
Absence of Heating in a Uniform Fermi Gas Created by Periodic Driving

Constantine Shkedrov,1 Meny Menashes,1 Gal Ness ,1 Anastasiya Vainbaum,1 Ehud Altman,2,3 and Yoav Sagi 1,*

1Physics Department and Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
2Department of Physics, University of California, Berkeley, California 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 22 February 2021; accepted 19 January 2022; published 3 March 2022)

Ultracold atomic gas provides a useful tool to explore many-body physics. One of the recent additions to
this experimental toolbox is Floquet engineering, where periodic modulation of the Hamiltonian allows the
creation of effective potentials that do not exist otherwise. When subject to external modulations, however,
generic interacting many-body systems absorb energy, thus posing a heating problem that may impair the
usefulness of this method. For discrete systems with bounded local energy, an exponentially suppressed
heating rate with driving frequency has been observed previously, leaving the system in a prethermal state
for exceedingly long durations. However, for systems in continuous space, the situation remains unclear.
Here, we show that Floquet engineering can be applied to a strongly interacting degenerate Fermi gas held
in a flat boxlike potential without inducing excessive heating on experimentally relevant timescales. The
driving eliminates the effect of a spin-dependent potential originating from the simultaneous magnetic
levitation of two different spin states. We calculate the heating rate and obtain a power-law suppression
with the drive frequency. To further test the many-body behavior of the driven gas, we measure both the
pair-condensation fraction at unitarity and the contact parameter across the BEC-BCS crossover. At low
driving frequencies, the condensate fraction is reduced by the time-dependent force, but at higher
frequencies, it revives and attains an even higher value than without driving. Our results are promising for
future exploration of exotic many-body phases of a bulk strongly interacting Fermi gas with dynamically
engineered Hamiltonians.
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I. INTRODUCTION

The past two decades have witnessed tremendous
advance in studying many-body problems with ultracold
atomic gases [1]. The vast majority of works are done with
static Hamiltonians. Adding periodic driving can generate
effective Hamiltonians with completely different properties
than the original one—an approach called Floquet engi-
neering [2–4]. For example, modulation of the barrier
between potential wells renormalizes the tunneling rate
[5–8] and can drive quantum phase transitions [9]. Floquet
engineering can also be used to create artificial gauge fields
[10–13] and give rise to new phases which do not exist at
equilibrium [14,15].
An inherent problem with externally driven systems

is their tendency to heat up. Apart from integrable and

many-body localized systems, generic interacting ensem-
bles absorb energy from the external force and eventually
reach an “infinite temperature” where all states are equally
populated [16–18]. Nonetheless, recent theoretical works
suggest that, in discrete lattice systems, the energy absorp-
tion rate is generally exponentially small in the drive
frequency over the energy of a local excitation [19–24].
These predictions are supported by heating rate measure-
ments done with bosons in a driven optical lattice [25].
The exponential suppression of heating in discrete systems
relies on the fact that the energy is locally bounded.
However, in continuous systems (e.g., bulk quantum
gases), there is no such bound. The pertinent question,
in this case, is under what conditions one can obtain “cold”
prethermal states exhibiting collective phenomena that are
governed by an effective “Floquet-engineered”Hamiltonian.
In this paper, we address this question using a driven

ultracold Fermi gas near unitarity, exhibiting high-Tc
fermionic superfluidity [26]. The driving we apply is
intended to create a uniform effective potential across
the Fermi gas. Although in situ measurements [27–30]
and spatial selection [31–36] can give access to quasiho-
mogeneous observables, it is better to create a uniform gas
from the outset. This is essential, for example, to study
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critical properties and avoid spurious phase-separated states
[37]. Indeed, in recent years, uniform Bose [38,39] and
Fermi [40,41] gases have been created in flat optical traps.
These traps are formed by several shaped laser beams that
create sharp repelling walls enclosing a dark volume.
A significant challenge is posed by the need to offset

the gravitational potential, which leads to a substantial
energy change in the trap. One obvious solution is to
use a shaped optical potential to counter gravity [42]. But
generating such a potential, smooth on a nanokelvin scale,
is a formidable task. A simpler approach taken in previous
experiments is to use a magnetic field with an appropriate
gradient. This works if all particles have approximately the
same magnetic dipole moment. However, our 40K Fermi
gas is a mixture of two hyperfine states with different (but
not opposite) magnetic moments μ↑ ≠ μ↓. An appropriate
magnetic-field gradient counters the average gravitational
potential while leaving an opposite potential gradient on
each of the two species [Fig. 1(a)].
To counter the residual field gradient, we apply an rf field

that induces a rapid precession at a Rabi frequencyΩ. In the
rotating frame of the precessing spins, the static spin-
dependent potential gradient is translated to a periodic
perturbation of frequency Ω. The rest of the interacting
fermion Hamiltonian, including the flat spin-independent
potential, is invariant to spin rotations and, therefore,
unchanged in the rotating frame [Fig. 1(b)]. Thus, we
achieve an ultracold uniform state of a spin-balanced gas of

40K atoms that is useful if the periodic perturbation does not
cause significant heating over experimental timescales.
We establish this property by measuring the pair-

condensate fraction (CF) at unitarity while applying a
continuous driving. At low frequencies, driving impairs
the gas conditions and reduces the CF. As the frequency
increases further, the CF recovers and even surpasses its
value without the driving. At high driving frequencies, we
do not detect heating or excessive loss of atoms which can
be attributed to the drive. Finally, we perform rf spectros-
copy with a uniform gas in the BEC-BCS crossover regime
and extract the homogeneous contact parameter as a
function of the interaction strength.
The structure of this paper is as follows. In Sec. II, we

review the theoretical model for radio frequency driving
and calculate the expected heating rate in the presence of
this drive. In Sec. III, we describe the experimental setup
and measurement sequence. The results are presented in
Sec. IV. We study with time-dependent in situ imaging
the relaxation dynamics following the application of
the driving field. The temperature of the uniform gas is
probed by Raman spectroscopy. The many-body behavior
of the uniform driven gas is studied with a pair-projection
technique and rf spectroscopy. We study both the frequency
dependence and the long-time behavior of the driven gas.
Section V concludes with a discussion and outlook.

II. THEORETICAL MODEL

A. Effective Hamiltonian

We consider fermions in two possible spin states,
denoted by j↓i and j ↑i, where the energy of the latter
is larger by ℏω0. The two particles are placed in an external
potential and coupled by an rf field with a frequency ωrf.
The Hamiltonian is a sum of three terms Ĥ ¼ Ĥ0 þ
Ĥint þ Ĥrf that account for the single-particle kinetic and
potential energy (Ĥ0), the interaction Hamiltonian (Ĥint),
and the coupling to the external rf field (Ĥrf ). In the frame
rotating with the ↑ spin, they are given by [43,44]

Ĥ0 ¼
X
σ¼↑;↓

Z
d3rΨ̂†

σðrÞ
�
−
ℏ2∇2

2m
þ VσðrÞ

�
Ψ̂σðrÞ; ð1aÞ

Ĥint ¼
X
σσ0

ZZ
d3r0d3ruðr − r0ÞΨ̂†

σðrÞΨ̂†
σ0 ðr0ÞΨ̂σ0 ðr0ÞΨ̂σðrÞ;

ð1bÞ

Ĥrf ¼
ℏ
2

Z
d3rΩeiω0tðeiωrft þ e−iωrftÞΨ̂†

↑ðrÞΨ̂↓ðrÞ þ H:c:;

ð1cÞ

where Ω is the Rabi frequency of the rf field, VσðrÞ is
the external potential for spin σ, and Ψ̂σðrÞ are fermionic

Total potential

(a) (b)

FIG. 1. Creating a uniform Fermi gas by periodic driving.
(a) The gas, composed of two spin states (marked by red and blue
and by opposite arrows), is trapped in a boxlike optical potential.
The two spins have different magnetic dipole moments. As a
result, it is possible to only partially counteract the gravitational
potential with a magnetic-field set according to Eq. (3). The total
external potential Vext;s depends on the spin s ∈ f↑;↓g, and,
consequently, the density distribution of each spin is different and
not uniform (color gradient in the top left figure). (b) By adding a
resonant rf field that drives rapid spin rotations, we create an
effective spin-independent potential, in which the gas becomes
homogeneous. Importantly, the intrinsic many-body behavior of
the gas is unchanged by this driving.
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field operators obeying the anticommutation relation
fΨ̂σðrÞ; Ψ̂†

σ0 ðr0Þg ¼ δσσ0δðr − r0Þ. Note that here we con-
sider a general spin-symmetric (and translationally invari-
ant) two-body interaction. The interaction potential
uðr − r0Þ represents the microscopic interaction rather
than a low-energy limit of the T matrix (pseudopotential).
In particular, we are interested in a unitary gas for which
the T matrix is explicitly energy dependent in the low-
energy limit.
In our experiment, the rf field is resonant with the

bare energy difference ωrf ¼ ω0, and ω0 ≫ Ω. Thus,
within the rotating wave approximation, the rf field
is seen as a large magnetic field along Sx: Ĥrf ¼
ðℏ=2Þ R d3rΩΨ̂†

↑ðrÞΨ̂↓ðrÞ þ H:c: The initial state is pre-
sumed to be an ultracold Fermi gas with equally populated
spin components N↑ ¼ N↓, which in the presence of the
field precesses around the x axis at the Rabi frequency Ω.
To clearly see the effect of the external rf field, we eliminate
the field by a unitary transformation Û ¼ eði=ℏÞĤrf t into a
reference frame that rotates with the spins.
The Hamiltonian transforms in a simple way under Û.

The kinetic energy and interaction Hamiltonians are both
invariant under spin rotations and are, therefore, unchanged
by the time-dependent transformation. As first noted by
Zwierlein et al. [45], the invariance of contact interactions
under rf rotations is the reason for the absence of a
spectroscopic shift in the transition frequency between
the spins. The external potential, on the other hand, can be
decomposed into spin-symmetric and -antisymmetric parts:

X
σ¼↑;↓

VσðrÞn̂σðrÞ ¼ VðrÞn̂ðrÞ − hðrÞŜzðrÞ; ð2Þ

where n̂ðrÞ ¼ n̂↑ðrÞ þ n̂↓ðrÞ is the number density,
ŜzðrÞ ¼ ½n̂↑ðrÞ − n̂↓ðrÞ�=2 the spin density, VðrÞ ¼
½V↑ðrÞ þ V↓ðrÞ�=2, and hðrÞ ¼ V↓ðrÞ − V↑ðrÞ. Only the
spin-symmetric part of the potential, which couples to the
number density, is invariant under the transformation Û and
does not change with time.
In our experiment, the external potential is given by

VσðrÞ ¼ V trapðrÞ þmgz − μσB0z, where the first term is
the flat optical potential, the second term is the gravita-
tional potential, and the last term describes the interaction
of a spin with a magnetic moment μσ with the external
magnetic field, which is linear in height z. Thus, the spin-
symmetric part of the potential is VðrÞ ¼ V trapðrÞ þmgz−
B0zðμ↑ þ μ↓Þ=2. By tuning the magnetic-field gradient to
the value

B0 ¼ 2mg
μ↑ þ μ↓

; ð3Þ

we obtain a flat total potential. The gravitational potential
is, thus, eliminated by the static part of the Hamiltonian.

The spin-antisymmetric part of the external potential,
which couples to the spin density, gives rise to a time-
dependent coupling in the rotating frame Û. Specifically,
the spin density rotates as ÛŜzÛ†¼ cosðΩtÞŜz−sinðΩtÞŜy,
leading to a Zeeman field rotating at frequency Ω in the
Ŝz, Ŝy plane. With a simple redefinition of the spin axes, we
write the residual time-dependent part of the Hamiltonian
as a rotating field in the Ŝx, Ŝy plane:

V̂aðtÞ¼−
Vg

L

Z
d3rzθðL=2− jzjÞ½e−iΩtŜþðrÞþH:c:�: ð4Þ

Here, ŜþðrÞ ¼ Ψ̂†
↑ðrÞΨ̂↓ðrÞ, θðzÞ is the Heaviside step

function, and L is the height of the box potential.
Vg ¼ mgLðμ↑ − μ↓Þ=ðμ↑ þ μ↓Þ, where we use Eq. (3) to
tune a flat static potential.

B. Heating rate

The heating rate due to irreversible transitions induced
by the residual time-dependent term (4) in the effective
potential can be calculated from the linear response of
the system to this perturbation. For this purpose, it is
convenient to rewrite the time-dependent perturbation in
momentum space:

V̂aðtÞ ¼
X
q

vqe−iΩtŜ
þ
q þ H:c:; ð5Þ

where Ŝþq ¼ R
d3rŜþðrÞe−iq·r and vq is the spatial Fourier

transform of the time-dependent effective potential:

vq ¼ −iVgδqx;0δqy;0
Lq cos ðLq=2Þ − 2 sin ðLq=2Þ

ðLqÞ2 e−ðλ0qÞ2 :

ð6Þ

The Gaussian falloff at large q is due to convolution
with the optical resolution that limits the sharpness of
the potential features. In our experiment, the resolution
λ0 ≈ 3 μm happens to be close to the Fermi wavelength
λF ≈ 2.6 μm, so for simplicity we identify the two scales
and use λF also as the resolution limit.
The transition rate Γq induced by the perturbation at

wave vector q is directly related to the spectral function of
the operator Ŝþq at the Rabi frequency through

Γq ¼ jvqj2ImhŜþq ðΩÞŜ−−qð−ΩÞiRet: ð7Þ

Without interactions, the transition rate is exponentially
small in the high frequency Ω, because the only way the
perturbation can excite a resonant transition is to give the
particle extremely high momentum ℏq ≈

ffiffiffiffiffiffiffiffiffiffiffi
mℏΩ

p
, which is

suppressed by the Gaussian resolution limit in the matrix
element (6). In the presence of interactions, on the other
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hand, a transition can satisfy energy conservation even for
small momentum transfer by utilizing the interaction term
to create another particle-hole pair. The diagram of the
lowest-order process that can lead to a transition is shown
in Fig. 2. Pictorially, the perturbation creates a particle-hole
pair with small momentum q (and concomitantly low
energy). The excited particle with momentum kþ q then
scatters on another particle with momentum k0 inside the
Fermi sea in a collision with large momentum transfer p ≫
kF (kF is the Fermi wave vector) so that the pair of particles
emerging from the collision are near the required final
energy ℏΩ.
The transition rate in this process can be framed as a

Fermi golden rule calculation, equivalent to the imaginary
part of the diagram in Fig. 2:

Γq ¼
1

ℏ

X
f

jhfjT̂jiij2δðEf − Ei − ℏΩÞ; ð8Þ

where

T̂ ¼
X
k

Ĥintjk; qihk; qjvqŜþq
ℏΩ − En

: ð9Þ

Here, the intermediate states are the particle-hole states
labeled by the hole momenta k:

jk; qi ¼ ĉ†↑;kþqĉ↓;kjψFSi; ð10Þ

and the accessible final states consist of two particles and
two holes with Sz ¼ �1, such as

jk; k0; p; q; si ¼ ĉ†s;kþqþpĉ
†
−s;k0−pĉ↓;k0 ĉ↓;kjψFSi: ð11Þ

The effective interaction vertex merits a brief discussion.
By a slight abuse of notation, we write the contact
interaction

Ĥint ¼
u
V

X
kk0p

ĉ†↑;kþpĉ
†
↓;k0−pĉ↓;k0 ĉ↑;k; ð12Þ

using the same symbol used for the interaction Hamiltonian
(1b), where V is the volume. However, it should be noted
that the effective contact interaction is really the low-energy
limit of the T matrix. In most cases, it is given by the
pseudopotential u ¼ 4πℏ2a=mwith a the s-wave scattering
length. But at unitarity the dependence on the energy of the
scattered states is important, as it cuts off the divergence at
any nonvanishing energy. The T matrix appropriate for the
vertex in Fig. 2 from the Lippmann-Schwinger equation at
unitarity is

u ¼ 2

ρðΩ=2Þ ¼
8

3n
ϵ3=2Fffiffiffiffiffiffiffiffiffiffiffiffi
ℏΩ=2

p ; ð13Þ

where n is the particle density and ρðϵÞ the single-particle
density of states per unit volume (DOS). We also define an
interaction energy scale U ¼ un.
Substituting into the Fermi golden rule expression, we

obtain

Γq ≈
1

ℏ

X
k;k0;p;s

� jvqjU
ℏωþ ξk − ξkþq

�
2

nknk0 ð1 − nkþqÞð1 − nkþqþpÞð1 − nk0−pÞδðξkþqþp þ ξk0−p − ξk − ξk0 − ℏωÞ: ð14Þ

The factors nkð1 − nkþqÞ constrain the sum over k to a
fraction of approximately jqj=kF of the Fermi sphere volume.
Physically, this is the phase space available for creating the
low-momentum particle-hole pair intermediate state. The
other constraints are obeyed automatically due to the required
large momentum transfer p in the collision. In addition,
because we assume ℏΩ ≫ ϵF, we neglect the small particle-
hole energy ξk − ξkþq in the denominator and the hole
energies −ξk and −ξk0 in the δ function. Thus, we obtain

Γq ≈
jvqj2U2

4ℏðℏΩÞ2
jqj
kF

VρðℏΩÞ ¼ 3N
16ℏ

jvqj2U2

ðℏΩϵFÞ3=2
jqj
kF

; ð15Þ

whereN is the particle number. The total transition rate is the
integral over q ¼ qẑ up to the resolution cutoff q0 ≈ kF:

Γ ≈
N
ℏ

3

64π

V2
gU2

ðℏΩϵFÞ3=2
�

1

kFL

�
ln

�
kFL
π

�
: ð16Þ

The factor ðkFLÞ−1 stems from the suppressed phase space
for excitation of the Fermi sea with low-momentum transfer,
while the logarithmic correction is due to the integration over
the 1=q behavior of the function jvqj2q for q ≫ π=L.
We remark that the scaling with Ω can be understood

without a calculation by noting that the transition rate is a

FIG. 2. Linear response to the residual time-dependent poten-
tial. In the diagram, the incoming and outgoing dashed lines
represent the operators Ŝþq and Ŝ−q attached at the vertices with the
couplings Vq and V−q, respectively. The vertices connecting four
solid lines represent the contact s-wave interactions.
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second-order process with the intermediate states con-
strained to low energy compared toΩ due to the momentum
cutoff on the perturbation. Thus, the energy denominator due
to the virtual transition is approximatelyΩ, and the transition
rate must scale as Γ ∼ ½ðVgUÞ=Ω�2ρðΩÞ. Plugging in the
DOS in 3D, we get the correct scaling with Ω. The small
momentum transfer q limits the phase space for intermediate
states giving the jqj=kF factor in Γq.
Finally, we can convert the transition rate to a heating

rate by multiplying it with the average energy increase per
particle per unit time. In our experiment, the energy ℏΩ=2
given to the excited particle pair is sufficient to escape
the trap. Therefore, the heating is due to the holes left in
the Fermi sea, leading to the heating rate _ϵ ¼ ϵFΓ=N. To
get a dimensionless measure of the heating rate, we define
η ¼ ℏ_ϵ=ϵ2F. η gives the relative energy change per particle
δϵ=ϵF, which occurs in the characteristic timescale of the
system τF ¼ ℏ=ϵF. If η ≪ 1, we can observe phenomena
slow on the scale of ϵF without being affected by the
heating. At unitarity, we get

η ¼ 2

3π

�
Vg

ℏΩ

�
2

ffiffiffiffiffiffiffi
ϵF
ℏΩ

r
1

kFL
ln

�
kFL
π

�
: ð17Þ

In our experiment, we can reach driving frequencies
Ω=2π > 10 kHz where this parameter is η < 10−4, so
heating is not expected to be a problem. Before proceeding,
we note that a semiclassical calculation of the heating
induced by periodic forces acting on an ultracold gas is
reported in Ref. [46].

III. EXPERIMENT

Our experiments are performed with a quantum degen-
erate gas of 40K atoms, prepared in an incoherent, spin-
balanced mixture of the two lowest-energy states, j↓i ¼
j9=2;−9=2i and j ↑i ¼ j9=2;−7=2i, with the notation
jF;mFi. The flat trap V trap is created by three laser beams
with a wavelength of 532 nm [38,47] (see Fig. 1); a “tube”
beam is created by a wide Gaussian beam (125 μm waist
radius) that has a circular hole at its center, created by a
digital mirror device [48]. The other two “end-cap” beams
are created by two highly elliptical Gaussian beams with
waist radii of 5.5 and 180 μm. Together, they generate a
dark cylindrical volume with an approximate height of
39 μm and a diameter of 55 μm, defined by the full width at
half maximum of the atomic density. The cylinder sym-
metry axis is parallel to the gravitational force.
The experimental sequence starts by cooling the gas to

quantum degeneracy in a crossed optical dipole trap [49].
To improve the loading efficiency into the flat trap, we add a
second crossing beam to the optical trap described in
Ref. [49]. This yields a harmonic trap with trapping frequen-
cies of ωr ¼ 2π × 236ð1Þ Hz and ωz ¼ 2π × 27ð2Þ Hz, in
the radial and axial directions, respectively. After forced

evaporation, there areN ≈ 5 × 105 atoms at T=TF ≈ 0.24 in
this trap, whereN is the total atom number in both spin states
and TF the Fermi temperature.
To load the flat trap, the tube beam is ramped to

30 mW already at the beginning of the evaporation in
the harmonic trap. The magnetic-field gradient that
counteracts gravity is ramped to its final value, as given
in Eq. (3), in 0.5 s, 1 s before the harmonic trap is turned
off. In our system, we have an additional undesirable
small magnetic gradient of ½ðdBzÞ=dy� ≈ 0.68 G=cm in
the transverse direction, which we compensate with
another pair of coils. The sequence continues with a
ramp-up of the caps and tube beam power to 50 and
150 mW, respectively. The two traps are held overlapping
for 50 ms, and then the harmonic trap is ramped down in
200 ms. We typically load around 32% of the atoms into
the flat trap. Finally, the atoms are cooled in the flat trap
by evaporation, forced by ramping down the power of the
caps and tube beams in 2 s to 20 and 50 mW, respec-
tively. To ensure the cloud has reached equilibrium, we
wait for an additional 0.8 s before performing a meas-
urement. The final typical conditions in the flat trap with
the rf field are N ≈ 60 × 103 atoms with T=TF ≈ 0.15.
The typical Fermi energy ϵF=h ≈ 940 Hz is determined
independently from an in situ density measurement of the
gas (see the Appendix A). The magnetic field is tuned
around the Feshbach resonance, at 202.14 G, determining
the strength of interactions, 1=kFa. It is ramped adia-
batically to its final value in 10 ms, where it is typically
kept for 400 ms. In the last 200 ms of the experimental
sequence, the rf pulse is turned on with a typical Rabi
frequency of around Ω=2π ≈ 10.5 kHz.

IV. RESULTS

A. Relaxation dynamics

Prior to turning the rf field on, the atomic densities of
the two spins are not uniform [Fig. 3(a)], because the
magnetic-field gradient given by Eq. (3) overcompensates
(undercompensates) gravity for state j↓i (j ↑i) by 5.9%.
Once the resonant rf field is turned on, the densities start
to equilibrate. We study this relaxation process by prepar-
ing the gas with only spin j↓i atoms and imaging them
from the side of the cylinder after different waiting times
[Figs. 3(a)–3(c)]. To quantify the nonuniformity of the gas,
we plot the slope of the optical depth (OD) at the center of
the trap, normalized by its maximal value at t ¼ 0 (main
part of Fig. 3). The gas relaxes to a uniform density with
damped oscillations. The oscillation frequency is roughly
given by the time it takes an atom with a Fermi velocity to
traverse the trap height back and forth. The density reaches
a steady state for rf pulse duration longer than 100 ms. The
residual density inhomogeneity due to the finite steepness
and imperfections of the trapping potential is discussed in
Appendix A.
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Since spin-polarized fermions do not interact via s-wave
scattering, a question that may arise is how the relaxation
process actually occurs. While the rf rotation creates a j ↑i
component on a short timescale of the inverse Rabi
frequency, the gas remains spin polarized, albeit with the
spin oriented in a different direction. However, small spatial
inhomogeneities in the rf and magnetic fields lead to spin
dephasing and eventually, through atomic diffusion, also to
decoherence. Therefore, the spin-polarized gas becomes a
balanced spin mixture on a relatively short timescale of
10 ms [50]. Thanks to the invariance of the interaction
Hamiltonian, the rf resonance frequency does not change as
the gas transforms from being noninteracting to strongly
interacting [45].

B. Momentum distribution of the uniform gas

An important issue to consider is heating, which may
occur during the initial relaxation phase and during the
continuous operation of the rf pulse. We obtain the temper-
ature of the gas by measuring its momentum distri-
bution. Ordinarily, this is done by letting the gas expand

ballistically either in free space or in a harmonic trap [51].
Because of the relatively large initial size of the cloud,
the free expansion requires particularly long expansion
times, which are not always feasible. Expansion in a
harmonic trap, on the other hand, is done for a quarter
of the trap period but is sensitive to anharmonicity of the
trap [40,41,51,52].
Here, we take a different approach and use Raman

spectroscopy, which has the advantage that it can be applied
to a trapped gas [53,54]. The technique relies on a linear
relation between the two-photon Raman detuning and the
velocity of the atoms which are transferred from state j ↑i
to the initially unoccupied state j9=2;−5=2i. In the experi-
ment, the two Raman beams are pulsed after the applica-
tion of a 200-ms-long rf pulse. By scanning the relative
frequency between the beams, we obtain a spectrum that is
directly proportional to the one-dimensional momentum
distribution [53]. A typical result with dynamically driven
uniform Fermi gas is shown in Fig. 4. The number of atoms
in state j9=2;−5=2i is measured by selectively capturing
them in a magneto-optical trap (MOT) and recording their
fluorescence [49,53]. To improve the detection, we separate
the wavelength of the MOT, which is close to the D2

transition, from that of the collected scattered photons [55].
To this end, we add a dedicated probe beam, tuned to the
D1 transition, and filter the recorded image with an ultra-
narrow, 1-nm, optical bandpass filter [56]. The intensities
of the two Raman beams are actively stabilized and
programmed to follow a 1-ms-long Blackman pulse [57].
The one-photon Raman detuning is around 46.1 GHz
below theD1 transition. To reduce unwanted single-photon
scattering, which constitutes most of the background
signal, we incorporate a temperature-stabilized etalon after
the Raman laser to filter the broadband-amplified sponta-
neous emission.
We analyze the momentum distribution by fitting it with

three different models (see Fig. 4). The first one is a
numerical local-density approximation model of a gas in a
realistic flat trap that is used in our experiment (solid blue
line). In this model, we account for the finite steepness of
the trap walls, which is calibrated using in situ density
images (see Appendix A). The free parameters are the
reduced temperature (T=TF) and the background offset. For
comparison, we fit the data with two ideal models of
harmonically trapped gas (dashed red line) [53] and ideal
uniform gas (dotted black line). The doubly integrated
momentum distribution of the latter is given by

nðkzÞ ¼ π
T
TF

ln ð1þ ζe−ðk2z=k2FÞ=ðT=TFÞÞ; ð18Þ

where kz is in the direction of the two-photon momentum
transfer [53] and ζ is the fugacity with the implicit form
Li3=2ð−ζÞ ¼ −½4=ð3 ffiffiffi

π
p Þ�ðT=TFÞ−3=2, with LinðzÞ being

the polylogarithm function. Notice that, due to the double

FIG. 3. Relaxation to a uniform density. The gas is prepared in a
spin-polarized j↓i state without the rf field. The magnetic field is
set according to Eq. (3), overcompensating gravity for this state
by 5.9%. At t ¼ 0, the rf field with Ω=2π ≈ 15.7 kHz is switched
on and flattens the time-average potential. The in situ density of
gas is recorded from the side of the cylindrical trap after variable
rf pulse duration (insets showing 3, 17.5, and 110 ms). The color
bar represents the optical depth (OD) in the absorption image.
The main figure shows the density relaxation dynamics, quanti-
fied by the average change in the OD from side to side of the
image. The error bars represent 1σ deviation from linear fit to the
OD slope. We fit the data with gðtÞ ¼ ae−t=τ cos ð2πftþ ϕÞ þ b
(solid line) and obtain τ ¼ 16ð1Þ ms and f ¼ 33.6ð7Þ Hz. The
reduction of the OD for longer pulse duration is due to
decoherence to a spin-balanced mixture while measuring atoms
only in the j↓i state (see the main text). This measurement is done
at a magnetic field of approximately 203 G, where the scattering
length between states j↓i and j ↑i is a ≈ −1152a0 (a0 is the Bohr
radius).
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integration, there is no sharp Fermi surface in this func-
tional even at T ¼ 0.
The numerical and uniform models fit the data markedly

better than the harmonic one, as evident by comparing their
χ2 fit values (see the legend in Fig. 4). The temperature
extracted from the numerical model is T=TF ¼ 0.15ð1Þ
with T ¼ 7ð2Þ nK. The uniformmodel yields a very similar
result of T=TF ¼ 0.16ð2Þ. In contrast, the harmonic model
gives a much lower temperature of T=TF ¼ 0.08ð2Þ. In the
numerical model, kF is calculated directly from in situ
density images (see Appendix A), while in the uniform and
harmonic models, it is left as a free fitting parameter. We
find that the kF extracted from the uniform model is only
6(2)% higher than the one calculated directly, while that of
the harmonically trapped model is higher by 30(2)%.
To test whether the rf-induced spin rotation causes

heating, we repeat the Raman measurement at different
rf pulse durations, shown in Fig. 5. Within the experimental
accuracy, we do not observe an increase of the temperature.
This result is corroborated by the measurements of the
condensate fraction versus time, described below. We
therefore conclude that with our experimental parameters,
satisfying Ω ≫ ϵF=ℏ, the heating rate is too small to be
detected.

C. Pair condensation

We now turn to probe the many-body properties of a
dynamically driven Fermi gas. When a spin-balanced
Fermi gas is cooled below the critical temperature Tc,
atoms with opposite spins pair and condense, forming a
fermionic superfluid [26,58–60]. The value of Tc depends
on the interaction strength. The survival of superfluidity is a
stringent test of our Floquet engineering scheme, since this
phase is extremely sensitive to heating and differential
forces acting on the spins.
In these experiments, we cool the gas below the super-

fluid transition at unitarity (1=kFa ≈ 0). At the end of the
cooling stage, the magnetic field is ramped in 10 ms from
203.5 G (weak interactions) to unitarity. There, it is held for
5 ms, during which the atoms pair up and condense. The
magnetic-field gradient and rf pulse are present during the
last 200 ms, long enough to ensure equilibrium. Since
during this time the magnetic field is changing, we program
the rf frequency to track the resonance transition.
We characterize the survival of the superfluid phase

by measuring the condensate fraction, using the pair-
projection technique [59,61]. To this end, the trap is
abruptly turned off and at the same time the magnetic
field is ramped rapidly (40 μs) to the BEC side of the
resonance (199.8 G) [59]. This procedure projects the
loosely bound pairs onto tightly bound molecules.
We then let the gas expand for 24 ms and measure the dis-
tribution using absorption imaging. For the imaging to
work, we dissociate the molecules by ramping back the
magnetic field to unitarity just before taking the image.
When the gas is superfluid, the recorded density distribu-
tion is bimodal, with condensed pairs appearing as a
pronounced central peak (see Appendix B).
In Fig. 6, we plot the condensate fraction (lower) and

total number of atoms (upper) at unitarity, extracted from
the images of the expanded gas, as a function of the driving

FIG. 4. The one-dimensional momentum distribution of a
uniform periodically driven Fermi gas. The distribution, mea-
sured by Raman spectroscopy [53], is fitted with three models: a
numerical model that provides a realistic description of the flat
trap in the experiment (solid blue line; see Appendix A), an ideal
homogeneous Fermi-Dirac distribution given by Eq. (18) (dotted
black line), and a harmonically trapped gas (dashed red line). The
numerical and homogeneous models yield a better fit to the data
than the harmonic one, based on the χ2 values. The differences
between the uniform and numerical models are not significant.
The temperature extracted from the numerical model is T=TF ¼
0.15ð1Þ with T ¼ 7ð2Þ nK. The results of the other fits are
discussed in the main text. This measurement is performed at a
magnetic field of B ¼ 209.18 G, where the atoms are very
weakly interacting. The rf pulse duration is 200 ms with a Rabi
frequency ofΩ=2π ≈ 10.5 kHz. Error bars represent one standard
deviation of the measured values.

FIG. 5. Reduced temperature as a function of the rf pulse
duration. The temperature is extracted from one-dimensional
momentum distribution measurements fitted by a homogeneous
Fermi-Dirac distribution. We observe no increase in T=TF up to
500 ms, and this holds true also for T alone. Note that the data in
this figure are taken at slightly different conditions than the one in
Fig. 4, with N ≈ 131 × 103 atoms at T=TF ≈ 0.23. The meas-
urement is performed at a magnetic field of B ¼ 209.18 G, where
the atoms are very weakly interacting. The Rabi frequency is
Ω=2π ≈ 10.5 kHz. Error bars represent one standard error of
the fit.

ABSENCE OF HEATING IN A UNIFORM FERMI GAS CREATED … PHYS. REV. X 12, 011041 (2022)

011041-7



frequency. The overlap between the two spin distri-
butions is large enough even without the rf field to yield
a condensate fraction of around 0.11. We distinguish
between three frequency regimes with qualitatively differ-
ent behavior. At very low frequencies, we observe a
quasistatic behavior with local equilibrium and no apparent
change in the conditions of the gas. As the frequency is
increased, we cross to the second regime, where the driving
generates spin currents and micromotion that clearly harms
the superfluid. Initially, at around Ω ∼ 100 Hz, the heating
does not lead to a loss of atoms, because the energy of the
excitation is smaller than the trap depth. In fact, as the
condensate fraction decreases, the number of detected
atoms increases. This surprising behavior is a result of a
partial correlation between the number of detected atoms
following the pair-projection technique and the number of
pairs. It exists since during the magnetic field ramping a
small fraction of the pairs are lost, most likely to deeply
bound molecular states. At higher frequencies, atoms have
enough energy to leave the trap, but heating is gradually
suppressed due to the scaling with Ω of the second-order
process (see Sec. II). In the third regime, defined by η < 1,

the loss decreases and the condensate revives. In the high-
frequency limit, where η ≪ 1, the atom number returns to
its initial value while the condensate fraction reaches an
even higher value, an effect we attribute to a better spatial
overlap between the spins in a uniform gas.
We now return to the question of heating at high driving

frequency. As shown in Fig. 5, we do not observe a rise of
the temperature, as extracted from the momentum distri-
bution. However, in the superfluid phase, the condensate
fraction is a much more sensitive thermometer. In Fig. 7, we
plot the total number of atoms and condensate fraction
versus the waiting time at unitarity (black circles). We
employ an rf field with a relatively high Rabi frequency
(Ω=2π ≈ 10.5 kHz), where the density is already uniform
and the condensate fraction reaches its high value (see
Fig. 6). To distinguish between loss and heating due to the
rf driving and other sources, we repeat this measurement
without the rf field (red squares). The data, taken with a
waiting time of up to more than 1 s, do not point to any
heating, as there is no reduction of the condensate fraction,
even when the total number of atoms has decreased by
approximately a factor of 2.
The decay in the number of atoms is almost identical

with or without the rf pulse. We analyze the data using the
following loss model [62–64]:

dn
dt

¼ −K1n − K2n2 − K3n3; ð19Þ

where n is the total atomic density. K1 ¼ 1=13.5 s−1 is the
single-body loss rate, determined by the rate of collisions

FIG. 6. Condensate fraction and total atom number at unitarity
as a function of the driving frequency. At very low frequencies,
the spin oscillation is slow enough such that both observables are
the same as without the driving, which are marked by horizontal
lines with shading representing the uncertainty. At higher
frequencies, the driving has an adverse effect on the superfluid.
The vertical dashed line marks the frequency at which η ¼ 1 [see
Eq. (17)]. Above it, heating starts to be suppressed (the color
represents the value of η). At even higher frequencies, the atom
number returns to its initial value, and the condensate fraction
reaches an even higher value than for a stationary gas (inset). The
conditions are measured after 5 ms at the Feshbach resonance
magnetic field, and the Rabi frequency is varied by changing the
rf pulse power. The observables extraction procedure is discussed
in Appendix B. The error bars combine the 1σ mean confidence
interval of the fit with statistical errors over ten repetitions.

FIG. 7. Time dependence of the atom number and condensate
fraction at unitarity. Data are taken after different waiting
durations both with (black circles) and without (red squares)
the rf driving. In both cases, the loss has a similar trend, which is
well fitted by the model in Eq. (19) (solid lines). Inset: The
condensate fraction (same marks) is plotted together with the
weighted average (solid lines), and its standard deviation (shades)
shows no decrease. Error bars are determined as in Fig. 6.
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with the residual gas in the vacuum chamber, and measured
independently. K2 and K3 are the two- and three-body loss
rate coefficients, respectively. Previously, these parameters
were measured only with harmonically trapped gases,
which complicates the analysis due to the nonlinear density
dependence in this model. Here, we benefit directly from
the uniformity of the gas and from the fact that its shape and
volume are almost unchanged as the atom number dimin-
ishes. Fitting the data taken with the rf pulse with both
coefficients as free parameters (black solid line) yields
K3 ¼ 9ð1Þ × 10−25 cm6 s−1 and K2 ¼ 0. This shows that
the loss is mainly due to three-body recombination. Since
in the data without the rf pulse the density is not
homogeneous and, in fact, differs between the two spin
components, we do not use it to extract loss coefficients.
Qualitatively, however, it is still fitted well by the model
of Eq. (19) (red solid line). Our value for K3 is 10 times
higher than the one measured in a harmonic trap and at a
significantly higher temperature in Ref. [63]. We note,
however, that their maximal value ofK3, which is measured
on the BEC side of the resonance, agrees with our
measurement at unitarity.

D. The contact parameter of a uniform gas

We now turn to a measurement of the contact parameter
in the BEC-BCS crossover regime. This parameter is
central to a set of universal thermodynamic and energetic
relations [26,65–69], many of which have been tested
experimentally [70–73]. Previous works determine the
value of the contact with harmonically trapped gas at
different temperatures and interaction strengths [70,74,75].
Local measurements resolve the contact of a quasihomoge-
neous sample [33,35,36,76–79]. Until now, the contact of a
truly uniform gas was measured only at unitarity [80].
We determine the contact from the power-law tail of rf

line shapes taken with the uniform gas [33,49,70,80].
In contrast to the condensate fraction experiments, where
the condensate is formed after approximately 2 ms, here we
observe that it takes at least 100 ms for the tail to fully
develop. For this reason, we wait for 400 ms in the final
magnetic field before measuring the rf line shape. The
number of atoms and temperature are similar to the
condensate fraction experiments. The spin-rotation rf field,
with Ω=2π ≈ 10.5 kHz, is turned on for the last 200 ms.
It is turned off 0.5 ms before we probe with a 1-ms square
pulse of a second rf field, whose frequency we scan near the
j ↑i → j9=2;−5=2i transition. The atom number in state
j9=2;−5=2i is again detected with fluorescence imaging
[49]. A typical rf line shape is shown on a logarithmic scale
in the inset in Fig. 8. A universal power-law tail over two
decades is clearly visible. To extract the contact, we work in
natural Fermi units and normalize the spectrum to 1=2. The
tail is then fitted with C=ð22=3π2ν3=2Þ (black line in the
inset), where C is the contact parameter in units of NkF.
Owing to the high sensitivity of our fluorescence detection

scheme, we keep the rf power constant for all detunings,
while the maximal transferred fraction is no more than 8%.
The systematic error in the determination of the contact due
to the remaining density inhomogeneity in our realization
of the flat trap is estimated by calculating the density-
weighted average of a theoretical contact [81] using our
calibrated model of the trap (see Appendix A). We find that
the density-averaged contact, representing our measured
contact, is lower than the homogeneous contact by 5% in
the BCS side (1=kFa ¼ −1) and higher by 7% in the BEC
side (1=kFa ¼ 1). Near unitarity, the large scattering length
reduces the deviation to less than 1%. As a comparison, for
harmonically trapped gas at the same average density, the
systematic errors are 19% and 25% in the BCS and BEC
sides, respectively.
In Fig. 8, we plot the contact of a uniform Fermi gas at

various interaction strengths in the BEC-BCS crossover.
Starting from the BCS side (a < 0), the contact increases

FIG. 8. The contact of a uniform Fermi gas in the BEC-BCS
crossover. The contact is extracted from the tail of rf line shapes
taken at different interaction parameters. As an example, the inset
shows the line shape at ðkFaÞ−1 ¼ 0.75ð2Þ together with its fit
(black solid line). Upper: The theoretical prediction for the
contact in the BCS (BEC) limit is shown as a loosely (densely)
dash-double-dotted line. We compare our data (blue circles) with
a non-self-consistent T-matrix model at T ¼ Tc improved by
Popov (dash-dotted line) and at T ¼ 0 (solid line) [81], a
Luttinger-Ward calculation (dashed line) [82], and a GPF
calculation (dotted line) [83,84]. The FNDMC line [78,85] is
indistinguishable from the GPF line on this scale. Lower: For a
better quantitative comparison, we define a shifted contact as
C̃ ¼ C − 3 exp ð1.4=kFaÞ. In this plot, we also add previous
measurements done with a quasihomogeneous gas (green dia-
monds) [35]. Error bars represent 1σ confidence interval of the fit.
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monotonically toward the BEC side of the crossover,
where it converges to the asymptotic behavior of a
molecule: CBEC ¼ 4π=kFa [82]. We find that, already
above 1=kFa ≈ 0.8, our data are very close to CBEC.
In contrast, the weak-coupling BCS limit of the con-
tact, CBCS ¼ 4ðkFaÞ2=3 [82], is not attained even at
1=kFa ¼ −1. We compare our data to several theories
and previous measurements. On the BEC side, there is a
pronounced difference between the T ¼ 0 and T ¼ Tc
predictions [81]. Our data, which are taken slightly below
Tc, agree with the T ¼ 0 T-matrix calculation. We also find
a good agreement with the Gaussian pair fluctuation (GPF)
calculation [83,84] and fixed-node diffusion Monte
Carlo simulation (FNDMC) [78,85], especially in the
BEC region. A Luttinger-Ward calculation [82] is slightly
below our data on the BEC side. Close to unitarity
[1=kFa ¼ −0.02ð1Þ], ourmeasuredC ¼ 2.99ð11Þ is in good
agreement with values measured using rf spectroscopy
[C ¼ 3.07ð6Þ] [80], Bragg spectroscopy [C ¼ 2.95ð14Þ]
[36], and impurity loss [C ¼ 3.09ð34Þ] [79]. It is slightly
lower than C ¼ 3.51ð18Þ [76] and C ¼ 3.37ð4Þ [78]
obtained from in situ thermodynamic measurements.
Similar data taken in the BEC-BCS crossover, albeit with
a quasihomogeneous gas and above Tc, are in agreement
with ours, to within the experimental accuracy [35].

V. DISCUSSION

In this work, we have demonstrated that Floquet
engineering can be used with a continuous interacting
Fermi gaswithout affecting its intrinsicmany-body behavior.
Specifically, we have employed the technique to eliminate
the effect of a spin-dependent potential and achieve a flat trap.
Our experiments are done with a driving frequency that is
much higher than all other relevant experimental scales.
In this regime, we have found no detectable heating during
the experiment due to periodic driving. Measurements of the
condensate fraction and contact parameter show the same
behavior as expected in a stationary uniform Fermi gas.
Furthermore, our dynamical levitation scheme can be used to
generate a uniform density of other spin mixtures.
The full Hamiltonian of Eq. (1) depends explicitly on

time and, therefore, does not conserve energy. In contrast to
many-body localized systems [86–89], our gas is ergodic,
and, thus, it is not protected from heating [16–18].
Nevertheless, interacting many-body systems can attain
long-lived prethermal states, following a quench of the
Hamiltonian parameters [90–94] or upon initiation of
periodic driving [20,21,95,96]. In particular, discrete lattice
systems show an exponentially slow energy absorption rate
at high frequencies leading to Floquet prethermal states that
persist for a time exponentially long with the drive
frequency Ω [19–23,25]. The Fermi gas in the continuum
does not benefit from such exponential suppression of the
heating rate. Nonetheless, we have shown in Sec. II that the
smooth spatial structure of the periodic perturbation leads

to parametric suppression of the heating rate in a unitary
Fermi gas. The suppression is controlled by the small
values of Vg=ðℏΩÞ, with Vg being the strength of the time-
dependent perturbation, ϵF=ðℏΩÞ, and 1=kFL. This allows
us to obtain prethermal states with lifetimes much longer
than the characteristic many-body timescale. In this work,
we have focused on demonstrating this fact with measure-
ments of the momentum distribution, the contact param-
eter, and the condensate fraction. It will be interesting to
investigate the heating process and thermodynamic proper-
ties of the driven gas in the future.
Our work should also be placed in the framework of

quantum information processing, where ultracold atoms are
proposed as a resource for quantum memory [97–99].
A common cause of decoherence is spatially inhomogeneous
spin-dependent potentials. As an example, the energy differ-
ence between two internal states of optically trapped atoms
usually varies in position due to differential light shifts. In a
classical ensemble, each atom can be treated independently
with the rest of the ensemble acting as a fluctuating bath
[100,101]. These fluctuations lead to decoherence of the
qubit stored in this atom. Dynamical decoupling [102,103], a
generalization of the celebrated Hahn echo technique [104],
can substantially slow this relaxation process by applying
multiple spin rotations [105].
Dynamical decoupling has been applied successfully in

NMR [106–108], photonic systems [109], trapped ions
[110,111], electron spin in solids [112–115], ultracold
atoms [105,116], and Bose-Einstein condensates (BECs)
[117,118]. In all cases, the decoupled system was weakly
interacting and could be treated in a mean-field approach.
Dynamical decoupling was not applied before to a strongly
interacting ensemble with the aim of preserving its many-
body behavior. In our work, the spin-dependent potential
originates from the magnetic cancellation of gravity. The
spin-rotation rf pulse we apply is a continuous version of a
simple dynamical decoupling scheme. The absence of
heating we observe is promising for future explorations
of more sophisticated sequences tailored to generate
specific local and global symmetries [24], for example,
the realization of tilted Fermi-Hubbard chains where the rf
dressing was used to tune a relative tilt difference of two
different spin states [119].
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APPENDIX A: NUMERICAL MODEL OF THE
FLAT TRAP

We develop a systematic approach to calibrate a numeri-
cal model for the flat trap potential. Using the numerical
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model, we calculate the Fermi energy and generate a
momentum distribution functional used to fit the Raman
spectrum (see Fig. 4). To this end, we simulate the density
in the box trap using a model potential and fit it to the in situ
integrated density, measured by absorption imaging. For
this calibration, we create a spin-polarized gas at the same
conditions as in the experiments presented in this paper.
This is done by first preparing the gas in the flat trap in a
spin-balanced configuration as described in the main text.
Then, we apply an adiabatic rapid passage selectively from
state j ↑i that drives the atoms from this state to a final
j9=2;þ9=2i state, leaving state j↓i untouched. The force
created by the magnetic gradient, initially working opposite
to the gravity for the j ↑i state, flips its sign due to the
change in the magnetic number mF and starts working in
the direction of gravity, ripping the atoms from the flat trap
through the lower cap wall. This procedure removes all of
the atoms that are initially in state j ↑i while losing less
than 10% from state j↓i. The magnetic-field gradient is set
to perfectly cancel gravity for state j↓i, making the density
homogeneous.
The next step is taking in situ absorption images of the

spin-polarized gas (see Fig. 9). The OD of the gas is too
high to image directly. To reduce the OD for imaging, we

apply a sequence of two rf pulses. The first pulse transfers
approximately 90% of the atoms from state j↓i to state j ↑i.
The second pulse transfers all of the atoms from state j ↑i
to state j9=2;−5=2i, which is detuned by 92 MHz from the
optical transition. The last pulse ensures that no artifacts are
introduced to the imaging due to a large atom number in
off-resonant states. The two pulses are completed within
less than 70 μs, ensuring the density is unchanged during
this procedure.
The spin-polarized gas is essentially noninteracting and

can be described by a Fermi-Dirac distribution. To fit the
two-dimensional integrated density image, we calculate the
density in a local density approximation [120]:

nðr; zÞ ¼ −λ−3dBLi3=2ð− exp fβ½μ −Uðr; zÞ�gÞ; ðA1Þ

where λdB is the de Broglie wavelength, β ¼ 1=ðkBTÞ with
kB being the Boltzmann constant, Uðr; zÞ is the trapping
potential, and μ is the chemical potential, which is set by
the total number of atoms. The model potential of the tube
beam is parametrized by a power-law function, while the
potential of the cap beams is taken as a Gaussian function:

Uðr; zÞ ¼ Urðr=σrÞp

þUz

�
exp

�
−
2ðz− z0Þ2

σ2z

�
þ exp

�
−
2ðzþ z0Þ2

σ2z

��
:

ðA2Þ

Here, r is the radial coordinate relative to the symmetry axis
of the tube (denoted by z), and Ur is the potential barrier of
the cylindrical wall. The tube radius σr ¼ 32 μm and the
power-law exponent p ¼ 13.6 are extracted from a direct
measurement of the laser beam that generates the potential
[55]. Uz is the potential barrier of the cap beams, and σz ¼
7.5 μm is their waist radii in the z direction, also measured
directly. z0 ¼ 24 μm is half the separation between the two
cap beams, measured by imprinting the cap profile on a
dilute expanded cloud of atoms [55]. The temperature T is
found self-consistently together with momentum dis-
tribution measurements. The only free parameters in the
fit are Ur, Uz, and the center position of the fit. A two-
dimensional density function for fitting the in situ image is
generated by integrating the three-dimensional density
nðr; zÞ along one of the Cartesian axes. An example of a
typical calibration is shown in Fig. 9. Once the model
potential is calibrated, we calculate ϵF from the peak den-
sity: EF ¼ ½6π2nFð0; 0Þ�2=3ℏ2=2m. The density-averaged
ϵF is smaller by 12%. This difference is considerably
smaller than in the harmonically trapped gas before loading
the flat trap, in which the density-averaged ϵF is smaller by
44% than the peak ϵF.
We quantify the density homogeneity in the form of a

probability distribution function PðnÞ. We calculate the
axially integrated probability distribution Pðn2D=n̄2DÞ as an

FIG. 9. In situ density analysis. An example of an in situ atomic
density measured by absorption imaging from the side (a) and
from the top (b) (the cylinder symmetry axis is vertical). Vertical
cuts along the side and top images (circles) together with a fit to
the numerical model (solid lines) are shown in insets (c) and (d),
respectively. The flat part of the cut is where the density is
uniform. Inset (e) shows a 2D density probability distribution of
the flat trap (blue line) and a harmonically trapped gas (red line).
The density probability function of the flat trap is peaked around
the average density value, indicating that most of the density is
close to the average. (a) and (b) are an average of five and ten
experimental repetitions, respectively.
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histogram of absorption images taken along the symmetry
axis [Fig. 9(b), inset], where n2D is the two-dimensional
atomic density and n̄2D is its weighted average. The pro-
bability distribution is plotted in the inset in Fig. 9(e),
together with the probability distribution of a harmonically
trapped gas. A direct measure of uniformity is the standard
deviation of Pðn2D=n̄2DÞ, which is 0.23 and 0.42 in units of
n̄2D for the flat and harmonic traps, respectively.
The knowledge of the trapping potential enables us

to calculate the one-dimensional momentum distribution
nðkzÞ and use it as a fitting function for the data acquired
in the Raman spectroscopy experiment (Fig. 4). nðkzÞ is
obtained by integrating the semiclassical distribution [120]

fðr; kÞ ¼
�
exp

��
k2

k2F
þ Uðr; zÞ

EF
−

μ

EF

�
=
T
TF

�
þ 1

�−1

ðA3Þ

both spatially and along two momenta axes

nðkzÞ ¼
4π

3N
1

ð2πÞ3
Z

fðr; kÞd3rdkxdky: ðA4Þ

APPENDIX B: EXTRACTING THE
CONDENSATE FRACTION

To separate the thermal wings and the central peak, we
image the cloud after a relatively long expansion. As a
result, the absorption signal is weak. To improve the signal-
to-noise ratio, we employ a deep-learning approach to filter
out the background noise in the images [121]. We verify
that this noise removal procedure does not change signifi-
cantly the reported CF values and only reduces the
uncertainty. The recorded density can be roughly consid-
ered as dissociated pairs that have either nonzero or zero
center-of-mass momentum. The latter are the condensed
pairs which constitute the central peak of the image (see
Fig. 10). Each of the two populations expands differently,
according to their respective momentum distribution. The
total atom number is extracted by a direct integration of the
OD image, and the error bars indicate statistical standard
error only.
Following the time of flight, the noncondensed part of

the gas is characterized by a wider expansion with respect
to the trap dimensions, while the condensed part spreads
only slightly beyond its original size, set by the tube beam
diameter [40]. To separate the condensed and noncon-
densed parts, we mask out the central region of the image
(dashed line in Fig. 10) and fit only the tail of the
azimuthally averaged signal with the momentum distribu-
tion of a thermal gas of noninteracting bosons [120] (pink
shading in Fig. 10):

nthðkÞ ¼
V

4π2λT
Li1=2ðze−λ2Tk2=4πÞ þ Nbg; ðB1Þ

where the thermal de Broglie wavelength λT ¼ h=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
and the fugacity z are fitted under the normali-

zation constraint Nth ¼ 2π
R
nthðkÞkdk and Nbg accounts

for the background signal. We extract the condensed
population from the signal that lies above the fit (yellow
shading in Fig. 10). The mask radius Rmask should be
large enough to leave only the thermal wings for fitting.
When we analyze data taken with no condensate, we
observe that the width of the fitted distribution is
almost independent of the mask radius up to around
Rmask ≈ 80 μm. For larger radii, the signal in the remaining
thermal wings is too weak, and the fit exhibits a syste-
matic deviation. Therefore, we set the mask radius to
Rmask ¼ 75 μm. Finally, we note that the CF values we
obtain are close to those reported in Ref. [80], taking into
account our measured reduced temperature.

[1] I. Bloch, J. Dalibard, and W. Zwerger,Many-Body Physics
with Ultracold Gases, Rev. Mod. Phys. 80, 885 (2008).

[2] N. Goldman and J. Dalibard, Periodically Driven Quan-
tum Systems: Effective Hamiltonians and Engineered
Gauge Fields, Phys. Rev. X 4, 031027 (2014).

[3] M. Bukov, L. D’Alessio, and A. Polkovnikov, Universal
High-Frequency Behavior of Periodically Driven Systems:
From Dynamical Stabilization to Floquet Engineering,
Adv. Phys. 64, 139 (2015).

FIG. 10. Extraction of the condensate fraction. Upper: absorp-
tion images of high (left) and low (right) condensate fraction
averaged over ten experimental repetitions. Lower: the corre-
sponding azimuthally averaged signals (blue lines). We fit
Eq. (B1) (red line) to the thermal wings at radii > Rmask (dashed
black line). The condensate fraction is defined by the integrated
signal above the fit extrapolation (yellow shading) over the total
integrated signal (pink plus yellow shadings). To make a fair
comparison, each of the two distributions is normalized by its
total number of atoms, 61.0 × 103 and 68.3 × 103 in the right and
left examples, respectively.

CONSTANTINE SHKEDROV et al. PHYS. REV. X 12, 011041 (2022)

011041-12

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1080/00018732.2015.1055918


[4] A. Eckardt, Colloquium: Atomic Quantum Gases in
Periodically Driven Optical Lattices, Rev. Mod. Phys.
89, 011004 (2017).

[5] F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi,
Coherent Destruction of Tunneling, Phys. Rev. Lett. 67,
516 (1991).

[6] M. Grifoni and P. Hanggi, Driven Quantum Tunneling,
Phys. Rep. 304, 229 (1998).

[7] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O.
Morsch, and E. Arimondo, Dynamical Control of Matter-
Wave Tunneling in Periodic Potentials, Phys. Rev. Lett.
99, 220403 (2007).

[8] E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic,
and M. K. Oberthaler, Single-Particle Tunneling in
Strongly Driven Double-Well Potentials, Phys. Rev. Lett.
100, 190405 (2008).

[9] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E.
Arimondo, Coherent Control of Dressed Matter Waves,
Phys. Rev. Lett. 102, 100403 (2009).

[10] A. S. Sørensen, E. Demler, and M. D. Lukin, Fractional
Quantum Hall States of Atoms in Optical Lattices, Phys.
Rev. Lett. 94, 086803 (2005).

[11] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B.
Paredes, and I. Bloch, Realization of the Hofstadter
Hamiltonian with Ultracold Atoms in Optical Lattices,
Phys. Rev. Lett. 111, 185301 (2013).

[12] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with
Laser-Assisted Tunneling in Optical Lattices, Phys. Rev.
Lett. 111, 185302 (2013).

[13] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Experimental Reali-
zation of the Topological Haldane Model with Ultracold
Fermions, Nature (London) 515, 237 (2014).

[14] M. S. Rudner and N. H. Lindner, Band Structure Engineer-
ing and Non-equilibrium Dynamics in Floquet Topologi-
cal Insulators, Nat. Rev. Phys. 2, 229 (2020).

[15] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D.
Liberto, N. Goldman, I. Bloch, and M. Aidelsburger,
Realization of an Anomalous Floquet Topological System
with Ultracold Atoms, Nat. Phys. 16, 1058 (2020).

[16] A. Lazarides, A. Das, and R. Moessner, Equilibrium States
of Generic Quantum Systems Subject to Periodic Driving,
Phys. Rev. E 90, 012110 (2014).

[17] L. D’Alessio and M. Rigol, Long-Time Behavior of
Isolated Periodically Driven Interacting Lattice Systems,
Phys. Rev. X 4, 041048 (2014).

[18] P. Ponte, A. Chandran, Z. Papić, and D. A. Abanin,
Periodically Driven Ergodic and Many-Body Localized
Quantum Systems, Ann. Phys. (Amsterdam) 353, 196
(2015).

[19] T. Mori, T. Kuwahara, and K. Saito, Rigorous Bound on
Energy Absorption and Generic Relaxation in Periodically
Driven Quantum Systems, Phys. Rev. Lett. 116, 120401
(2016).

[20] T. Kuwahara, T. Mori, and K. Saito, Floquet–Magnus
Theory and Generic Transient Dynamics in Periodically
Driven Many-Body Quantum Systems, Ann. Phys.
(Amsterdam) 367, 96 (2016).

[21] D. A. Abanin, W. De Roeck, W.W. Ho, and F. Huveneers,
Effective Hamiltonians, Prethermalization, and Slow
Energy Absorption in Periodically Driven Many-Body
Systems, Phys. Rev. B 95, 014112 (2017).

[22] D. V. Else, B. Bauer, and C. Nayak, Prethermal Phases of
Matter Protected by Time-Translation Symmetry, Phys.
Rev. X 7, 011026 (2017).

[23] F. Machado, G. D. Kahanamoku-Meyer, D. V. Else, C.
Nayak, and N. Y. Yao, Exponentially Slow Heating in
Short and Long-Range Interacting Floquet Systems,
Phys. Rev. Research 1, 033202 (2019).

[24] K. Agarwal and I. Martin, Dynamical Enhancement of
Symmetries in Many-Body Systems, Phys. Rev. Lett. 125,
080602 (2020).

[25] A. Rubio-Abadal, M. Ippoliti, S. Hollerith, D. Wei, J. Rui,
S. L. Sondhi, V. Khemani, C. Gross, and I. Bloch, Floquet
Prethermalization in a Bose-Hubbard System, Phys. Rev.
X 10, 021044 (2020).

[26] The BCS-BEC Crossover and the Unitary Fermi Gas,
edited by W. Zwerger (Springer, Berlin, 2012).

[27] A. Schirotzek, Y. I. Shin, C. H. Schunck, and W. Ketterle,
Determination of the Superfluid Gap in Atomic Fermi
Gases by Quasiparticle Spectroscopy, Phys. Rev. Lett.
101, 140403 (2008).

[28] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C.
Salomon, Exploring the Thermodynamics of a Universal
Fermi Gas, Nature (London) 463, 1057 (2010).

[29] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama,
Measurement of Universal Thermodynamic Functions for
a Unitary Fermi Gas, Science 327, 442 (2010).

[30] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M.W.
Zwierlein, Revealing the Superfluid Lambda Transition
in the Universal Thermodynamics of a Unitary Fermi Gas,
Science 335, 563 (2012).

[31] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C.
Sanner, and W. Ketterle, Critical Velocity for Superfluid
Flow across the BEC-BCS Crossover, Phys. Rev. Lett. 99,
070402 (2007).

[32] T. E. Drake, Y. Sagi, R. Paudel, J. T. Stewart, J. P. Gaebler,
and D. S. Jin, Direct Observation of the Fermi Surface in
an Ultracold Atomic Gas, Phys. Rev. A 86, 031601(R)
(2012).

[33] Y. Sagi, T. E. Drake, R. Paudel, and D. S. Jin, Measure-
ment of the Homogeneous Contact of a Unitary Fermi Gas,
Phys. Rev. Lett. 109, 220402 (2012).

[34] Y. Sagi, T. E. Drake, R. Paudel, R. Chapurin, and D. S. Jin,
Probing Local Quantities in a Strongly Interacting Fermi
Gas, J. Phys. Conf. Ser. 467, 012010 (2013).

[35] Y. Sagi, T. E. Drake, R. Paudel, R. Chapurin, and D. S. Jin,
Breakdown of the Fermi Liquid Description for Strongly
Interacting Fermions, Phys. Rev. Lett. 114, 075301 (2015).

[36] C. Carcy, S. Hoinka, M. G. Lingham, P. Dyke, C. C. N.
Kuhn, H. Hu, and C. J. Vale, Contact and Sum Rules in a
Near-Uniform Fermi Gas at Unitarity, Phys. Rev. Lett.
122, 203401 (2019).

[37] Y. Shin, M.W. Zwierlein, C. H. Schunck, A. Schirotzek,
and W. Ketterle, Observation of Phase Separation in a
Strongly Interacting Imbalanced Fermi Gas, Phys. Rev.
Lett. 97, 030401 (2006).

ABSENCE OF HEATING IN A UNIFORM FERMI GAS CREATED … PHYS. REV. X 12, 011041 (2022)

011041-13

https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1016/S0370-1573(98)00022-2
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.99.220403
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.100.190405
https://doi.org/10.1103/PhysRevLett.102.100403
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1038/s41567-020-0949-y
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1103/PhysRevLett.116.120401
https://doi.org/10.1103/PhysRevLett.116.120401
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1016/j.aop.2016.01.012
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevX.7.011026
https://doi.org/10.1103/PhysRevResearch.1.033202
https://doi.org/10.1103/PhysRevLett.125.080602
https://doi.org/10.1103/PhysRevLett.125.080602
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1103/PhysRevX.10.021044
https://doi.org/10.1103/PhysRevLett.101.140403
https://doi.org/10.1103/PhysRevLett.101.140403
https://doi.org/10.1038/nature08814
https://doi.org/10.1126/science.1183012
https://doi.org/10.1126/science.1214987
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1103/PhysRevLett.99.070402
https://doi.org/10.1103/PhysRevA.86.031601
https://doi.org/10.1103/PhysRevA.86.031601
https://doi.org/10.1103/PhysRevLett.109.220402
https://doi.org/10.1088/1742-6596/467/1/012010
https://doi.org/10.1103/PhysRevLett.114.075301
https://doi.org/10.1103/PhysRevLett.122.203401
https://doi.org/10.1103/PhysRevLett.122.203401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401


[38] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith,
and Z. Hadzibabic, Bose-Einstein Condensation of Atoms
in a Uniform Potential, Phys. Rev. Lett. 110, 200406
(2013).

[39] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois, C.
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