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A single-hole ground state Ansatz for the two-dimensional t-J model has been recently studied by the
variational Monte Carlo (VMC) method. Such a doped hole behaves like a “twisted” non-Landau
quasiparticle characterized by an emergent quantum number in agreement with exact numerics. In this
work, we further investigate the ground state of two holes by VMC. It is found that the two holes strongly
attract each other to form a pairing state with a new quantum number the same as obtained by the numerical
exact diagonalization and density matrix renormalization group (DMRG) calculations. A unique feature of
this pairing state is a dichotomy in the pairing symmetry, i.e., a d wave in terms of the electron c operators
and an s wave in terms of the new quasiparticles, as explicitly illustrated in the ground state wave function.
A similar VMC study of a two-hole wave function for the t-J two-leg ladder also yields a good agreement
with the DMRG result. We demonstrate that the pairing mechanism responsible for the strong binding here
is not due to the long-range antiferromagnetic order nor the resonating-valence-bound pairing in the spin
background but is the consequence of the quantum phase strings created by the hopping of holes. The
resulting spin-current pattern mediating the pairing force is explicitly illustrated in the VMC calculation.
Physical implications to superconductivity at finite doping are also discussed.
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I. INTRODUCTION

The study of a doped antiferromagnetic (AFM) Mott
insulator has been conducted intensively in the past three
decades as one of the greatest challenges in condensed
matter physics [1–4]. The mechanism of high-Tc cuprate
superconductors has been widely believed to be closely
related to such a strongly correlated problem [2,4–6].
While the low-energy physics of the AFM-Mott insulator
at half filling as described by the Heisenberg Hamiltonian
has been well understood [7–10], the theoretical issues
remain unsettled in the presence of doped holes, where
superconducting (SC) condensation is expected to set in
beyond some critical small doping concentration in two-
dimensional (2D) or layered materials [4,6].
Among various theoretical proposals, the resonating-

valence-bond (RVB) state [2,11,12] for high-temperature
superconductivity stands out as one of the most influential
and simplest ground state Ansätze, which takes advantage
of the essential properties of a doped Mott insulator:
The local spin moments form singlet pairs due to the

superexchange coupling. A tremendous body of studies
around the RVB idea [4,5,12–21] has produced some
insightful understandings on the doped Mott insulator
and high-Tc cuprate. At the same time, a fundamental
question remains to be answered: How can an RVB-type
ground state emerge from a spin AFM long-range-ordered
(AFLRO) state at half filling by a doping effect?
Another important observation made by Anderson [22]

on the Mott physics is that a doped hole (electron) in the
lower (upper) Hubbard band should generally induce a
many-body response or “phase shift” from the background
electrons to accommodate such a doped hole (electron).
This “unrenormalizable phase shift” was conjectured [22]
to cause the “orthogonality catastrophe” [23,24], leading to
a non-Fermi-liquid behavior of the doped Mott insulator.
Based on the t-J model and later the Hubbard model, this
many-body phase shift has been precisely identified as the
phase-string effect [25–27], which can be mathematically
formulated as a many-body Berry phase acquired by doped
holes completing closed-paths motion. Protected by the
Mott gap, such an effect fundamentally changes the Fermi
statistics of the electrons [27,28]. In general, the Berry
phase or the phase-string sign structure depends on the
parity of spin-hole exchanges, which characterizes the
intrinsic long-range mutual (spin-charge) entanglement
[29] in the doped Mott insulator.
Along this line of thinking, an RVB state at finite doping,

if it exists, must be qualitativelymodified, since each doped
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hole has to introduce an unrenormalizable phase shift or
“irreparable phase string,” which would generally lead to a
two-component RVB structure [30]. A new SC ground state
Ansatz of this type has been previously proposed [31]:

jΨGi ¼ eD̂jRVBi; ð1Þ

in which the charge pairing and the spin RVB pairing are
explicitly separated. Here, the vacuum state jRVBi is a spin
background in a short-range RVB state at finite doping
[32]. It reduces to a long-range RVB state jϕ0i to recover
the AFLRO in the zero-hole limit. In contrast, the doped
holes are created in spin-singlet pairs (another “RVB”) by

D̂ ¼
X
ij

gði; jÞc̃i↑c̃j↓; ð2Þ

where c̃ is distinct from the bare electron operator c by

ciσ → c̃iσ ≡ ciσe−iΩ̂i ; ð3Þ

with Ω̂i [cf. Eq. (8)] representing the many-body phase-
shift or phase-string effect induced by the doped hole. Note
that self-consistently the phase-shift field Ω̂i is also
responsible for jϕ0i → jRVBi by doping [32,33].
A basic example to show the fundamental importance of

the unrenormalizable phase-shift or phase-string effect is
the single-hole case [34–36]. The single-hole ground state
may be reduced from Eq. (1) as follows:

jΨGi1h ¼
X
i

ϕhðiÞc̃iσjϕ0i; ð4Þ

where jϕ0i denotes the half-filling ground state of the
Heisenberg model and the doped hole is created not by c
but c̃ given in Eq. (3). The single-hole wave function ϕhðiÞ
in Eq. (4) is generally no longer a Bloch-wave-like
(∝ eik·ri), which can be determined instead as a variational
parameter in the variational Monte Carlo (VMC) calcu-
lation [34,36]. As the consequence of the many-body
phase-shift operator Ω̂i acting on jϕ0i, the ground state
(4) acquires nontrivial angular momenta Lz ¼ �1 and
novel ground state degeneracy in precise agreement with
the exact diagonalization (ED) and density matrix renorm-
alization group (DMRG) studies [37].
Such a VMC approach has been powerful in establishing

the best variational wave function jϕ0i at half filling [9] as
well as the physical properties of the one-hole ground state
jΨGi1h [34,36] in comparison with the exact numerics. The
single-hole problem illustrates how crucial the phase-string
effect is to turn the doped hole into a non-Landau-like
“twisted” quasiparticle with a novel quantum number. But
the phase-shift field also generates some severe “sign
problem,” i.e., unrenormalizable phase-string sign structure
in D̂, to prevent an efficient VMC study of the Ansatz state

of Eq. (1) beyond the mean-field and gauge theory
approaches [31] at a finite doping. Therefore, to bridge
the gap between the one-hole and a finite doping, and to
reveal the hidden pairing mechanism of the doped anti-
ferromagnet, a necessary and useful step is to use the same
VMC approach to investigate the ground state of two holes
injected into the spin background. Actually, a simplified
two-hole doped ladder with the injected holes restricted to
move only along the chain (leg) direction was already
analytically analyzed [38], which reveals a new pairing
mechanism by a direct comparison with DMRG [39].
In this paper, we examine the pairing structure of the

following two-hole ground state Ansatz according to
Eq. (1):

jΨGi2h ¼ D̂jϕ0i; ð5Þ

which is determined by optimizing the pair amplitude
gði; jÞ in Eq. (2) by the VMC method. This is a paired
state of the single twisted holes described by c̃. Because of
the internal quantum numbers associated with c̃, the single-
hole ground states are fourfold degenerate under an open
boundary condition (OBC). The two-hole ground state is
found to be nondegenerate with a spin-singlet pairing of
two distinct twisted holes with a specific total quantum
number Lz ¼ 2 mod 4 under the C4 rotational symmetry,
which has been previously already identified in the ED and
DMRG calculations [37].
A tightly bound pair is found in this two-hole ground

state wave function, in which one hole predominantly
distributes over a square of sites tightly packed around the
other hole. It looks like a slightly anisotropic s-wave
pairing of a nodeless jgði; jÞj, with the strongest pairing
for two holes at the distance of

ffiffiffi
2

p
(in the units of the lattice

constant). Nevertheless, if measured in terms of the
ordinary Cooper pairing operator ck↑c−k↓ in the singlet
channel, a well-defined pure d-wave symmetry is found.
Such a “dichotomy” in the pairing symmetry is directly
contradictory to an ordinary BCS pairing wave function for
two Landau quasiparticles. Here, the d-wave symmetry
measured by the Cooper pairing can be attributed to the
consequence of the phase-shift factor e−iΩ̂ in combination
with the nodeless gði; jÞ. In other words, the two-hole wave
function can be regarded as composed of an s-wave-like
pairing of the twisted quasiparticles c̃, which is more robust
than a BCS-like d-wave pairing state of the bare holes as a
projecting or “collapsing” state of the former.
The pairing mechanism in the two-hole ground state can

be straightforwardly examined. By projecting the ground
state wave function onto different fixed hole positions, a
“rotonlike” configuration of spin supercurrrents can be
explicitly revealed, which represents the physical effect of
the phase strings created by the motion of holes. As a
matter of fact, by turning off the phase-shift factor e−iΩ̂, the
strong binding between the holes diminishes immediately
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as shown in the VMC calculation, even if the AFLRO
state jϕ0i can be artificially tuned into a short-range RVB
state in the dimer limit. It implies that the phase strings not
only renormalize the single holes to become the non-
Landau twisted holes, but also are responsible crucially
for their pairing in the two-hole ground state, which is
consistent with earlier DMRG calculation for the two-hole
ladder [40].
The two-hole ground state Ansatz is also applied to the

case in the two-leg ladder. Previously, the single-hole
ground state has already produced [34] an excellent
agreement with the DMRG. The present VMC calculation
shows an overall agreement of the two-hole case with the
DMRG results, including the pair-pair correlation and d-
wave-like sign change of the Cooper pairing in the chain
and rung directions. Turning off the phase-shift field in the
wave function indeed leads to diminishing pairing
strength, again indicating the pairing mechanism due to
the phase-string effect.
Finally, it is noted that, for an exact ground state, one

should further treat the spin background jϕ0i in either
Eq. (4) or (5) as a variational one such that an additional
“longitudinal” spin polaron effect due to the suppression of
the AFM correlations by the doped hole(s) can be properly
accounted for. By treating jϕ0i as a very precise variational
ground state of the Heisenberg model (cf. Appendix B) in
the present variational scheme, such a longitudinal spin
polaron effect is neglected (cf. Sec. V D as well as Ref. [36]
for a detailed discussion). In other words, in the present
two-hole and previous one-hole [36] variational studies, the
main focus is on the transverse spin polaron effect due to
the phase string as characterized by the phase-shift factor
e−iΩ̂. According to the above-mentioned DMRG study in
the two-leg ladder case, the residual longitudinal spin
polaron effect is negligible as compared to the phase-string
effect in the study of the pairing mechanism. A discussion
of a variational treatment of jϕ0i to incorporate the feed-
back effect of the doped holes (i.e., the residual longitudinal
spin polaron) to further optimize the kinetic energy is given
in Appendix C.
The rest of the paper is organized as follows. In Sec. II,

we introduce the model and construct the two-hole Ansatz
wave function with an emergent phase-string phase factor
being built in concretely. AVMC calculation is then carried
out. For completeness, a brief review of the single-hole
ground state by a VMC calculation is also given. In Sec. III,
the properties of the two-hole ground state are systemati-
cally analyzed, especially the pairing structure. A
dichotomy of pairing symmetry, i.e., a d-wave symmetry
measured in terms of the original c operator of the electron
and an s-wave-like symmetry in terms of twisted quasi-
particles c̃, unveils a prototypical non-BCS feature. In
Sec. IV, the binding energy and the pairing force originated
from the phase-string effect are examined, which shows
how a kinetic-energy-driven pairing mechanism can be

clearly visualized by the hidden spin-current pattern gen-
erated by the hole hopping. In Sec. V, we further discuss
some important implications like the incoherent single-
particle propagation and possible self-localization of the
hole pair in the AFLRO phase and how the superconduct-
ing ground state at finite doping may evolve from the
present two-hole ground state. Finally, the conclusion and
perspectives are given in Sec. VI.

II. THE GROUND STATE ANSATZ

A. The t-J model

The standard t-J model reads H ¼ PsðHt þHJÞPs,
where

Ht ¼ −t
X
hiji;σ

ðc†iσcjσ þ H:c:Þ; ð6Þ

HJ ¼ J
X
hiji

�
Si · Sj −

1

4
ninj

�
; ð7Þ

with the summations over hiji denoting the nearest-
neighbor (NN) bonds. Here, Si and ni are spin and electron
number operators, respectively. The strong correlation
nature of the t-J model comes from the no-double-
occupancy constraint

P
σ c

†
iσciσ ≤ 1 on each site, which

is imposed via the projection operator Ps. The super-
exchange coupling constant J is taken as the units with
t=J ¼ 3 throughout the paper. The size of a square lattice is
specified by N ≡ Nx × Ny, with Nx ¼ Ny ¼ 2 ×M
chosen to be even for an isotropic 2D square lattice and
N ≡ Nx × 2 for a two-leg ladder.

B. The single-hole ground state

Before we proceed to investigate the two-hole ground
state, it would be helpful for us to briefly outline some key
results of the single-hole state in the previous study [34,36].
The single-hole problem has been a focus of intensive

study with a history almost as long as the high-Tc
problem. It had been believed for a long time that the
single hole injected into the AFM spin background would
behave like a Landau-like quasiparticle with translational
symmetry and a finite spectral weight, known as a spin
polaron [41–48]. Namely, the spin distortion of the AFM
background in response to the motion of the hole was
expected to merely dress the bare hole’s effective mass. It
is particularly worth noting that, even though Shraiman
and Siggia [49,50] have previously discovered an impor-
tant transverse dipolar spin twist induced by the doped
hole, their semiclassical approach fails to capture the
correct short-range singular structure of the spin current,
reaching a conclusion of the dressed “hole” quasiparticle
with a definite momentum in a translational fashion
similar to the above obtained by considering only the
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longitudinal spin polaron effect. In other words, no
Anderson unrenormalizable phase shift would be pro-
duced in the one-hole ground state to invalidate the Bloch
wave behavior in the long wavelength.
However, the recent ED and DMRG numerics [37]

reveal that something is fundamentally missing in this
quasiparticle picture. It has been shown that actually there
are hidden spin currents always present in the spin
background as generated by the motion of the doped
hole in the degenerate ground states. Since it is always
conserved in the t-Jmodel, the spin current itself can carry
away momentum and change the translational symmetry
of a renormalized hole even though the total (many-body)
momentum remains conserved. It implies that the hole
entity no longer obeys the Landau one-to-one correspon-
dence assumption to behave like a Bloch wave.
In fact, with a lattice rotational symmetry under the

OBC, the spin current can generate a nontrivial angular
momentum with a novel ground state degeneracy besides
the normal degeneracy due to S ¼ 1=2. As shown in
Fig. 1(a), when a doped hole hops in an AFM background
(always labeled by the quantum numbers S and Sz), a string
of spin-dependent � signs (i.e., the phase string) [25,26] is
generally created, which leads to a backflow of spin current
[cf. Eqs. (11) and (12) for the definition under a conserved
Sz] in response to the motion of the hole. However, due to
the singlet nature of the spin background (in a finite but
large sample size), a strong cancellation of the phase-string
effect occurs in the hopping integral, unless the spin
backflow bends into a rotonlike configuration for the
backflow currents composed of two opposite spins
[cf. Fig. 1(a)]. Note that there is also an opposite chirality
of the roton configuration not shown in Fig. 1(a). Thus, due
to the phase-string effect, the hidden spin currents must
play an essential role to form a composite object to
facilitate the hole’s motion.

Furthermore, as introduced by the hole, there is an extra
Sz ¼ �1=2 in the otherwise spin-singlet background,
which can manifestly contribute to an explicit spin current
as a vortex illustrated in Fig. 1(b). It can be regarded as a
net effect of the underlying backflow pattern shown in
Fig. 1(a). Under a C4 symmetry, such a hidden backflow
configuration associated with the doped hole gives rise to a
nontrivial angular momentum (Lz ¼ �1 for an N ¼ 2M ×
2M lattice) as a new quantum number in addition to, say,
Sz ¼ �1=2 associated with the hole composite.
Therefore, in the presence of the unrenormalizable phase

shift or the phase-string effect, the hole is renormalized to
become a composite object as shown in Fig. 1. This picture
is confirmed by the finite-size ED and DMRG calculations
[37]. Mathematically, the phase string or the spin-current
backflow pattern in Fig. 1 can be characterized by a phase-
shift factor e−iΩ̂i already mentioned in the introduction.
Here, Ω̂ is explicitly defined by

Ω̂i ¼
X
l

θiðlÞnl↓; ð8Þ

where nl↓ is the number operator of down spin at site l and
θiðlÞ ¼ mIm lnðzi − zlÞ (m ¼ �) denotes a statistical angle
between site i and site l in a 2D plane with zi ¼ xi þ iyi
being the complex coordinate of site i. Note that θiðlÞ
satisfies the condition

θiðlÞ − θlðiÞ ¼ �π; ð9Þ

which results in a sign change, e−iΩ̂i → −e−iΩ̂i , accom-
panying the exchange between a hole and a ↓ spin to
precisely keep track of the phase-string effect.
Consequently, a single-hole ground state Ansatz is

constructed as follows [36]:

jΨðmσÞi1h ¼
X
i

ϕðmσÞ
h ðiÞe−imΩ̂i ciσ̄jϕ0i; ð10Þ

where jϕ0i is the ground state of the Heisenberg
Hamiltonian at half filling. Here, m ¼ � represents oppo-
site chiralities of the spin-current vortex, which is originally
hidden in the definition of θiðlÞ above, but hereafter,
redefinition on the statistical angle θiðlÞ≡ Im lnðzi − zlÞ
in Eq. (8) explicitly appears with e−iΩ̂i → e−imΩ̂i for the
convenience of discussion below.
The variational parameters ϕðmσÞ

h ðiÞ can be determined
by optimizing the kinetic energy by VMC. Detailed
analyses of this wave function Ansatz for the 2D square
lattice are given in Ref. [36]. The agreement of the ground
state properties between the Ansatz states and the exact ED
or DMRG results is shown there. For the 2D case under an
OBC, the four degenerate ground states and their quantum
numbers are listed in Table I with σ ¼↑, ↓ and m ¼ �.
Specifically, it shows that the hole acquires a nonzero

(a) (b)

FIG. 1. The composite structure of a renormalized single-hole
state discussed in Ref. [36]: (a) The motion (blue arrow) of a
doped hole (black circle) creates a sequence of � signs (phase
string) depending on ↑ and ↓ of the backflow spins. To avoid
cancellation of the phase-string effect in the hopping integral, the
spin backflow currents have to bend into a rotonlike pattern (red
dashed line) around the hole; (b) such a roton configuration can
be explicitly manifested by a vortex of spin current around the
hole as a net effect for an extra Sz ¼ �1=2. The chirality of the
vortex leads to a double degeneracy of the states with an emergent
angular momentum Lz ¼ �1.
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angular momentum Lz ¼ �1 corresponding to the chiral
spin current (marked by↷ and↶ in Table I) in addition to
Sz ¼ �1=2. Here, the spin currents produced in the
hopping (backflow spin current) and superexchange (neu-
tral spin current) terms are defined by [36]

Jbij ¼ −i
t
2

X
σ

σðc†iσcjσ − c†jσciσÞ; ð11Þ

Jsij ¼
J
2
iðSþi S−j − S−i S

þ
j Þ; ð12Þ

respectively.
Finally, we mention that the single-hole ground state in

Eq. (10) was actually first successfully applied to the one-
dimensional chain [35] and then two-leg ladder [34],
respectively. Note that the statistical angle θiðlÞ in
Eq. (8) can be further optimized [34] for the anisotropic
t-J two-leg ladder case under the constraint in Eq. (9). But,
so long as Eq. (9) is satisfied, the phase-shift factor e∓iΩ̂i in
Eq. (10) is generally effective in keeping track of the
singular phase-string effect.

C. Two-hole ground state Ansatz

In the above subsection, we briefly outline the ground
state Ansatz for the single-hole doped t-J models in 2D and
two-leg square lattice cases, respectively. It is straightfor-
ward to construct the corresponding two-hole ground state
wave functions and study them based on a VMC approach.
By noting that the single-hole ground state given in

Eq. (10) is generally fourfold degenerate (cf. Table I) in an
Nx ¼ Ny ¼ 2 ×M lattice, with S ¼ 1=2 and angular
momentum Lz ¼ �1 under the OBC, the two-hole ground
state of Sz ¼ 0 may be constructed by

jΨηi2h ¼
X
ij

gηði; jÞci↑cj↓e−iðΩ̂iþηΩ̂jÞjϕ0i þ � � � : ð13Þ

Here, jϕ0i describes a half-filling spin background. The
subscript η ¼ � denotes two sectors of wave function
Ansatz, where the spin-current vortex pattern around each
hole [Fig. 1(b)] has either the same chirality or the opposite
one in forming a paired state as illustrated by Figs. 2(a)
and 2(b), respectively. The rest term � � � on the right-hand
side of Eq. (13) involves the opposite chirality (the complex
conjugate) of the phase-shift operator: eiðΩ̂iþηΩ̂jÞ. For a
comparison, we also consider a bare two-hole wave
function without the phase-shift operator, which is denoted
by η ¼ 0:

jΨ0i2h ¼
X
ij

g0ði; jÞci↑cj↓jϕ0i: ð14Þ

A detailed analysis of the wave function symmetries is
given in Appendix A.
Here, the pair amplitude gηði; jÞ in jΨηi2h is treated as a

variational parameter to be determined by VMC by
optimizing the kinetic energy of the t-J model for each
η ¼ �; 0. Note that the spin background jϕ0i may be still
chosen as the ground state of the half-filling Heisenberg
model HJ. By doing so, one assumes that the other
disturbance of the two doped holes to the spin background
is negligible, except for the phase-string effect via
e∓iðΩ̂iþηΩ̂jÞ. A further optimization of jϕ0i in the VMC
procedure is discussed below.
The above three Ansatz states of jΨηi2h are determined

variationally in a VMC calculation similar to the one-hole
case on a 2D square lattice. The variational ground state
energies on a 4 × 4 lattice are presented in Table II in
comparison with the ED result. According to Table II,
relative to the phase-string-free jΨ0i2h, both jΨþi2h and
jΨ−i2h have much improved variational energies as
expected based on the single-hole case.
From Table II, one sees that jΨ−i2h has not only the

lowest ground state energy, but also the same quantum
number with the angular momentum Lz ¼ 2 mod 4 as the

(a) (b)

FIG. 2. The two-hole ground state Ansatz. (a) Two holes are
composed of the same chirality of spin current in jΨþi2h; (b) two
holes are composed of the opposite chiralities of spin current in
jΨ−i2h. See the definitions in Eq. (13).

TABLE I. Essential properties of the one-hole degenerate
ground states from the single-hole variational wave function
Ansatz in Eq. (10) on a 2D square lattice with C4 symmetry
(OBC). Sz denotes the total z-component spin, and Lz is the
orbital angular momentum. Jb;s [defined in Eqs. (11) and (12)]
are the backflow and neutral spin currents accompanying the
motion of a hole, respectively, and Jhij ¼ it

P
σðc†iσcjσ − c†jσciσÞ is

the hole current. ↷ (↶) marks the current vortex circulation
clockwise (anticlockwise). The phase-shift operator Ω̂i defined in
Eq. (8) originates from the phase-string effect and captures the
most essential feature of a single-hole wave function Ansatz in
Eq. (10).

jΨðþ↑Þi jΨð−↑Þi jΨðþ↓Þi jΨð−↓Þi
Phase factor e−iΩ̂i eiΩ̂i e−iΩ̂i eiΩ̂i

Sz þ1=2 þ1=2 −1=2 −1=2
Lz þ1 −1 −1 þ1

Jb;s ↶ ↷ ↶ ↷
Jh ↷ ↶ ↶ ↷
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ED result, which gives rises to a sign change of the total
state under a π=2 rotational of the lattice. A combination of
the degenerate ground states in the single-hole doped case
leads to a nondegenerate jΨ−i2h in the two-hole case, which
is consistent with the ED and DMRG results in 4 × 4 and
larger sample sizes that the ground state of an even number
of holes is generally nondegenerate.
For comparison, the phase-string-free wave function

jΨ0i2h has an angular momentum Lz ¼ 0, while the same
chirality wave function jΨþi2h corresponds to Lz ¼ �1 in
which the two holes form a triplet pairing as indicated by
the pair-pair correlator. Later, in Sec. IV and Appendix C,
we further discuss the variational procedure to incorporate
the additional feedback effect on jϕ0i in Eq. (13), which
can then optimize jΨþi2h to result in an Lz ¼ 2 state with
an energy comparable to that of jΨ−i2h. By contrast, jΨ−i2h
in Eq. (13), with jϕ0i as the half-filling ground state and
g−ði; jÞ as the sole variational parameter, can naturally
capture the nondegenerate two-hole ground state with
Lz ¼ 2. Therefore, from now on, we mainly focus on such
a variational jΨ−i2h to further explore its internal structure
and unconventional pairing properties.
Finally, we note that the ground state Ansatz of Eq. (13)

can be also directly applied for two holes injected into a
two-leg Heisenberg ladder. The variational energy calcu-
lated on a 10 × 2 ladder is shown in Table III. Similar to the
2D square lattice, jΨ−i2h for the two-leg ladder also gives
rise to the best variational energy as compared with the ED
result. Here, the phase-shift operator Ω̂i appearing in
Eq. (13) may be also further optimized for the two-leg
ladder by tuning θiðlÞ under the constraint in Eq. (9), which

has been effectively done [34] in the single-hole case as
mentioned before. But, in the above VMC calculation, we
still use the 2D version of θiðlÞ, which is not qualitatively
different from the optimized one for the isotropic t-J model
on the two-leg ladder [34]. As already emphasized in the
one-hole case, the crucial point is that the phase-shift factor
e∓iΩ̂i under the constraint Eq. (9) can always explicitly
keep track of the singular phase-string effect in Eq. (13).

III. PAIRING STRUCTURE

In the previous section, we construct a two-hole varia-
tional ground state jΨ−i2h in Eq. (13), in which the pairing
amplitude g−ði; jÞ is determined by VMC to result in a
nondegenerate ground state consistent with the ED calcu-
lation. In the following, we explore the intrinsic pairing
structure in such a ground state.

A. d-wave pairing symmetry

Define the pair operator of the electrons as

Δ̂s
k ¼ ck↑c−k↓ − ck↓c−k↑; ð15Þ

which involves two holes at momenta k and −k in a spin-
singlet channel. Then, the pairing structure of the two-hole
ground state jΨ−i2h may be measured by

Δs
k ≡ 2hhΨ−jΔ̂s

kjϕ0i; ð16Þ

which is just the usual definition of the Cooper pairing
order parameter in the two-hole limit.
The calculatedΔs

k on a 20 × 20 lattice is shown in Fig. 3.
The nodal lines of the pairing order parameter (white
dashed lines) with a sign change after a π=2 rotation in the

TABLE II. The energies of the two-hole ground states jΨ0i2h in
Eq. (14) and jΨ�i2h in Eq. (13), on a 4 × 4 lattice under OBC: EG
is the total energy; Et and EJ are the kinetic and the super-
exchange energies, respectively; Lz ¼ 0;�1, 2 denote the cor-
responding orbital angular momenta.

EG Et EJ Lz

jΨ0i2h −17.37 −5.88 −11.48 0
jΨþi2h −20.50 −9.56 −10.94 �1
jΨ−i2h −22.51 −11.20 −11.31 2
ED −24.98 −14.57 −10.42 2

TABLE III. Ground state energies of two-hole-doped 10 × 2
ladder under the OBC obtained by VMC and ED. EG is the total
energy, Et and EJ are the kinetic and the superexchange energies,
respectively.

EG Et EJ

jΨ0i2h −21.03 −6.29 −14.73
jΨþi2h −23.30 −9.51 −13.79
jΨ−i2h −25.70 −11.07 −14.63
ED −27.74 −14.00 −13.74

-1 0 1
-1

0

1

-0.04

-0.02

0

0.02

0.04

FIG. 3. The d-wave symmetry of the Cooper pair component in
the two-hole ground state jΨ−i2h, as shown by the overlap Δs

k
defined in Eq. (16) on a 20 × 20 lattice. The dashed (white) lines
denote the nodal lines with the sign change across them.
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k space clearly illustrate a d-wave symmetry of Δs
k, which

is also consistent with the angular momentum Lz ¼ 2
of jΨ−i2h.
The d-wave pairing symmetry can be also directly

probed in the pair-pair correlation function. Define the
pair operator on lattice

Δ̂s
ij ¼ ci↑cj↓ − ci↓cj↑ ð17Þ

and the corresponding pair-pair correlations

Cs;k
i;j ¼ hΔ̂s

i;iþêyðΔ̂s
j;jþêyÞ†i;

Cs;⊥
i;j ¼ hΔ̂s

i;iþêyðΔ̂s
j;jþêxÞ†i;

Cs;anod
i;j ¼ hΔ̂s

i;iþêyðΔ̂s
j;jþêxþêyÞ†i;

Cs;nod
i;j ¼ hΔ̂s

i;iþêxþêyðΔ̂s
j;jþêxþêyÞ†i; ð18Þ

for the NN bonds and the next-nearest-neighboring
(NNN) bonds, respectively (cf. the insets in Fig. 4).
Here, ex (ey) denotes the unit vector along the x (y)
direction. As illustrated in Figs. 4(a) and 4(b), the sign

change between Cs;k
i;iþx and Cs;⊥

i;iþx clearly confirms the
d-wave symmetry.
It is noted that in Fig. 4 a large 2D square lattice of

64 × 64 is used to show the d-wave behavior in real space.
Here, in carrying out the numerical calculation, we use a

fitted parameter g−ði; jÞ for the NN and NNN sites, with the
phases given by

g−ði; jÞ ¼ eiϕ
0
ije−iθiðjÞjg−ði; jÞj; ð19Þ

where the first phase factor on the right-hand side of
Eq. (19) is given by

ϕ0
ij ¼

1

2

X
lð≠i;jÞ

½θiðlÞ − θjðlÞ�: ð20Þ

Namely, based on the variational results of the sample sizes

up to N ¼ 20 × 20, the quantity g−ði; jÞ × e−iϕ
0
ijeiθiðjÞ is

found to be a pure s-wave-like constant amplitude jg−ði; jÞj
(see below), up to a global phase, for both the NN and
NNN bonds.
As shown in Fig. 4(c), the nodal direction pair-pair

correlation function is actually finite at a very short distance
before decaying quickly to zero. It suggests that, in contrast
to a pure d-wave symmetry of Cooper pairing, the two
doped holes actually do form pairing along the diagonal
direction with a finite jg−ði; jÞj, but its phase coherence is
notmaintained over a couple of lattice constants because of
the phase-shift factor e∓iΩ̂i in jΨ−i2h. In the following, we
show a dichotomy in the pairing structure of jΨ−i2h, which
significantly goes beyond a simple d-wave pairing of the
bare holes.

3

4

5

6
(a)

0 5 10 15 20 25 30
-4.5

-4

-3.5
(b)

-0.2

0

0.2

0.4
(c)

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2 (d)

FIG. 4. Pair-pair correlation in jΨ−i2h with the pairing orientations indicated in the inset: (a) and (b) show the correlations between the

NN hole pairs at two perpendicular directions, Cs;k
i;j and Cs;⊥

i;j , respectively; (c) shows the NNN hole pair correlation Cs;nod
i;j ; while

(d) shows the correlation between the NN and NNN hole pairing, Cs;anod
i;j . The starting point i is chosen at ix ¼ Nx=4; iy ¼ Ny=4with the

ending point at jx ¼ ix þ x; jy ¼ iy. Note that the variational parameter g−ði; jÞ fitted in Eq. (19) with jg−ði; jÞj set as 1 is used in the
calculation of the correlators at a large lattice size 64 × 64.
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B. Dichotomy: s-wave-like pairing between the holes

The tight binding between the two doped holes can be
also directly measured by the hole-hole density correlation

Nh
ij ≡ hnhi nhj i; ð21Þ

where nhi is the hole number operator at site i. As shown in
Fig. 5, two holes indeed form a tightly bound pair. For a
hole sitting at a given (blue cross) site, the second hole
distributes predominantly at the neighboring sites (red full
dots), forming a square shape around it, which is much
smaller than the whole lattice. Note that the weight on the
square shape slightly deviates from aC4 symmetry, because
its center (blue cross) is off the center of the 10 × 10 lattice
in Fig. 5.
Figure 5 reveals a surprising fact that the hole pairing

configuration actually resembles an s-wave-like pairing
with the largest weight even at the four diagonal NNN sites
of distance

ffiffiffi
2

p
, where the weight is supposed to be zero

according to a conventional d-wave pairing symmetry.
Such an enhanced NNN diagonal pairing between the
holes is already observed by earlier numerical calculations
[20,51–54].
By noting

Nh
ij ∝ jg−ði; jÞj2; ð22Þ

such a generalized s-wave-like pairing is, thus, related to
jg−ði; jÞj, i.e., the pair amplitude for the twisted quasiholes
created by c̃i ¼ cie∓iΩ̂i in the ground state jΨ−i2h of
Eq. (13), as mentioned in the above subsection. Even
though jg−ði; jÞj is the largest at j ¼ iþ êx þ êy, Fig. 4(c)
shows an exponential decay of the Cooper pair correlation

along the diagonal direction beyond a couple of lattice
constants due to e∓iΩ̂i . Clearly, the phase-shift operator
e∓iΩ̂i plays an essential role in the dichotomy of the pairing
symmetry. In this sense, the d-wave symmetry of Cooper
pair may be regarded as “emergent,” which is in sharp
contrast to the intrinsic s-wave-like pairing of the non-
Landau quasiparticles described by c̃.
Therefore, the ground state jΨ−i2h manifests a

dichotomy in pairing symmetry, which indicates that the
hole pairing in the doped t-J model is non-BCS-like.
Indeed, such a dichotomy has already been found in a two-
leg t-J model [38] in the limit that the interchain hopping
t⊥ → 0 such that the phase-shift operator Ω̂i can be
analytically derived in a one-dimensional form. In particu-
lar, the hole NNN pairing along the diagonal bond also gets
substantially suppressed in sharp contrast to a much
enhanced coherent NNN pairing in terms of the twisted
quasiparticles explicitly identified there [38]. In the follow-
ing, we further examine the two-hole pairing state in the
two-leg ladder in the isotropic limit of t⊥ ¼ t based on the
present VMC scheme.
One may notice two weak maxima and minima points in

the nodal regions in Fig. 3, which is in contrast to a simple
BCS d-wave pairing Δk ∼ cos kx − cos ky. As emphasized
above, the fundamental pairing in the two-hole ground state
is actually an s-wave pairing of two twisted quasiparticles,
which is exhibited as a strong real-space pairing with even a
slight enhancement along the diagonal direction in Fig. 5.
On the other hand, the overlap of the ground state with a
conventional Cooper pair wave function indeed shows a d-
wave symmetry, which is realized via the phase factor e−iΩ̂

to suppress the diagonal amplitude. The maxima at, say,
kx ∼ 3π=4 in Fig. 3 should, thus, be a trade-off effect of
such a d-wave phase suppression against the original strong
s-wave pairing along the nodal direction.

C. Two-hole ground state in the two-leg t-J ladder

Previously, we have briefly discussed applying the two-
hole wave function Ansatz in Eq. (13) to the case of an
isotropic t-J two-leg ladder. The VMC calculation of the
variational energies in comparison with ED is presented in
Table III, in which it shows that jΨ−i2h is the most
competitive in the variational energy.
In Fig. 6, the hole density distributions in a 40 × 2 ladder

obtained by both variational methods and DMRG are
shown. It can be seen that jΨ−i2h gives rise to almost
the same hole distribution as the DMRG result.
The pair-pair correlation functions Cs;k

i;j and Cs;⊥
i;j are also

calculated for the two-leg ladder as shown in Fig. 7 for the
ground state jΨ−i2h. The d-wave sign changes are clearly
seen there. Here, the apophysis of the line shape in Fig. 7
may be related to the hole density distribution as indicated
in Fig. 6. The agreement of the line shape with the DMRG
result in Fig. 7 implies that jΨ−i2h indeed captures the long-

FIG. 5. The hole-hole density correlator hnhi nhj i of jΨ−i2h.
Here, a hole is fixed at site i (labeled by the blue cross), and j runs
over the other sites of the lattice. The size of red bullets represents
the strength of the correlator, which indicates an s-wave-like
tightly pairing of the two holes in a 10 × 10 lattice.
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wavelength physics of the two-hole ground state in an
isotropic two-leg ladder. Note that the magnitude of the
pair-pair correlation for jΨ−i2h calculated by VMC is about
a couple of times stronger than DMRG, which may be
ascribed to a local longitudinal polaron effect in jϕ0i not
considered in the variational wave function. In particular, it
includes the aforementioned phase-shift factor in the
isotropic form, which should be adjusted for the two-leg
case as shown before in the one-hole case [34].

IV. PAIRING MECHANISM

In the last section, the pairing structure in the wave
function Ansatz jΨ−i2h is investigated. A strong binding of
the two doped holes is found with a novel feature of
dichotomy in the pairing symmetry, which indicates a non-
BCS nature of the hole pairing. In the following, we further
explore the detailed pairing mechanism, which points to a
new kinetic-energy-driven pairing force beyond the RVB
pairing mechanism.

A. Binding energy

So far, we mainly focus on the two-hole ground state in
the VMC calculation. Given the half-filling spin back-
ground jϕ0i, the variational procedure to determine gηði; jÞ
can be reduced to a quadratic eigenvalue problem as
discussed in Appendix B. Consequently, a series of excited
states in the form of two-hole Ansatz wave function
Eq. (13) may also be available if one restricts the
Hilbert space to ignore spin excitations of the vacuum
state jϕ0i in Eq. (13).
For such low-lying excited states obtained, two holes

remain in a tightly bound pair as indicated by the hole-hole
density correlator similar to that shown in Fig. 5 for the
ground state. On the other hand, the hole pair becomes
broken up in higher excited states, where no real space
binding is seen in the hole-hole density correlators. For a
finite-size sample, we can identify the energy difference
between the first unpaired state and the ground state as an
estimation of the binding energy Epair for the hole pairing.
In practice, to reduce the finite-size effect, we fix the

half-filling ground state jϕ0i obtained in a larger lattice size
Nx × Ny, say, at 24 × 24. Then, we calculate Epair with the
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FIG. 7. Pair-pair correlations in jΨ−i2h on a N ¼ 40 × 2 ladder

(red circle). Here, Cs;k
i;j and Cs;⊥

i;j shown in the upper and lower,
respectively, indicate the d-wave-like pairing symmetry. The
DMRG result (blue square) is also shown for comparison. The
starting point i is chosen as ix ¼ Nx=4; iy ¼ 1, and the ending
point is at jx ¼ ix þ x; jy ¼ 1.
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FIG. 6. The density distribution of two holes in a 40 × 2 ladder
obtained by VMC and DMRG methods.
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FIG. 8. The binding energy Epair as a function of the side length
n of a square subregion with the two holes confined inside which
is embedded within a larger 24 × 24 lattice of the spin back-
ground jϕ0i as the half-filling ground state. Inset: the kinetic
energy part of the binding energy, Et;pair, versus n with an
exponential decay, saturating at a typical area of approximately
4 × 4 as indicated by the fitting curve (red) given by Eq. (23).
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two holes restricted within a central subregion n × n:
n ≤ 24. Figure 8 shows the scaling behavior of Epair as
a function of n, which saturates to 1.97 in units of J. In the
inset in Fig. 8, a scaling behavior of the hopping energy
Et;pair is further shown. Note that, in the simplest VMC
procedure, it is Et;pair that is minimized, since the vacuum
state jϕ0i is fixed. Here, Et;pair saturates to a constant value
with a length scale λ0, following the scaling behavior of

Et;pair ¼ 1.84e−n=λ0 þ 0.39 ð23Þ

in units of J with λ0 ¼ 3.82 in the units of lattice constant,
which corresponds to the typical pair size of approxi-
mately 4 × 4.
Finally, we note that a self-consistent method is used to

determine the binding energy within the wave function
Ansatz Eq. (13), by comparing the energy difference
between the ground state and the first unpaired excited
state. In this way, the binding energy is contributed solely
by the phase-string effect via the phase-shift factor. A
possible error may occur if the so-called longitudinal spin
polaron effect as induced by the doped hole(s) in the spin
background jϕ0i also contributes to the pairing. In the

present approach, such an effect is assumed negligible
(cf. the discussion in Sec. V D).

B. Pairing force and spin currents

A rather tight spatial pairing in Fig. 5 indicates a strong
pairing force between two doped holes in an AFM spin
background. Here, the phase-shift factor e∓iΩ̂i not only is
essential in favoring the kinetic energy in a single-hole
case, but also plays a critical role in the pairing of two
holes. As a matter of fact, without incorporating it, the
variational wave function jΨ0i2h in Eq. (14) cannot produce
a sensible pairing even if the spin background jϕ0i is
artificially tuned from long-range to short-range spin-spin
correlations. In other words, the pairing mechanism here
cannot be attributed to the purely RVB pairing in jϕ0i.
Rather, it is due to the phase shift e∓iΩ̂i in jΨ−i2h [Eq. (13)]
that represents the phase-string effect associated with the
hopping term.
It has been previously shown that physically e∓iΩ̂i can be

visualized by a spin-current vortex around a hole in the
single-hole ground state (cf. Fig. 1 and Ref. [36]).
Similarly, we may measure the spin-current pattern for a
fixed configuration of two holes in jΨ−i2h. For each term

(a) (b) (c)

(d) (e) (f)

FIG. 9. The spin-current patterns in jΨ−i2h with two holes projected to different locations on a 16 × 16 lattice (only the central part is
shown). The dipolar configuration of the spin currents is clearly indicated with the increase of the hole-hole distance from (a) to (f),
which illustrates the crucial role of the phase-string effect in the hole pairing as opposed to the absence of both in jΨ0i2h. Note that an
opposite chirality of the spin-current patterns is also present in jΨ−i2h, which is not shown here for simplicity.
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with a given chirality on the right-hand side of Eq. (13), one
may compute the corresponding spin current based on Jsij
defined in Eq. (12).
Figures 9(a)–9(f) show the patterns of the neutral spin

current hJsiji at different hole locations, contributed only by
one of the terms with a given chirality of spin currents in
Eq. (13). The patterns with exactly an opposite chirality of
spin currents in Eq. (13) are not shown for simplicity. It can
be seen that the spin currents surrounding the two doped
holes form rotonlike configurations with two holes sitting
at the cores of the roton. The spin currents get strongly
canceled as the two holes approach each other, while the
spin-current vortices (antivortices) become stronger as the
two holes are separated in a farther distance, approaching to
the single-hole limit.
Such a non-RVB mechanism of the hole pairing has

been first found [35] in the two-hole ground state of the
two-leg t-J ladder by the DMRG calculation, in which
the strong binding between the holes is shown to dis-
appear once the phase-string effect is precisely turned off
without altering the short-range antiferromagnetic corre-
lation of the spin background in the so-called σ · t-J
model. Furthermore, in a simplified two-leg t-J ladder
with t⊥ ¼ 0, a stringlike pairing potential due to the
phase-string effect can be explicitly identified [38] in an
analytical form, which results in the strong binding
consistent with the DMRG result. In the present 2D
square lattice case, the ED and DMRG calculations also
show [37] that, once the phase string is removed in the
σ · t-J model, the angular momentum of the two-hole
ground state changes from Lz ¼ 2 to a trivial Lz ¼ 0
consistently with the description of jΨ0i2h with dimin-
ished hole pairing.
Therefore, we self-consistently establish a novel pairing

mechanism for two holes injected into the Mott insulator as
described by the t-J model. The starting point is that a
single doped hole does not propagate like a translational
invariant Bloch wave and its wave function in Eq. (10) must
involve a spin-current vortex produced by the irreparable
phase-string effect via the phase-shift factor e∓iΩ̂i, which is
essential to facilitate the hopping in an AFM spin back-
ground. Although the kinetic energy can be significantly
lowered by such a phase-shift field, the single hole also
becomes highly incoherent in sharp contrast to a coherent
Landau quasiparticle. As such, it is shown by the VMC
calculation that two doped holes show a strong incentive to
form a tightly bound pair, which can further reduce the
kinetic energy cost by eliminating the residual spin currents
due to e∓iΩ̂i via the above roton pattern in the wave
function jΨ−i2h.

V. DISCUSSION

Given the above understanding of the hole pairing
mechanism in the two-hole limit of a doped Mott insulator,

in the following, we discuss several remaining issues that
are beyond the scope of the present VMC approach.

A. Single-particle coherence versus incoherence:
A dual picture of AFM correlations

So far, a good agreement between the VMC results and
the exact numerics of ED and DMRG has been reached in a
finite-size calculation. An important remaining issue is
about the long-distance behavior of a hole or a pair of holes
in the AFLRO phase. We point out below that the
coherence or incoherence of the hole propagation is
determined by the AFM correlations in the spin back-
ground in the long-wavelength limit.
The phase-shift operator e∓iΩ̂i plays an essential role in

the construction of the ground states for both the single-
hole and two-hole problems [cf. Eqs. (4) and (13)]. For
example, the single-hole propagator in the ground state of
Eq. (4)

Gjj0 ≡ 1h
hΨGjcjσc†j0σjΨGi1h ð24Þ

is proportional to

fjj0 ≡ e∓i
P

j→j0 ϕ
0
klhϕ0jnjσe�iðΩ̂j−Ω̂j0 Þnj0σjϕ0i; ð25Þ

which falls off exponentially as a function of ji − jj if jϕ0i
is an AFLRO state but becomes a power-law decay if jϕ0i
is artificially tuned into a short-range RVB state, as seen in
the VMC simulation below. Here, the phase factorP

j→j0 ϕ
0
kl is added to replace the variational parameters

ϕ�
hðjÞϕhðj0Þ to make fjj0 gauge invariant, which is a

summation over the link variables ϕ0
kl [cf. Eq. (20)] con-

necting i and j. For simplicity, one may consider j ¼ iþ x
along the x axis and calculate the following Fourier
transformation of Eq. (25) along the kx direction:

fkx ≡
X
x

e−ikxxfj;jþx; ð26Þ

as shown in Fig. 10, where fkx peaks at �π=2 are
substantially broadened in the AFLRO state but become
very sharp in a short-range RVB state of jϕ0i in a
dimer limit.
Thus, the single-hole behavior as controlled by the long-

range behavior of fjj0 , which is, in turn, decided by the
spin-spin correlation in jϕ0i via the phase-shift factor e∓iΩ̂i,
should be rather incoherent in an AFLRO background,
while it becomes coherent once the AFLRO disappears in a
short-range RVB state of jϕ0i.

B. Possible localization in the AFLRO state

Two holes are shown to form a tightly bound pair in
Fig. 5. It means that one may reasonably treat such a pairing
entity as a building block with more holes doped into the
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antiferromagnet in the dilute limit so long as the spin-spin
correlation length is much larger than the pair size. As
emphasized before, jΨ−i2h involves two opposite vortices
of spin currents that are canceled out in a distance far away
from the hole pair (cf. Fig. 9). Thus, the long-range AFM
correlation should not be affected by the presence of such a
tightly bound hole pair. In other words, the AFLRO is
expected to persist in the presence of a finite concentration
of such hole pairs each with a scale of approximately 4 × 4.
Naively, if a hole pair can propagate coherently, a finite

density of them should be superconducting. However, in
the AFLRO state, the incoherence of a single hole dis-
cussed above based on the long-distance behavior of fij
indicates the self-localization of the doped hole. Similarly,
the long-wavelength coherence or incoherence of the hole
pair should be also sensitive to the spin-spin correlation in
the background.
Nevertheless, the very mechanism of pairing is to remove

the leading frustration effect of e∓iΩ̂i in the ground state of
Eq. (13). The question is if there would be still a residual
effect of the phase-string effect not canceled out by the
pairing to further localize the hole pair in the AFLRO
phase. Here, we point out that the conserved spin currents
associated with the holes become dissipationless “super-
currents” in the AFLRO phase. On a general ground, the
vortex-antivortex configuration of spin current or the roton
in Fig. 9 is expected to be an immobile object [55], in
contrast to a “polaron” of spin amplitude distortion tightly

bound to the hole pair to form a rigid translational invariant
object. In particular, jΨ−i2h also involves an opposite
chirality of spin currents (not shown in Fig. 9) as the
superposition state in Eq. (13). Thus, as a whole, such a
hole pair state is not translationally invariant, which
indirectly implies a tendency for the self-trapping of the
hole pair once the spin background becomes AFM ordered.
Furthermore, locally the NN and NNN pairings in jΨ−i2h

are closely connected by the hopping term, which even
makes the NNN pairing stronger (cf. Fig. 5). But only
the NN Cooper pair shows a longer-range coherence in
Fig. 4(a), whereas a quick exponential decay for the NNN
Cooper pair in Fig. 4(c) clearly indicates the incoherence or
localization of the NNN component caused by the phase-
shift field. It explains and reconciles the dichotomy in the
pairing symmetries of the s-wave-like local pairing versus
the d-wave-like Cooper paring in large distance. Then, as
the superposition of both delocalized and localized com-
ponents, the hole pair as a whole quantum entity is
generally expected to be localized too in a long distance,
although a more careful study beyond the present VMC
approach is further needed to resolve this important issue.

C. The ground state with more doped holes

How can the present approach to the two-hole problem
provide an understanding of the SC state Ansatz in Eq. (1)
at finite doping?
Note that, in the hole pair creation operator D̂ defined in

Eq. (2) for the SC state, c̃iσ is defined in Eq. (3) in terms of
the same phase-shift factor e∓iΩ̂i such that the translational
symmetry is formally retained in the ground state (1) if the
short-range AFM vacuum state jRVBi is translationally
invariant. However, such a state in the two-hole limit
reduces to D̂jRVBi, which looks more like jΨþi2h
[cf. Eq. (13) with η ¼ þ1] than the true ground state
jΨ−i2h studied in the present work. But we point out below
that the distinction between jRVBi and jϕ0i can reconcile
this difference, which also means that there must be a phase
transition to separate these two phases.
By a reorganization in Eq. (19), the ground state jΨ−i2h

may be rewritten as

jΨ−i2h ¼
X
ij

g−ði; jÞc̃i↑c̃j↓½e�2iΩ̂i jϕ0i� þ � � � ð27Þ

by introducing c̃iα ¼ ciαe∓iΩ̂i , which may be further
expressed as

jΨ−i2h →
X
ij

g−ði; jÞc̃i↑c̃j↓jRVBi þ � � � ; ð28Þ

by denoting e�2iΩ̂i jϕ0i → jRVBi. Note that Eq. (28) would
also resemble jΨþi2h defined in Eq. (13) (η ¼ þ1) if jϕ0i is
replaced by jRVBi ∼ e�2iΩ̂i jϕ0i there. Although the

(a)

(b)

FIG. 10. The mutual duality shown by the Fourier trans-
formations, fkx and Skx , of the gauge invariant vortex correlations
fjj0 in Eq. (25) (red) and the spin-spin correlation hϕ0jSi ·
Sj¼iþxjϕ0i (blue) along the x direction, which are measured
on (a) the AFLRO state and (b) an RVB state in the dimer limit.
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original jΨþi2h has a higher VMC energy and a distinct
quantum number Lz ¼ �1 than that of jΨ−i2h with jϕ0i as
an AFLRO state, now with jϕ0i → jRVBi, one may repeat
a VMC procedure for such a new state given in Eq. (28).
Here, both jRVBi and parameter g−ði; jÞ are treated
variationally, and, in particular, jRVBi satisfies an eige-
nequation in the variational procedure that can be diagon-
alized by ED with each given g−ði; jÞ in an iteration
procedure of the VMC (details given in Appendix C).
As a result, a nondegenerate jΨþi2h can be found with

the correct angular momentum Lz ¼ 2 mod 4, consistent
with jRVBi ∼ e�2iΩ̂i jϕ0i in Eq. (28). The variational
kinetic energy of approximately −11.94J is even slightly
lower than that of the ground state jΨ−i2h shown in
Table II, with a slightly higher superexchange energy of
approximately −10.35J. Furthermore, it is easy to find the
overlap hRVBjϕ0i ∼ 10−13, i.e., almost orthogonal, and, on
the other hand, hRVBje�2iΩ̂j jϕ0i ∼ 0.2, which is of order of
one to validate Eq. (28).
With the pairing creation operator in Eq. (2), a gener-

alization of Eq. (28) implies a ground Ansatz for the Nh
hole case:

jΨGi ∝ D̂Nh=2jRVBi; ð29Þ

which is essentially the same as Eq. (1) with the total hole
number fixed at a finite doping concentration, where

jRVBi ∼ ei
P

ij
nhi Ω̂j jϕ0i: ð30Þ

At finite dopings, jRVBi can be shown to become short
ranged by a mean-field theory [32]. This is the reason why
the vacuum state in Eq. (29) is denoted by jRVBi to
distinguish it from jϕ0i of the AFLRO state of the
Heisenberg model at no doping.
An off diagonal long range order of the pairing ampli-

tude can be achieved by hD̂i ≠ 0 in Eq. (29) at finite doping
[31]. According to Eq. (28), the local pairing symmetry
should resemble that of jΨ−i2h for two holes discussed in
the present work so long as the short-range AFM corre-
lations persist in jRVBi. Indeed, a dichotomy of an s-wave
symmetry of the pairing amplitude gði; jÞ for the twisted
quasiholes created by D̂ in Eq. (30) and a d-wave symmetry
of the Cooper pairing order parameter have been previously
found in a generalized mean-field theory [33] leading
to Eq. (29).
Therefore, by properly incorporating the hole-induced

phase-shift field e∓iΩ̂i , an evolution of the ground state
from the AFLRO to the SC as a function of doping may be
mathematically realizable, although a phase transition
should occur from long-range AFM ordered jϕ0i to an
emergent RVB state jRVBi. It leads to a non-BCS-like SC
wave function (29) at finite doping, in which the local
pairing structure should be similar to that of jΨ−i2h studied

in the AFLRO phase in the present work, but it is in a
translational invariant form in contrast to the latter. In
particular, the AFLRO must be replaced by an emergent
RVB state self-consistently to establish the transition of the
charge pairing from localized state to superconducting.
A possible non-Landau-type phase transition has been

studied before in a topological gauge theory formulation
[56,57]. The hole pairing in the AFLRO phase with a phase
transition to the SC phase is also discussed in the semi-
classical form of vortex-antivortex pairing [58,59]. Such
long-wavelength physics in the dilute concentration of
holes is beyond the scope of the present two-hole VMC
work. Nevertheless, the short-distance pairing structure is
expected to remain similar as characterized by Eq. (13). A
further exploration of the phases and the phase transition in
the dilute doping regime should first incorporate this short-
range physics correctly.

D. Comparison with other approaches and experiments

As the building block of superconductivity, the pairing
mechanism of doped holes has been under intensive study.
Numerical methods, including ED [52,53,60,61], DMRG
[40,51,62,63], and VMC [20,54,64,65], are employed to
analyze the pairing structure of the two-hole ground state
and excitations. Consistent results, including a strong
pairing of d-wave symmetry and a maximal hole density
correlator at distance

ffiffiffi
2

p
, have been obtained. In compari-

son with these numerical results, the variational wave
function Eq. (5) proposed in this work captures essentially
all the important features with using only a few number of
variational parameters (approximately N2, where N ¼
Nx × Ny is the lattice site number).
The structure of the two-hole ground state in Eq. (13)

(η ¼ −1) is basically fixed with the fitted form of the
variation parameter g−ði; jÞ given in Eq. (19). Introducing
more variational parameters including considering the
“spin polaron” effect in jϕ0imay lead to a better variational
ground state. However, the most essential features, i.e., the
dichotomy in pairing structure, with a d-wave-like pairing
symmetry in terms of the bare electron operators and the
s-wave-like real space pairing of the holes, is already well
captured in the simplest variational Ansatz. The phase-shift
field Ω̂i in Eq. (13) plays a fundamental role here, which
keeps track of the singular phase-string effect.
It has been long believed that the superexchange inter-

action plays the role of the driven force for the pairing in the
cuprate in place of the electron-phonon interaction in
conventional BCS theory. The pairing mechanisms due
to the RVB spin pairing [2,12,13], the semiclassical long-
range spin texture [66,67], or the “spin bag” [68,69], were
proposed and extensively explored. However, the recent
DMRG calculation for the two-leg ladder reveals [40] that
the superexchange interaction is only a necessary condi-
tion. By comparing the t-J model and the so-called σ · t-J
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model, in which the superexchange term is the same, it
shows that the phase-string sign structure induced by the
hopping term in the former is sufficient to lead to the
formation of strong hole pairing, whereas both are absent in
the latter. The present results clearly support this opinion, in
which the phase string as encoded in the phase-shift factor
e∓iΩ̂i is crucial in the variational two-hole wave function
jΨ−i2h for the t-J model, including the strong binding of
two holes. But, due to the absence of e∓iΩ̂i in jΨ0i2h, which
works for the σ · t-J model, the pairing is diminished even
if the superexchange term may be optimized via the
vacuum jϕ0i.
Finally, we briefly discuss some direct experimental

implications based on the understanding reached in the
present two-hole study. It has been a long-standing puzzle
why the nodal d-wave superconductivity in the cuprates is
so stable against nonmagnetic impurities and disorders.
Here, the dichotomy in the pairing symmetry provides a
natural explanation. Namely, it may be the intrinsic s-wave
pairing of the doped holes, which is expected to remain
well present with the reduction of the spin correlation
length to a finite larger size at finite doping, that is robust
against the strong potential disorders. On the other hand,
generally, a d-wave pairing symmetry should be detected
via a single-particle probe like tunneling and photoemis-
sion experiments; the s-wave-like pairing structure of the
twisted holes may also be observed via a scanning tunnel-
ing microscopy (STM) if directly probing into the CuO2

layer where the strong correlation takes place. There have
been already some recent STM experiments reporting a
possible s wave or the so-called U-shape dI=dV signal
coexistent with the d wave or V-shape signal in some
specially designed setups of the cuprates [70–72]. More
careful theoretical examinations on these issues are needed
in the future.

E. Effect of the NNN hopping integral t0

Besides the competition between the AFM background
and the NN hopping of the holes in the t-J model, in a
realistic case like the cuprate compound, longer-range
hopping such as the NNN hopping t0 is also present as
given by

Ht0 ¼ −t0
X
⟪ij⟫;σ

ðc†iσcjσ þ H:c:Þ; ð31Þ

where ⟪ij⟫ denotes the NNN sites.
At small t0=t, one may consider Ht0 as a perturbation to

the t-J model, and the novel pairing mechanism found in
the latter is not expected to be drastically changed. To the
leading order of approximation, one may still treat the
effect of the NNN hopping term within the VMC scheme
based on the two-hole variational Ansatz studied in the t-J
case above.

The resulting shift in the pairing energy Epair due toHt0 is
shown in Fig. 11 as a function of t0=t. The VMC method to
determine Epairðt0=tÞ is the same as that stated in Sec. IVA,
i.e., by calculating the energy difference between the first
unpaired state and the ground state. Here, only the largest
subregion n ¼ 20 in Fig. 8 is shown, which is already quite
close to the saturation value. In Fig. 11, the pairing energy
shift as calculated by ED is also shown for comparison,
which is based on a more conventional definition

Epair ¼ E2h þ E0h − 2E1h; ð32Þ

where E2h, E1h, and E0h denote the two-hole, one-hole, and
half-filling ground state energies, respectively. Although
the two methods are different, the pairing energy difference
Epairðt0=tÞ − Epairð0Þ shown in Fig. 11 agrees with each
other remarkably at small jt0=tj. Qualitatively, the binding
between the two doped holes becomes stronger as t0=t
increases from t0=t < 0 to t0=t > 0. Here, the ED is carried
out on a 4 × 4 lattice under the OBC, which is comparable
to the intrinsic size of the two-hole bound state found in the
VMC calculation. In the latter, the real space hole-hole
density correlator hnhi nhj i shows a tighter binding with the
increase of t0=t, as indicated in the two insets in Fig. 11

-0.2 -0.1 0 0.1 0.2
-0.6

-0.4

-0.2
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0.2
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VMC

1
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2
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FIG. 11. The two-hole pairing energy shift in Epairðt0=tÞ as a
function of t0=t due to the NNN hopping t0 term added to the t-J
model. The VMC result (red dot) is determined by the same
method used in Sec. IV with the largest subregion n ¼ 20 which
is almost saturated to the extrapolation value. Insets: Similar to
the plot in Fig. 5, the blue cross denotes one hole position and the
red dots the distributions of the other hole as given by the hole-
hole density correlator hnhi nhj i at t0=t ¼ −0.2 (left top) and t0=t ¼
0.2 (right top), respectively. The middle bottom inset further
indicates the additional hopping of the hole along the diagonal
direction (see the text). The ED result (blue dot) is also shown in
the main panel as calculated by the definition in Eq. (32) on a
4 × 4 lattice with the OBC (which is comparable to the intrinsic
size of the bound pair determined by VMC).
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from top left to top right with one hole projected at one site
(blue cross).
Physically, a positive t0=t term favors the 1 → 3 hopping

process shown in the middle bottom inset in Fig. 11, which
corresponds to a matrix element −t0 < 0. On the other
hand, the 1 → 2 → 3 process corresponds to a matrix
element −t2 < 0, where the minus sign comes from the
phase-string sign, ð�1Þ × ð∓ 1Þ ¼ −1, on a (short-range)
AFM background where site 2 and site 3 tend to have
opposite spins. Then, the 1 → 3 and the 1 → 2 → 3
processes strengthen each other for a positive t0, making
the NN pairing stronger to further lower the pairing energy.
Finally, we remark that, with the increase of strength of

jt0=tj, eventually the phase-string sign structure is expected
to be scrambled by the NNN hopping such that the present
VMC wave function breaks down. In this limit, a more
conventional Landau quasiparticle picture, similar to that in
the σ · t-J model, is recovered. The novel pairing mecha-
nism discussed in the present work should disappear, too.
As a matter of fact, a DMRG study in a two-leg ladder
system clearly shows [73] such a crossover as a function
of t0=t.

VI. CONCLUSION

In this paper, we have studied a two-hole ground state
wave function in both the 2D lattice and two-leg ladder t-J
models. The VMC results are in good agreement with the
ED and DMRG numerics. Here, the key feature in the wave
function is the presence of a many-body nonlocal phase
shift associated with each doped hole, which keeps track of
the precise phase-string sign structure of the t-J model. For
a one-hole ground state in a 2D square lattice with C4

symmetry (OBC), an emergent novel quantum number, i.e.,
an angular momentum Lz ¼ �1, is a manifestation of such
an effect. In the present two-hole case, the same effect leads
to Lz ¼ 2 mod 4, which characterizes a nondegenerate
ground state as precisely predicted by the exact numerical
calculations. Therefore, the spin transverse distortion or
spin current generated by the motion of a doped hole is
essential in the construction of the ground state with the
correct new quantum number. This is in sharp contrast to
the previous approaches in the literature, in which the spin
longitudinal or magnetization distortion or the “spin bag”
effect have been emphasized instead.
Here, we have found that two doped holes in the ground

state do form a tightly bound pair in both 2D and two-leg
ladder, indicating the existence of a strong binding force in
such doped Mott insulators. The hole binding diminishes
once the phase-shift field in the wave function is turned off,
even if the spin background remains in the AFLRO or RVB
state. This strongly suggests that the pairing glue originates
from the phase-string effect, which is explicitly illustrated
by a rotonlike pattern of spin currents surrounding two
holes. In particular, the pairing is kinetic energy driven to

facilitate the hole hopping, which is kind of counterintui-
tive. It is distinct from the usual pairing mechanism of
potential energy driven like exchanging AFM spin fluctu-
ations or the RVB pairing.
Such an unconventional pairing structure results in a

dichotomy in the pairing symmetry. Namely, although a d-
wave symmetry is clearly exhibited in the Cooper channel
of bare electronic holes, a stronger s-wave-like pairing will
manifest if probed in terms of the “twisted holes.” Here, the
twisted hole has been shown to replace the usual Landau
quasiparticle as a new quasiparticle in the single-hole
doped case, with an emergent novel angular momentum
Lz ¼ �1. In this sense, the s-wave pairing of twisted holes
reflects a more intrinsic aspect of the two-hole ground state,
which is, thus, more “robust” as compared to the d-wave
symmetry in the Cooper pair channel.
The important lesson that we have learned in the present

approach is that doping a quantum spin antiferromagnet is
very singular and nonperturbative at short distance. In order
to correctly tackle the long-wavelength physics at dilute but
finite doping, one has to first handle the short-range physics
carefully, since a conventional perturbative renormalization
group approach may well fail as clearly demonstrated in
this work. In the last section, we have briefly discussed the
possible long-wavelength physics including the self-locali-
zation of the hole pair in the AFLRO phase as well as the
phase transition to a true superconducting phase beyond a
critical doping. A future theoretical effort beyond the
present VMC method will be needed to further deal with
theses important issues of long distance including the phase
transition.
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APPENDIX A: SYMMETRIES OF THE ANSATZ
WAVE FUNCTION

For a system with a nondegenerate ground state, a good
Ansatz wave function is expected to conserve the sym-
metries of its Hamiltonian. In the following, we show that,
for the symmetries to be maintained in the ground state
wave function, the opposite chirality counterpart (the � � �
term) in Eq. (13), i.e.,

jΨηi2h ¼
X
ij

gηði; jÞci↑cj↓e−iðΩ̂iþηΩ̂jÞjϕ0i þ � � �

¼
X

ij;m¼�
gη;mði; jÞci↑cj↓e−imðΩ̂iþηΩ̂jÞjϕ0i; ðA1Þ
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has to be present. Here, we introduce m ¼ � as an explicit
index of the chirality and gη;�ði; jÞ as variational param-
eters corresponding to m ¼ �, respectively.
First let us examine the time reversal symmetry. Under

the time reversal transformation T̂, one has

T̂ciσT̂
−1 ¼ σciσ̄; ðA2Þ

T̂e−imΩ̂i T̂−1 ¼ eþimT̂Ω̂iT̂
−1

¼ eim
P

lð≠iÞθiðlÞe−imΩ̂i ; ðA3Þ

with using the constraint nl↑ ¼ 1 − nl↓ in jϕ0i. A time
reversal invariant wave function is expected to transform as

T̂jΨηi ¼
X
i;j;m

eim½
P

lð≠iÞθiðlÞþη
P

lð≠jÞθjðlÞ�

× g�η;mði; jÞcj↑ci↓e−imðΩ̂iþηΩ̂jÞjϕ0i
¼

X
i;j;m

eim½
P

lð≠iÞθiðlÞþη
P

lð≠jÞθjðlÞ�

× g�η;ηmðj; iÞci↑cj↓e−imðΩ̂iþηΩ̂jÞjϕ0i
¼ αT jΨηi; ðA4Þ

which requires

g�η;ηmðj; iÞ ¼ αTgη;mði; jÞe−im½
P

lð≠iÞθiðlÞþη
P

lð≠jÞθjðlÞ�; ðA5Þ

where αT is an arbitrary global phase factor with jαT j ¼ 1.
Next, consider a discrete Z2 symmetry of spin flip F̂,

which is defined as

F̂ciσF̂
−1 ¼ ciσ̄; ðA6Þ

F̂e−imΩ̂i F̂−1 ¼ e−im
P

lð≠iÞθiðlÞeimΩ̂i : ðA7Þ

It is expected that the ground state would remain the same
under this transformation up to a global phase

F̂jΨηi ¼ −
X
i;j;m

e−im½
P

lð≠iÞθiðlÞþη
P

lð≠iÞθiðlÞ�

× gη;mði; jÞcj↑ci↓eimðΩ̂iþηΩ̂jÞjϕ0i
¼ −

X
i;j;m

eim½
P

lð≠iÞθiðlÞþη
P

lð≠iÞθiðlÞ�

× gη;−ηmðj; iÞcj↑ci↓eimðΩ̂iþηΩ̂jÞjϕ0i
¼ αFjΨηi: ðA8Þ

We swap the summation indexes i, j and replace m by
−ηm in deriving the second equality above. Again, αF is an
arbitrary global phase factor with jαFj ¼ 1. Actually, by
doing the spin flip transformation twice, we further get

α2F ¼ 1, which leads to αF ¼ �1. The last equality gives
rise to the following constraint on a spin-flip invariant wave
function:

gη;−ηmðj; iÞ ¼ −αFgη;mði; jÞe
−im

hP
l≠i

θiðlÞþη
P

l≠j
θjðlÞ

i
: ðA9Þ

For a wave function satisfying both of the above
symmetries, we can fix the arbitrary phase factor αT ¼
−αF and combine the two constraints into one:

g�η;mði; jÞ ¼ gη;−mði; jÞ; ðA10Þ

which is equivalent to saying that a nondegenerate ground
state should be a real one, and no net currents are expected
to exist. This constraint is verified numerically for the
variational ground state jΨ−i2h studied in the main text,
which is nondegenerate with Lz ¼ 2 mod 4 under the C4

symmetry.

APPENDIX B: VARIATIONAL MONTE CARLO
PROCEDURE

The Monte Carlo procedure used to optimize the
variational energy and to measure other observables of
the two-hole doped wave function Ansatz (13) is outlined in
this Appendix. Similar procedures have been previously
utilized first in the single-hole doped t-J model for both
two-leg ladder and 2D lattice cases [34,36] and then in the
two-hole doped problem in the t⊥ ¼ 0 two-leg ladder [38].
At half filling, the t-J model reduces to the Heisenberg

model, whose ground state jϕ0i for a bipartite lattice can be
well simulated variationally by the Liang-Doucot-
Anderson-type (bosonic RVB) wave function [9]. Namely,

jϕ0i ¼
X
v

ωvjvi; ðB1Þ

where the valence bond (VB) state

jvi ¼ jða1; b1Þ…ðan; bnÞi ðB2Þ

consists of singlet pairs jða; bÞi ¼ j ↑a ↓bi − j↓a ↑bi, with
a and b from different sublattices, A and B, respectively.
Here, the VB states are not orthogonal to each other, and
the overlap between two different VB states is given by

hv0jvi ¼ 2
Nloop

v0 ;v ; ðB3Þ

where Nloop
v0;v is the number of loops in the transposition-

graph covers ðv0; vÞ [9].
The variational parameter wv of each valence

bond state jvi, which is always positive according to
the Marshall sign rule, can be further fractionalized as
wv ¼

Q
ðai;biÞ∈v hðai − biÞ, where hðai − biÞ > 0 is a pos-

itive function dependent on the distance ai − bi between
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sites ai and bi. By tuning the long-range behavior of
hða − bÞ, different spin background can be obtained. For a
power law hðlÞ ∼ l−p and p < 5, jϕ0i is an AFLRO state;
while for hðlÞ ∼ l−p and p ≥ 5 or when the maximum bond
length is finite, a short-ranged state can be obtained.
Specifically, a dimer limit state is obtained when the
maximum bond length is chosen as 1.
Here, we follow Ref. [9] to express all the observables

we need in the form of expectation values on the spin
background jϕ0i. As a simple example, the spin-spin
correlation Si · Sj of the spin background jϕ0i can be
calculated as

hϕ0jSi · Sjjϕ0i
hϕ0jϕ0i

¼
X
v0;v

Pðv0; vÞ hv
0jSi · Sjjvi
hv0jvi ; ðB4Þ

where

Pðv0; vÞ ¼ wv0wvhv0jvi
hϕ0jϕ0i

ðB5Þ

is a probability distribution satisfying
P

v0;v Pðv0; vÞ ¼ 1.
Equation (B4) can then be evaluated using the standard

Monte Carlo method as long as one knows how to calculate
ðhv0jSi · SjjviÞ=ðhv0jviÞ, which is

hv0jSi · Sjjvi
hv0jvi ¼

� ð−1Þiþj 3
4
; i; j ∈ sl;

0; i; j ∉ sl;

where i; j ∈ sl means that i and j belong to the same loop in
the transposition-graph covers ðv0; vÞ.
A similar Monte Carlo procedure can also be done for

the two-hole wave function jΨηi2h with minor adjustment.
For an arbitrary observable Ô, its expectation value over
jΨηi2h is

hÔi≡ 2hhΨηjÔjΨηi2h
2hhΨηjΨηi2h

¼ 2hhΨηjÔjΨηi2h
hϕ0jϕ0i

hϕ0jϕ0i
2hhΨηjΨηi2h

: ðB6Þ

By fixing the normalization condition of jΨηi2h as

2hhΨηjΨηi2h
hϕ0jϕ0i

¼ 1; ðB7Þ

we further get

hÔi≡ 2hhΨηjÔjΨηi2h
hϕ0jϕ0i

¼
X

i0j0m0;ijm

g�η;m0 ði0; j0Þgη;mði; jÞ
hϕ0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Ôci↑cj↓Λ̂m

ijjϕ0i
hϕ0jϕ0i

¼
X

i0j0m0;ijm

g�η;m0 ði0; j0Þgη;mði; jÞ
�X
v0;v

Pðv0; vÞ
hv0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Ôci↑cj↓Λ̂m

ijjvi
hv0jvi

�
¼ g†Og; ðB8Þ

where for simplicity the phase operator is written as

Λ̂m
ij ¼ e−im½

P
l≠i

θiðlÞnl↓þη
P

l≠j
θjðlÞnl↓�. Equation (B8) is a

quadratic form of the variational parameters gη;mði; jÞ,
which are written as a vector g in the last line. O is a
Hermitian matrix, whose matrix elements are

Oi0j0m0
ijm ¼

X
v0;v

Pðv0;vÞ
hv0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Ôci↑cj↓Λ̂m

ijjvi
hv0jvi ; ðB9Þ

which have the same form as that of Eqs. (B4) and (B5).
Therefore, the same Monte Carlo procedure in Ref. [9] can
be directly used here as long as one gets the formulas of
ðhv0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Ôci↑cj↓Λ̂m

ijjviÞ=ðhv0jviÞ. The loop update
procedure introduced in Ref. [74] is used in theMonte Carlo
sampling procedure to accelerate calculation.
Specifically, the normalization condition (B7) can also

be written as the form of Eq. (B8), with Ô taken as the
identity operator 1̂:

1 ¼ h1̂i ¼ g†Ag; ðB10Þ

which is also a quadratic form serving as the normalization
condition for the variational parameters gη;mði; jÞ. The

corresponding matrix of the identity operator 1̂ is denoted
asA here [cf. Eq. (B13) below], whose matrix elements can
also be obtained by Eq. (B9). Note that A is not an identity
matrix as a result of indistinguishability of identical holes
created by ci↑cj↓ and ci↓cj↑.

1. Explicit expressions for some observables

In calculating the matrix elements in Eq. (B9), one may
find that all the calculations can be transformed to evalu-
ating expressions of the following form:

hv0jΛ̂−m0
i0j0 nk1σ1nk2σ2…nknσnS

σ1
l1
Sσ2l2 …Sσsls Λ̂

m
ijjvi

hv0jvi : ðB11Þ

Making use of this expression, we can again take advan-
tage of the loop configurations in the transposition-graph
covers ðv0; vÞ, by dividing the loops into relevant loopswhich
contain sites k1…kn or l1…ls and irrelevant loops which do
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not. When the phase factor Λ̂m
ij is not considered, the

irrelevant loops are just unity, while the relevant loops
determine whether nk1σ1nk2σ2…nknσnS

σ1
l1
Sσ2l2 …Sσsls operators

are compatiblewith the loop configuration ðv0; vÞ or, in other
words, whether the term is nonzero or zero. After the phase
factor Λ̂m

ij is added back, the irrelevant loops contribute a

factor 1
2
ðeiθAα þ eiθ

B
α Þ now, while the relevant loops give a

phase factor 1
2
eiθ

rel
α besides the duty of checking compati-

bility, where

θA;Bα ¼
X
l∈loop α
l∈A;B

m0½θi0 ðlÞþηθj0 ðlÞ�−m½θiðlÞþηθjðlÞ� ðB12Þ

is the summation of all the phases along a loop α and θrelα
depends on the spin configuration on the relevant loops.
Therefore, as long as we expand the matrix elements of

Eq. (B9) in the form of Eq. (B11), the programming
progress is straightforward. In the following, we give this
expansion explicitly for some important operators.
(1) First, for the normalization condition Ô ¼ 1̂, the

corresponding matrix A has matrix elements

Ai0j0m0
ijm ¼

X
v0;v

Pðv0;vÞ 1

hv0jvi ½δii0δjj0 hv
0jΛ̂−m0

ij ni↑nj↓Λ̂m
ijjvi−δij0δji0 hv0jΛ̂−m0

ji S−i S
þ
j Λ̂

m
ijjvi�: ðB13Þ

(2) The hopping Hamiltonian Ĥt defined in Eq. (6) connects pairs of sites with only one site different, resulting in the
corresponding matrix Ht with elements

ðHtÞi
0j0m0
ijm ¼ t

X
v0;v

Pðv0; vÞ 1

hv0jvi
X
α¼x;y

½δii0δjj0�eαhv0jΛ̂−m0
ij0 ni↑ðnj↓nj0↓ þ Sþj S

−
j0 ÞΛ̂m

ijjvi

þ δjj0δii0�eαhv0jΛ̂−m0
i0j nj↓ðni↑ni0↑ þ S−i S

þ
i0 ÞΛ̂m

ijjvi − δji0δij0�eαhv0jΛ̂−m0
j0i S−i ðSþj nj0↑ þ nj↓S

þ
j0 ÞΛ̂m

ijjvi
− δij0δji0�eαhv0jΛ̂−m0

ji0 S−j ðSþi ni0↑ þ ni↓S
þ
i0 ÞΛ̂m

ijjvi�; ðB14Þ

where ex;y are the x and y direction unit vectors.
(3) For the superexchange Hamiltonian ĤJ defined in Eq. (7), the corresponding matrix HJ is

ðHJÞi
0j0m0
ijm ¼ J

2

X
v0;v

Pðv0; vÞ 1

hv0jvi
X

hklið≠i;jÞ
½δii0δjj0 hv0jΛ̂−m0

ij ni↑nj↓ðSþk S−l þ S−k S
þ
l − nk↑nl↓ − nk↓nl↑ÞΛ̂m

ijjvi

þ δij0δji0 hv0jΛ̂−m0
ji S−i S

þ
j ðnk↑nl↓ þ nk↓nl↑ − Sþk S

−
l − S−k S

þ
l ÞΛ̂m

ijjvi�: ðB15Þ

(4) Calculation of the overlap Eq. (16) is a bit different with other variables. We first normalize Eq. (16) as

Δs
k ¼ 2hhΨηjΔ̂s

kjϕ0iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hhΨηjΨηi2hhϕ0jϕ0i

p ¼
X
i0j0m0

g�η;m0 ði0; j0Þ
hϕ0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Δ̂

s
kjϕ0i

hϕ0jϕ0i

¼
X

i0j0m0;ij

g�η;m0 ði0; j0Þ 1
N
eik⋅ðri−rjÞ

X
v0;v

Pðv0; vÞ
hv0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Δ̂

s
ijΛ̂0

ijjvi
hv0jvi ; ðB16Þ

which is a similar quadratic formula with Eq. (B8) if we treat ð1=NÞeik⋅ðri−rjÞ as gη;0ði; jÞ. The corresponding matrix
elements are then

ðΔs
kÞi

0j0m0
ij0 ≡X

v0;v

Pðv0; vÞ
hv0jΛ̂−m0

i0j0 c
†
j0↓c

†
i0↑Δ̂

s
ijΛ̂0

ijjvi
hv0jvi

¼
X
v0;v

Pðv0; vÞ 1

hv0jvi ½δii0δjj0 hv
0jΛ̂−m0

ij ðni↑nj↓ − Sþi S
−
j Þjvi þ δij0δji0 hv0jΛ̂−m0

ji ðni↓nj↑ − S−i S
þ
j Þjvi�: ðB17Þ
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(5) For the singlet pair-pair correlators defined in Eq. (18), written together as Ĉs
k0l0;kl ¼ Δ̂s

k0l0 ðΔs
klÞ† here with k0 ≠ k, l

and l0 ≠ k, l, the matrix elements are as follows:

ðCs
k0l0;klÞi

0j0m0
ijm ¼

X
v0;v

Pðv0; vÞ 1

hv0jvi ½δi0k0δj0l0δikδjlhv
0jΛ̂−m0

k0l0 ðnk0↑nl0↓ − Sþk0S
−
l0 Þðnk↑nl↓ − S−k S

þ
l ÞΛ̂m

kljvi

× δi0k0δj0l0δilδjkhv0jΛ̂−m0
k0l0 ðnk0↑nl0↓ − Sþk0S

−
l0 Þðnk↓nl↑ − Sþk S

−
l ÞΛ̂m

lkjvi
× δi0l0δj0k0δikδjlhv0jΛ̂−m0

l0k0 ðnk0↓nl0↑ − S−k0S
þ
l0 Þðnk↑nl↓ − S−k S

þ
l ÞΛ̂m

kljvi
× δi0l0δj0k0δilδjkhv0jΛ̂−m0

l0k0 ðnk0↓nl0↑ − S−k0S
þ
l0 Þðnk↓nl↑ − Sþk S

−
l ÞΛ̂m

lkjvi�: ðB18Þ
(6) The hole-hole density correlator N̂h

kl defined in Eq. (21) is essentially the same with the unit operator

ðNh
klÞi

0j0m0
ijm ¼ ðδikδjl þ δikδjlÞ

X
v0;v

Pðv0; vÞ 1

hv0jvi ½δii0δjj0 hv
0jΛ̂−m0

ij ni↑nj↓Λ̂m
ijjvi − δij0δji0 hv0jΛ̂−m0

ji S−i S
þ
j Λ̂

m
ijjvi�: ðB19Þ

(7) The hole density can be obtained by a simple summation of Nh
ij:

hn̂hi i ¼
X
jð≠iÞ

Nh
ij: ðB20Þ

(8) The neutral spin current Ĵskl defined in Eq. (12) has similar matrix elements with the superexchange term:

ðJsklÞi
0j0m0
ijm ¼ −i

J
2
ð1 − δhiji;hkliÞ

X
v0;v

Pðv0; vÞ 1

hv0jvi ½δii0δjj0 hv
0jΛ̂−m0

ij ni↑nj↓ðSþk S−l − S−k S
þ
l ÞΛ̂m

ijjvi

− δij0δji0 hv0jΛ̂−m0
ji S−i S

þ
j ðSþk S−l − S−k S

þ
l ÞΛ̂m

ijjvi�; ðB21Þ

where δhiji;hkli ¼ 0 when i ≠ k, l and j≠k, l and δhiji;hkli¼1
otherwise. The above expressions can also be used to
calculate Jskl with the two doped holes projected at i and j.

2. Variational procedure for optimizing gηði;jÞ
In the variational procedure, we take the operator Ô in

Eq. (B8) as the kinetic Hamiltonian Ĥt:

Et ≡ hĤti ¼ g†Htg: ðB22Þ

Combined with the normalization condition Eq. (B10), the
procedure to optimize Et turns out to be a generalized
eigenvalue problem:

Htg ¼ EtAg: ðB23Þ

Besides the ground state energy, Eq. (B23) can also give
excited energies and corresponding variational parameters
g, which are used in Sec. IV in obtaining the binding
energy. Here, only the kinetic energy Et is taken into
account in the variational procedure following Ref. [36].
The superexchange energy EJ is omitted, as inclusion of EJ
causes a severe boundary effect and makes the calculation
time unacceptable for a large lattice. However, calculation
on 10 × 10 lattice with the holes constrained on the central
8 × 8 sites shows that the EJ term seldom changes the

physics, which validates our omission of EJ on a larger
lattice.

APPENDIX C: FEEDBACK EFFECT ON THE
SPIN BACKGROUND

In the basic variational procedure in the main text, the
spin background jϕ0i in Eq. (13) is taken to be the half-
filling ground state of HJ by ignoring the feedback effect
from motion of holes. The main doping effect is explicitly
incorporated as the phase-string sign structure in the two-
hole ground state Ansatz jΨ−i2h in the VMC simulation.
However, this assumption may no longer hold true at finite
doping, as the spin background evolves into a short-ranged
AFM state. Indeed, the Ansatz state jΨþi or Eq. (1) is
expected to work to capture the essential physics where the
feedback effect on the spin background from hole motion
comes into play at finite doping.
In order to analyze this feedback effect, in this Appendix,

we iteratively optimize the spin background as well as
variational parameters gηði; jÞ for both kinds of ground
state Ansatz jΨ�i2h. Generally, a wave function Ansatz can
be written as

jΨ̃ηi2h ¼
X
ij

gηði; jÞci↑cj↓e−iðΩ̂iþηΩ̂jÞjRVBi þ � � � : ðC1Þ
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Here, jRVBi, when expanded in terms of an Ising
basis jfσgi,

jRVBi ¼
X
fσg

w½fσg�jfσgi; ðC2Þ

represents a spin background with parameters w½fσg� to be
determined by optimizing the ground state energy with
fixed variational parameters gηði; jÞ.
Iterate calculations are done to get the best variational

energy; i.e., first choose w0½fσg� as the ground state of HJ

and find variational parameters g0ηði; jÞ to optimize the
kinetic energy, then fix the variational parameters g0ηði; jÞ
and find new w1½fσg� to optimize the ground state energy,
and then fix the spin background as w1½fσg� to find new
variational parameters g1ηði; jÞ to optimize the kinetic
energy and so on, until a convergent ground state energy
is obtained.
Variational energies and the quantum numbers calculated

via the generalized wave function Ansatz Eq. (C1) on a
4 × 4 lattice are shown in Table IV, with the results of
original Eq. (13) also shown here for comparison. It can be
seen that the energy of jΨ̃þi2h is improved significantly,
while the energy of jΨ̃−i2h is improved less. These results
confirm that the feedback effect indeed is insignificant for
jΨ−i2h but plays an essential role for the same chirality
state jΨþi2h, with its ground state angular momentum
changed from Lz ¼ �1 to Lz ¼ 2 the same as that
of jΨ−i2h.
In other words, now both jΨ�i2h converge to the same

nondegenerate ground state in the VMC procedure. The
overlap j2hhΨ̃−jΨ̃þi2hj ¼ 0.50 also confirms this.
Therefore, at least for the short-range physics, the above
two kinds of wave function Ansatz can lead to the same
ground state. Actually, as stated in Eqs. (28) and (30) in the
main text, a vortex e2iΩ̂i is expected to be generated
automatically in the jRVBi state of jΨ̃þi2h due to the
feedback effect, which reconciles with the antiphase factor

in jΨ̃−i2h. Inspired by the similarity of jΨ̃þi2h and jΨ̃þi2h,
we can further mix these two states:

jΨ̃mixi2h ¼ c1jΨ̃þi2h þ c2jΨ̃−i2h ðC3Þ

and optimize the variational parameters g�ði; jÞ to get an
improved ground state energy, which is also shown in
Table IV.
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