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Higgs and Goldstone modes, well known in high-energy physics, have been realized in a number of
condensed matter physics contexts, including superconductivity and magnetism. The Goldstone-Higgs
concept is also applicable to and gives rise to new insight on structural phase transitions. Here, we show
that the Leggett mode, a collective mode observed in multiband superconductors, also has an analog in
crystallographic phase transitions. Such structural Leggett modes can occur in the phase channel as in the
original work of Leggett [Prog. Theor. Phys. 36, 901 (1966)]. That is, they are antiphase Goldstone modes
(antiphasons). In addition, a new collective mode can also occur in the amplitude channel, an out-of phase
(antiphase) Higgs mode, that should be observable in multiband superconductors as well. We illustrate the
existence and properties of these structural Leggett modes using the example of the pyrochlore relaxor
ferroelectric Cd2Nb2O7.
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I. INTRODUCTION

Spontaneous symmetry breaking is a ubiquitous phe-
nomenon in physics, and is responsible for various collec-
tive modes, most famously the well-known Goldstone and
Higgs modes. The former refers to fluctuations of the phase
of an order parameter, the latter to fluctuations of its
amplitude. These modes play a fundamental role in gauge
theories of particle physics, and are also important in
condensed matter physics. The Goldstone-Higgs phenome-
non in high-energy physics is a relativistic generalization
of the analogous behavior found in superconductors [1].
In superconductors, the Goldstone mode does not occur at
zero energy as in a neutral superfluid, but it is pushed to
the plasma frequency by coupling to the electromagnetic
field [2]. The superconducting Higgs mode is nontrivial to
observe since its energy tends to be located near the
quasiparticle continuum [3]. Nevertheless, it has been
observed in several superconductors [4].

Superconductors can exhibit other collective modes.
In particular, a relative phase mode of the order parameters
of the two bands of a two-band superconductor was
proposed by Leggett [5] and first realized in MgB2 [6].
While the Goldstone mode is pushed to the plasma fre-
quency by coupling to the electromagnetic field, the Leggett
mode maintains charge neutrality and so is not affected by
the field [5]. Other modes are known as well, for instance,
Carlson-Goldman modes in which the superconducting
and normal condensates oscillate out of phase [7]. In
addition, in superfluid 3He a variety of clapping, flapping,
andHiggsmodes occur because of the high degeneracy of its
SOð3Þ × SOð3Þ × Uð1Þ order parameter space [8,9].
Structural phase transitions are typically associated

with soft phonons [10], and the concepts of Goldstone
and Higgs modes have provided new insight into these
transitions. A classic example is the pyrochlore Cd2Re2O7.
Its structural phase transition arises from an instability
associated with a doubly degenerate Γ−

3 phonon [11]. This
defines a Mexican-hat free-energy surface with the top of
the hat representing the high-temperature cubic phase and
the brim representing the lower symmetry distorted phase.
In the Landau free energy, anisotropy terms that warp the
brim of theMexican hat only arise at sixth order, suggesting
the existence of a low-energy Goldstone mode correspond-
ing to oscillations along the brim. (Since they are not at zero
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energy because of the warping terms, these are sometimes
referred to as pseudo-Goldstone modes). Subsequent
Raman scattering experiments [12] exhibited strong evi-
dence for this mode, and its existence has been recently
confirmed by diffuse scattering studies [13]. The Higgs
mode is also evident from the Raman data, though its
interpretation has been challenged by recent pump-probe
measurements [14]. After these pioneering studies of
Cd2Re2O7, Higgs and Goldstone modes have been pro-
posed in a variety of perovskite and other complex oxides
[15–20]. Routes to detect them if they are optically silent
have also been identified [21].
Here, we investigate whether the Leggett mode can be

realized in the structural context, where it could give new
insight into the associated structural phase transitions. We
begin by developing a minimal Landau model that
describes a structural phase transition that is accompanied
by a new collective mode, the antiphase Higgs mode (the
amplitude analog of the Leggett mode) that should also be
observable in multiband superconductors. We then consider
a Landau treatment of the ferroelectric transition in the
pyrochlore Cd2Nb2O7, where we show that both the
antiphase Higgs mode and the Leggett mode (the anti-
phason) are possible. Finally, we discuss secondary modes
that can drive these Leggett modes by coupling to them
in the context of pump-probe studies. We conclude by
discussing the relevance of our work to other materials, in
particular, those that involve modes at nonzero wave
vectors.

II. MINIMAL LANDAU MODEL

A superconductor is described by an order parameter
Δeiϕ with an amplitude Δ and a phase ϕ. In a two-band
superconductor, one can identify a collective mode, called
the Leggett mode, that corresponds to oscillations of the
relative phase of the order parameters associated with the
two bands ϕ1 − ϕ2 [5]. This mode is an eigenvector of a
secular matrix whose eigenvalues are the collective mode
energies [22]. In the structural context, the corresponding
secular matrix is the force-constant matrix [19], with
elements φij ¼ ð∂2F=∂ui∂ujÞ, where ui is the displace-
ment of the ith ion from its high-symmetry position and F
is the free energy. For a periodic system withN atoms in the
unit cell, this is a 3N × 3N matrix. For our further analysis,
we use a reduced form of the force-constant matrix,
Φij ¼ ð∂2F=∂qi∂qjÞ, where qi are symmetry-adapted
distortion modes [23,24]. Each qi is a linear combination
of atomic displacements that transform like a particular
group representation of the high-symmetry phase, and as
such describe a collective motion involving multiple
ions. For structural phase transitions following Landau
theory [25], F is formulated as a polynomial expansion in
these qi. The distortions from the high-symmetry phase are
given, in the harmonic limit, by the eigenvectors of the

force-constant matrix [26]. The advantage of Landau
theory is the reduction of the large force-constant matrix
to this smaller one involving only the qi relevant to the
phase transition [19].
To illustrate the structural Leggett mode, we present a

simple example in which the phase transition involves only
two modes, q and r, each from a different two-dimensional
group representation. For simplicity, we use a Cartesian
basis, qðq1; q2Þ and rðr1; r2Þ. In a polar basis, qi ¼
Qi cosðϕiÞ. In general, in the uncoupled case, each mode
would have a different transition temperature, Tq ≠ Tr. We
describe each mode by a Mexican-hat potential and include
a biquadratic coupling between them [27]. In this case, the
free energy is given by

F ¼ aq
2
ðq21 þ q22Þ þ

bq
4
ðq21 þ q22Þ2 þ

ar
2
ðr21 þ r22Þ

þ br
4
ðr21 þ r22Þ2 þ

c
2
ðq21 þ q22Þðr21 þ r22Þ; ð1Þ

where the temperature dependence is typically only
included in the quadratic terms aq ≡ aq0ðT − TqÞ and
ar ≡ ar0ðT − TrÞ. The subspace of the force-constant
matrix of interest is now given by

ΦijðTÞ ¼
∂2F

∂ϕi∂ϕj

����
ϕi¼hϕii;ϕj¼hϕji

; ð2Þ

where ϕi ∈ fq1; q2; r1; r2g, and <> describes the thermo-
dynamic average at a given temperature.
Choosing without loss of generality that q1 ¼ hqi,

q2 ¼ 0, r1 ¼ hri, r2 ¼ 0, the force-constant matrix then
becomes

Φ ¼

2
6664

Hq 2chqihri 0 0

2chqihri Hr 0 0

0 0 Gq 0

0 0 0 Gr

3
7775; ð3Þ

with

Hq ¼ aq0ðT − TqÞ þ 3bqhqi2 þ chri2;
Gq ¼ aq0ðT − TqÞ þ bqhqi2 þ chri2;
Hr ¼ ar0ðT − TrÞ þ 3brhri2 þ chqi2;
Gr ¼ ar0ðT − TrÞ þ brhri2 þ chqi2:

Here, we use H to indicate Higgs modes, that is, amplitude
modes with symmetry A1, and G to indicate Goldstone
modes, that is, phase modes whose symmetry depends on
the underlying space groups involved.
There are no off-diagonal terms coupling the Higgs

and Goldstone sectors, but in this simple example, the
biquadratic coupling term couples the two Higgs modes
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Hq and Hr. Because of this coupling, we expect that a new
collective mode, the antiphase Higgs (the amplitude analog
of the Leggett mode), can exist. To see this, note that the
eigenvalues of the force-constant matrix are the square
of the collective mode frequencies [28]. That is, the
eigenvalues of the upper 2 × 2 block of the force-constant
matrix are

ω2
� ¼ 1

2

h
Hr þHq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHr −HqÞ2 þ 16c2hqi2hri2

q i
: ð4Þ

The eigenvectors are

ðu; vÞ� ¼ 1

N�

�
1;
ω2
� −Hq

2chqihri
�
; ð5Þ

where N� is a normalization factor. For small chqihri
relative to Hq −Hr, we can think in terms of separate
Higgs modes that are weakly coupled. In the limit of large
coupling chqihri, however, we obtain an in-phase Higgs
mode and an out-of-phase Higgs mode. The latter is the
Higgs analog of the Leggett phase mode. These are
illustrated in Fig. 1 for the simple case where the q and
r parameters are the same. For this case, it is easy to show
that the square of the Higgs mode energy is −2aq and that
of the Leggett mode is −2aqðbq − cÞ=ðbq þ cÞ.
For its realization, one finds from the above equations

that even one-dimensional group representations would
produce this antiphase Higgs mode. To determine the mode
dispersions requires the addition of gradient terms that
typically lead to a quadratic dispersion about the ordering
wave vector, unless the mode energy at the ordering vector

is at zero energy, in which case the dispersion is linear in
momentum instead.
What about the antiphason, the out-of-phase mode in the

phase channel that would be the analog of the super-
conducting Leggett mode? To obtain this requires coupling
of the two Goldstone modes. One can show that such
coupling requires terms in Eq. (1) that are linear in the
two Goldstone variables. In the above example, this
would be terms of the form q2r2 times Higgs variables
(q1; r1; q21; r

2
1; q1r1, etc.). Although these terms do not exist

in the above minimal model, they do exist in general.
Instead of extending our minimal model to the more
general case, we instead illustrate antiphasons using the
specific example of Cd2Nb2O7.

III. LANDAU THEORY OF Cd2Nb2O7

The pyrochlore Cd2Nb2O7 is one of the few known
stoichiometric materials that exhibits relaxor ferroelectric
behavior. Because it is stoichiometric, its phonons, as
observed by IR reflectivity and Raman scattering, are well
defined. The pyrochlore structure consists of a network of
corner sharing NbO6 octahedra interpenetrated by CdO
tetahedra (or CdO chains depending on how one views it),
as shown in Fig. 2. Several structural transitions have been
observed as a function of temperature, where the symmetry
lowers from the high-temperature cubic phase (Fd3̄m). Of
particular interest are the ferroelastic transition at 204 K
(which lowers the point group symmetry from m3̄m to
mmm, maintaining inversion) and the ferroelectric one at
196 K (which further lowers the point group symmetry
to mm2) [29]. At much lower temperatures, two other
transitions have been reported that are consistent with a
monoclinic space group, probably Cc. Based on group-
subgroup relations and structural refinements, the accepted
phase transition series with decreasing temperature is
Fd3̄m → Imma → Ima2 → Cc. The complexity of the
phase diagram and the fact that the polarization direction
is easily reoriented by an external field [29] indicate that
the free-energy landscape is soft, suggesting that this
material is an excellent hunting ground for new collective
modes.
Density functional theory (DFT) calculations (T ¼ 0 K)

show that Fd3̄m is unstable to both Γ−
4 and Γ−

5 distortions
(the former being polar in nature). Γ−

4 and Γ−
5 are both

primary order parameters for the transition from Fd3̄m to
Ima2 [30]. In the ferroelectric phase, the minimum Landau
subspace is 6 × 6, given that both Γ−

4 and Γ−
5 are three-

dimensional group representations, meaning Cd2Nb2O7

hosts a richer space of possibilities than the minimal
Landau model discussed earlier [33]. In addition, as we
demonstrate below, more coupling terms exist besides the
biquadratic one, a general result not specific to Cd2Nb2O7.
Before turning to Ima2, we first discuss the related Fdd2
space group which is simpler to present in a Cartesian basis.

0
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FIG. 1. Mode energies for the minimal Landau model with
aq ¼ ar, bq ¼ br, and c ¼ bq=2, so that Tq ¼ Tr ¼ Tc. Units
are such that aq0=Tq is set to unity. The Goldstone modes (not
shown) are at zero energy.
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A. Fdd2

The six-dimensional subspace formed by Γ−
4 and Γ−

5

defines two free-energy surfaces [Fig. 3(a)]. These surfaces
are three-dimensional generalizations of two Mexican-hat
potentials [Fig. 3(b)], and can be considered as nested
warped spheres, one for Γ−

4 , the other for Γ−
5 . Each

representation condensing along the cubic axis of its
respective sphere gives rise to Fdd2. Interestingly, Fdd2
has been identified as the local structure of Cd2Nb2O7 from
diffuse scattering studies [34] and is also the global space
group upon sulfur doping [31]. But what is evident from
both the DFT and structural studies is that there are a
number of space groups which are close in energy and
provide comparable descriptions of the data. That is, the
free-energy landscape of these two coupled spheres is
relatively flat (i.e., the warping of the spheres is small).
DFT calculations indicate that structures where Γ−

4 is
dominant have a slightly lower free energy than ones

where Γ−
5 is dominant [31], whereas order parameterlike

behavior of the distortion amplitudes as a function of
temperature has only been claimed for Γ−

5 based on global
structural refinements [35]. Regardless, the net result is that
one has two coupled flat energy surfaces, one for Γ−

4 , the
other for Γ−

5 , which only differ from each other by a few
meV per formula unit [31].
In terms of order parameter directions (Table I), the

Fdd2 phase corresponds to ða; 0; 0Þjð0; c; 0Þ with ða; 0; 0Þ
being a point on the Γ−

4 sphere and ð0; c; 0Þ on the Γ−
5

sphere, whereas Ima2 corresponds to ða; a; 0Þjð0; c;−cÞ
instead. Here, a refers to the Γ−

4 order parameter and c to
the Γ−

5 one. The lower symmetry space group encompass-
ing these two is Cc, corresponding to ða; b; 0Þjð0; c; dÞ,
which can be seen to correspond to particular great circles
on each sphere (analogous to the Mexican-hat brims of the
minimal model). For our purposes here, we restrict our
analysis to these two circles, recognizing that there are also

FIG. 2. Crystal structure of cubic Cd2Nb2O7 shown to illustrate its two interpenetrating sublattices of NbO6 octahedra and O0Cd4
tetrahedra with Cd (magenta), Nb (blue), and O (orange) ions.

FIG. 3. Illustration of the Leggett phase mode for Fdd2 with (a) the free-energy surfaces drawn as nested spheres for Γ−
4 and Γ−

5 ,
whose radii are the amplitudes Q4 and Q5, and (b) the corresponding Mexican-hat potentials when restricting to Cc. In (a) the Cc
subspace is indicated by great circles on these spheres (which are in reality warped given thatQ4 andQ5 depend on the spherical angles).
The Fdd2 minimum in Cartesian coordinates is ðQ4; 0; 0Þ on the Γ−

4 sphere and ð0; Q5; 0Þ on the Γ−
5 sphere. In (b) the vertical axis is

energy, with the wavy line indicating the Landau couplings between the two energy surfaces. In both panels, the Goldstone mode
corresponds to oscillations about the Fdd2 minima on each circle (these minima are indicated by black dots) to one Cc domain on one
swing (a red arrow on one surface, a blue arrow on the other) and to another Cc domain on the other swing (a blue arrow on one surface,
a red arrow on the other). The higher energy Leggett mode (antiphason) instead involves oscillations corresponding to antiphase Cc
domains, with one swing involving both red arrows and the other swing involving both blue arrows. A similar picture exists for the
antiphase Higgs mode, with the arrows pointing along the radial directions instead.
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fluctuations orthogonal to them on the spheres correspond-
ing to rhombohedral (R3) and other monoclinic (Cm and
C2) space groups, as well as to other domains of Fdd2 and
Ima2 not represented by these two particular circles
(Table II). That is, we consider a reduced 4 × 4 force-
constant matrix. We note that for these flat free-energy
surfaces, it is often useful to describe each order parameter
with spherical or polar coordinates, but for simplicity in the
following derivations we will use a Cartesian basis instead.
We obtain the Landau free energy using the INVARIANTS

routine [37] (accessible electronically [36]), noting that
it is important to specify the appropriate Cc domains for
the subspace considered, specifically the order parameter
directions ða; b; 0Þjð0; c; dÞ. Considering terms to quartic
order, we obtain

F¼ α4
2
ða2þb2Þþα5

2
ðc2þd2Þþβ4

4
ða2þb2Þ2

þ γ4
4
ða4þb4Þþβ5

4
ðc2þd2Þ2þ γ5

4
ðc4þd4Þ

þ δ

2
ða2þb2Þðc2þd2Þþ ϵ1ðabÞðad−bcÞ

þ ϵ2
2
ða2c2þb2d2Þþ ϵ3ðabcdÞþ ϵ4ðcdÞðad−bcÞ: ð6Þ

We note that in polar coordinates, a ¼ Q4 cosðϕ4Þ,
b ¼ Q4 sinðϕ4Þ, c ¼ Q5 cosðϕ5Þ, d ¼ Q5 sinðϕ5Þ, where
Qi are the amplitudes and ϕi are the phases.
We first consider expanding about an assumed Fdd2

free-energy minimum, and then consider Ima2 next. For
Fdd2, fluctuations of a and c correspond to Higgs modes
(A1 symmetry), fluctuations of b and d to Goldstone modes
(B2 symmetry) (Table II). Note these Goldstone modes are
not at zero energy because of the anisotropy terms γi, so
they are formally pseudo-Goldstone modes. In addition, the
δ (biquadratic) and ϵi terms will provide coupling between
the two Higgs modes, and the latter also between the two
Goldstone modes. There is no coupling between the Higgs
and the Goldstone modes, so the 4 × 4 matrix reduces to
two 2 × 2 blocks: one for the two Higgs modes, one for the
two Goldstone modes. This remains true when considering
sixth-order terms in the free energy, and also for the full
Γ−
4 ⊕ Γ−

5 space. That is, this larger 6 × 6 matrix reduces to

three 2 × 2 blocks: one in the Higgs sector and the other
two in the Goldstone sector. That is, there are no terms
coupling the two Goldstone blocks.
Differentiating Eq. (6) with respect to a, b, c, d and

setting each expression to zero determines these parameters
via a set of coupled equations [27]. One can see from these
expressions that b ¼ d ¼ 0 (Fdd2) is an allowed solution
to these coupled equations. Whether it is or is not depends
on the actual values of the Landau coefficients, but for
purposes here we assume that this is the case [38].
The coefficients of the force-constant matrix for each of

the modes are determined by ð∂2F=∂qi∂qjÞ, where qi are
a, b, c, d, evaluated at a ¼ hai, c ¼ hci, b ¼ d ¼ 0. The
diagonal elements of the force-constant matrix will give the
uncoupled Higgs mode energies (aa and cc elements) and
Goldstone mode energies (bb and dd elements). Of interest
here are the off-diagonal terms. We find that in this case
there are two nonzero ones. The first is the ac one that
couples the two Higgs modes:

∂2F
∂a∂c ¼ 2ðδþ ϵ2ÞðacÞ: ð7Þ

The other is the bd one that couples the two Goldstone
modes:

∂2F
∂b∂d ¼ ϵ1ða2Þ þ ϵ3ðacÞ − ϵ4ðc2Þ: ð8Þ

For each 2 × 2 block, we denote the diagonal elements
corresponding to the uncoupled mode energies as ω2

4 (aa or
bb) andω2

5 (cc or dd). Denoting the off-diagonal element in
each block as X (ab or cd), one obtains as before coupled
mode energies of the form

TABLE I. Space groups generated on condensing the (Γ−
4 , Γ−

5 )
order parameters along various crystallographic directions in
Cd2Nb2O7 (generated from Ref. [36]).

Γ−
4 Γ−

5 Space Group

ða; 0; 0Þ ð0; b; 0Þ Fdd2
ða; a; 0Þ ð0; b;−bÞ Ima2
ða; a; aÞ ðb; b; bÞ R3
ða; b; 0Þ ð0; c; dÞ Cc
ða; a; bÞ ð0; c;−cÞ Cm
ða; a; 0Þ ð−c; b;−bÞ C2

TABLE II. Fluctuations about Fdd2 and Ima2 derived from
Table I. H denotes fluctuations indicated by the blue and red
arrows along the specific great circles shown on the spheres in
Fig. 3. V denotes fluctuations along great circles orthogonal to
these circles. Note that the circles are turned 90° between the two
surfaces because of the different transformation properties of Γ−

4

and Γ−
5 . R denotes fluctuations along the radial directions of the

spheres. For Fdd2, the two Cc rows correspond to different Cc
domains. Also, the reduction to C2 is not shown because it
involves an Fdd2 → P1 → C2 path on the spheres in Fig. 3.

Space group Symmetry Γ−
4 Γ−

5 Modes

Fdd2 → Fdd2 Γ1 (A1) R R Higgs, antiphase Higgs
Fdd2 → Cc Γ4 (B2) H H Goldstone, antiphason
Fdd2 → Cc Γ3 (A2) V V Goldstone, antiphason

Ima2 → Ima2 Γ1 (A1) R R Higgs, antiphase Higgs
Ima2 → Cc Γ4 (B2) H H Goldstone, antiphason
Ima2 → Cm Γ3 (A2) V Goldstone
Ima2 → C2 Γ2 (B1) V Goldstone
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ω2
� ¼ ω2

4 þ ω2
5

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

4 − ω2
5Þ2

4
þ X2

r
: ð9Þ

The two eigenvectors of this matrix have the two compo-
nents either in phase or out of phase, as in Eq. (5). The in-
phase modes then correspond to Higgs and Goldstone
modes, the out-of-phase modes to their Leggett analogs.
To understand the two phase modes, consider a given

Fdd2 domain, ða; 0; 0Þjð0; c; 0Þ. The Goldstone mode
would correspond to oscillations along the two circles
on the free-energy spheres toward one Cc domain
ða; b; 0Þjð0; c; dÞ (one swing) and toward anotherCc domain
ða;−b; 0Þjð0; c;−dÞ (the other swing) as illustrated in Fig. 3.
The Leggett analog corresponds instead to oscillations
toward ða; b; 0Þjð0; c;−dÞ and ða;−b; 0Þjð0; c; dÞ. These
can be thought of as antiphase domains of Cc that occur at a
higher energy since they are penalized by the coupling terms
in the Landau free energy. As such, the Leggett phase mode
occurs at a higher energy than the Goldstone mode. We
therefore denote the Leggett phase mode as an antiphason.
A similar picture applies in the Higgs sector (oscillations

along the radial directions in Fig. 3). That is, the amplitudes
Q4 andQ5 oscillate either in phase or out of phase, sowe can
denote the latter as a Leggett amplitude mode, that is, an
antiphase Higgs mode. Considering the full six-dimensional
Γ−
4 ⊕ Γ−

5 space, there are actually two “antiphasons” and one
“antiphase Higgs” mode, as alluded to above.

B. Ima2

Although the Fdd2 space group is realized upon sulfur
doping [31], stoichiometric Cd2Re2O7 is thought to be
Ima2 below the ferroelectric transition. The Ima2 case is
similar to the Fdd2. Ima2 corresponds to a ¼ b and
d ¼ −c. These coordinates represent points on the two
circles in Fig. 3 that are rotated by 45° relative to Fdd2.
Therefore, to construct Goldstone and Higgs variables in a
Cartesian basis, it is convenient to express F using a 45°
rotated coordinate frame instead, that is, ã ¼ ðaþ bÞ= ffiffiffi

2
p

,
b̃ ¼ ða − bÞ= ffiffiffi

2
p

, c̃ ¼ ðc − dÞ= ffiffiffi
2

p
, d̃ ¼ ðcþ dÞ= ffiffiffi

2
p

, so
that Ima2 corresponds to b̃ ¼ d̃ ¼ 0. The resulting
Landau free energy is

F ¼ α4
2
ðã2 þ b̃2Þ þ α5

2
ðc̃2 þ d̃2Þ þ β4

4
ðã2 þ b̃2Þ2 þ γ4

8
ðã4 þ b̃4 þ 6ã2b̃2Þ þ β5

4
ðc̃2 þ d̃2Þ2

þ γ5
8
ðc̃4 þ d̃4 þ 6c̃2d̃2Þ þ δ

2
ðã2 þ b̃2Þðc̃2 þ d̃2Þ þ ϵ1

2
ðã2 − b̃2Þðb̃ d̃−ã c̃Þ

þ ϵ2
4
½ðã2 þ b̃2Þðc̃2 þ d̃2Þ þ 4ã b̃ c̃ d̃� þ ϵ3

4
ðã2 − b̃2Þðd̃2 − c̃2Þ þ ϵ4

2
ðd̃2 − c̃2Þðb̃ d̃−ã c̃Þ: ð10Þ

One can show that, as before, the only off-diagonal terms of
the force-constant matrix that survive are the ã c̃ and b̃ d̃
terms. Thus, the force-constant matrix again reduces to two
2 × 2 blocks and results in a Higgs mode, a Goldstone
mode, and the two Leggett modes: an antiphase Higgs
mode and an antiphason. This is straightforward to under-
stand from a study of Fig. 3 and Table I as we summarize
in Table II.
We now connect these results to those on superconduc-

tors. Upon manipulation of the corresponding dynamical
matrix in the case of superconductivity [22], one can show
that the off-diagonal element for a charge-neutral two-band
superconductor is equal to the square root of the product
of the two diagonal elements. This results in one mode
frequency that is zero (the Goldstone mode) and one whose
squared frequency is the sum of the two diagonal elements
(the Leggett mode). Besides this distinction, there is no
qualitative difference between the superconductivity and
structural mode cases. In particular, for both cases, the two
components of the eigenvector do not have equal ampli-
tudes. In the superconductivity case, this is due to the
difference in the density of states of the two bands. In the
structural case, it is because the uncoupled mode frequen-
cies for Γ−

4 and Γ−
5 differ.

The Leggett analog of the Higgs mode (the antiphase
Higgs) has not been explicitly described before. A related
mode, however, was predicted recently in time-reversal
breaking superconductors [42]. It should be observable as
well in multiband superconductors, and would correspond
to out-of-phase oscillations of the gap amplitudes of the
two bands. We suggest that the existence of this mode be
searched for by appropriate experiments (Raman, pump-
probe) on two-band superconductors like MgB2. Below, we
address its observation in the structural case.

C. Secondary order parameters

The secondary order parameters present in Cd2Nb2O7

are even-parity ones with symmetry Γþ
3 and Γþ

5 . For Cc,
this results in a seven-dimensional space: Γ−

4 ða; bÞ ⊕
Γ−
5 ðc; dÞ ⊕ Γþ

3 ðe; fÞ ⊕ Γþ
5 ðgÞ. Expanding around Fdd2

(b ¼ d ¼ g ¼ 0) and Ima2 (b ¼ a; d ¼ −c; f ¼ 0), no
couplings exist between the primary Higgs and
Goldstone modes (that is, the ab; ad; bc; cd terms in the
force-constant matrix vanish at the Fdd2 and Ima2
minima). This means that any coupling between these
Higgs and Goldstone modes is beyond the harmonic
approximation; however, higher-order coupling can occur
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in nonequilibrium situations [19,21]. At first glance, these
secondary modes shift the various primary mode frequen-
cies that would be determined from the smaller 4 × 4 block.
That is, one can in principle reduce this 7 × 7 matrix to an
effective 4 × 4 matrix by integrating out e, f, g in the
Landau free-energy equations, as these secondary order
parameters are slaved to the primary ones.
But closer inspection of the form of the primary-

secondary mode couplings reveals new opportunities to
study the Leggett modes. To see this, note that in the Cc
subspace discussed above, one now has the following
coupling terms at cubic order since the secondary order
parameters have even parity:

F3 ¼ η1

�
1ffiffiffi
3

p ða2 þ b2Þeþ ða2 − b2Þf
�

þ η2

�
1ffiffiffi
3

p ðc2 þ d2Þeþ ðc2 − d2Þf
�

þ η3

�
ðac − bdÞe − 1ffiffiffi

3
p ðacþ bdÞf

�

þ η4ðabgÞ þ η5ðcdgÞ þ η6½ðad − bcÞg�: ð11Þ

For both Fdd2 and Ima2, the η3 term leads to both primary
Higgs and Goldstone mode couplings. For Ima2, the η6
term also leads to both primary Higgs and Goldstone
couplings. We note that Γþ

3 and Γþ
5 are Raman active modes

in the cubic phase. Therefore, below the ferroelectric
transition, they can be used to drive the primary Leggett
modes via these two cubic terms, analogous to nonlinear
phononics experiments on perovskites [43] that have been
studied theoretically using similar Landau-like equations
of motion [44–46]. Note that pump-probe experiments
have been instrumental in the study of Leggett modes in
superconductors [47].
In the above analysis, we did not include strain (which

typically renormalizes the Landau coefficients) and gra-
dient terms, which need to be included to address domain
walls. One would expect that the collective modes could be
significantly modified by domain walls if they are spatially
broad enough [48] and present at a high enough density.
These effects would be interesting to study in future work.

D. Submodes and phonons for Cd2Nb2O7

In the real crystal, there are multiple force-constant
matrix eigenmodes for each symmetry, typically referred
to in the literature as “submodes.” The full matrix has a size
of 66 × 66. Restricting the symmetry to Cc, the matrix
reduces to 33 × 33. With further restriction to Γ−

4 and Γ−
5 , it

reduces to 24 × 24. In the Landau treatment, each qi is a
particular sum of these submodes with the appropriate
group symmetry that is gotten by reducing this larger
matrix to the smaller 4 × 4 matrix. Still, one can ask the
question whether this simplification is supported by the

data or not. To address this, in Fig. 4 we plot the temper-
ature dependence of several relevant submode amplitudes
based on the Ima2 crystal structure refinements of
Malcherek et al. [35]. We find that the Cd and Nb
displacements for both Γ−

4 and Γ−
5 symmetries scale with

the overall Γ−
5 order parameter amplitude that was pre-

viously shown in Ref. [35]. This indicates that this simpler
Landau description is valid.
We now turn to the phonons. Since the ions involved

(Cd, Nb, O) have different masses, there is no one-to-one
correspondence between the force-constant modes and the
phonons (unless the mode involved only one ion type). As a
consequence, a given force-constant mode could involve
more than one phonon. However, it has been shown that
there is a strong correspondence between single phonons
and the Higgs and Goldstone modes in YMnO3 [19].
Therefore, it is probable that such modes for Cd2Nb2O7 can
also be associated with specific phonons.
To gain further insight, we turn to experimental Raman

and infrared data. In the Ima2 phase, all phonons are in
principle Raman active. Raman data on Cd2Nb2O7 find
several low lying A1 and B2 modes below the ferroelectric
transition, three of which soften as the structural phase
transition is approached from below [49]. As the amplitude
modes have A1 symmetry and the phase modes have B2

symmetry, there should be a correlation between our
collective modes and the data. That is, it is possible that
the two lowest lying A1 Raman modes correspond to the
Higgs and antiphase Higgs modes. Presumably the lowest
lying B2 mode is the Goldstone mode, with the antiphason
corresponding to a higher energy B2 mode that has yet to be
studied.
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FIG. 4. Decomposition of the Ima2 structural refinement of
Cd2Nb2O7 from Ref. [35] using ISODISTORT [24,36]. Shown is
the overall Γ−

5 (T2u) amplitude previously plotted in Ref. [35]
along with various Γ−

4 (T1u) and Γ−
5 decompositions involving

either Nb or Cd ion displacements from their cubic positions,
noting that for each ion, Γ−

4 has two submodes Γ−
3 (Eu) and Γ−

2

(A2u), whereas Γ−
5 has only one (Γ−

3 ). Curves are proportional to
jTc − Tjβ, where Tc ¼ 196 K is the ferroelectric transition
temperature and β ¼ 0.27 is the order parameter exponent.
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The IR data for Cd2Nb2O7 are complicated given the
presence of seven optic modes of Γ−

4 symmetry in the
cubic phase, which further split in the ferroelectric phase.
Two of the lower lying IR modes have been interpreted as
being coupled (both above and below the transition) due
to their temperature dependencies [50]. One of these,
referred to as a “central” mode and speculated to be due to
hopping of Cd ions among equivalent locations displaced
from their cubic positions, is not thought to be of Γ−

4

symmetry given that seven other IR modes of this
symmetry are already seen. Its coupling with a higher
energy second mode, thought to be a Nb displacement
mode of Γ−

4 symmetry, drives this central mode to soften at
the ferroelectric transition [50]. Whether this central mode
is an A1 symmetry mode (as typical for an order-disorder
transition), or instead a Γ−

5 mode that becomes IR active
due to coupling to the second Γ−

4 mode, is worth inves-
tigating. If the latter, this would be consistent with the
theory we offer above of two coupled modes of Γ−

4 and Γ−
5

symmetry. Moreover, as discussed above, pump-probe
studies of Cd2Nb2O7 would be instrumental in probing for
possible collective modes: Higgs, Goldstone, and their
Leggett analogs.

IV. SEARCHING FOR AND OBSERVING
LEGGETT MODES

Although we considered the specific example of
Cd2Nb2O7, the above analysis should be applicable when-
ever more than one primary order parameter is involved in a
phase transition. As such, Leggett modes should exist in
the structural context, and could be identified from a DFT
analysis of the force-constant and dynamical (phonon)
matrices in comparison to experimental data. We plan to
report on this in a future paper that will provide a detailed
DFT study of Cd2Nb2O7 [51]. In general, analysis of
Raman and IR data, including the symmetry of the modes
and their temperature dependence, should be helpful in
elucidating the presence of Leggett modes. Specifics,
including identifying the out-of-phase behavior character-
istic of the Leggett modes, could be resolved by pump-
probe studies of the phase of the oscillations as a function
of time. Moreover, the equations of motion associated with
nonlinear phononics involve the same cubic and quartic
coupling terms invoked in this paper that provide for the
existence of the Leggett modes to begin with. Driving
specific modes would then be instrumental in identifying
the various collective modes via their couplings to the
driven mode.
As for materials, obviously those phase transitions

involving more than one primary group representation
would be obvious targets for study, including those
exhibiting improper and hybrid-improper ferroelectric
transitions [52–57]. Although the latter typically involve
order parameters with nonzero wave vector, the Landau
coupling terms in the free energy are similar and so the

considerations presented here should be valid there as well.
The existence of low lying modes would be aided by
having flat energy surfaces with low transition barriers as
considered here. In that context, Cd2Nb2O7 consists of
corner sharing NbO6 octahedra in an open framework
interpenetrated by CdO tetrahedra that are weakly coupled
to the octahedra, implying floppy low-energy modes.
Going from a cubic phase to a lower symmetry ortho-
rhombic or monoclinic phase is also useful in order to
optimize the number of coupling terms in the Landau free
energy. This is particularly pervasive in pyrochlores and
spinels. Cagelike structures as in skutterudites with their
associated floppy modes would also be a good place to
search. Much of the work concerning Goldstone and Higgs
modes has been done in the context of perovskites, which
also involve corner sharing octahedra, and a number of
them exhibit improper ferroelectric transitions as refer-
enced above. Similar considerations to ours would also
apply to ferroelastic transitions. However, a large coupling
to strain usually leads to large warping terms (see, e.g., in
the case of ferroelastic WO3 [58]). A locally flat energy
landscape can sometimes be recovered at Ising-type
domain walls (see, e.g., for LiNbO3 [59]). In the same
way, locally confined Leggett modes could be observed.

V. CONCLUSION

We demonstrate via a Landau analysis that structural
Leggett modes should exist in the context of displacive
transitions when more than one multidimensional group
representation is involved. These collective modes exist
not only in the phase channel as in the original work of
Leggett, but also in the amplitude channel, representing a
new collective mode, the antiphase Higgs, that should be
observable in multiband superconductors as well. We
studied in detail the specific case of the relaxor ferroelectric
pyrochlore Cd2Nb2O7, which we believe is a promising
material to search for such modes. We believe there should
be a large group of materials where such modes could
exist, and advocate in particular that pump-probe studies
would be the most illuminating way to identify and
characterize these modes. The study of such modes should
give new insight into their associated crystallographic
phase transitions.
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