binary mixture take the following values: exp = 1.0,
EAB — 1'5€AA’ €BR = O.5€AA; OAA — 10, OAB — 0.80'AA,
ogp = 0.88044. The mixture has 80:20 composition in 3D
and 65:35 composition in 2D, to optimize glass-forming
ability. In D = 2, we study a system consisting of 125 000
particles, and for D = 3, we study a system of 76 800
particles. Additionally, in D = 3, we study a system of 27
135 particles to probe the quench dynamics of states
sampled at a low temperature (T = 0.37), where configu-
rations are obtained by a swap Monte Carlo scheme
developed in Ref. [79].

d. Mari-Kurchan model

We study the mean-field Mari-Kurchan (MK) model
[44,76] in three dimensions with the simple monodisperse
soft-sphere interaction in Eq. (Al) with ¢ =0 and the
cutoff length r i = 4d, where d is the diameter of
particles. The volume fraction is ¢p = 0.5. The MK model
has quenched randomness in the particle distance, and the
interaction potential is thus U(|r; —r; +A;;|), where A;; is
a three-dimensional vector with each component sampled
from the uniform distribution in the interval [0, L] (L the
box size). Equilibrium configurations of the MK model are
produced by using the planting technique [44,54]. For
systems with general isotropic interactions, the cubic shape
of the box complicates the direct sampling of the random
shifts from the Boltzmann distribution:

_ exp[—pU;(|r; —r; +A;])]
fdAij exp[—pU,;(|r; —r; +A;;))] .

P(Ajlrij) (AS)
We thus use the Markov chain Monte Carlo method to
sample the random shifts {A;;} from the distribution
Eq. (AS5) so that any given particle configuration follows
from the Boltzmann distribution. For each pair of particles i
and j, we take A;; as the random shift after 200
Monte Carlo sweeps with the simple Metropolis algorithm
starting from uniformly random numbers.

APPENDIX B: HARMONIC EXPONENT

We discuss the asymptotic decay of the velocity by
assuming that the system is perfectly harmonic and the

vibrational density of states follows the Debye law. Let the
Hessian matrix H of an inherent structure have eigenvalues
{4.} and corresponding eigenvectors {x,}. Since the
Hessian matrix is real symmetric, eigenvectors are orthogo-
nal; x,-x, = d,,, where &, is the Kronecker’s delta.
Using the eigenvectors, we have the particle displacement
written as

Ar(t) =Y cq(t)x,, (B1)

where c¢,(t) = Ar(t) -x,. Suppose that the system is
perfectly harmonic, i.e., the system follows linearized
equations of motion:

dAr

(= =—HAr. (B2)

Then each mode decays exponentially with c¢,(1) =
c,(0)e~! and the equipartition law (c,(0)?) = (T/1,)
holds (The brackets in Appendix B represent an average
over initial configurations with the same inherent
structure).

In this harmonic approximation, the potential energy
decreases with time as

1

(E(r) = E(r = 00)) =5 > (c2(0))Aq exp(=2441)

a

=¥ / dp(D)exp(=241),  (B3)
where p(4) =1/N>.,6(A—14,) is
eigenvalues.

Let us assume that the density of state has the contri-
butions from the phononic modes following the Debye law
and quasilocalized modes following the non-Debye quartic
law, ie., g(w) = AgwP~! + Ay0* [52,80,81]. Then the
density of eigenvalues reads p(4) = g(w)[(dw)/(dA)] =
AgAP?71 )2 4 A,23/% /2. Thus,

the density of

NT
<E([> — E(l d OO)> NT/ di(AolD/z_] +A4l3/2)€_2/1[

~ P12 4 0(175/2). (B4)

Therefore, the energy relaxation is dominated by /2
when D < 5. Since, for the steepest descent dynamics with
the equations of motion given by Eq. (1), the energy decay
can be related to the velocity decay, we finally obtain
{Iv(t)|) ~ tPrm with Bpam = D/4 + 1/2 for D < 5.
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