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From enzyme binding to robot grasping, the function of many mechanical systems depends upon large,
coordinated motions of their components. Such motions arise from a network of physical interactions in the
form of links (edges) that transmit forces between constituent elements (nodes) and have been fruitfully
modeled in known networks. However, the principled design of precise motions in novel networks is made
difficult by the number and nonlinearity of interactions. Here, we formulate a simple but powerful
framework for designing fully nonlinear motions using concepts from dynamical systems theory. We
demonstrate that a small network unit acts as a one-dimensional map between the distances across pairs of
nodes, and we represent the act of combining units as an iteration of this map. By tying the map’s attractors
and their stability to the shape and folding sequence in a network of combined units, we program the
precise coordinated motion between arbitrarily complex macroscopic shapes, the exact folding sequence
between the shapes, and exotic network behaviors such as a mechanical AND gate and a period-doubling
route to chaos. Further, we construct a unit with a 3-cycle that combines to form a lattice with any positive
integer period as a result of Sharkovskii’s theorem. Finally, we construct physical networks and analyze the
effect of bond elasticity to demonstrate the framework’s potential and versatility. The precise design of
shape change and folding sequence makes this framework ideal as a starting minimal model for many
applications, such as robotics, providing a promising direction for future work in metamaterials.
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I. INTRODUCTION

From cell membrane channels [1] to medical stents [2],
mechanical systems play crucial roles in the natural [3–5]
and engineered [6–8] world. What makes these systems
useful is their ability to change their geometry in a

coordinated way to amplify motion or to dramatically
change size. Despite their differences, each of these systems
can be represented as a mechanical network, where the rigid
edges encode constraints due to physical limbs or forces, and
the nodes represent joints or constituent elements. A simple
and powerful framework for understanding the relationship
between network structure and coordinated motion is
structural rigidity theory [9], originating from early and
seminal work by Maxwell [10–12]. Here, the difference
between the numbers of node coordinates and edges yields
the number of coordinated motions.
However, the successful design of coordinated motions

depends not only on their existence but also on the time-
evolving network geometry for their duration. The specific
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geometry is determined by the edge constraints, just as a
robot’s limbs constrain its configuration. Several works
provide design principles relating edge placement to node
motions in small networks [13–17] and to detailed single-
node trajectories or local perturbations in large networks
[18,19]. Other studies explore lattices in the study of
topological mechanics in networks [20–23] and in origami
[24–26], along with sequential and branched motions
[27–31], and they examine design considerations such as
flexible deformation [32], connection topology [33,34],
and environmental responsivity [35].
Many of these studies take advantage of the simple yet

powerful idea to decompose networks into properties of
unit cells and their interactions and to study lattices of—
and defects in—identical unit cells. In this work, we build
upon this idea to design complex unit cell properties that
yield exotic and chaotic behaviors in lattices of identical
cells. We further extend these ideas to program arbitrary
shape changes and folding sequences in networks by
designing and combining nonidentical cells. Excitingly,
many techniques are being developed to physically con-
struct complex networks [36–38]. As the interest in these
systems has grown across many disciplines, it is now timely
to develop a general framework for designing specific
geometric trajectories in large networks.
Here, we develop such a framework by designing

specific properties of shape change in unit cells and their
interactions. This paper is organized as follows. In Sec. II,
we review the mathematical and numerical foundations that
we use to study shape changes. In Sec. III, we formalize
principles of how the shape change of a network unit
comprising few elements determines the shape change of
larger networks comprising many such units. In Sec. IV, we
reverse engineer this process to design units that, when
combined, yield targeted global shape change. In Sec. V,
we explore the design space of these units to further design
the folding sequence of the network chains. Using these
principles, we finally design exotic and nonlinear functions
such as a mechanical AND gate in Sec. VI and chaotic
conformational change in Sec. VII, and we construct
physical networks in Sec. IX.

II. MATHEMATICAL FRAMEWORK

A. Constraint counting

Coordinated motions arise from the arrangement of
physical forces between constituent elements such as
tension and compression transmitted through a rigid robot
limb, which we model as distance constraints (edges)
between point particles (nodes). In two-dimensional space,
each node i has two coordinates, xi and yi, thereby allowing
two motions. Each edge k of length dk between nodes i and
j must keep a constant length,

ðxi − xjÞ2 þ ðyi − yjÞ2 ¼ d2k; ð1Þ

thereby removing one motion [Fig. 1(a)]. Hence, the
number of motions in a network without redundant con-
straints (see Sec. II C) is given by

M ¼ 2N − E; ð2Þ

where N, E, and M are the numbers of nodes, edges, and
motions, respectively. As such, a network of four nodes and
four edges contains 8 − 4 ¼ 4 motions [Fig. 1(b)]. Three
motions preserve the distance between all nodes through
translations and rotation and are called rigid body motions
[Fig. 1(c)]. The fourth motion changes the lengths l1 and l2
between unconnected nodes and is called a conformational
motion [Fig. 1(d)].
Throughout, we use the italicized variable d to refer to

the distance between nodes connected by an edge, the
unitalicized symbol d to refer to the differential operator,
and the variable l to refer to the distance between nodes that
are not connected by an edge.

B. Defining the set of motions

While we can visually intuit the motions of networks
comprising few nodes as in Fig. 1(d), we seek a quantitative
framework to define such motions for much larger net-
works. We outline a common framework from rigidity
theory [21] that relates changes in node coordinates to
changes in edge lengths. Then, the set of allowed node
motions are those that cause zero change in edge length.
For a set of N nodes V ¼ f1;…; Ng connected by E

edges E ⊆ V × V, any edge k connecting nodes i and j has
length dk according to Eq. (1). To relate changes in node

(a) (c)

(b) (d)

FIG. 1. Constraints and conformational motions. (a) Schematic
of a node and an edge embedded in two dimensions, where a
node adds two motions (one in each dimension), and an edge
removes the one motion that changes its length. (b) Network of
four nodes and four edges, yielding a total of four motions,
(c) three of which are rigid body motions and (d) one of which is a
conformational motion.
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coordinates to changes in edge lengths, we take the
derivative of Eq. (1) and divide by 2dk to yield

ðxi − xjÞ
dk

ðdxi − dxjÞ þ
ðyi − yjÞ

dk
ðdyi − dyjÞ ¼ ddk: ð3Þ

We now obtain the desired relationship between node
motions, dx and dy, to changes in edge length, ddk.
Next, we notice that if we know the node positions x and

y as constants, then the equation is linear in the node
motion variables: dx and dy. Because of this linearity, if we
write x as the 2N-dimensional vector of node positions, dx
as the 2N-dimensional vector of node motions, and dd as
the E-dimensional vector of changes in edge length, then
we can concisely write Eq. (3) for all edges as

Cdx ¼ dd: ð4Þ

Here, C ¼ CðxÞ is the compatibility matrix of size E × 2N
comprised predominantly of zeros [21]. For every kth row
in C, the only nonzero entries are ðxi − xjÞ=dk multiplying
dxi, ðxj − xiÞ=dk multiplying dxj, ðyi − yjÞ=dk multiplying
dyi, and ðyj − yiÞ=dk multiplying dyj. Hence, every row of
Eq. (4) is precisely Eq. (3) for the edge corresponding to
that row, and the compatibility matrix maps node motions
to bond extensions across the entire network.
Finally, because the edges are rigid, we set dd ¼ 0 such

that all infinitesimal node motions that cause zero change in
edge length must satisfy

Cdx ¼ 0: ð5Þ

As a result, the set of all infinitesimal motions that yield
zero change in edge length is given by the null spaceN ðCÞ.
In our simple four-node network, the three rigid body
motions in Fig. 1(c) and the one conformational motion
in Fig. 1(d) are all contained in the null space of C.
Collectively, these motions are referred to as zero modes.

C. Constraint-counting revisited

Through the compatibility matrix, we can make a more
nuanced statement about the number of coordinated
motions through the Calladine index theorem [21]. We
have already seen that the compatibility matrix maps node
motions to bond extensions in Eq. (4). Additionally, the
equilibrium matrix, Q ¼ C⊤, maps bond tensions t to node
forces f such that

Qt ¼ f : ð6Þ

Here, the null space of Q then represents vectors of bond
tensions that cancel out to yield zero net force at the nodes
and are referred to as states of self-stress (SSS) [21]. These
SSS often arise from overconstraining the network through

the addition of redundant bonds but can also arise from
geometric singularities through kinematic bifurcations [14].
The Calladine index theorem relates the columnspaces

and null spaces of C and Q. From the rank-nullity theorem,
we know that a system with S states of self-stress has the
relation

rankðQÞ þ S ¼ E; ð7Þ

and that a system embedded in two dimensions withM zero
modes has the relation

rankðCÞ þM ¼ 2N: ð8Þ

Because rankðQÞ ¼ rankðCÞ, we substitute to obtain

M ¼ 2N − Eþ S: ð9Þ

Hence, the number of motions is almost the same as for
constraint counting in Eq. (2) while accounting for SSS
(see Ref. [21] for additional details). Unless stated other-
wise, our systems have S ¼ 0.

D. Instantiating and simulating networks

Now that we have defined the space of allowed node
motions, how do we evolve our networks along their
conformational motion? Our approach involves four steps,
where the ultimate goal is to remove the rigid body motions
from the set of all motions to isolate the conformational
motion.
First, at simulation step k ¼ 0, we instantiate our net-

work by choosing the node coordinates xi½0� and yi½0� for
i ¼ 1;…; N, and by defining the edge placements between
node pairs. Importantly, we note that choosing the node
coordinates and edge placements determines the length dk
of each edge k. Hence, we are able to fully construct the
compatibility matrix C from the node coordinates and edge
placements alone.
Second, at simulation step k starting at k ¼ 0, we collect

all of the node positions into a 2N-dimensional vector x½k�,
construct our compatibility matrix C½k� ¼ Cðx½k�Þ, and
compute the set of allowed node motions through the null
space N ðC½k�Þ. We collect the basis set that spans the null
space as a 2N ×M matrix, P½k�.
Third, we define the basis set of rigid body motions

R½k� ¼ ½xx; xy; xrot½k�� and quotient them out of our set of
allowed motions to yield the conformational motion.
Numerically, we can implement this quotient by taking
the null space of the projection of R½k� onto P½k� as
N ðR½k�⊤P½k�Þ, collecting the basis vectors that span this
null space into an M ×M − 3 matrix Q, and projecting the
null space back into the coordinate space as

dx½k� ¼ P½k�Q: ð10Þ
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Unless stated otherwise, dx½k� will always be a vector
because our systems will always haveM ¼ 4motions, such
that removing the three rigid body motions will leave
behind one conformational motion. We normalize the
conformational motion such that dx̂½k� ¼ dx½k�=kx½k�k2.
Finally, we evolve the network forward by numerically

integrating the differential in Eq. (10). Specifically, at each
time step k, we evolve the node positions forward from x½k�
to x½kþ 1� using a tenth order Runge-Kutta scheme that
relies on the evaluation of steps 2 and 3 at each substep
[39]. The reason for such a high-order integration scheme
will become clear in the results, as high accuracy of
numerical integration is necessary for simulating networks
with chaotic behaviors.

E. Motivating statement and outline

Conformational motions endow networks with functions
that depend on targeted changes in shape. The design of a
specific shape change is determined by the node positions

and edge placements and is made difficult by the non-
linearity of the constraints, even in networks of few nodes
[Eq. (1)]. Given the vast design space in systems of many
nodes and edges [Fig. 2(a)], what are the organizational
principles that enable us to design precise shape changes
[Fig. 2(b)], folding sequences [Fig. 2(c)], and exotic and
nonlinear behavior [Fig. 2(d)]?

III. FOUR-BAR LINKAGE EXAMPLE

A. Motion of one unit acts as a map

To understand the principles that govern shape change in
networks of many elements, we first develop intuition
for shape change in units comprising a few elements.
Specifically, we study the shape change of the four-bar
linkage previously shown in Fig. 1. We observe that the
length between unconnected nodes—namely, length lk
between nodes 1 and 2, and lkþ1 between nodes 3 and
4—change throughout the motion (Fig. 3). If we plot these
two lengths along the motion, we obtain a curve that maps
length lk to length lkþ1 as a function

lkþ1 ¼ fðlkÞ: ð11Þ

The equation of this specific unit’s map is fðlkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − l2k=4

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2k=4

q
, and it is derived via the edge

constraints given in Eq. (1).

B. Combining units acts as a map iteration

This map immediately motivates a simple and powerful
way to construct a network of many nodes whose shape
change is fully known. Specifically, if we could somehow
combine these units such that the lengths of subsequent

(a)

(b)

(c)

(d)

FIG. 2. Motivation for the results. (a) Set of 338 nodes and 672
edges that, through our results, can be designed to have (b) precise
shape changes and (c) folding sequences. (d) Network that has
been designed to behave as a mechanical AND gate.

FIG. 3. Conformational motion as a map. Plot of the lengths lk
and lkþ1 between unconnected nodes in the example unit (Fig. 1)
as it changes shape.
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units are functions of the lengths of previous units, then we
could write the conformation of all units as a function of the
first, such that lkþ1 ¼ fkðl1Þ. Through this relation, we
could simply and explicitly parametrize the shape of the
entire network through a single parameter.
To achieve this relationship, consider two four-bar

linkage units, 1 and 2. Unit 1 has length l1 between nodes
1 and 2, and length fðl1Þ between nodes 3 and 4. Unit 2 has
length l2 between nodes 1 and 2, and length fðl2Þ between
nodes 3 and 4 (Fig. 4). If we set l2 of unit 2 equal to fðl1Þ of
unit 1, then we can combine units 1 and 2 by merging
nodes, by which we mean overlapping and gluing node 3 of
unit 1 and node 1 of unit 2 such that they become the same
node, and by overlapping and gluing node 4 of unit 1 and
node 2 of unit 2 in the same way. Thus, the lengths of unit 2
are determined by those of unit 1, such that fðl2Þ ¼
fðfðl1ÞÞ (Fig. 4, top).
Afterwards, we add another unit—unit 3—whose nodes

1 and 2 define length l3, and whose nodes 3 and 4 define
length fðl3Þ. By setting l3 of unit 3 equal to length fðl2Þ of
unit 2, we can combine units 2 and 3 by merging node 3 of
unit 2 with node 1 of unit 3 such that they become the same
node, and by merging node 4 of unit 2 with node 2 of
unit 3 in the same way. Thus, the shape of unit 3 is also
determined by that of unit 1, such that fðl3Þ ¼ f(fðl2Þ) ¼
fff½fðl1Þ�g (Fig. 4, middle).
We can continue this process as often as we like, such

that unit k combines with unit kþ 1 by first setting length
lkþ1 of unit kþ 1 equal to fðlkÞ of unit k, and then merging
node 3 of unit k with node 1 of unit kþ 1, and node 4 of

unit k with node 2 of unit kþ 1 (see Sec. XII of the
Supplemental Material [40] for an alternate formulation). In
this way, the shape of unit kþ 1 is determined by that of
unit 1, such that

lkþ1 ¼ fkðl1Þ; ð12Þ

as we show in the bottom of Fig. 4. This equation is referred
to as an iterated map in nonlinear dynamics.

C. Visualizing map iteration as a cobweb plot

To develop an intuition for the relationship between the
map iteration and the network chain’s geometry, we can
visually represent the map iteration as a cobweb plot [41],
which consists of horizontal and vertical lines in the plot of
lkþ1 ¼ fðlkÞ. Such visualizations will show us the proper-
ties of the map [Eq. (12)] that are useful to design.
To draw a cobweb plot, we start by drawing the map

between lengths lkþ1 ¼ fðlkÞ [Fig. 5(a)]. A cobweb plot
begins at the initial length l1 along the horizontal axis, and
we draw a vertical line up to the function f until it reaches
the ordered pair ðl1; fðl1ÞÞ. In our example, one of the
cobweb plots begins at l1 ¼ 1.95 and has a vertical line
drawn to the ordered pair ð1.95; fð1.95ÞÞ. Next, a hori-
zontal line is drawn to the line lkþ1 ¼ lk to reach the
ordered pair ðfðl1Þ; fðl1ÞÞ to prepare the coordinates for the
next function evaluation. This process of drawing a vertical
line to ordered pair ðlk; fðlkÞÞ, followed by a horizontal line
to the diagonal lk ¼ lkþ1, is repeated for as many units as
are in the network chain.
As a result, each ordered pair ðlk; fðlkÞÞ represents the

conformation of unit k, and the entire cobweb plot
represents the conformation of the entire network chain
at a particular initial length l1. In Fig. 5(a), we show three
cobweb plots corresponding to three network chains,
where l1 of unit 1 begins at l1 ¼ 2, l1 ¼ 1.95, and l1 ¼ffiffiffi
2

p
[Fig. 5(a)], with the corresponding network conforma-

tions shown in Figs. 5(b)–5(d), respectively. Importantly,
we note that these three networks are identical in terms of
bond lengths and connectivity. They only differ in the
initial length l1. Additionally, we note that the network
can continuously deform its geometry from Fig. 5(b) to
Fig. 5(d) along one conformational motion, without chang-
ing bond lengths or connection topology.
We highlight two key observations from these cobweb

plots. The first is that there are some points where all
units are identical, namely, l ¼ ffiffiffi

2
p

and l ¼ 2 [Figs. 5(b)
and 5(d)]. This property is, in some sense, ideal because we
can simply and precisely know the conformation of every
unit in the network. The second observation is that if the
initial length is in between these points such thatffiffiffi
2

p
< l1 < 2, then the units seem to converge to

ffiffiffi
2

p
[Fig. 5(c)]. This property clues us in to how we can design
the folding sequence of the network.

FIG. 4. Combine units by merging nodes. A unit kþ 1 is
combined with unit k by merging nodes. First, the length lkþ1

between nodes 1 and 2 of unit kþ 1 is set equal to the length
fðlkÞ between nodes 3 and 4 of unit k. Then, node 2 of unit kþ 1
is merged to node 4 of unit k by overlapping and gluing the nodes
such that they become the same node, and node 1 of unit kþ 1 is
merged to node 3 of unit k in the same manner.
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D. Network conformation known at fixed points

While it is true that the conformation of every unit k is
determined by Eq. (12), the continued analytical or
numerical evaluation of the map f to determine length
lkþ1 ¼ fkðl1Þ is quite cumbersome. However, there are
special lengths l� known as fixed points that map back to
themselves such that

l� ¼ fðl�Þ; ð13Þ

where the conformation of every unit is easily known. This
is because if fðl�Þ ¼ l�, then fkðl�Þ ¼ l�, and every unit is
in the same conformation.
In our four-bar linkage example, these fixed points are

significant because every unit takes on an identical,
repeating conformation, which we will refer to as a periodic
state. We show the network in the l• ¼ 2 periodic state in
Fig. 5(b) and in the l∘ ¼ ffiffiffi

2
p

periodic state in Fig. 5(d). In
between these two states is an intermediary conformation
when

ffiffiffi
2

p
< l1 < 2, as shown in Fig. 5(c). Here, the

network is still constructed from the same four-bar linkage
unit with the same bond lengths and connection topology as
the previous and subsequent units. We refer to this con-
struction as one having a periodic structure. However,
because the length of any unit k does not repeat across the
network, it does not have a periodic state.
The motivation and significance for studying these fixed

points is that at the fixed points, the conformation of every
unit is simply and completely known. Hence, in Sec. IV, we

fulfill our first aim, to design precise shape changes in
networks of many elements [Fig. 2(b)], by designing units
that adopt precise geometries at a common fixed point.

E. Folding sequence determined by stability

In addition to the conformation of the network chain, the
iterated map can also tell us about the change in con-
formation, or the folding sequence, of the network. This
change is simply understood by taking the derivative of
Eq. (11) to yield the slope

sk ¼
dlkþ1

dlk
¼ f0ðlkÞ: ð14Þ

Intuitively, for any unit k, the slope simply tells us whether
a perturbation in length lk yields a larger or smaller
perturbation in length lkþ1. If the slope jskj < 1, then the
magnitude of perturbation decreases, and the map at the
point lk is said to be stable. If the slope jskj > 1, then
the magnitude of perturbation increases, and the map at lk is
said to be unstable. If jskj ¼ 1, the magnitude of perturba-
tion remains the same, and the map is said to be marginally
stable. When considering this same change in the iterated
map equation for the entire network chain, we obtain

s ¼ dlkþ1

dl1
¼

Ykþ1

i¼1

sk; ð15Þ

which tells us whether a perturbation in l1 will be larger or
smaller than a perturbation in lkþ1.

(a) (b)

(c)

(d)

FIG. 5. Shape and folding sequence of iterated maps. (a) Plot of the curve lkþ1 ¼ fðlkÞ for the four-bar linkage example, with three
cobweb plots drawn at initial lengths of l1 ¼ 2, 1.95, and

ffiffiffi
2

p
. In diagram (b), we show that, at an initial length of l1 ¼ 2, all subsequent

units k also have the identical shape lk ¼ 2 because fð2Þ ¼ 2. In diagram (c), at an initial length of
ffiffiffi
2

p
< l1 ¼ 1.95 < 2, the subsequent

units are no longer identical, and they converge towards the stable fixed point at l∘ ¼ ffiffiffi
2

p
. In diagram (d), at an initial length of l1 ¼

ffiffiffi
2

p
,

all subsequent units k also have the identical shape lk ¼
ffiffiffi
2

p
.
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If jsj > 1, the perturbation in lkþ1 will be larger than that
at l1, and the network will begin changing conformation
at the lkþ1 end. In our specific example, the fixed point
l• ¼ 2 is unstable because the slope of the map has
magnitude greater than 1. Hence, in Eq. (15), we observe
that jdlkþ1j > dl1, and we expect the network at the fixed
point l• ¼ 2 in Fig. 5(b) to begin folding from the lkþ1 end,
which is true [Fig. 5(c)].
If jsj < 1, the perturbation in lkþ1 will be smaller than

that in l1, and the network will begin changing conforma-
tion at the l1 end. In our specific example, the fixed
point l∘ ¼ ffiffiffi

2
p

is stable because the slope of the map has
magnitude less than 1. Hence, in Eq. (15), we observe that
jdlkþ1j < dl1, and we expect the network at the fixed point
l∘ ¼ ffiffiffi

2
p

in Fig. 5(d) to begin folding from the l1 end, which
is true [Fig. 5(c)].
The motivation and significance of studying the stability

is that the folding sequence of the network is determined by
the stability of the unit maps. Hence, in Sec. V, we fulfill
our second aim, to design folding sequences [Fig. 2(c)], by
designing units that are stable or unstable at a particular
geometry.

IV. DESIGNING NETWORK SHAPE

Using the fact that we know the conformation of all units
when at a fixed point, we seek to achieve our first aim: to
design the shape of the network chain when the units are at
the fixed points [Fig. 2(b)]. Recalling our previous four-bar
linkage example, we immediately encounter a problem:
Identical units have identical geometries at fixed points,
such that the network chain forms a straight line [Figs. 5(b)
and 5(d)]. Thus, we are motivated to design our own,
nonidentical units that share fixed points but differ in their
precise geometry.

A. Motivating the unit design procedure

To achieve desired shape changes in the network chain,
we require that the composite units satisfy three key
properties. We approach these properties in a constructive
manner, beginning with a unit comprising a set of three
nodes—1, 2, and 3—and defining length lk between nodes
1 and 2, length lkþ1 between nodes 2 and 3, and length ck
between nodes 1 and 3 (Fig. 6). We begin with three nodes
because that is the smallest number of nodes whereby we
can define three independent lengths, lk, lkþ1, and ck, to
achieve three desired properties of unit design that yield
desired shape changes. We describe these three properties
one at a time.
The first property is that, among this set of nodes, there

exist two conformations (node coordinate positions) where
the lengths between unconnected nodes, lk and lkþ1, are
equal. We refer to the length at the first such conformation
as the start fixed point, l•, and the length at the second such
conformation as the end fixed point, l∘ [Fig. 6(a)]. This

property ensures that, even if we construct and combine
nonidentical units, they will all share identical start and end
fixed points. This sharing means that if one unit is in a
conformation where a length is at a fixed point such that
lk ¼ lkþ1 ¼ l• or lk ¼ lkþ1 ¼ l∘, then all units, despite
being nonidentical, also exist in a conformation where
their lengths are at l• or l∘, respectively. Importantly, we
note that because fixed points require the lengths lk and lkþ1

to be identical such that lk ¼ lkþ1, the three nodes will form
an isosceles triangle at the start coordinates (with isosceles
side l•) and end coordinates (with isosceles side l∘).
The second property differentiates our designed unit

from the example four-bar linkage unit, such that we want a
design parameter that changes the shape of the unit, and
thereby the network, at the fixed points. Hence, the second
property is that we have a parameter c through which we
can design the shape of the unit at the start fixed point as c•

and at the end fixed point as c∘ [Fig. 6(b)].
The third and final property is that the unit achieves

properties 1 and 2 through one conformational motion.
This property allows us to write the lengths between
unconnected nodes of a unit as a map [Eq. (11)], thereby

(a)

(b)

(c)

FIG. 6. Properties of unit design. We show a drawing of a unit
with three nodes, 1, 2, and 3, with length lk between nodes 1 and
2, length lkþ1 between nodes 2 and 3, and length ck between
nodes 1 and 3. We seek to design units (a) that start and end at
fixed points where lk ¼ lkþ1 ¼ l• and lk ¼ lkþ1 ¼ l∘ are valid
conformations, (b) whose start and end geometry can be pro-
grammed to start at c• and end at c∘, and (c) that can transition
from the start to the end shape with one conformational motion.
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allowing us to write the lengths across the entire network as
an iteration of this map, precisely as in Fig. 4. Because
adding edges between nodes 1, 2, and 3 would interfere
with desired properties 1 and 2, we constrain our unit to
have one conformational motion by adding additional
nodes 4 and 5 that are fully connected to nodes 1, 2,
and 3 [Fig. 6(c)]. The resulting network will have five
nodes corresponding to ten state variables, and six edges
corresponding to six constraints, leaving us with 10–6 ¼ 4
total motions, and thereby three rigid body motions and one
conformational motion.

B. Unit design procedure

Now that we have motivated the desired properties of our
unit, we achieve these properties using a method from prior
work [14]. We notice that our base unit forms a triangle
with nodes 1, 2, and 3 as the vertices, and that properties 1
and 2 specify the lengths of the triangle edges at the start
and end conformations (Fig. 6). By specifying the lengths
of all triangle edges, we also specify all node coordinates
up to isometric transformations (i.e., translation, rotation,
mirror images). Hence, in our unit, designing a unit whose
lengths between node pairs are fixed at the start and end
conformation is equivalent to designing a unit whose node
coordinates are fixed at the start and end conformation.
Hence, we begin our unit design procedure by defining

ðx•i; y•iÞ as the start coordinate of node i and by defining
ðx∘i ; y∘i Þ as the end coordinate of node i [Fig. 7(a)]. First, we

use trigonometry to convert the start edge lengths, l•; l•; c•,
into start node coordinates, ðx•1; y•1Þ; ðx•2; y•2Þ; ðx•3; y•3Þ, and
the end edge lengths, l∘; l∘; c∘, into end node coordinates,
ðx∘1; y∘1Þ; ðx∘2; y∘2Þ; ðx∘3; y∘3Þ. In this particular example, we
choose l• ¼ ffiffiffi

3
p

to be the length of the start fixed point, and
l∘ ¼ 1.7 ×

ffiffiffi
3

p
to be the length of the end fixed point. We

also choose c• ¼ ffiffiffi
3

p
to be the start shape parameter and

vary the end shape parameter c∘ across units to change the
units’ shape. These specific lengths were chosen for the
purpose of demonstration, and the method does not require
these particular lengths.
Now that we have chosen the coordinates for nodes i ∈

f1; 2; 3g at the start configuration ðx•i; y•iÞ and end con-
figuration ðx∘i ; y∘i Þ that satisfy properties 1 and 2, we must
decide on the position of the two extra nodes j ∈ f4; 5g
while ensuring that the edges have the same lengths at the
start and end configurations. Otherwise, the edges cannot
be rigid. This condition is enforced by first setting the
squared length of the edges at the start coordinates equal to
the squared length of the edges at the end coordinates as

ðx•i − x•jÞ2 þ ðy•i − y•jÞ2 ¼ ðx∘i − x∘jÞ2 þ ðy∘i − y∘jÞ2; ð16Þ

where ðx•i; y•iÞ and ðx∘i ; y∘i Þ are fixed constants [Figs. 8(a)
and 8(d)]; we then solve for the start and end positions of
the extra nodes, ðx•j; y•jÞ and ðx∘j; y∘jÞ. The solutions of
ðx•j; y•jÞ and ðx∘j; y∘jÞ for Eq. (16) then define the start and
end positions of the added node j that do not change the

Unit(a) (b) (c)

(d) (e) (f)

(g)

FIG. 7. Designing unit geometry at fixed points. (a) Node coordinates that start at a fixed point l• and end at another fixed point l∘,
where the length c is larger at the end than at the start such that c∘ > c•. In (b), the maroon curve is the solution space. By placing extra
nodes 4 and 5 on the solution space and fully connecting them to nodes 1, 2, and 3 with rigid bonds, (c) there exists an end position of
nodes 4 and 5 that keeps all bond lengths the same. (d) Another unit with the same start fixed point l• and end fixed point l∘, but with the
length c chosen to be smaller at the end than at the start such that c∘ < c•. (e) By placing extra nodes 4 and 5 on the solution space and
connecting them to nodes 1, 2, and 3 with rigid edges, (f) there exists an end position that retains all bond lengths. (g) Plots of the
conformational motion of both units as they change shape from the start fixed point to the end fixed point.
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length of any edges, allowing them to be rigid (see Sec. II of
Ref. [40] for details on solving the equations, and Sec. VIII
of Ref. [40] for how the node placement fixes the rod
lengths).
The solutions to Eq. (16) have a very particular structure.

At the start position, it feels intuitive that we should be able
to place our extra node j at any location ðx•j; y•jÞ and
connect it with edges of length dk that are equal to the
distances between nodes i and j. However, when we then
move nodes i ∈ f1; 2; 3g to their desired end position
ðx∘i ; y∘i Þ, we find that there are typically no end positions
for the extra node ðx∘j; y∘jÞ that keep the edge lengths the
same at dk. Intuitively, this lack of solution arises from the
fact that while there are three added edges from nodes i ∈
f1; 2; 3g to node j [and thereby three constraints to satisfy
from Eq. (16)], there are only four variables for the extra
node positions (x•j; y

•
j; x

∘
j; y

∘
j). Hence, there is typically only

a one-dimensional solution for the extra node positions,
which is defined by a conic section due to the constraints
being quadratic [14]. We call the set of start positions
ðx•j; y•jÞ satisfying Eq. (16) the solution space [Figs. 7(b)
and 7(e)]. By placing our two nodes j ∈ f4; 5g on the
solution space [Fig. 7(b)], our unit reaches the desired final
position [Fig. 7(c)] and does so along one conformational
motion [Fig. 7(g)].
This procedure can now be used to design nonidentical

units with the same fixed points l• and l∘ but a different end
geometry given by the shape parameter c∘. In contrast to
the first unit that we designed where the end shape
parameter was larger than the start shape parameter

[c∘ > c•, Figs. 7(a)–7(c)], we can design a second unit
where the end shape parameter is smaller than the start
shape parameter [c∘ < c•, Figs. 7(d)–7(f)]. Because the two
examples have different end positions, solving Eq. (16)
yields different solution spaces [Fig. 7(b) vs Fig. 7(d)]. By
adding nodes j ∈ f4; 5g on the solution space for the first
unit [Fig. 7(b)], the unit has the same bond lengths between
the first start and end positions [Fig. 7(c)]. If we place extra
nodes j ∈ f4; 5g on the solution space for the second unit
[Fig. 7(d)], then the unit has the same bond lengths between
the second start and end positions [Fig. 7(f)].
This method is not specific to the two examples shown in

Fig. 7. For any start ðx•i; y•iÞ and end ðx∘i ; y∘i Þ positions, we
can solve Eq. (16) for the solution space, place extra nodes
j ∈ f4; 5g along the solution space, connect all nodes j to
all nodes i, and guarantee that the bond lengths at the start
and end positions are equal. The solution space has two
important implications. First, if we place the extra nodes j
outside of the solution space, then we are guaranteed that
our nodes will not go from the start positions ðx•i; y•iÞ to the
end positions ðx∘i ; y∘i Þ. This is because Eq. (16) defines all
placements of node j that preserve edge length. By placing
node j outside of the solution space, we are guaranteed
to fail at finding an end position of node j that maintains
edge length. The second implication is that different desired
start and end positions for nodes i define different solu-
tion spaces. Between examples 1 and 2, the different
end positions ðx∘i ; y∘i Þ generate different solution spaces
[Fig. 7(b) vs Fig. 7(e)]. This is because the constant
parameters of Eq. (16) changed, thereby changing the

(a) (b)

FIG. 8. Representing the combining of designed units as an iterated map. (a) Combining units by merging nodes. A unit kþ 1 is
combined with unit k by merging nodes. First, the length lkþ1 between nodes 1 and 2 of unit kþ 1 is set equal to length fðlkÞ between
nodes 2 and 3 of unit k. Then, node 2 of unit kþ 1 is overlapped and glued together with node 3 of unit k to become a single node, and
node 1 of unit kþ 1 is overlapped and glued together with node 2 of unit k. (b) Cobweb plot of the curve lkþ1 ¼ fðlkÞ for the designed
unit, with three cobweb plots drawn at initial lengths of l1 ≈ 1.73, 2.93, and 2.94, with a drawing of the network corresponding to each
cobweb plot.
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form of the solution space. Varying c∘ generates a range of
solution spaces from which we construct our units.

C. Combining designed units with map iteration

Now that we have designed units that move from a
desired start fixed point l• to a desired end fixed point l∘
(property 1) and from a desired start shape c• to a desired
end shape c∘ (property 2) along one conformational motion
(property 3), we need to test whether we can construct
network chains as in Fig. 5. To do so, we take our first
designed unit from Fig. 7(b) and combine many such units
in a manner similar to our four-bar linkage example,
whereby we write the conformation of the kth unit as
repeated functions of the starting length l1.
As in the four-bar linkage example in Sec. III B, we

combine units by merging nodes. We begin with our
designed unit 1, with length l1 between nodes 1 and 2,
and length fðl1Þ between nodes 2 and 3 [Fig. 8(a)]. We then
take a second unit with length l2 between nodes 1 and 2, and
length fðl2Þ between nodes 2 and 3, and set l2 ¼ fðl1Þ.
Finally,we combine units 1 and 2 bymerging node 2 of unit 1
with node 1 of unit 2, and by merging node 3 of unit 1 with
node 2 of unit 2. In Fig. 8(a), the nodes to be merged are
marked with dashed gray lines. By “merge,” we again mean
that wemove unit 2 over to unit 1 and overlap the nodes to be
merged (e.g., node2of unit 1 has the same spatial coordinates
as node 1 of unit 2) and glue them together such that the
overlapped nodes become the same node. In this manner, we
can write the conformation of unit 2 as given by fðl2Þ as a
function of l1 through fðl2Þ ¼ f(fðl1Þ).
To continue the process of combining units, we add

another unit, unit 3, with length l3 between nodes 1 and 2,
and length fðl3Þ between nodes 2 and 3. As before, we set
length l3 of unit 3 equal to length fðl2Þ of unit 2, and
combine units 2 and 3 by merging node 2 of unit 2 with
node 1 of unit 3, and node 3 of unit 2 with node 2 of unit 3
[Fig. 8(a)]. In this manner, we can write the conformation
of unit 3 as given by fðl3Þ as a function of l1 through
fðl3Þ ¼ f(fðl2Þ) ¼ f(fðfðl1ÞÞ).
To continue the process of combining units more

generally, we add unit kþ 1 with length lkþ1 between
nodes 1 and 2, and length fðlkþ1Þ between nodes 2 and 3.
As before, we set length lkþ1 of unit kþ 1 equal to length
fðlkÞ of unit k, and combine units k and kþ 1 by merging
node 2 of unit k with node 1 of unit kþ 1, and by merging
node 3 of unit k with node 2 of unit kþ 1 [Fig. 8(a), see
Sec. IX of Ref. [40] for extra details on how units are
combined]. In this manner, we can write the conformation
of unit kþ 1 as given by fðlkþ1Þ as a function of l1 through
the iterated map fðlkþ1Þ ¼ fkðl1Þ [Eq. (12)].
Hence, all of the intuitions that we derived regarding the

four-bar linkage units in Sec. III translate directly to our
own designed units. Specifically, the intuitions that units
can be combined such that the shape of unit kþ 1 can be
written as the iterated map lkþ1 ¼ fðlkÞ in Sec. III B, that

the network’s conformational change can be visualized
according to a cobweb plot in Sec. III C, that units have
identical states at fixed points in Sec. III D, and that the
network’s folding sequence is determined by the stability of
the units in Sec. III E, all translate directly to our designed
units (Fig. 8).

D. Motivating the network design procedure

Now that we can design general shape changes in units,
how can we select the specific units that will yield networks
with desired global shape? For example, how do we design
nonidentical units that combine to form a network chain
that folds into a complex shape such as a quadrifolium
[Fig. 9(a)]? To reverse engineer this process, we can reverse
the order of this question to ask the following: How can we
decompose a desired global shape into a network compris-
ing specific unit shapes?
To answer this question, first recall fromSec. III D that at a

fixedpoint, all unit geometries are knownbecause the lengths
lk and fðlkÞ are equal to either the start fixed point l• or the
end fixed point l∘. Second, recall from Sec. IV B that we can
choose the start and end values of the shape parameter—c•

and c∘, respectively—at the start and end fixed points
(Fig. 7). By choosing units whose shape parameters at the
end fixed point follow along a trace [Fig. 9(a)], we can design
the global shape of the network chain.

E. Selecting units that yield global network shape

Hence, we seek the end node positions of all units to
trace our desired shape at the end fixed point, which we
accomplish by tessellating the end global shape with the
end node positions ðx∘i ; y∘i Þ while enforcing that these
positions are at the end fixed point l∘. To demonstrate this
process, we construct a network that folds into a quad-
rifolium as the desired final shape [Fig. 9(a), black]. The
specific equation of the trace is given by

r ¼ a sinð2θÞ; 0 ≤ θ < 2π; ð17Þ

where r and θ represent the radial and angular coordinates
of the curve, and we use a ¼ 16.2 in our example.
To convert this curve into a network, we tessellate the

curve with node coordinates ðx∘i ; y∘i Þ [Fig. 9(a)]. In this
figure, each triangle corresponds to the final shape of one
unit, where the corners are the final node positions ðx∘i ; y∘i Þ,
the isosceles sides are lk ¼ lkþ1 ¼ l∘ (gold), and the non-
isosceles side is the shape variable c∘ (purple). The reason
why each unit forms an isosceles triangle with isosceles
edges between nodes 1 and 2, and between nodes 2 and 3,
is because, at a fixed point, the length lk between nodes 1
and 2 and the length lkþ1 between nodes 2 and 3 are equal
to the fixed point length lk ¼ lkþ1 ¼ l∘. The reason why the
units are merged along the isosceles edge is because the
units combine by merging nodes that define lk and lkþ1,
which, at the fixed point, is the isosceles edge.

KIM, LU, BLEVINS, and BASSETT PHYS. REV. X 12, 011042 (2022)

011042-10



Now that we have the desired end coordinates for nodes
1, 2, and 3 of each unit, we construct each unit according to
Sec. IV B by placing two nodes j ∈ f4; 5g satisfying

Eq. (16), and we combine units precisely according to
Sec. IV C by merging the nodes corresponding to the
shared corners between neighboring triangles to form a
network [Fig. 9(b)]. At the start fixed point lk ¼ l•, the
network begins as a line because all lengths c ¼ l•. At
the end fixed point lk ¼ l∘, the shape variables reach their
programmed length c ¼ c∘, thereby forming the quadrifo-
lium [Fig. 9(c)].

F. Summary of network shape design

In summary, we successfully achieved our first goal, to
understand the organizational principles that enable us to
design precise shape changes [Fig. 2(b)] by designing units
with one conformational motion that transition between
two fixed points with tunable shape (Sec. IV B), and by
choosing and combining nonidentical units whose end
shapes trace out the desired shape (Sec. IV E).

V. DESIGNING THE CONFORMATIONAL
SEQUENCE USING STABILITY

Now that we have the principles for constructing com-
plex shape changes, we move on to our second aim, to
design a network’s folding sequence by designing the
stability of the maps of its component units [Fig. 2(c)].
Recall from Sec. III that the folding sequence of a network
depends on the stability of the maps of the component
units. If all units are in a conformation that is stable
(i.e., jdlkþ1=dlkj < 1), then a perturbation at l1 decays
across units, and the network begins folding at the l1 end
[Fig. 5(d)]. Alternatively, if all units are in a conformation
that is unstable, then a perturbation at l1 grows across units,
and the network begins folding at the lkþ1 end [Fig. 5(b)].
How can we tune the stability of our units’ maps to design
the folding sequence?

A. Motivating stability design

To design a unit’s stability, we must first keep in mind
that there already exist constraints from designing a unit’s
shape in Sec. IV. In Sec. IV B, we already designed our
unit comprising three nodes, i ∈ f1; 2; 3g, to successfully
transition from desired start positions ðx•i; y•iÞ to the desired
end positions ðx∘i ; y∘i Þ along one conformational motion
(Fig. 6). To do this, we added two additional nodes j ∈
f4; 5g and fully connected them to the first three nodes for a
total of six edges E ¼ f1; 2; 3g × f4; 5g to yield one
conformational motion [Fig. 6(c)].
We found that these additional nodes could not be placed

arbitrarily in space. Once we fix the start positions of the
added nodes, ðx•j; y•jÞ, we also fix the edge lengths, and
most choices of edge lengths cannot remain constant at the
start and end positions according to Eq. (16). Instead, in
Sec. IV B, we found that the start positions of each of the
added nodes must lie on a one-dimensional conic section,

(a)

(b)

(c)

FIG. 9. Designing precise network geometry. (a) To design a
network chain that forms a desired curve, we tessellate the curve
with isosceles triangles, where each triangle represents a unit.
The gold edges represent lk and lkþ1, while the purple edges
represent c. (b) The units are then constructed by placing extra
nodes along the solution space defined by the start and end
positions (Sec. IV B). Then, the units are combined into a chain
by merging nodes (Sec. IV C). (c) The resulting network consists
of nonidentical units that have different bond lengths, and
thereby, the network has nonperiodic structure. However, because
all units are designed to share the same start fixed point l• and end
fixed point l∘, the network starts at a periodic state at lk ¼ l• and
undergoes one conformational motion to form the desired curve
at the second periodic state lk ¼ l∘.
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the solution space, for the subsequently fixed edge lengths
to remain rigid at the start and end positions (Fig. 7).
An immediate question that arises is precisely where on

the solution space should nodes j ∈ f4; 5g be placed? If
each node j can be placed anywhere along the one-
dimensional solution space, then for the two added nodes,
we are left with a two-dimensional parameter space (one-
dimensional solution space per node) along which we can
add nodes j ∈ f4; 5g. In addition to the unit shape, can we
use these two dimensions to design the stability of the unit
at these shapes?

B. Searching the parameter space

The positions of the added nodes determine the stability
of a unit, which in turn determines the sequence of the full
network’s shape change. To design a unit’s stability, we
establish general principles of node placement through the
detailed study of one unit whose initial and final node
positions generate a circular solution space, along which
we add node 4 at θ4 and node 5 at θ5 [Fig. 10(a)]. At each
position 0 ≤ θ4; θ5 < 2π, we connect the added nodes j ∈
f4; 5g to all of the original nodes i ∈ f1; 2; 3g and compute
the slope of length changes as a function of the node
positions [Figs. 10(b) and 10(c)].
We observe consistent patterns of node positions for

units that are maximally stable (superstable [42]), where
jdl2=dl1j ¼ 0. Similar to a stable configuration where a
perturbation in length l1 decays as it propagates to length l2,

a superstable configuration means that a perturbation in
length l1 yields no response to linear order in length l2.
Hence, a network comprising units in superstable configu-
rations will fully localize their shape change at the l1 end to
linear order. We observe that superstable units entail that
both added nodes are colinear with the node i ¼ 1 that
exclusively defines l1, or that at least one added node is
colinear with both nodes i ¼ 2, 3 defining l2 [Fig. 10(e)].
The former condition guarantees that the sole motion of
node 1 (perpendicular to the colinearity) is a conforma-
tional motion, such that jdl1j ≥ 0 while jdl2j ¼ 0. The
latter condition guarantees that the motion of nodes 2 and 3
is perpendicular to the direction of their length, such that
jdl2j ¼ 0 while jdl1j ≥ 0. Hence, we ensure stable units in
the quadrifolium by placing nodes near the first colinear
condition (Fig. 9).
We also observe consistent patterns of node positions for

units at the transition between stable and unstable (margin-
ally stable) where jdl2=dl1j ¼ 1 [Fig. 10(d)]. Marginally
stable units encompass all symmetric node positions
θ4 ¼ −θ5, whereby the positions of the added nodes are
mirrored across the vertical axis. Additionally, marginally
stable units consist of more complex asymmetric node
positions [Fig. 10(d)].

C. Summary of stability design

In summary, we successfully achieve our goal of design-
ing not only the shape [Fig. 2(b)] but also the folding

(a)

(b)

(c) (d) (e)

FIG. 10. Designing the sequence of conformational change. (a) Schematic of the addition of two nodes along the solution space,
parametrized by angles θ4 and θ5. (b) At the start position, connecting the added nodes to the initial nodes with edges yields one
conformational motion, characterized by a slope of dl2=dl1. (c) Phase diagram of the slope magnitude at all placements of added nodes.
The solid blue line marks the transition between stable and unstable. The red dashed line marks where the slope equals zero. (d) Units
with jslopej ¼ 1 and (e) with jslopej ¼ 0.
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sequence [Fig. 2(c)] of a network chain by designing the
stability of its component units. We find that stable units
can be designed through the colinear placement of added
nodes 4 and 5 [Fig. 10(e)], while marginally stable units
can be designed through the symmetric placement of added
nodes [Fig. 10(d)]. Importantly, these principles generalize
to solution spaces that are not circles, and we used these
principles to choose the stability of the units in Fig. 7 and in
the quadrifolium Fig. 9.

VI. SUPERSTABILITY AND THE MECHANICAL
AND GATE

A. Motivating superstable convergence

Now that we have achieved the design of network shape
and folding sequence [Figs. 2(b) and 2(c), we move on to
the discovery of exotic and nonlinear behavior [Fig. 2(d)].
We have already encountered one such inherently non-
linear phenomenon through superstable unit conformations
[Fig. 10(e)], where a change in length l1 yields no change
in length l2 to linear order. This means that a network
comprising units at a superstable fixed point will con-
verge to that fixed point at a faster-than-linear rate. What
implications does superstability have for our ability to
design networks with nonlinear behavior?

B. Utilizing superstable convergence

Networks at a superstable fixed point demonstrate a
qualitatively more extreme localization of shape change
than those at merely stable fixed points. To formalize this
concept, we take the second-order Taylor series expansion of
a unit’s map, lkþ1 ¼ fðlkÞ, about a fixed point l� with slope
s ¼ f0ðl�Þ and half of the curvature t ¼ f00ðl�Þ=2 to yield

Δlkþ1 ≈ sΔlk þ tΔl2k: ð18Þ

A network at a stable fixed point (e.g., s ¼ 0.1) converges
linearly because the quadratic term Δl2k ≪ Δlk becomes
negligibly small, such that an infinitesimal perturbation dl1
cannot be registered to numerical precision (10−16) after unit
k ¼ 16. In contrast, a network at a superstable fixed point
[s ¼ 0, Figs. 11(a) and 11(b)] converges quadratically
because the linear term vanishes, such that an infinitesimal
perturbation dl1 cannot be registered in unit k ¼ 2. Even a
finite displacement Δl1 ¼ 0.1 propagates to a Δlkþ1 that is
smaller than 10−16 after unit k ¼ 4, 10−32 after unit k ¼ 5,
and 10−64 after unit k ¼ 6 [Fig. 11(c)]. As a reference, the
ratio of diameters between a classical electron and the
observable universe is around 10−42.
This severe localization of shape change renders the lkþ1

end effectively rigid, thereby allowing us to design net-
works with unexpected and nonlinear functions. Here, we
demonstrate a mechanical instantiation of an AND gate,
which is a binary operator with one Boolean output that
depends on two independent Boolean inputs. The Boolean
states are the unit’s two fixed points, l• ¼ ffiffiffi

3
p

and l∘ ¼ 3
[Fig. 11(a)], and each of the gate’s inputs is the length l1 of
a network [Fig. 11(b)]. We combine the two networks by
merging the indicated nodes at and near length l11 to form
our mechanical AND gate [Figs. 11(d)–11(i), see Sec. XI of
Ref. [40] for a physical network).
By constraint counting from Eq. (2), the AND gate should

have one finitely deformable conformational motion, even
if it exists at a kinematic bifurcation allowing for two
infinitesimal motions [21]. However, because of the quad-
ratic convergence to the fixed point l•, the AND gate begins

(a) (d)

(b)

(c)

FIG. 11. Superstability and extreme localization through faster-than-exponential convergence. (a) Conformational motion of a unit
from the superstable fixed point l• to the unstable fixed point l∘. (b) Copies of this unit combine to form a network chain that
(c) converges to l• at a faster-than-exponential rate. (d) Two of these network chains, a and b, combine to form a mechanical AND gate,
where the inputs la and lb are the l1 ends of each network. From i, the gate has two independently deformable conformational motions to
form any linear combination of iia and iib. The signal can only continue to lo when both inputs are open at la ¼ lb ¼ 3.
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at a geometry that effectively has two independent and
finite motions [Fig. 11(d-iia) and 11(d-iib)] and ends at
a geometry that only has one such motion at l11
[Fig. 11(d-iii)]. Hence, the AND gate can finitely access
all four combinations of Boolean inputs, while only one
allows for the propagation of the mechanical signal.

VII. PERIOD DOUBLING ROUTE TO
MECHANICAL CHAOS

A. Motivating chaotic divergence

At the opposite extreme, networks comprising units that
lose their stability undergo divergent shape changes that are
unpredictable and chaotic. Until now, every unstable fixed
point has been accompanied by a stable one, to which each
subsequent unit kþ 1 eventually converged. If there is no
accompanying stable fixed point, to where would the units
converge?

B. Designing chaotic divergence

To answer this question, we design the slope of a unit at a
fixed point by drawing on prior work [14] to constrain the
motion of unconnected nodes i ∈ f1; 2; 3g. We define l1
and l2 to be the length between node pairs f1; 2g and
f2; 3g, respectively, and place the nodes at ðxi; yiÞ such that

the lengths equal a fixed point l1 ¼ l2 ¼ 1 [Fig. 12(a)]. We
then choose the instantaneous node motions ðdxi; dyiÞ to
achieve a desired slope s ¼ dl2=dl1, where we fix dl1 ¼ 1
as constant, and vary dl2. To achieve ðdxi; dyiÞ as the sole
conformational motion, we connect all nodes i to an added
node j and solve for the positions ðxj; yjÞ and motions
ðdxj; dyjÞ that keep all edge lengths constant by satisfying
the derivative of Eq. (1):

ðxi − xjÞðdxi − dxjÞ þ ðyi − yjÞðdyi − dyjÞ ¼ 0: ð19Þ

We call these node positions ðxj; yjÞ the solution
space, along which we add two nodes j ∈ f4; 5g to yield
a network with one conformational motion that achieves
the designed slope at the fixed point [Fig. 12(b), see Sec. I
of Ref. [40] for the design algorithm, Sec. III for the
analytical form of the iterated map, Sec. IV for conditions
for a unit conformational motion to act as a map, and
Ref. [14] for additional details].
For a unit designed with a stable fixed point ðjsj < 1Þ,

subsequent units converge to the fixed point and assume the
same shape [Fig. 12(b)]. As we design units with more
negative slopes s < −1, the fixed point undergoes a
bifurcation and becomes unstable, giving birth to a stable
2-cycle where every second unit in the network repeats

(a)

(b)

(c)

(d) (e)

FIG. 12. Mechanical chaos. (a) Schematic of the stability design process at the fixed point l1 ¼ l2 ¼ 1, with the designed
instantaneous node motions in black and colored arrows, the corresponding solution spaces in colored lines, and the positions of the
added nodes for each unit in colored nodes. (b) Slope plots of the conformational motion for each unit. (c) At a slope of s0 ¼ −1 (left),
the fixed point l� ¼ 1 is marginally stable. As the slope passes s1, the fixed point becomes unstable, and a new stable 2-cycle is born
(triangle). As the slope continues past sn, each 2n-cycle becomes unstable and gives birth to a stable 2nþ1-cycle, until (d) the unit
becomes chaotic with no stable cycles. (e) The ratio of slopes at the bifurcations converges to the Feigenbaum constant. The slope
values in this example are ðs0; s1; s2; s3; s4; s5; s6; s7Þ ≈ ð−1;−1.522545;−1.574527;−1.582104;−1.583487;−1.583777;−1.583838;
−1.583851Þ.
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(Fig. 12, triangle). As we design units with increasingly
negative slopes, the 2-cycle becomes unstable at slope
s ¼ s1, giving birth to a stable 4-cycle (Fig. 12, square),
which then becomes unstable at s ¼ s2 and gives birth to a
stable 8-cycle (Fig. 12, circle). Continuing this process,
each 2n-cycle loses stability at sn and gives birth to a stable
2nþ1-cycle, until the network loses all stable cycles and
becomes chaotic [Fig. 12(d)]. This process is known as a
period-doubling bifurcation and is characterized by the
Feigenbaum constant [43]

δ∞ ¼ lim
n→∞

sn−1 − sn−2
sn − sn−1

≈ 4.669; ð20Þ

to which our units converge [Fig. 12(e)]. Additionally, the
chaotic evolution of our units is captured by the Lyapunov
exponent that quantifies the rate of divergence of sub-
sequent units from infinitesimally nearby initial units, and it
is given by

λðl1Þ ¼ lim
n→∞

1

n

Xn

k¼1

ln jf0ðlkÞj: ð21Þ

We estimate the exponent by averaging across long
trajectories from many initial conditions to be 0.246 (see
Sec. V of Ref. [40] for the calculation of the exponent),
demonstrating positive divergence: a hallmark of chaos.

VIII. PERIOD THREE IMPLIES
MECHANICAL CHAOS

A. Motivating 3-cycle units

In the previous section, as we changed the edge lengths
of a unit to lose stability at a fixed point, the unit underwent
a period-doubling route to chaos. While the presence of
many-period cycles may be useful for designing metama-
terial lattices, each choice of edge length only corresponded
to a specific 2n-cycle. Can a single superunit with fixed
edge lengths yield arbitrarily many cycles?

B. A 3-cycle unit and Sharkovsii’s theorem

To obtain such a superunit, all we require is for the unit’s
map to display a 3-cycle. This requirement is a direct result
of Sharkovsii’s theorem, which states that for any real
interval I ⊂ R, if a map f∶I → I has a point of period 3,
then it contains a point of period k where k is a positive
integer [44]. This deceptively simple statement leads to
powerful consequences, as a unit whose map contains a 3-
cycle not only implies chaos [45], but it also implies that it
can change its shape to yield any integer-period cycle.
We discover such a 3-cycle unit [Fig. 13(a)] and also

demonstrate the presence of other positive-integer cycles
such as 2-cycles and 6-cycles [Fig. 13(b)]. Importantly,
unlike the unit in the period-doubling route to chaos, this

unit contains cycles of all positive integer periods with one
single set of edge weights.

IX. CONSTRUCTING PHYSICAL NETWORKS

Here, we implement this theory for designing the
geometry of both the sequence and macroscopic structure
of mechanical networks by constructing physical networks.
We construct a superstable and sequentially collapsible
network by laser cutting the edges from 1=8-inch thick
acrylic and connecting their joints using Chicago screws
[Figs. 14(a) and 14(b)]. Additionally, many deployable
applications [46] require a compact initial geometry and a
precise, rigid final geometry. Using wooden sticks that are
joined by a staple prong at the joints, we show a four-bar
linkage with two fixed points l• and l∘, where the l• point is
superstable [Fig. 14(d)]. These modules combine in a chain
[Fig. 14(e)] that yields a wide spiral with an open channel at
l• and collapses to a narrow spiral with no channel at l∘

(a)

(b)

FIG. 13. A 3-cycle unit. (a) Cobweb plot of a unit containing a
3-cycle. (b) Examples of 2-cycle, 3-cycle, and 6-cycle confor-
mations that can be found in this unit.
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[Fig. 14(f), see Secs. VI and VII of Ref. [40] for the
maps lkþ1 ¼ fðlkÞ].
To demonstrate the generalizability of our framework to

three-dimensional space, we model a creased square of
paper as a linkage, where each crease is a rigid edge, and
the intersection of creases is a node [Fig. 14(f)]. We define
l1 and l2 to be the distances between opposing corners in
this sheet, which collapses from the unfolded l• to the
folded l∘ crystalline states. We combine these modules by
merging the nodes defining l2 and l02 [Fig. 14(g)] to obtain
an origami structure that collapses sequentially to a flat
geometry.
These principles also extend to planar networks com-

prised of polygons (e.g., triangles) connected at vertices
through a thin layer of flexible material [Fig. 14(g)]. We
design a module with two fixed points l• and l∘, where the

initial point l• is superstable. We can chain these modules
as before to yield the same iterated map lkþ1 ¼ fðlkÞ
[Fig. 14(h)], such that we obtain a sequential transition
from l• to l∘ by pulling on the network [Fig. 14(i)].
Importantly, because this network is printed as shown,
there is no required assembly (see Sec. X of Ref. [40] for
the bond lengths of networks and Section XI for consid-
erations of elastic bond lengths).

X. ELASTICITY AND SIGNAL PROPAGATION
IN THE MECHANICAL AND GATE

Until now, we have assumed that the bonds were rigid or
that any elastic deformations would decay to an equilibrium
configuration of zero extension. However, real systems can
sustain deformations from resistance to motion such as

FIG. 14. Physical construction of networks. (a) Photo of a superstable unit constructed from laser-cut acrylic bars held together by
Chicago screws at the joints, transitioning between two fixed points l• and l∘. (b) Photos of a combined network collapsing from l• to l∘.
(c) A four-bar linkage with two fixed points l• and l∘, (d) combined hexagonally into (e) an initially wide spiral helix with a channel l•,
collapsing sequentially to a narrow closed helix. (f) Photo of a creased square sheet of paper modeled as a linkage with one
conformational motion moving between two fixed points l• and l∘ (purple is the mountain fold; orange is the valley fold). (g) Two
creased sheets combined by merging the nodes defining l2 and l02, along with a third node in each module marked in bright red.
(h) Combined network of 12 sheets that sequentially collapses from the l∘ to the l• lattice. (i) A 3D-printed planar module with two fixed
points l•; l∘. Each module is composed of triangles connected by a thin layer of material, which (j) form a chain where (k) fixing the cyan
hinge and pulling the red hinge yields a sequential transition from l• to l∘. (l) Photos of the quadrifolium and (m) chaotic networks made
from cardstock bars held together by metal pins.
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friction, which may alter the designed behavior of these
networks. Here, we provide two experiments to quantify
the effect of bond deformations.
In the first experiment, we quantify the propagation of

the input signal through a chain of superstable units with
elastic bonds. We take the superstable unit shown in the
bottom-left part of Fig. 15(a) and replace the rigid bonds
with elastic bonds of unit stiffness. Then, we force the input
l1 open to 3, force the output l2 to

ffiffiffi
3

p
, and compute the

maximum bond strain at the equilibrium configuration. We
repeat this procedure for longer chains comprising a range
from 2 to 8 units and plot the max strain [Fig. 15(a)]. There
is an appreciable strain up to around 5–6 units. Hence,
enough of the input signal propagates to the output to
appreciably deform the bonds. If the output is not fixed atffiffiffi
3

p
, then the bonds must deform appreciably for the input

signal to fully decay.
Importantly, this first result holds true for any scalar

multiple of bond stiffness. Specifically, the bonds are
modeled as linear springs with potential energy given by

V ¼ 1

2

X

ði;jÞ∈E
kijðl�ij − lijÞ2; ð22Þ

where E is the set of all bonds in the network, kij is the
stiffness of the bond connecting node i to node j, l�ij is the
equilibrium length of said bond, and lij is the current length
of said bond. Because potential energy is linear in bond
stiffness, the location of the minimum potential configu-
ration and the percent bond strain do not change with scalar
multiples of kij.
In the second experiment, we construct AND gates by

combining chains of elastic superstable units [Fig. 15(b),
top] and measure both the energetics and geometry of these
AND gates. To directly quantify these effects, we construct
AND gates by combining chains of one unit, two units, three
units, and four units [Fig. 15(b)]. We systematically fix the
distance between the input nodes, la and lb, across a range
from

ffiffiffi
3

p
to 3, and evolve the node coordinates to minimize

the potential energy with all kij ¼ 1. Then, we plot the
distance between the output nodes, lo, along with the
maximum percent strain [Fig. 15(b)].
We find that an AND gate comprising one unit has the

greatest signal propagation with a large percent strain, but it
also has nonideal geometric behavior. Specifically, the
output fails to remain fully closed when only one of the
two inputs is open [Fig. 15(b)]. However, as we increase

(a) (b)

FIG. 15. Elastic deformations in superstable networks. (a) Plot of the maximum percent strain of the elastic bonds in networks
comprising k superstable units. The initial length l1 ¼ 3 is fixed to be open, the final length lkþ1 ¼

ffiffiffi
3

p
is fixed to be closed, and the

minimum energy configuration is computed for k ¼ f1; 2;…; 8g. (b) Nodes defining length lkþ1 between two elastic network chains are
merged to form an AND gate with input lengths la and lb, and output length lo. For k ¼ f1; 2; 3; 4g, the input lengths are fixed at various
values between

ffiffiffi
3

p
≤ la; lb ≤ 3, and are plotted against the output length lo and the maximum percent strain at the minimum energy

configuration.
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the number of units in a chain up to 4, we observe that the
geometric changes much more closely resemble an ideal
AND gate, where the output only opens appreciably when
both la ¼ lb ¼ 3 are open.
Importantly, we note that in the failure mode of the AND

gate—when the inputs la ¼ lb ¼ 3 are open but the output
lo ¼

ffiffiffi
3

p
is forced closed—the maximum percent strain of

each branch is identical to that found in Fig. 15(a). This is
because the branches are only coupled at the nodes defining
lo. Hence, the failure mode of the AND gate requires twice
as much energy as the failure mode in each branch, while
correct operation—when both the inputs and outputs la ¼
lb ¼ lo ¼ 3 are open—requires none.

XI. DISCUSSION

Ever-arising mechanical challenges [46,47] drive the
development of innovative designs [31,48–50], which in
turn spark novel applications [51,52]. In this work, we
presented a simple theory for the principled design of a rich
and complex set of folding sequences and large-scale
geometries through the properties of a single module.
Because of the practical and ubiquitous nature of linkages,
these ideas are well-positioned to provide simple solu-
tions to complex problems in robotic grasping [53],
deployable mechanisms [46], morphing mechanical struc-
tures [47], and tunable metamaterials [54]. By writing the
large, nonlinear geometric conformation of a network as
the iteration of one module, we retained the richness of
network motion while dramatically reducing design
complexity.
We studied the fundamental behaviors of this richness,

which directly arise from iterated maps. Immediate exten-
sions include designing modules with complex maps (more
than two fixed points, negative slopes at fixed points,
critical slowing, and bifurcations [43]) and developing
principles for combining modules with different maps.
The theory can also extend beyond iterated maps, where
linkages follow a circular path that is not formally a
function (d2 is not uniquely determined by d1). For ease
of manufacturing, previous work on planar networks [28]
motivates the development of a module design framework
specific to these systems. Finally, given the design frame-
work for bistable linkages with elastic bonds [14], a
promising future direction lies in the design of sensors,
adaptive response, and superelasticity seen in shape
memory systems [55,56], deployable structures as seen
in origami metamaterials and antennas [46,57], and
mechanical computation [58]. Hence, this simple theory
provides a versatile and unifying framework for designing
large sequential conformational changes in mechanical
networks.
Finally, we report in the Sec. XIVof Ref. [40] an analysis

of the gender and racial makeup of the authors we cited.
There are no data with mandated deposition used in the

paper or the Supplemental Material [40]. All analyses and

figures were created in MATLAB and can be publicly
accessed at Ref. [59] with a test script that will exactly
replicate and save all figures in this paper except the
construction of physical networks.
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