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The extension of many-body quantum dynamics to the nonunitary domain has led to a series of exciting
developments, including new out-of-equilibrium entanglement phases and phase transitions. We show how
a duality transformation between space and time, on one hand, and unitarity and nonunitarity, on the other,
can be used to realize steady-state phases of nonunitary dynamics that exhibit a rich variety of behavior in
their entanglement scaling with subsystem size—from logarithmic to extensive to fractal. We show how
these outcomes in nonunitary circuits (that are “spacetime dual” to unitary circuits) relate to the growth of
entanglement in time in the corresponding unitary circuits, and how they differ, through an exact mapping
to a problem of unitary evolution with boundary decoherence, in which information gets “radiated away”
from one edge of the system. In spacetime duals of chaotic unitary circuits, this mapping allows us to
analytically derive a nonthermal volume-law entangled phase with a universal logarithmic correction to the
entropy, previously observed in unitary-measurement dynamics. Notably, we also find robust steady-state
phases with fractal entanglement scaling, SðlÞ ∼ lα with tunable 0 < α < 1 for subsystems of size l in one
dimension. We present an experimental protocol for preparing these novel steady states with only a
vanishing density of postselected measurements via a type of “teleportation” between spacelike and
timelike slices of quantum circuits.
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I. INTRODUCTION

Breakthrough experimental advances in building quan-
tum simulators have opened up new regimes in the study of
many-body physics, by providing direct access to the
dynamics of quantum systems. This has advanced our
understanding of many foundational questions ranging
from the onset of chaos and thermalization, to many-body
localization, to the definition of phase structure out of
equilibrium [1–4]. A unifying theme in these explorations
has been the study of many-body quantum entanglement
across a wide variety of settings—eigenstates of stationary
Hamiltonians or of periodically driven (Floquet) evolu-
tions; out-of-equilibrium states in driven or postquench
dynamics; and, more recently, steady-state ensembles of
nonunitary “monitored” circuits which combine unitary
evolution with local nonunitary measurements (the unitary
part can also be dispensed with in “measurement-only”
circuits) [5–14]. The exploration of nonunitary dynamics is
particularly topical in the age of noisy, intermediate-scale

quantum simulators [15], which naturally include nonuni-
tary ingredients in two ways: on the one hand, by the
presence of (uncontrolled) environmental noise and
decoherence; on the other, by allowing controlled quantum
measurements during the dynamics (a key capability
for error correction in future “fault-tolerant” quantum
computers).
In both unitary and nonunitary cases, both the growth of

entanglement in time, as well as its spatial scaling, may
show interesting structure, including sharp phase transi-
tions between distinct behaviors. A paradigmatic example
is the many-body-localized (MBL) phase [2,16,17], where
entanglement growth is only logarithmic in time [18–20];
this sharply transitions to a faster algebraic (though
potentially sub-ballistic [21–25]) growth at an MBL-to-
thermalizing transition. Monitored nonunitary circuits, on
the other hand, feature sharp transitions in the spatial
scaling of their steady-state entanglement [5–9]: from an
area law (at high measurement rate) to a volume law (at low
enough rate), through a logarithmically entangled critical
point described by a conformal field theory (CFT) [26–29].
In all, we are only beginning to explore the rich variety of
novel phenomena displayed by the dynamics of many-body
systems, and our understanding of most questions in this
domain, particularly in the nonunitary setting, is still
nascent.
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In this work, we add to this understanding by studying
entanglement dynamics in a new class of nonunitary
evolutions—those that are “spacetime duals” of unitary
circuits—recently introduced by two of us [30]. Spacetime
duality, in simple terms, exchanges the roles of space and
time in a quantum evolution and (generically) associates to
every unitary circuit a nonunitary partner. Dualities reveal
connections between seemingly distinct problems, and
they often point to entirely new results or phenomena—
Wegner’s gauge-spin duality being a paradigmatic example
[31]; this case is no exception.
Our work makes three main advances.
(i) First, we present new classes of steady-state phases

for entanglement dynamics. These include, most
notably, a robust family of fractally entangled
steady-state phases that lie outside the established
classifications of “area-law,” “volume-law,” or log-
arithmic entanglement scaling generically exhibited
by the eigenstates or steady states of unitary quan-
tum dynamics [32].

(ii) Second, our results are obtained via a method that is
interesting in and of itself. The spacetime-duality
transformation allows us to build on the existing
body of knowledge on entanglement dynamics in
unitary circuits and, thus, affords a powerful ana-
lytical handle on the study of nonunitary dynamics
that is otherwise missing away from special limits.
[40] In particular, we analytically derive a universal
subleading logarithmic correction to the entangle-
ment of nonthermal volume-law steady states that
exactly realizes the conjectured universal behavior
of unitary-projective circuits in the entangling phase
[42,43]; this log-correction is key to our under-
standing of the volume-law phase as a type of
dynamically generated error-correcting code, which
hides information form local measurements and,
thus, allows entanglement to survive [8,9].

(iii) Third, on the experimental side, our work opens up
new ways for more efficient realizations of meas-
urement-induced phases in experiments. In particu-
lar, we show how the steady states of spacetime-dual
circuits can be obtained with an exponentially
smaller “postselection overhead” (explained below),
which is a central practical challenge associated with
preparing many-body states that realize measure-
ment-induced phases.

We now give a slightly more detailed outline of these
ideas. One of the main objects of this work is to explore the
relationship between entanglement in spacetime-dual part-
ner circuits—or, more precisely, between entanglement
dynamics in the unitary circuit and spatial scaling of
entanglement in late-time states of its nonunitary dual.
Unitary dynamics gives rise to a variety of possible
behaviors for entanglement growth. The nonunitary dual
circuits inherit this variety and, thus, display a similar

wealth of steady-state phases characterized by different
spatial entanglement scalings. Notably, some of the phases
thus obtained go beyond the possibilities of generic unitary
dynamics. Correspondingly, phase transitions in the growth
of entanglement in unitary circuits (e.g., across an MBL
transition) map onto phase transitions in the steady states of
the spacetime-dual models.
A schematic summary of our work is shown in Fig. 1.

We sweep through several classes of unitary evolutions,
displaying the full range of behaviors for entanglement
growth: from Anderson-localized circuits (where entangle-
ment saturates to a constant [19]), to Floquet MBL [44–46]
circuits (where it grows logarithmically [18–20,47]), then
past an MBL-to-thermal phase transition to a slowly
thermalizing phase (where entanglement is thought to grow
sub-ballistically, as ∼tα with 0 < α < 1, due to rare
disorder-induced bottlenecks, so-called “Griffiths” effects
[21–25]), all the way to generic chaotic circuits (where
entanglement grows ballistically [48–50]). To leading
approximation, each type of entanglement growth is mir-
rored in a distinct phase of a nonunitary circuit, charac-
terized by the spatial scaling of entanglement at late times
which ranges from logarithmic to fractal to volume law.
Most strikingly, the sub-ballistic entanglement growth in

disordered, thermalizing systems translates to a fractal
scaling of entanglement in steady states of a robust, generic
class of nonunitary circuits. In these states, entropy scales

(a)

(b) (c)

FIG. 1. Summary of various dynamical regimes in unitary
circuits and properties of steady states in their spacetime duals.
(a) Regimes from least to most entangling. First row: growth of
entanglement in time, SðtÞ, in unitary circuits of each type.
Second row: scaling of entanglement with subsystem size l̃ in the
steady state of the spacetime-dual circuit, S̃∞. The two agree up to
logarithmic terms, which dominate for Anderson-localized cir-
cuits. In the Griffiths regime, only the leading-order term is
shown; for other cases, the results are expected to be exact up to
terms at most constant in l̃. (b) Growth of S̃ in the spacetime-dual
circuit: All regimes have ballistic growth with maximal speed at
first (S̃ ¼ t̃) but saturate to different values. (c) Saturation value
S̃∞ as a function of subsystem size l̃, going from logarithmic to
ballistic, with arbitrary power law (S̃∞ ∼ l̃α, 0 < α < 1) in
between.
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as a fractional, tunable power law of subsystem size (in one
dimension) and is statistically self-similar over all length
scales. These fractally entangled steady states are generi-
cally not obtained as either eigenstates or dynamical steady
states in any unitary setting and represent a striking
example of new, robust nonequilibrium phenomena made
possible by adding nonunitarity to the toolkit of many-body
quantum dynamics.
Separately, spacetime duality, as a theoretical tool,

affords us a great degree of analytic tractability, which is
key in understanding all these types of steady-state entan-
glement scaling. Specifically, we show that, for a unitary
circuit U, the entanglement properties of states evolved by
its (nonunitary) spacetime-dual circuit Ũ can be related to
entanglement induced by U, with the roles of space and
time exchanged, but with an additional twist: The unitary
evolution is accompanied by edge decoherence, which
allows information to escape the system and be “radiated
away” from one of its edges. This is summarized by
Eq. (1) below.
To leading order, as mentioned earlier, the growth of

entanglement in time under U is mapped to the spatial
scaling of steady-state entanglement under Ũ, leading to
the range of different scalings summarized in Fig. 1.
Importantly, however, the interchanging of space and time
is not the full story. The added twist of edge decoherence
leaves its footprint in logarithmic contributions to the
steady-state entanglement in the spacetime-dual circuit.
This allows us to furnish an analytic derivation of universal
subleading logarithmic corrections to nonthermal volume-
law steady states. Identical corrections have been observed
in unitary-measurement circuits [6] and found to be
universal features of their nonthermal volume-law phase
related to its quantum error-correcting properties [42,43].
Furthermore, the logarithmic correction may become the
leading contribution in cases where one may naïvely expect
area-law steady states (e.g., in duals of Anderson-localized
models). Area-law steady states are, in fact, ruled out in
spacetime duals of unitary circuits, barring trivial excep-
tions. Relatedly, the mapping to edge decoherence also
allows us to prove that at short (dual) “times” the dual
circuit Ũ produces ballistic growth of entanglement, at the
maximum possible speed, even when the associated unitary
circuit U is in a localized phase.
Finally, we note that spacetime duality is not only an

interesting theoretical construct; it is also experimentally
motivated. A crucial experimental challenge with realizing
measurement induced phases is the “postselection over-
head” associated with the measurements: Any nontrivial
entanglement phase structure is displayed only by individ-
ual quantum trajectories [51] corresponding to pure states
labeled by a fixed sequences of measurement outcomes,
while it is lost in a stochastic mixture over measurement
outcomes [5]. Experimentally measuring any observable
feature of the output state requires reproducing the same

state multiple times (a single experimental run corresponds
to a single “shot”); this requires us to fix (i.e., postselect)
the sequence of measurement outcomes in order to repro-
duce a given output state, which creates a huge overhead
for any finite density of measurements (exponential in
the spacetime volume of the circuit) [52]. As shown in
Ref. [30], the postselection cost can be significantly
ameliorated (or, sometimes, eliminated altogether) when
computing the purity of a (mixed) density matrix evolving
under the spacetime duals of unitary circuits. A generali-
zation of this idea also applies to the present context, where
the (pure) steady states of interest can be prepared by
using only local unitary gates and a limited number of
postselected measurements scaling as the boundary of the
circuit in spacetime—an exponential improvement over
more conventional unitary-measurement setups [5,7]. We
achieve this by “teleporting” the input and output states of
dual circuits, which live on (experimentally unnatural)
timelike surfaces, to spacelike surfaces that can be more
readily accessed in experiments. We also discuss a family
of experimentally realizable disordered Floquet Ising mod-
els with an MBL phase transition, whose spacetime duals
display the full gamut of steady-state entanglement phases
discussed above.
The balance of the paper is organized as follows.

In Sec. II, we review the notion of spacetime duality
and discuss how to realize spacetime duals of unitary
circuits experimentally using only a vanishing density of
projective measurements in spacetime. We then introduce
the mapping to edge decoherence that serves as the main
theoretical tool for the rest of the work. In Sec. III, we
use this mapping to discuss duals of (Anderson- and many-
body-) localized circuits and argue that steady-state entan-
glement diverges logarithmically with subsystem size in
both cases. In Sec. IV, we turn to generic chaotic evolution,
modeled by Haar-random circuits; we obtain volume-law
entangled steady states, but with a universal nonthermal
logarithmic correction stemming from the edge decoherence.
Finally, in Sec. V, we consider slowly thermalizing models
with sub-ballistic entanglement growth, mapped by space-
time duality to fractally entangled steady states. We sum-
marize our results and discuss their implications for future
research in Sec. VI.

II. SETUP

A. Nonunitary dynamics from spacetime duality

To review the idea of spacetime duality [30], we start
from the simplest instance—that of a two-qudit unitary
gate. Figures 2(a) and 2(b) illustrate how this one object,
Uo1o2

i1i2
(unitarily mapping two inputs i1;2 to two outputs o1;2

according to “arrow of time” t), could alternatively be
viewed “sideways,” according to a rotated arrow of
time t̃, as mapping input qubits i1 and o1 to output qubits
i2 and o2. The resulting map, Ũi2o2

i1o1
—which we call the
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“(spacetime)-dual” or “(spacetime)-flipped” version of
U—is, in general, not unitary.
For example, if U is a two-site identity gate, its dual

1̃ ¼ qjBþihBþj is proportional to a projection onto the
Bell-pair state jBþi≡ q−1=2

Pq
a¼1 jaai (q is the local

Hilbert space dimension). Notice that this is a forced
measurement: The measurement outcome is fixed. In
general, a polar decomposition yields Ũ ¼ qFW, where
W is a unitary gate and F is positive semidefinite and
normalized to TrðF2Þ ¼ 1. Since F ≥ 0, we can interpret Ũ
as an element of a positive operator-valued measure
(POVM): It corresponds to a forced weak measurement
(i.e., deterministically postselecting a particular outcome of
a POVM); alternatively, one could think of F as finite-time
imaginary time evolution with a two-site Hamiltonian.
We note that the use of forced measurements (rather than

Born-random quantum measurements) does not obstruct
the existence of measurement-induced entanglement
phases and transitions. Deep in an entangling phase, with
very infrequent measurements, outcomes are expected to
be uniformly distributed, so that forced measurements
should be equivalent to typical trajectories of random

measurements [42]. In Clifford circuits, measurement out-
comes yield “phase bits” that do not affect entanglement
[55,56] (provided the outcomes are mutually compatible
[57]). More generally, forced and random measurements
are thought to give rise to the same qualitative phenom-
enology (with specific quantitative differences in criticality
[41] and late-time dynamics [58]).
Having defined how spacetime duality acts on individual

gates, it is straightforward to extend the idea to 1þ 1-
dimensional circuits made out of two-site unitary gates in a
“brick-wall” pattern [30]. This idea of flipping circuits is at
the core of much recent work on a variety of topics. In
particular, important analytical progress on quantum chaos
has been achieved via special dual-unitary circuits [59–68],
where each gate U making up the circuit is such that Ũ
happens to be unitary as well. More generically, other
works explore the idea of using the spacetime-flipped
circuits as a tool for calculating properties of the original
unitary evolution, with applications ranging from tensor
network contractions [69–72] to MBL [73–75] to chaos and
thermalization [76–78]. On the other hand, Ref. [30] (by a
subset of us) introduces the idea of using spacetime duality
to a different end—not to understand features of the
associated unitary evolution but rather to study the non-
unitary dynamics in its own right. Here, we build on this
to engineer new phases and phenomena, such as exotic
nonthermal steady states.
For consistency, when drawing circuit diagrams we

always choose the direction of (unitary) time t as bottom
to top (also indicated by a small arrowhead symbol on each
gate), while the “dual” arrow of time t̃ flows left to right.
[79] The spacetime dual of a unitary circuit thus evolves
states sideways, left to right.
This may seem to pose a conceptual issue, since the input

and output states jψ̃ in=outi (both pure) exist on timelike
(vertical) slices of the circuit [Fig. 2(c)]. However, this can
be remedied, as shown in Fig. 2(d). The idea is to “teleport”
the input and output states from their native timelike
surface to spacelike ones [80] by using ancillary qudits
arranged in 1D (the half of these on the right are initialized
in Bell-pair states jBþi), a brick-wall pattern of SWAP gates
that extends the original unitary circuit on the left and right,
[81] and measurements only at the end of the unitary time
evolution. The upshot is that an experimentalist can obtain
the desired target output state of the dual nonunitary
evolution by simply performing a (suitably modified)
unitary evolution, followed by a set of measurements only
at the final time. These final measurements implement
the “upside-down” Bell pairs at the top of the circuit in
Fig. 2(d), which represent open boundary conditions for the
flipped circuit [82].
As mentioned above, these Bell measurements are

forced, or postselected—the experimentalist performs a
Bell measurement and discards any realizations where the
outcome is not jBþi. However, we note two advantageous

(a) (c)

(b)

(d)

FIG. 2. Spacetime duality. (a) A two-qudit unitary gate U.
Bottom legs are inputs; top legs are outputs. The caret symbol on
the gate denotes the direction of unitarity. (b) If we follow the
arrow of time t̃ (left to right), the same object describes a
nonunitary operation Ũ. (c) Spacetime dual of a brickwork unitary
circuit: The nonunitary gates Ũ turn the input state jψ̃ ini (at the left
boundary) into the output state jψ̃outi (at the right boundary). Both
states exist on timelike surfaces. (d) The input and output states can
be “teleported” to spacelike surfaces by employing ancillas
initialized in a Bell-pair state jBþi ¼ q−1=2

Pq
i¼1 jiii, SWAP gates,

and postselected projective measurements on hBþj. The number of
postselected measurements is proportional to the length of the
circuit’s boundary.
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features of this setup, compared to more generic unitary-
measurement circuits. First, the measurements all take
place at the end of the circuit rather than in the middle;
this is useful, as some quantum simulator architectures do
not allow measurements in the middle of a circuit (mea-
surements can be deferred to the end of the circuit, at the
expense of injecting a growing number of ancillas [54]).
Second, the number of forced or postselected measure-
ments scales only with the circuit’s boundary rather than its
spacetime volume. Thus, spacetime duality presents a way
to realize interesting nonunitary circuits with a drastically
reduced postselection overhead.
This overhead is further ameliorated by a suitable choice

of initial states: If jψ̃ ini is set to be a product of nearest-
neighbor Bell pairs, then we can get rid of the ancillas on
the left in Fig. 2(d), since this particular choice of initial
condition is automatically realized by simply taking open
boundary conditions on the left edge of the associated
unitary circuit, as depicted in Fig. 3(a). In the following, we
focus on such Bell-pair initial states. In addition to lowering
the postselection overhead, this ensures that, in the thermo-
dynamic limit L̃ → ∞, the state jψ̃outi maintains its
normalization at all times, despite the flipped circuit being
nonunitary, as we prove in Appendix A.

B. Mapping to boundary decoherence

We now discuss the connection between entanglement
dynamics in the unitary circuit and spatial scaling of
entanglement in its spacetime dual. This connection is
made crisp by an exact mapping to a problem of unitary
evolution with “edge decoherence” that we present below,
with some further technical details in Appendix A.
Before we begin, let us fix some conventions and

notation. We denote by L and T the size (number of
qudits) and depth (number of gate layers) of the unitary
circuit, respectively, and by L̃ and T̃ the size and depth,
respectively, of its (nonunitary) spacetime dual; these
obey L ¼ T̃ and T ¼ L̃. We denote by S̃ the entanglement
entropy of a timelike (vertical) subsystem [for instance,
region A in Fig. 3(a)] and by S the entropy of a spacelike
(horizontal) subsystem [for instance, region B in Fig. 3(a)].
The on-site Hilbert space dimension is q (in most cases
below, q ¼ 2).
Our main goal is to understand the entanglement proper-

ties of the late-time output states of the flipped circuit. We
focus on the entropy of contiguous subsystems near one
edge, denoted by A, with size jAj≡ l̃. The complementary
subsystem Ā consists of L̃ − l̃ sites. This setup is illustrated
in Fig. 3(a). We denote the (von Neumann or Rényi)
entropy of region A by S̃ðT̃; l̃Þ.
The setup is considerably simplified if we take the

thermodynamic limit L̃ → ∞. As we show next, in this
limit the entropy of A can be given a very useful alternative
characterization in terms of the original unitary dynamics

coupled to a bath that induces decoherence at one of
its edges. The main steps in deriving this mapping go
as follows (additional technical details are given in
Appendix A).
(1) Consider the set of legs denoted by B in Fig. 3(a),

which live on a spacelike surface at (unitary) time
t ¼ l̃. As we show in Appendix A, when L̃ → ∞,
the information in B is isometrically encoded in
subsystem Ā (the thermodynamically large comple-
ment of A) on the right boundary. [83] This means
that the information shared between A and Ā is the
same as the information shared between A and B;
we can, thus, get rid of the entire part of the
tensor network above B, reducing the problem to
a much smaller circuit of dimensions l̃ × T̃ shown in
Fig. 3(b).

(a) (b)

(c)

(d)

FIG. 3. Mapping the entropy of the spacetime-dual circuit’s
output state to that of unitary dynamics with boundary
decoherence. (a) Setup: We fix the input state jψ̃ ini to be a
product of Bell pairs (open boundary, left), and the output state
jψ̃outi lives on the right boundary. We consider an entanglement
cut between a subsystem A (of size l̃) and its complement Ā (of
size L̃ − l̃). The depth of the nonunitary circuit is T̃. We also
highlight a spacelike surface B along the entanglement cut t ¼ l̃.
(b) In the limit L̃ → ∞, with l̃ finite, system B is isometrically
encoded in system Ā: For the purpose of computing entropy, the
part of the circuit above cut B can be elided. (c) Reduced density
matrix on subsystem B. The tracing out of A can be interpreted as
the action of decoherence (via a fully depolarizing channel). ρB is
the output of l̃ layers of unitary dynamics and decoherence
on the edge qudit. (d) Equivalently, one can teleport subsystem A
from a timelike surface to a spacelike one by using l̃ ancillas
(initialized in Bell-pair states) and SWAP gates and compute the
entropy of the resulting pure state about the cut between A and B
(dashed line).
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(2) Because the state on AB is pure, the entropy of A can
be obtained by tracing out either subsystem; we trace
out A and obtain the reduced density matrix of B, ρB.
This amounts to taking two copies of the circuit
(a “bra” and a “ket”) and connecting them along A.
Viewed in the time direction t, after each layer of
unitary gates, the rightmost site is traced out and
replaced by a maximally mixed state. This corre-
sponds to a fully depolarizing channel [84] acting
on the right edge of the system, as illustrated in
Fig. 3(c). ρB is a mixed state which is the output of
this combined unitary-decoherence evolution.

(3) An equivalent picture is obtained by teleporting the
right edge of the circuit to a spacelike slice by using
ancillas and SWAP gates as discussed earlier. As
shown in Fig. 3(d), this gives an enlarged unitary
circuit, split in two subsystems A and B where the
evolution looks very different (a SWAP circuit on A
and the original unitary gates on B).

The upshot is that the spectrum of ρA is the same as that
of a state ρB obtained by evolving the system with t ¼ l̃
layers of unitary gates, intercalated by fully depolarizing
noise at an edge qubit. [85] In formulas,

lim
L̃→∞

S̃ðT̃; l̃Þ ¼ Sdecðt ¼ l̃; L ¼ T̃Þ; ð1Þ

where we use Sdec to denote the entropy of the mixed state
evolving with edge decoherence.
First, let us consider the early-time dynamics of the

flipped circuit, when T̃ ≪ l̃. This corresponds to running
the boundary-depolarized dynamics for a time that is very
long compared to the size of the system (t ¼ l̃ ≫ T̃ ¼ L).
As we argue in Appendix A, unless the unitary gates are
highly fine-tuned, this dynamics has a unique steady state,
which is completely mixed [86]: limt→∞ Sdecðt; LÞ ¼ L. By
Eq. (1), this means that, at early times, the entropy of ρA
grows ballistically, at the maximal entanglement velocity
allowed by the brick-wall geometry: ṽE ¼ 1.
The rest of the paper is devoted to understanding what

value the entropy saturates to at late times: S̃∞ðl̃Þ≡
limT̃→∞ limL̃→∞ S̃ðT̃; l̃Þ (in fact, T̃ > l̃ is sufficient for
saturation). By Eq. (1), this is equal to Sdecðt ¼ l̃Þ in the
thermodynamic limit L → ∞. The spatial scaling of late-
time entanglement in the flipped circuit is, thus, mapped to
the propagation of decoherence from the edge into the bulk
of a unitarily evolving system, as a function of time. This is
the main result of this section. As it turns out, this is indeed
closely related to (but subtly different from) the growth of
half-chain entropy in a closed system evolving under the
original unitary circuit.
We now provide some intuition on the behavior of

SdecðtÞ and argue that, at least for chaotic models, it is
similar to the growth of entanglement in a purely unitary
circuit, without edge decoherence. To see why, it is useful

to consider the evolution of the reduced density matrix ρB
from an operator-spreading perspective [49,50]. In this
formulation, one considers expanding the density matrix of
the full state in a basis of Pauli strings; the reduced density
matrix of B is simply given by those strings that are
supported entirely within B. As operators spread out under
unitary dynamics, strings that are initially contained in B
eventually develop support outside it, increasing the state’s
entropy. We can now compare two situations: (i) an infinite
unitary circuit, with the same type of gates applied every-
where, and (ii) the one depicted in Fig. 3(d), where the gates
outside of B are replaced with SWAP gates. Within B, the
two are clearly the same. The difference is that, in case (ii),
once a Pauli string’s end point leaves B, it is “radiated”
away by the SWAP gates, with no chance of ever returning.
[87] This is in contrast with case (i), where operators
have the possibility to shrink and reenter B. Since such
shrinking processes are rare—at least for sufficiently
chaotic dynamics—we can expect (i) and (ii) to behave
similarly.
In summary, we show that, given a unitary circuit U, the

entropy of a contiguous region of size l̃ in the late-time
output state of the (nonunitary) dual circuit Ũ is the same
as that of a semi-infinite chain evolving under U and
boundary decoherence for time t ¼ l̃. This latter des-
cription is, in turn, related to the growth of half-chain
entanglement entropy under unitary dynamics, except that
operators that straddle the cut are never allowed to shrink.
Since the shrinking of operators is already rare under
chaotic dynamics, one might expect this difference to be
negligible. We show below that, while this is true to leading
order for chaotic dynamics, an important difference never-
theless appears in the form of subleading logarithmic
contributions. These can, in turn, become the leading
contribution for localized dynamics, where the unitary
evolution produces entanglement very slowly or not at all.
Before moving on to applications of this mapping, we

note that the above derivation applies to the case when
the subsystem A is at the edge of a half-infinite chain.
Alternatively, we could consider a situation where the chain
is infinite on both sides and A corresponds to a block of
sites in its bulk. In that case, the reduction of the circuit—
from Fig. 3(a) to Fig. 3(b)—can be done on both sides,
both above and below A. The resulting circuit has a less
transparent interpretation. [88] Nevertheless, intuitively
one expects that the leading-order scaling with l̃ should
be the same for both physical situations. We confirm this
for the Haar-random circuit case in Sec. IV. However, we
also find that the coefficient of the aforementioned loga-
rithmic correction is different in the two cases, a fact which
we explain in terms of properties of random walks.

C. Models of unitary dynamics

To ground our discussion, it is helpful to consider a
specific set of experimentally realizable unitary circuit
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models that, given appropriate parameter choices, can
exhibit all the relevant types of entanglement dynamics.
For concreteness, we consider a family of “kicked Ising
models”: one-dimensional spin chains evolving under the
Floquet unitary

UF ¼ e−i
P

n
gnXne−i

P
n
hnZnþJnZnZnþ1 ; ð2Þ

where the transverse fields g, longitudinal fields h, and
Ising couplings J may take any (clean or disordered)
values. These models are already at the center of many
important developments in quantum dynamics, from out-
of-equilibrium phases [4,89] to quantum chaos [60,61,90].
While Eq. (2), as written, is in the form of a time-dependent
Hamiltonian, it can be easily recast into a brickwork circuit
of two-qubit gates (i.e., it can be “Trotterized” exactly).
These models can be realized in Rydberg atoms or digital
simulators such as Google’s Sycamore processor [91,92].
Spacetime duality then allows us to associate a nonunitary
circuit to each such unitary circuit.
The model in Eq. (2) can realize the entire range of

entanglement growth regimes summarized in Fig. 1, sorted
here from slowest to fastest.

(i) Floquet-Anderson localization, where SðtÞ saturates
to an area law in Oð1Þ time. Achieved by setting
h≡ 0 (which makes the model free) and having
disorder in J and g.

(ii) MBL, with slow logarithmic entanglement
growth, SðtÞ ∼ logðtÞ. A parameter manifold where
the MBL phase in this model has been studied
[46] is g≡ 0.72Γ, J ≡ 0.8, and hn ≡ 0.65þ
0.72

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
Gn, where Gn are standard normal

variables. The model has an MBL-to-thermal tran-
sition at Γc ≃ 0.3.

(iii) Strongly disordered thermalizing dynamics near the
MBL transition, where entanglement growth is sub-
ballistic, SðtÞ ∼ tα [24]. Realized, e.g., by the above
model at Γ≳ 0.3.

(iv) Dynamics deep in the ergodic phase, where entan-
glement growth is ballistic, SðtÞ ∼ vEt, with finite
“entanglement velocity” vE [48–50,93–95]. Real-
ized, e.g., by the above model at Γ ≃ 1.

(v) Dual-unitary dynamics. Realized by setting
g ¼ J ¼ π=4, for arbitrary hn. This is a provably
chaotic model (sometimes called “maximally cha-
otic”) with maximum entanglement velocity [61].

We begin by examining the extremes of this range—
localized dynamics in Sec. III and generic chaotic dynam-
ics (including the dual-unitary case) in Sec. IV. We then
analyze the sub-ballistic regime in Sec. V. In the latter two
cases, rather than trying to simulate the kicked Ising chain
directly (which suffers from finite size limitations), our
analysis focuses on coarse-grained models with analytic
and numerical tractability that are expected to reproduce the
same qualitative behavior in the appropriate regimes.

III. LOGARITHMICALLY ENTANGLED
STEADY STATES

The discussion in Sec. II highlights a close but subtle
relationship between (i) entanglement growth in unitary
circuits and (ii) scaling of late-time entanglement in their
spacetime duals. We begin our exploration of this relation-
ship in a class of models where the difference is sharpest:
free-fermion Floquet-Anderson-localized circuits where
the unitary evolution is periodic in time, noninteracting,
and disordered.
In Floquet-Anderson-localized circuits, eigenmodes of

the Floquet unitary b̂n are given by superpositions of
on-site fermionic modes ân with exponentially decaying

envelopes: b̂m ≡P
n ψ

ðmÞ
n ân, jψ ðmÞ

n j ∼ e−jxm−nj=ξ (ξ is the
single-particle localization length, [96] and xm is the
position of the mth orbital’s center). Since there are no
interactions (and, thus, no dephasing), entanglement
growth about a cut originates entirely from orbitals strad-
dling the cut; this leads to saturation to an area law at late
times: SðtÞ ∼ t0 for t ≫ 1. One may expect this behavior to
translate to area-law entangled steady states in the space-
time-dual circuit. However, as we show next, entanglement
in these models saturates instead to a logarithmically
divergent value. This provides an example of a more
general result—that entanglement cannot saturate to an
area law in spacetime duals of unitary circuits, except for
some trivial fine-tuned exceptions. This is a straightforward
consequence of the aforementioned fact that ρB [the output
of unitary dynamics with edge decoherence, sketched in
Fig. 3(c)] eventually has to reach an infinite temperature
state, as we prove in Appendix A.
We can obtain the logarithmic scaling of S̃∞ðl̃Þ from

the mapping in Eq. (1). We, therefore, consider the
density matrix ρB obtained by evolving a pure initial state
with t≡ l̃ layers of the unitary Floquet-Anderson circuit
and a depolarizing channel on one of the edge sites [as
sketched in Fig. 4(a)]. The overall process is a fermionic
Gaussian map and can be studied within the free-fermion
formalism—one can, in particular, compute its (complex)
eigenvalues and eigenmodes and from them compute the
entanglement SdecðtÞ (note that the initial Bell-pair state is
itself Gaussian). Numerical results are shown in Fig. 4(b)
for the Ising model (2) in the noninteracting limit hn ¼ 0
(Jn ≡ π=3 and gn maximally disordered in ½0; 2π�); they
clearly show a logarithmic growth of the average entropy,
with single realizations additionally showing an interesting
steplike structure.
The result can be understood intuitively as follows.

Imagine starting with the purely unitary circuit, with its
localized eigenmodes, and continuously switching on
the depolarizing noise at the boundary. The orbitals of
the unitary model are affected by the noise only to the
extent that they overlap with the noisy site, which is an
exponentially small effect for orbitals localized far from the
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boundary. Therefore, the mth orbital picks up a small
imaginary contribution to its energy, of size approximately
e−jxmj=ξ, which sets a timescale τm ∼ ejxmj=ξ for the orbital to
be decohered by the boundary. At time t, all orbitals with
τm ≪ t have fully decohered, and each of them contributes
one bit of entropy to ρðtÞ; conversely, orbitals with τm ≫ t
remain unaffected by the decoherence and contribute no
entropy. As a result, we have SðtÞ ∼ ξ logðtÞ. We conclude
that late-time states in the spacetime-dual circuit have
entanglement scaling S̃∞ðl̃Þ ∼ log l̃, with a nonuniversal
coefficient proportional to the localization length ξ in the
associated unitary circuit—which, in turn, can be tuned by,
e.g., adjusting the disorder strength.
A similar analysis carries over to Floquet MBL systems

[44–46,97], with the local integrals of motion (l-bits)
[47,98] playing the role of Floquet-Anderson orbitals.
In particular, it is still true that the l-bits’ exponential tails
expose them to the effects of edge decoherence; however,
in addition, the l-bits can also directly dephase each other
due to their (exponentially weak) interactions, potentially
accelerating the spread of entanglement in the system [see
Fig. 4(c)]. In the unitary circuit, exponentially decaying
interactions between the l-bits lead to a characteristic
logarithmic growth of entanglement in time [18–20].
When considering the spacetime-dual circuit, there are,
therefore, two distinct sources of logarithmic dependence
on l̃: one from naïvely exchanging space and time and one
from the boundary decoherence that causes logarithmic

growth even in the Anderson-localized circuits discussed
above. The combination of these two still results in
S̃∞ðl̃Þ∼ log l̃, as confirmed numerically by the data shown
in Fig. 4(d). Here, we use the version of the Ising model (2)
from Ref. [46] (also introduced in Sec. II C), where Γ
is used to tune across an MBL-to-thermal transition
(at Γc ≃ 0.3); we use Γ ¼ 0.1, deep in the MBL phase.
We note that, while the steady states discussed in this

section exhibit a logarithmic scaling of entanglement, they
otherwise do not appear to be “critical” (e.g., the coefficient
of the logarithm is fully nonuniversal), and we do not
expect them to exhibit conformal symmetry, unlike other
recent examples of logarithmic entanglement in nonunitary
systems [99,100]. Possible connections between these
states and other logarithmically entangled, noncritical states
in unitary systems (e.g., at infinite-randomness fixed points
[101,102]) are an interesting question for future work.

IV. NONTHERMAL VOLUME-LAW ENTANGLED
STEADY STATES

Next, we turn to chaotic unitary dynamics. Such dynam-
ics are fruitfully modeled by random circuits where each
two-site gate is an independently chosen Haar-random
unitary. As minimal models for chaotic quantum evolution,
these circuits have been studied extensively and are known
to capture various universal features of operator spreading
and entanglement growth [93–95,103–106]. Here, we make
use of these results to uncover universal features of steady
states of spacetime duals of chaotic unitary evolutions, such
as the clean limit of the kicked Ising chain (2).
The quantity that lends itself to a particularly simple

calculation in the Haar-random circuit is the so-called
annealed average of the second Rényi entropy, which is
obtained by averaging the purity of a subsystem over
realizations of the random circuit and then taking a

logarithm [107]: q−S
ðaÞ
2

ðtÞ ≡ PAðtÞ, where the purity of
the reduced density matrix ρA is defined as PA ¼ Trðρ2AÞ
and the overline denotes averages over circuit realizations.
It is known that this quantity can be evaluated in terms of a
classical random walk for the end point of a domain wall-
like object which we define below [94]. In our case, the
boundary depolarization changes this calculation by induc-
ing a partially absorbing boundary condition on this
random walk. As a result, the purity picks up an additional
factor proportional to approximately t−1=2 (the survival
probability of the random walk). Upon taking the loga-
rithm, this gives the result

S̃ðaÞ2;∞ðl̃Þ ¼ SðaÞ2;decðt ¼ l̃Þ ¼ vEl̃þ 1

2
log l̃þ � � � ; ð3Þ

where � � � stands for corrections that are at most constant
in l̃. Note that the entropy density exactly coincides with
the entanglement velocity in the unitary circuit, vE.
Moreover, there is a subleading logarithmic correction

(a) (b)

(d)(c)

FIG. 4. Logarithmic entanglement in spacetime duals of local-
ized circuits. (a) Schematic of Floquet-Anderson orbitals with
edge decoherence. Each exponentially localized orbital decoheres
over a timescale τn dictated by its overlap with the edge site.
(b) Results of numerical fermionic Gaussian state simulations
(see details in the main text). The disorder-averaged entropy S̃∞
grows logarithmically with l̃, while individual realizations show
steps associated to the decoherence of individual orbitals.
(c) Similar sketch for the Floquet MBL problem; the difference
with (a) is that the exponentially localized l-bits τzi interact with
each other. (d) Entropy vs subsystem size S̃ðl̃Þ for the dual of the
Floquet MBL model at Γ ¼ 0.1 (see the text). Full density matrix
evolution of T̃ ¼ 9 qubits evolving under the Floquet MBL
circuit with edge decoherence. The behavior is qualitatively
similar to that of the Floquet-Anderson problem, with steps and
plateaus associated to the depolarization of individual l-bits.
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whose 1=2 prefactor is fixed by the diffusive dynamics of
the entanglement domain wall.
In order to derive Eq. (3), let us first briefly review how

the calculation of PAðtÞ proceeds in the original Haar-
random unitary circuit. Since PA is quadratic in the density
matrix, this calculation involves four copies of the circuit:
two ket and two bra variables for each leg. To get a nonzero
average, one needs to pair ket and bra variables, which can
be done in two inequivalent ways, denoted by þ and − in
Fig. 5(a). Averaging each gate over the Haar measure
results in a two-dimensional tensor network that can be
thought of as an Ising-like classical partition function in
terms of the � variables. On the lower boundary of this
tensor network, the boundary conditions are fixed by the
initial state jψ0i, while on the upper boundary one should
have a domain of − states inside A surrounded by þ states
in its complement.
Let us focus on the case when the subsystem A is half of

an infinite chain. In this case, the boundary condition takes
the form of a domain wall in the Ising formulation. One can
then consider evaluating the full 2D tensor network row by
row, starting from this boundary state. The great simpli-
fication arising fromHaar averaging is that, at each step, the
domain wall evolves into similar domain-wall configura-
tions; when a gate is applied at the position of the domain
wall, its end point moves randomly left or right with equal
probabilities while picking up an overall prefactor. This
corresponds to a recursion relation of the purities which
takes the form

Pðx; tÞ ¼ 2q
q2 þ 1

Pðx − 1; t − 1Þ þ Pðxþ 1; t − 1Þ
2

; ð4Þ

whenever a gate is applied on the bond between sites x and
xþ 1. Here, we use Pðx; tÞ to denote the purity of the
subsystem A ¼ ½−∞;…; x� at time t. Following this proc-
ess all the way back to time 0, we end up with the result

Pðx; tÞ ¼
�

2q
q2 þ 1

�
tX

y

KxyðtÞPðy; 0Þ; ð5Þ

where KxyðtÞ is the propagator (from position x to y) of a
simple random walk. For a product initial state [108], we
have Pðy; 0Þ ¼ 1 for all y. By normalization, we also haveP

y KxyðtÞ ¼ 1 at all times. Therefore, we end up with a

simple result: Pðx; tÞ ¼ q−vEðqÞt, where vEðqÞ ¼ log½ðqþ
q−1Þ=2� is the entanglement velocity [109].
How does this result change when we take the spacetime

dual of the Haar-random circuit or, equivalently, when we
add depolarizing noise at the right boundary? Inside
subsystem B, the domain wall performs the same random
walk as before. However, when it hits the boundary of B,
the depolarizing channel imposes partially absorbing [112]
(also known as radiation) boundary conditions on it.
Whenever the domain wall would leave B, it instead
remains on the same position but picks up an extra factor
of 1=q. Whenever this happens, the domain wall is “out of
sync” with the circuit and misses the following layer of
gates. This results in an additional factor of qvE . Overall,
this means that whenever the domain wall hits the boun-
dary, it picks up a factor of 2fðqÞ≡ qvE−1 < 1, decreasing
its total survival probability. This is illustrated in Figs. 5(b)
and 5(c).
Applying this logic, we find that the purity of the

evolution with boundary depolarization becomes

P̃ðx; tÞ ¼ q−vEðqÞt
X
y

K̃xyðtÞP̃ðy; 0Þ; ð6Þ

where K̃xyðtÞ is now the propagator for the random walk
with a partially absorbing boundary at x ¼ T̃. We are
considering cases where P̃ðy; 0Þ is independent of y, so
overall the purity picks up a multiplicative factor propor-
tional to the total survival probability of the random walk.
At long times, this scales as the return probability of the
random walk on an infinite chain [113], resulting in
P̃ðx; tÞ ∝ q−vEðqÞt=

ffiffi
t

p
. We also provide independent con-

firmation of this result through large-scale simulations of
random Clifford circuits (which exactly agree with the
Haar-random circuit for the purity calculation), whose
results are shown in Fig. 6. Details on the method, as well
as results on other interesting properties of this nonthermal
volume-law entangled phase (from the point of view of
dynamical purification [8]), are discussed in Appendix B.
For the entropy calculation in the spacetime-dual circuit,

the relevant initial condition is one in which the domain
wall sits right at the boundary, x ¼ T̃ [Fig. 5(c)]. The purity

(a)

(b)

(c)

FIG. 5. Random-walk calculation of average purity in Haar-
random circuit with boundary decoherence. (a) Notations: The
gray boxes represent Haar-averaged unitary gates; the � symbols
represent the two ways of pairing up the four legs; the purity
calculation involves a domain wall between − andþ. (b) Elemen-
tary steps of the random walk in the bulk (left) and boundary
(right), where probability is not conserved [fðqÞ < 1=2]. (c) A
realization of the random walk. Whenever the random walker hits
the boundary, its survival probability decreases (lightning sym-
bols).
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at time t then becomes the purity of a subsystem in the
long-time steady state with length l̃ ¼ t. Putting this all
together, we find Eq. (3). There are two noteworthy features
of this result. First, the steady state exhibits volume-law

entanglement, with a density liml̃→∞ ðS̃ðaÞ2;∞=l̃Þ equal to
the speed of entanglement growth in the unitary dyna-
mics, vEðqÞ. Second, there is a subleading contribution
ð1=2Þ log l̃ that arises due to the boundary decoherence and
is absent in the original unitary circuit. In this sense, the
long-time steady state is nonthermal, despite its volume-
law entanglement.
As we note, the 1=2 coefficient of the logarithmic

correction has its origins in the survival probability of
the random walker decaying as t−1=2. This is the appro-
priate quantity to calculate in the situation we have been
considering so far, where the subsystem A lives at the edge
of the 1D chain [see Fig. 3(a)]; this means that the domain
wall has no preference on where to end up as long as it stays
in the system. The calculation changes if we instead
consider a subsystem in the bulk of an infinite chain.

In that case, the boundary conditions in Fig. 5(c) need to
be changed: We need to enforce the same domain wall
configuration at both the initial and the final time on the
partition function. This means that, instead of the survival
probability, we need to consider the return probability.
[114] This instead decays as t−3=2, giving rise to a
correction ð3=2Þ log l̃ in the entropy.
We expect the prefactors (3=2 in the bulk and 1=2 at the

edge) to be universal for spacetime duals of chaotic unitary
circuits. As can be seen from the above derivation, the
origin of this prefactor lies in the diffusive dynamics of
the purity domain wall. This description, in terms of a
diffusing domain wall, is expected to apply for generic
(space- and time-translation invariant) chaotic unitary
circuits in the long-time, large-distance limit (it is an
emergent description on par with the usual diffusion of
conserved quantities) [115,116]. For this reason, our
derivation above should also capture the universal features
of spacetime duals of such chaotic circuits. The situation
becomes more complicated for circuits that possess con-
tinuous symmetries. However, a similar description in
terms of a diffusing domain wall exists even for these
[106], and, therefore, we conjecture that they would also
exhibit the same ð3=2Þ log l̃ contribution. In fact, this term
is exactly the same as the one conjectured to arise in hybrid
(unitary-measurement) circuits [6,42,43] in their volume-
law phase; indeed, one could think of the domain wall
picture we describe as a microscopic realization of the
“directed polymer in a random environment” (DPRE)
effective description in Ref. [117]. This is further supported
by a diagnostic discussed in Appendix C, based on the
scaling of mutual information between a single qubit and an
extensive subsystem separated by a distance x. We find that
this diagnostic scales as approximately x−1.2 for duals of
unitary circuits, in complete agreement with its behavior in
generic hybrid circuits and the DPRE effective theory.
These findings strongly suggest that duals of chaotic
circuits realize the same nonthermal volume-law phase
as generic monitored circuits. Given the superior analytical
tractability of duals of unitary circuits, this analysis opens
new routes for the study of this phase and its properties
as an emergent error-correcting code [43], which is an
interesting direction for future research.
A notable exception to the universality of logarithmic

corrections in duals of chaotic circuits is provided by dual-
unitary circuits: In this case, the flipped circuit is itself
unitary and, thus, heats up to an infinite temperature state
rather than reaching nonthermal steady states of the kind
realized by generic circuits; in particular, since the entropy
is already maximal, there is no place for a logarithmic
correction (negative log corrections are disallowed by
subadditivity of the entropy). This can be understood from
the operator-spreading perspective discussed in Sec. II B.
Dual unitarity ensures [62,64,65] that operator strings always
grow at the maximal possible speed. Consequently, there are

(a)

(b)

(c)

(d)

FIG. 6. Entanglement entropy in spacetime duals of Haar-
random circuits. (a) Schematic of a finite subsystem at the edge of
a semi-infinite system: The entropy calculation maps to random-
walk survival probability (the starting point is pinned to the
entanglement cut; the end point is free). (b) Numerical results
for the entropy confirm the analytical prediction: a volume-law
term vEl̃ [inset; vE ¼ log2ð5=4Þ] with a ð1=2Þ log l̃ nonthermal
correction. (c) Schematic of a finite subsystem in the bulk of an
infinite system: Entropy calculation maps to random-walk return
probability (starting and ending points are pinned to the edges of
the subsystem). (d) Numerical results agree with the predicted
ð3=2Þ log l̃ correction. Numerical data in (b) and (d) are from
stabilizer simulations of Clifford unitary circuits with edge
decoherence with T̃ ¼ 129 qubits; the annealed average is over
106 circuit realizations. For (d), the initial mixed state [bottom
in (c)] is implemented by adding T̃ reference qubits with no
dynamics.
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no “shrinking”processes that couldbe killed by theboundary
decoherence, and the steady-state entanglement in the
flipped direction is exactly equivalent to growth of entangle-
ment in the unitary time direction: S̃∞ðl̃Þ ¼ l̃ ¼ t.
Finally, we need to comment on the issue of the order of

averages in the Haar-random circuit. In the above, we focus
on the annealed average, wherein we average the purity
over circuit realizations before taking its logarithm. The
quenched average, i.e., the average of S2 itself, has a more
complicated dynamics, described by the Kardar-Parisi-
Zhang (KPZ) equation [93,111]. Among other things, this
leads to a universal subleading contribution to the entropy
growth in the unitary circuit of the form at1=3 (where the
constant a itself is nonuniversal). We expect that, upon
flipping the circuit, this would lead to a contribution al̃1=3

in the quenched average of the entropy for the steady state,
in agreement with recent results on random monitored
Clifford circuits [117]. However, since the KPZ equa-
tion can be equivalently formulated in terms of multiple
interacting random walkers, each of which would feel the
same partially absorbing boundary, we conjecture that the
overall result takes the form

S̃2ðl̃Þ ¼ vðqÞE l̃þ al̃1=3 þ 1

2
log l̃þ constþ � � � ;

where we use vðqÞE to denote the speed associated to the
quenched average of the entropy, which can be different
from the one we calculate above for the annealed average.
Note that the t1=3 contribution is a result of spacetime
randomness in the Haar circuit. As such, we expect the
corresponding l̃1=3 to be present in the spacetime duals of
such random circuits but to be absent for ones that are
periodic in time.

V. FRACTALLY ENTANGLED
STEADY STATES

A. Griffiths circuit model

Having examined the two extremes of dynamics in
localized systems (Sec. III) and in chaotic ones
(Sec. IV), we now turn to slowly thermalizing dynamics
in disordered systems, for instance, near an MBL transition
on the thermal side. There, entanglement growth is thought
to be sub-ballistic, SðtÞ ∼ tα, 0 < α < 1, due to the impact
of Griffiths effects—rare localized regions which serve as
bottlenecks to the dynamics [21–25,118–121]. As both the
localized and chaotic cases reveal a close relationship
between SðtÞ (entanglement growth in unitary circuits),
on the one hand, and S̃∞ðl̃Þ (scaling in space of the late-
time entanglement in the dual circuit), on the other, the sub-
ballistic growth of SðtÞ in these “thermalizing Griffiths
models” suggests the intriguing possibility of producing
late-time states with fractal entanglement scaling, S̃∞ ∼ l̃α

with a tunable α ∈ ð0; 1Þ.

We see indications of this behavior in the kicked Ising
model in Eq. (2), studied in the parameter regime in
Ref. [46] (also summarized in Secs. II C and III) which
features a transition from an MBL phase to a thermal one.
As discussed in Sec. II C, this model has a parameter Γ ∈
½0; 1� which sets the disorder strength W ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
and

tunes across an MBL-to-thermal transition at Γc ≃ 0.3.
Exact density matrix simulations for the unitary circuit
with edge decoherence, whose results are shown in Fig. 7,
display a range of power-law exponents that decrease
closer to the MBL transition (Γc ≃ 0.3). However, the com-
putational method limits us to modest depths T̃ ≈ 10,
which, in turn, limits the available dynamic range and
makes it difficult to characterize the fractal scaling.
Likewise, the properties of the dual transition between
logarithmic and fractal scaling of steady states are severely
finite-size impacted.
For this reason, we turn to a more fruitful approach

that relies on random circuits to capture coarse-grained
features of the underlying sub-ballistic dynamics. Here, we
use a family of models introduced in Ref. [25], consisting
of random circuits on one-dimensional spin chains where
every bond x is assigned a distinct rate γx, meant to capture
the rate of entanglement propagation through a large
disordered region in a coarse-grained way. The rates are
independently and identically sampled from a distribution
PðγÞ ¼ ðaþ 1Þγa, γ ∈ ½0; 1�, where the parameter a ∈
ð−1;þ∞Þ effectively controls the strength of disorder—
the smaller a, the more PðγÞ is concentrated near γ ¼ 0, the
more “weak links” in the chain. Once rates fγxg for all
bonds are chosen, the system evolves via a spatiotempor-
ally random circuit where each bond is acted upon by a gate
every approximately γ−1x time steps. Concretely, we use a
brickwork circuit structure where each gate on bond x is
either 1 (with probability 1 − γx) or a Haar-random
gate (with probability γx); see Fig. 8(a). In this model,

FIG. 7. Entropy S̃∞ for the spacetime dual of the kicked Ising
circuit Eq. (2) in the ergodic phase, at depth T̃ ¼ 11 (numerical
data from exact density matrix evolution for unitary evolution
with edge decoherence). The parameter Γ controls the relative
strength of disorder; the model has a thermal-to-MBL transition
at Γc ≃ 0.3.
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entanglement grows sub-ballistically as SðtÞ ∼ tα, with
α ¼ ðaþ 1Þ=ðaþ 2Þ ∈ ð0; 1Þ [25].
Under spacetime duality, the disordered rates are not

assigned to bonds in the chain but rather to time steps, thus
creating “temporal weak links” in the evolution. At such a
temporal weak link t̃, where γ t̃ ≪ 1, the vast majority of
bonds are acted upon by the spacetime dual of the identity,
1̃ ∝ jBþihBþj—i.e., they are projected onto Bell states.
This results in a “catastrophic” event where most of the
system becomes disentangled, leaving behind a sparse
network of unmeasured entangled sites. The repetition of

these events over all scales (in time t̃ and rate γ) prevents
entanglement from ever saturating to a volume law and
instead gives rise to a fractal pattern of entanglement in
late-time states.

B. Fractal entanglement

This result is straightforwardly proved in the edge
decoherence picture by adapting the discussion in
Ref. [25], with minor changes from the closed-system
case to the edge-decoherence one. First, imagine a situa-
tion where the rates are uniform, γx ≡ γð0Þ, except for a
single “weak link” at a distance x1 from the decohering
edge, where the rate is γx1 ≡ γð1Þ ≪ γð0Þ. At early times, the
depolarizing noise quickly decoheres the region between
the weak link and the boundary, giving a ballistic growth
SðtÞ ∼ γt similar to the Haar-random case discussed in
Sec. IV. At later times, the bottleneck at x1 sets the rate
of entropy growth, [122] while the region between the
weak link and the boundary essentially saturates to a fully
mixed state, resulting in SðtÞ ¼ minfγð0Þt; x1 þ γð1Þtg.
Generalizing this argument to the case with a hierarchy
of (increasingly far, increasingly weak) links at distances xn
(with x0 ¼ 0) and rates γðnÞ gives

SðtÞ ¼ min
n
fxn þ γðnÞtg:

In other words, at any given timescale t, there is one
“dominant” bottleneck (the value of n minimizing the
argument) that is mainly responsible for slowing down
the spreading of decoherence through the system. Now,
given a length scale ζ, the typical value of the slowest rate

encountered within that length scale is [25] γðtypÞmin ðζÞ∼
ζ−1=ðaþ1Þ. Therefore, we conclude that, typically,

SðtÞ ∼min
ζ
fζ þ ζ−1=ðaþ1Þtg ∼ tα; α ¼ aþ 1

aþ 2
; ð7Þ

i.e., the same sub-ballistic scaling as in Ref. [25]. We
emphasize that this is the leading-order scaling, and we do
not focus on subleading corrections at this level.
We confirm this result with numerical simulations, using

two methods: (i) stabilizer numerical simulations, where
the nonidentity gates are sampled uniformly from the
Clifford group on qubits (q ¼ 2), and (ii) a recursive
(random walk) construction like the one used in Sec. IV
but adapted to the presence of random rates as detailed in
Appendix D. In both cases, we simulate unitary dynamics
with edge decoherence. The results of both methods
confirm the unconventional scaling of the averaged entan-
glement entropy with subsystem size, S̃∞ ∼ l̃α with frac-
tional exponents 0 < α < 1; we show this in Fig. 8(b) for
the Clifford simulations and in Appendix D for the random-
walk method. Small numerical discrepancies between the
exponent predicted by Eq. (7) and the data (most evident at

(a)

(b)

(c)

FIG. 8. Fractal entanglement from the Griffiths circuit model.
(a) Schematic of the circuit: Each bond x is assigned a rate γx that
sets how often unitary gates act there; bonds where γx ≪ 1 act as
bottlenecks for the spread of entanglement (highlighted). Under
spacetime duality, bottlenecks correspond to catastrophic events,
where simultaneous Bell measurements are performed on most

qudit pairs. (b) Average entanglement entropy S̃ðl̃Þ in late-time
output states of a version of this circuit where nonidentity gates
are drawn from the two-site Clifford group (using T̃ ¼ 1024

qubits and averaging over 105 disorder realizations). By varying

the effective disorder strength a, ¯̃S can be made to scale as l̃α with
any power-law exponent 0 < α < 1. The black line represents the
maximal entropy S̃ ¼ l̃; dashed lines represent the predicted
power-law scaling α ¼ ðaþ 1Þ=ðaþ 2Þ. The disagreement for
intermediate a is due to subleading corrections (see Appendix D).
(c) The entire distribution of S̃ (not just its mean) shows a scaling
collapse, PðS̃Þ ∼ l̃−αPðS̃=l̃αÞ (data for a ¼ 1, fit exponent
α ¼ 0.73 vs predicted 2=3).
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intermediate a) arise from large subleading corrections
to scaling, which are expected to be present already in
the unitary case, as we discuss in Appendix D. Beyond the
fractional power-law scaling of the mean entropy, we find
that all moments of the entropy distribution scale in the same
way, as manifested by the collapse of the probability distri-
butionPðS̃∞Þ onto a scaling ansatzPðS̃∞Þ ∝ l̃−αfðS̃∞=l̃αÞ,
shown in Fig. 8(c). This means that the spatial entanglement
profile of a typical state drawn from this ensemble appears
statistically self-similar over all length scales, justifying the
“fractal” label. This is in contrast with, e.g., the volume-law
phase in Sec. IV where one expects (under quenched
averaging) S̄ ∼ l and δS ∼ l1=3 (owing to the conjectured
KPZ scaling): The relative size of fluctuations in this case is
scale dependent and not self-similar.
Another intriguing aspect of these models is studied in

Appendix B, where we show data on their purification
dynamics [8]. We find that they realize a family of novel
critical purification phases with a continuously variable
dynamical exponent. In particular, the entropy of a max-
imally mixed initial state decays as S̃ ∼ L̃=t̃1=zp , with
zp ¼ aþ 1, and at late time crosses over to an exponential
decay (also as a function of the ratio t̃=L̃zp), suggestive of
CFT behavior [27].
The l̃α scaling derived above captures the leading-order

behavior in this model. Even in the unitary case, there are
subleading corrections, as we note above. In the spacetime-
dual circuit, we expect that further logarithmic corrections
should appear due to the edge decoherence, just as they do
in both the localized and chaotic models studied in Secs. III
and IV. The most straightforward argument for these comes
from generalizing the random-walk calculation in Sec. IV
to the present model. In this modified random walk, we
now have locations in the circuit where the Haar-random
gate is replaced by the identity: These have no effect on the
“purity domain wall,” while the partially absorbing boun-
dary condition is unchanged. Therefore, the purity should
again pick up a power-law decaying contribution from
the survival or return probability of the random walker
(depending on whether we are considering a subsystem
near the edge or in the bulk). However, the power of the
decay might be different from the ones derived in Sec. IV.
In that case, the end point of the domain wall has diffusive
dynamics, a fact that is closely related to the diffusive
broadening of operator wavefronts [94]. This latter feature
is also expected to change in the Griffiths phase, with a
separate, continuously changing “front broadening expo-
nent” at strong enough disorder [25]. Consequently, we
expect that the prefactor of the logarithmic correction to the
entropy also becomes a continuously varying parameter
deep in the Griffiths regime.

C. Robustness to breaking of unitarity

We derive these fractally entangled phases by dualizing
unitary circuits U with sub-ballistic entanglement growth.

It is natural to ask whether or not this duality is a necessary
condition, i.e., how robust these phases are to perturbing
the “original” circuit U away from unitarity. As we show,
area-law phases are generically ruled out in nonunitary
circuits whose dual is unitary; but, upon lifting this
constraint, area-law phases are expected to appear again
when a (suitably defined) “measurement rate” is high
enough. Do fractally entangled phases survive then, at
least in parts of parameter space for sufficiently weak
perturbations? Or are they immediately wiped out when
unitarity of U is broken?
To address this question, we perturb the unitary

“Griffiths circuit” in Fig. 8(a) away from unitarity and
study the effect of this perturbation on entanglement
in the dual circuit. Concretely, we consider a unitary-
measurement circuit with random unitary gates and two-
qubit Bell measurements, where the measurement rate is
time dependent: pðtÞ≡ 1 − γt, with γ sampled from
PðγÞ ¼ ðaþ 1Þγa independently at each time step. This
circuit is generally nonunitary in both time directions.
However, when the gates are restricted to be dual unitary,
this circuit becomes unitary in the space direction: Namely,
it is dual to a unitary “Griffiths circuit” as in Fig. 8, where
all the nonidentity gates are dual unitary. It is possible to
interpolate smoothly between the two cases (fully generic
vs dual-unitary gates) by tuning the distance of the gate set
from dual unitarity. This is particularly straightforward for
the two-qubit Clifford group, which is discrete and such
that exactly half of the elements are dual unitary. Sampling
preferentially from the dual-unitary half of the group, say,
with probability 1 − δ, gives a parameter δ that quantifies
the breaking of unitarity in the space direction. Do the
fractal phases we find at δ ¼ 0 survive to finite δ > 0?
The steady-state entanglement in this family of unitary-

measurement circuits, shown in Fig. 9(a) for δ ¼ 1=2
(i.e., uniform sampling of Clifford gates), reveals an
interesting picture. As anticipated, an area-law phase
appears: The average rate of measurements in this circuit
is p̄ ¼ 1 − γ̄ ¼ ½1=ðaþ 2Þ�, which becomes large at small
a (going to 1 as a → −1); absent obstructions, this is
expected to lead to an area-law phase. Indeed, that is what
we see for a≲ 0. However, upon increasing a, the system
transitions out of the area-law phase and into a family
of fractally entangled phases. We verify that for a ≥ 2 the
scaling is consistent with the expected one: SðlÞ ∼ lα, α ¼
½ðaþ 1Þ=ðaþ 2Þ� [dashed lines in Fig. 9(a)]. At intermedi-
ate a, the data are suggestive of a logarithmically entangled
critical point (at ac ≈ 0.5) that gives way to fractal
entanglement with exponent αðaÞ continuously varying
from αðacÞ ¼ 0 to αðaÞ ≃ ½ðaþ 1Þ=ðaþ 2Þ� at large a.
While a detailed study of this transition is left for future
research, it is clear that fractal entanglement does indeed
survive in a large part of parameter space, even when the
original circuit U is strongly perturbed away from unitarity.
A conjectured sketch of the phase diagram as a function

of the “bottleneck parameter” a and the unitarity-breaking
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perturbation strength δ is shown in Fig. 9(b). The area-law
phase in Ũ appears continuously as the circuit U is detuned
from unitarity, while the phases identified at δ ¼ 0 survive
in part of parameter space. We conjecture that this behavior
is generic—i.e., that all the entanglement phases identified
in this work should be robust to weak breaking of unitarity
in the transverse direction.

VI. SUMMARY AND OUTLOOK

In this work, we have explored entanglement in non-
unitary circuits that are spacetime duals of local unitary
circuits [30]. Focusing on this class of nonunitary circuits
has allowed us to translate the rich variety in entanglement
growth displayed by unitary circuits into an equally rich
variety of steady-state phases produced by nonunitary
dynamics. Most notably, these include a large and robust
family of fractally entangled late-time states, whose entan-
glement evades the usual categories of volume-, area-, or
log-law that cover nearly the entirety of eigenstates or
steady states encountered in unitary dynamics.
Another important advantage of these circuits lies in

their analytical tractability: Ideas and methods developed
for unitary dynamics can be borrowed and used to great
effect, providing an analytical handle on nonunitary
dynamics away from well-understood limits (e.g., large
local Hilbert space, etc.). In particular, we have derived a
general identity relating steady-state entanglement in these

nonunitary circuits to the entropy of mixed states evolving
through a combinationof unitary dynamics anddecoherence.
This powerful mapping has allowed us to identify and char-
acterize logarithmic corrections to entanglement in various
regimes: In the duals of chaotic circuits, these corrections
sharply distinguish the volume-law entangled phase from a
thermal one (while possibly placing it in the same univer-
sality as the nonthermal volume-law phase in weakly
monitored circuits); in the duals of localized circuits, these
corrections can even become the leading contributions,
essentially ruling out area-law entangled phases.
We also detailed how these novel steady states can be

prepared experimentally on near-term quantum simu-
lators, with an experimental protocol based on quantum
teleportation that relies on ordinary unitary evolution and
a vanishing density of postselected measurements in
spacetime (as opposed to the finite density that character-
izes generic unitary-measurement circuits). Lowering the
required number of measurements has important implica-
tions for the practicality of reliably preparing these states
without the use of auxiliary classical simulation.
Our work raises several intriguing questions for future

research. Understanding more about the nature of the
fractally entangled steady states we found in the duals of
thermalizing Griffiths phases, and what other contexts they
might occur in, is an exciting goal for future research. It is
particularly intriguing to speculate about the possibility of
realizing these unconventional states (which are natively
the output of 1þ 1-dimensional nonunitary circuits) as
ground states of generalized (possibly non-Hermitian)
Hamiltonians and study the role of symmetry therein [123].
Another interesting open question is the precise nature of

the volume-law phase we identified in the spacetime duals
of generic clean (or weakly disordered) unitary circuits. As
we noted, the universal prefactor of the logarithmic
correction agrees with what is expected in weakly moni-
tored unitary circuits. Another diagnostic based on mutual
information (analyzed in Appendix C) does not conclu-
sively discriminate the two phases, either. This leaves two
interesting possibilities: (i) that the duals of chaotic unitary
circuits realize a novel nonthermal volume-law entangled
phase or (ii) that they provide an exact realization of the
same phase in a way that is substantially more tractable in
theory and more accessible in experiment. Determining
which of these two scenarios is realized is an exciting
question for future research.
More generally, it would be interesting to build a more

complete understanding of these nonthermal states and the
place they occupy in the broader landscape of dynamical
many-body states, e.g., through the lens of chaos, complex-
ity, and thermalization. (“Nonthermal” is, after all, a rather
vague label.) It would also be interesting to study the
properties of nonunitary phase transitions dual to unitary
transitions; the Floquet Ising model studied here does
have a (unitary) transition between MBL and thermalizing
phases, but the properties of its dual nonunitary counterpart

(a) (b)

FIG. 9. Robustness of fractal entanglement in Ũ to the breaking
of unitarity in U. (a) Half-cut entanglement entropy SðL=2Þ
for a pure state evolving under random Clifford gates and Bell
measurements; the measurement probability 1 − γt depends
randomly on time, with γ drawn from PðγÞ ∝ γa independently
at each time step. Data from stabilizer simulations, with
L < T < 2L, averaged over between 104 and 5 × 105 realizations
depending on size. The system enters an area-law phase for a≲ 0
(dotted lines are constants), while fractal entanglement persists at
a≳ 1 [dashed lines have slope α≡ ðaþ 1Þ=ðaþ 2Þ]. (b) Sketch
of conjectured phase diagram as a function of the bottleneck
parameter a and the deviation from unitarity δ [see the text;
(a) corresponds to δ ¼ 1=2]. The δ ¼ 0 line corresponds to the
circuit U being unitary, which forbids the area-law phase in Ũ.
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were challenging to study due to the limitations of finite
system size numerics.
In this work, we have mainly focused on quantum

entanglement; however, characterizing these novel steady
states from the standpoint of quantum order is another
natural direction for future research. Can these states host
nonequilibrium ordered phases? In most known cases in the
unitary domain, out-of-equilibrium phases rely on MBL
and eigenstate order [89,124]; how does the impossibility
of area-law states in these spacetime-dual circuits affect the
definition of phases? And how are the (leading or sub-
leading) logarithmic corrections manifested in correlation
functions? Extending these ideas to higher dimension may
also open up exciting directions in relation to topology, e.g.,
by considering the spacetime duals of 2þ 1-dimensional
Floquet topological phases [125].
Looking ahead, perhaps the most exciting challenge is to

push the “nonunitary frontier” by identifying other inter-
esting (and experimentally relevant) corners of nonunitary
evolutions that may further reveal new phenomena and
broaden our understanding of quantum dynamics.
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Note added.—Recently, we became aware of related work
[126] which also considers entanglement dynamics in
spacetime duals of unitary circuits. Our results agree where
they overlap, but our works are largely complementary.

APPENDIX A: DETAILS ON EDGE
DECOHERENCE

Here, we clarify some technical details on the mapping to
edge decoherence introduced in Sec. II and some results

that follow from it. We argue that, taking the limit L̃ → ∞
with l̃ finite (i.e., when A is a finite subsystem of a
semi-infinite chain), the entire Ā section of the circuit in
Fig. 3(a) can be elided (for the purpose of computing the
entropy of A), and it suffices to consider the mixed state ρB
produced at the spacelike cut B between the timelike
surfaces A and Ā. Here, we unravel the argument in more
detail and in the process clarify how big L̃ needs to be in
various models and what the fine-tuned exceptions to this
result look like. Finally, as a corollary, we show that area-
law entangled steady states are impossible (again up to
trivial, fine-tuned exceptions).

1. Uniqueness of the steady state under
edge decoherence

To begin, we consider the layout in Fig. 3(c)—unitary
evolution with edge decoherence, for a variable time t (also
identified with subsystem size l̃ in the “flipped” circuit).
Let ρBðtÞ be the mixed state produced by t layers of unitary
gates accompanied by an erasure channel on the last qubit:

ρBðtÞ≡Φedge∘U t∘Φedge∘ � � �U1½ρBð0Þ�; ðA1Þ

where Uτ½ρ�≡UτρU
†
τ describes the application of one

layer of unitary gates at time τ (we do not assume a Floquet
circuit) and Φedge½ρ�≡ TredgeðρÞ ⊗ 1edge=q is the erasure
(or fully depolarizing) channel acting on the edge qubit. We
prove the following statement: Up to fine-tuned exceptions
in the circuit choice Uτ, the quantum channel Eq. (A1)
maps all input states to the maximally mixed state ρB ≡
1⊗L=qL as t → ∞.
The proof can be succinctly stated in the operator-

spreading language. First, let us consider time-periodic
dynamics, Uτ ¼ U. We imagine expanding our prospective
steady state ρ∞ in a basis of Pauli strings. Φedge is a
projector onto the subspace spanned by strings that act
as the identity on the edge site. Clearly, ρ∞ must belong to
this subspace: Φedge½ρ∞� ¼ ρ∞. Moreover, it also cannot
develop any component on the orthogonal subspace
(i.e., the space of operators that do not act as the identity
on the edge), since such a component would be killed by
the projection, decreasing the norm of ρ∞; therefore,
ðΦedge∘UÞ½ρ∞� ¼ U½ρ∞�. In other words, we are looking
for exactly conserved operators of the Floquet unitary
U½ρ∞� ¼ ρ∞ that have no support on the edge; obviously,
this should occur only in highly contrived cases. While this
argument works only for Floquet systems, where steady
states can exist in a strict sense, it easily generalizes to time-
dependent circuits as well: The only way for an initial state
to maintain its Frobenius norm (i.e., its total purity) forever
is if it never develops a component acting nontrivially on
the edge.
Exceptions where the above argument fails are circuits

with exact “blockades”: unitaries where some operators are
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strictly confined to a segment of the circuit not con-
taining the edge site. The simplest example is a system
that is split into decoupled subsystems at a missing bond,
where U ¼ 1⊗2 at all times. A somewhat less trivial
example is given by the Clifford toy model of MBL
discussed in Ref. [103] which exhibits l-bits exactly
localized on certain sites. Intuitively, one can under-
stand this in the language of operator hydrodynamics
[94,95,104,105]: The edge site functions as a “sink” for
the operator weight which is otherwise conserved by
the unitary dynamics; the only way to avoid all the
weight leaving at the sink is through a strict blockade
that prevents some operators from reaching the sink.
Barring these fine-tuned “blockaded” circuits, the dynam-
ics with edge decoherence Eq. (A1) always converges to
the maximally mixed state. The timescale for this process,
that we dub the “decoherence time” td, is closely related to
entanglement dynamics in the unitary circuit. In localized
models, as we show in Sec. III, the system takes an
exponentially long time td ∼ expðLÞ to fully decohere. On
the opposite end, chaotic systems take time td ∼ L.

2. Normalization of the wave function

With this result in hand, we can show that the norm
of a wave function jψðt̃Þi evolving under the non-
unitary spacetime-dual circuit is statistically conserved
(and exactly conserved in the thermodynamic limit
L̃ → ∞), even though the individual gates Ũ are not norm
preserving.
We assume the initial state jψð0Þi is a product state of

Bell pairs, jBþi⊗L̃=2, as in Fig. 3(a). Then, we aim
to calculate the squared norm hψðt̃Þjψðt̃Þi. The tensor
network expressing this quantity is exactly the same as
in Fig. 3(a), with the traced-out subsystem A encom-
passing the whole system. This can be interpreted from
bottom to top as (i) an initial state jBþi⊗t̃=2 (ii) evolved
with unitary gates and edge decoherence for l̃ time
steps until (iii) all qubits are projected onto hBþj⊗t̃=2.
However, some care must be taken in the bookkeeping
of normalizations when converting between the unitary
and nonunitary arrows of time. In the nonunitary
direction, the tensor network comes with a prefactor
of q−l̃=2: 1=q for every Bell-pair initial state jBþihBþj
(left edge). In the unitary direction, it comes with a
prefactor of q−l̃=2−t̃: 1=q for every action of the erasure
channel at the right edge and 1=q for every Bell pair in
either the initial (bottom) or final (top) Bell states. The
net result is a mismatch by q−t̃, which must be taken
into account when “flipping” the circuit.
For large systems (with l̃ ≫ td), the associated unitary-

decoherence dynamics reaches the fully mixed steady state,
by the very definition of the decoherence time td; therefore,
projecting onto the final Bell-pair product state (or any
other state) yields a fixed amplitude of

Tr½ðjBþihBþjÞ⊗t̃=2ρout� ¼ hBþj⊗t̃=2

�
1
q

�
⊗t̃
jBþi⊗t̃=2

¼ q−t̃:

This factor gets exactly canceled when converting back to
the nonunitary arrow of time, so that hψðt̃Þjψðt̃Þi ¼ 1.

3. Entanglement calculation

We now consider the setup in Fig. 3(a) and show that, for
the purpose of computing the entropy, it reduces to that in
Fig. 3(b) in the limit of L̃ → ∞. We do so by splitting the
tensor network that expresses the output state jψi into two
pieces along the entanglement cut B:

ψaā ≡
X
b

ϕab χbā; ðA2Þ

where a and ā index basis states for timelike sub-
systems A and Ā, respectively, while b indexes basis
states for the spacelike subsystem B at the entanglement
cut (consisting of t̃ qubits). ϕ and χ, thus, represent the
two parts of the tensor network that, when glued together
at B as in Eq. (A2), yield the output wave function
on A ∪ Ā.
Now, we aim to compute the entropy of the reduced

density matrix on A:

ðρAÞaa0 ≡
X
ā

ψaāψ
�
a0ā ¼

X
b;b0

ϕabϕ
�
a0b0

�X
ā

χbā χ
�
b0ā

�
:

The sum in parentheses represents the reduced density
matrix on B produced from running unitary dynamics
with edge decoherence for a time L̃ − l̃. But if L̃ is taken to
be much bigger than the decoherence time td, then this
density matrix is generically the identity:

P
ā χbā χ

�
b0ā ¼

δbb0 (normalizations are dealt with as above). Therefore,
we have

ρA ¼
X
a;a0;b

ϕabϕ
�
a0bjaiAha0jA: ðA3Þ

Finally, we can purify ρA to a wave function on
A ∪ B—jϕiAB ≡ ϕabjaiA ⊗ jbiB [this is the tensor net-
work in Fig. 3(b)]—and recover the same entropy by
tracing out A instead:

ρB ¼
X
a;b;b0

ϕabϕ
�
ab0 jbiBhb0jB: ðA4Þ

The density matrix ρB is precisely the output of l̃ layers of
unitary evolution and edge decoherence on T̃ qubits, as in
Fig. 3(c) in the main text.
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4. Impossibility of area-law steady states

Equipped with the results above, we can now rule out
the existence of area-law entangled late-time states in
all but a highly fine-tuned set of circuits. Having jψðt̃Þi
be area-law entangled would mean that the entropy of
subsystem A (of size l̃) should not grow with l̃ past a
finite amount (independent of T̃ after an initial transient).
But, in the edge-decoherence picture in Eq. (A4) and
Fig. 3(c), this means that the mixed state ρBðl̃Þ should
reach a finite entropy at arbitrarily large l̃. This would
rule out the maximally mixed steady state ρ∞ ¼ ð1=qÞ⊗t̃

(whose entropy is t̃). As we see above, this is impossible
in all but a set of fine-tuned blockaded circuits. This
explains the absence of a “pure phase” in the model
studied in Ref. [30], except for the trivial circuit con-
sisting of 1 only (which indeed is trivially blockaded in
the above sense).

APPENDIX B: DYNAMICAL PURIFICATION
IN SPACETIME-DUAL CIRCUITS

In this Appendix, we study spacetime-dual circuits from
the point of view of purification dynamics [8]: i.e., how a
fully mixed initial state ρin ∝ 1 gradually loses entropy
under the nonunitary dynamics until eventually it becomes
pure, ρout ¼ jψoutihψoutj. The timescale for purification, tp,
exhibits a sharp phase structure: It is short [tp ≤ OðlogLÞ]
in the pure phase and long [tp ¼ expðLÞ] in the mixed
phase; the phases are separated by critical points where
tp ¼ polyðLÞ. These phases are closely related to the area-
law and volume-law phases in pure-state dynamics, respec-
tively [8]. In particular, the mixed phase describes the
emergence of a quantum error-correcting code (QECC)
capable of hiding quantum information from local mea-
surements for very long times. Formally, this QECC is a
mixed state ρout produced by running the nonunitary circuit
on ρin ∝ 1 for a (polynomially) long time, L ≪ T ≪
expðLÞ (this separation of scales is well defined only in
the thermodynamic limit L → ∞). ρout represents a sto-
chastic superposition of all “code words,” i.e., all possible
pure states one may obtain as outputs by sending pure-state
inputs through the circuit. Properties of this QECC have
received much attention recently [42], with an appealing
statistical-mechanical interpretation mapping entropies to
domain-wall free energies [43]. This line of reasoning
yields a conjectured universal behavior for the mutual
information of the QECC ρout as I2ðA∶ĀÞ ¼ 3

2
log jAj

(A and Ā denote a contiguous bipartition of the system,
shown in Fig. 10). This term also shows up as the leading
correction (after the volume-law term) to the entanglement
in pure-state dynamics: SðlÞ ¼ slþ 3

2
loglþ � � �. As we

see, this subleading correction to the entanglement is also
realized by the spacetime duals of chaotic unitary circuits in
pure-state dynamics. It is thus interesting to ask whether

this is reflected in the mixed-state (purification) dynamics
as well.
In the following, we address this question numerically.

To do so, we note that our analytical discussion applies to
the annealed average of the entropy: Sa ≡ − log P̄, where
P ¼ Trðρ2Þ is the purity. In a spatiotemporally random
circuit, ρ is a linear function of each two-qubit gate U and
its adjoint U†; therefore, P is a quadratic form in U, U†

whose average over the unitary group is captured by a
2-design. For this reason, it is possible to compute SðaÞ by
averaging over the Clifford group (which takes polynomial
time through stabilizer simulations [55]) rather than the
entire Uðq2Þ group.
For the rest of this discussion, we specialize to the case of

qubits (q ¼ 2) and measure entropy in bits. Given a
collection of entropy samples fSig from N runs of the
stabilizer simulation, we have SðaÞ ≃ −log2ð1=NÞPi 2

−Si .
We note that this average may be ill conditioned if the
underlying distribution of samples PðSiÞ has fat tails (then
exponentially rare low-S samples may dominate the aver-
age); however, as we see, this is not the case for uniformly
random circuits. This is also the numerical method used to
obtain the data in Fig. 6 in the main text. We direct the
reader to other references for details about stabilizer
simulations of unitary circuits [12,55]; here, we describe
only the more unusual aspect: edge decoherence. In the
stabilizer formalism, the erasure channel can be imple-
mented in two steps, first by acting with a phase-flip error
and then with a bit-flip one. To do the phase-flip error, we
look for any stabilizers with a Pauli X at the edge site:
If there are none, nothing happens; if there is exactly one, it

(a) (b)

FIG. 10. Mixed purification phase in spacetime duals of
Haar-random circuits. Stabilizer simulations of L̃ initially mixed
qubits evolving under the spacetime dual of a random unitary
circuit for time T̃ ¼ 4L̃, averaged over 6 × 105 realizations.
Annealed average of the Rényi-2 “mutual information”
I2ðA∶ĀÞ ¼ S2ðAÞ þ S2ðĀÞ − S2ðAĀÞ, where A is a contiguous
subregion that is (a) near the edge of a system with open
boundary conditions or (b) in a system with periodic boundary
conditions (see sketches at the bottom). In both cases, we show
fits to the functions fλðxÞ≡ constþ λ log2½xðL − xÞ� with λ ¼
1=2 and 3=2. The system sizes are L̃ ¼ 512 and 1024 in (a) and
(b), respectively.
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is dropped from the stabilizer list; if there are several,
fg1;…; gkg, they are updated as g0i ¼ g1gi for all
i ¼ 2;…; k, and g1 is dropped. The bit-flip error works
the same but with Z instead of X.
Numerical results are shown in Fig. 10. We find that, as

in other examples of measurement-induced purification
dynamics, the mutual information [127] I2ðA∶ĀÞ has an
area-law term which grows as ∝ logðtÞ (eventually satu-
rating to a volume law at exponentially late times, when the
output state is fully purified) and a sublinearly divergent
piece. This divergent term agrees very precisely with the
prediction ðk=2Þ log2 l̃, with k ¼ 1 if the subsystem A is
near the edge of a system with open boundaries [Fig. 10(a)]
and k ¼ 3 if A lies in the bulk [implemented here via
periodic boundary conditions; Fig. 10(b)]. Both cases
are shown against fits to the symmetrized functions
fλðxÞ≡ constþ λ log2½xðL − xÞ�, with λ ¼ 1=2 and 3=2.
Finally, it is interesting to examine the dynamical

purification problem in the duals of “Griffiths circuits.”
As we argue earlier, the general understanding of the
problem is that the mixed and pure phases should map
onto the area-law and volume-law phases in pure-state
dynamics; as the fractally entangled states arising in the
duals of Griffiths circuits fit neither category, the nature of
the associated purification dynamics is a priori unclear.
First, we note that the entropy at time t̃ can be bounded

from above by

S̃ðt̃Þ < cL̃=t̃1=zp ; ðB1Þ
where zp ¼ aþ 1 and c is a constant. This is because, after
drawing a rate γ, all but γL̃ of the system’s qubits are
projectively measured; thus, the state’s remaining entropy
is at most γL̃. The intersection of all these bounds for time
steps 1; 2;…; t̃ yields S̃ < L̃ · minτ̃¼1;…;t̃ γτ̃; as the mini-
mum γτ̃ typically scales as t̃−1=ðaþ1Þ, we recover the bound
in Eq. (B1) above.
This power-law scaling rules out a mixed phase (where

purification is exponentially slow). The question is whether
the power-law bound above is saturated or not. Numerical
simulations of Clifford circuits with the stabilizer method
answer this question in the affirmative; results are shown in
Fig. 11. In particular, we find that the entropy collapses on a
scaling function S̃ ≃ gðt̃=L̃zpÞ, with g obeying gðxÞ ∼ x−1=zp
at small x [see Fig. 11(a)], which saturates the bound in
Eq. (B1), before crossing over to an exponential decay e−cx

at large x [see Fig. 11(b)]. At zp ¼ 1 (achieved here by
a ¼ 0), this behavior (approximately 1=x to e−cx) agrees
with what is found generically at measurement-induced
transitions, namely, collapse of the entropy onto a single-
parameter dependence on the cross ratio, a signature of
CFT behavior [27]. At other values of a, this family of
models, thus, appears to realize a range of critical purifi-
cation dynamics described by anisotropic CFTs with
arbitrary z≡ aþ 1 ∈ ð0;∞Þ.

APPENDIX C: NATURE OF THE NONTHERMAL
VOLUME-LAW ENTANGLED PHASE

Our results in Sec. IV and Appendix B regarding the
nonthermal volume-law entangled phase in spacetime
duals of chaotic unitary circuits raise an interesting ques-
tion. Given that the ð3=2Þ log l̃ subleading correction we
identify is in agreement with predictions for the analogous
phase in general unitary-measurement circuits, it is natural
to ask whether the two phases are the same. If so, the
spacetime duals of Haar-random circuits would provide
an exact microscopic realization of the “capillary wave
theory” of quantum error-correcting codes presented
in Ref. [43].
To address this question, we consider a distinct

diagnostic introduced in Ref. [42]: the mutual informa-
tion between a single qubit, located at a variable position
x inside a finite subsystem A, and the (ideally infinite)
complementary subsystem Ā, fðxÞ≡ Ið½x�∶ĀÞ. This is a
measure of how much entanglement can be destroyed by
a single-site measurement inside A. Intuitively, this
should be a decreasing function of x (taking x ¼ 0 to
be at the edge of A). For the stability of the volume-law
phase in unitary-measurement circuits, fðxÞ should decay
sufficiently fast, so that its integral does not diverge
[a necessary condition for measurements to destroy no
more than an Oð1Þ amount of entanglement per time
step, which can, in principle, be compensated by the
unitary gates acting at the boundary of A]. In generic
unitary-measurement circuits, this quantity is conjectured

(a) (b)

FIG. 11. Dynamical purification under the spacetime dual of
the Griffiths circuit model with random Clifford gates. (a) Mixed-
state entropy S̃ðL̃; t̃Þ for a system of L̃ ¼ 1024 qubits initialized
in the fully mixed state, with varying Griffiths parameter a (solid
lines). At intermediate times, the entropy drops as a power law
S̃=L̃ ≃ t̃−1=zp (dashed lines) before crossing over to an exponen-
tial form. (b) At each value of a, data for different system sizes
collapse under t̃ ↦ t̃=L̃zp , with zp ¼ aþ 1, in both the power-
law and exponential decay regimes. Numerical data are obtained
from stabilizer simulations and averaged over 103 − 105 circuit
realizations depending on size.
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to scale as fðxÞ ∼ x−3=2 [42], but recent work on Clifford
circuits [117] finds instead fðxÞ ∼ x−1.25.
To compute this quantity in our setting, we consider a

finite subsystem A embedded in an infinite system, ini-
tialized in a Bell-pair (pure) product state, and evolved
under the dual of a random unitary circuit for a long time; in
the thermodynamic limit, tracing out Ā yields a cancellation
similar to the one we use for the pure-state entanglement
calculation in Fig. 3, which elides all of the circuit except
the portion contained inside a “light cone” terminating at A.
One is left with a finite-size calculation on subsystem A
only, with a fully mixed state and light-cone boundary
conditions as in Ref. [30]. It is then possible to compute
fðxÞ from the resulting mixed state on A by exploiting the
fact that A ∪ Ā is in a pure state and using

fðxÞ ¼ I2ð½x�∶ĀÞ ¼ S½x� þ SĀ − S½x�∪Ā
¼ S½x� þ SA − SAn½x�: ðC1Þ

All three entropies in the expression are computable from
ρA without reference to Ā. Hence, our calculation implicitly
takes the Ā → ∞ limit.
The numerical results for subsystems A of up to 1024

qubits, shown in Fig. 12, suggest that the best fit to a power
law approximately x−λ is λ ≃ 1.2. This is in remarkable
agreement with the results in Ref. [117], which finds an
exponent λ ≃ 1.25 in an almost identical quantity, strongly
suggesting that the two volume-law phases (in generic
monitored circuits and in duals of chaotic circuits) are, in
fact, the same.

APPENDIX D: RANDOM-WALK
ENTANGLEMENT COMPUTATION FOR

GRIFFITHS CIRCUITS

In this Appendix, we present results on entanglement in
spacetime duals of the Griffiths circuits discussed in Sec. V
based on an alternative method, which also allows us to
analyze more carefully the role of corrections to scaling.
We consider the random-walk computation of the

annealed average of the entanglement entropy SðaÞ for
Haar-random circuits, as discussed in Sec. IV. The idea
there is to take advantage of the edge decoherence picture
and adapt a method developed for entanglement growth in
unitary circuits, where a recursive formula [Eq. (4)] can be
used to compute the purity exactly. In the Griffiths circuit
model, as long as the nonidentity gates are sampled from
the Haar measure, the same approach goes through, up to a
small modification to the recursion: The purity Pðx; tÞ is
either updated as in Eq. (4) (if a gateU ≠ 1 acts at bond x at
time t) or left unchanged (if no gate acts). These two
occurrences are weighted according to the rate γx of
nontrivial gates acting at bond x, giving

Pðx; tÞ ¼ γx
q−vE

2
½Pðx − 1; t − 1Þ þ Pðxþ 1; t − 1Þ�

þ ð1 − γxÞPðx; t − 1Þ ðD1Þ

away from the decohering edge, and an analogous modi-
fication for the recursion at the edge.
We remark that evaluating this recursive formula yields

the average of P over both the location (whether a gate
U ≠ 1 is present at bond x at time t) and choice [which
U ∈ Uðq2Þ] of Haar-random gates, given the (quenched)
rates γx. The average P̄ obtained in this way then gives
an entropy S ¼ − logq P̄, which can then be averaged
over the choice of rates fγxg out of the distribution
PðγÞ ¼ ðaþ 1Þγa. The resulting average of S is, thus,
partly annealed and partly quenched [128].
Results obtained by numerically evaluating the recur-

sion formula on T̃ ¼ 1024 qubits evolving under edge
decoherence are shown in Fig. 13, for qubits (the relevant
case to compare to the Clifford numerics in Fig. 8) as
well as systems with large local Hilbert spaces (q ¼ 10),
compared to the analytical prediction S̃∞ ∼ l̃α, α¼ðaþ1Þ=
ðaþ2Þ. A careful look at the size dependence of S̃, e.g., via
the logarithmic derivative d logðS̃Þ=d logðl̃Þ, reveals that
the asymptotic scaling is consistent with the predicted one
but that corrections to scaling are substantial for qubits, so
that the best fit for the exponent in S̃ ∼ l̃α is significantly
off even at large sizes, l̃≳ 103. (The data shown are for
a ¼ 1, where the predicted scaling is α ¼ 2=3 and the
discrepancy with the finite-size data is worst.) This sug-
gests that the data in Fig. 8 (from stabilizer simulations) are
consistent with the analytical prediction. A more thorough
investigation of subleading corrections, aiming to decouple

FIG. 12. Rényi-2 mutual information between a single qubit
inside a contiguous region A and the (infinite) complement Ā, as a
function of the distance x between the qubit and the boundary of
A. Numerical data from stabilizer simulations of the spacetime
dual of a random Clifford circuit (showing only x < jAj=2);
annealed average over 2 × 104 − 5 × 105 realizations depending
on size. At jAj ¼ 1024, the best fit to a power-law decay
is approximately x−1.2 (dotted line), though there is a sub-
stantial finite-size drift toward larger exponents. Also shown
for comparison are power laws x−1 (dashed line) and x−1.5

(dot-dashed line).
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the effects of (i) unitary dynamics vs edge decoherence,
(ii) average over the Haar measure vs the Clifford group,
and (iii) quenched vs annealed vs mixed averages, is an
interesting question for future studies. In particular, it
would be exciting to detect the logarithmic correction
predicted for this model, though the presence of other
power-law corrections due to randomness likely makes this
task very hard.
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