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Determination of the symmetry property of superconducting gaps has been a central issue in studies to
understand the mechanisms of unconventional superconductivity. Although it is often difficult to
completely achieve the aforementioned goal, the existence of superconducting nodes, one of the few
important experimental signatures of unconventional superconductivity, plays a vital role in exploring the
possibility of unconventional superconductivity. The interplay between superconducting nodes and
topology has been actively investigated, and intensive research in the past decade has revealed various
intriguing nodes out of the scope of the pioneering work to classify superconducting order parameters
based on the point groups. However, a systematic and unified description of superconducting nodes for
arbitrary symmetry settings is still elusive. In this paper, we develop a systematic framework to
comprehensively classify superconducting nodes pinned to any line in momentum space. While most
previous studies are based on the homotopy theory, our theory is on the basis of the symmetry-based
analysis of band topology, which enables systematic diagnoses of nodes in all nonmagnetic and magnetic
space groups. Furthermore, our framework can readily provide a highly effective scheme to detect nodes in
a given superconductor by using density-functional theory and assuming symmetry properties of Cooper
pairs (called pairing symmetries). There are two main advantages of our method. One is that, while the
symmetry-indicator theory cannot be directly applied to systems violating compatibility conditions, our
diagnostic scheme focuses on such systems, which results in a complement of the symmetry-indicator
theory. The other is that, although our method does not predict any pairing symmetry itself, our framework
can diagnose not only the positions but also the dimensions of nodes such as line or surface nodes, which
can reduce candidates of pairing symmetries. We substantiate the power of our method through the time-
reversal broken and noncentrosymmetric superconductor CaPtAs. Our work establishes a unified theory for
understanding superconducting nodes and facilitates determining superconducting gaps in materials
combined with experimental observations.
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I. INTRODUCTION

While it is often difficult to determine the symmetry
property of Cooper pairs (called pairing symmetry in this
work) [1–26], superconducting nodes—geometry of gap-
less regions in the Bogoliubov quasiparticle spectrum—
are key ingredients to identify pairing symmetries. For
example, power-law behaviors of the specific heat and
the magnetic penetration depth are signatures of nodal

superconductivity. Therefore, predictions of superconduct-
ing nodes by theoretical studies are helpful to clarify the
possible properties of unconventional superconductivity.
Inspired by a series of the discovery of heavy-fermion

superconductors such as CeCu2Si2 [27] and UPt3 [28],
superconducting order parameters are classified by irre-
ducible representations of point groups [29–33]. Since the
order parameters are described by basis functions of the
irreducible representations in these theories, the intersec-
tion between Fermi surfaces and regions where the basis
functions vanish is understood as superconducting nodes.
Indeed, such analyses succeed in explaining nodes of
certain superconductors like cuprate superconductors
[34]. However, recent intensive studies reveal that such
analyses do not consider multiband (orbital) effects and the
presence of nonsymmorphic symmetries. As a result, novel
symmetry-protected nodes [35–41] are missed in these
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theories. For example, although Ref. [42] argues that
symmetry-protected line nodes could not exist in odd-
parity superconductors, several works provide counter-
examples in the presence of nonsymmorphic symmetries
[43–47]. UPt3 is a prototypical example of materials that
exhibits such symmetry-protected line nodes [43–47].
Another example is surface nodes called Bogoliubov
Fermi surfaces. When the time-reversal symmetry (TRS)
is broken, the Bogoliubov Fermi surfaces can be realized
by a pseudomagnetic field arising from interband Cooper
pairs [36,48].
Recently, three approaches to overcoming the insuffi-

ciency of the previous studies have been proposed. The
first approach is based on the group-theoretical analysis
of representations of the Cooper pair wave functions
[44,47,49–51]. In the presence of inversion symmetry,
the theory tells us which pairing symmetries force gap
functions to vanish on the mirror plane [44,51]. Thus, when
Fermi surfaces are located on the mirror planes, line nodes
exist in the mirror plane because of such pairing sym-
metries. The second approach is based on homotopy theory
[52–66]. In the presence of inversion and internal sym-
metries, we define zero-, one-, and two-dimensional
topological charges that protect nodes at generic points.
Then, depending on the dimensions of the defined topo-
logical charges, the shapes of protected nodes, such as line
and surface nodes, are determined. The last approach is
the k · p model analysis, which discusses the number of
symmetry-allowed mass terms and dispersion in k · p
models [67–73]. Despite the significant progress reported
in these works, existing theories cover only simple sym-
metry settings such as generic points or mirror planes.
In other words, high-symmetry settings such as rotation and
screw axes in glide planes, which commonly happen in
realistic materials, are out of their scope. Therefore, a
comprehensive theory to classify and predict superconduct-
ing nodes for arbitrary symmetry classes has long been
awaited. To achieve this goal, we need to answer the
following two questions:

(I) Is there a way to comprehensively classify nodes
pinned to high-symmetric momenta (often called
symmetry-enforced nodes)?

(II) Can we classify topologically protected nodes not
pinned to particular momenta, which can freely
move in planes or the entire Brillouin zone?

In this work, we propose a novel approach to symmetry-
enforced nodes on arbitrary lines in momentum space,
which answers question I. Our method is based on two
techniques to clarify the shapes of nodes pinned to the lines.
First, we employ the symmetry-based analysis of band
topology [74–90]. Symmetry representations of wave
functions play a pivotal role in the theory. In particular,
there exist necessary conditions of symmetry representa-
tions to be gapped phases, referred to as compatibility
conditions [74,75,91–94]. Conversely, if some compatibil-
ity conditions are violated, the system should be gapless.

Suppose that we find a gapless point on a line, which
originates from a violated compatibility conditions. When
compatibility conditions between the line and its neighbor-
hood exist, we find that the region of violation of the
compatibility conditions is a line or surface; that is, line or
surface nodes must exist. Although compatibility condi-
tions are powerful tools for understanding nodes, they
alone cannot provide complete information about the
geometry of nodes. More precisely, when there are no
compatibility conditions between the line and its neighbor-
hood, we cannot judge whether the gapless point on the line
is a genuine point node.
Then, the classification of point nodes on the lines can

compensate for the incompleteness of compatibility con-
ditions. The results are mainly classified into three types:
(i) genuine point nodes, (ii) loop or surface nodes shrinking
to a point, and (iii) no point nodes and such shrunk loop or
surface nodes. If the classification result on the line is type
(ii) or (iii), the gapless point on the line is considered a part
of line or surface nodes.
There are two distinctions from existing works in this

work. One is that our symmetry-based approach can be
applied to any symmetry settings, for example, in the
absence of the inversion symmetry and the presence of
several nonsymmorphic symmetries. In fact, we apply the
framework to all nonmagnetic and magnetic space groups,
considering all the possible pairing symmetries that belong
to one-dimensional single-valued representations of the
point groups. The classification tables we obtain are
tabulated in Supplemental Material [95]. Furthermore,
the symmetry-based approach has a chance to be more
refined to answer question II, which is also discussed in the
present paper.
The other one is that our framework leads to an efficient

algorithm to detect and diagnose nodes in realistic materi-
als, requiring only pairing symmetry and information of
irreducible representations of Bloch wave functions at
high-symmetry momenta. It should be emphasized that
our method can predict not only the positions but also the
dimensions of nodes on high-symmetry lines, which might
be a significant step from the existing works [96–98]. Our
results, therefore, help reduce the candidates of pairing
symmetries in realistic superconductors by comparing our
results with experimental results on the existence or
absence of nodes.
The remaining part of this paper is organized as follows.

In Sec. II, we provide an overview of our study, which
enables readers who are not interested in all details to
understand our ideas and results. In Sec. III, we introduce
several ingredients used to formulate our theory. We devote
Sec. IV to establish the classification of point nodes on the
lines in the presence of point group symmetries. In Sec.V,we
integrate the gapless point classifications into the symmetry-
based analysis to classify nodal structures pinned to the lines.
In Sec. VI, we discuss how to apply our theory to detection of
nodes in realistic superconductors. As a demonstration, we
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apply our algorithm to CaPtAs, in which broken TRS is
observed [99].We show that this material is expected to have
small Bogoliubov Fermi surfaces. In Sec. VII, we comment
on nodes at generic momenta and the relationship between
such nodes and symmetry-based analysis,which is an answer
to question II toward a complete classification of topologi-
cally stable nodes. We conclude the paper with outlooks for
the future works in Sec. VIII. Several details are included in
Appendixes to avoid digressing from the main subjects.

II. OVERVIEW OF THIS STUDY

Our major goal is to establish a systematic framework to
classify various nodes pinned to lines in momentum space.
To achieve this, we integrate compatibility conditions and
gapless point classifications. In this section, we provide an
overview of our strategy and results. Throughout the
present paper, gapless point means a point of momentum
space where the bulk gap in the Bogoliubov quasiparticle
spectrum is closing. It does not imply that the gapless point
is always a genuine point node. As shown in the following
discussions, a gapless point on a line connecting two
momenta is sometimes part of a line or surface node.

A. Emergent Altland-Zirnbauer classes and
zero-dimensional topological invariants

In principle, a complete diagnosis of nodal structures
requires computations of all topological charges to pro-
tect nodes. In this work, we adopt an alternative way:
We characterize any Bogoliubov quasiparticle spectrum
by zero-dimensional topological invariants at various
momenta. To accomplish this, we first identify emergent
Altland-Zirnbauer (EAZ) classes at a point in momentum
space. Here, emergent means that such a symmetry class is
not a global internal symmetry class but a local one for
an irreducible representation at a point in momentum
space. Once the EAZ classes are determined for each
irreducible representation at various momenta, we define
zero-dimensional topological invariants in the topological
periodic table [100–102] (see also Table II).
Let us illustrate the notion of EAZ classes through

spinful space group P2=m with Bg pairing. In this sym-
metry setting, the system possesses TRS T , the particle-
hole symmetry (PHS) C, the twofold rotationCy

2 along the y
axis satisfying the anticommutation relations fC; Cy

2g ¼ 0

[103], and the inversion I holding the commutation rela-
tion ½C; I� ¼ 0. Let Hk and ψmk be the Hamiltonian and its
eigenvectors, respectively, and Hkψmk ¼ Emkψmk, where
the Bogoliubov quasiparticle spectrum Emk is labeled by
the band indexm and the momentum k. Since the combined
symmetries IC and IT do not change k, ðICÞψmk and
ðIT Þψmk are also eigenvectors of Hk with the energies
−Emk and Emk, respectively.
We begin by focusing on a generic momentum k in

the two-dimensional plane invariant under the mirror

symmetry My ¼ ICy
2. In this plane, the eigenvectors ψmk

of Hk are also those of My with mirror eigenvalues
ξmk ¼ �i. Then, ðICÞψmk and ðIT Þψmk have the mirror
eigenvalues ξmk and −ξmk, respectively. This implies that
the combined symmetry IC does not change the mirror
sector but IT changes, which results in class D as the EAZ
symmetry class of each mirror sector at the point k [see
Fig. 1(a)]. As is the case of the mirror plane, completely the
same discussion can be applied to any point (except for
higher-symmetry momenta) in the rotation symmetric line.
Then, we find that the EAZ symmetry class of each
rotation-eigenvalue sector at the point is class D [see
Fig. 1(b)]. For EAZ class D, the Pfaffian invariants p�i

k
are defined.

B. Diagnosis of nodal structures based
on compatibility conditions

As seen in the preceding discussions, we show that zero-
dimensional topological invariants are defined at each
momentum. Then, the question is whether these zero-
dimensional topological invariants are fully independent or
not. In general, for the gapped region in momentum space,
these zero-dimensional topological invariants are subject to
symmetry constraints. Topological invariants do not change
when the system is in the same topological phase during the
continuous deformation [see Fig. 2(a)]. Thus, when we
consider momentum as a parameter of the deformation, the

Class D

Mirror plane

Class D

(a) Mirror plane (b) Rotation axis

FIG. 1. Illustration of the action of symmetries discussed in
Sec. II. There are two irreducible representations in the mirror
plane (kz-kx plane) [(a)] and the rotation axis (ky axis) [(b)]. They
are invariant under IC but exchanged by IT . As a result, the EAZ
classes for the irreducible representations are class D, and, thus,
two Z2 topological invariants (Pfaffian invariants) are defined at
every point in the mirror plane and the rotation axis (except for
high-symmetry points).
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zero-dimensional topological invariants must be the same
for the gapped region. In this work, we refer to such con-
straints on zero-dimensional topological invariants as com-
patibility conditions. Conversely, if the zero-dimensional
topological invariants are changed between two points,
the Bogoliubov quasiparticle spectrum must have gapless
points on this line [see Fig. 2(b)].
The existence of a gapless point pinned to the line

immediately implies that there are two regions in which the
zero-dimensional topological invariants are different from
each other [see Fig. 2(c), upper]. Next, we discuss the
diagnosis of the shape of nodes when we find a gapless
point originating from the change of zero-dimensional
topological invariants on a line. Suppose that there exist
compatibility conditions between the two subdivisions and
their neighborhoods. Furthermore, since the gradient of
dispersion does not usually diverge, it is natural to think
that neighborhoods of the regions on the line are gapped.
However, due to the compatibility conditions, the two
neighborhoods also have different topological invariants.
Therefore, the boundary of these neighborhoods leads to a
line node [see Fig. 2(c), lower]. When the system is three-
dimensional, the same discussion can be further applied to
the line node and its three-dimensional neighborhood [see
Fig. 2(d)].

Again, we discuss the case for space group P2=m with
Bg pairing. Let us start with the mirror plane. We pick two
momenta k1 and k2, which are not the high-symmetry
points. We also suppose that the different Pfaffian invar-
iants are assigned, say, p�i

k1
¼ 1 and p�i

k2
¼ 0. Then, a

gapless point must be on the line between k1 and k2, as
discussed above. In the mirror plane, there exists a
compatibility conditions such that p�i

k must be the same
for the gapped regions. As a result, we find that the
situation is actually the same as Fig. 2(c) and that the
gapless point is part of the line node. On the other hand,
the situation for rotation axes is different from that for
the mirror plane. There are no compatibility conditions
between a point in the rotation axis and generic momenta.
In such a case, one might think that the point node is the
only case. However, we cannot conclude that the gapless
point is a genuine point node. The possibility of a line node
protected by one-dimensional topological invariants, such
as the Berry phase and the winding number, still remains,
since the absence of compatibility conditions just guaran-
tees that there are no line and surface nodes protected
by zero-dimensional topological invariants. In summary,

Surface node

Gapless point(c)

(b)

Line node

(a)

(d)

Surface nod

FIG. 2. Illustration of diagnosis based on compatibility con-
ditions. (a),(b) Bogoliubov quasiparticle spectrum along the line
connecting two momenta k1 and k2. The spectrum satisfies the
compatibility conditions on the line in (a), while it does not in (b).
(c) Two divisions of the line connecting k1 and k2 and a nodal line
in a plane containing the line. Here, the red shaded region and
others have different values of the topological invariants, whose
boundary results in a nodal line. (d) Surface node. When there are
compatibility conditions between the plane and its three-dimen-
sional neighborhood, the regions in (c) are extended out of the
plane, and the boundary surface is the surface node.

(a) (b)

(c)

FIG. 3. Illustration of results of gapless point classifications on
a line: (a) The gapless point on the line is a genuine point node.
(b) A point node formed by multiple gapless points can be
realized, but such a point node is actually a shrunk loop or surface
node. Since there are no reasons why two gapless points are at the
same position, it is natural to consider that a shrunk loop or
surface node exists in such a case. (c) The gapless point must be
part of a line or surface node.
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compatibility conditions can tell us part of nodal structures
but not completely determine them.

C. Gapless point classifications on lines

In such a case, we need another tool to distinguish two
possibilities of a genuine point node or a line node. This is
achieved by the classifications of two-dimensional massive
Dirac Hamiltonians near gapless points on the line

Hðk1;k2Þ ¼ k1γ1 þ k2γ2 þ δk3γ0; ð1Þ
where k1 and k2 are momenta in the directions
perpendicular to the line and δk3 is a displacement from
the gapless point in the direction of the line. Gamma
matrices γ0, γ1, and γ2 anticommute with each other. After
classifying the Dirac Hamiltonians, we find three types of
gapless points: (a) a genuine point node [Fig. 3(a)], (b) a
shrunk loop or surface node [Fig. 3(b)], and (c) part of line
or surface nodes [Fig. 3(c)]. It should be noted that the
shrinking for case (b) is not forced by symmetries. In other

words, case (b) indicates that such loop and surface nodes
can shrink to a point just by deformations. In this work, we
consider that such shrinkable nodes are realized as loop or
surface nodes.
Indeed, the classification result for the rotation axis in

space group P2=m with Bg pairing is case (c), as shown in
Sec. IV C 1. Thus, the gapless point on the rotation axis is
not a genuine point node.

D. Unification of compatibility conditions
and gapless point classifications

Unifying compatibility conditions and gapless point
classifications, we finally arrive at our classification
scheme for the gapless points on lines, which is summa-
rized in Fig. 4. As a preparation for the classifications, we
decompose momentum space into points, lines, polygons,
and polyhedrons (called 0-cells, 1-cells, 2-cells, and 3-cells,
respectively, in this work) (cf. Fig. 5). Suppose that we have
a generator of gapless points on the line. Here, generator

Compatibility conditions between 
the 1-cell and adjacent 2-cells exist

Input:
Decomposition of Brillouin zone

A generator of gapless points on a 1-cell
Gapless point classifications on the 1-cell 

Compatibility conditions between 
the 2-cells and 3-cells exist

NoYes

NoYes

A generator corresponds to a genuine 
point node in gapless point classifications

NoYes

Surface node
Line node

(pinned on 2-cell)
Genuine point node Line node

(extended from 1-cell to 3-cell)

L(A) P(B) L(B)S(A)

FIG. 4. A flowchart of our classification scheme. In the classification process, we focus on a generator of gapless points on a line
(called 1-cell). Here, generator denotes a gapless point caused by a change of zero-dimensional topological invariants for irreducible
representations. Such gapless points on the line cannot be split because of symmetry constraints. We separately perform gapless point
classifications on the 1-cell. First, we ask if compatibility conditions between the line and adjacent polygons exist or not. If yes, we
examine whether compatibility conditions are between the polygons and their three-dimensional neighborhoods. If they exist, the
gapless point is part of a surface node, denoted by S(A). Otherwise, the gapless point is part of a line node pinned on the polygons,
denoted by L(A). Next, we consider the case where the compatibility conditions between the line and adjacent polygons do not exist. In
such a case, we ask if the generator coincides with a genuine point node from the results of gapless point classifications on 1-cells. When
the gapless point belongs to case (a) of the gapless point classification, it is a genuine point node, denoted by P(B). If the gapless point is
not consistent with the existence of a genuine point node, i.e., the gapless point classification result is case (b) or (c), we conclude that the
gapless point is part of a line node, denoted by L(B).
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means a gapless point induced by a change of zero-
dimensional topological invariants for irreducible repre-
sentations. In other words, the generator has a minimum
number of gapless states at a point in the line, which cannot
be split due to symmetry constraints. We first check
whether compatibility conditions between the line and
adjacent polygons exist or not. Let us begin by discussing
the case where they exist. Then, we further examine if
compatibility conditions are between the polygons and
adjacent polyhedrons. If they exist, the gapless point is part
of a surface node [S(A) in Fig. 4]. Otherwise, the gapless
point is part of a line node pinned on the polygons [L(A) in
Fig. 4]. On the other hand, when the compatibility con-
ditions between the line and adjacent polygons do not exist,
we ask if the gapless point on the line is a genuine point
node from the results of gapless point classifications. When
the gapless point belongs to case (a) of the gapless point
classification, it is a genuine point node [P(B) in Fig. 4].
If the gapless point is not consistent with the existence of a
genuine point node, i.e., the gapless point classification
result is case (b) or (c), we conclude that the gapless point is
part of a line node [L(B) in Fig. 4]. Note that, since
stable surface nodes require zero-dimensional topological
charges, which are actually equivalent to zero-dimensional
topological invariants, they are always diagnosable by
compatibility conditions.
In this work, we classify the nodes pinned to the lines in all

nonmagnetic and magnetic space groups with concrete
decomposition of momentum space. All results are summa-
rized as tables in Supplemental Material [95], which contain
the information about positions and shapes of nodes.

E. Applications to materials

Our classification leads to an efficient way to diagnose
nodal structures in realistic superconductors. There are
two things that they have to do. One is to perform
density-functional theory (DFT) calculations and com-
pute irreducible representations in the normal phase at
high-symmetry points, which leads to zero-dimensional
topological invariants at high-symmetry points in the

weak-pairing assumptions [88,89] (see Sec. VI for
more details). The other is to check if the obtained zero-
dimensional topological invariants satisfy compatibility
conditions or not. Examining compatibility conditions
between zero-dimensional topological invariants at two
high-symmetry points, we can detect the positions of
gapless points on the line between two high-symmetry
points. Furthermore, referring to the classification tables,
we can also understand the shape of nodes.
For example, let us suppose that we have a super-

conductor crystallized in space group P2=m with Bg

pairing. In this space group, there are eight high-symmetry
points, at which four irreducible representations are defined
and labeled by 1, 2, 3, and 4. Then, their EAZ classes are
class D, and four Pfaffian invariants are defined at these
points. We further suppose that the Pfaffian invariants for
the irreducible representations 1 and 2 at Γ are nontrivial
and that others are trivial. After examining if compatibility
conditions are satisfied, we find various violated ones.
Here, let us focus on the violated compatibility conditions
on (0,0,0)-ð1=2; 0; 0Þ and (0,0,0)-ð0; 1=2; 0Þ. Then, refer-
ring to Table I, we immediately see that the gapless points
on these lines are part of line nodes.
It is worth noting that our framework is implemented in

an automatic program. In Ref. [105], the authors develop a

FIG. 5. Cell decomposition for p4mm. We first find a unit of BZ illustrated in the left. The red and black arrows signify orientations of
1-cells and 2-cells, respectively. Then, we rotate each p-cell in the unit by fourfold rotation symmetry. Finally, mapping them by the
mirror symmetry, we arrive at the cell decomposition shown in the right.

TABLE I. Part of classification table for space group P2=m
with Bg pairing. The first and second columns represent the
boundary points of the line where a gapless point exists. Labels of
irreducible representations (irrep) are shown in the third column,
which follows the notation in Ref. [104]. The fourth column is the
classification Z or Z2, and the fifth column means the type of
nodes. Here P, L, and S denote point, line, and surface nodes,
respectively. In addition, while (A) means that the shape of the
node is determined only by compatibility conditions, (B) indicates
that gapless point classifications are necessary.

HSP1 HSP2 Irrep Classification Type of node

(0,0,0) ð1
2
; 0; 0Þ F̄3 Z2 L(A)

(0,0,0) ð0; 1
2
; 0Þ Λ̄3 Z2 L(B)
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subroutine which enable us to perform the diagnosis of
nodal structures just by uploading particularly formatted
results of DFT calculations.

III. FORMALISM

In Sec. II, we provide an overview of our ideas to classify
nodes on symmetric lines. In this section, we explain
several ingredients of implementations of the systematic
classifications, which are discussed in Secs. IV and V.

A. BdG Hamiltonian and symmetry representations

In this work, we always consider superconductors which
can be described by the Bogoliubov–de Gennes (BdG)
Hamiltonian

Hk ¼
�
hk Δk

Δ†
k −h�−k

�
; ð2Þ

where hk and Δk denote the normal-phase Hamiltonian
and the superconducting gap function, respectively [106].
Here, we choose the gauge such that the BdG Hamiltonian
is periodic in k, i.e., HkþG ¼ Hk for reciprocal lattice
vectors G.
Suppose that the normal phase is invariant under a

magnetic space group (MSG) M ¼ GþA, where G is a
space group and A is an antiunitary part of M. Note that
the notion of MSG contains all ordinary space groups
without and with TRS. For instance, when every element
inA is the product of TRS and an element of G, the MSG is
no more than a space group with TRS. A MSG M always
has a subgroup T consisted of all lattice translations. An
element g ∈ M transform a point r in the real space to
gr ¼ pgrþ tg, where pg is an element of O(3) and tg repre-
sents a lattice translation or a fractional translation. Because
of the existence of PHS C in the BdG Hamiltonian, the full
symmetry group G is divided by the following four parts:

G ¼ MþMC

¼ GþAþ P þ J ; ð3Þ

where P ¼ GC and J ¼ AC are sets of particle-hole-like
and chiral-like symmetries.
We recall symmetry representations of G in momentum

space. We introduce two maps c;ϕ∶G → Z2 ¼ f−1; 1g.
Here, ϕg ¼ þ1ð−1Þ means g is unitary (antiunitary), and
cg ¼ þ1ð−1Þ represents g commutes (anticommutes) with
the HamiltonianHk. Accordingly, an element g ∈ M trans-
forms a point k in momentum space into gk ¼ ϕgpgk.
In addition, the representation ρkðgÞ is expressed by

ρkðgÞ ¼
�
UkðgÞ for ϕg ¼ þ1;

UkðgÞK for ϕg ¼ −1;
ð4Þ

and ρkðgÞ satisfies

ρkðgÞHk ¼
�
HgkρkðgÞ for cg ¼ þ1;

−HgkρkðgÞ for cg ¼ −1;
ð5Þ

whereUkðgÞ andK are a unitary matrix and the conjugation
operator, respectively. Note that UkðgÞ is a projective
representation; i.e., the following relation holds:

ρg0kðgÞρkðg0Þ ¼ zg;g0ρkðgg0Þ; ð6Þ

where zg;g0 ∈ Uð1Þ is a projective factor of G. For spinless
systems, we can always choose zg;g0 ¼ þ1 for g; g0 ∈ G
or A.
Let us consider a point k in momentum space. For

this point, we introduce a little group Gk ¼ fh ∈ Gjhk ¼
kþ ∃ Gg, where G is a reciprocal lattice vector. For h ∈ Gk,
since elements in Gk are symmetries of Hk, we can
simultaneously block-diagonalize Hk and UkðhÞ such that

UkðhÞ ¼ diag½Uα1
k ðhÞ ⊗ 1m1

;…; Uαn
k ðhÞ ⊗ 1mn

�; ð7Þ

Hk ¼ diag½1dα1 ⊗ Hα1
k ;…; 1dαn ⊗ Hαn

k �; ð8Þ

where Uα
kðhÞ is an irreducible representation of Gk.

Here, dα and mα are dimensions of Uα
kðhÞ and Hα

k ,
respectively [88,89].
One often considers the finite groupGk=T, whereGk is a

subgroup of G and is defined in the same way as Gk. In the
literature [107], Gk=T is referred to as “little cogroup.”
Importantly, Gk=T is isomorphic to a magnetic point group
with PHS. We can always relate representations of Gk to
those of Gk=T, and we define the representation σkðgÞ of
Gk=T by

σkðgÞ ¼
�
UkðgÞe−ik·tg for ϕg ¼ þ1;

UkðgÞe−ik·tgK for ϕg ¼ −1;
ð9Þ

where tg is a fractional translation or zeros. Corres-
pondingly, projective factors also change as

σkðgÞσkðhÞ ¼ zkg;hσkðghÞ; ð10Þ

where zkg;h ¼ zg;he−ikðpgth−ϕgthÞ. Using these projective fac-

tors zkg;h, we can obtain irreducible representations uαk of
Gk=T, which is simply related to irreducible representations
Uα

k of Gk by

Uα
kðgÞ ¼ uαkðgÞe−ik·tg : ð11Þ

B. Cell decomposition

Here, we explain the cell decomposition of the Brillouin
zone (BZ) [108]. In this work, we divide the BZ into points,
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lines, polygons, and polyhedrons, which are called 0-cells,
1-cells, 2-cells, and 3-cells, respectively. Before moving on
to the formal discussions, we begin by introducing an
example.
Let us consider the wallpaper group p4mm in two

dimensions. Here, we describe a way to find the cell
decomposition shown in Fig. 5, in which 0-cells, 1-cells,
and 2-cells are represented by orange circles, solid red lines,
and pink polygons, respectively. We first find an asymmetric
unit of the BZ, and then decompose the asymmetric unit into
three 0-cells (orange circles), three 1-cells (solid red lines),
and a 2-cell (pink plane) in the left in Fig. 5. Finally, we act
symmetry operations on this asymmetric unit and obtain the
cell decomposition of the entire BZ:

C0 ¼ fΓ; X;M; X1;M1; X2;M2; X3;M3g; ð12Þ

C1 ¼ fa; b; c; a1; b1; c1; a2; b2; c2; a3; b3; c3; c4; c5; c6; c7g;
ð13Þ

C2 ¼ fα; α1; α2; α3; α4; α5; α6; α7g; ð14Þ

whereCp (p ¼ 0, 1, 2) represents the set ofp-cells.Note that,
although various p-cells are equivalent or symmetry related
to other p-cells, we here assign different labels to them. For
example,X2 ¼ ð−π; 0Þ is equivalent toX ¼ ðπ; 0Þ andX1 ¼
ð0; πÞ is symmetry related to X.
We proceed to explain a construction for arbitrary

symmetry settings. As is the case of the above example,
we first find an asymmetric unit of BZ and divide the
asymmetric unit into the set of p-cells fDp

i gi for
p ¼ 0; 1;…; d. Next, we copy the decomposition of the
asymmetric unit throughout the entire BZ by using crys-
talline symmetries. In other words, we define the entire set
of p-cells by

Cp ≡⋃
i

⋃
g∈G=T

Dp
gðiÞ; ð15Þ

where Dp
gðiÞ ¼ gDp

i . Note that, in this construction, some

p-cells are equivalent or symmetry related to others up to
reciprocal lattice vectors. However, we do not identify such
p-cells with others in the procedures of cell decomposition,
and we take into account these identifications in the
construction of E1-pages in Sec. III D.
Each p-cell satisfies the following conditions:
(i) The intersection of any two p-cells in Cp is an empty

set, i.e., Dp
i ∩ Dp

j ¼ ∅ði ≠ jÞ.
(ii) Any point in a p-cell Dp

i is invariant under sym-
metries or transformed to points in different p-cells
by symmetries, namely, gk ¼ kþ ∃ G or gk ∈ Dp

gðiÞ
if k ∈ Dp

i .
(iii) The boundary ∂Dp

i consists of (p − 1)-cells
for p ≥ 1.

(iv) Each p-cell (p ≥ 1) is oriented in a symmetric
manner.

(v) Any two of the boundary p-cells of the (pþ 1)-
cell are not equivalent and symmetry related to
each other.

For our purpose to systematically diagnose nodes pinned to
lines in the BZ, condition (v) is crucial. In Appendix A, we
provide units of 3D BZ for each type of lattice.

C. Emergent Altland-Zirnbauer classes

Symmetries of A, P, and J in Eq. (3) sometimes keep
a sector Hα

k in Eq. (8) unchanged and other times
transform it to another sector. The symmetries that leave
Hα

k unchanged lead to an effective internal symmetry
class for each irreducible representation on a p-cell,
which is referred to as the EAZ class. In the following,
we discuss how to know the effects of symmetries in A,
P, and J .
In our construction of the cell decomposition, the little

groups Gk at any point k in a p-cellDp are in common, and,
therefore, the common little group is denoted by GDp. In the
same way as GDp , we define a subset VDp of V by VDp ¼
fv ∈ Vjvk ¼ kþ ∃ G ∀ k ∈ Dpg, where V ¼ A;P;J .
Then, we identify actions of time-reversal-like, particle-
hole-like, and chiral-like symmetries on each Hα

k by the
Wigner criteria [107,108]

Wα
DpðPÞ ¼ 1

jPk=Tj
X

c∈Pk=T

zkc;cχαkðc2Þ ∈ f0;�1g; ð16Þ

Wα
DpðAÞ ¼ 1

jAk=Tj
X

a∈T k=T

zka;aχαkða2Þ ∈ f0;�1g; ð17Þ

Wα
DpðJ Þ ¼ 1

jGk=Tj
X

g∈Gk=T

zk
γ;γ−1gγ

zkg;γ
½χαkðγ−1gγÞ��χαkðgÞ

∈ f0; 1g; ð18Þ

where χαkðgÞ ¼ tr½uαkðgÞ� for k ∈ Dp and γ is a chiral-like
symmetry. Note that, in fact, it is enough for our purpose to
consider a point k in Dp. When Wα

DpðVÞ ¼ 0, additional
symmetries in VDp transform Hα

k into another sector Hβ
k.

On the other hand, when Wα
DpðVÞ ¼ �1, Hα

k is invariant
under the additional symmetries. Then, the EAZ symmetry
class for Hα

k is determined by

WDp ½α�≡ ½Wα
DpðAÞ;Wα

DpðPÞ;Wα
DpðJ Þ�: ð19Þ

Depending on the EAZ symmetry classes, the following
zero-dimensional topological invariants are assigned to
each sector Hα

k [88,89] (see Table II):
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pα
k ≡ 1

iπ
log

Pf½UðHα
kÞ�

Pf½UðHα
kÞvac�

mod 2; ð20Þ

Nα
k ≡ nαk − ðnαkÞvac: ð21Þ

To define the above topological invariants, we introduce
a reference Hamiltonian Hvac

k in the same symmetry
setting [85–89]. In Eqs. (20) and (21), ðHα

kÞvac denotes
the counterpart of Hα

k for Hvac
k , and U is the particle-

hole-like symmetry for Hα
k satisfying ðUU�Þ ¼ þ1 and

UðHα
kÞ� ¼ −Hα

kU. We also define nαk and ðnαkÞvac by the
number of occupied states in Hα

k and ðHα
kÞvac, respectively.

Practically, we can always choose an appropriate reference
Hvac

k using Hk. For example, since the vacuum is always
topologically trivial, Hk in the limit of infinite chemical
potential is often used asHvac

k [85,89]. In fact, we adopt this
definition of a reference Hamiltonian in Sec. VI.

D. E1-pages

As seen in the preceding discussions, the Wigner criteria
in Eqs. (16)–(18) tell us EAZ classes for each irreducible
representation. Then, let us define Abelian groups Ep;0

1 in
the following, which can be interpreted as the classification
of fHα

kgα at points k inside p-cells.
The total set Cp of p-cells consists of Np subsets (so-

called “star” in the literature [107]) defined by SDp
i
¼

fDp
gðiÞ ¼ gDp

i jg ∈ Gg, whereNp the number of subsets and

Dp
i is a representative p-cell of the subset SDp

i
. The

representatives form a set of independent p-cells:

Fp ≡ fDp
i gNp

i¼1: ð22Þ

In Ref. [108], the Abelian groups Ep;0
1 (called E1-pages)

are defined by the direct sum of twisted equivalent
K-groups [109] on p-cells in Fp. It turns out that Ep;0

1 is

the direct sum of the classification of zero-dimensional
topological phases of fHα

kgα [defined in Eq. (8)] at a point k
in each Dp

i ∈ Fp. Then, Ep;0
1 is completely determined by

WDp
i
½α� for each irreducible representation and each

Dp
i ∈ Fp. In other words, Ep;0

1 is defined by

Ep;0
1 ≡ ⨁

ijDp
i
∈Fp

ðZ⊕α
2 ⊕ Z⊕βÞ; ð23Þ

where we perform the summation about labels of irreduc-
ible representations α and β with the following conditions:
(a) WDp

i
½α�∈fð0;1;0Þ;ð1;1;1Þg and WDp

i
½β�∈fð0;0;0Þ;

ð1;0;0Þ;ð−1;0;0Þg [see Eq. (19)];
(b) when an irreducible representation on Dp

i is related to
other ones by antiunitary and chiral-like symmetries,
only one irreducible representation onDp

i is taken into
account.

For p ≥ 1, Ep;0
1 represents the set of gapless states with

(p − 1)-dimensional gapless regions in the Bogoliubov
quasiparticle spectrum on p-cells. Intuitively, it can also
be understood as changes of zero-dimensional topological
invariants on p-cells. Let us focus on a 1-cell. Then, we
define the same zero-dimensional topological invariants for
any point on the 1-cell, as explained in Sec. III C. However,
it is not necessary to have the same values of them at all
points in the 1-cell. When we consider momentum as a
parameter of the deformation, the system must have gapless
points on the 1-cell if the zero-dimensional topological
invariants at points on the line are different (see Fig. 6).
Possible changes of zero-dimensional topological invari-
ants on the 1-cell are equivalent to the classifications of
zero-dimensional topological phases of fHα

kgα at a point k
on the 1-cell, which is the first interpretation of E1;0

1 . In the
same way as E1;0

1 , E2;0
1 and E3;0

1 can be understood as the
sets of gapless lines and surfaces on 2- and 3-cells,
respectively (see Fig. 6). Note that gapless points and lines
for E1;0

1 and E2;0
1 are not always the genuine point and line

nodes. In other words, they are often part of higher-
dimensional nodes.
Based on these interpretations, we can characterize any

system by a list of band labels

nðpÞ ¼ ðpα1Dp
1

; pα2Dp
1

;…Nβ1
Dp

1

;…; p
α0
1

Dp
2

;…;N
β0
1

Dp
2

;…Þ; ð24Þ

where pαDp
i
and Nβ

Dp
i
are Z2-valued and Z-valued band

labels, respectively. While band labels for p ¼ 0 are no
more than the zero-dimensional topological invariants in
Eqs. (20) and (21), those for p-cells (p ≥ 1) represent
changes of the zero-dimensional topological invariants.
Correspondingly, the Abelian group Ep;0

1 is formulated by

Ep;0
1 ¼ ⨁

ijDp
i
∈Fp

�
⨁
α
Z2½bðpÞDp

i ;α
� ⊕ ⨁

β
Z½bðpÞDp

i ;β
�
�
; ð25Þ

TABLE II. The classification of zero-dimensional topological
phases for each EAZ symmetry class. Topological indices pα

k and
Nα

k in the table are defined by Eqs. (20) and (21). Here, W½α�
represents the triple of the result of Wigner criteria
½Wα

kðT Þ; Wα
kðPÞ;Wα

kðJ Þ� defined by Eqs. (16)–(18).

EAZ Wk½α� Classification Index

A (0,0,0) Z Nα
k

AIII (0,0,1) 0 None
AI (1,0,0) Z Nα

k
BDI (1,1,1) Z2 pα

k
D (0,1,0) Z2 pα

k
DIII ð−1; 1; 1Þ 0 None
AII ð−1; 0; 0Þ 2Z Nα

k
CII ð−1;−1; 1Þ 0 None
C ð0;−1; 0Þ 0 None
CI ð1;−1; 1Þ 0 None
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where fbðpÞDp
i ;α
g denotes the set of generators of Ep;0

1 which

can expand an arbitrary nðpÞ and the summations about α

and β are the same in Eq. (23). In addition, Z2½bðpÞDp
i ;α
� and

Z½bðpÞDp
i ;β
� represent Abelian groups generated by bðpÞDp

i ;α
and

bðpÞDp
i ;β
, respectively.

In this work, we construct the generator bðpÞDp
i ;α

as follows.

Each bðpÞDp
i ;α

is generated by an irreducible representation

Uα
Dp

i
at a p-cell Dp

i in Cp. As explained in Sec. III B, we

include the equivalence or symmetry relations among
p-cells in the basis. We consider a p-cell Dp

i and suppose
that we have a nontrivial band label pαDp

i
¼ 1 or Nα

Dp
i
¼ 1

for an irreducible representation Uα
Dp

i
. Then, band labels on

equivalent or symmetry-related p-cells are determined by
those on Dp

i . We first derive the relation between irreduc-
ible representations Uα0

Dp
gðiÞ

and Uα
Dp

i
:

Uα0
Dp

gðiÞ
ðh0Þ ¼

8<
:

zh0 ;g
zg;g−1h0g

Uα
Dp

i
ðg−1h0gÞ for ϕg ¼ þ1;

zh0 ;g
zg;g−1h0g

½Uα
Dp

i
ðg−1h0gÞ�� for ϕg ¼ −1;

ð26Þ

where g ∈ G and h0 ∈ GDp
gðiÞ
. Since the spectrum ofHα0

Dp
gðiÞ

is

the same as that of Hα
Dp

i
, band labels at Dp

gðiÞ then

straightforwardly follow:

pα
0

Dp
gðiÞ

¼ pαDp
i
; ð27Þ

Nα0
Dp

gðiÞ
¼

�Nα
Dp

i
for cg ¼ þ1;

−Nα
Dp

i
for cg ¼ −1:

ð28Þ

As a result, we can obtain the set of band labels such that
only pαDp

i
ðNα

Dp
i
Þ and associated band labels are 1 (1 or −1

for EAZ classes A and AI; 2 or −2 for EAZ class AII).

Indeed, this is exactly what we call bðpÞDp
i ;α
.

To make our understanding clearer, let us discuss a
simple example: a one-dimensional even-parity supercon-
ductor in class D. We first decompose an asymmetric unit
into two 0-cells Γ and X and a 1-cell a as illustrated in
Fig. 7(a). By acting the inversion symmetry I on the unit,
we find the cell decomposition:

C0 ≡ fΓ; X; X0 ¼ IXg; ð29Þ

C1 ≡ fa; a0 ¼ Iag; ð30Þ

where F0 ¼ fΓ; Xg and F1 ¼ fag. We then obtain the
classifications of each irreducible representation at 0-cells
and 1-cells. Figure 7(a) illustrates the action of the particle-
hole-like symmetries on each sector of Hamiltonians at
each cell in Fp, and we find that the EAZ classes for each
inversion eigenvalue at Γ and X are class D and the EAZ
class at a is also class D. Therefore, E0;0

1 ¼ ðZ2Þ4 and
E1;0
1 ¼ Z2.
Next, we formulate E1-pages in the form of Eq. (25). We

define the Pfaffian invariants pα¼�
D0∈C0

[102] for each inver-

sion eigenvalue at the 0-cells, and they form the set of band
labels ðpþΓ ; p−Γ ; pþX ;p−X; pþX0 ; p−X0 Þ. On the other hand, since
the 1-cells are invariant under the combination of PHS C
and the inversion symmetry I with ðCIÞ2 ¼ þ1, the Pfaffian
invariant can also be defined on the 1-cells a and a0.
Correspondingly, the set of band labels for the 1-cells is
ðpa; pa0 Þ. We then construct the basis vectors of E0;0

1 and
E1;0
1 . From Eq. (27), we find p�X0 ¼ p�X and pa0 ¼ pa.

Therefore, we obtain

bð0ÞΓ;þ ¼ ð1; 0; 0; 0; 0; 0Þ; ð31Þ

bð0ÞΓ;− ¼ ð0; 1; 0; 0; 0; 0Þ; ð32Þ

0-cell 1-cell 2-cell 3-cell
( ( ( (( (

( (

( ( ( (

( (Gapless lineGapless point

FIG. 6. Illustration of elements of Ep;0
1 . For p ¼ 0, the elements are gapped states at 0-cells. As for pðp ≥ 1Þ, there are two p-

dimensional regions in which the zero-dimensional topological invariants are different from each other. Since the zero-dimensional
topological invariants must be the same for gapped regions, the boundary results in gapless states on p-cells.
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bð0ÞX;þ ¼ ð0; 0; 1; 0; 1; 0Þ; ð33Þ

bð0ÞX;− ¼ ð0; 0; 0; 1; 0; 1Þ; ð34Þ

bð1Þa ¼ ð1; 1Þ; ð35Þ

and they generate E0;0
1 and E1;0

1 as

E0;0
1 ¼ Z2½bð0ÞΓ;þ� ⊕ Z2½bð0ÞΓ;−� ⊕ Z2½bð0ÞX;þ� ⊕ Z2½bð0ÞX;−�; ð36Þ

E1;0
1 ¼ Z2½bð1Þa �; ð37Þ

which are illustrated in Fig. 7(b).

E. Compatibility conditions

In this subsection, we discuss constraints on the zero-
dimensional topological invariants, which are called com-
patibility conditions developed in Refs. [74,75,88,89,94].
Compatibility conditions are utilized in Sec. V.
Before moving on to the general discussion, we begin

by showing compatibility conditions in the 1D even-parity
superconductors discussed in Sec. III D. As shown in
Sec. III D, the Pfaffian invariants are defined for each
inversion-eigenvalue sector at Γ and X. Note that the sum
of the Pfaffian invariants pþ

k þ p−
k ðk ¼ Γ; XÞ is also the

Pfaffian invariant defined for total Hamiltonian, not each
inversion-eigenvalue sector. Thus, when the system is fully
gapped, pþ

k þ p−
k ðk ¼ Γ; XÞ should be the same value as

the Pfaffian invariant at any point in 1-cell, i.e.,

pk∈a ¼ pþ
Γ þ p−

Γ ¼ pþ
X þ p−

X; ð38Þ

pk∈a0 ¼ pþ
Γ þ p−

Γ ¼ pþ
X0 þ p−

X0 : ð39Þ

This is what we refer to as compatibility conditions.
Compatibility conditions also lead to the relations

between band labels on 0-cells and 1-cells. Since the
band label for 1-cells can be understood as the change
of the zero-dimensional topological invariants, the differ-
ence of Pfaffian invariants between Γ and XðX0Þ results in
paðpa0 Þ, i.e.,

�
pa
pa0

�
¼

�
1 1 −1 −1 0 0

1 1 0 0 −1 −1

�
0
BBBBBBBBB@

pþΓ
p−Γ
pþX
p−X
pþX0

p−X0

1
CCCCCCCCCA
: ð40Þ

Then, we generalize the above discussions. LetDðpþ1Þ be
a (pþ 1)-cell, and let Dp be a boundary p-cell of Dðpþ1Þ.
Since GDðpþ1Þ is a subgroup of GDp or the same as GDp in our
cell decomposition, an irreducible representation Uα

Dp of
GDp can always be constructed by irreducible representa-
tions on Dðpþ1Þ:

Uα
DpðgÞ ¼ ⨁

β
cαβ
Dp;Dpþ1U

β
Dðpþ1Þ ðgÞ; ð41Þ

where cαβ
Dp;Dpþ1 is a non-negative integer and obtained

by the orthogonality of irreducible representationsP
g∈G

Dðpþ1Þ=T ½χβDðpþ1Þ ðgÞ��χαDpðgÞ. When we have the decom-

position in Eq. (41), we know of the number of irreducible
representations Uβ

Dpþ1 included in UkðgÞ from those at Dp

(a)

(b)

(c)

(d)

FIG. 7. Illustration of the 1D even-parity superconductors.
(a) An asymmetric unit of BZ and EAZ classes for cells in F0 ¼
fΓ; Xg and F1 ¼ fag. Here, the red arrows signify orientations of
the 1-cell. (b) Illustrative description of E0;0

1 and E1;0
1 . The entries

in brackets represent the band structures of generators. (c),(d) The
physical process of d0;01 . For the system with ðpþΓ ;p−Γ ;pþX ; p−XÞ ¼
ð1; 0; 1; 0Þ, d0;01 does not generate a gapless point on the 1-cells
[(c)]. On the other hand, for the system with ðpþΓ ;p−Γ ;pþX ; p−XÞ ¼
ð0; 0; 1; 0Þ, d0;01 there exists a gapless point on each 1-cell [(d)]. In
the figure, we omit pþX0 , p−X0 , and pa0 since p�X0 ¼ p�X and pa0 ¼ pa.
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(denoted by nαDp). This relation is described by nβ
Dðpþ1Þ ¼P

α n
α
DpcαβDp;Dpþ1 [74,107].

Accordingly, when the system is fully gapped, zero-
dimensional topological invariants in Eqs. (20) and (21) at
k0 ∈ Dðpþ1Þ are related to those at k ∈ Dp, which we refer
to as compatibility conditions. There exist the following
four types of compatibility condition [89]:

pβ
k0 ¼

X
α

cαβ
Dp;Dpþ1pα

k þ
X
γ

cγβ
Dp;Dpþ1N

γ
k mod 2; ð42Þ

pβ
k0 ¼ 0 mod 2; ð43Þ

Nβ
k0 ¼

X
α

cαβ
Dp;Dpþ1Nα

k; ð44Þ

Nβ
k0 ¼ 0: ð45Þ

Using compatibility conditions, we construct a map from
Ep;0
1 to Epþ1;0

1 . Band labels at all boundary p-cells Dp
i of

Dpþ1 contribute to those at Dpþ1. Taking into account the
orientations of cells, we have the following relations:

pβ
Dpþ1 ¼

X
i

δDp
i ;D

pþ1

�X
α

cαβ
Dp

i ;D
pþ1pαk þ

X
γ

cγβ
Dp

i ;D
pþ1N

γ
k

�
;

ð46Þ

Nβ
Dpþ1 ¼

X
i

X
α

δDp
i ;D

pþ1cαβ
Dp

i ;D
pþ1Nα

Dp
i
; ð47Þ

where δDp
i ;D

pþ1 ¼ 0 when Dpþ1 is not adjacent to Dp
i ,

δDp
i ;D

pþ1 ¼ 1ð−1Þ if Dpþ1 is adjacent to Dp
i , and the

orientation of Dp
i agrees (disagrees) with the orientation

induced by (pþ 1)-cell Dpþ1. Note that, while all coef-
ficients are non-negative in Eqs. (42)–(45), some coeffi-
cients in Eqs. (46) and (47) can be negative. By computing
the above relations for all (pþ 1)-cells, one can construct a
matrix in terms of band labels at p-cells.
Rewriting the matrix constructed by Eqs. (46) and (47) in

terms of basis vectors of Ep;0
1 to Epþ1;0

1 , we obtain a map
from Ep;0

1 to Epþ1;0
1 :

dp;01 ∶ Ep;0
1 → Epþ1;0

1 ; ð48Þ

which is called first differential [108]. One can
see that dp;01 always satisfies dpþ1;0

1 ∘dp;01 ¼ 0; that is,
dpþ1;0
1 ½dp;01 ðnðpÞÞ� ¼ 0.
Physically, nontrivial dp;01 connects states on p-cells to

those on (pþ 1)-cells, as illustrated in Fig. 8. Since Ep;0
1

has only local information about p-cells, the global
structures are not known. Then, dp;01 determines the relation
between p and (pþ 1)-cells. For p ¼ 0, the nontrivial d0;01

tells us whether gapped states at 0-cells can be connected
without closing the gap on 1-cells. In other words, if
d0;01 ðnð0ÞÞ ¼ 0 holds, all zero-dimensional topological
invariants at 0-cells satisfy all compatibility conditions.
On the other hand, when d0;01 ðnð0ÞÞ ≠ 0, some compatibility
conditions are violated, which implies that gapless points
exist on the 1-cells. As for p ≥ 1, nontrivial dp;01 connects
the gapless states on p-cells to those on (pþ 1)-cells. More
concretely, nontrivial d1;01 checks if the gapless point on a
1-cell, an element of E1;0

1 , is extended to the adjacent
2-cells, which results in gapless lines on the 2-cells, an
element of E2;0

1 . In the same way, d2;01 examines whether a
gapless line on a 2-cell, an element of E2;0

1 , is linked to
gapless surfaces on the 3-cells.
In Secs. VA and V B, we explain more details on the

interpretation of dp;01 and how to incorporate these first
differentials into classifications of nodes.
Let us discuss d0;01 for the above 1D example. Using the

bases in Eqs. (31)–(35), we rewrite the matrix in Eq. (40) by

Md0;0
1

¼ bð0ÞΓ;þ bð0ÞΓ;− bð0ÞX;þ bð0ÞX;−

bð1Þa 1 1 −1 −1
; ð49Þ

which is actually a matrix representation of d0;01 . To see the
physical meaning of d0;01 , let us discuss the band structures
in Figs. 7(c) and 7(d). We start with the band structure that

( ( ( (

(b)

Gapless point

FIG. 8. Illustration of the physical process of dp;01 . (a) For a
given set of the zero-dimensional topological invariants at 0-cells,
d0;01 determines whether gapless points should exist on the
adjacent 1-cells. In the figure, we focus on two 0-cells (denoted
by k1 and k2) and the 1-cell connecting k1 to k2. (b) For gapless
points on 1-cells, d1;01 tells us whether the gapless points should
be extended to the adjacent 2-cells. In the figure, we discuss two
2-cells adjacent to the 1-cell D1 and illustrate the case where the
gapless points are extended.
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corresponds to nð0Þ ¼ bð0ÞΓ;þ þ bð0ÞX;þ in Eqs. (31)–(35), which
implies that d0;01 ðnð0ÞÞ ¼ 0. Thus, there are no gapless
points on the 1-cells [Fig. 7(c)]. On the other hand, let us
suppose that a band inversion at Γ occurs and results in

n0ð0Þ ¼ bð0ÞX;þ. From Eq. (49), we find d0;01 ðn0ð0ÞÞ ¼ bð1Þa . As
shown in Fig. 7(d), gapless points must exist on 1-cells.
This is what we mention above.

IV. CLASSIFICATION OF GAPLESS
POINTS ON 1-CELL

In this section, we discuss the method to classify locally
stable point nodes on 1-cells. The Hamiltonian near a
gapless point on a 1-cell is described by

Hðk1;k2Þ ¼ k1γ1 þ k2γ2 þ δk3γ0; ð50Þ

where k1 and k2 are momenta in the directions
perpendicular to the 1-cell and δk3 is a displacement from
the gapless point in the direction of D1. Gamma matrices
γ0, γ1, and γ2 anticommute with each others. Then, the
classification of the gapless points on 1-cells of 3D systems
is equivalent to that of the above Dirac Hamiltonian.
Reference [110] shows that one can redefine any point

group symmetries as on-site symmetries with classifications
ofmassiveDiracHamiltonians unchanged, whichwe refer to
as the Cornfeld-Chapman method. References [110,111]
also classify 3Dmassive Dirac Hamiltonians in the presence
of nonmagnetic and magnetic point group symmetries by
using the method.
In the following, applying the Cornfeld-Chapman

method [110] to classifications of 2D massive Dirac
Hamiltonian on 1-cells, we reveal that the results are
classified into three cases: (i) The gapless point on the
1-cell is a genuine point node. (ii) The gapless point on the
1-cell is a shrunk loop or surface node. (iii) There are no
stable point nodes and such shrunk nodes on the 1-cell.
This is integrated into compatibility conditions discussed

in Sec. V.

A. Cornfeld-Chapman method for 2D systems

Suppose that there exists a gapless point on a 1-cell
(denoted by D1). Let us discuss the massive Dirac
Hamiltonian in Eq. (50) near D1. To apply the Cornfeld-
Chapman method to the massive Dirac Hamiltonian, we
consider the little cogroup in the following discussion, and
then the Hamiltonian is symmetric under GD1=T; i.e.,
Hðk1;k2Þ satisfies

σkðgÞHðk1;k2Þ ¼
�Hrgðk1;k2ÞσkðgÞ for cg ¼ þ1;

−Hrgðk1;k2ÞσkðgÞ for cg ¼ −1;
ð51Þ

where rg is an element of O(2). Generally, rg can be
written by

rg ¼

8>>><
>>>:

�
cos θg − sin θg
sin θg cos θg

�
for det rg ¼ þ1;

�− cos θg − sin θg
− sin θg cos θg

�
for det rg ¼ −1:

ð52Þ

For simplicity, we hereafter use sg ¼ det rg. In the
following, we make all elements of GD1=T onsite.
First, we introduce on-site symmetries and define their

representations by

σ̃ðgÞ≡ γ
ð1−sgÞ=2
1 eðθg=2Þγ1γ2σkðgÞ ∀ g ∈ GD1=T: ð53Þ

By performing explicit calculations, one can verify

σ̃ðgÞHðk1;k2Þ ¼ sgcgHðk1;k2Þσ̃ðgÞ; ð54Þ

σ̃ðgÞσ̃ðhÞ ¼ ðsgcgÞð1−shÞ=2z0g;hzkg;hσ̃ðghÞ; ð55Þ

where z0g;h is determined by

γð1−shÞ=21 eðθh=2Þγ1γ2γð1−sgÞ=21 eðθg=2Þγ1γ2 ¼ z0g;hγ
ð1−sghÞ=2
1 eðθgh=2Þγ1γ2 :

ð56Þ

Note that, when σkðgÞ with sg ¼ −1 commutes (anticom-
mutes) with Hðk1;k2Þ, σ̃ðgÞ anticommutes (commutes) with
Hðk1;k2Þ. In other words, unitary (chiral-like) symmetries
for sg ¼ −1 become on-site chiral (unitary) symmetries.
The same thing happens to antiunitary symmetries. As
a result, we have another decomposition of symmetry
group GD1=T ¼ G̃þ Ãþ P̃ þ J̃ , where each subset is
defined by

G̃ ¼ fg ∈ GD1=Tjsgcg ¼ 1;ϕg ¼ 1g; ð57Þ

Ã ¼ fg ∈ GD1=Tjsgcg ¼ 1;ϕg ¼ −1g; ð58Þ

P̃ ¼ fg ∈ GD1=Tjsgcg ¼ −1;ϕg ¼ −1g; ð59Þ

J̃ ¼ fg ∈ GD1=Tjsgcg ¼ −1;ϕg ¼ 1g: ð60Þ

It is well known that the 2D Dirac Hamiltonians in the
presence of on-site symmetries are classified by the second
homotopy group of the classifying space [52]. Then, our
next task is to identify the classifying space. Similar to
Eqs. (7) and (8), we can block-diagonalize σ̃ðgÞðg ∈ G̃Þ and
Hðk1;k2Þ such that

σ̃ðgÞ ¼ diag½ũα̃1ðgÞ ⊗ 1m1
;…; ũα̃nðgÞ ⊗ 1mn

�; ð61Þ

Hðk1;k2Þ ¼ diag½1dα̃1 ⊗ hα̃1 ;…; 1dα̃n ⊗ hα̃n �; ð62Þ
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where ũα̃ðgÞ is an irreducible representation of G̃. Here, dα̃

and mα̃ are dimensions of ũα̃ðgÞ and hα̃k , respectively.
For each sector hα̃, we again useWigner criteria by repla-

cing zkg;h in Eqs. (16)–(18) with ðsgcgÞð1−shÞ=2z0g;hzkg;h, i.e.,

W̃α̃ðP̃Þ ¼ 1

jP̃j
X
c∈P̃

ðscccÞð1−scÞ=2z0c;czkc;cχ̃α̃ðc2Þ ∈ f0;�1g;

ð63Þ

W̃α̃ðÃÞ ¼ 1

jÃj
X
c∈Ã

ðsacaÞð1−saÞ=2z0a;azka;aχ̃α̃ða2Þ ∈ f0;�1g;

ð64Þ

W̃α̃ðJ̃ Þ ¼ 1

jG̃j
X
g∈G̃

ðsγcγÞð1−sγ−1gγÞ=2z0γ;γ−1gγzkγ;γ−1gγ
ðsgcgÞð1−sγÞ=2z0g;γzkg;γ

× ½χ̃α̃ðγ−1gγÞ��χ̃α̃ðgÞ ∈ f0; 1g; ð65Þ

where χ̃α̃ðgÞ ¼ tr½ũα̃ðgÞ� and γ is an element of J̃ .
Correspondences between results of Wigner criteria and
classifying spaces Cs and Rs are summarized in Table III.
As a result, we classify the Dirac Hamiltonian in Eq. (50)
by π2ðCsÞ or π2ðRsÞ for each irreducible representation
ũα̃ [52].

B. Character decomposition formulas

As explained in the previous subsection, we can classify
the two-dimensional Dirac Hamiltonians in Eq. (50) on
1-cells. The next step is to map the generating two-
dimensional Dirac Hamiltonians to elements of E1;0

1 .
This can be achieved by the orthogonality of irreducible
representations. In this subsection, we derive formulas to
obtain elements of E1;0

1 corresponding to generating Dirac
Hamiltonians. The formulas are summarized in Table IV.
Let us suppose that we have one of generating Dirac

Hamiltonians on a 1-cell and on-site symmetries in
Eq. (53). Then, we can construct symmetries of GD1=T by

σkðgÞ ¼ e−ðθg=2Þγ1γ2γð1−sgÞ=21 σ̃ðgÞ: ð66Þ

What we have to do is to obtain irreducible representations
contained in the above representation σkðgÞ in Eq. (66),

TABLE III. Classification of EAZ symmetry classes. The
subscripts T , C, and Γ signify that irreducible representations
are related by the on-site antiunitary and the chiral symmetries.

EAZ W̃½α̃� Classifying space π2

A, AT , AC, AΓ, AT ;C (0,0,0) C0 Z
AIII, AIIIT (0,0,1) C1 0

AI, AIC (1,0,0) R0 Z2

BDI (1,1,1) R1 0
D, DT (0,1,0) R2 2Z
DIII ð−1; 1; 1Þ R3 0
AII, AIIC ð−1; 0; 0Þ R4 0
CII ð−1;−1; 1Þ R5 0
C, CT ð0;−1; 0Þ R6 Z
CI ð1;−1; 1Þ R7 Z2

TABLE IV. Formulas to obtain elements of E1;0
1 corresponding to generating Dirac Hamiltonians. Here, χα and χ̃α̃ are characters of the

little cogroup GD1=T and the on-site symmetry group G̃, respectively. The first column represent EAZ classes of irreducible
representations ũα̃. In addition, T̃ α̃, C̃ α̃, and Γ̃ α̃ are labels of the time-reversal-, the particle-hole-, and the chiral-symmetry-related
irreducible representations. Derivations of these formulas are included in Appendix B.

EAZ Formula for the map to Z Formula for the map to Z2

A ½ð−2iÞ=jGD1 j�Pg∈GD1
δsg;1 sinðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ ð1=jGD1 jÞPg∈GD1

δsg;1 cosðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ
AT ½ð−2iÞ=jGD1 j�Pg∈GD1

δsg;1 sinðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ − χ̃T̃ α̃ðgÞ� ð1=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃T̃ α̃ðgÞ�

AC ½ð−2iÞ=jGD1 j�Pg∈GD1
δsg;1 sinðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃C̃ α̃ðgÞ� ð1=jGD1 jÞPg∈GD1

δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃C̃ α̃ðgÞ�
AΓ ½ð−2iÞ=jGD1 j�Pg∈GD1

δsg;1 sinðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ − χ̃Γ̃ α̃ðgÞ� ð1=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃Γ̃ α̃ðgÞ�

AT ;C ½ð−2iÞ=jGD1 j�Pg∈GD1
δsg;1 sinðθg=2Þ½χβD1ðgÞ��

×½χ̃α̃ðgÞ − χ̃T̃ α̃ðgÞ þ χ̃C̃ α̃ðgÞ − χ̃Γ̃ α̃ðgÞ�
ð1=jGD1 jÞPg∈GD1

δsg;1 cosðθg=2Þ½χβD1ðgÞ��
×½χ̃α̃ðgÞ þ χ̃T̃ α̃ðgÞ þ χ̃C̃ α̃ðgÞ þ χ̃Γ̃ α̃ðgÞ�

C ½ð−2iÞ=jGD1 j�Pg∈GD1
δsg;1 sinðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ ð1=jGD1 jÞPg∈GD1

δsg;1 cosðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ
CT ½ð−2iÞ=jGD1 j�Pg∈GD1

δsg;1 sinðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ − χ̃T̃ α̃ðgÞ� ð1=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃T̃ α̃ðgÞ�

D ½ð−4iÞ=jGD1 j�Pg∈GD1
δsg;1 sinðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ ð2=jGD1 jÞPg∈GD1

δsg;1 cosðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ
DT ð4i=jGD1 jÞPg∈GD1

δsg;1 sinðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ − χ̃T̃ α̃ðgÞ� ð2=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃T̃ α̃ðgÞ�

AI � � � ð2=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ

AIC � � � ð2=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��½χ̃α̃ðgÞ þ χ̃C̃ α̃ðgÞ�

CI � � � ð2=jGD1 jÞPg∈GD1
δsg;1 cosðθg=2Þ½χβD1ðgÞ��χ̃α̃ðgÞ
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which result in band labels on the 1-cell. Using the
orthogonality of irreducible representations, we obtain
Nα

D1 and pα
D1 by

Nβ
D1 ¼ 1

jGk=Tj
X

g∈Gk=T

χβkðgÞtr½γ0e−ðθg=2Þγ1γ2γ
ð1−sgÞ=2
1 σ̃ðgÞ�;

ð67Þ

pβ
D1 ¼ 1=2

jGk=Tj
X

g∈Gk=T

χβkðgÞtr½e−ðθg=2Þγ1γ2γ
ð1−sgÞ=2
1 σ̃ðgÞ� mod 2;

ð68Þ

where occupied and unoccupied bands contribute to band
labels with different signs by γ0 in Eq. (67). After perform-
ing the same procedures for all irreducible representations
of Gk, we get an element of E1;0

1 corresponding to one of the
generating Dirac Hamiltonians.
For each of the EAZ classes, in fact, we can derive

the formulas by fixing the form of generating Hamiltonians
and representations, which is summarized in Table IV.
Here, we show the formulas for class AC as an example.
The generating Hamiltonian and representations can be
represented by

Hðk1;k2Þ ¼ k1τ1 þ k2τ2 þ δk3τ3; ð69Þ

σ̃ðCÞ ¼
�
iτ2σ1K for ½σ̃ðCÞ�2 ¼ −1;
τ2σ2K for ½σ̃ðCÞ�2 ¼ þ1;

ð70Þ

σ̃ðgÞ ¼ τ0

�
ũα̃ðgÞ

ũC̃ α̃ðgÞ

�
∀ g̃ ∈ G̃; ð71Þ

where ũC̃ α̃ denotes the particle-hole-related irreducible
representation of ũα̃. In addition, C̃ is the generator of
P̃, and σμ and τμ (μ ¼ 0, 1, 2, 3) are Pauli matrices
representing different degrees of freedom. By substituting
Eqs. (69) and (71) into Eqs. (67) and (68), we get

Nβ
D1 ¼ −2i

jGD1 j
X

g∈GD1=T

δsg;1 sin
θg
2
½χβ

D1ðgÞ��

× ½χ̃α̃ðgÞ þ χ̃ C̃ α̃ðgÞ�; ð72Þ

pβ
D1 ¼ 1

jGD1 j
X

g∈GD1=T

δsg;1 cos
θg
2
½χβ

D1ðgÞ��

× ½χ̃α̃ðgÞ þ χ̃C̃ α̃ðgÞ� mod 2; ð73Þ

where χ̃α̃ðgÞ ¼ tr½ũα̃ðgÞ�.
Finally, we find that the results are classified into

three cases:

(i) One of the generating Dirac Hamiltonians is mapped
to a generator of E1;0

1 . In this case, the gapless point
on the 1-cell is a genuine point node.

(ii) The obtained element of E1;0
1 for generating Dirac

Hamiltonians does not coincide with any generator
of E1;0

1 . In other words, the obtained element is com-
posed of multiple generators of E1;0

1 , which implies
that the realized point nodes must degenerate. How-
ever, these gapless points do not need to be at the
same momentum. In such a case, gapless points are
actually parts of shrunk loop or surface nodes.

(iii) The classification of Dirac Hamiltonians is trivial;
i.e., the second homotopy group discussed in
Sec. IVA is trivial. The trivial homotopy group
indicates the absence of point or shrinkable nodes
protected by two-dimensional topological charges.

One might sometimes notice that the degeneracy of a
point node is different from the dimension of corresponding
Dirac Hamiltonians for case (i). In such a case, trivial gapped
states exist in the energy spectrum. The existence of Dirac
Hamiltonians in Eq. (50) ensures that the point node is stable
in the sense ofK theory, i.e., against adding trivial degrees of
freedom. It is tempting to think that our results miss stable
nodes in the sense of fragile topological phases [112], i.e.,
line or surface nodes when any trivial degree of freedom is
not added. However, when we consider quadratic and cubic
terms, we can explicitly construct minimal dimension Dirac
Hamiltonians. This implies that such fragile nodes do not
exist on 1-cells. See Appendix C for details.

C. Example

It is instructive to discuss concrete symmetry settings.
Here, we consider four examples in the presence of PHS C:
MSGs P2=m10 with Bg pairing, P210 with B pairing, P4
with 1E pairing, and Pmc2110 with A2 pairing. After classi-
fying the Dirac Hamiltonians in Eq. (50) as discussed in
Sec. IVA, we obtain elements of E1;0

1 corresponding to gen-
erating Dirac Hamiltonians by using formulas in Sec. IV B.
The results in this subsection are used in Sec. V C, where the
physical consequences are also discussed.

1. P2=m10 with Bg pairing

We fist discuss spinful MSG P2=m10 and recall that
this MSG has the twofold rotation Cy

2 along the y axis,
the inversion I, and the TRS T . For Bg pairing,
fσðCÞ; σðCy

2Þg ¼ 0 and ½σðCÞ; σðIÞ� ¼ 0 hold. Let us con-
sider a twofold rotation symmetric line as the 1-cellD1 [see
Fig. 9(a)]. The little cogroup is given by the following
subsets:

GD1=T ¼ fe; Cy
2g; ð74Þ

AD1=T ¼ fIT ; ðICy
2ÞT g; ð75Þ
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PD1=T ¼ fIC; ðICy
2ÞCg; ð76Þ

J D1=T ¼ fΓ≡ T C; Cy
2Γg; ð77Þ

where e denotes the identity element. To perform the
procedures in Sec. IVA, we define generators of the
on-site symmetry group by

σ̃ðCy
2Þ≡ γ1γ2σðCy

2Þ; ð78Þ

σ̃ðIT Þ≡ σðIT Þ; ð79Þ

σ̃ðICÞ≡ σðICÞ: ð80Þ

One can verify that sg ¼ þ1 for all elements in GD1=T,
and then the on-site unitary symmetry group is G̃ ¼
fe; Cy

2g. Since ½σ̃ðCy
2Þ�2 ¼ −½σðCy

2Þ�2 ¼ þ1, there are two
one-dimensional irreducible representations ũα̃ðCy

2Þ ¼
αðα ¼ �1Þ. The representations in Eqs. (78)–(80) possess
the same commutation and anticommutation relations as
σðCy

2Þ, σðIT Þ, and σðICÞ, i.e.,

fσ̃ðCy
2Þ; σ̃ðICÞg ¼ 0; ð81Þ

½σ̃ðCy
2Þ; σ̃ðIT Þ� ¼ 0; ð82Þ

½σ̃ðIT Þ�2 ¼ −1: ð83Þ

As a result, we find EAZ classes for α ¼ �1 are class AIIC,
whose classification is π2ðR4Þ ¼ 0. This result is case (iii),
and, therefore, any point node is not stable on this line. We
see that the gapless point is part of line nodes in Sec. V.

2. P210 with B pairing

We next consider MSG P210, which is generated by the
twofold rotation Cy

2 along the y axis and the TRS T . For B
pairing, PHS anticommutes with the twofold rotation,
i.e., fσðCÞ; σðCy

2Þg ¼ 0. Again, let us consider a twofold
rotation symmetric line as the 1-cellD1 in Fig. 9(a). Unlike
the case of MSG P2=m10, there exist only the following
unitary and chiral parts in the little cogroup:

GD1=T ¼ fe; Cy
2g; ð84Þ

J D1=T ¼ fΓ; Cy
2Γg: ð85Þ

To perform the procedures in Sec. IVA, we define gen-
erators of on-site symmetries by Eq. (78) and σ̃ðΓÞ≡ σðΓÞ,
and we find

fσ̃ðΓÞ; σ̃ðCy
2Þg ¼ 0: ð86Þ

Since ½σ̃ðCy
2Þ�2 ¼ þ1, we have two one-dimensional irre-

ducible representations Ũα̃ðCy
2Þ ¼ αðα ¼ �1Þ whose EAZ

classes are class AΓ. Therefore, the Dirac Hamiltonians on
the 1-cell are classified into π2ðC0Þ ¼ Z. The final step is to
map the generating Dirac Hamiltonian of Z to an element
of E1;0

1 . This can be accomplished by

Nβ
D1 ¼ −2i

jGD1 j
X
g∈GD1

δsg;1 sin
θg
2
½χβD1ðgÞ��

× ½χ̃α̃ðgÞ − χ̃Γ̃ α̃ðgÞ�; ð87Þ

where χ̃Γ̃ α̃ is the character of irreducible representation
chiral-symmetry related to χ̃α̃. By substituting irreducible
representations in Table V into Eq. (87), we obtain the band
labels of the generating Dirac Hamiltonian:

ðN1;N2Þ ¼ ð2;−2Þ; ð88Þ

which corresponds to twice of a basis of E1;0
1 . This result is

case (ii), which indicates that the gapless point is realized
by a loop or surface node shrinking to the point. To see this,
we consider a concrete Dirac Hamiltonian near the gapless
point:

(a)

(b)

FIG. 9. Illustrations of cell decomposition for the half BZ in
P2=m10 (a) and the quarter BZ in Pmc2110 (b). Here, we omit
orientations except for the 1-cells denoted by D1. In both (a) and
(b), adjacent 2-cells to the 1-cell D1 are colored by red. In (b),
blue and yellow planes represent the mirror and glide planes of
MSG Pmc2110, respectively.
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Hðk1;k2Þ ¼ k1τ1 þ k2τ2σ3 þ δk3τ3; ð89Þ

σ̃ðC2Þ ¼ σ3; ð90Þ

σðC2Þ ¼ e−iðπ=2Þτ3σ3 σ̃ðC2Þ ¼ −iτ3; ð91Þ

σðΓÞ ¼ σ̃ðΓÞ ¼ τ2σ2; ð92Þ

where we consider α̃ ¼ 1. Then, we add a symmetric
perturbation

M ¼ m0σ1 þm1σ3 þm2τ3 þm3τ3σ2 ð93Þ

to the Dirac Hamiltonian in Eq. (89). As a result, we obtain
a loop node shown in Fig. 10(a).

3. P4 with 1E pairing

Next, we discuss the fourfold rotation symmetric line in
spinful MSG P4, which is the same 1-cell D1 in Fig. 9(a)
with the axes exchanged. Since this MSG does not have
TRS, the little cogroup GD1=T has only a unitary part
GD1=T ¼ fe; Cz

4; ðCz
4Þ2; ðCz

4Þ3g. Then, the on-site sym-
metry group also has a unitary part generated by

σ̃ðCz
4Þ≡ eðπ=4Þγ1γ2σðCz

4Þ; ð94Þ

where ½σ̃ðCz
4Þ�4 ¼ þ1. There are four irreducible represen-

tations of G̃ in Table VI, and, therefore, gapless points on

the line are classified into Z4. We can map the generating
Dirac Hamiltonians to elements of E1;0

1 by the following
formula:

Nβ
D1 ¼ −2i

jGD1 j
X
g∈GD1

δsg;1 sin
θg
2
½χβD1ðgÞ��χ̃α̃ðgÞ; ð95Þ

where β represent labels of irreducible representations of
GD1=T in Table VI. As a result, we obtain the band labels

ðN1
D1 ;N2

D1 ;N3
D1 ;N4

D1Þ ¼

8>>><
>>>:
ð−1;0;0;1Þ for α̃¼ 1

ð1;−1;0;0Þ for α̃¼ 2

ð0;0;1;−1Þ for α̃¼ 3

ð0;1;−1;0Þ for α̃¼ 4;

ð96Þ

which correspond to not any basis of E1;0
1 but linear

combinations of them. The result is case (ii); i.e., the
gapless point is actually a shrunk loop of surface node. To
see this, let us discuss a concrete Dirac Hamiltonian near
the gapless point:

Hðk1;k2Þ ¼ k1σ1 þ k2σ2 þ δk3σ3; ð97Þ

σ̃ðC4Þ ¼ σ0; ð98Þ

σðC4Þ ¼ e−ðπ=4Þσ1σ2 σ̃ðC4Þ ¼
�
e−i

π
4

ei
π
4

�
: ð99Þ

(b)(a)

FIG. 10. Shrinkable nodes after adding perturbations.
(a) Shrinkable loop node for Eq. (89) in MSG P210 with B
pairing. (b) Shrinkable surface node for Eq. (97) in MSG P410

with 1E pairing.

TABLE V. Irreducible representations of the on-site symmetry group G̃ and GD1=T for MSG P2=m10 and P210.

EAZ of P2=m10ðBgÞ EAZ of P210ðBÞ Irrep α̃ e Cy
2

G̃ AIIC AΓ 1 1 1
AIIC AΓ 2 1 −1

EAZ of P2=m10ðBgÞ EAZ of P210ðBÞ Irrep β e Cy
2

GD1=T D A 1 1 i
D A 2 1 −i

TABLE VI. Irreducible representations of the on-site symmetry
group G̃ and GD1=T for P4.

EAZ Irrep α̃ e Cz
4 ðCz

4Þ2 ðCz
4Þ3

G̃ A 1 1 1 1 1
A 2 1 i −1 −i
A 3 1 −i −1 i
A 4 1 −1 1 −1

EAZ Irrep β e Cz
4 ðCz

4Þ2 ðCz
4Þ3

GD1=T A 1 1 eiðπ=4Þ i eið3π=4Þ
A 2 1 eið3π=4Þ −i eiðπ=4Þ
A 3 1 e−ið3π=4Þ i e−iðπ=4Þ
A 4 1 e−iðπ=4Þ −i e−ið3π=4Þ
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The Dirac Hamiltonian and the symmetry representation
correspond to the case of α̃ ¼ 1. We add a C4-symmetric
perturbation M ¼ diagðm0; m1Þ to the Dirac Hamiltonian.
As shown in Fig. 10(b), the Hamiltonian with the pertur-
bation exhibits a surface node.

4. Pmc2110 with A2 pairing

Last, we discuss nonsymmorphic and noncentrosym-
metric MSG Pmc2110 with A2 pairing. Here, we consider
the 1-cell on the boundary of the BZ denoted by D1 in
Fig. 9(b). The little cogroup consists of the following four
parts:

GD1=T ¼ fe;Myg; ð100Þ

AD1=T ¼ fCz
2T ;MxT g; ð101Þ

PD1=T ¼ fCz
2C;MxCg; ð102Þ

J D1=T ¼ fΓ;MyΓg: ð103Þ

We define generators of the on-site symmetry group by

σ̃ðMyÞ≡ γ1σðMyÞ; ð104Þ

σ̃ðMxT Þ≡ γ1γ2σðMyT Þ; ð105Þ

σ̃ðMxCÞ≡ γ1γ2σðMyCÞ: ð106Þ

Then, the on-site symmetry group is composed of the
following symmetries:

G̃ ¼ fe;MyΓg; ð107Þ

Ã ¼ fMxT ;MyMxCg; ð108Þ

P̃ ¼ fMxC;MyMxT g; ð109Þ

J̃ ¼ fΓ;Myg: ð110Þ

One can explicitly verify ½σ̃ðMyΓÞ�2 ¼ −1 and ½σ̃ðMyΓÞ;
σ̃ðMxT Þ� ¼ ½σ̃ðMyΓÞ; σ̃ðMxCÞ� ¼ 0. These relations imply
that EAZ classes for irreducible representations Ũα̃ðMyΓÞ ¼
iαðα ¼ �1Þ are class AIIIT , and, therefore, the classification
isπ2ðC1Þ ¼ 0. The result is case (iii), and the gapless point on
the 1-cell is part of line or surface nodes.

V. UNIFICATION OF COMPATIBILITY
CONDITIONS AND GAPLESS POINT

CLASSIFICATIONS

In this section, we integrate classifications of gapless
points discussed in Sec. IV into compatibility conditions in
Sec. III E, which results in a unified way to diagnose the
shapes of nodes. We first explain the general scheme to

classify nodes on 1-cells, and then we apply the scheme to
several symmetry settings: MSGs P2=m10 with Bg pairing,
P210 with B pairing, P4 with 1E pairing, and Pmc2110 with
A2 pairing.

A. Revisiting compatibility conditions
and the first differential

Before moving on to the scheme to classify nodes at
1-cells, let us revisit the first differentials dp;01 for p ¼ 1, 2.
Here, we discuss the reason why dp;01 can be understood
as the connection gapless states between p-cells and
(pþ 1)-cells.
Suppose that there exists a gapless point at a 1-cell,

which involves the changes of zero-dimensional topologi-
cal invariants at k points in the 1-cell. In other words, there
are two parts at the 1-cell which have different zero-
dimensional topological invariants. It is not necessary that
the gapless point at the 1-cell must be a genuine point node
in the BZ. In general, it might be part of line or surface
nodes. We further assume that compatibility conditions
between points in the 1-cell and in adjacent 2-cells exist.
Although the zero-dimensional topological invariants for
the above two parts in the 1-cell are different, any points in
the 1-cell have common compatibility conditions for points
in the adjacent 2-cells. Then, the compatibility conditions
and the different topological invariants of the two parts lead
to two regions on the 2-cell with different zero-dimensional
topological invariants [see Fig. 11(a)]. As a result, the
boundary line of these two regions results in the line node.
In fact, d1;01 informs us of the existence or absence of such
line nodes.
Focusing on one of the adjacent 2-cells, we can apply the

same discussion to this 2-cell. Namely, when compatibility
conditions between the 2-cell and adjacent 3-cells exist,
d2;01 examines whether the above two regions with different
zero-dimensional topological invariants are extended to
3-cells [see Fig. 11(b)]. In the following, we formulate

Surface node

Gapless point0-cell 1-cell(a) (b)

(Adjacent) 2-cell

Surface node

Line node

FIG. 11. Illustration of nodes near a gapless point at a 1-cell.
(a) Two divisions of the 1-cell and nodal lines in adjacent 2-cells.
Here, the red shaded region and others have different values of the
topological invariants, whose boundary results in a nodal line.
(b) Surface node. When there are compatibility conditions
between the 2-cell and adjacent 3-cells, the regions in (a) are
extended to 3-cells, and the boundary surface is the surface node.
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the above processes in a systematic manner based on Ep;0
1

and dp;01 .

B. Classifications of nodes on 1-cell

As discussed in the preceding section, compatibility
conditions tell us if the change of zero-dimensional
topological invariants at a p-cell makes domain walls of
the changes at (pþ 1)-cells. This process is formulated in
terms of Ep;0

1 and dp;01 . Recall that E1;0
1 can be interpreted as

the set of gapless states on 1-cells, and let us suppose that

we have the set of band labels nð1Þ ¼ bð1Þ
D1;α

, where bð1Þ
D1;α

is a

basis vector of E1;0
1 generated by an irreducible represen-

tation Uα
D1 at a 1-cell D1 (see Sec. III D). Applying the

above strategy to the 1-cell, there are two cases:
(A) d1;01 ðnð1ÞÞ ≠ 0 and (B) d1;01 ðnð1ÞÞ ¼ 0.
We first consider case A. Since d1;01 ðnð1ÞÞ is an element

of E2;0
1 , d1;01 ðnð1ÞÞ can be expanded by the basis vectors of

E2;0
1 as

d1;01 ðnð1ÞÞ ¼
X
i

�X
α

rð2Þ
D2

i ;α
bð2Þ
D2

i ;α
þ
X
β

mð2Þ
D2

i ;β
bð2Þ
D2

i ;β

�
; ð111Þ

where rð2ÞD2
i ;α

∈ Z2 and mð2Þ
D2

i ;β
∈ Z. This equation tells us

that the gapless point on the 1-cell is extended to adjacent
2-cells with the nontrivial coefficients in Eq. (111), which
results in the gapless lines on the 2-cells. As a result, the
gapless point on the 1-cell is part of line nodes or surface
nodes. To distinguish between these two possibilities, we
further examine whether d2;01 is nontrivial. One might recall
the relation d2;01 ∘d1;01 ¼ 0 and think that d2;01 is useless for
this purpose. However, when we focus on only one of the
adjacent 2-cells, the same discussion can be applied to the
2-cells. In other words, picking only one basis vector from
Eq. (111), we can discuss the action of d2;01 on the picked
basis, as is the case of E1;0

1 (see Fig. 12 for an intuitive
illustration). If there exist the basis vectors such that

d2;01 ðbð2Þ
D2

i ;α
Þ ≠ 0 in Eq. (111), the gapless point on the

1-cell is part of a surface node. Otherwise, it is part of a
line node.
Next, we discuss case B, where d1;01 ðnð1ÞÞ ¼ 0. Since the

relation indicates the absence of any domain walls dis-
cussed above, one might expect that the gapless point on
the 1-cell is a genuine point node. Indeed, this is not always
true. The gapless point on the 1-cell is a genuine point node
only if nð1Þ is a member of gapless point classifications; i.e.,
nð1Þ can be expanded by the obtained band labels from
gapless point classifications in Sec. IV B. If not, the gapless
point on the line is part of line nodes extended from the
1-cell to 3-cells, generic momenta.
Using the above scheme, we classify nodes on all 1-cells

for any MSG M, taking into account all the possible one-
dimensional irreducible representations of the supercon-
ducting gaps, the conditions C2 ¼ �1, and the spinful or
spinless nature of the systems. The results are tabulated in
Supplemental Material [95]. In Appendix A, we explain the
cell decomposition for the 3D BZ which we use in the
classifications.

C. Examples

In the following, we apply the above scheme to concrete
symmetry settings. As mentioned in Secs. I and II, our
scheme is applicable to complex symmetry settings, e.g.,
noncentrosymmetric systems and rotation axes in glide
planes, which are out of the scope of previous studies. After
we reproduce the results of previous works for spinful
superconductors in MSG P2=m10 with Bg pairing by our
method, we show that our method can detect nodal
structures for those in MSG P210, P4, and Pmc2110, which
are noncentrosymmetric, TR breaking, or nonsymmorphic
MSGs. The results are summarized in Table VII.

1. P2=m10 with Bg pairing

Let us begin with the 1-cell D1 in Fig. 9(a), which is the
rotation axis in the BZ for P2=m10 with Bg pairing. On the
1-cell, there are two irreducible representations listed in
Table V. Reference [65] shows that line nodes pinned to the
rotation axes can exist in this symmetry setting, although

FIG. 12. Illustration of the diagnostic scheme for case A. We begin by acting d1;01 on a generator of E1;0
1 corresponding to a basis bα

D1 .
Then, we obtain the gapless lines on the 2-cells adjacent to the 1-cell D1, which is an element of E2;0

1 . Next, we focus on one of the
adjacent 2-cells. In the figure, we pick D2

1 from the two 2-cells. In other words, we consider only bβ1
D2

1

of bβ1
D2

1

þ bβ2
D2

2

in the figure. Finally,

we map bβ1
D2

1

to an element E3;0
1 by d2;01 and examine whether the mapped element is trivial or not.
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the derivation is not shown. Here, we show that the line
nodes pinned to the rotation axes can be stable by d1;01 and
our gapless point classifications.

Let us suppose that we have nð1Þ ¼ bð1Þ
D1 in which p1D1 ,

p2D1 , p1T D1 , and p2T D1 equal 1. We first define adjacent
2-cells to the 1-cell D1 in Fig. 9(a). The EAZ classes at the
2-cells are class DIII due to the existence of IT and IC
with ðIT Þ2 ¼ −1 and ðICÞ2 ¼ þ1, and then compatibility
conditions among them do not exist. This results in
d1;01 ðnð1ÞÞ ¼ 0, which indicates the gapless point on the
1-cell is not extended to the 2-cells.
Next, we classify stable point nodes on the 1-cell.

As discussed in Sec. IV C 1, we find there are no stable
point nodes on the 1-cell. Therefore, we conclude that the
gapless point is part of a line node extended from the 1-cell
to 3-cells. This line node is protected by one-dimensional
winding number W defined by the chiral symmetry at the
3-cells. This is precisely what Ref. [65] proposes.
We then discuss the mirror plane in the ky ¼ 0. Let us

focus on the 1-cell b in Fig. 5 and suppose that we have

nð1Þ ¼ bð1Þb which has p�b ¼ 1 for irreducible representations
U�

b ðMyÞ ¼ �i. The 2-cellsα and α7 are adjacent to the 1-cell
b and the same symmetry class. Consequently, compa-

tibility conditions among them exist, and d1;01 ðbð1Þb Þ ¼
bð2Þα þ bð2Þα7 . Here, b

ð2Þ
α ðbð2Þα7 Þ is a basis of E2;0

1 in which p�α
ðp�α7Þ and associated band labels equal 1. As discussed in
Sec. V B, d1;01 ðnð1ÞÞ ≠ 0 indicates that the gapless point on
the 1-cell b should be extended to the adjacent 2-cells. Since
EAZ classes of all 3-cells are class DIII, there are no
compatibility conditions, i.e., d2;01 ¼ 0. Therefore, we con-
clude that thegapless point on the 1-cellb is classified intoZ2

and is part of the line node in the mirror plane. Our result is
consistent with the result of group theoretical analysis
in Ref. [51].

2. P210 with B pairing

Next, we consider the same 1-cell as that in Sec. V C 1
but without the inversion symmetry. In this case, the system
can have line nodes pinned to the rotation axes. Irreducible
representations Uβ¼1;2

D1 and their EAZ classes are listed in
Table V.

Weagain assume thatwehavenð1Þ ¼ bð1Þ
D1 inwhichN1

D1 ¼
−N2

D1 ¼ þ1 and associated band labels equal 1 or −1.
Unlike the above case, the 2-cells are invariant only under Γ,
and then their EAZ classes are class AIII. As with the case in
Sec. V C 1, this implies that there are no compatibility
conditions among them, i.e., d1;01 ðnð1ÞÞ ¼ 0, and the gapless
point on the 1-cell is not extended to the 2-cells. As shown in
Sec. IV C 2, since ðN1

D1 ;N2
D1Þ ¼ ð1;−1Þ is not a member of

the gapless point classification in Eq. (88), we conclude that
bD1 indicates the existence of line nodes pinned to the
rotation axes. This is consistent with the fact that thewinding
number W does not change after breaking the inversion
symmetry of the system in Sec. V C 1.
To verify the existence of such line nodes, let us consider

the following model:

Hk ¼ ð3 − cos kx − cos ky − cos kz − μÞτz
þ ðsin kx þ 2 sin kzÞτy; ð112Þ

ρðCy
2Þ ¼ −iτzσy; ð113Þ

ρðT Þ ¼ iσy; ð114Þ

ρðCÞ ¼ τx; ð115Þ

where σi¼x;y;z and τj¼x;y;z are Pauli matrices which re-
present different degrees of freedom. After computing the

TABLE VII. Summary of classification results for examples discussed in this work. Space groups and pairing
symmetries are shown in the first and second columns. The third and fourth ones represent the boundary points of
the line where a gapless point exists. The fifth column is the label of an irreducible representation (irrep), which
follows the notation in Ref. [104]. The sixth column shows the classificationZ orZ2, and the seventh column means
the type of nodes. Here P, L, and S denote point, line, and surface nodes, respectively. In addition, while (A) means
that the shape of the node is determined only by compatibility conditions, (B) indicates that gapless point
classifications are necessary.

SG Pairing HSP1 HSP2 Irrep Classification Type of node

P2=m with TRS Bg (0,0,0) ð0; 1
2
; 0Þ Λ̄3 Z2 L(B)

(0,0,0) ð1
2
; 0; 0Þ F̄3 Z2 L(A)

P2 with TRS B (0,0,0) ð0; 1
2
; 0Þ Λ̄3 Z L(B)

P4 without TRS 1E (0,0,0) ð0; 0; 1
2
Þ Λ̄5 Z S(A)

Λ̄6 Z S(A)
Λ̄7 Z S(A)
Λ̄8 Z S(A)

Pmc21 with TRS A2 ð0; 0; 1
2
Þ ð1

2
; 0; 1

2
Þ Ā3 Z2 L(B)
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region where the spectrum is gapless, we find a line node in
Fig. 13. This is the line node that we discuss above.

The question is whether nð1Þ ¼ 2bð1Þ
D1 is the point node

or not. In the following, we show that the above line node
can exist even in the case. To explain this, we start with the
case where there are the above two line nodes generated by

nð1Þ ¼ 2bð1ÞD1 illustrated in Fig. 14(a). By rotating one of the
lines, the winding numbers can be canceled. Then, we get
two pairs of point nodes in Fig. 14(b). However, in the
absence of other symmetries than MSG P210 with PHS,
there are no reasons why two gapless points on the 1-cell
exist at the same point. Finally, each pair again forms a

line node illustrated in Fig. 14(c). As a result, nð1Þ ¼ 2bð1Þ
D1

indicates the existence of line nodes in Fig. 14(c), and,
therefore, nodes on the 1-cell are classified into Z, whose
elements are line nodes of case B.

3. P4 with 1E pairing

Next, we discuss MSG P4 with 1E pairing, which
is generated by the fourfold rotation symmetry Cz

4.

We consider the 1-cell D1 in Fig. 15(a). In the following,
we show that a gapless point on the 1-cell is part of surface
nodes. Irreducible representations Uβ

D1 (β ¼ 1, 2, 3, 4) and
their EAZ classes are tabulated in Table VI.

Suppose that we have nð1Þ ¼ bð1Þ
D1;β¼1

which has

N1
D1 ¼ −N3

CD1 ¼ þ1. Although there exist eight adjacent
2-cells to D1 [colored in Fig. 15(a)], only two of them are
independent due to the presence of Cz

4. Here, we choose
blue planes D2

1 and D2
2 in Fig. 15(a) as independent

adjacent 2-cells. Since the EAZ classes at D1, the adjacent
2-cells, and 3-cells are the same, compatibility condi-

tions exist. Accordingly, d1;01 ðnð1ÞÞ ¼ bð2Þ
D2

1

− bð2Þ
D2

2

, in which

ND2
i¼1;2

¼ þ1 and associated band labels equal 1 or −1. We

further find d2;01 ðbD2
1
Þ ≠ 0 and d2;01 ðbD2

2
Þ ≠ 0, which implies

that a gapless point on the 1-cell is part of surface nodes.
Note that the discussions and results for other values of β do
not change.
As shown inSec. IV C 3,whennð1Þ is a linear combination

of fbð1Þ
D1;β

g4β¼1, point nodes on the 1-cell can exist. However,

the same logic in Sec. V C 2 is valid, and, therefore, the point
nodes can be inflated, which results in sphere nodes
(Bogoliubov Fermi surfaces) pinned at the 1-cell like the
right in Fig. 15(b). Reference [113] discusses such
Bogoliubov Fermi surfaces in multicomponent supercon-
ductors without inversion symmetry, although Ref. [113]
does not discuss the symmetry protection of them.

4. Pmc2110 with A2 pairing

Finally, we discuss nonsymmorphic and noncentrosym-
metric MSG Pmc2110 with A2 pairing. We focus on the
1-cellD1 in the boundary of the BZ [see Fig. 9(b)], which is
invariant under the glide symmetry Gy. There are two
irreducible representations U�

D1ðGyÞ ¼ �1 of GD1 , and
their EAZ classes are class D. Let us consider that we

FIG. 13. The nodal line of the tight-binding model in Eq. (112)
for μ ¼ þ1.

(a) (b) (c)

Gapless point

FIG. 14. Deformation of nodal structures in MSG P210. Two
line nodes pinned to the rotation axis are protected by 1D winding
numbers (a). These line nodes can be deformed to point nodes
without a closing gap at 0-cells (b). Since there are no reasons
why two point nodes are at the same position, each of the two
split gapless points is again part of a line node.

(a) (b)

Gapless points

FIG. 15. (a) A half BZ in MSG P4. Here, the blue planes D2
1

and D2
2 are adjacent 2-cells to D1, and red ones are symmetry

related to D2
1 and D2

2. (b) Deformation of nodal structures in
MSG P4.
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have nð1Þ ¼ bð1ÞD1 in which p�D1 ¼ 1 and associated band
labels are nontrivial. As shown in Fig. 9(b), three adjacent
2-cells to D1 exist. The EAZ classes of the 2-cells in
the ky ¼ 0 plane and the kz ¼ π are class A and class DIII,
respectively. Consequently, there are no compatibility con-
ditions, i.e., d1;01 ðnð1ÞÞ ¼ 0. In addition, as shown in
Sec. IV C 4, there are no locally stable point nodes.
As a result, we arrive at the line node pinned to the
1-cell D1, which is extended from the 1-cell D1 to 3-cells.
Interestingly, such line nodes on the 1-cell do not exist in
symmorphic MSG Pmm210 with A2 pairing, whose point
group is the same as Pmc2110. In Pmm210 with A2 pairing,
the line node pinned to the 1-cell D1 is understood by
the compatibility conditions. This is an example where
nonsymmorphic symmetries change the classifications of
nodes. As shown in this example, our method can capture
the shape of nodes even in the presence of nonsymmorphic
symmetries and in the absence of the inversion symmetry.

VI. APPLICATIONS TO MATERIALS

In this section, we provide an efficient algorithm to
diagnose the shape of nodes, which needs only the zero-
dimensional topological invariants at 0-cells as input data.
Since the energy scale of the superconducting gaps in most
superconductors is believed to be much smaller than that of
normal phases [84,87,89,114–116], assuming the pairing
symmetry, we can obtain the input data from DFT
calculations by the following formulas:

pαk ¼ nαkjocc; ð116Þ

Nα
k ¼ nαkjocc − nα̃−kjocc; ð117Þ

where nαkjocc is the number of irreducible representations
labeled by α in the normal phase and α̃ is a label of the
particle-hole conjugate irreducible representation of α. We
also demonstrate our scheme through a simple tight-binding
model and a recently discovered superconductor CaPtAs.

A. Efficient algorithm for detection of nodal structures

In Sec. V, we classify nodes on the 1-cells, and we show
that the basis of E1;0

1 can largely determine the shape of
nodes. Here, we recall that d0;01 is a map from E0;0

1 to E1;0
1 .

This enable us to know nodal structures on the 1-cells from
information at the 0-cells. First, let us assume that we have
the set of band labels at the 0-cells nð0Þ and d0;01 ðnð0ÞÞ ≠ 0.
By expanding d0;01 ðnð0ÞÞ by the basis of E1;0

1 , we find which
coefficients are nontrivial. Referring to the results of
classifications in Sec. V, we diagnose the shape of nodal
structures; i.e., gapless points on the 1-cells are point nodes
or part of line or surface nodes.
To demonstrate the scheme, we consider a simple tight-

binding model of MSG P2=m10 with Bg pairing:

Hk ¼ ð3 − cos kx − cos ky − cos kz − μÞτz
þ ðsin kx þ 2 sin kzÞ sin kyτyσy; ð118Þ

ρðIÞ ¼ 1; ð119Þ
ρðCy

2Þ ¼ −iτzσy; ð120Þ
ρðT Þ ¼ iσy; ð121Þ
ρðCÞ ¼ τx; ð122Þ

where σi¼x;y;z and τj¼x;y;z are Pauli matrices which re-
present different degrees of freedom. Using this model, we
show that the above algorithm can detect nodal structures
discussed in Sec. V C 1. After computing Pfaffian invar-
iants in Eq. (20) for all 0-cells, we find p1Γ ¼ p2Γ ¼ 1 and
others equal zero, where p1Γ and p2Γ are band labels for
irreducible representations ½U1

ΓðIÞ; U1
ΓðCy

2Þ�Þ ¼ ð1;þiÞ and
½U2

ΓðIÞ; U2
ΓðCy

2Þ�Þ ¼ ð1;−iÞ. This set of band labels corre-

sponds to a basis of E0;0
1 denoted by bð0ÞΓ;1, and we get

d0;01 ðbð0ÞΓ;1Þ ¼ bð1Þa þ bð1Þb þ bð1Þa1 þ bð1Þb1
þ bð1ÞD1 , where we use

the same labels of 1-cells in Figs. 5 and 9(a). This indicates
that gapless points exist on the 1-cells a, b, a1, b1, and D1.
As discussed in Sec. V C 1, the gapless point on the 1-cell b
is part of line nodes in the mirror plane. Similar to the case,
gapless points on the 1-cells a, a1, and b1 are also extended
to their adjacent 2-cells in the plane. Taking into account
symmetry relations among 2-cells, we find that a line node
in the mirror plane encircles the Γ point. On the other hand,
we show that a gapless point in the rotation axis is also part
of a line node pinned to the axis. We verify that our method
correctly captures the nodes of the tight-binding model
shown in Fig. 16.

B. Material example

In this subsection, we apply the above algorithm to
realistic superconductors CaPtAs, whose MSG is I41md10.
A recent experiment [99] reports time-reversal breaking
and the signature of point nodes. Breaking TRS indicates
that the order parameter belongs to 1E or 2E representations
of the point group C4. Then, MSG I41md10 is reduced
to I41. Here, we assume that the superconducting gap
belongs to 1E representation. Reference [89] computes
irreducible representations by QUANTUM ESPRESSO

[117,118] and QEIRREPS [119] and finds that p4Γ ¼ 1 and
N1

Γ ¼ −N3
Γ ¼ −1, where the labels of irreducible repre-

sentations follow Table VI. Then, the set of band labels nð0Þ

corresponds to −bð0ÞΓ;1 þ bð0ÞΓ;4. In the following, we show that
this superconducting material is expected to have small
Bogoliubov Fermi surfaces.
We check if this material satisfies compatibility con-

ditions, i.e., d0;01 ðnð0ÞÞ ¼ 0. After computing d0;01 ðnð0ÞÞ,
we find d0;01 ðnð0ÞÞ ¼ −bð1Þ

D1;1
þ bð1Þ

D1;3
, where D1 denotes
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the rotation symmetric line between Γ ¼ ð0; 0; 0Þ and
Z ¼ ð0; 0; 2πÞ. In fact, the symmetry setting in this line
is the completely same as that in Sec. V C 3, and then the
nodal structures are also the same. Since d0;01 ðnð0ÞÞ corre-
spond to a set of band labels listed in Eq. (96), we expect
that this material has small Bogoliubov Fermi surfaces as
discussed in Sec. V C 3 [see Fig. 15(b)].
Our result might not contradict the experimental obser-

vation. Since the superconducting gaps in most super-
conductors are considered to be much small, it is natural to
think the Bogoliubov Fermi surfaces are also small. Further
experiments to distinguish between this case and exact
point nodes are awaited.

VII. FURTHER EXTENSION TO NODES
AT GENERIC POINTS

Thus far, we have focused on nodes pinned to 1-cells.
However, in general, nodes can exist at generic points. In
this section, we discuss how to extend our symmetry-based
approach to nodes at generic points through the mirror
plane in MSG P2=m10 with Bu pairing.
Here, we decompose the mirror plane into the cell

decomposition in Fig. 5 and discuss the 1-cell denoted
by b in Fig. 5. After applying the method in Sec. IV to the
1-cell, we find that the classification of gapless points is Z.
The generating Hamiltonian is

Hðk1;k2Þ ¼ k1τy þ k2τxσz þ δk3τz; ð123Þ

σðICÞ ¼ iτyK; ð124Þ

σðIT Þ ¼ iτzσyK; ð125Þ

σðMyÞ ¼ iτzσx; ð126Þ

where k1 is perpendicular to both the mirror plane and the
1-cell, k2 is perpendicular to the 1-cell but parallel to the

mirror plane, and δk3 is a displacement from the gapless
point in the direction of the 1-cell. The gapless point is
protected by the mirror winding number [120]. On the other
hand, since the EAZ class at the 1-cell is class AIII, there
are no topological invariants, which implies that gapless
points pinned to the 1-cell do not exist. In fact, we can add
the symmetric perturbation terms which shift the gapless
point to the k2 direction. Therefore, gapless points can
locally exist everywhere in the mirror plane.
The question is whether these gapless points are globally

stable. In the following, we show that there can globally
exist only two gapless points in the plane. To explain this,
let us suppose that there are four gapless points in the plane
as shown in Fig. 17. Since Cy

2 anticommutes with PHS, Cy
2

changes the sign of the winding number (see Appendix E).
As discussed above, the gapless points can freely move
in the plane, and, therefore, two winding numbers with
opposite signs can be canceled. This indicates that only one
pair of gapless points can globally exist.
Symmetry indicators in this symmetry class can detect

the globally stable gapless points. The symmetry indicator
group is ðZ2Þ2 × Z4, whose Z2 parts originate from lower
dimensions. The Z4 index is defined by

z4 ¼
1

4

X
K∈TRIMs

ðNþ
K −N−

KÞ mod 4; ð127Þ

where N�
K is the band label for irreducible representations

U�
KðIÞ ¼ �1 at the time-reversal invariant momenta

(TRIMs). If the system is fully gapped, z4 ¼ 1, 3 indicate
the mirror Chern number modulo 2 equals 1. However, the
nontrivial mirror Chern numbers are forbidden in this
symmetry setting [121]. Therefore, we conclude that
z4 ¼ 1, 3 indicate the existence of gapless points.
Actually, the above annihilation procedure can be

understood as “second differential” dp;02 in the theory of
Atiyah-Hirzebruch spectral sequence [108]. Although
establishing full classifications of nodes at generic points
and the relationship between symmetry indicators and the
nodes are interesting issues, they are out of the scope of
this paper.

FIG. 17. Illustration of annihilation process of gapless points.
Here, white solid circles denote gapless points, and � represent
the sign of the winding numbers.

FIG. 16. The nodal lines of the tight-binding model in Eq. (118)
for μ ¼ þ1. The blue plane is the mirror symmetric plane.
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VIII. CONCLUSION AND OUTLOOK

In this work, we have established a systematic frame-
work to classify superconducting nodes pinned to any line
in momentum space. After decomposing the BZ of all
MSGs into points (0-cells), lines (1-cells), planes (2-cells),
and polyhedrons (3-cells), we have applied our method to
the lines and obtained comprehensive classifications of
nodes pinned to the lines. Moreover, our theory has resulted
in a highly efficient way to diagnose the superconducting
nodes in superconducting materials. As a demonstration,
we have analyzed the nodes in CaPtAs assuming time-
reversal broken pairing and pointed out that this material
can have small Bogoliubov Fermi surfaces.
Our work opens up various possibilities for future

studies. Although our results cover a wide range of nodes,
nodes at generic points are missing as discussed in Sec. VII.
The symmetry-based approach can be more refined to
detect such nodes, and we leave deriving full relationships
between symmetry indicators and the nodes as future
works. This type of study will give us more information
of nodes pinned to lines as follows. Suppose that a system

violates compatibility conditions, which indicates the
existence of nodes pinned to 1-cells as discussed in
Sec. VI. Since we can always forget about sym-
metries that impose the violated compatibility conditions
on the system, we can apply symmetry indicators for lower
symmetry classes to the system as discussed in Ref. [122].
Then, the symmetry indicators will clarify the topological
nature behind the nodes.
The integration of our algorithm with DFT calculations

enables a comprehensive investigation of nodes in the
materials listing in the database. Such studies help to find
the possible pairings of unconventional superconductivity
compatible with experimental observations. We hope that
our study will lead to a deep understanding of super-
conductivity in discovered superconductors.
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Note added.—Recently, Ref. [123] appeared, which is
based on a similar idea and discusses only gapless states
in the normal phases. However, this work is different from
Ref. [123] in terms of the formulation and the mathematical
approach. Note that, as stressed in this paper, compatibility
conditions do not determine superconducting nodes pinned
to lines in the momentum space completely. Therefore, our
unification of compatibility conditions and gapless point
classifications plays a vital role in the classifications of the
superconducting nodes.

APPENDIX A: CELL DECOMPOSITION FOR
REPRESENTATIVE SPACE GROUPS

In this Appendix, we present units of BZ for each type
of lattices, which can fill the entire BZ by symmetry
operations. In fact, it is enough to define the units for
SG Pm3̄m, Cmmm, P6=mmm, Fm3̄m, and Im3̄m (see
Fig. 18). Note that the cell decomposition for Amm2 is
the same as that for Cmmm with axes exchanged and
the cell decomposition for R3̄m1 is constructed by
fkj;xb1 þ kj;yb2 þ kj;zb3gj, where ðkj;x; kj;y; kj;zÞ is a cell
for Pm3̄m and bi is a primitive reciprocal lattice vector.
When we discuss a lower symmetry setting than them,
we use the cell decomposition of one whose lattice is the
same as the system.

(b)

(c) (d)

(e)

FIG. 18. Units of BZ for Pm3̄m (a), Cmmm (b), P6=mmm (c),
Fm3̄m (d), and Im3̄m (e). Note that coordinates in P6=mmm are
denoted by coefficients of primitive reciprocal lattice vectors.
Orientations except for blue and red lines in Cmmm and Fm3̄m
can be arbitrarily chosen. Orientations of these colored lines are
chosen by symmetric manners.
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APPENDIX B: DERIVATION OF OTHER
FORMULAS

In this Appendix, we derive formulas to obtain elements
of Ep;0

1 corresponding to generating Dirac Hamiltonians.
To achieve this, we find the generating Hamiltonian
and symmetries like Eqs. (69)–(71). We tabulate Gamma
matrices γ0;1;2 and symmetry representations σ̃ðgÞ in
Table VIII. By substituting them into Eqs. (67) and (68),
one can obtain the formulas in Table IV.

APPENDIX C: REMARK ON THE RESULTS
OF CLASSIFICATIONS

In this Appendix, we provide points to be noted in our
classification results.

1. S(A) and L(A)

In this work, we classify nodes into only four categories:
S(A) and L(A) represent surface and line nodes diagnosed
by compatibility conditions; L(B) and P(B) denote line and
point nodes not explained by compatibility conditions.
However, two types of nodes are included in S(A) and L
(A). One is that each of some 2-cells has at most one
gapless line. The other is that at least one 2-cell contains
multiple gapless lines. Indeed, these can be distinguished
by Eq. (111). When the expansion in Eq. (111) contains
two different generators of E2;0

1 for the same 2-cells or,
when an expansion coefficient is not one, multiple gapless
lines on a 2-cell are extended from a gapless point on the
1-cell. In the following, we discuss such a case in S(A) and
L(A) through two examples.
Let us begin by discussing case S(A). As with the case

where a loop or surface node is shrunk to a point, nodes

classified into S(A) are sometimes shrinkable to lines.
To see this, let us discuss MSG Pmm2 with A2 represen-
tation. Suppose that a gapless point exists on the line
ð1=2; 0; 0Þ − ð1=2; 1=2; 0Þ, which corresponds to a gener-
ator of E1;0

1 . Then, we construct an effective model near the
gapless point:

Hδk ¼ δkyσ3 þ δkzσ0 þ δkxσ1; ðC1Þ

ρkðMxÞ ¼ iσ3; ðC2Þ

ρkðCz
2CÞ ¼ σ2K; ðC3Þ

where δk ¼ ðδkx; δky; δkzÞ is the displacement vector from
the gapless point. Then, we find the energy dispersion

Eδk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δk2x þ δk2y

q
þ δkz. By solving Eδk ¼ 0, we see

that the system exhibits surface nodes shown in Fig. 19(a).
One can see that there are two gapless lines in the mirror
plane, which are part of surface nodes. When we deform
the gapless lines such that the two gapless lines lie in the
same positions, the surface nodes can shrink to lines nodes.
However, since there are no reasons why the gapless lines
are forced to be in such a way, it is natural to think that the
gapless point on the 1-cell is part of surface nodes.
As for case L(A), a gapless point on a 1-cell is sometimes

part of several nondegenerate line nodes. In other words,
several line nodes on a 2-cell can be extended from a
gapless point on a 1-cell. To show this, we discuss the line
ð1=2; 0; 1=2Þ − ð1=2; 1=2; 1=2Þ in MSG PCmm2 with B1

representation. This MSG is generated by space group
Pmm2 and fT jðez=2Þ ¼ ð0; 0; 1=2ÞTg, where Seitz symbol
fpgjtgg, a point-group operation pg, and a translation tg are
adopted. We again construct an effective model near the
gapless point K ¼ ðKx; Ky; KzÞ:

Hδk ¼ δkyσ3 þ δkzσ0 þ δkxσ1; ðC4Þ

ρkðMxÞ ¼ iτ3; ðC5Þ

TABLE VIII. Gamma matrices in Eq. (50) and on-site unitary
symmetries. Here, ũα̃ is an irreducible representation of the on-
site unitary symmetry group G̃. In addition, T̃ α̃, C̃ α̃, and Γ̃ α̃ are
labels of the time-reversal-, the particle-hole-, and the chiral-
symmetry-related irreducible representations.

EAZ γ0 γ1 γ2 σ̃ðgÞ
A σz σx σy 1 ⊗ ũα̃ðgÞ
AT τz τx τyσz τ0diag½ũα̃ðgÞ; ũT̃ α̃ðgÞ�
AC τz τx τy τ0diag½ũα̃ðgÞ; ũC̃ α̃ðgÞ�
AΓ τz τx τyσz τ0diag½ũα̃ðgÞ; ũΓ̃ α̃ðgÞ�
AT ;C τz τx τyð1 ⊗ σzÞ τ0diag½ũα̃ðgÞ; ũT̃ α̃ðgÞ; ũC̃ α̃ðgÞ; ũeΓαðgÞ�
C σz σx σy 1 ⊗ ũα̃ðgÞ
CT τz τy τxσz τ0diag½ũα̃ðgÞ; ũT̃ α̃ðgÞ�
D τz τxσy τyσy τ0diag½ũα̃ðgÞ; ũα̃ðgÞ�
DT sz syτy sxτyσz s0τ0diag½ũα̃ðgÞ; ũT̃ α̃ðgÞ�
AI σz σx τyσy τ0diag½ũα̃ðgÞ; ũα̃ðgÞ�
AIC sz sx syτz s0τ0diag½ũα̃ðgÞ; ũC̃ α̃ðgÞ�
CI τz τx τyσz τ0diag½ũα̃ðgÞ; ũα̃ðgÞ�

(a) (b)

FIG. 19. Nodal structures for effective low-energy models in
Eqs. (C1) and (C4). The blue planes represent the mirror invariant
planes, and red cones in (a) and the red lines in (b) are surface
nodes for Eq. (C1) and line nodes for Eq. (C4).
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ρkðCz
2CÞ ¼ iτ1σ1K; ðC6Þ

ρkðfCz
2T jez=2gÞ¼

0
BBB@
0 eiðKzþδkzÞ 0 0

1 0 0 0

0 0 0 eiðKzþδkzÞ

0 0 1 0

1
CCCAK: ðC7Þ

The energy dispersion is Eδk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδky � δkzÞ2 þ δk2x

q
.

We find the solutions δkz ¼ �δky with δkx ¼ 0 for
Eδk ¼ 0, which indicates the existence of two nondegen-
erate line nodes in the mirror plane [see Fig. 19(b)].

2. P(B)

To distinguish a genuine point node from line nodes
extended from 1-cells to 3-cells, we classify two-
dimensional massive Dirac Hamiltonians (50). However,
one might sometimes notice that the degeneracy of the
point node is smaller than the dimension of the correspond-
ing Dirac Hamiltonians.
Let us discuss the fourfold rotation axis in spinless MSG

P4 as an example. After performing the procedures dis-
cussed in Sec. IV, we obtain the following generating
Hamiltonians:

H ¼ k1σx þ k2σy þ δk3σ3; ðC8Þ

σðC4Þ ¼ diagð1;�iÞ or diagð�i;−1Þ; ðC9Þ

where corresponding band labels are ðN1;N−1;Ni;N−iÞ ¼
ð1; 0;−1; 0Þ; ð1; 0; 0;−1Þ; ð0;−1; 0; 1Þ, and ð0;−1; 1; 0Þ.
One can see that ðN1;N−1;Ni;N−iÞ ¼ ð1;−1; 0; 0Þ, which
is a generator of E1;0

1 , does not correspond to any gen-
erating Hamiltonian. Although one might think that the
generator does not correspond to a point node, this is
untrue. To show this, let us consider stacking two of
the above generating Hamiltonians with a coupling term.
For example, we here discuss H0 ¼ H ⊕ H and σðC4Þ ¼
diagð1; iÞ ⊕ diagði;−1Þ. Since the eigenvalue i appears
in both occupied and unoccupied bands, one of the gapless
points can be gapped out by coupling these two states. As a
result, we obtain the band labels ðN1;N−1;Ni;N−iÞ ¼
ð1;−1; 0; 0Þ. However, while the degeneracy of the gapless
point is two, the dimension of the stacking Hamiltonian is
four. Indeed, this mismatch originates from the restriction
of linear dependence of k1 and k2. When we consider
quadratic terms instead, we get another generating Dirac
Hamiltonian:

H ¼ k1k2σx þ ðk21 − k22Þσy þ δk3σ3; ðC10Þ

σðC4Þ ¼ diagð1;−1Þ; ðC11Þ

where the dimension of the Dirac Hamiltonian equals the
degeneracy of the gapless point.
On the one hand, the existence of such large-dimensional

linear Dirac Hamiltonians in Eq. (50) ensures that the
point node is stable in the sense of K theory, i.e., against
adding trivial degrees of freedom. On the other hand, it
does not rule out the possibility of nodes in the sense of
fragile topological phases [112]. Actually, we find that the
mismatches sometimes happen in two-dimensional point
groups 4, 4mm, 6, and 6mm. To check if we can construct a
minimal dimension Dirac Hamiltonians, we generalize
the above discussion for MSG P4 to any symmetry setting.
We redefine generating Dirac Hamiltonians by

H ¼ k1k2γ1 þ ðk21 − k22Þγ2 þ δk3γ0 ðC12Þ

for point groups 4 and 4mm and

H ¼ ðk31 − 3k1k22Þγ1 þ
�
k21ky −

k32
3

�
γ2 þ δk3γ0 ðC13Þ

or

H ¼ 2k1k2γ1 þ ð−k21 þ k22Þγ2 þ δk3γ0 ðC14Þ

for 6 and 6mm. Indeed, the classification procedures
can be performed just by redefining θg in Eq. (66). The
new definitions for rotation symmetry and mirror sym-
metry about the yz plane are θC4

¼ π for point group 4,
ðθC4

; θMx
Þ ¼ ðπ; 0Þ for point group 4mm, θC6

¼ π [for
Eq. (C13)] or 2π=3 [for Eq. (C14)] for point group 6,
and ðθC6

; θMx
Þ ¼ ðπ; 0Þ [for Eq. (C13)] or ½ð2π=3Þ; 0� [for

Eq. (C14)] for point group 6mm. Since other elements are
products of these two symmetries, θg is automatically
determined. After performing classifications of Dirac
Hamiltonians in Eqs. (50) and (C12)–(C14), we find that
all point nodes, classified into P(B), have corresponding
Dirac Hamiltonians whose dimensions are equal to degen-
eracy of the point nodes. This implies that any node on
1-cells is not fragile.

APPENDIX D: STABILITY OF GENUINE POINT
NODES AGAINST PERTURBATIONS

Suppose that we have a 2D massive Dirac Hamiltonian
in Eq. (50) that is mapped to a generator b of E1;0

1 by the
formulas in Table IV. In fact, this is case (i) in Sec. IV B.
The correspondence to a generator of E1;0

1 ensures that the
gapless point on the 1-cell is not split. However, there still
remains the possibility of part of shrinkable line or surface
nodes, which has a single nodal point on the 1-cell [see
Figs. 19(a) and 19(b)]. For instance, one should exclude a
line node in the shape of the Arabic numeral 8, where the
gapless point on the 1-cell is the knot of eight. We show that
this is not the case: The generator is a genuine point node
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on the 1-cell for a generic parameter region To see this, let
us denote the Dirac Hamiltonian near the 1-cell in a slightly
generic way than Eq. (50) as

Hðk1;k2Þ ¼ v1k1γ1 þ v2k2γ2 þ v3δk3γ0 þOðk2Þ; ðD1Þ
where v1, v2, and v3 are constants andOðk2Þ represents the
order of k21, k

2
2, and δk

2
3. No constant terms compatible with

symmetry can be added to Eq. (D1), since b is a generator
of E1;0

1 . The determinant of Hðk1;k2Þ takes the form of

detHðk1;k2Þ ¼ fðv1k1Þ2 þ ðv2k2Þ2 þ ðv3δk3Þ2 þOðk3ÞgN=2

ðD2Þ
with the rank of Gamma matrices N. It is clear that, in a
sufficiently small three-dimensional ball near ðk1; k2; δk3Þ ¼
ð0; 0; 0Þ, detHðk1;k2Þ > 0 except for the point ðk1; k2; δk3Þ ¼
ð0; 0; 0Þ, unless either of v1, v2, or v3 is zero. Since there are
no symmetry constraints enforcingv1,v2, orv3 to be zero,we
conclude that in a generic parameter region the gapless point
b of E1;0

1 represents a genuine point node.

APPENDIX E: SYMMETRY PROPERTY
OF THE WINDING NUMBER

In this Appendix, we show that Cy
2 which anticommutes

with PHS changes the sign of the winding number. The
winding number is defined by

W½C�≡
I
C
tr½UðΓÞðH−1

k ∂kHkÞ�ds; ðE1Þ

where we consider Γ − X −M − Y − Γ in Fig. 20 as C. We
first compute the integrand

tr½UðΓÞðH−1
k ∂kiHkÞ�

¼ tr½UðCy
2ÞUðΓÞðH−1

k ∂kiHkÞU−1ðCy
2Þ�

¼ −tr½UðΓÞUðCy
2ÞðH−1

k ∂kiHkÞU−1ðCy
2Þ�

¼ −tr
�
UðΓÞ

�
H−1

−k
∂
∂ki H−k

��
: ðE2Þ

Using the identity, we derive the following relation:Z
X

Γ
tr½UðΓÞðH−1

ðkx;0Þ∂kxHðkx;0ÞÞ�dkx

¼ −
Z

X0

Γ
tr½UðΓÞðH−1

ðkx;0Þ∂kxHðkx;0ÞÞ�dkx: ðE3Þ

For other integral intervals, one finds the same transforma-
tion. As a result, we obtain the relation W½C� ¼ −W½Cy

2C�.
Actually, the relation can be generalized to other point group
symmetries as W½C� ¼ χg detpgW½gC�ðχg ¼ �1Þ, where
UðgÞUðCÞ ¼ χgUðCÞ½UðgÞ��.
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