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We experimentally study the emergence of microcanonical equilibrium states in the turbulent relaxation
dynamics of a two-dimensional chiral vortex gas. Same-sign vortices are injected into a quasi-two-
dimensional disk-shaped atomic Bose-Einstein condensate using a range of mechanical stirring protocols.
The resulting long-time vortex distributions are found to be in excellent agreement with the mean-field
Poisson Boltzmann equation for the system describing the microcanonical ensemble at fixed energyH and
angular momentum M. The equilibrium states are characterized by the corresponding thermodynamic

variables of inverse temperature β̂ and rotation frequency ω̂. We are able to realize equilibria spanning the
full phase diagram of the vortex gas, including on-axis states near zero temperature, infinite temperature,
and negative absolute temperatures. At sufficiently high energies, the system exhibits a symmetry-breaking
transition, resulting in an off-axis equilibrium phase at negative absolute temperature that no longer shares
the symmetry of the container. We introduce a point-vortex model with phenomenological damping and
noise that is able to quantitatively reproduce the equilibration dynamics.
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I. INTRODUCTION

Turbulence continues to stand as one of the most
challenging problems in physics despite several centuries
of study. Most phenomena occurring in the turbulent
motion of fluids are strongly nonequilibrium in nature,
making the problem highly intractable for theoretical
treatment. The chaotic fluid motion ultimately requires a
probabilistic description, yet one of the most powerful
probabilistic tools available—the maximum entropy prin-
ciple of statistical mechanics—is effectively rendered
useless; turbulent flows generally defy a description in
terms of equilibrium statistical mechanics, due to their

strong dissipation of energy and consequent lack of
detailed balance [1–3].
A notable exception occurs in the case of quasi-two-

dimensional flows, where, due to the suppression of vortex
stretching, energy is conserved in the limit of a large
Reynolds number [4,5]. In such flows, large and long-lived
isolated vortices tend to spontaneously form out of the
turbulent background. Examples are regularly seen in a
range of systems including electron plasmas [6,7], soap
films [8], stratified fluid layers [9], and planetary atmos-
pheres [10,11]—Jupiter’s Great Red Spot, which has
persisted for over 350 years, is perhaps the most famous
example. The prevalence and long-lived nature of these
structures suggests they are an aspect of turbulence to
which equilibrium statistical mechanics could be success-
fully applied.
The idea to apply statistical mechanics to turbulent flows

originated with the seminal work of Onsager [12], who
investigated the statistical mechanics of a system of point
vortices in a perfect (i.e., inviscid) fluid. In this simple
Hamiltonian model, the vortices are treated as a kind of
“gas,” whose particles interact via long-range interactions.
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The equilibria of this model are indeed typically dominated
by one or two large clusters of vortices, reflecting what is
typical of real fluids. While the point-vortex approach
could not be quantitatively applied to real fluids (which
have continuous vorticity distributions), Onsager’s maxi-
mum entropy approach was, naturally, a highly appealing
prospect; a significant body of work in the following
decades aimed to bridge the gap between the discrete
and continuous vorticity distributions [13–18], in the
hope to connect the maximum entropy approach to real
fluids (for a summary of theoretical developments, see,
e.g., Ref. [19]).
Unfortunately, however, although equilibrium theories

have proven to be successful in some cases [7,11,20,21],
they also fail in many situations. It has been argued that
“statistical approaches have not been proven yet to offer a
more than qualitative framework for the interpretation of
experimental observation” [22]. Some examples explicitly
avoid assuming global entropy maximization [23], while
others require abandoning entropy altogether [24–28]. One
major culprit, it seems, is the ergodicity assumption;
two-dimensional turbulent systems often do not exhibit
sufficiently vigorous (ergodic) mixing to justify the search
for global equilibrium states [22]. Indeed, it is now known
that a general property of long-range interacting systems is
that they are unable to thermalize when they contain a large
number of degrees of freedom [29]—precisely the situation
which occurs in large Reynolds number flows [3,5].
A second major complication arises due to contributions
in the boundary layer, which introduces crucial changes to
the flow near the container walls for any nonvanishing
value of viscosity [30–32].
Superfluid atomic gases confined in uniform box traps

[33–38] have recently emerged as a new platform to test
fundamental theories of turbulence and vortex dynamics in
a highly tunable system [39–45]. A natural question which
arises is whether the maximum entropy approach may more
accurately describe coherent vortices in a superfluid, due to
several advantages these systems offer. First, in superfluids,
the viscosity is identically zero, as is assumed in the
maximum entropy theories discussed above. Second, in
thin-layer superfluids, the vorticity is genuinely pointlike in
nature, and the condensate wave function constrains the
vorticity to be quantized with the value Γ ¼ �h=m, where
h is Planck’s constant and m is the mass of a superfluid
particle. In fact, provided the vortex cores are small, the
vortex dynamics are governed precisely by the Hamiltonian
point-vortex system originally considered by Onsager
[46,47]. These systems, therefore, offer the unique prospect
of experimentally testing the maximum entropy approach
in a system which is genuinely inviscid and contains a
relatively small number of degrees of freedom (determined
by the vortex number N), where simulations suggest that
the ergodicity assumption may hold [48–50]. Significant
experimental progress in this direction has been made in

two recent works [42,43] (one by some of the present
authors [42]), which observe signatures consistent with
maximum entropy vortex distributions. However, these
experiments both suffer from key limitations: (i) The
temperature of the vortex distributions could only be
inferred from a priori assumptions of equilibrium, and
(ii) the relaxation to equilibrium is not tested for a wide
range of nonequilibrium initial conditions. Without having
tested these aspects, it cannot yet be said whether the
maximum entropy approach proves useful for describing
two-dimensional turbulent flows in superfluids.
In this work, we demonstrate that the maximum entropy

approach quantitatively agrees with experiment over a wide
range of parameters. We experimentally consider a chiral
(single-sign circulation) vortex gas confined to a disk
geometry, which we realize in an ultracold atomic Bose-
Einstein condensate confined with a fully configurable
optical potential. In contrast to the previous experiments
[42,43] which consider neutral vortex gas systems [13,51],
the chiral system exhibits nontrivial (i.e., spatially nonuni-
form) equilibria over the entire phase diagram [52],
facilitating a comparison between experiment and theory
over the full phase diagram of the vortex gas. Furthermore,
as all vortices have the same sign, vortex-antivortex
annihilation is completely suppressed in the bulk of the
superfluid. By suppressing this nonequilibrium process, the
interpretation of the system in terms of the microcanonical
ensemble is simplified considerably.
Using controllable optical potentials to stir the super-

fluid, we are able to initialize vortex distributions of N ∼
10–16 vortices with essentially arbitrary initial values of
energy and angular momentum, which are the two control
parameters determining the equilibrium states. We find that,
despite some residual dissipation, the vortex gas lives long
enough to reach equilibrium. We first initialize the system
directly into a near-equilibrium state and demonstrate that it
remains near equilibrium, undergoing a gradual cooling.
Then, by initializing the vortices in nonequilibrium con-
figurations with different energy and angular momenta, we
demonstrate relaxation to a range of equilibrium distribu-
tions predicted by the microcanonical ensemble. Finally,
we introduce a point-vortex model with damping and noise
that is able to quantitatively reproduce the equilibration
dynamics.
The outline of this paper is as follows. In Sec. II, we

outline the point-vortex system and summarize the known
results from statistical mechanics and the mean-field phase
diagram of the chiral vortex gas. In Sec. III, we present our
experimental results and compare the observed vorticity
distributions with the equilibrium predictions presented in
Sec. II. Our results on the dynamics of the vortex gas are
presented in Sec. IV, which we show can be quantitatively
described by a point-vortex model supplemented by fric-
tion and noise. Section V presents the conclusions and
outlook.
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II. CHIRAL VORTEX GAS IN A DISK

Before presenting our experimental results, we first
provide context by briefly introducing the model of a
chiral vortex gas in a disk, and we review the known
equilibrium results obtained from statistical mechanics.

A. Point-vortex model

We consider a two-dimensional fluid containing a chiral
vortex gas of N point vortices with quantized circulations
Γ ¼ þh=m, where h is Planck’s constant andm is the mass
of a fluid particle. The fluid is assumed to be incompress-
ible and inviscid, with a uniform (areal) density ρ0, and is
confined to a disk of radius R. Hereafter, we may set R ¼ 1
without loss of generality. In addition to the vortex number
N, the kinetic energy and angular momentum of the fluid
are conserved. The kinetic energy of the fluid can be
expressed in terms of the vortex locations rj as [53,54]

H ¼ −
X
j≠k

ln jrj − rkj þ
X
j;k

ln jrjðrj − r̄kÞj: ð1Þ

Here, H is expressed in units of the energy
E0 ¼ ρ0Γ2=4π. Notice that, although the energy is entirely
kinetic, the Hamiltonian resembles the interaction energy in
a “gas” of charged particles in two dimensions; the first
term describes the Coulomb-like interaction between vor-
tices, while the second term describes the interaction
between vortices and image vortices, which have circu-
lation −Γ and are located outside the disk at position
r̄j ¼ rj=r2j , where rj ¼ jrjj. The fictitious image vortices
enforce the condition that the fluid may not flow through
the boundary, i.e., u · r̂jr¼1 ¼ 0, where r̂ is the radial unit
vector. The vortex dynamics governed by H are given by

_xj ¼ ∂H=∂yj; _yj ¼ −∂H=∂xj: ð2Þ

It can be seen from Eq. (2) that the x and y coordinates
of the vortices are canonically conjugate variables. This
unusual feature of this Hamiltonian system has a profound
effect on the statistical mechanics, as discussed in the next
section. The angular momentum is L ¼ ρ0

R
d2r r×

uðrÞ ¼ 1
2
ρ0ΓðN −MÞ, where

M ¼
X
j

jrjj2: ð3Þ

The angular momentum, hence, constrains the mean-square
radius of the vortex distribution [55].

B. Statistical mechanics

For the Hamiltonian system described by Eq. (1), at
sufficiently large N, one may hope to invoke the ergodicity
hypothesis to determine the long-time behavior of the
system from the tools of statistical mechanics. For the

vortex gas dynamically evolving at fixed energy [Eq. (1)]
and angular momentum [Eq. (3)], the system is described
by the microcanonical ensemble

δS − βðδH − ωδMÞ ¼ 0; ð4Þ

where S is the entropy and

β ¼ ∂S
∂H

����
M
; ω ¼ 1

β

∂S
∂M

����
H
: ð5Þ

Here, β is the inverse temperature, and βω is a thermody-
namic potential for the angular momentum. The quantity ω
may be interpreted as a rotation frequency [57].
A remarkable property of Eqs. (1) and (2) is that the

canonical coordinates are determined only by the circu-
lations and the physical-space coordinates of the vortices.
As first appreciated by Onsager [12], this property has
profound effects on the statistical mechanics of the system;
if the physical space is bounded by a container of area A, it
follows that the total accessible phase space volume is
bounded:

Z
d2r1…d2rN ¼ AN: ð6Þ

It follows directly from this property [12] that entropy
reaches a maximum at a finite value of the energy [see
Fig. 1(a), point B]. Above this energy, the entropy
decreases with increasing energy, and by Eq. (5) these
equilibria are, thus, characterized by negative absolute
temperatures. The bounded phase space property starkly
contrasts with most systems, for which the phase space is
unbounded and the entropy monotonically increases with
energy. Notice crucially that the unusual Hamiltonian
structure occurs because the vortices are massless objects;
there is no term in the Hamiltonian of the form 1

2
mvv2 (for

hypothetical vortex mass mv). The appearance of such a
term would break the bounded phase space condition
Eq. (6). Finally, it should be noted that, as this system
supports negative temperatures, ensemble equivalence does
not hold, in general, and the canonical ensemble is, there-
fore, not appropriate [29,54].

C. Mean-field theory of the vortex gas

To describe our experiment, we consider a mean-field
approach to the vortex equilibria [50], as first developed by
Joyce and Montgomery [13]. In the mean-field theory, the
point-vortex distribution is replaced with a coarse-grained
field

P
i δðr − riÞ=N → nðrÞ; the entropy is given by

S½nðrÞ� ¼ −
Z

d2rnðrÞ ln nðrÞ: ð7Þ

The energy and angular momentum are rescaled to remove
explicit dependence on N viaH≡H=N2,M≡M=N, and
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their rescaled conjugate variables are the inverse temper-
ature β̂≡ βE0N and rotation frequency ω̂≡ ωR2=ðE0NÞ.
In terms of nðrÞ,

H ¼ 1

2

Z
d2r nðrÞϕðrÞ; M ¼

Z
d2r r2nðrÞ; ð8Þ

where ϕðrÞ is the stream function that satisfies the Poisson
equation ∇2ϕðrÞ ¼ −4πnðrÞ. The equilibrium vortex dis-
tributions maximize S subject to the constraints of fixed
energy and angular momentum and can be shown to satisfy
the Poisson-Boltzmann equation

nðrÞ ¼ n0 expf−β̂½ϕðrÞ þ ω̂r2�g; ð9Þ

where the density prefactor n0 is determined by the
normalization condition, which we are free to choose
as

R
d2r nðrÞ ¼ 1.

D. Phase diagram

The mean-field phase diagram of the chiral vortex gas in
a disk geometry is laid out in the work of Smith and O’Neil
[54]. They show that the system exhibits a symmetry
breaking at high energy due to a competition between
the energy, which requires vortices to be in close proximity
and far from the container walls [Eq. (1)], and the angular

momentum, which fixes the mean-square radius [Eq. (3)].
At low energy, equilibria share the underlying rotational
symmetry of the container, whereas the high-energy equi-
libria are nonaxisymmetric states which break this sym-
metry. An overview of the system is shown in Fig. 1.
In Fig. 1(a), we show an example of the entropy versus
energy for the system found from numerically solving
Eq. (9) at a fixed angular momentum M ¼ 0.34 (for
numerical details, see the Appendix B).
Analytical solutions can be obtained to Eq. (9) for a few

special cases [54]; these solutions provide useful reference
points to compare against our experiment and are, hence,
summarized in Table I. We also label these solutions as
A −E in Fig. 1(a). For all energies below point D, the
equilibria are axisymmetric and depend only on the radial
variable r. For a givenM, the lowest-energy solutionA is a
uniform (Rankine) vortex that extends to radius r ¼ ffiffiffiffiffiffiffiffiffi

2M
p

,
rotating rigidly at frequency ω̂R ¼ ð2MÞ−1. Increasing the
energy rounds out the edge of the density profile until B,
where β̂ → 0� and ω̂ → �∞, in such a way that β̂ ω̂
remains finite and the density becomes Gaussian:
nðrÞ ¼ n0e−β̂ ω̂ r2 . At energies higher than point B, β̂ and
ω̂ become negative, but the solutions remain axisymmetric;
the solution becomes more strongly peaked at the origin to
increase the energy while developing longer tails to satisfy
the angular momentum constraint. At C, where ω̂ ¼ 0,
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FIG. 1. (a) Entropy and equilibrium states of a chiral vortex gas in a disk at fixed angular momentum, obtained by numerically solving
the Poisson-Boltzmann equation [Eq. (9)] for states with M ¼ 0.34 and subtracting off the minimum energy Hmin ¼ 1

4
− 1

2
logð2MÞ

(see Table I). The solid curve shows states where cylindrical symmetry is enforced; at low energy, these states are the maximum entropy
solutions [(i),(ii); solid curve]. At high energies, the maximum entropy states break the rotational symmetry and sit off axis [(iii); dash-
dotted curve]. Insets show example contour plots of the average vortex density. Labels A, B, C, D, and E mark significant equilibrium
states. A, Rankine; B, Gaussian; C, Riccati; D, off-axis; E, supercondensate (see Sec. II C). (b) Full equilibrium phase diagram of the
chiral vortex gas in the H −M plane. Lines show boundaries of the states A −D, relative to the minimum energy of the Rankine (A)
state. Markers show the best-fit values for the five different experiments shown in Sec. III: blue square (I); red circle (II); pink star (III);
purple triangle (IV); green diamond (V). The vertical dashed line indicates M ¼ 0.34 as in (a).

MATTHEW T. REEVES et al. PHYS. REV. X 12, 011031 (2022)

011031-4



Eq. (9) reduces to a Riccati equation with the exact solution
shown in Table I, with the vortex distribution taking the
form of a squared Lorentzian: nðrÞ ¼ n0=ð1 − πβ̂n0r2=2Þ2.
The onset of the off-axis phase occurs at the bifurcation

point D, where ω̂ðM;HcÞ ¼ 1. For energies aboveHc, the
on-axis states are no longer stable; the off-axis states have
the highest entropy and are, hence, the relevant solutions
for thermal equilibrium [see Fig. 1(a)]. Within mean-field
theory, it is typical to use the growth of the macroscopic
dipole moment

D ¼
Z

d2r rnðrÞ ð10Þ

to mark the transition to the off-axis phase. It can be
rigorously treated within perturbation theory near the
bifurcation point and can be shown to grow as jDj ∼ jH −
Hcj1=2 forH≳Hc [51,52]. It must be noted, however, that
the square-root growth is easily accessible only in the limit
of very large N [51]; for small N, as is relevant here, the
dipole moment is

D ¼
X
j

rj; ð11Þ

which exhibits a noise floor jDj ∼M=
ffiffiffiffi
N

p
[51,54] in the

on-axis phase [58]. This noise floor washes out the square-
root growth with energy in the mean value of jDj [51].
Finally, Emarks the so-called “supercondensation” limit

H → ∞ [15], where the density distribution collapses to a
point. Here, β̂ tends to a universal value which is inde-
pendent of the container geometry, β̂s ¼ −2, and ω̂
approaches ω̂s ¼ ð1 −MÞ−1, which corresponds to the

orbit frequency of a single point vortex located off axis
at jDsj ¼

ffiffiffiffiffiffi
M

p
.

Figure 1(b) shows the full phase diagram for the chiral
vortex gas on a disk as a function of energy H and angular
momentumM. PointsA −D extend to be lines in this two-
dimensional plane. The colored symbols in Fig. 1(b)
indicate the vortex gas equilibria that we observe in our
experiment, which we present in the next section.

III. EXPERIMENT

The vortex gas system may be realized in an oblate
atomic Bose-Einstein condensate which is near zero tem-
perature and trapped by a hard-walled confining potential
[47]. We briefly summarize our experimental setup here,
with full details provided in Appendix A. The experimental
system consists of approximately 2 × 106 87Rb atoms
confined in a gravity-compensated optical potential. The
potential results from the combination of an oblate red-
detuned optical trap (harmonic trapping frequencies
fωx;ωy;ωzg ∼ 2π × f1.8; 1.6; 108g Hz), with the blue-
detuned optical potential produced from direct imaging
of a digital micromirror device (DMD), of depth approx-
imately 5μ [35,42], where μ is the chemical potential. The
DMD projection provides nearly hard-walled circular
confinement, here configured to produce a disk-shaped
trap. The result is a nearly uniform condensate with a
horizontal radius of 50 μm, vertical Thomas-Fermi radius
of 6 μm, healing length of approximately ξ ∼ 500 nm [42],
and condensate fraction of approximately 80%. Neglecting
the residual harmonic confinement from the red-detuned
trap, the radial potential is of the form VðrÞ ∝ ðr=R0Þα, for
r ≤ R0 ¼ 50 μm; numerically estimating the projection

TABLE I. Summary of analytical, maximum entropy solutions to Eq. (9) at fixedM as obtained by Smith and O’Neil [54]. The points
corresponding to solutions A − E are also labeled in Fig. 1. A: Uniform (Rankine) distribution. B: Gaussian. As β̂ → 0, β̂ ω̂ remains
finite and is determined by the transcendental equation M ¼ ð1 − eβ̂ ω̂Þ−1 þ ðβ̂ ω̂Þ−1. The energy is gðαÞ ¼ 1

8
eαcsch2ðα=2Þ½γ þ

Eið−2αÞ − 2Eið−αÞ þ lnðα=2Þ�, where γ is Euler’s constant and EiðxÞ is the exponential integral function. C: Riccati. At ω̂ ¼ 0, Eq. (9)

reduces to a Riccati equation with an exact solution. Here, fðβ̂Þ ¼ ð1þ 2
β̂
Þ½1 − 2

β̂
lnð1þ β̂

2
Þ�. D: Off-axis, marks the bifurcation point

where ω̂ðHc;MÞ ¼ 1. At higher energies, the on-axis states are no longer stable. E: Supercondensate, where the density distribution
collapses to a point. Fields left blank cannot be expressed in closed form or as a transcendental equation and must be evaluated
numerically. ΘðrÞ, Heaviside step function; δðrÞ, Dirac delta function. The schematic density profiles show a slice along the x axis,
assuming the dipole moment points along þx̂.
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resolution of approximately 650 nm full width at half
maximum [35] results in a steep-walled trap with α ∼ 30.
The 1=e lifetime of the condensate atom number is
approximately 21 s.
The DMD also offers real-time dynamical control of the

optical potential, which we use to inject vortices into the
superfluid through a variety of stirring protocols. We use a
combination of paddle-shaped stirring potentials [42] and
circular pinning potentials [59], which allow a high degree
of control over the initial vortex positions. The stirring
protocols also minimize the creation of other (undesirable)
excitations, such as sound waves, which would cause
unwanted heating of the condensate. The precise details
of the stirring mechanisms are not central to our analysis;
rather, what is important are only the initial vortex positions
frig, as these completely specify the initial condition,
determining both the energy H and the angular momentum
M (see Sec. II A). However, for completeness, the stirring
protocols used are detailed in Appendix A, along with
numerical simulations schematically illustrating the stirring
processes. To measure the vortex positions, images are
captured utilizing dark-ground Faraday imaging [60] after a
short (3–5 ms) time of flight that expands the vortex cores
to improve visibility. The vortex positions are determined
from images of the condensate density using a blob-
detection algorithm [61].

A. Injection and cooling of a near-equilibrium state

1. Experiment I

Our first experiment, shown in Fig. 2, considers a
scenario similar to that in Ref. [42]—we inject a vortex
distribution which closely resembles an equilibrium state
and track its subsequent evolution. By dragging a paddle-
shaped barrier through one edge of the condensate (see
Appendix A), a single off-axis cluster, concentrated near
r=R ∼ 0.5, is injected [Fig. 2(a), top]. This initial condition
closely resembles an equilibrium state in the negative-
temperature, off-axis phase [Fig. 1(iii)]. The other panels in
Fig. 2(a) show examples of the measured vortex distribu-
tion at different times, and Fig. 2(b) shows vortex histo-
grams gathered from approximately 40 samples at each
time. Note that, in the actual dynamics, the vortex cluster
orbits within the trap; the distributions are oriented such
that the dipole moment points along the x axis. In Fig. 2(b),
it is clear that the cluster remains off axis for the entire
duration of the experiment and slowly expands with time.
We compare the observed vortex density distributions

with the predictions of the Poisson-Boltzmann equation
[Eq. (9)] by minimizing the least-squares error to the
column-integrated vortex densities

nðxÞ ¼
Z

dynðx; yÞ; nðyÞ ¼
Z

dxnðx; yÞ; ð12Þ

FIG. 2. Experiment I: injection and evolution of a near-equilibrium state. (a) Examples of measured vortex distributions against the
hold time. The white circles indicate detected vortices. (b) Vortex position histograms, with samples aligned along the x axis. (c) Best-fit
distributions from solving the mean-field Poisson-Boltzmann equation. (d) Comparison of experimental data against mean-field for the
column-integrated vortex density nðxÞ; all fits have the same value of angular momentum:M ¼ 0.44. (e) and (f) show mean-field best-
fit values for the inverse temperature β̂ and rotation frequency ω̂, respectively. (g)–(j) show macroscopic measures of the vortex
distribution versus the time, as calculated from the experimentally measured vortex positions. (g) Vortex number N. (h) Angular
momentum (per vortex) 1 −M=N. (i) Energy (per vortex squared) H=N2. (j) Dipole moment jDj.
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using β̂ and ω̂ as fitting parameters (equivalently, fitting H
and M). Figure 2(c) shows the best-fit distributions nðrÞ
for the corresponding times shown in Figs. 2(b), and 2(d)
compares the experimental data against the mean-field
solution for the column-integrated density nðxÞ. The fits
match the data well, indicating that the system is in
equilibrium at negative temperature, as is indirectly inferred
in Ref. [42]. As time progresses, the vortex gas gradually
loses energy and becomes more diffuse while maintaining
an approximately fixed angular momentum M ≈ 0.44
[Fig. 2(d)].
As shown in Figs. 2(e) and 2(f), this leads to a gradual

decrease in both the inverse temperature β̂ and the rotation
frequency ω̂. Notably, β̂ decays as the energy decreases
(i.e., as time increases), demonstrating that the micro-
canonical specific heat C ∝ −∂H=∂β̂ is negative within
the off-axis phase, breaking ensemble equivalence [54].
Despite the slow decay, the state at the end of the experi-
ment is still deep within the off-axis phase with ω̂ > 1
throughout the entire experiment (cf. Table I). The location
of the final equilibrium state within the mean-field phase
diagram is shown in Fig. 1(b).
Corroborating evidence for equilibrium is shown in

Figs. 2(g)–2(i), where we show the time evolution of the
nominally conserved quantities: the vortex number N, the
angular momentumM [Eq. (3)], and the energyH [Eq. (1)],
as calculated directly from the experimentally measured
vortex positions. Also shown in Fig. 2(j) is the dipole
moment jDj [Eq. (11)], which is not a dynamically
conserved quantity, but its value is constant provided the
system is in thermal equilibrium.
Consistent with our equilibrium mean-field analysis, we

find the quantities decay only gradually throughout the
experiment. We find that the vortex number [Fig. 2(g)] and
angular momentum [Fig. 2(h)] are quite robust to the
presence of dissipation arising from the thermal cloud, with
both quantities deviating ≲15% from their initial values.
We note that the robustness of angular momentum to
dissipation in a circular container is also noted in viscous
fluids [31]. The energy is slightly less robust to the
dissipation, although the energy decay slows with time
and is quite gradual at late times (e.g., for t > 4 s,H decays
only by roughly 10%). The dipole moment is the most
significantly affected by the dissipation (decaying roughly
50% over the duration of the experiment). Nonetheless, it
remains large throughout the experiment (well above the
noise floor approximately 0.15 for M ∼ 0.4; see Sec. II D),
consistent with a symmetry-broken, off-axis phase.
Finally, we point out that the slow evolution of the

experimental system through a series of seemingly micro-
canonical equilibrium states implies that there is a sepa-
ration of the timescales associated with intervortex
interactions in relation to those associated with the dis-
sipative dynamics due to the presence of a thermal cloud.
Indeed, when we discuss the equilibrium state of any real

system, we are implicitly assuming a separation of time-
scales between the system we are considering and its
interaction with its surroundings. True equilibrium is, of
course, an approximation state for any real system—our
results suggest that the dissipation due to the thermal cloud
occurs on a much slower timescale than the equilibration of
the vortices due to their self-interaction. We discuss this
point in more detail in Sec. IV, where we present exper-
imental results for the nonequilibrium dynamics of the
vortex gas and simulate the dynamics of the system using a
phenomenological stochastic point-vortex model.

B. Nonequilibrium relaxation to maximum
entropy states

Having established that the vortex gas is able to attain
equilibrium, we now test whether equilibrium can be
achieved through turbulent relaxation from nonequilibrium
initial conditions. We consider a range of nonequilibrium
initial conditions in experiments II–V, which are shown in
Fig. 3. In experiment II, we test the decay of a multiquantum
vortex of circulation Γ ¼ Nh=m, with N ∼ 12, which is
highly unstable and decays intoN singly quantized vortices.
Experiments III–V probe the relaxation of two separated
vortex clusters each containing N ¼ 6–8 vortices, initially
separated by varying distances d. The two-cluster distribu-
tions contain more spatial structure than a single cluster and,
thus, have a lower entropy. The maximum entropy principle,
thus, predicts that, under dynamical evolution, the two
clusters will merge into a single cluster to maximize the
entropy. The initial conditions in experiments II–V are
chosen target regions of the phase diagram within the
neighborhoods of solutions A −D outlined in Table I and
are informed by modeling with a dissipative point-vortex
model which is presented in the next section (Sec. IV).
The best-fit vortex density distributions are compared against
the experimental data in Fig. 3, and their positions within the
mean-field phase diagram are presented in Fig. 1(b).

1. Experiment II

We find that the decay of the multiquantum vortex
produces an on-axis vortex distribution that clearly exhibits
a flattop shape with slight rounding at r=R ≈ 0.3, seen in the
2DdistributionnðrÞ [Fig. 3(II)(b)] and the radial densitynðrÞ
[Fig. 3(II)(e)]. Similarly, the column-integrated density nðxÞ
exhibits a nearly inverse-parabolic profile [Fig. 3(II)(d)], as
expected for the column integration of a constant density.

Consistent with these observations, for this state we find β̂ ¼
þ10.348 and ω̂ ¼ þ8.043, indicating this state is a near-

minimum-energy Rankine state (A), for which β̂ → ∞ and
ω̂ ¼ 1=2M ≈ 7.05 for the best-fit value of angular momen-
tum M ¼ 0.071 (cf. Table I). Indeed, in the phase diagram
[Fig. 1(b)], it can be seen that the solution is close to the
minimum allowed energy determined by the Rankine vortex.
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2. Experiment III

Here, we create two clusters initially separated by a
distance d=R ¼ 0.5 [Fig. 3(III)(a)]. The clusters are
observed to rapidly merge (within approximately
500 ms). After a hold time of 1 s, the distribution relaxes
to an on-axis state at negative absolute temperature with
β̂ ¼ −1.07 and ω̂ ¼ −3.01. This state lies between the
Gaussian (B) and Riccati (C) states within the on-axis
phase, as shown in Fig. 1(b). The state is qualitatively
similar to the Riccati solution C—as can be seen in
Figs. 3(d) and 3(e). The mean-field solution has noticeably
longer tails than a Gaussian distribution.

3. Experiment IV

Increasing the initial cluster separation to d=R ¼ 0.666
[Fig. 3(IV)(a)], we find the clusters merge after approx-
imately t ∼ 1 s. After a hold time of 4 s, we find the
distribution relaxes into a Gaussian-like state. The best fit

from the Poisson-Boltzmann equation gives values β̂ ¼
þ0.088 and β̂ ω̂ ¼ 7.5, indicating this state is very close to
the infinite-temperature Gaussian state (B) [see Table I and
Fig. 1(b)]. A pure Gaussian fit to the data is graphically
almost indistinguishable and yields very similar parameters
(β̂ ¼ 0 and β̂ω ¼ 7.07).

4. Experiment V

Upon further increasing the cluster distance to
d=R ¼ 0.7, after t ∼ 3.75 s we find the two clusters merge
into a single off-axis cluster [Figs. 3(v)(a) and 3(v)(b)]. The
distribution is more diffuse than in experiment I and peaks
closer to the origin, near r=R ∼ 0.3. For this state, we find
β̂ ¼ −3.093 and ω̂ ¼ þ1.052, indicating that this state,
while also at negative temperature and in the symmetry-
broken phase, is closer to the transition boundary ω̂ ¼ 1

than the final state in experiment I [see Fig. 1(b)].

FIG. 3. Experiments II–V: comparison of experimental vortex distributions with solutions of the Poisson-Boltzmann equation. (a) and
(b) show the initial and final experimental vortex density distributions, respectively. (c) Best-fit solutions from solving the Poisson-
Boltzmann equation. Note that in the off-axis and bimodal distributions the samples are oriented along the x axis. (d),(e) Integrated 1D
density profiles nðxÞ ¼ R

dynðx; yÞ and nðrÞ ¼ R
dϕnðrÞ comparing experimental results (markers) with the mean-field solutions

(shaded curves). Note for the off-axis state we show nðyÞ ¼ R
dxnðx; yÞ instead of nðrÞ.
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Remarkably, in experiment V, we find that we are also
able to characterize the initial, nonequilibrium vortex
distribution via a solution of the Poisson-Boltzmann
equation. Motivated by the linearized analysis of
Chavanis and Sommeria [62], we trace out an additional
branch of solutions corresponding to a bimodal vorticity
distribution. This branch corresponds to solutions to the
fully nonlinear problem not previously reported by O’Neil
and Smith [54]; unlike the on-axis and off-axis branches
(Fig. 1), this bimodal branch is not a state of maximum
entropy at any energy. We find it appears to exist only at
high energies where the specific heat capacities are neg-
ative. In Fig. 4, we compare the early-time (t < 1 s) vortex
distribution in experiment V against this solution branch.
The experimental data are clearly well described by this
bimodal branch; this allows us to explicitly calculate the
entropy production for this experiment. For the best-fit
values M ¼ 0.45 and H ¼ 0.4, we find the entropy is
S ¼ 0.574. Upon relaxing to the single-cluster distribution
presented in Fig. 3(V)(b), the best-fit values are M ¼
0.417 and H ¼ 0.4, and the corresponding entropy is
S ¼ 0.9282. This demonstrates that the entropy exhibits
a marked increase even though both the angular momentum
and energy remain essentially constant.

IV. VORTEX GAS DYNAMICS

So far, we have demonstrated that our experiment
evolves several initial vortex distributions toward a state
that is consistent with microcanonical equilibrium.
However, there is some small amount of dissipation present
in the system due to the thermal cloud. This is demonstrated
in the results of experiment I presented in Figs. 2(e)–2(j),
which show a rather slow evolution of the thermodynamic
variables β and ω due to this dissipation. As each variable

changes by only around 10% over the course of 6 s of
dynamics, the experimental system clearly approximates
the conservative dynamics Eq. (2) over reasonably long
timescales. In this section, we attempt to provide a more
quantitative understanding of the dissipation.
To probe the effect of the dissipation, for three of our

experiments (I, II, and V), we take full series of time data to
probe the vortex gas evolution (7 s of evolution, 250 ms
intervals, and 40 samples at each interval). The data are
shown in Figs. 5(a)–5(d), where we show data for the
vortex number N, the angular momentum M, the energy H
(Sec. II), and the dipole moment jDj, respectively [the data
shown for experiment I are the same as those shown in
Figs. 2(g)–2(j); they are reproduced here for convenience].
We find that the dynamical evolution of the quantities

shown in Figs. 5(a)–5(d) can be reproduced by a modified
point-vortex model [25,63] which incorporates additional
dynamical aspects specific to superfluids [64,65]. Our
modified point-vortex model is supplemented by mutual
friction and Brownian motion, taking the form

drj ¼ ½vj − γẑ × vj�dtþ
ffiffiffiffiffi
2η

p
dWj; ð13Þ

where γ is the mutual friction coefficient and η is the
vortex diffusion rate. The noises dWj ¼ ðdWx

j; dW
y
jÞ are

FIG. 4. Experiment V: comparison of the initial state with a
bimodal solution of the Poisson-Boltzmann equation; note the
solution is a (nonequilibrium) local entropy maximum, unlike the
(equilibrium) global entropy maximum solutions shown in Figs. 1
and 3.

(a) (c)

(b) (d)

FIG. 5. Evolution of the macroscopic properties of the vortex
gas following injection. The markers show experimental mea-
surements of (a) the vortex number N, (b) energy H=N2,
(c) angular momentum ð1 −M=NÞ, and (d) dipole moment
jDj, as functions of time, for the three different experiments
investigated. Lines show simulation results from the stochastic
point-vortex model [Eq. (13)], using the experimental data as
inputs for the initial conditions (see the text).
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independent complex Gaussian random variables with
hdWα

j ðtÞdWβ
kðtÞi ¼ δjkδαβdt and where all other correla-

tions vanish. The vortex velocities vj are given by the
Hamiltonian evolution _xj and _yj as expressed in Eq. (2).
Vortex annihilation at the boundary is also included by
removing vortices that come within a distance of one
healing length ξ to the boundary.
The lines in Fig. 5 are the results obtained from

numerically simulating Eq. (13). The experimentally mea-
sured vortex positions at t ¼ 0.25 s are used as the initial
conditions, and we average over all approximately 40
experimental runs for each stirring protocol. A small
number of additional vortices are added at random loca-
tions in each trajectory to account for undercounting at
early times. The undercounting is most evident for experi-
ment II [Fig. 5(a), circles], where the vortices are initially so
densely packed that they cannot be individually resolved
[cf. Figs. 3(II)(a) and 7] and the detected vortex number,
hence, gradually increases until t ∼ 2 s [66].
The model yields good quantitative agreement with the

experimental observations for all three experiments and
captures the salient features of the evolution quite well.
For example, the model captures the rapid decay in H
observed for t < 2 s in experiment I and the slower decay
for t > 2 s. Similarly, in experiment V, the model accurately
captures the growth of the dipole moment with time; jDj is
initially small due to the symmetric cluster injection [cf.
Fig. 3(V)(a)] but jumps suddenly to jDj∼0.3 at t∼1–2 s as
the clusters merge into a single off-axis cluster (by contrast,
notice in experiment II that jDj ∼ 0.1 throughout the evo-
lution, consistent with the finite N noise floor [Sec. II D]).
For the simulation results shown in Fig. 5, the magnitude

of the mutual friction coefficient is identical for all three
cases: γ ¼ 2 × 10−3. Curiously, however, the on-axis and
off-axis scenarios require different values of noise to
capture the trends in the data. In experiment II, where
the cluster is on axis, the decay is described purely by
mutual friction, with η¼0, whereas in experiments I and V,
where the cluster is off axis, significant diffusion is
required, with η ¼ 3.5 × 10−2. The noise is found to be
crucial to reproducing the trends of the experimental data
for the off-axis states; in particular, mutual friction alone
yields essentially no decay of the dipole moment for
reasonable values of γ and also cannot reproduce the slight
increase in the angular momentum per vortex observed in
Fig. 5(c).
A more comprehensive fitting analysis, presented in

Fig. 6, confirms this picture. Figure 6 shows estimated
optimal values for γ and η obtained by minimizing the sum-
of-squares error ε between the theoretical and experimental
values of N, H, M, and jDj, i.e., by minimizing

εðγ; ηÞ ¼
X
tk∈A

X
f∈B

�
fexp½tk� − fth½tk�

fexp½tk�
�

2

; ð14Þ

where A ¼ fti; tiþ1;…; tfg and B ¼ fN;H;M; jDjg. We
use ½ti; tf� ¼ ½2; 6.75� s, with the initial time ti chosen such
that the experimental data could be used as the initial
conditions, without needing to compensate for undercount-
ing at early times. It is clear from Fig. 6 that the optimal
value for γ is similar in all three cases. However, the on-axis
case requires no noise, while the off-axis cases require
η ∼ 10−2. The exact numerical values should be interpreted
with some caution, as these fluctuate with the choice of
initial conditions ti (roughly a factor of 2 for different
choices of ti). Nonetheless, the on-axis case (experiment II)
consistently yields η ∼ 0, whereas the two off-axis cases
(experiments I and V) yield η ∼ 10−2.
The mutual friction term involving γ may be rigorously

derived [67] from the damped Gross-Pitaevskii equation
familiar from c-field methods [68–71], where γ describes
the damping rate of the condensate due to Bose-enhanced
collisions with a stationary thermal cloud [72]. While we
add the Brownian motion term as a phenomenological
parameter, we note that thermally driven density and phase
fluctuations of the condensate, which are neglected within a
pure point-vortex treatment, also contribute to the vortex
dynamics [47,67].
Our findings in this section show that Brownian motion

is essential to capturing the thermal decay observed in
global measures of the vortex distribution. This finding
appears to be contrary to the standard paradigm of mutual
friction (e.g., see Refs. [73,74]). While one might anticipate
a fluctuation term based on the usual fluctuation-dissipation
arguments, it should be noted that these arguments cannot
be applied in a straightforward manner here; typically, the
competition between dissipation and noise serves to pro-
duce a steady thermal distribution, whereas here both terms
are effectively dissipative—the equilibrium is one in which
no vortices are present at all. In fact, by analogy with
classical vortex methods for viscous fluids [75], the noise
can be interpreted as an effective viscosity. The noise is
found to be necessary only for the off-axis states, which are
at negative absolute temperature. A possible cause is that
trap noise due to diffraction in the optical potentials may be
more important at the trap edge. A more intriguing

FIG. 6. Errors for the fitting of the stochastic point-vortex
model shown obtained by minimizing Eq. (14). (a) Experiment I,
(b) experiment II, and (c) experiment V. Markers indicate the
best-fit parameters.
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possibility is that the noise might be due to the negative-
temperature vortex system being coupled to a positive-
temperature phonon bath.

V. CONCLUSIONS AND OUTLOOK

We have experimentally studied equilibrium and non-
equilibrium states of a chiral vortex gas confined within a
disk-shaped atomic Bose-Einstein condensate. The steady-
state distributions have been shown to be in quantitative
agreement with the predictions of the microcanonical
ensemble, at both positive and negative temperatures.
While there is a small amount of dissipation present in
the system, this is slow compared to the mixing timescale
of the conservative vortex dynamics; this leads to the
system slowly evolving through different microcanonical
equilibria as time progresses. We have also quantified the
sources of dissipation, showing that the dynamics of the
quantum vortices are quantitatively described by point-
vortex dynamics supplemented by thermal friction and
Brownian motion.
We have found that the mean-field predictions for the

vortex density describe our system remarkably well,
despite the system containing only N ∼ 12 vortices, sug-
gesting beyond-mean-field corrections may be negligible in
much of the vortex gas phase diagram. While this might
seem surprising in a low-dimensional system, we note that
the long-range interactions mean that the vortices effec-
tively have many nearest neighbors, supporting the use of a
mean-field approach.
Note, however, the mean-field description cannot

describe physics at the scales of the intervortex distance.
This can become important, for example, at low energies,
where the vortex distribution approaches the Rankine
vortex (A, Table I). Recently, Bogatskiy and Weigmann
[76] have shown the Rankine vortex is expected to exhibit
quantumHall analog physics, including density oscillations
on scales comparable to the intervortex distance, and
quantized edge solitons. Our results in experiment II (also
Ref. [44]) show that the system is nearing the Rankine
vortex regime, suggesting such physics is within reach
experimentally.
Our results present atomic gas superfluids as comple-

mentary to existing platforms for the fundamental study of
two-dimensional turbulence. The mean-field Poisson-
Boltzmann equation, although originally developed for
classical fluids, cannot be straightforwardly applied to the
continuous vorticity distributions of classical fluids, as it is
derived from the point-vortex approximation [16–18]. This
is because the point-vortex approximation does not respect
the conservation of other important quantities such as the
peak vorticity and the so-called “Casimirs” that are pre-
served by the full Euler equation [16,18]. By contrast, in our
system, the point-vortex approximation is an excellent
description; for larger N and lower dissipation, the
Poisson-Boltzmann equation could, in principle, be applied

with no fitted parameters. Another complementary aspect
of our system is control over dimensionality; in two-
dimensional classical fluid flows, it is often difficult to
determine the influence of the third dimension [77]. While
our particular system is quasi-2D, we note that quantum
systems permit the complete freezing out of the third
dimension to the zero-point motion [78].
As Hamiltonian systems with long-range interactions are

known to exhibit divergent thermalization times in the
large-particle limit [28,29], it would be interesting to
experimentally probe systems with a larger number of
vortices N to test whether superfluids suffer the same issue.
Here, more complex routes to equilibrium (involving many
cluster mergers) could be tested, to determine whether local
entropy maxima such as vortex crystals [10,79,80] or
nonequilibrium steady states such as core-halo states
[28] emerge in superfluid systems. The 2D quantum vortex
gas presents a rather unique system to study turbulent
phenomena; here, unlike in a classical, viscous fluid, the
number of active degrees of freedom can be varied
independently of the dissipation mechanism. In a viscous
fluid, both are controlled by the Reynolds number Re.
In 2D, the number of active degrees of freedom scales
as N ∼ Re, while the energy dissipation rate scales as
ε ∼ Re−1 [5]. In contrast, for the quantum vortex gas, the
dissipation rate from mutual friction γ is independent of the
vortex number N.
Future work on vortex matter may also provide new

insights into the role of vortex mass in quantum fluids.
Theoretical mass estimates range from 0 to ∞ [81], while
others argue the corrections do not affect the dynamics or
are undefined [82,83]. Crucially, recall that the absence of
vortex mass in Eq. (1) is the property that results in the
bounded phase space Eq. (6) and, hence, the existence of
negative-temperature states. For large enough mass, the
mass-dependent cyclotronlike motion [24,84,85] would
alter the equilibrium profiles and eventually destroy the
negative-temperature states [54]; our observations in agree-
ment with massless vortices suggest that any vortex mass
corrections are likely to be small.
The continued study of vortex matter will also benefit the

growing interest in technological applications of atomtronic
devices [86–88] and renewed interest in nanomechanical
resonators with superfluid helium [74,89–92]. These
experiments suggest an enhanced understanding of super-
fluid turbulence will be required. Equilibrium theories of
vortex matter may prove a useful tool in predicting the end
states of turbulence in such applications provided fluid
flows are sufficiently two dimensional—particularly in
helium, where vortices cannot be directly imaged. As some
systems are known to exhibit effective equilibria under
steady driving and loss [93], it would be interesting to
consider the possibility of emergent equilibria in driven
superfluid systems, such as the superfluid helium
Helmholtz resonator recently studied in Ref. [92].
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APPENDIX A: EXPERIMENTAL PROCEDURE

1. Initial state preparation

A key ingredient for observing the predicted equilib-
rium vortex gas states, and the relaxation of nonequili-
brium configurations, are experimental techniques that
facilitate the injection of vortices with nearly arbitrary
angular momentum and energy. The topological nature of
single-quantized vortices means that they must be intro-
duced from the boundary of the condensate. Since the
DMD provides dynamic control of the potential, vortices
can introduced into the condensate by “paddle” barriers
that intersect the condensate edge and are stirred through
the superfluid [42,43]. The number of vortices in a
cluster, and the cluster location, can be controlled by
the speed and location of the paddle. A series of frames
from Gross-Pitaevskii equation (GPE) simulations of the
vortex injection protocols are shown in Fig. 7, schemati-
cally illustrating the stirring schemes.

a. Experiment I

For injecting a single cluster, the experimental
sequence follows: After transfer to the final potential,
and a one-second equilibration period, the elliptically
shaped paddle, with a major and minor axis of 50 μm
and 2 μm, respectively, is swept through the Bose-
Einstein condensate (BEC) at constant velocity; the
paddle intersects the edge of the circular trap at its
midpoint. The paddle sweep is defined by a set of 250

frames, and the paddles sweep at a constant 150 μms−1

velocity (approximately 0.1c, where c ∼ 1290 μms−1).
After crossing the halfway point of their translation, the
paddle is linearly ramped to zero intensity by reducing
the major and minor axis widths to zero DMD pixels.
The resulting vortex cluster is shown in the left column
in Fig. 2.

b. Experiment II

For creating a vortex cluster on the axis of the disk
trap, a different approach is used, as placement of the
cluster immediately on axis via an external paddle is
found to have poor repeatability. Following procedures
for producing persistent currents in ring-trapped BECs
[95,96], we first initialize the BEC in an annular trap,
resulting from ramping on of an additional central barrier
with R0 ¼ 15 μm to the circular trap over 200 ms.
Simultaneously, an elliptical stirring barrier that crosses
the annulus is added, resulting in a split ring. The elliptical
paddle has a major and minor axis of 85 μm and 2 μm,
respectively. Over a time of 400 ms, the stirring paddle is
linearly accelerated at 980 μms−2. While still moving the
paddle at the final velocity, it is then ramped off by
reducing both the barrier width and length over 100 ms.
After a 400-ms period of equilibration in the annular trap,
the central barrier is then removed over 200 ms by linearly
reducing its radius to zero. This results in a high-energy
cluster of approximately 12 vortices localized to the trap
center. During the retraction of the paddle, sometimes one
or two extraneous vortices of the same sign are produced;
however, this is later shown to have little effect on the
dynamics of the central cluster. Energy damping results in
the cluster gradually spreading, and after t ∼ 2 s the
vortices can be easily resolved.

c. Experiments III and IV

To realize the Gaussian and near-Riccati equilibrium
states, a third stirring technique is used, based on the
methods of Ref. [97]. Two pinning beams are spiraled into
the condensate until separated by a distance d, resulting in
two multicharge vortices. On removing the pins, the
multicharge vortices break up into two distinct clusters
of approximately seven vortices each, before merging into a
single cluster over the course of the dynamics. The stirring
process occurs as follows. The beams are initially located
on the edge of the condensate and rotate at a constant
frequency, while the radial position of the beams is linearly
ramped from R to d=2 over 550 ms, resulting in spiral
paths. For experiment III, the stirring beams have a
diameter of 22 μm, rotated at 1.6 Hz, and the final spacing
is d ¼ 25 μm. On reaching their final locations, the radii of
the pinning potentials are linearly ramped to zero over
50 ms. For experiment IV, the stirring beams have a
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diameter of 30 μm, rotated at 1.4 Hz, and the final spacing
is d ¼ 33.3 μm.

d. Experiment V

This scenario uses the same technique as experiment I;
by using two paddles with the same parameters but
propagating in opposite directions, two same-sign vortex
clusters can be realized.

2. Experimental data collection and vortex imaging

The sensitivity of the vortex configurations to density
gradients requires fine control of the magnetic levitation
field to ensure a uniform BEC density. This is achieved by
applying small magnetic correction gradients and ensuring
that the central vortex cluster created in experiment II
remains centered in the BEC over the initial 500 ms of

evolution. By periodically repeating this calibration pro-
cedure, we find that the experiment exhibits slow, small-
scale drifts in the density balance, which settle after an
initial period of approximately 8 h of running. The data
presented in the main text are, thus, collected in a
continuous period subsequent to this warm-up.
High-resolution images of the BEC and vortex cores are

obtained after a short, 3-ms time of flight that allows the
vortex cores to expand and become visible. The radial
distribution of the condensate is essentially unchanged
from this expansion. Dark-ground Faraday imaging [60] is
used, with light detuned by 220 MHz from the 87Rb
jF ¼ 1i → jF0 ¼ 2i transition, in the 80-G magnetic field
resulting from the magnetic compensation of gravity. The
vortex positions are then obtained using a Gaussian fitting
algorithm [42,61]. The Faraday imaging light is sufficiently
closely detuned that the images of the BEC are destructive.
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FIG. 7. Damped GPE simulations of vortex injection methods as described in the main text. Columns, left to right: experiments I–V.
Time increases moving down the columns but is not the same for the images across each row due to the different stirring schemes.
Instead, frames from the simulation are chosen to schematically illustrate the stirring process. The blue arrows indicate the motion of the
time-dependent stirring potentials. The second-from-bottom and bottom rows show the condensate density and phase, respectively, after
all stirring potentials are ramped off. The phase profiles demonstrate that all vortices generated are of the same sign. Note that
experiments II–IV initially result in giant (multiquantum) vortices at the pinning beam locations, from which singly quantized vortices
eventually emerge with increasing hold time. This illustrates the difficulty with initially identifying the vortex positions at early times as
discussed in Sec. IV (see also Ref. [44]). Movies of the five stirring sequences can be found in Supplemental Material [94].
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For experiments I, II, and V, up to 40 images are
collected for each hold time in 250-ms increments up to
the maximum time of 6.75 s. This amount of data generates
reliable statistics for vortex distributions as a function of
time. The resulting histograms for the several hold times for
experiment I are shown in Fig. 2.
The results of Sec. IV confirm that our system is well

described by a simple point-vortex model and that the
dissipative losses are sufficiently weak at late times that the
system can be treated as being in approximate micro-
canonical equilibrium for the time period 3.25–6.75 s. The
histograms shown in Fig. 3 for experiments II and V, thus,
show the average quasiequilibrium vortex density histo-
grams for the ≃550 images collected for t > 3.25 s.
In contrast, we do not record time series data for

experiments III and IV. Instead, sets of images are collected
for the initial state and at a single, sufficiently long hold
time such that quasiequilibrium has been reached. For
experiment III, 120 images are collected at a 4-s hold time,
and for experiment IV, 361 images are collected at a 1.5-s
hold time.

3. GPE modeling of stirring protocols

We simulated the initial vortex injection using a phe-
nomenologically damped GPE (dGPE) model. Working in
length units of the healing length ξ ¼ ℏ=

ffiffiffiffiffiffiffi
ρ0g

p
and time

units defined by the chemical potential τ ¼ ℏ=μ, we
simulate the following equation for Ψðr; tÞ:

i∂tΨ ¼ ð1 − iγÞ
�
−
∇2

2
þ V þ jΨj2 − 1

�
Ψ; ðA1Þ

where Vðr; tÞ is the external potential and γ is a phenom-
enological damping factor of 2 × 10−3 which matches the
thermal friction coefficient observed in the experiment.
Note that the Brownian motion term is not included in this
model, as these effects are not significant to the stirring
dynamics. The circular trapping and pinning potentials and
the elliptical stirring potentials are modeled as hard-wall
potentials of the general form

VðrÞ ¼ V0 tanh

�
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

q �
1 −

abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðax0Þ2 þ ðby0Þ2

p
��

;

ðA2Þ

where V0 is the strength of the potential, a and b are the
semimajor and semiminor axis, respectively, x0 ¼ x − x0
and y0 ¼ y − y0 to allow for translation, or x0 ¼ R cosðθÞ −
R sinðθÞ; and y0 ¼ R sinðθÞ þ R cosðθÞ to allow for rota-
tions by angle θ, and d controls the steepness of the
potential. Figure 7 shows the resulting condensate density
snapshots from simulating the stirring protocols with
similar parameters to those performed in the experiment.
All vortices injected are of the same sign. Movies of dGPE

simulations of the vortex injection methods are provided in
Supplemental Material [94].

APPENDIX B: SOLUTION OF POISSON-
BOLTZMANN EQUATION

To solve the Poisson equation given by

∇2ϕðrÞ ¼ −4πnðrÞ; ðB1Þ

subject to the boundary conditions ϕðr ¼ 1;φÞ ¼ 0 and the
constraints of prescribed angular momentum (angular
impulse), energy, and normalization given, respectively, by

M¼
Z

d2r r2n; H¼ 1

2

Z
d2r nϕ; C¼

Z
d2r n;

ðB2Þ

we adapt the method described in Ref. [98]. First, we
represent the stream function ϕ in space using a Fourier
series decomposition in terms of the azimuthal angle so that

ϕðr;φÞ ¼
X
m

fmðrÞeimφ: ðB3Þ

The above equation then reduces to

1

r
d
dr

�
r
dfm
dr

�
−
m2

r2
fm ¼ −4π

Z
2π

0

nðr;φÞe−imφdφ: ðB4Þ

To satisfy the boundary condition, we require that
fmðr ¼ 1Þ ¼ 0, ∀m, and fmðr ¼ 0Þ ¼ 0, ∀m ≠ 0. For
m ¼ 0, we set f00ðr ¼ 0Þ ¼ 0, where a prime denotes
differentiation with respect to the radius r. This radial
equation is then discretized using a centered finite-
differencing scheme. The resulting discretized equation
can be inverted to recover the stream function from the
vortex density field.
To find a self-consistent solution of the Poisson-

Boltzmann equation subject to the constraints given, we
define the functional

F½n� ¼ S½n� − α̂ðC½n� − 1Þ − β̂ðH½n� −H0Þ
− Ω̂ðM½n� −M0Þ; ðB5Þ

where Ω̂ ¼ β̂ ω̂. We want to find n such that F½n� is
stationary so that δF ¼ F½nþ δn� − F½n� ¼ 0. This
requires that

δS½n� ¼ α̂δC½n� þ β̂δH½n� þ Ω̂δM½n�; ðB6Þ

which implies that

nðrÞ ¼ exp ½−1 − α̂ − β̂ϕðrÞ − Ω̂r2�: ðB7Þ
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It follows that we can rewrite the three constraints in the
form

−
� ∂
∂α̂ ;

∂
∂β̂ ;

∂
∂Ω̂

�Z
nðrÞd2r ¼ ð1; 2H0;M0Þ: ðB8Þ

We note that the constraints C and M are both linear in the
vortex density n. However, the constraint for the energy is
nonlinear, since it can expressed in terms of the Green’s
function Gðr; r0Þ of the Laplacian operator as

H ¼ 1

2

Z
nϕd2r ¼ 1

2

ZZ
nðrÞGðr; r0Þnðr0Þd2r d2r0; ðB9Þ

where Gðr; r0Þ is the 2D Green’s function for a point vortex
confined within a circular disk [53]. Linearizing the energy
about the state nk, we obtain

H½nkþ1� ≃H½nk� þ
ZZ

nðr0ÞGðr; r0ÞδnðrÞd2r d2r0

¼ H½nk� þ
Z

δH½nk�
δn

½nkþ1ðrÞ − nkðrÞ�d2r

¼ H½nk� þ
Z

ϕkðrÞ½nkþ1ðrÞ − nkðrÞ�d2r: ðB10Þ

The linearized constraint on energy is then given by

H½nk� þ
Z

δH½nk�
δn

½nkþ1ðrÞ − nkðrÞ�d2r ¼ H0: ðB11Þ

We can now rewrite the three constraints in the linearized
form

F ¼ ðC0; H0 þHk;M0Þ

þ
� ∂
∂α̂ ;

∂
∂β̂ ;

∂
∂Ω̂

�Z
nkðrÞd2r ¼ 0; ðB12Þ

where nkþ1ðrÞ ¼ exp ½−1 − α̂ − β̂ϕkðrÞ − Ω̂r2� and
∇2ϕkðrÞ ¼ −4πnkðrÞ. The advantage of casting the con-
straints in this form is that we can now proceed to update
the system of Lagrange multipliers ðα̂; β̂; Ω̂Þ by using a
Newton-Raphson iteration scheme. Alternatively, given
that the constraints are now expressed in terms of a gradient
operator, a gradient descent algorithm can now be used to
give

ðα̂lþ1; β̂lþ1; Ω̂lþ1Þ ¼ ðα̂l; β̂l; Ω̂lÞ − sF½nk; α̂l; β̂l; Ω̂l�; ðB13Þ

where s is a relaxation parameter 0 < s ≤ 1. In practice, we
use a gradient descent algorithm to obtain a good estimate
of n followed by a Newton-Raphson scheme in order to
accelerate convergence. The Newton-Raphson scheme
requires the evaluation of the Hessian of F½nk� that we
denote by H. The updates can then be evaluated as

ðα̂lþ1; β̂lþ1; Ω̂lþ1Þ ¼ ðα̂l; β̂l; Ω̂lÞ − sH−1F: ðB14Þ

The iterations are stopped once the values for α̂, β̂, and Ω̂
converge to within a tolerance of 10−9.
To obtain the branch corresponding to axisymmetric

(centered) flows, we solve the above by setting the
coefficients of all modes corresponding to m ≠ 0 to zero.
To find the symmetric and off-centered maximum entropy
solutions, we typically start with an exact solution such as
the Gaussian profile corresponding to β̂ ¼ 0 and then trace
out the branches by varying the energy for fixed M and C.
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