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Angle-resolved photoemission spectroscopy (ARPES) is the most powerful technique to investigate the
electronic band structure of crystalline solids. To completely characterize the electronic structure of
topological materials, one needs to go beyond band structure mapping and access information about the
momentum-resolved Bloch wave function, namely, orbitals, Berry curvature, and topological invariants.
However, because phase information is lost in the process of measuring photoemission intensities,
retrieving the complex-valued Bloch wave function from photoemission data has yet remained elusive.
We introduce a novel measurement methodology and associated observable in extreme ultraviolet angle-
resolved photoemission spectroscopy, based on continuous modulation of the ionizing radiation
polarization axis. Tracking the energy- and momentum-resolved amplitude and phase of the photoemission
intensity modulation upon polarization axis rotation allows us to retrieve the circular dichroism in
photoelectron angular distributions (CDAD) without using circular photons, providing direct insights into
the phase of photoemission matrix elements. In the case of two relevant bands, it is possible to reconstruct
the orbital pseudospin (and thus the Bloch wave function) with moderate theory input, as demonstrated
for the prototypical, layered, semiconducting, transition metal dichalcogenide 2H-WSe2. This novel
measurement methodology in ARPES, which is articulated around the manipulation of the photoionization
transition dipole matrix element, in combination with a simple tight-binding theory, is general and adds a
new dimension to obtaining insights into the orbital pseudospin, Berry curvature, and Bloch wave functions
of many relevant crystalline solids.
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I. INTRODUCTION

Wave functions are mathematical descriptions of the
quantum state of a system and are ubiquitous in quantum
mechanics. They are complex-valued probability ampli-
tudes, and the probabilities for the results of any measure-
ments made on a quantum system can be derived from
them. Because of their complex-valued nature, and since
most experimental techniques are only sensitive to the

square modulus of the wave function—leading to a loss of
the phase information—reconstructing wave functions
from experimental observables is a challenging task.
Interferometric measurement techniques, which use the

interference pattern generated by superimposed waves to
extract their relative phases, have been used to experimen-
tally reconstruct the electronic wave function of atoms and
molecules. For example, the interferometric nature of the
photoelectric effect, as well as its time-reversed analog
photorecombination, has been used to reconstruct the
orbitals of atoms [1,2], aligned gas-phase molecules
[3,4], and molecular adsorbates [5,6]. Real-space excitonic
wave functions have also recently been reconstructed using
the Fourier transform of the momentum-space photoemis-
sion intensity [7,8], assuming a flat phase.
Knowledge about the electronic band structure, i.e., the

momentum-dependent energy eigenvalues, and the asso-
ciated Bloch wave function are essential to understand the
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transport, optical, and magnetic properties of crystalline
solids. With the discovery of topological materials [9], it
became clear that accessing knowledge beyond the band
structure is of fundamental importance to understand the
unique properties of this important class of quantum
materials. The topologically nontrivial nature of materials
emerges from the winding of the phase of their Bloch wave
functions in momentum space, associated with Berry
curvature [10] and topological invariants, e.g., Chern
numbers [11,12]. Reconstructing the band structure and
the associated Bloch wave function is thus of capital
importance to fully characterize the electronic structure
of (topological) materials.
While the electronic band structures of crystalline

materials can be mapped using angle-resolved photoemis-
sion spectroscopy (ARPES) [13–16], reconstructing the
associated Bloch wave function is still a great challenge.
Whereas complex-valued information about the Bloch
wave function of electrons inside solids is encoded in
the photoionization transition dipole matrix element under-
lying the photoelectric effect, leading to subtle anisotropic
modulation of the signal in momentum-energy space, a
general route to reconstruct the Bloch wave function from
photoemission data has not been established yet.
Circular dichroism in the photoelectron angular distri-

bution (CDAD) is a powerful quantity that can be used to
probe, e.g., electronic chirality in graphene [17], helical
spin textures in topological insulators [18–20], the orbital
Rashba effect in metals [21], high-symmetry planes [22],
and the Berry curvature in TMDCs [23–26]. In contrast,
linear dichroism in the photoelectron angular distribution
(LDAD) is typically assumed to encode the nonrelativistic
symmetry of the wave function [27–32], but it does not
contain enough information to access the phase of the
Bloch wave function.
Here, we introduce a novel measurement scheme in

extreme ultraviolet (XUV) angle-resolved photoemission
spectroscopy, based on a continuous rotation of the polari-
zation axis, allowing us to reconstruct the following:
(i) CDAD without using circular photons, and (ii) the phase
of the photoemissionmatrix elements, which directly relates
to the complex-valued Bloch wave function, here exempli-
fied for 2H-WSe2. This information can, in principle, even
be used to reconstruct the orbital pseudospin texture. Indeed,
tracking the energy- andmomentum-resolvedmodulation of
the photoemission intensity upon continuous rotation of the
ionizing radiation polarization axis, complemented by
theory input, enables us to go beyond band structure
mapping and access properties of the Bloch wave function
underlying the electronic band structure of crystalline solids.
For the first demonstration of our novel approach, we

choose to study the layered transition metal dichalcogenide
(TMDC) 2H-WSe2. Despite its inversion-symmetric crystal
structure, this material possesses locally broken inversion
symmetry within each layer and strong spin-orbit coupling,

leading to entangled layer, spin, orbital, and valley degrees
of freedom [33]. The topmost layer surface sensitivity of
XUV-ARPES allows to directly probe this intricate hidden
spin [23,34] and orbital [35] texture. This peculiar spin-
orbital-valley locking leads to optical selection rules,
allowing for the generation of spin- and valley-polarized
excited carriers [36], to the orbital Hall effect (OHE) [37]
and the emergence of orbital Hall insulating phases [38,39].
The valley-dependent orbital pseudospin texture is also at
the origin of the emergence of local Berry curvature [10],
associated with the winding of the wave-function phase in
momentum space [40]. Such a material is thus well suited
to test our novel polarization-modulated angle-resolved
photoemission spectroscopy approach.

II. RESULTS

A. Polarization-modulated angle-resolved
photoemission spectroscopy

The energy and momentum dependence of the photo-
emission transition dipole matrix element contains rich
information on the electronic structure of crystalline solids.
However, as in any standard intensity measurements, the
phase information is lost, which renders a reconstruction of
their Bloch wave function challenging. We tackle this
challenge by increasing the dimensionality of the measure-
ment: Photoemission intensity is recorded while continu-
ously varying the polarization axis direction of linearly
polarizedXUVionizing radiation (characterized by the angle
θ). By looking at the energy- and momentum-resolved
modulation of the photoemission intensity upon polarization
rotation, we can access the orientation of hybridized orbitals
involved in the photoemission process, which is sensitive to
the orbitals’ relative phase information.
To this end, we use our angle-resolved photoemission

spectroscopy setup featuring a home-built high-repetition-
rate (500 kHz) femtosecond XUV source (tunable linear
polarization axis direction) coupled to a time-of-flight mo-
mentummicroscope [41,42] [see Fig. 1(a) and AppendixA].
Measuring the photoemission intensity resolved in energy
(E) and both parallel momenta (kx, ky) for each polarization
axis direction (θ) yields four-dimensional (4D) data sets
IðE; kx; ky; θÞ. The out-of-plane component k⊥ of the photo-
electronmomentumvectorp ¼ ðkx; ky; k⊥Þ is determinedby
the kinetic energy E.
While these multidimensional photoemission data nat-

urally include linear dichroism, the photoemission intensity
modulation upon continuous rotation of θ gives qualita-
tively new information about the participating orbitals, as
detailed below.
The photoemission processes can be described by

Fermi’s golden rule,

IðE;k; θÞ ∝ jhk; EjeðθÞ · r̂jψkαij2δðεkα þ ℏω − EÞ; ð1Þ
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where jψkαi is the initial Bloch state with energy εkα, eðθÞ
the polarization vector of the photons (energy ℏω), r̂ the
dipole (or position) operator, and jk; Ei the final states. At
fixed in-plane momentum k ¼ ðkx; kyÞ and photoelectron
energy E, the magnitude of the photoemission intensity
is fully determined by the dipole matrix element
MðE;k; θÞ ¼ hk; EjeðθÞ · r̂jψkαi for the band index α.
Note that even if the dipole operator r̂ itself is ill defined
in periodic systems, the matrix element MðE;k; θÞ can be
rigorously defined in terms of the Berry connection [43,44].
In general, the matrix element, and thus the photoemission

intensity, is governed by (i) the direction of the outgoing
photoelectron p ¼ ðkx; ky; k⊥Þ, (ii) the light polarization
eðθÞ, and (iii) the orbital character and orientation of the
initial state. In particular, the relative orientation of eðθÞ
and p matters: IðE;k; θÞ is generally enhanced if they are
parallel and reduced if eðθÞ and p are orthogonal. In our
experimental setup, the out-of-plane component is deter-
mined by E ¼ k2⊥=2þ k2=2 (we use atomic units unless
stated otherwise). Hence, p is fixed when investigating
the signal originating from a particular region in the
Brillouin zone, and (at fixed photon energy) the polariza-
tion eðθÞ is the only remaining external knob to turn to
try extracting information on the initial state. For the geo-
metry shown in Fig. 1(a), the θ dependence of the signal
can be discerned by projecting along s (in the y plane) and
p (in the x-z plane). The polarization vector is then
decomposed as eðθÞ ¼ cos θep þ sin θes. Introducing the
matrix elements with respect to the s (p) polarization
MsðE;kÞ [MpðE;kÞ] by inserting the corresponding unit
vector es (ep), the relevant photoemission matrix element
becomes MðE;k; θÞ ¼ cos θMpðE;kÞ þ sin θMsðE;kÞ.
Inserting this into Fermi’s golden rule (1) yields the general
form

IðE;k; θÞ ¼ I0ðE;kÞ þ BðE;kÞ cos½2θ −ΦðE;kÞ�: ð2Þ

The photoemission yield modulation upon varying θ
summarized in Eq. (2) is generic for any system; however,
the angle θ where the intensity is maximized—determined
by the phase ΦðE;kÞ—is extraordinarily sensitive to the
initial Bloch state. As further detailed in Appendix B,
ΦðE;kÞ depends on the magnitude of the photoemission
matrix elements with respect to s and p polarized light and
their phase relation, which encodes the phase of the
underlying orbitals and interference effects.

B. Orbital character and photoemission
matrix elements

To connect the orbital character of the Bloch state jψkαi
to the photoemission signal, it is useful to introduce the
Wannier representation [45]

ψkαðrÞ ¼
1

N

X
R;m

eik·RCmαðkÞwmðr −RÞ

≡ 1

N

X
R

eik·Rϕkαðr −RÞ; ð3Þ

where R labels all N unit cells, while wmðrÞ are the
Wannier functions that can be paralleled with atomic
orbitals [46]. The coefficients CmαðkÞ connect orbital
(m) and band (α) space, thus determining the k-dependent
superposition of the orbitals. This hybridization is con-
veniently captured by introducing the hybrid orbital
ϕkαðrÞ ¼

P
m CmαðkÞwmðrÞ. The hybrid orbital provides

FIG. 1. Experimental setup and measurement protocol. (a) Ex-
perimental scheme of polarization-modulated, angle-resolved
photoemission spectroscopy. A polarization-axis-tunable, lin-
early polarized, femtosecond XUV pulse (21.7 eV) is focused
onto a bulk 2H-WSe2 crystal at an angle of incidence of 65° with
respect to the surface normal, ejecting photoelectrons that are
detected by a time-of-flight momentum microscope, allowing
us to measure the energy- and momentum-resolved photoemis-
sion intensity as a function of the polarization axis angle
θ-IðE; kx; ky; θÞ. (b) Sketch of the first Brillouin zone of
2H-WSe2. (c) Example of three-dimensional raw data—band
structure mapping [IðE; kx; kyÞ] using p-polarized XUV radiation,
an associated cut through high-symmetry directions (K0-Γ-K and
M0-Γ-M), and a constant energy contour (E − EVBM ¼ −0.25 eV).
(d) Two-dimensional cut through the 4D ARPES intensity
IðE; kx; ky; θÞ: at different polarization-axis angles (θ), at
E − EVBM ¼ −0.25 eV, and for given K and K’ valleys.
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a useful way of understanding the Bloch wave function: For
fixed k, the Bloch state is constructed by a periodic replica
of ϕkαðrÞwith a phase factor eik·R. In the common situation
where the Wannier functions wmðrÞ are sufficiently loca-
lized and contributions from neighboring unit cells can be
neglected, the hybrid orbital is a good approximation (up to
a normalization factor) to the actual Bloch state for r within
a selected unit cell. The concept of the hybrid orbital also
connects directly to the photoemission matrix element (see
Appendix C 2). In case the relevant Wannier orbitals wmðrÞ
are localized on a single site, one can show

MðE;k; θÞ ¼ hk; EjeðθÞ · r̂jϕkαi: ð4Þ

Hence, the photoemission matrix element can be under-
stood analogously to atomic photoemission, where the
atomic orbitals are replaced by the hybrid orbitals.
Specifically for 2H-WSe2, the quantum nature of the top

valence band is dominated by jdz2i, jdx2−y2i, and jdxyi
orbitals localized at the W atoms [47]. Near the valence
band maximum (VBM), the hybrid orbital is given
by jϕK;K0

k i ≈ ½C�ðkÞjd�2i þ C0ðkÞjdz2i� ⊗ j ↑;↓i, where
jd�2i ¼ ½jdx2−y2i � ijdxyi�=

ffiffiffi
2

p
are magnetic orbitals [48].

For coordinates within the crystal cell (including the
nearest-neighbor Se atoms) displayed in Fig. 2(a), the
Wannier orbitals are sketched in Fig. 2(b). Even though
the out-of-plane jdz2i orbital contribution vanishes at
exactly k ¼ K, K0, the k-dependent interference between
these orbitals has a profound impact when moving slightly
away from k ¼ K, K0. This interference manifests in the
k-dependent spatial orientation of the hybrid orbital, as
illustrated in Fig. 2(c), where we show ϕK;K0

k ðrÞ for different
k-points close to the Dirac valleys K=K0. The hybrid
orbital is reminiscent of the jdz2i orbital rotated to the
x-y plane, and its orientation exhibits a pronounced
momentum dependence.
This orbital texture in momentum space is closely

related to the concept of orbital pseudospin σK;K
0

ν ðkÞ ¼
hψK;K0

k jσ̂νjψK;K0
k i ¼ hϕK;K0

k jσ̂νjϕK;K0
k i (σ̂ν denote the Pauli

matrices, ν ¼ x, y, z). There is a one-to-one correspondence
between the complex coefficients C0;�2ðkÞ and σνðkÞ;
the pseudospin texture is an elegant way to visualize the
complex coefficients. The in-plane pseudospin texture is
shown in Fig. 2(c). In general, orbital pseudospin relates to
the Berry curvature and topological properties of materials
[49]. For 2H-WSe2, the σK;K

0
z ðkÞ captures the weight of

the jd�2i and jdz2i orbitals, respectively, while the in-plane
texture encodes interference. The pseudospin texture of
2H-WSe2 manifests itself in the characteristic momentum
dependence of the photoemission signal within the K=K0
valleys [35].
Now, we discuss the experimentally measured as well as

the calculated modulation of the photoemission intensity
upon varying the angle θ [see Fig. 1(a)]. For all calculations

presented in this work, we employ the tight-binding (TB)
model for a monolayer WSe2 from Ref. [50] (details are
presented in Appendix C). We benchmarked the model
against a first-principle model obtained from computing
projective Wannier functions [51] and found that the orbital
character is accurately reproduced by the TB model for a
moderate region around the valleys. The model includes the
jdz2i and jd�2i orbitals only; however, the full crystal
symmetry is incorporated into the model, thus also captur-
ing the effective hybridization of W and Se atoms (see
Supplemental Material [52] for a discussion). The model is
combined with the plane-wave approximation to the final
states [53]. The layered structure of bulk 2H-WSe2 gives
rise to intra- and interlayer hybridization influencing the
orbital and spin character of the bands in the vicinity of the
K, K0 valley [23,31]. However, interlayer hybridization
leads to only a small correction to the orbital character [47];
furthermore, layer-resolved first-principle ARPES calcu-
lations from Ref. [35] have shown that the photoemission
signal can be attributed almost solely to the topmost layer.
Therefore, the (spin-integrated) photoemission signal can
be understood in terms of monolayer WSe2.

Hybrid orbital

Pseudospin

Bloch state
-1

+1

0

(a) (b)

(c)

FIG. 2. Wave-function properties near the valence band maxi-
mum, around K=K0 valleys. (a) Sketch of the crystal cell of a
monolayer WSe2 and the corresponding coordinate system (used
for all three-dimensional plots in this figure). The purple arrows
indicate the various polarization directions. (b) Relevant orbitals
close to K=K0, represented by a constant-value surface of the
absolute value. The color coding indicates the real part. The
Bloch state jψkαi in the crystal cell in (a) is well approximated by
a superposition of the jd�2i and jdz2i orbitals, which defines the
hybrid orbital jϕkαi. (c) Plots of the hybrid orbital of the top
valence band at selected momentum points close to the K and K0
[corresponding to the boxes in Fig. 1(b)] valley. There is a one-to-
one map of the complex wave-function coefficients C0;�2ðkÞ
forming the hybrid orbital and the orbital pseudospin σðkÞ; the
corresponding texture is represented by the vector field. The thick
gray line is a contour of maximum photoemission intensity for
typical binding energy.
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The experimentally measured photoemission intensity
modulation contrast upon varying θ is very pronounced
[Figs. 3(a)–3(d)]. The valley-integrated photoemission
intensity IintðE; θÞ [k-integrated over the boxes shown
Figs. 3(a) and 3(b)] shows an intrinsic phase shift between
the K and K0 valleys. To confirm that this phase shift is an
intrinsic property of the crystals and does not originate
from spurious experimental geometry effects, we rotate the
crystal by 60°, acting as an effective in-plane time-reversal
transformation, i.e., K ↔ K0 [47]. Upon effective time-
reversal transformation (swapping the valley indices), the
relative phase shift changes sign, indicating that the
polarization-modulated photoemission yield is sensitive
to intrinsic valley-resolved properties of the crystal. We
have calculated the photoemission intensity for varying θ
using Eq. (1) from the TB model and analyzed it in the
same way as the experimental data. Apart from the absolute
scale, the angular dependence of the photoemission inten-
sity and the phase shifts are well reproduced by our
theoretical calculations [Figs. 3(e) and 3(f)]. Excluding
the jdz2i orbitals strongly diminishes the intrinsic phase
shift between K and K0 valleys [Figs. 3(g) and 3(h)], thus
underlining the interplay of jdz2i and jd�2i orbitals in the
emergence of the experimentally observed polarization-
modulated photoemission signal. This conclusion is further
underpinned by inspecting the intensity modulation if we
assume the orbital character of the top valence band is
purely given by jdz2i or jd�2i (see Appendix D). In this
atomic limit, the phase of the intensity modulation does
not match the experiments; in particular, the change upon

K ↔ K0 exhibits the wrong behavior, while rotation by 60°
does not show any effect.

C. Energy- and momentum-resolved
Fourier analysis

In an attempt at obtaining deeper insights about the
link between our new measurement methodology and the
electronic properties of the crystal, we have performed a
fully energy- and momentum-resolved Fourier transform
analysis along the XUV polarization axis in order to extract
the oscillation amplitude and phase of the signal in a
specific energy-momentum region of the electronic struc-
ture. The Fourier-transformed signal

ImðE; kx; kyÞ ¼
Z

2π

0

dθ
2π

eimθIðE; kx; ky; θÞ ð5Þ

is only nonzero for m ¼ 0;�2, as the intensity varies as
cos 2θ. While m ¼ 0 corresponds to the
θ-averaged intensity [which is identical to I0ðE;kÞ in
Eq. (2)], I2ðE; kx; kyÞ is a complex quantity encoding
information about the amplitude/real and phase/imaginary
information of the photoemission modulation upon rotating
the polarization axis of the XUV. For the experimental
geometry [Fig. 1(a)], direct evaluation yields

Re½I2ðE;kÞ� ¼
1

4
½jMsðE;kÞj2 − jMpðE;kÞj2�gðE;kÞ

¼ 1

4
ILDADðE;kÞ; ð6Þ

K K

K K

Theory Theory, no 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. Valley-resolved polarization-modulated photoemission. (a,b) Constant energy contours (binding energy E − EVBM ¼
−0.25 eV) for both crystal orientations (averaged over all polarization angles θ). (c,d) Valley-dependent polarization-modulated
photoemission signal, integrated over the square boxes shown panels (a) and (b). The θ dependence follows the generic form (2); the
phase shiftΦ is illustrated by the dotted lines, and the value ofΦ for the K=K0 valleys is given in the corresponding color. (e,f) Calculated
polarization-angle modulation of the intensity [analogous to panels (c) and (d)]. (g,h) Analogous to panels (e) and (f), but excluding the
jdz2i orbital contribution. The direction of the light incidence is in the x-z plane.
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Im½I2ðE;kÞ�¼−
1

2
Ref½MsðE;kÞ��MpðE;kÞggðE;kÞ; ð7Þ

where MsðE;kÞ and MpðE;kÞ denote the matrix ele-
ments with respect to s- or p-polarized light and where
gðE;kÞ ¼ δðεkα þ ℏω − EÞ. While the real part (6) con-
tains information on the linear dichroism of the photo-
emission intensity with respect to s- or p-polarized light
(equivalent to the LDAD), the imaginary part (7) captures
interference between these channels. We stress that
the latter is a new quantity that cannot be obtained
by solely measuring the photoemission intensity using
s- or p-polarized photons. This interferometric quantity,
revealing the relative phase between MsðE;kÞ and
MpðE;kÞ, is available within the context of our novel
polarization-modulated ARPES approach [54]. This rela-
tive phase is also fundamentally connected to the CDAD, as
discussed below.
The energy- and momentum-resolved phase ΦðE;kÞ ¼

arg½I2ðE;kÞ� [which is identical to the phase shift in
Eq. (2)] is presented in Figs. 4(a) and 4(b), for a binding

energy of E − EVBM ∼ −0.25 eV. We observe a phase sign
flip for adjacent valleys, as well as a phase sign reversal
upon effective time-reversal operation (60° crystal rota-
tion). This is a clear indication that the distinct orbital
character of the Bloch state—which exhibits a distinct
texture at K or K0, respectively—is responsible for the
observed sign change. Figure 4(c) shows the phase inte-
grated along kx (going from K to K0, and vice versa), which
is captured well by our TB model calculations.
Inspecting the real (6) and imaginary (7) parts of the

Fourier signal (see Supplemental Material [52]), we notice
that the signs of the phases ΦðE;kÞ and Im½I2ðE;kÞ� are
qualitatively identical. Comparing the imaginary part to
the theoretical results is straightforward. The theory allows
for decomposing the valley-integrated signal [around the
K=K0 valleys in Fig. 4(a)] into Im½I2ðEÞ� ¼ Im½Iinc2 ðEÞ� þ
Im½Iint2 ðEÞ�, where Im½Iinc2 ðEÞ� ¼ Im½Iz22 ðEÞ� þ Im½I�2

2 ðEÞ�
by incoherently adding the signal originating from only the
jdz2i or jd�2i orbital, while Im½Iint2 ðEÞ� ¼ Im½I2ðEÞ� −
Im½Iinc2 ðEÞ� denotes the remaining interference contribu-
tion. This analysis underpins the fact that the interference of
the jdz2i and jd�2i orbitals is the predominant contribution
close to the VBM.
In contrast to what might be expected from the pseu-

dospin texture [Fig. 2(c)], the phase ΦðE;kÞ exhibits
almost no momentum dependence around the K=K0
valleys (intravalley). To understand the quantity ΦðE;kÞ
better, we have derived the relation to the photoemission
matrix elements MsðE;kÞ, MpðE;kÞ explicitly (see
Appendix B). In brief, the phase ΦðE;kÞ is determined
by the following factors: (i) the phase difference ϕp − ϕs,
where Ms;pðE;kÞ ¼ jMs;pðE;kÞjeiϕs;pðE;kÞ is the phase of
the matrix element itself, and (ii) the ratio jMsðE;kÞj=
jMpðE;kÞj. The momentum-dependent hybridization rep-
resented by the pseudospin texture manifests in the ori-
entation and the phase of the hybrid orbital [illustrated
in Fig. 2(c)] and thus also in Ms;pðE;kÞ. However, this
momentum-dependent phase mostly cancels out when
taking the phase difference ϕpðE;kÞ − ϕsðE;kÞ. Hence,
the phase ΦðE;kÞ displays only a weak intravalley
momentum dependence.
Nevertheless, information on the wave function is

encoded in ΦðE;kÞ: The sign changes with respect to
adjacent valleys are consistent with the magnetic orbital
character jd�2i, as evidenced by rotating the crystal by 60°.
Additional calculations (see Supplemental Material [52])
qualitatively yield the same picture. We interpret this
behavior as an interplay of the interference of jdz2i and
jd�2i, their spatial orientation, and the geometry of our
experimental setup. All of these factors play a role:
The alternating sign of ΦðE;kÞ with respect to adjacent
valleys is suppressed if (i) either the jdz2i or jd�2i orbital
is excluded or (ii) the interference of these orbitals is
switched off, as well as (iii) at larger photon energy (see
Supplemental Material [52]).

(a) (b)

(c) (d)

FIG. 4. Energy- and momentum-resolved Fourier analysis of
the polarization-modulated ARPES signals. (a,b) Fourier
amplitude jI2ðE;kÞj (white-to-black color map, right subpanel)
and phase ΦðE;kÞ (blue-to-red color map, left subpanel) of
the photoemission modulation, for E − EVBM ¼ −0.25 eV.
(c) Averaged phase [along a vertical cut and integrated over kx
as indicated by the dashed box in panels (a) and (b)] extracted
from both the experimental data in panels (a) and (b) and the
theory. (d) Valley-integrated imaginary part Im½I2ðEÞ� of the
Fourier amplitude (5), comparing experiment and theory at
K (red) and K0 (blue), respectively. The dashed lines represent
the corresponding interference contribution Im½Iint2 ðEÞ�.
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D. Circular dichroism without circular photons

On a more fundamental level, the imaginary part (7) of
the polarization-modulated photoemission, which we
refer to as Fourier dichroism in photoelectron angular
distributions (FDAD), is the missing piece to measuring
the phase of the complex dipole matrix elements directly, if
CDAD are additionally available. Indeed, let us consider
the experimental scheme as in Fig. 1(a), but using left-
handed circularly polarized (LCP) or right-handed circu-
larly polarized (RCP) light. The CDAD is then defined by
ICDðE;kÞ ¼ ILCPðE;kÞ − IRCPðE;kÞ. Substituting the cor-
responding polarization vector eRCP=LCP into Eq. (1), one
obtains

ICDðE;kÞ ¼ −2Imf½MsðE;kÞ��MpðE;kÞggðE;kÞ: ð8Þ

Comparing Eq. (E3) to Eq. (7), we notice a striking
similarity: Instead of the imaginary part of the complex
quantity

ZðE;kÞ≡ ½MsðE;kÞ��MpðE;kÞ
¼ jZðE;kÞjei½ϕpðE;kÞ−ϕsðE;kÞ�;

the imaginary part of the Fourier signal (7)—FDAD—
provides access to the real part of ZðE;kÞ. While jZðE;kÞj
can be extracted by measuring the photoemission intensity
for s- and p-polarized light separately, the relative phase
ϕp − ϕs is available by combining FDAD and the CDAD.
Since the global phase of MsðE;kÞ or MpðE;kÞ is not
relevant (it does not manifest in any observable), obtaining
ϕp − ϕs allows us to extract complete information on the
complex matrix elements Ms=pðE;kÞ. Because the CDAD
and FDAD are complementary parts of the same complex

quantity, they are fundamentally linked. In fact, this
intricate relationship can be exploited to obtain insights
into the CDAD without using circularly polarized XUV
light. Using Eq. (7), this link can be expressed as

ĨCDðE;kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IsðE;kÞIpðE;kÞ − 4Im½I2ðE;kÞ�

q
: ð9Þ

Note that only the absolute value of the CDAD can be
extracted because of missing absolute phase informa-
tion to directly link a continuous scan of the linear XUV
polarization axis to circularly polarized light [indicated by
the tilde in Eq. (9), jICDðE;kÞj ¼ ĨCDðE;kÞ]. Nevertheless,
fine details on the momentum dependence of the cir-
cular dichroism can still be extracted as demonstrated in
Figs. 5(a) and 5(b).
To this end, we substitute the imaginary part

Im½I2ðE;kÞ� [obtained by Fourier transforming the
experimental data via Eq. (5)] into Eq. (9). Note that the
valley-averaged CDAD provides a direct map of the Berry
curvature of WSe2, as demonstrated by previous experi-
ments [24,25] and theory [26]. However, the CDAD
exhibits a fine structure even within a single valley (which
depends on the experimental geometry). Thus, for a given
binding energy, we show the extracted CDAD as a func-
tion of the azimuthal angle ϕk, which traces the constant
energy contour [see inset in Fig. 5(a)]. By broadening the
momentum distribution of the theoretical data to mimic the
experimental momentum resolution (we use Gaussian
smearing of Δk ∼ 0.05 Å−1), we find a striking agreement
between experiment and theory for both valleys [Figs. 5(a)
and 5(b)]. This agreement implies that our novel measure-
ment procedures allow us to obtain information about
CDAD, without using circularly polarized photons.

|
D

A
D

C|
|

D
A

D
C |

(a) (b) (c) (d)

FIG. 5. Circular dichroism without circular photons. (a,b) Absolute value of the CDAD extracted from the experimental data and
theory via Eq. (9) at fixed binding energy E − EVBM ¼ −0.18 eV (a) and E − EVBM ¼ −0.25 eV (b), as a function of the angle ϕk
tracing the intensity. The inset illustrates how the angle ϕk is measured along the contour of maximum intensity. (c,d) Theoretical
reconstructed [ĨCDðE;kÞ] and calculated CDAD [ICDðE;kÞ] as in (a,b). The arrows indicate the kink positions that can be used to
determine sign changes (indicated by the shaded background).
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While the sign of the reconstructed CDAD is, in principle,
not available, sharp kinks near zero would indicate a sign
change. The momentum resolution of the experiment is not
sufficient to identify such sharp features; however, the
excellent qualitative agreement between theory and experi-
ment for all considered quantities described above allows us
to extrapolate to a better resolution [55]. This scenario is
explored in Figs. 5(c) and 5(d), where we compare the
calculated CDAD to the reconstructed signal [via Eq. (9)].
Becausewe take the absolutevalue, kinks (indicated byblack
arrows) appear in the reconstructed CDAD, which allows us
to pinpoint sign changes. Therefore, up to an absolute sign
ambiguity for each valley, the full CDAD can be extracted
from our experimental data, where no circularly polarized
photons are used. Note that the momentum resolution
required to identify the kinks is well within current exper-
imental capabilities.

E. Orbital pseudospin and Bloch wave-function
reconstruction

The complementary information encoded in the imagi-
nary part (7)—FDAD—and the circular dichroism can be
exploited even further if the CDAD is measured in the same
geometry. Our current setup does not allow us to generate
circularly polarized XUV photons. However, comple-
menting the experimental data with the CDAD calculated
from our theoretical model—which emulates experimental
data—allows us to showcase which new information could
be extracted. To this end, we have calculated

Iemul
CD ðE;kÞ ¼ ITBCDðE;kÞ

ITBav ðE;kÞ
Iexpav ðE;kÞ; ð10Þ

where IavðE;kÞ ¼ ½IsðE;kÞ þ IpðE;kÞ�=2 is the unpolar-
ized intensity. The superscript TB (exp) stands for theo-
retical (experimental) spectra. The TB model includes two
orbitals only (dz2 and d�2), such that the Bloch state jψK;K0

kα i
is fully characterized by the three components of pseudo-
spin σK;K

0
ν ðkÞ (ν ¼ 1, 2, 3). It is convenient to express

the photoemission intensity (1) in terms of σK;K
0

ν ðkÞ
and the atomic dipole matrix elements Mz2;�2ðE;kÞ ¼
hk; Eje · r̂jdz2;�2i. Approximating the orbitals as the prod-
uct of a radial wave function and a spherical harmonic Y2

0;�2

allows us to characterizeMz2;�2ðE;kÞ by a few parameters,
which can be fixed by comparing to experimental spectra
with s- and p-polarized light, respectively [56]. Since we
also have three independent quantities—XðE;kÞ ¼
ðICDðE;kÞ;Re½I2ðE;kÞ�; Im½I2ðE;kÞ�Þ—at our disposal,
can we use this information to reconstruct the three-
dimensional orbital pseudospin? While this methodology
is a very ambitious goal at the current stage, the attempt
turns out to be instructive.
Based on the atomic matrix elements Mz2;�2ðE;kÞ, we

can express the CDAD and the FDAD as linear functions of

σK;K
0

ν ðkÞ, which yields a 3 × 3 system of equations of the
form XðE;kÞ ¼ AðE;kÞσK;K0 ðkÞ þ BðE;kÞ, as detailed
in Appendix E. We have solved these equations—using the
calculated matrix elements, the experimental FDAD, and
the emulated CDAD—by a least-square minimization
while constraining the pseudospin to

P
ν½σK;K

0
ν ðkÞ�2 ¼ 1.

This is possible for all momenta k where the signal at fixed
binding energy is large enough (we choose a threshold of
0.1 of the maximum value). The reconstructed pseudospin
for the E − EVBM ¼ −0.25 eV is presented in Figs. 6(a)
and 6(b) for K and K0, respectively. Scanning through the
binding energies allows us, in principle, to systematically
reconstruct the pseudospin texture in the relevant region
in momentum space, albeit the pseudospin picture (i.e.,
where only two orbitals are relevant) breaks down further
away from K=K0. We have asserted the stability of the
reconstruction procedure by retrieving the pseudospin
texture from purely theoretical input, which yields exactly
the texture from the TB model.
Comparing the reconstructed texture of σK;K

0
ν ðkÞ to the

calculated one (Fig. 6(c)–6(d)), we observe some features
that are in qualitative agreement. First, the z component
(represented by the color coding) shows some important
similarities. Close to the K=K0 point, the value of the

(a) (b)

(c) (d)

FIG. 6. Reconstruction of orbital pseudospin. (a,b) Pseudospin
texture reconstructed from experimental (with emulated CDAD)
data. The in-plane pseudospin is represented by the arrows, while
the z component is indicated by the color map. We present results
for E − EVBM ¼ −0.25 eV, where the reconstruction procedure
is most stable. (c,d) Orbital pseudospin from the TB model. The
black dashed lines indicate the region in which the intensity
IavðE;kÞ > 0.1Imax (Imax is the maximum intensity).
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reconstructed σz is close to þ1 (indicating that the jd�2i
orbital dominates); moving away from K=K0, this value
decreases. This behavior is anisotropic—which is in
accordance with the calculated pseudospin z component.
The in-plane components of the pseudospin (represented by
the black arrows) also show some agreement with the
theoretical texture, albeit there are more discrepancies.
The saddle-point structure around K0 in Fig. 6(b), with the
texture pointing into the center (out of the center) along
the diagonal (orthogonal to the diagonal), is approximately
retrieved in the reconstructed texture [Fig. 6(a)]. Also, parts
of the circular winding around K [Figs. 6(c) and 6(d)] are
recovered in the upper half.
Deviations are mostly attributed to two factors: (i) the

momentum and energy resolution and (ii) limited predictive
power of the photoemission model. Systematic theoretical
improvements of the treatment of the photoemission matrix
elements—and thus the retrieval of σK;K

0
ν ðkÞ—beyond the

presented model can be achieved by a more accurate
calculation of the final states and by taking into account
nonspherical deformations of the Wannier orbitals. In some
cases, such corrections can be constructed from the crystal
symmetry in terms of a ligand field theory [57]; in general,
systematic corrections of the orbitals introduce additional
parameters to be determined by fitting to characteristic
experimental signatures.
We stress that, in principle, besides the atomic matrix

elements, no further input from theory is required (if it can
ensure that only two orbitals are relevant). In particular, the
band structure beyond the experimentally obtained inten-
sity does not enter the reconstruction procedure. Hence, a
practical route for applying the procedure to other systems
is to fit the atomic matrix elements to specific features in
equilibrium (for instance, our atomistic model for WSe2
reproduces the dark corridor). The obtained matrix ele-
ments are the only required theoretical input for tracing the
impact of light-dressing, coherent excitation, or strain onto
the pseudospin texture. Since the modeling of the atomic
matrix elements is generic, the presented reconstruction
procedure can be applied to many systems where only two
relevant orbitals are involved.

III. DISCUSSION AND CONCLUSION

We introduced the continuous rotation of the polarization
axis as a new measurement methodology in ARPES, which
adds a new dimension that allows us to define a genuine
new observable. In particular, the intensity modulation
upon varying the polarization angle is generic, and the
corresponding phase of the modulation is related to the
phase of the photoemission matrix elements and thus to
the electronic wave function of the system. Taking the
Fourier transform of the periodically modulated photo-
emission yield leads to the definition of a quantity that we
introduce as FDAD, which is an interferometric quantity
complementary to linear and circular dichroism.

Exploiting the fundamental link of FDAD and CDAD
allows us to extract the absolute value of CDAD without
using circularly polarized XUV pulses. This is a major
advancement since the tabletop generation of circularly
polarized XUV is challenging and its combination with an
ARPES endstation has not been reported yet. The extension
of our approach to time-resolved CDAD experiments
without the need for circular XUV photons is conceptually
and practically straightforward, as the present experimental
setup is already operating with femtosecond pulses. Hence,
tracking the time-resolved FDAD will allow us to track
ultrafast light-induced topological phase transitions char-
acterized by the creation or annihilation of local Berry
curvature, for example [58–62].
Furthermore, having access to all three independent

dichroic observables—FDAD, LDAD, and CDAD—
allows us to retrieve the phase of the photoemission matrix
elements and thus the full complex matrix elements. In this
sense, our work can be seen as going towards the first
condensed-matter “complete” photoionization experi-
ments, in which one obtains the full complex photoemis-
sion dipole matrix element, which is already established as
the grail of a photoionization experiment in atomic and
molecular physics [2,63,64]. In the case of two relevant
bands—as demonstrated for WSe2 close to the maximum
of the top valence band—this phase sensitivity can, in
principle, even be exploited to reconstruct the pseudospin
texture (or, equivalently, the complex band eigenvectors).
We remark that the situation where only two bands in the
vicinity of high-symmetry points are relevant for the
topological properties (even though they are multiband
systems) covers a large class of materials, including Dirac
semimetals, Weyl semimetals [65], and many two-dimen-
sional topological insulators [66]. In addition, combining
our multimodal dichroic approach with a photon-energy
tunable source (e.g., at synchrotron facilities) could allow
us to investigate the full orbital pseudospin and Bloch wave
function in 3D materials, by extracting the photon-energy
dependence of the dichroism (kz dependence).
While the orbital pseudospin reconstruction presented

here is not perfect and would require more theory input to
improve the photoemission matrix elements, it demon-
strates that the different dichroic observables are truly
independent and serve as a fingerprint of the Bloch wave
function. A theory that does not include the correct Wannier
orbitals or TB Hamiltonian will not yield to the correct
phase of the photoemission matrix elements and thus the
experimental dichroism in ARPES (LDAD, CDAD, and
FDAD), even though the band structure might match. This
sensitivity is also expected to be pronounced in multiband
systems. Similarly, as underpinned by the controversy
about the Dirac semimetal candidate Cd3As2 [67,68],
standard ARPES alone cannot always distinguish different
topological states. The joint experimental and theore-
tical machinery that we introduced is an important step
to bridge this gap. The combination of our novel dichroic
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observables—FDAD—and theory can be applied to solve
open questions about the detailed (topological) nature of
electronic structures of some solids, which are still under
debate, e.g., 1T’-WTe2 [69], topological metals without
gaps [67,68,70], or light-induced topological phase tran-
sitions in graphene and Weyl semimetals [59,71].
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APPENDIX A: ANGLE-RESOLVED
PHOTOEMISSION SPECTROSCOPY

The angle-resolved photoemission spectroscopy experi-
ments were performed at the Fritz Haber Institute of the
Max Planck Society. We used a home-built optical para-
metric chirped-pulse amplifier (OPCPA) delivering
30 μJ=pulses (800 nm, 30 fs) at a 500-kHz repetition rate
[72]. The second harmonic of the OPCPA output (400 nm)
is used to drive high-order harmonic generation (HHG)
by tightly focusing (15-μm FWHM) laser pulses onto a
thin and dense argon gas jet, using a perforated focusing
mirror (f ¼ 100 mm) with a 1.5-mm-hole diameter. The
extremely nonlinear interaction between the laser pulses

and the argon atoms leads to the generation of a comb of
odd harmonics of the driving laser, extending up to the 11th
order. Because the XUV harmonics are generated using an
annular driving beam, the copropagating fundamental
(400 nm) can be separated from the XUV harmonic beam
using a spatial filter (iris) in the far field. Using this
geometry, one can avoid the typically used reflection onto
a silicon wafer at Brewster’s angle to filter out the energy of
the fundamental driving laser, which only works for
p-polarized light. Thus, the annular beam HHG scheme
allows us to continuously rotate the polarization of the
XUV by simply rotating the polarization of the 400 nm in
front of the HHG chamber using a λ=2 wave plate. Next, a
single harmonic (7th order, 21.7 eV) is isolated by
reflection off a focusing multilayer XUV mirror and
transmission through a 400-nm-thick Sn metallic filter.
A photon flux of up to 2 × 1011 photons=s at the sample
position is obtained (110 meV FWHM) [41]. The bulk
WSe2 samples are handled by a 6-axis manipulator (SPECS
GmbH) and cleaved at a base pressure of 5 × 10−11 mbar.
The data are acquired using a time-of-flight momentum
microscope (METIS1000, SPECS GmbH), allowing us to
detect each photoelectron as a single event and as a function
of the XUV linear polarization angle (θ) [42,73].

APPENDIX B: INTENSITY MODULATION AND
PHASE DEPENDENCE

For the experimental geometry displayed in Fig. 1(a), we
can express the θ-dependent polarization vector as
eðθÞ ¼ cos θep þ sin θes; the unit vectors with respect to
the s (p) polarization, es (ep), are defined by es ¼ ey and
ep ¼ cos βex − sin βez, where er (r ¼ x, y, z) stands
for the corresponding unit vector and where β ¼ 65° is
the angle of incidence. The photoemission matrix element
MðE;k; θÞ ¼ hk; EjeðθÞ · r̂jψkαi is then decomposed into
the s and p contributions: MðE;k; θÞ ¼ cos θMpðE;kÞþ
sin θMsðE;kÞ.
From Fermi’s golden rule (1), we obtain the intensity

IðE;k; θÞ ¼ j cos θMpðE;kÞ þ sin θMsðE;kÞj2gðE;kÞ;
ðB1Þ

where gðE;kÞ denotes the energy conservation term (in
practice, a broadened Dirac delta function). For brevity, we
drop the arguments ðE;kÞ in this Appendix. Squaring the
complex matrix element in Eq. (B1) and using trigono-
metric identities, we obtain

IðE;k; θÞ ¼ gðE;kÞðAþ B cos½2θ −ΦÞ�Þ; ðB2Þ

where A ¼ 1
2
ðjMsj2 þ jMpj2Þ,

B ¼ 1

2
½ðjMpj2 − jMsj2Þ2 þ 4Re½M�

pMs�2�1=2;
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and

tanΦ ¼ 2
Re½M�

sMp�
jMsj2 − jMpj2

:

To see how the phase of the matrix elements enters, we
introduce Ms;p ¼ jMs;pjeiϕs;p , x ¼ jMsj=jMpj. In terms of
these quantities, the phase Φ is determined by

tanΦ ¼ 2 cosðϕp − ϕsÞ
x

1 − x2
: ðB3Þ

From Eq. (B3), we see that the phase Φ is determined
by (i) the relative strength of the photoemission in the s and
p directions, respectively, and (ii) the phase difference
ϕp − ϕs. The phase difference is particularly sensitive to
the phase of the initial state (including the orbital character
and hybridization), thus establishing a connection between
the Bloch wave function and the phase shift Φ.

APPENDIX C: DETAILS ON THE
THEORETICAL MODELING

1. Tight-binding model

The electronic structure is described by the three-band
tight-binding (TB) model from Ref. [50] comprising the
jdz2i, jdx2−y2i and the jdxyi orbitals at the tungsten sites. For
convenience, we perform the rotation to the magnetic basis,
using the jdz2i (magnetic quantum number m ¼ 0) and the
jd�2i (magnetic quantum number m ¼ �2) as basis func-
tions. Using theWannier representation (3), the Bloch wave
function of the top valence band α ¼ v (omitting the spin
state) is then approximated as

ψkαðrÞ ¼
1

N

X
m¼0;�2

CmðkÞ
X
R

eik·Rwmðr −RÞ; ðC1Þ

where the coefficients CmðkÞ are obtained from the
corresponding eigenvector of the TB Hamiltonian HðkÞ.
The hybrid orbital for the top valence band is obtained from

ϕkðrÞ ¼
X

m¼0;�2

CmðkÞwmðrÞ: ðC2Þ

The Wannier functions wmðrÞ are approximated by the
simple atomic orbitals wmðrÞ ¼ RmðrÞY2;mðr̂Þ [Yl;mðr̂Þ
denotes the spherical harmonics]. We use the same radial
dependence as in Ref. [35], where the TB model and
parametrization of the orbitals have been benchmarked
against first-principle calculations. Figure 2(b) shows the
Wannier orbitals wmðrÞ used for all calculations, while
Fig. 2(c) depicts the hybrid orbital constructed from
Eq. (C2). The bands of the TB model have been shifted
to match the ionization potential I:P: ¼ 4.87 eV [74].

2. Photoemission matrix elements

In general, the photoemission matrix element with
respect to the polarization e in the dipole gauge is de-
fined as

MðE;kÞ ¼ hk; Eje · r̂jψkαi ¼ −i · ehχ̃k;Ej∇kukαi: ðC3Þ

Here, ukαðrÞ ¼ e−ik·rψkαðrÞ is the cell-periodic Bloch
function, while χ̃k;EðrÞ ¼ e−ik·rhrjk; Ei denotes the cell-
periodic photoelectron state. Note that the dipole operator r̂
is, in principle, ill defined (unless expressed in terms of
Wannier functions [51]). However, both the initial and the
final states are eigenstates of the same Bloch Hamiltonian,
which allows us to define the dipole matrix element in
terms of the Berry connection [43,44]. We have exploited
this relation on the right-hand side of Eq. (C3). Inserting the
Wannier representation (C1) and using χ̃k;EðrþRÞ ¼
χ̃k;EðrÞ, the matrix element (C3) is found to comprise two
contributions MðE;kÞ ¼ MdipðE;kÞ þMwcðE;kÞ with

MdipðE;kÞ ¼
X
m

CmðkÞ
Z

dre−ik·rχ̃�k;EðrÞe · rwmðrÞ;

ðC4aÞ

MwcðE;kÞ ¼ −ie ·
X
m

∇kCmðkÞ
Z

dre−ik·rχ̃�k;EðrÞwmðrÞ:

ðC4bÞ
The first contribution captured by Eq. (C4a) shows local
dipole transitions, while the second contribution [Eq. (C4b)]
describes a moving Wannier center as a function of k. The
latter term becomes important if the Blochwave function has
amomentum-dependent weight on separate atoms in the unit
cell. Since the wave function of the top valence band is
accurately reproduced by theWannier representation (C1) in
the subspace of theWdorbitals,MwcðE;kÞ can beneglected.
We performed test calculations to corroborate this argument.
The final states are approximated by plane waves (PW)

in what follows, i. e., χ̃k;EðrÞ ≈ e−ik⊥z. The out-of-plane
momentum p⊥ is determined by the kinetic energy of the
final state E ¼ k2=2þ k2⊥=2. In general, the PW approxi-
mation is known for being qualitatively accurate for photon
energies in the XUV regime [26,75], albeit only a case-by-
case check ensures the predictive power. For WSe2, we
have benchmarked the PW approximation against first-
principle calculations in Ref. [35].
For convenience, we also introduce the atomic photo-

emission matrix elements

Ms;p
m ðE;kÞ ¼

Z
dre−ik·re−ik⊥zes;p · rwmðrÞ; ðC5Þ

which we evaluate by expanding the plane-wave final state
in terms of spherical harmonics. The matrix elements (C5)
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are defined for s (p) polarized light (see Appendix B).
From the atomic matrix elements (C5), we can calculate the
matrix elements with respect to the initial Bloch state by

Ms;pðE;kÞ ¼
X

m¼0;�2

CmðkÞMs;p
m ðE;kÞ: ðC6Þ

All quantities discussed in the main text—circular dichro-
ism and the Fourier signal—can be expressed in terms of
the matrix elements (C6).
Representing the dipole operator in terms of the position

operator r̂ (dipole gauge) has several advantages over
choosing the momentum operator p̂ (velocity gauge),
which are discussed in the Supplemental Material [52].

APPENDIX D: INTENSITY MODULATION
IN THE ATOMIC LIMIT

It is instructive to compare the modulation of the
photoemission intensity upon varying θ for the underlying
orbitals separately. To this end, we computed the orbital-
resolved intensity

ImðE;k; θÞ ¼ j cos θMp
mðE;kÞ þ sin θMs

mðE;kÞj2gðE;kÞ;
ðD1Þ

where we inserted the atomic matrix elements (C5). Any
interference between the orbitals is thus absent in Eq. (D1).
Figure 7 shows the orbital-resolved valley-integrated

intensity as a function of the polarization angle θ at
E − EVBM ¼ −0.2 eV (there is only a very weak depend-
ence on E arising from the out-of-plane component k⊥).
The dependence for the d�2 orbitals can be understood
intuitively: They are oriented in the x-y plane; hence, the
photoemission probability is maximized if the polarization
is pointing out of the plane (θ ¼ 0, p-polarized light). This
behavior is opposite for the jdz2i orbital, albeit there is a
phase shift arising from the geometry. The sign of the
modulation associated with the jdz2i orbital is opposite at
the K and K0 points, while there is no change for jd�2i.

Furthermore, the intensity modulation is more pronounced
for the jdz2i orbital. We also note that there is no change
upon rotation by 60°. We conclude that the intensity
modulation observed in the experiment (Fig. 3) is due to
the interplay of jdz2i and jd�2i orbitals, and the change of
the Bloch state upon rotation manifests as a phase shift.

APPENDIX E: RECONSTRUCTION OF THE
ORBITAL PSEUDOSPIN

The orbital pseudospin completely determines the photo-
emission signal, including the circular dichroism, the linear
dichroism, and the Fourier signal. Close to the valence band
maximum (k ≈ K or k ≈ K0), the hybrid orbital (C2) is
well approximated by jϕK;K0

k i¼C0ðkÞjdz2iþC�2ðkÞjd�2i.
Hence, the Bloch state (C1) simplifies to

jψK;K0
k i ≈ 1

N

X
R

eik·RðC0ðkÞw0ðr −RÞ

þ C�2ðkÞw�2ðr −RÞÞ: ðE1Þ

The corresponding orbital pseudospin is defined by
σK;K

0
ν ðkÞ ¼ hψK;K0

kα jσ̂νjψK;K0
kα i. The one-to-one correspon-

dence of the complex coefficients CmðkÞ and the orbital
pseudospin is given by

σK;K
0

x ðkÞ ¼ 2Re½C�
�2ðkÞC0ðkÞ�; ðE2aÞ

σK;K
0

y ðkÞ ¼ 2Im½C�
�2ðkÞC0ðkÞ�; ðE2bÞ

σK;K
0

z ðkÞ ¼ jC�2ðkÞj2 − jC0ðkÞj2: ðE2cÞ

Now, we relate the photoemission signal to the pseudospin
via Eq. (E2). We start from the circular dichroism, which is
given by [cf. Eq. (5) in the main text]

ICDðE;kÞ ¼ −2Im½ðMsðE;kÞÞ�MpðE;kÞ�gðE;kÞ: ðE3Þ

Here, gðE;kÞ contains the energy conservation. In theory,
this factor reduces to a Dirac delta function, but for
practical calculations, we replace it by a Gaussian function
when calculating the CDAD (E3) (or any other intensity).
Inserting Eq. (C6) and expressing the complex products

of the coefficients in terms of the pseudospin via Eqs. (E2),
one obtains the linear expression

ICDðE;kÞ ¼
� X

ν¼1;2;3

AK;K0
CD;νðE;kÞσK;K

0
ν ðkÞ þ BK;K0

CD ðE;kÞ
�

× gðE;kÞ: ðE4Þ

The coefficients AK;K0
CD;ν and the source terms BK;K0

CD ðE;kÞ are
defined in the Supplemental Material [52].

K K

FIG. 7. Valley-integrated orbital-resolved photoemission inten-
sity ImðθÞ (analogous to Fig. 3) around the K and K0 points,
respectively [same as in Fig. 3(a)], for m denoting the d�2 or the
dz2 orbital. The intensity has been normalized to the respective
maximum.
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The expression (E4) is generic—any intensity can be
expressed in a similar linear form with respect to the
pseudospin. Following the analogous route for the real part
of the Fourier signal, we find

Re½I2ðE;kÞ� ¼
� X

ν¼1;2;3

AK;K0
R;ν ðE;kÞσK;K0

ν ðkÞ þBK;K0
R ðE;kÞ

�

× gðE;kÞ: ðE5Þ

Finally, we express the imaginary part of the Fourier
signal as

Im½I2ðE;kÞ� ¼
� X

ν¼1;2;3

AK;K0
I;ν ðE;kÞσK;K0

ν ðkÞ þBK;K0
I ðE;kÞ

�

× gðE;kÞ: ðE6Þ

The terms in Eqs. (E5) and (E6) are defined in the
Supplemental Material [52].
Summarizing Eqs. (E4)–(E6), we can express the three

quantities ICDðE;kÞ, Re½I2ðE;kÞ�, and Im½I2ðE;kÞ� as
linear functions of the pseudospin, which can conveniently
be cast into the system of equations

2
64

ICDðE;kÞ
Re½I2ðE;kÞ�
Im½I2ðE;kÞ�

3
75 ¼

2
664
AK;K0

CD;xðE;kÞ AK;K0
CD;yðE;kÞ AK;K0

CD;zðE;kÞ
AK;K0

R;x ðE;kÞ AK;K0
R;y ðE;kÞ AK;K0

R;z ðE;kÞ
AK;K0

I;x ðE;kÞ AK;K0
I;y ðE;kÞ AK;K0

I;z ðE;kÞ

3
775
2
64
σK;K

0
x ðkÞ

σK;K
0

y ðkÞ
σK;K

0
z ðkÞ

3
75þ

2
64
BK;K0
CD ðE;kÞ

BK;K0
R ðE;kÞ

BK;K0
I ðE;kÞ

3
75; ðE7Þ

where we have abbreviated AK;K0
r;ν ðE;kÞ ¼ gðE;kÞAK;K0

r;ν ×
ðE;kÞ and BK;K0

r ðE;kÞ¼gðE;kÞBK;K0
r ðE;kÞ (r¼ CD, R, I).

To construct the coefficient matrix AK;K0
r;ν ðE;kÞ and the

source term BK;K0
r ðE;kÞ, only two ingredients are required:

(i) the atomic matrix elements (C5) and (ii) the energy
conservation gðE;kÞ. The atomic matrix elements are
mostly determined by the orbital symmetry (angular
momentum), which can be guessed from the crystal
structure or obtained from first principles. The energy
conservation factor gðE;kÞ can be extracted from exper-
imental spectra by fitting a Gaussian function as a function
of E at every momentum point k.
With all terms (except of the pseudospin vector) on the

right-hand side of Eq. (E7) determined, Eq. (E7) can be
solved for σK;K

0
ν ðkÞ. For a fixed energy E, this is possible

for all k with a sufficient signal. The determinant of the
coefficient matrix AK;K0

r;ν ðE;kÞ is proportional to gðE;kÞ;
thus, we solve Eq. (E7) using only momenta obeying
gðE;kÞ > ϵ. Normalizing gðE;kÞ to 1, we fix ϵ ¼ 10−1.
We have tested the self-consistency within the theory by

calculating the left-hand side of Eq. (E7) and solving for the
pseudospin. Comparing the thus-obtained solution to the
directly calculated pseudospin [via Eq. (E2)] yields per-
fect agreement. We repeated the procedure adding small
random noise to the input signal; the reconstructed pseu-
dospin is still in excellent agreement with the calculated
texture.
For reconstructing the pseudospin from experimental

data—as presented in the main text—a direct solution of
Eq. (E7) in terms of matrix inversion gives rise to artifacts;
most importantly, the normalization of the pseudospin

σK;K
0

x ðkÞ2 þ σK;K
0

y ðkÞ2 þ σK;K
0

z ðkÞ2 ¼ 1 ðE8Þ

is violated. Therefore, we switch to the more least-square
fitting algorithm. Furthermore, we constrain the solution by
the normalization condition (E8) by adding a penalty term,
which is chosen to ensure Eq. (E8) is obeyed up to 10−3.
Following this procedure yields the pseudospin textures
presented in the main text.
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