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We revisit the dissipative approach to producing and stabilizing spin-squeezed states of an ensemble of
N two-level systems, providing a detailed analysis of two surprising yet generic features of such protocols.
The first is a macroscopic sensitivity of the steady state to whether N is even or odd. We discuss how this
effect can be avoided (if the goal is parity-insensitive squeezing) or could be exploited as a new kind of
sensing modality to detect the addition or removal of a single spin. The second effect is an anomalous
emergent long timescale and a “prethermalized” regime that occurs for even weak single-spin dephasing.
This effect allows one to have strong spin squeezing over a long transient time even though the level of spin
squeezing in the steady state is very small. We also discuss a general hybrid-systems approach for
implementing dissipative spin squeezing that does not require squeezed input light or complex multilevel
atoms, but instead makes use of bosonic reservoir-engineering ideas. Our protocol is compatible with a
variety of platforms, including trapped ions, nitrogen-vacancy defect spins coupled to diamond
optomechanical crystals, and spin ensembles coupled to superconducting microwave circuits.
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I. INTRODUCTION

Among the most sought-after states in quantum metrol-
ogy are spin-squeezed states, highly entangled states of
spin-1=2 ensembles that enable parameter sensing with a
sensitivity better than the standard quantum limit, even
reaching fundamental Heisenberg-limit scaling [1,2]. The
standard approach for producing these states is to unitarily
evolve an initial product state under a collective spin-spin
interaction Hamiltonian. While many interactions are
possible, the most widely studied one is the one-axis-twist
(OAT) Hamiltonian [1], which has been realized in a
number of groundbreaking experiments [3–6]. It unfortu-
nately is not capable of achieving Heisenberg-limited
squeezing even in the ideal case [2]. An alternative, more
complex interaction Hamiltonian is the two-axis-twist
Hamiltonian [1,7–10], which, while more resource inten-
sive, allows Heisenberg-limited scaling to be achieved.
While easy to understand, tailored unitary evolution is

not the only approach to spin squeezing. An alternative is to
use the general strategy of reservoir engineering [11],
where tailored dissipation is exploited to both produce

and stabilize a nontrivial state of interest, i.e., a spin-
squeezed state (see Fig. 1). The dissipative approach in
principle has several advantages: The spin-squeezed state is
stabilized in the steady state (as opposed to just prepared at
a specific instant of time), the stabilization is largely
insensitive to the initial state of the ensemble, and one
can achieve Heisenberg-limited scaling. The dissipative
stabilization of bosonic squeezed states has been studied
extensively both theoretically [12–14] and experimentally
[15–20]. Corresponding schemes for spin squeezing have
also been studied theoretically. The earliest works analyzed
schemes where atoms are directly illuminated with
squeezed light. Specifically, the cases of two-level atoms
[21–23] and V-type multilevel atoms [24] were studied.
More recently, it was shown theoretically that the same
effective dissipative dynamics could be realized by using
Raman processes in driven multilevel atoms coupled to a
lossy cavity [9,25].
In this work, we revisit the dissipative approach to spin

squeezing. Our work complements previous studies both
by discussing a powerful alternative method for imple-
menting these schemes, as well as describing surprising
phenomena that have not been fully analyzed in the past.
In terms of implementation, we analyze a very general
hybrid-systems approach that harnesses bosonic dissipative
squeezing. We consider a spin ensemble which is reso-
nantly coupled to a cavity mode (via a standard Tavis-
Cummings [26] interaction), which is in turn coupled
to an effective squeezed reservoir (see Fig. 1). Previous
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proposals [22,24] suggested implementing this squeezed
reservoir by driving the cavity with squeezed light, an
approach which is limited by losses associated with the
transport and injection of an externally prepared optical
squeezed state. We show that there are also simpler
methods to generate the effective squeezed reservoir, which
can be implemented using only classical optical or micro-
waves drives by harnessing existing dissipative bosonic
squeezing schemes. Specifically, we consider coupling the
cavity to an auxiliary lossy degree of freedom (two-level
system or bosonic mode), which is driven simultaneously
with imbalanced red-detuned and blue-detuned sideband
drives. Such schemes produce an effective squeezed dis-
sipator for the cavity and have been experimentally
implemented in a wide variety of platforms, including
optomechanics [15], trapped ions [16], and superconduct-
ing circuits [20]. Since only classical radiation is required,
this approach is insensitive to the aforementioned transport
and insertion losses of squeezed radiation. We demonstrate
that this hybrid-systems approach to dissipative spin
squeezing can reach the Heisenberg limit and also outper-
form OAT in the presence of single-spin T1 decay. Note that
unlike the Raman scheme of Ref. [25], which requires
atoms with a specific four-level configuration, the approach
here requires only standard two-level atoms, making it
compatible with a wide variety of systems [including
possibly solid-state systems such as ensembles of nitro-
gen-vacancy (NV) defect spins in diamond [27] ].
Our work also analyzes surprising phenomena that were

not fully discussed previously. Perhaps most striking is the
extreme sensitivity of dissipative spin squeezing to the
parity of the total number of spins N: The steady state is
macroscopically different for N spins versus N þ 1 spins.
While this effect was implicitly contained in the results
of Agarwal and Puri [21,22] (see Sec. VIII for a detailed
discussion of the relation to previous works), we provide
here a fully qualitative and quantitative analysis. We
discuss how this effect can be avoided (if one wants strong
spin squeezing independent of parity) and how it could
also be exploited as a new kind of sensing modality.
We also make a surprising connection to a nondissipative

many-body system, the antiferromagnetic Lipkin-
Meshkov-Glick (LMG) model [28,29].
A second surprising and new phenomenon we describe is

the interplay between collective dissipative-spin-squeezing
dynamics and noncollective single-spin dephasing. As we
show, this results in an extremely long relaxation timescale
in the system (i.e., inverse dissipative gap) which grows
with system size N. At a fundamental level, the effect has
parallels to prethermalization behavior observed in weakly
nonintegrable systems (see, e.g., Refs. [30,31]). At a
practical level, we show that even infinitesimally weak
single-spin dephasing dramatically impairs the steady-state
spin squeezing to at most −3 dB. However, we also show
that this need not be a limitation: Large amounts of
squeezing are possible in the prethermalized regime, i.e.,
at transient times parametrically shorter than the timescale
required to reach the steady state, or by deliberately adding
very small levels of single-spin relaxation. This effect may
allow one to quickly generate strong squeezing even in
parameter regimes that had previously been discarded
based on the low level of steady-state squeezing.
Finally, we analyze the impact of imperfections in the

reservoir-engineering process that lead to the engineered
squeezed dissipation having a nonzero impurity and effec-
tive thermal occupancy. We reveal a striking sensitivity of
spin squeezing to such imperfections if the squeezing
strength is made too large.
The remainder of this paper is organized as follows:

In Sec. II, we outline the key idea behind the standard
approach to dissipative spin squeezing as well as summa-
rize our generic protocol. In Sec. III, we explore the even-
odd effect and briefly discuss connections to sensing.
In Sec. IV, we carefully analyze the performance of our
dissipative-spin-squeezing protocol in the presence of
single-spin dissipation, showing that the steady-state
squeezing it generates can outperform the transient squeez-
ing produced by standard OAT. In Sec. V, we discuss
the emergence of anomalously slow relaxation times, and
we introduce a dynamical-decoupling protocol to cancel
the effect of inhomogeneous broadening. In Sec. VI, we
analyze imperfections in the reservoir-engineering process,
while in Sec. VII, we discuss in more detail how our
protocol could be implemented in a variety of different
physical systems. In Sec. VIII, we review previous works
on dissipative spin squeezing and discuss their relation to
our new findings. The conclusions and a summary are
presented in Sec. IX.

II. MODEL AND THE BASIC DISSIPATIVE
SQUEEZING PROTOCOL

The reservoir-engineering approach to spin squeezing
requires one to construct a nontrivial dissipative environ-
ment for the spins. In this section, we review the idealized
spin-only quantum master equation that describes the
needed dissipative dynamics [21,22]. We then present a

FIG. 1. Schematic representation of a generic approach to
generate dissipative spin squeezing by coupling spins to a
bosonic mode that interacts with a squeezed reservoir. The
squeezing rate experienced by the cavity is governed by the
parameter κsqz, while g represents the spin-cavity coupling
strength. Limiting factors to the protocol’s performance are the
intrinsic photon-loss rate κint, the local spin-relaxation rate γrel,
and the local spin-dephasing rate γϕ.

GROSZKOWSKI, KOPPENHÖFER, LAU, and CLERK PHYS. REV. X 12, 011015 (2022)

011015-2



more realistic model that corresponds to the generic,
experimentally friendly hybrid-systems setup sketched in
Fig. 1, where a spin ensemble is coupled to a cavity (or
other bosonic mode), which is in turn coupled to an
engineered squeezed reservoir.
Throughout this paper, we quantify the amount of

metrologically useful spin squeezing (i.e., as relevant to
a standard Ramsey measurement) using the Wineland
parameter [2,32]. It is defined as

ξ2R ≡ N
hΔŜ2⊥i
hŜi2 ; ð1Þ

where hΔŜ2⊥i is the minimum variance in a direction
perpendicular to the direction of the mean of the collective
spin, and Ŝ≡ ðŜx; Ŝy; ŜzÞ is the vector of spin operators.

A. Idealized spin-only model

We consider the following quantum master equation
acting on the Hilbert space of N spin-1=2 particles:

_̂ρ ¼ ΓD½Σ̂½r��ρ̂; ð2Þ

where we introduce the operator

Σ̂½r� ¼ coshðrÞŜ− − sinhðrÞŜþ: ð3Þ

Here, Γ is the coupling rate to the engineered reservoir, r
characterizes the squeezing strength, and D½ẑ�ρ̂ ¼ ẑ ρ̂ ẑ† −
fẑ†ẑ; ρ̂g=2 is the standard Lindblad dissipative superoper-
ator. We also introduce the collective spin operators Ŝ� ¼
Ŝx � iŜy with Ŝk ¼ 1

2

P
N
j¼1 σ̂

ðjÞ
k for k ∈ fx; y; zg, where σ̂ðjÞk

denotes a standard Pauli matrix acting on the jth spin. Here,
Σ̂½r� is analogous to a standard bosonic Bogoliubov
annihilation operator, where bosonic raising and lowering
operators are replaced by Ŝþ and Ŝ−, respectively. Similar
to reservoir-engineered bosonic squeezing [13], the desired
squeezed state will correspond to the vacuum of this
operator, and the squeezing parameter r characterizes the
amount of squeezing e−2r of the vacuum fluctuations.
To be more explicit, Refs. [21,22] showed that, for even

N, Eq. (2) has pure steady states that correspond to zero-
eigenvalue eigenstates (i.e., “dark states”) of Σ̂½r�,

Σ̂½r�jψdk½j; r�i ¼ 0: ð4Þ

Since Eq. (2) conserves the total angular momentum j,
there is a dark state for each allowed value of j. Each
jψdk½j; r�i has a mean spin polarization in the z direction
and exhibits squeezing (antisqueezing) of Ŝy (Ŝx). The
choice of the squeezing axis is determined by the relative
phase between the Ŝþ and Ŝ− terms in Eq. (3), which is
chosen here to be −1. If the system is initialized in an

arbitrary state with a definite value of j, the dissipative
dynamics will relax the system to a dark state in this
subspace. For states in the maximum-angular-momentum
subspace j ¼ jmax ¼ N=2, the relaxation timescale (i.e.,
the inverse dissipative gap of the Liouvillian) is ∝1=NΓ;
see Sec. III. Note that the dark states with j < jmax are not
unique, since the corresponding angular-momentum sub-
spaces are degenerate [33]. However, if the initial state and
the dynamics are invariant under permutation of spins, the
system will explore only permutationally invariant states
[34], and there is a unique dark state for each j subspace;
see Appendix E 1.
As detailed in Appendix D, the dark states can be

expressed in the form [22,23]

jψdk½j; r�i ¼ N ðrÞeθŜz jj; 0iy; ð5Þ

where jj; miy denotes an eigenstate of Ŝ2 and Ŝy, N ðrÞ is a
normalization constant, and we define θ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðrÞp

.
In terms of the eigenstates jj; mi of Ŝ2 and Ŝz, these states
read as follows:

jψdk½j; r�i ¼
Xj
m¼−j

cðjÞm ðrÞjj; mi; ð6Þ

where every second coefficient is nonzero,

cðjÞ−jþ2kðrÞ ¼
�
j

k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2j

2k

�−1
s

tanhkðrÞcðjÞ−jðrÞ; ð7Þ

for k ∈ f0;…; jg, and all other coefficients vanish,

cðjÞ−jþ2kþ1ðrÞ ¼ 0 for k ∈ f0;…; j − 1g. The coefficient

cðjÞ−jðrÞ serves as a normalization constant.
The parameter r controls the amount of squeezing in the

steady state. If we initialize the system in an arbitrary state
with j ¼ N=2, the resulting pure steady state is squeezed,
with ξ2R → 2=ðN þ 2Þ in the large-r limit. This corresponds
to Heisenberg-limited spin squeezing, and thus outper-
forms both the standard quantum limit (i.e., ξ2R ¼ 1) as well
as the maximum squeezing possible with an ideal OAT
interaction (ξ2R ∝ 1=N2=3). Note that a standard leading-
order Holstein-Primakoff approximation could be used to
map Eq. (2) to a bosonic squeezing dissipator; however,
this would not let one understand the ultimate saturation
of squeezing (with increasing r) to the Heisenberg-
limited value.

B. Hybrid-systems approach to dissipative
spin squeezing

As we note in the Introduction, previous studies have
analyzed methods for realizing the dissipative dynamics in
Eq. (2). These methods either required direct driving of
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spins with squeezed light [22,24] (which is experimentally
challenging) or the use of Raman processes in structured
four-level atoms [9,25] (which is not applicable to generic
two-level systems). We present here an alternative generic
method that takes a hybrid-systems approach: A cavity (or
other bosonic mode) is coupled both to an ensemble of two-
level systems, as well as to an engineered bosonic squeezed
reservoir (see Fig. 1). As discussed, such a bosonic
squeezed reservoir can be realized using only classical
driving fields and has been implemented in a variety of
different experiments [15,16,20]. We discuss specific
implementation strategies of this general approach in
Sec. VII; here, we present the general structure of the
overall quantum master equation.
To this end, we consider a spin ensemble that is

resonantly coupled to a bosonic mode (with lowering
operator â). In the rotating frame, the Hamiltonian is

Ĥ ¼ gðâ†Ŝ− þ âŜþÞ; ð8Þ

where g is the spin-cavity coupling strength. We further
assume that this mode is coupled both to an engineered
squeezed reservoir (with coupling rate κsqz and squeezing
parameter r) as well as subject to unwanted zero-temperature
loss (at rate κint). The quantum master equation is then

_̂ρ ¼ −i½Ĥ; ρ̂� þ κsqzD½coshðrÞâþ sinhðrÞâ†�ρ̂
þ κintD½â�ρ̂þ γϕ

2

X
k

D½σ̂ðkÞz �ρ̂þ γrel
X
k

D½σ̂ðkÞ− �ρ̂: ð9Þ

We also include standard single-spin decay and dephasing
dissipators (at rates γrel and γϕ, respectively).
At a heuristic level, the cavity serves as a transducer

that allows the spins to inherit the squeezed fluctuations
produced by the bosonic squeezed reservoir. As the
squeezed reservoir is engineered, we treat r and κsqz as
tuneable parameters that can be optimized. In contrast, we
take the coupling g and the unwanted dissipation (i.e., κint,
γϕ, and γrel) to be fixed. This then motivates us to introduce
single-spin cooperativities ηk and collective cooperativities
Ck via

Ck ≡ N
4g2

κintγk
≡ Nηk; ð10Þ

where k ∈ fϕ; relg. The goal is to understand the optimal
squeezing possible for a fixed value of Ck. As we show in
Sec. IV, in the case where single-spin relaxation dominates
over dephasing, the optimized dissipative scheme achieves
steady-state squeezing scaling as ξ2R ∝ 1=

ffiffiffiffiffiffiffi
Crel

p
. This is

significantly better than the optimized transient OAT
squeezing in this regime, which scales only as ξ2R ∝
1=ðCrelÞ1=3 [35].

To connect our setup to the simpler quantum master
equation (2), we consider the regime where the conditionffiffiffiffi
N

p
g ≪ κint þ κsqz holds, and we adiabatically eliminate

the cavity â. We obtain (see Appendix A)

_̂ρ ¼ ΓD½Σ̂½r��ρ̂þ γcollD½Ŝ−�ρ̂
þ γϕ

2

X
k

D½σ̂ðkÞz �ρ̂þ γrel
X
k

D½σ̂ðkÞ− �ρ̂; ð11Þ

where we define

Γ ¼ 4g2

ðκsqz þ κintÞ2
κsqz ð12Þ

and

γcoll ¼
4g2

ðκsqz þ κintÞ2
κint: ð13Þ

We see that the internal loss of the cavity results in a
collective relaxation process for the spin ensemble; this is
similar to OAT-based protocols that are derived using a
strongly detuned cavity-spin ensemble system (in contrast
to the resonant regime considered here).

III. THE EVEN-ODD EFFECT

A. Basic effect

A striking feature of the purely dissipative dynamics
described by Eq. (2) is an extreme sensitivity to the parity
of the number N of spins: The steady state can be
macroscopically different for N spins vs N þ 1 spins.
While early work noted that the form of the steady state
depends on parity [21,22], subsequent studies of achievable
squeezing focused on the even-N case [23,25]. Our work
reveals important new aspects of this parity effect. We show
that by appropriate parameter tuning, one can avoid this
effect, allowing steady-state squeezing that is near
Heisenberg limited regardless of the parity of N. We also
discuss a different regime where the even-odd effect could
be used for a new sensing modality based on the macro-
scopic sensitivity to spin-number parity. Crucially, we show
that there is no long timescale associated with the emer-
gence of this sensitivity to the addition or removal of a
single spin. Note that the even-odd effect in dissipative
spin squeezing has no counterpart in bosonic dissipative
squeezing.
We start with a simple intuitive picture that explains

why the steady state of Eq. (2) is so sensitive to the parity
of N. Recall that pure bosonic squeezed states are fully
paired: They are superpositions of states having even
photon numbers only [36]. A similar structure holds in
our spin problem. We can think of the fully polarized
state jj; m ¼ −ji as being the “vacuum” and a state
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jj; m ¼ −jþ qi as having q excitations (i.e., q flipped
spins). We thus see directly from Eq. (7) that, like bosonic
squeezed states, the spin dark states jψdk½j; r�i also involve
only even numbers of excitations q.
Formally, in both the bosonic and spin problem, this

paired structure leads to destructive interference that makes
the state dark. When Σ̂½r� acts on a paired state, it creates a
state having only an odd number of excitations. For a given
odd excitation number qodd, achieving a dark state requires
destructive interference between the two pathways leading
to qodd: Ŝ− could have acted on the state with ðqodd þ 1Þ
excitations, or Ŝþ could have acted on the state with
ðqodd − 1Þ excitations. These destructive interference con-
ditions can be directly used to derive the coefficients in
Eq. (7) that determine jψdk½j; r�i. This structure is shown
schematically in Fig. 2(a).
With this picture in mind, it is easy to see why we cannot

have a pure dark state for odd N. In this case, the maximum
number of excitations qmax is odd. As such, the needed
destructive interference is impossible to achieve. Starting
with a fully paired state, we can create a state with qmax

excitations by acting with Ŝþ on jj;−jþ ðqmax − 1Þi.
However, there is no complementary Ŝ− process, as there
is no state with qmax þ 1 excitations. The best one can do
then is to construct fully paired states that are only
approximately dark due to this incomplete destructive
interference [see Fig. 2(b)].
The net result of this “frustration” is dramatic: For odd N

and large r, the dissipative steady state of Eq. (2) is impure
and, moreover, exhibits no spin squeezing for large r.

More specifically, for odd N, the steady-state squeezing
diverges in the large-r limit, while the purity tends
asymptotically to 1=3. This behavior is shown explicitly
in Fig. 3. One also sees that, for modest r, there is no
appreciable even-odd effect: The odd-N steady state is
almost pure and has the same squeezing as the even-N case.
This also follows from our heuristic picture: For small
enough r, there is very little probability to have a large
number of “excitations,” and hence, one is almost insensi-
tive to the frustration resulting from the cutoff on the
maximum excitation number.
While our discussion focuses on the ideal quantum

master equation (2), the even-odd effect persists even in
the presence of single-spin relaxation and dephasing [as
described by Eq. (11) in the limit κint → 0]. As we discuss
in Appendix D, observing the even-odd effect in the steady
state requires the single-spin cooperativities ηrel and ηϕ
defined in Eq. (10) to be order unity or larger.
Finally, we note that the even-odd effect discussed here

is distinct from the sensitivity to parity exhibited by
unitary evolution under an OAT Hamiltonian ĤOAT ¼ χŜ2x
[37–39]. The unitary evolution generated by ĤOAT for
a time π=2χ maps the initially fully polarized state
jN=2;−N=2i to Greenberger-Horne-Zeilinger states ori-
ented along orthogonal axes in phase space, depending on
the parity of N. This coherent effect results in a strong
sensitivity to parity at a particular instant in time; in
contrast, in our system, we have a dissipative effect where
the sensitivity manifests itself in the steady state of the
system. Moreover, in our case, the even vs odd states are
not equivalent up to a rotation, but differ both in their purity
and the magnitude of their fluctuations.

(b)(a)

FIG. 2. Sketch of the steady state for (a) even N and (b) odd N.
The size of the black circles represents the population of a level
jj; mi. For even N, a pure dark state exists for any squeezing
parameter r because the jump operator Σ̂ leads to destructive
interference between adjacent levels (blue arrows) such that every
second level is unoccupied (dashed red lines). For odd N and
large r, the interference condition cannot be satisfied for all levels
(brown flashes) and the steady state is mixed. The two pure-state
contributions with largest statistical weight are sketched here.

FIG. 3. Properties of the steady state of Eq. (2) for N ¼ 200 vs
N ¼ 201 spins. For even N, the Wineland parameter (solid blue
line) converges to a Heisenberg-limited scaling (dash-dotted
black line) in the limit r → ∞. For odd N, the Wineland
parameter (dashed blue line) diverges if e2r ≫ N and its purity
(dash-dotted red line) approaches 1=3. Inset: minimum Wineland
parameter for even N (crosses) and odd N (dots) obtained at an
optimal squeezing strength ropt. The squeezed spin component is

always Ŝy.
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B. Parity-independent Heisenberg-limited squeezing

In most experimental situations, the even-odd effect will
be a nuisance: One aims for strong steady-state squeezing
without needing to controlN at the single-particle level. We
therefore derive a quantitative estimate on the maximum
squeezing parameter r that can be used without any parity
sensitivity. For small r, the system and its steady state are
well described by a Holstein-Primakoff approximation
[40]; one recovers bosonic squeezing physics [41], which
is independent of the parity of N. However, the correspon-
dence between bosonic squeezing and spin squeezing will
break down if the populations of the states jj; m ≈ ji
become nonzero. Using the steady-state occupation number
of the Holstein-Primakoff bosons hb̂†b̂iSS ¼ sinh2ðrÞ, one
can estimate that this breakdown happens if the condition
hb̂†b̂iSS ≈ N=2 holds. This yields the breakdown criterion

e2r ≳ N; ð14Þ

which provides an estimate for the maximum squeezing
parameter r possible with no even-odd effect.
While working with e2r ≪ N avoids parity effects, one

might worry that this constraint precludes ever reaching
Heisenberg-limited scaling of the steady-state spin squeez-
ing. This is not the case. As shown in the inset of Fig. 3, the
minimum Wineland parameter for odd N (obtained at a
squeezing parameter ropt, which depends on N) exhibits
Heisenberg-like scaling, and the spin squeezing differs only
by a constant prefactor approximately equal to 2.6 from the
maximum achievable spin squeezing of ξ2R;HL ¼ 2=ðN þ 2Þ
for even N, which is obtained in the limit e2ropt ≫ N.

C. Connections to the LMG model

Despite first appearances, the extreme even-odd effect
of our system is more than a nuisance. At a fundamental
level, the effect has a surprising connection to a seemingly
unrelated closed-system many-body model, the LMG
model [28]. To see this, recall that in a quantum trajectories
formulation of the master equation in Eq. (2), the evolution
of a state vector in the absence of quantum jumps is
governed by the non-Hermitian Hamiltonian ð−i=2ÞĤLMG,
where

ĤLMG ≡ Σ̂†ðrÞΣ̂ðrÞ ¼ e−2rŜ2x þ e2rŜ2y þ Ŝz: ð15Þ

ĤLMG is precisely the Hamiltonian of the anisotropic anti-
ferromagnetic LMG model [28], a generalized transverse-
field Ising model with all-to-all Ising couplings. For even N,
we are thus dissipatively stabilizing the many-body ground
states jψdk½j; r�i of the antiferromagneticLMGmodel [29,42]
and converge to one of them depending on the total angular
momentum j of the initial condition. Note that the physics
here has crucial differences from the more studied ferromag-
netic LMG model, which is also known to exhibit spin

squeezing in its ground state [43,44] (but has no simple
connection to a dissipative protocol).
Focusing on the case where N is odd and r > 0, ĤLMG is

positive and the steady state of Eq. (2) in a given total-
angular-momentum subspace j can be written as (see
Appendix D)

ρ̂ðjÞSS ¼ 1P2j
k¼0

1
λk

X2j
k¼0

1

λk
jψkihψkj; ð16Þ

where λk and jψki are the ordered eigenvalues and
eigenvectors of ĤLMG. We can thus directly connect the
properties of the odd-N steady state to the spectrum of the
LMG Hamiltonian. Consider first the limit r → 0, where
ĤLMG → Ŝ2 − Ŝ2z þ Ŝz. Then, the Hamiltonian has a unique
ground state jψ0i → jψdk½j; 0�i ¼ jj;−ji. Moreover, the
ground-state energy is zero for any N, and the gap to the
double-degenerate first excited states is finite, i.e.,
limr→0 λ0 ¼ 0 and limr→0 λ1;2 ¼ 2j. As a result, the steady
state is approximately pure even when N is odd, as jψ0i
dominates the sum in Eq. (16).
In the opposite limit r → ∞, the LMG Hamiltonian is

dominated by the Ŝ2y term, ĤLMG ≈ e2rŜ2y, and its eigen-
values are the eigenstates jj; miy of Ŝy with energy
λm ≈m2e2r. Now, there is no zero-energy ground state
for odd N (becausem takes half-integer values), the ground
state is double degenerate, and the steady state converges to
an incoherent mixture of Ŝy eigenstates,

lim
r→∞

ρ̂ðjÞSS ∝
Xj
m¼−j

1

m2
jj; miyyhj; mj: ð17Þ

A direct computation shows that the purity converges to

limN→∞Tr½ðρ̂ðN=2Þ
SS Þ2� ¼ 1=3. In the limit r → ∞, there is no

mean spin polarization, but the variance of Ŝy remains
finite, hŜ2yi ≥ 1=4. As a result, the Wineland parameter will
diverge as shown in Fig. 3.
The connection to the LMG model thus provides useful

intuition about the odd-N steady state. For even N, the dark
state jψdk½j; r�i remains an exact zero mode of Σ̂†ðrÞΣ̂ðrÞ
for any value of r and interpolates smoothly between the
limits jψdk½j; 0�i ¼ jj;−ji and limr→∞ jψdk½j; r�i ¼ jj; 0iy.
In terms of the LMG model, this implies that for even N,
the ground-state gap does not close as a function of r [45].
This feature of the antiferromagnetic LMG model has been
discussed previously in the context of a closed-system
quantum phase transition [29,42,46].

D. Enhanced sensing

The dramatic even-odd sensitivity of the steady state,
which has no counterpart in bosonic spin squeezing, could
enable a new kind of sensing modality: It provides a means
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for detecting changes in N at the single-spin level. This
kind of sensing has long been of interest for both funda-
mental studies and applications [47–52]; a recent experi-
ment has even used dispersive sensing to measure real-time
changes in atom number in an atomic ensemble disper-
sively coupled to a cavity [53]. Our dissipative setup could
provide an alternative route for an analogous kind of
sensing.
As we discuss above, for a large squeezing parameter

e2r ≳ N, the squeezing of the collective steady state
depends exponentially on the parity of N (see Fig. 3).
A simpler quantity, the variance of Ŝy, also exhibits this
strong sensitivity in the large-r limit: For even N, it
vanishes like N2e−4r=8, whereas for odd N, it converges
to the constant value N=π2 if N ≫ 1. We thus see that
measuring Ŝ2y provides a direct means for estimating the
parity of N. Such collective spin fluctuation measurements
have been implemented in variety of systems [54–60].
While the parity sensitivity is in principle a steady-state

effect, the relatively fast relaxation timescale here means
that it can be harnessed for real-time sensing. We stress that
the strong sensitivity to parity does not come at the expense
of a vanishingly small bandwidth: If a spin is suddenly lost,
the relaxation time to the new opposite-parity steady state is
(at worst) set by the inverse coupling rate 1=Γ. This
timescale does not grow with system size [see inset of
Fig. 4(a)]. The relaxation is even faster if one is in the
maximum-j subspace; here, the relaxation rate is collec-
tively enhanced by a factor of N.
We thus have a means for detecting spins leaving or

decoupling from the cavity one by one, as each such event
causes a large change in Ŝ2y [see Fig. 4(b)]. Note that the
variance detection requires multiple repetitions of the meas-
urement to distinguish even N from odd N: Although the

probability to obtain a measurement result with jmyj > 1=2
is negligible for evenN in the large-r limit, it is only between
15% and 19% for odd N [cf. Eq. (16) and Appendix D].
One thus has to wait for a probabilistic measurement out-
come with sufficiently large jmyj (the value depends on the
detector resolution) to determine the spin-number parity
unambiguously.
Imperfections of the squeezing process, e.g., an impure

engineered reservoir, and local dissipation will reduce
the visibility of the even-odd effect (see Sec. VI and
Appendix D, respectively). In Sec. VII D, we discuss that
the even-odd effect can be observed in a state-of-the-art
trapped-ion platform for N ≲ 10. This opens the exciting
possibility to experimentally verify the even-odd effect in
spin squeezing, which has no counterpart in bosonic
squeezing.

IV. ENHANCED PROTECTION AGAINST
SINGLE-SPIN RELAXATION

The dissipative approach to spin squeezing also provides
strong advantages when unwanted single-spin dissipation is
included. In this section, we focus on the case where local
relaxation is dominant; i.e., we study Eq. (11) in the limit
γrel ≠ 0; γϕ → 0. For atomic systems, this can be viewed as
a fundamental limit arising from spontaneous emission,
whereas single-spin dephasing is a technical imperfection.
As noted in Ref. [35], in this limit, standard OAT achieves
an optimized squeezing that yields the scaling ξ2R ∼ Crel−1=3

for large N. This work also introduced an alternative
Hamiltonian protocol involving two mutually interacting
spin ensembles, which could achieve a more favorable ξ2R ∼
Crel−1=2 scaling at a specific optimized time. As we show
below, our dissipative approach can achieve an identical
scaling, but now for the steady state, and using only a single

(b)

FIG. 4. (a) Time evolution of the coherent spin state jN=2;−N=2i under the quantum master equation (2) for even vs odd N with a
squeezing parameter r ¼ 2.5. Inset: minimum spectral gap Δmin of the Liouvillian associated with Eq. (2) in the maximum-angular-
momentum subspace (points) and global minimum evaluated over all angular-momentum subspaces (crosses). (b) Example of how the
extreme even-odd sensitivity of the dissipative steady state could be used for sensing. The variance hŜ2yi is plotted for a system described
by the ideal quantum master equation (2) with r ¼ 2.5, starting from the state jN=2;−N=2i. The evolution is interrupted at randomly
chosen times (black triangles), where a single (randomly chosen) spin is removed from the system. These spin-loss events cause the
system to relax to a new steady state, leading to dramatic swings in the value of hŜ2yi after each loss event. Note the logarithmic scale
used for the y axis.
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ensemble of standard two-level systems. We also show
that this enhanced performance over OAT holds even for
small-N ensembles. Note that single-spin dissipation was
also studied in Ref. [25], but only for spontaneous emission
in an ensemble of four-level atoms with a specific structure.
This is distinct from the more generic model Eq. (11)
we study.
Focusing on the limit of large N and a small single-spin

cooperativity, we can approximate our system well using a
standard mean-field theory based on linearizing the equa-
tions of motion for the system’s covariance matrix. Solving
these in the steady state and considering the limit of a
sufficiently large r (see Appendix C), one finds that the
steady-state squeezing is

ξ2R ≈
Nγcoll þ Γþ γrel
Nγcoll þ ΓN þ γrel

: ð18Þ

The numerator here describes unwanted heating by both
single-spin relaxation and the collective decay γcoll asso-
ciated with internal cavity loss. The only parameter left to
optimize over is κsqz, the coupling between the cavity and
the squeezed reservoir, which enters Eq. (18) via Eqs. (12)
and (13). There is a nontrivial minimum here. Suppression
of unwanted collective heating requires a large κsqz, as this
reduces the ratio γcoll=Γ. In contrast, suppressing the effects
of γrel requires a large Γ and hence, small κsqz.
Minimizing with respect to κsqz, we find

ξ2R ≈
2ffiffiffiffiffiffiffi
Crel

p þO
�

1

Crel

�
; ð19Þ

where the optimal value of κsqz satisfies

κoptsqz ¼ κint
ffiffiffiffiffiffiffi
Crel

p
þOðCrel0Þ: ð20Þ

We thus obtain an optimized squeezing that scales signifi-
cantly better with collective cooperativity in this relaxation-
dominated regime than the OAT result of ξ2R ∼ Crel−1=3.
In Appendix C 2, we show numerical simulations of a
more accurate nonlinear mean-field theory that confirm
these results. Recall that the squeezing here is also achieved
in the steady state (and not just at one optimal time). While
we assume a large value of r to derive these results,
in practice, one needs only expð−2rÞ ≪ 1=

ffiffiffiffiffiffiffi
Crel

p
for this

scaling to hold.
The advantage over OAT in this relaxation-dominated

regime also persists for smaller-sized spin ensembles.
To study this regime, we numerically solve Eq. (11) for
the steady state. Figure 5 shows the obtained results for the
steady-state squeezing (orange curve) as a function of N,
where we fix g, κint, and γrel so that the single-spin
cooperativity is ηrel ¼ 2. For each value of N, we optimize
the parameters of the squeezed reservoir (κsqz; r) to
minimize the steady state ξ2R; the optimized values are

presented in Appendix F. For comparison, we also plot
the optimized transient squeezing achievable using OAT
(blue curve) in an identical cavity-spin system [27,35]
(see Appendix G for details). For the OAT setup, there is no
squeezed reservoir (i.e., κsqz ¼ 0), and there is a large
detuning Δ between the spins and cavity, which is
optimized for each value of N.
Figure 5 shows that, even for small N, the dissipative

protocol yields an advantage over OAT. While for these
small values of N and large ηrel, the linearized mean-field-
theory scaling predictions are not expected to hold exactly,
there is a qualitative agreement with the predicted power
laws (as indicated by black dashed lines).
In Appendix H, we provide a brief performance analysis

of a special case where κint ¼ 0. Mathematically, such a
scenario is equivalent to a setup where one directly shines
squeezed light onto the spin ensemble. We show that in the
limit of large spin number, one can achieve the scaling of
ξ2R ∝ ðNΓ=γrelÞ−1, although naturally, having either κint ¼ 0
or irradiating a spin ensemble directly, would likely be
difficult to realize experimentally.

V. DEPHASING-DOMINATED REGIME

A. Prethermalization and emergent slow timescales

We now consider the effects of weak single-spin dephas-
ing [i.e., the γϕ term in Eq. (11)] on our dissipative-spin-
squeezing protocol. For very weak dephasing, such that
γϕ < γrel=N holds, the mean-field-theory results of the
previous section still provide a good description; one
simply substitutes γrel → γrel þ 2γϕ in Eqs. (19) and (20).
The more interesting case is when dephasing is the
dominant form of single-spin dissipation but is still weak
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FIG. 5. A comparison of the Wineland parameter ξ2R between
the dissipative (blue) and OAT (orange) protocols as a function of
N for a small number of spins. The simulations are performed by
evolving the spin-only quantum master equation [see Eq. (11) for
the case of dissipative protocol, and Appendix G for the details
on OAT]. In the dissipative protocol, at each value of N, both r
as well as κsqz are optimized, while in the case of OAT, the
optimization is performed over the cavity-spin detuning. The
parameters used in both cases are γrel ¼ 0.02g and κint ¼ 100g,
resulting in single-spin cooperativity of ηrel ¼ 2. The two dashed
lines show fits of the last few data points.
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compared to the rate Γ associated with the collective spin-
squeezing dissipator (i.e., Γ ≫ γϕ ≫ γrel). In this case, the
dynamics is surprisingly rich, exhibiting features reminis-
cent of prethermalization behavior observed in weakly
nonintegrable systems [30,31]. Prethermalization is asso-
ciated with approximately conserved quantities that can be
dynamically randomized only on extremely long time-
scales; this results in an intermediate-time quasi-steady-
state whose form is contingent on the initial value of the
conserved quantities. Here, a similar phenomenon arises,
with total angular momentum playing the role of the
approximately conserved quantity. We discuss this more
in what follows.
Starting from an initial product state, we find that a

seemingly tiny amount of single-spin dephasing is enough
to completely destroy spin squeezing in the eventual steady
state. Using a mean-field analysis, one can show that in
the presence of arbitrarily weak but nonzero single-spin
dephasing (and γrel ¼ γcoll ¼ 0), the steady-state squeezing
is bounded by −3 dB in the large-N limit:

lim
γϕ→0

ξ2R ≥
1

2
þ

ffiffiffiffi
N

p

N þ 1
; ð21Þ

where the optimal value is achieved with r ¼ 1
8
lnN.

Despite this, there exists an extremely long-lived inter-
mediate-time regime (a quasi-steady-state) where strong
spin squeezing is observed. The system’s dissipative
dynamics is thus characterized by two vastly different
timescales, as shown in Fig. 6. The system first evolves into
a transient spin-squeezed state on a fast timescale ∝1=NΓ.

In contrast, the eventual relaxation to the true steady state
(which has minimal squeezing) occurs on a much slower
timescale ∝ N=γϕ. For a large system size N, the ratio of
these timescales can be dramatic. We also note that the slow
relaxation time is parametrically slower than the single-spin
dephasing time 1=γϕ.
The emergence of this surprisingly long timescale and

the corresponding fragility of the steady state to weak
dephasing are both surprising; we stress that single-spin
relaxation (as discussed in the previous section) does not
give rise to an analogous behavior. In Appendix E, we
analyze this effect using Liouvillian perturbation theory
[61] and develop an intuitive physical picture: Single-spin
dephasing enables transitions between subspaces of differ-
ent total angular momentum [34] such that an initial state in
the j ¼ jmax subspace evolves into a steady state populating
subspaces with j < jmax. The degeneracy of the j < jmax
subspaces gives rise to anomalously small matrix elements
between the subspaces, which represent bottlenecks for the
relaxation to the steady state.
We stress that the surprising impact of dephasing need

not be problematic for experiments. The spin squeezing
exhibited by the Wineland parameter ξ2R in the “prether-
malized” intermediate-time regime is comparable to ξ2R of
the steady state obtained in an ideal system without single-
spin dissipation, as long as the conditions γϕ ≪ Γ; Nγϕ
are satisfied. Moreover, there is a simple but effective
way to improve the spin squeezing of the steady state by
deliberately adding a competing single-spin relaxation
process γrel. If this relaxation rate satisfies the condition
γrel ≳ γϕ=N, population will be pushed back to the
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(b) , mean-field theory

FIG. 6. Time evolution of the Wineland spin-squeezing parameter ξ2R in the presence of local dissipation (note the logarithmic scale of
the time axis). (a) Wineland parameter calculated using the quantum master equation (11) for weak local dephasing, r ¼ 1.0, and
N ¼ 50 spins (thick dashed orange line, γϕ=Γ ¼ 0.005, γrel=Γ ¼ 0, and γcoll=Γ ¼ 0). The final amount of steady-state spin squeezing is
indicated by the thin dash-dotted orange line. Local dephasing deteriorates the amount of steady-state spin squeezing compared to an
ideal system without local dissipation (solid blue line, γϕ=Γ ¼ γrel=Γ ¼ γcoll=Γ ¼ 0). Local relaxation counteracts this effect and
partially restores the steady-state spin squeezing (dotted green line, γϕ=Γ ¼ 0.005, γrel=Γ ¼ 0.001, and γcoll=Γ ¼ 0). Note that the
transient state is strongly spin squeezed even in the presence of local dissipation since the collective dissipator Σ̂ induces spin squeezing
on a short timescale ∝ 1=NΓ, whereas the system approaches its steady state on a longer system-size-dependent timescale ∝ N=γϕ.
(b) Wineland parameter calculated using the mean-field equations of motion detailed in Appendix B for N ¼ 1000 spins and the same
sets of dissipation rates as in (a).
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large-angular-momentum subspaces, which decreases
the steady-state Wineland parameter significantly and
increases spin squeezing beyond the −3-dB limit, as shown
in Fig. 6.

B. Inhomogeneous broadening
and dynamical decoupling

In addition to the Markovian mechanism described in
the previous section, in some platforms, dephasing due to
inhomogeneous broadening of the spin ensemble can also
play a role. A major advantage of spin squeezing generated
by OAT dynamics is that it is compatible with dynamical
decoupling and thus allows for an effective cancellation of
the impact of inhomogeneous broadening by a simple
sequence of π pulses about the x axis [27]. At first glance,
this does not seem to be the case for our dissipative scheme.
However, we show here that our dissipative scheme is
in fact compatible with a slightly modified dynamical-
decoupling sequence.
Our starting point is a generalization of the Hamiltonian

of Eq. (9),

Ĥ ¼
XN
j¼1

Δj
σ̂ðjÞz

2
þ gðâ†Ŝ− þ âŜþÞ; ð22Þ

where Δj ¼ ωj − ω0 denotes the detuning of spin j from
the resonance frequency of the bosonic mode â due to
inhomogeneous broadening. Using average Hamiltonian
theory [62], we now derive an effective Hamiltonian for the
two different decoupling sequences shown in Fig. 7, which
are designed such that the effects of the Δj terms cancel out
on average. Instead of transforming the state of the system
at each decoupling pulse, it is more convenient to consider

a Heisenberg picture where the Hamiltonian changes at
each pulse, the so-called toggling frame [62].
A single π pulse about the x axis will flip the sign of σ̂ðjÞz

terms and will exchange the Ŝþ and Ŝ− operators in the
interaction term of Eq. (22),

Ĥ1 ¼ −
XN
j¼1

Δj
σ̂ðjÞz

2
þ gðâ†Ŝþ þ âŜ−Þ: ð23Þ

The first effect is desired and will cancel inhomogeneous
broadening, but the second effect is unwanted because it
will turn damping of the Bogoliubov mode Σ̂ðrÞ into
antidamping. If one can control the coupling constant g
as a function of time, one can switch off the undesired
interaction after every second π pulse, as shown in
Fig. 7(a), and one obtains the average Hamiltonian

¯̂H ¼ Ĥ
2
þ Ĥ1jg¼0

2
¼ g

2
ðâ†Ŝ− þ âŜþÞ; ð24Þ

where the inhomogeneous broadening is canceled at the
cost of a reduction of g by a factor of 2. Experimentally, the
coupling g could be switched off by detuning the spins
rapidly from the cavity.
Instead of switching off the interaction between the spins

and the bosonic mode for half of the period T, one could
also use the dynamical-decoupling sequence shown in
Fig. 7(b). By applying a π rotation about the z axis, one
can flip the sign of the second term without disturbing the
first one,

Ĥ2 ¼ −
XN
j¼1

Δj
σ̂ðjÞz

2
− gðâ†Ŝþ þ âŜ−Þ: ð25Þ

The sequence is terminated by a π rotation about the y axis
which reverts all signs and restores the original
Hamiltonian (22). If the waiting times between the pulses
have a ratio of 2∶1∶1, both inhomogeneous broadening and
the unwanted interaction terms will be canceled in the
average Hamiltonian,

¯̂H ¼ Ĥ
2
þ Ĥ1

4
þ Ĥ2

4
¼ g

2
ðâ†Ŝ− þ âŜþÞ: ð26Þ

Generating the additional π pulse about the z axis may
seem challenging because it requires a controlled detuning
of the spins from the cavity such that the accumulated phase
is exactly π. Experimentally, this would likely be even more
difficult than turning the coupling off for half a period, and
one may conclude that this scheme is harder to implement
than the first one. However, it is well known from NMR
that pulses about the z axis can also be realized using a
so-called composite pulse which is a suitable combination
of x and y rotations [63]. Specifically, a π pulse about the

(a)

(b)

FIG. 7. Dynamical-decouping sequences to cancel inhomo-
geneous broadening in Eq. (22). Each sequence has a total
duration time T, where κsqzT ≪ 1 and κintT ≪ 1, and is repeated
multiple times. (a) A simple sequence of π pulses about the x axis
will generate unwanted Σ̂†ðrÞ antidamping terms [cf. Eq. (23)].
Therefore, the coupling to the spins gðtÞ must be switched off
after every second πx pulse. (b) By adding two additional π pulses
about the y and z axes, the detrimental impact of the first πx pulse
can be canceled, and the coupling gðtÞ can be kept constant.
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z axis can be decomposed into pulses about the x and y axes
as follows:

e−iπσ̂z=2 ¼ e−iπσx=2e−iπσy=2

¼ eþiðπ=2Þσx=2eiπσy=2e−iðπ=2Þσx=2; ð27Þ

which does not require any detuning between the spins
and the cavity. Higher-order contributions to the average

Hamiltonian ¯̂H will become negligible if the period T of the
decoupling sequence satisfies the conditions κsqzT ≪ 1

and κintT ≪ 1.

C. Nonuniform single-spin couplings

Another experimentally very relevant source of imper-
fections is inhomogeneities in the coupling strength g
between the spins and the common bosonic mode; i.e.,
one has to replace the Hamiltonian in Eq. (9) with

Ĥ ¼
XN
j¼1

gjðâ†σ̂ðjÞ− þ âσ̂ðjÞþ Þ: ð28Þ

This breaks the permutational symmetry of the spins
reflected in the collective spin operators Ŝ�. The standard
strategy to analyze this effect is based on an expansion of
the mean-field equations of motion around the average
coupling ḡ ¼PN

j¼1 gj=N [64]. Variants of this approach
have been applied to study superradiance [64,65], micro-
wave quantum memories [66], and spin squeezing [67–71].
Nonuniform couplings then lead to an approximate col-
lective model with a renormalized coupling parameter and a
reduced effective length of the collective spin vector.
Similar results will hold in our case if the squeezing
parameter is not too large, e2r ≲ N.
To analyze the case of strong squeezing e2r ≳ N, more

powerful theoretical methods need to be developed, which
is an interesting and relevant subject for further study.
We expect nonuniform single-spin couplings to reduce the
visibility of the even-odd effect and to influence the
prethermalization physics, since the suppression of tran-
sition rates crucially relies on the indistinguishability of the
spins in the ensemble.

VI. IMPURE ENGINEERED RESERVOIR

In this section, we explore a different kind of imperfec-
tion that has not been studied in previous discussions of
dissipative spin squeezing: The engineered reservoir may
have an imperfect purity (or equivalently, mimic thermal
squeezed light rather than vacuum squeezed light). At the
most basic level, this corresponds to modifying our ideal
quantum master equation (2) by

_̂ρ ¼ Γðnth þ 1ÞD½Σ̂�ρ̂þ ΓnthD½Σ̂†�ρ̂; ð29Þ

where nth ≥ 0 parametrizes the effective temperature of
the squeezed reservoir. We discuss below in Sec. VII and
in Appendix I how this generic model can be related to
more microscopic mechanisms (including collective decay,
γcoll > 0). Even though the hybrid-systems reservoir-
engineering approach we focus on is not limited by
losses associated with the transport and injection of an
externally prepared optical squeezed state, many reservoir-
engineering techniques will inevitably result in an nth ≠ 0;
hence, it is important to understand the impact of this
unwanted heating. Note that for nth ≠ 0, the steady state of
the spin ensemble will necessarily be impure. This can have
a deleterious impact on Ramsey-type sensing experiments
if one is interested in signal phases that are not infinitesi-
mally small (as has been discussed in the context of
OAT [72,73]).
For e2r ≪ N, the spin squeezing described by Eq. (29) is

well approximated by a linearized bosonic master equation
(via use of the Holstein-Primakoff approximation [40]).
In this limit, one thus expects that a small nth will have only
a small impact on the steady-state squeezing [13], i.e.,

ξ2RðnthÞjHP
ξ2Rð0ÞjHP

¼ 1þ 2nth: ð30Þ

The interesting question is whether nth also has innocu-
ous effects for the larger values of r needed to approach the
Heisenberg limit. Figure 8(a) shows that this is not the case.
The linearized bosonic theory breaks down if the squeezing
parameter r is too large, with dramatic consequences:
Even small imperfections nth ≪ 1 cause the steady-state
Wineland parameter to strongly deviate from its ideal limit
ξ2R;HL ¼ 2=ðN þ 2Þ. Further, one finds that the steady-state
Wineland parameter increases with increasing r (irrespec-
tive of the parity of N); i.e., the steady-state squeezing is a
nonmonotonic function of r and exhibits a minimum at an
optimal value ropt (which depends on N and nth).
We thus have an important caveat: If the engineered

squeezed reservoir has a nonzero effective temperature,
increasing the reservoir squeezing parameter r does not
result in ever-increasing steady-state spin squeezing. We
stress that this is true even when N is even. Numerical
simulations indicate that the minimumWineland parameter
at ropt almost follows a Heisenberg-like scaling with N, as
shown in Fig. 8(b), but with a significantly larger prefactor
than the ideal result ξ2R;HL ¼ 2=ðN þ 2Þ. Further numerical
results exploring the parameter dependence of the optimal
squeezing parameter ropt are given in Appendix J, while
Appendix K briefly discusses the scaling obtained using a
mean-field-theory approach.
Interestingly, Fig. 8(c) shows that, although the ratio

ξ2RðroptÞ=ξ2R;HL deviates from the bosonic expectation, the
purity of the steady state at the optimal squeezing para-
meter ropt does closely follow the corresponding relation
ð2nth þ 1Þ−1 valid for bosonic dissipative squeezing.

RESERVOIR-ENGINEERED SPIN SQUEEZING: MACROSCOPIC … PHYS. REV. X 12, 011015 (2022)

011015-11



At a heuristic level, the much stronger sensitivity of
dissipative spin squeezing to nth > 0 and the similar purity
(in comparison to dissipative bosonic squeezing) can be
understood by the following simplified picture (see also
Appendix J). Similar to dissipative bosonic squeezing, the
dominant contributions to the mixed steady state of Eq. (29)
are the dark state of Σ̂, jχ0i ¼ jψdk½r�i, and the “first
excited” state jχ1i ∝ Σ̂†jψdk½r�i. Their statistical weights
are in a thermal ratio p1=p0 ¼ nth=ðnth þ 1Þ, which
explains the similar nth dependence of the purity for
r ≤ ropt. However, the hŜ2yi variance of jχ1i differs strongly
from its counterpart in a bosonic squeezed state for r≳ ropt:
In this limit, the dark state converges to the my ¼ 0

eigenstate of Ŝy, jψdk½r�i → jj; 0iy [cf. Eq. (5)], with a

vanishing hŜ2yi variance. The operator Σ̂† expressed in the
Ŝy basis contains spin-raising and -lowering operators; i.e.,
the state jχ1i is an equal superposition of the jj;�1i states
and has a finite hŜ2yi variance. This leads to an increase of
the Wineland parameter with increasing r as soon as the
hŜ2yi variance approaches its nonzero minimum value.
Thus, the exponential increase of the Wineland parameter
for r ≥ ropt has a very similar origin as the corresponding
effect in the odd-N zero-nth case discussed in Sec. III.
These results are yet another demonstration of the fact that
dissipative spin squeezing is more complicated than dis-
sipative bosonic squeezing, due to the finite-dimensional
Hilbert space and the intrinsic nonlinearity of spin systems.
A consequence of these findings is that, for large

squeezing parameters r ≫ ropt, an impurity of the engi-
neered reservoir reduces the even-odd effect. Nevertheless,

the even-odd effect can still be observed on state-of-the-art
experimental platforms, as analyzed below in Sec. VII D.

VII. HYBRID-SYSTEMS IMPLEMENTATION
USING DISSIPATIVE BOSONIC SQUEEZING

As we discuss in Sec. II B, the dissipative-spin-
squeezing setup described by the general quantum master
equation (11) can be realized using standard two-level
systems (unlike the more structured four-level atoms in
Refs. [9,25]), and without requiring the use of nonclassical
squeezed input light. Instead, one harnesses a standard
(resonant) Tavis-Cummings coupling between a spin
ensemble and a bosonic mode, along with the dissipative
squeezing of this bosonic mode which is engineered by
coupling the bosonic mode to a lossy auxiliary mode that is
driven by imbalanced red-detuned and blue-detuned side-
band drives. The second element here has been experi-
mentally realized in a variety of systems. In this section, we
provide more details on the physical implementation of our
hybrid-systems approach to dissipative spin squeezing in
three promising platforms: trapped ions, solid-state opto-
mechanical devices, and superconducting circuits.

A. Trapped ions

In trapped ions, the relevant spin degree of freedom
usually corresponds to two metastable internal states (spin
or orbital) of each individual ion. In contrast, the bosonic
“cavity” mode corresponds to a collective motional mode
of the ions [74], and the coupling parameter g now
characterizes the spin-phonon coupling. Recent experi-
ments have already utilized the spin-motion coupling for

(a) (b) (c)

FIG. 8. (a) Steady-state Wineland parameter [obtained by numerically solving Eq. (29)] if the engineered reservoir stabilizes an
impure squeezed state for N ¼ 200 and different effective thermal steady-state occupation numbers nth. The dash-dotted black line
indicates the Heisenberg limit ξ2R;HL ¼ 2=ðN þ 2Þ. For e2r ≪ N, the Wineland parameter follows the bosonic theory (30); i.e., spin
squeezing is quite robust to nth, and the Wineland parameter decreaseswith r. However, beyond an optimal squeezing strength ropt, even
a small effective thermal occupation nth ≪ 1 deteriorates squeezing quite strongly, and the Wineland parameter increases with r.
(b) Ratio between the minimum Wineland parameter for nth > 0 and its ideal Heisenberg-limited value ξ2R;HL ¼ 2=ðN þ 2Þ for nth ¼ 0.
Top panel: ratio as a function of N. The dashed fitted lines indicate a N0.13 scaling. Bottom panel: ratio as a function of nth for N ¼ 200,
which clearly deviates from bosonic relation (30) indicated by the dashed black line. (c) Purity of the steady state of Eq. (29) at ropt as a
function of nth, which closely follows the purity of the corresponding bosonic squeezed state (dashed black line) if Eq. (29) is mapped
onto bosonic dissipative squeezing using a Holstein-Primakoff approximation.
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over 50 ions in a 2D Penning trap [57] and 1D linear Paul
trap [75]. The desired Tavis-Cummings coupling is com-
monly realized by applying a laser field that is resonant
with the red motional sideband of the spin-level transition
(see, e.g., Ref. [76]). Motional dissipation is, in turn,
mediated by coupling the motional mode to a dipole-
allowed transition of an ion.
To realize dissipative spin squeezing with N spins, we

imagine a setup that consists of N þ 1 ions. N of these ions
make up the spin ensemble that we wish to squeeze; the
remaining additional ion serves as a “cooler” ion that is
used to dissipatively squeeze the collective motional mode,
as shown in Fig. 9. A squeezed bath can be engineered by
applying two laser fields that are resonant with the red and
blue sideband transitions of the cooler ion [12], leading to
an effective Hamiltonian

Ĥion ¼ Gð−Þ
ion â

†σ̂− þ GðþÞ
ion âσ̂− þ H:c:; ð31Þ

where Gð−Þ
ion (GðþÞ

ion ) is the red (blue) sideband coupling, and
σ̂− is the lowering operator of the cooler-ion transition. The
squeezing strength can be controlled by the ratio of the

couplings, i.e., tanhðrÞ ¼ jGðþÞ
ion =G

ð−Þ
ion j, and the squeezed

axis is determined by their relative phase. We stress that the
sideband transitions are implemented by classical drives;
i.e., no squeezed radiation is required for the bath engineer-
ing. Reading out the spin-squeezed state can be performed
by individually measuring each ion in the Pauli σ̂y basis.
The collective spin variance can then be obtained from
the statistics of the measurement outcomes collected in
multiple runs.

To assess the practical requirement of our proposal, we
adopt the state-of-the-art system parameters in the dissi-
pative motional squeezing experiment by Kienzler et al.
[16]. This experiment employs the bath engineering tech-
niques described above to prepare the motion of a single
trapped ion in a −12.6-dB squeezed ground state with up to
12% infidelity. Utilizing this scheme for spin squeezing
requires two additions.
First, the reservoir-engineering technique has to be

extended to the collective motion of an ion chain. Since
the center-of-mass mode frequency is not altered by the
number of ions in the trap, and the frequencies of other
motional modes are well resolved [77], the same sideband
drives used in the single-ion case can be applied to engineer
the same squeezed bath for the collective center-of-mass
mode. Note that, for incoherent electric field noise, the
center-of-mass heating rate does not depend on the number
of ions in the trap [78].
Second, spin-motion coupling has to be applied between

the center-of-mass mode and the N system ions with
a spin-phonon coupling strength g. To implement the
collective spin dissipator in Eq. (11), a sufficient but not
necessary condition is that the coupling strength g is
sufficiently weak to guarantee the adiabatic elimination
of the motional mode, while sufficiently strong such that
qubit decoherence does not deteriorate the spin squeezing,
i.e., κsqz=

ffiffiffiffi
N

p
≫ g ≫ ffiffiffiffiffiffiffiffiffiffiffiffi

κsqzγϕ
p . From the time evolution of

squeezed-state pumping in Ref. [16], we estimate the
experimentally realized squeezed-reservoir coupling rate
to be κsqz ≈ 0.5 kHz. Moreover, γϕ ≈ 0.1 Hz has been
realized in many experiments (e.g., Ref. [79]). With these
realistic parameters, a coupling g ≈ 30 Hz should fit in this
regime for a modest chain with N ≲ 10 ions. Since spin-
motion coupling as strong as kHz has been routinely
implemented in trapped-ion experiments (e.g., Ref. [80]),
our desired range is thus well achievable by simply using a
weaker drive.
The remaining issue is whether the thermal excitation

due to motional heating will mask the desired even-odd
effect. Motional heating leads to collective spin excitation
and relaxation processes at equal rates γheat. As we discuss
in Appendix I, this can be mapped onto a quantum master
equation of the form (29) with an effective squeezing
parameter r̃, i.e., Σ̂ðrÞ → Σ̂ðr̃Þ, where

r̃ ¼ r − sinhð2rÞ γheat
Γ

; ð32Þ

and with an effective thermal occupation number nth
given by

nth ¼ coshð2rÞ γheat
Γ

: ð33Þ

Kienzler et al. achieved a squeezed ground state with a
fidelity larger than 88% at −12.6 dB of squeezing [16],

FIG. 9. Sketch of the trapped-ion setup discussed in Sec. VII A
using N system ions (dark green circles) and one cooler ion (light
green circle) oscillating in a collective motional mode â (thin
brown arrows). The system ions are coupled to the motional
mode at a coupling rate g by a red sideband drive of a metastable
transition j↑i ↔ j↓i. The squeezed bath for the motional mode â
is engineered by driving the cooler ion simultaneously on the red

and blue motional sidebands (at ratesGð−Þ
ion andGðþÞ

ion , respectively)
of a short-lived transition jei ↔ jgi with a decay rate γcool
(squiggly light green arrows).
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which corresponds to nth ≈ 0.14 or, equivalently, a
motional heating rate γheat=Γ ≈ 0.017. Note that this is a
worst-case estimate of the fidelity since its reported value
includes measurement errors. Consequently, the true value
of γheat in the experiment is likely lower. However, even
with this pessimistic value, the even-odd effect can be
observed in experiments, as we show below in Sec. VII D.

B. Solid-state spins in an optomechanical crystal

In solid-state platforms, the spin ensemble in our scheme
could be realized using defect centers in a semiconductor,
e.g., NV-center defect spins in diamond. These spins can be
implanted in a structure which in turn realizes an opto-
mechanical crystal: a patterned photonic crystal beam with
a defect that localizes both a mechanical mode and an
optical mode [81]. We note that high-Q diamond opto-
mechanical crystals have been realized experimentally [82],
with a recent experiment even integrating such a system
with NV-center defect spins [83]. The localized mechanical
mode plays the role of the bosonic cavity in Eq. (11). The
spins and mechanical motion exhibit an intrinsic coupling
due to the strain dependence of spin-level transitions, and
the coupling could be further enhanced by incorporating
the high strain sensitivity of excited states through phonon-
assisted Raman transitions [83–85].
In this kind of setup, the optomechanical coupling

between the localized mechanical and optical cavity mode
provides a mechanism for the dissipative squeezing of the
mechanical mode. If one is in the sideband-resolved regime
(where the mechanical frequency is larger than the optical
cavity decay rate), then this dissipative mechanical squeez-
ing can be realized by driving the optical cavity by two
control lasers that are resonant to the red and blue motional
sidebands, respectively [41]. We stress these drives are
classical coherent-state drives. Ignoring the nonlinear
coupling that is usually negligibly weak in most platforms,
the optomechanical coupling is well approximated by

ĤOM ¼ Gð−Þ
OMâ

†b̂þ GðþÞ
OMâ b̂þH:c:; ð34Þ

where Gð−Þ
OM (GðþÞ

OM) is the red (blue) sideband optomechan-
ical coupling strength, and b̂ is the annihilation operator
of the optical cavity mode. The squeezing strength is
determined by the ratio of the red and blue sideband

coupling, i.e., tanhðrÞ ¼ jGðþÞ
OM=G

ð−Þ
OMj, which can be tuned

by varying the amplitude of the driving tones. We note that
this kind of dissipative squeezing of mechanical motion via
optomechanics has been realized in several experiments
[15,17–19]. Our protocol thus provides a means of harness-
ing this capability to generate spin squeezing. Finally, in
solid-state settings, inhomogeneous broadening of the spin
ensemble is almost always an issue; this is typically
mitigated by using dynamical-decoupling techniques. For
spin-squeezing protocols based on OAT dynamics, a very

simple decoupling sequence can be used, which repeatedly
applies π pulses about the x axis [27]. This very simple
strategy fails in our case because it transforms the Σ̂ decay
term in Eq. (11) into a Σ̂† antidamping term. However, as
we discuss in Sec. V B, this unwanted excitation dynamics
can be canceled by two additional π pulses about the z and
y axes, which makes our protocol compatible with dynami-
cal decoupling.

C. Superconducting microwave cavities

Superconducting microwave cavities and circuit QED
are another promising class of systems for implementing
our ideas. Our basic building block of a bosonic mode
coupled to a spin ensemble could be realized by coupling a
single microwave cavity mode to either a set of super-
conducting qubits [86–89] or to electronic spins in sub-
strate (e.g., Bi donors implanted in Si [90,91]). The second
ingredient, a mechanism for the dissipative generation of
microwave squeezing, could also be implemented in differ-
ent ways. One approach is to inject squeezed microwave
radiation directly into the cavity using the output of a
Josephson parametric amplifier [92–94]. This has already
been achieved experimentally in Ref. [90], in a system
where a cavity has been coupled to a spin ensemble. An
alternative approach, which has the advantage of not being
limited by insertion losses (associated with transporting
a squeezed state), is to mimic the same dissipative
squeezing protocols used in optomechanics to squeeze a
mechanical mode. This can be accomplished by coupling
three microwave modes via a Josephson ring modulator
[95], which generates a three-wave mixing term ðp̂þ p̂†Þ×
ðâþ â†Þðb̂þ b̂†Þ between the modes â, b̂, and p̂ [96]. By
driving the pump mode p̂ coherently at the sum and
difference frequency of the â and b̂ modes ω�, one can
engineer an interaction of the form of Eq. (34), where the

prefactors Gð�Þ
OM depend on the strength of the drives at ω�,

respectively. Adiabatic elimination of the strongly damped
b̂mode generates an effective squeezed bath for the âmode
as shown in Eq. (9). A recent experiment implementing this
approach has demonstrated up to −8 dB of intracavity
squeezing of the â mode [20].

D. Experimental viability of the even-odd effect

Given the results of the Sec. VI, one may worry that a
finite effective temperature of the engineered reservoir will
substantially decrease spin squeezing and mask the even-
odd effect introduced in Sec. III. Here, we show that this is
not always the case and, in particular, that the even-odd
effect can be observed in experimentally accessible param-
eter regimes.
For concreteness, we focus on the trapped-ion platform

introduced in Sec. VII A, which is most mature. With a first
experimental observation of the even-odd effect in mind,
we consider a modest number of spins, N ≲ 10. In this

GROSZKOWSKI, KOPPENHÖFER, LAU, and CLERK PHYS. REV. X 12, 011015 (2022)

011015-14



platform, motional heating due to classical trap noise is
the dominant source of imperfections of the engineered
squeezed reservoir. As we discuss in Sec. VII A and
Appendix I, its impact can be modeled using Eq. (29)
with an effective squeezing parameter r̃ and an effective
thermal occupation number nth given by Eqs. (32) and (33),
respectively.
Compared to the bare squeezing parameter r (which is

related to the amplitude of the red and blue sideband
drives), the effective squeezing parameter strength r̃ is
reduced by the motional heating rate γheat. The effective
thermal occupation number nth grows with increasing r;
i.e., a large squeezing parameter reduces the purity
of the squeezed state. For a given number N of ions, the
variance hŜ2yi will thus take a minimum value at an optimal
squeezing parameter ropt, whose value depends on N and
γheat=Γ, as shown in Fig. 10(a). Comparing these minimum
variances for N ¼ 8 vs 9 ions, we find an even-odd
difference of more than 20% over a wide range of motional
heating rates γheat. The even-odd difference decreases with
effective temperature nth and will disappear if the impurity
of the squeezed reservoir is sufficiently large. Note that
even for the upper bound of the motional heating rate
derived in Sec. VII A γheat=Γ ¼ 0.017, the even-odd differ-
ence is clearly visible.
An alternative way of probing the even-odd effect is

shown in Fig. 10(b). There, the motional heating rate γheat is
kept fixed, but the number of ions in the trap is varied.
Again, we optimize r for each data point individually to
minimize the variance hŜ2yi. The ratio between these
variances shows pronounced oscillations for N ≤ 10 ions.
Note that we restrict the optimal squeezing parameter e2ropt
in both scenarios to be smaller than the experimentally
achievable −12.6 dB. Thus, our results suggest that the

even-odd effect is realizable on state-of-the-art trapped-ion
platforms.
Instead of varying r for each N individually to minimize

the variances of even and odd N independently, one could
also use the same squeezing parameter r for a pair of N and
N þ 1 spins and maximize the ratio of their variances
hŜ2yðrÞiN=hŜ2yðrÞiNþ1. In this case, the even-odd effect
would be even more pronounced than the data shown in
Fig. 10.

VIII. CONNECTION TO PREVIOUS WORKS

Here we review previous works on dissipative spin
squeezing [9,21–25], summarize their results, and point
out the differences from this work.
Agarwal and Puri discussed the idealized spin-only

quantum master equation (2) with an additional collective-
decay term D½Ŝ−�ρ̂ and a coherent drive ΩŜþ þ Ω�Ŝ−
[21,22]. They derived explicit expressions for the steady
state and pointed out that the steady state of Eq. (2) is pure for
evenN (where Σ̂ has a zero eigenvalue) andmixed for oddN
(where Σ̂ has only nonzero eigenvalues) [21]. Moreover,
they discussed the pairwise excitation structure of the even-
N steady state illustrated in Fig. 2(a) and showed numerical
results for the odd-N population distribution in the regime
e2r ≳ N [21]. In a follow-up article [23], they calculated
the Wineland spin-squeezing parameter ξ2R of a state of the
form jψi ∝ expðθŜzÞ expð−iπŜy=2Þjj; mi, which contains
the even-N steady state (5) as a special case, but not the odd-
N steady state. They also discussed squeezing in the
presence of a coherent drive [22].
Unlike our work, Agarwal and Puri did not evaluate

the spin-squeezing properties of the odd-N steady state.
Consequently, they did not find the dramatic difference in

(a) (b)

FIG. 10. Impact of an impure squeezed reservoir on the even-odd effect. For the trapped-ion setup introduced in Sec. VII A, motional
heating at a rate γheat is the dominant source of imperfections, which can be modeled by Eq. (29) using an effective squeezing parameter
r̃ and an effective temperature nth introduced in Eqs. (32) and (33). (a) Ratio between hŜ2yi for N ¼ 8 vs 9 as a function of the motional
heating rate γheat (red triangles). The dotted red line is a guide to the eye to highlight a ratio of unity, i.e., no even-odd effect. For each
value of N and γheat, we optimize the squeezing parameter over the range 0 ≤ e2r ≤ 12 dB to minimize the variance hŜ2yi (blue data
points). (b) Ratio of hŜ2yi for N vs N þ 1 spins as a function of N for an experimentally realistic parameter of γheat=Γ ¼ 0.017 (red
triangles). Again, the dotted red line is a guide to the eye to highlight a ratio of unity, i.e., no even-odd effect. For eachN, we optimize the
squeezing parameter over the same range 0 ≤ e2r ≤ 12 dB as in (a) to minimize the variance hŜ2yi (blue stars).
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spin squeezing between the undriven even-N and odd-N
steady states for e2r ≳ N, which is one of the central results
of this work. Note that the spin-squeezing parameter r
required to see an even-odd effect will decrease if the
number N of spins is lowered, which makes the regime
e2r ≳ N attainable on state-of-the-art experimental plat-
forms, as we discuss in Sec. VII. Therefore, another new
and experimentally relevant result of our work is that the
even-odd effect is not a mere mathematical complication,
but a real and testable physical effect.
Agarwal and Puri suggested generating spin squeezing

by illuminating the spins with squeezed radiation, which is
experimentally very challenging. In a later work, Kuzmich
et al. proposed a related alternative scheme to generate spin
squeezing using V-type atoms illuminated by squeezed
light [24]. They did not discuss dissipative spin squeezing
and, consequently, did not comment on the even-odd effect
at all. In contrast to the proposals by Agarwal et al. and
Kuzmich et al., our work does not require any injection of
nonclassical light, which lowers the experimental chal-
lenges significantly.
Dalla Torre et al. proposed another method to implement

dissipative-spin-squeezing dynamics in a specific multi-
level atomic system using Raman transitions [25]. They use
a pure dark state of the type of Eq. (6) to analyze the ideal
situation when there is only collective loss of the form of
Eq. (3). In addition, they discuss the impact of dissipation
due to single-atom Raman scattering into free space. They
neither comment on an even-odd effect nor mention that
their pure-state analysis is, strictly speaking, valid only in
the case of even N.
Our work proves that, while this mathematical treatment

is indeed admissible if squeezing is not too strong e2r ≪ N,
substantial changes to the spin-squeezing physics will show
up at e2r ≳ N, which have not been discussed in the
literature before. Regarding experimental versatility,
Kuzmich et al. and Dalla Torre et al. discuss very specific
implementations, which are not applicable to a generic
ensemble of two-level systems. In contrast, we propose a
more generic mechanism that has not been discussed in the
literature before. Importantly, our approach is compatible
with a wide range of systems including solid-state imple-
mentations (see Sec. VII) and is perhaps the most flexible
and experimentally viable implementation. This versatility
allows us to discover the prethermalization physics dis-
cussed in Sec. VA, which is not present in the scheme of
Ref. [25] because of their very specific decay mechanism
that couples collective and local dissipation.
Finally, Borregaard et al. considered Λ-type atoms

driven by multiple laser drives and identified a dissipa-
tive-spin-squeezing scheme as its resonant limit [9]. They
use this observation to interpret their results, but they do not
discuss the dissipative-spin-squeezing scheme in detail or
explore any of its consequences revealed in this work, like
the even-odd physics and prethermalization.

Finally, we note that in contrast to our work, the previous
works on dissipative spin squeezing reviewed above do
not discuss or analyze the consequences of an imperfect
engineered reservoir (see Sec. VI).

IX. CONCLUSIONS

In this work, we revisit the reservoir-engineering
approach to preparing and stabilizing spin-squeezed
states. We analyze in detail a particular implementation
strategy that had not previously been studied, but that is
compatible with a number of experimental platforms:
employ a hybrid-systems approach where one first uses
bosonic reservoir-engineering techniques to stabilize a
bosonic squeezed state, and then uses this state (via a
standard Tavis-Cummings-type coupling) to dissipatively
squeeze a spin ensemble. We also discuss how this
approach compares favorably to the standard one-axis-
twist method for spin squeezing in the presence of single-
spin relaxation.
Our work also addresses fundamental aspects of dis-

sipative spin squeezing, with a focus on two general but
surprising phenomena. The first is an extreme macroscopic
sensitivity of the steady state to the parity of the number N
of spins in the ensemble. We analyze both how this effect
can be avoided (if the goal is to generate spin squeezing
without any parity sensitivity) and how it might be
harnessed for a powerful new sensing modality. The second
general effect we study is the emergence of a surprisingly
long slow timescale and prethermalization behavior when
weak single-spin dephasing is added to our model. While
the steady state in this regime exhibits at best limited
squeezing, the intermediate-time quasi-steady-state can be
highly squeezed. Moreover, the reduction of steady-state
spin squeezing can be almost completely suppressed by
deliberately introducing a small amount of single-spin
relaxation.
Finally, we investigate the impact of an engineered

reservoir stabilizing an impure steady state. We discover
a strong sensitivity of theWineland parameter to impurity if
the squeezing parameter r is large.
We hope our work will lay the groundwork for near-term

experimental implementations of reservoir-engineered spin
squeezing in a variety of systems. In future theoretical
work, it will be interesting to explore extensions of the
models analyzed here. For example, it is well known that
collective Hamiltonian interactions that are not truly
infinite range can still generate large amounts of spin
squeezing [97,98]. Is the same true with dissipative spin-
spin interactions, and if so, are the requirements more or
less forgiving than in the coherent case? It would also be
interesting to study in more detail the effects of disorder,
e.g., due to inhomogeneous broadening, both on spin
squeezing and on the parity-sensing scheme proposed
here.
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APPENDIX A: ADIABATIC ELIMINATION OF
A CAVITY COUPLED TO A SQUEEZED BATH

In this Appendix, we outline the derivation of the
effective quantum master equation (11) of the main text.
Our starting point is Eq. (9) describing a collection of spins
interacting with a squeezed bosonic mode. For the moment,
we ignore the terms in Eq. (9) describing local dissipation
of the spins,

d
dt

ρ̂ ¼ −ig½Ŝþâþ Ŝ−â†;ρ̂� þ κintD½â�ρ̂
þ κsqzD½coshðrÞâþ sinhðrÞâ†�ρ̂: ðA1Þ

Assuming that the cavity evolves on a much shorter
timescale than the spins,

κint þ κsqz ≫ g
ffiffiffiffi
N

p
; ðA2Þ

we adiabatically eliminate the cavity by a projection
operator technique [99] similar to the calculation outlined
in Ref. [100]. To this end, we split the quantum master
equation into two superoperators,

d
dt

ρ̂ ¼ Lcavρ̂þ Lintρ̂;

Lcavρ̂ ¼ κintD½â�ρ̂þ κsqzD½coshðrÞâþ sinhðrÞâ†�ρ̂;
Lintρ̂ ¼ −ig½Ŝþâþ Ŝ−â†;ρ̂�; ðA3Þ

where Lintρ̂ is considered to be constant on the timescale
defined by Lcavρ̂. Using this approximation, we can
formally solve Eq. (A3),

ρ̂ðtÞ ¼ eLcavtρ̂ð0Þ þ eLcavt

Z
t

0

dt0e−Lcavt0Lintρ̂ðt0Þ: ðA4Þ

Performing a Born approximation, we decompose the state
as ρ̂ðtÞ ≈ ρ̂spðtÞ ⊗ ρ̂SScav, where ρ̂spðtÞ is the reduced density
matrix of the spin system, and ρ̂SScav is the steady state of
Lcav. The equation of motion of the reduced spin density
matrix is

d
dt

ρ̂spðtÞ

¼
Z

t

0

dt0Trcav½LinteLcavðt−t0ÞLintρ̂spðt0Þ ⊗ ρ̂SScav�: ðA5Þ

Inserting the explicit form of Lint, we find that the integral
on the right-hand side of Eq. (A5) depends on the cavity
correlation functions

Trcav½âð†ÞeLcavtâð†Þρ̂SScav�
¼ Trcav½âð†ÞeLcavtρ̂SScavâð†Þ�
¼ κsqz

κsqz þ κint
sinhðrÞ coshðrÞe−ðκsqzþκintÞt=2; ðA6Þ

Trcav½âeLcavtâ†ρ̂SScav�
¼ Trcav½â†eLcavtρ̂SScavâ�

¼ κsqzcosh2ðrÞ þ κint
κsqz þ κint

e−ðκsqzþκintÞt=2; ðA7Þ

Trcav½â†eLcavtâρ̂SScav�
¼ Trcav½âeLcavtρ̂SScavâ†�
¼ κsqz

κsqz þ κint
sinh2ðrÞe−ðκsqzþκintÞt=2: ðA8Þ

These correlation functions decay fast compared to the
timescale on which ρ̂sp evolves; therefore, we can perform
the Markov approximation ρ̂spðt0Þ ≈ ρ̂spðtÞ and rewrite
Eq. (A5) as follows:

d
dt

ρ̂sp ¼
4g2

ðκsqz þ κintÞ2
ðκintD½Ŝ−�ρ̂sp

þ κsqzD½coshðrÞŜ− − sinhðrÞŜþ�ρ̂spÞ: ðA9Þ

Taking into account the remaining terms in Eq. (9) describ-
ing single-spin dissipation, we recover Eq. (11) of the
main text.

APPENDIX B: MEAN-FIELD-THEORY
EQUATIONS OF MOTION

In this section, we provide the set of nonlinear equations
of motion for symmetrized products of spin operators for
the effective spin-only model considered in the main
text, namely, Eq. (11). While such a system of equations
is not closed, we neglect third-order cumulants (equiva-
lently performing a second-order cumulant expansion)
[101,102], which lets us approximate the third-order
expectation values of various operators as

hÂiÂjÂki ≈ hÂiÂjihÂki þ hÂiÂkihÂji
þ hÂjÂkihÂii − 2hÂiihÂjihÂki: ðB1Þ
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We stress that the above approximation is applied to
expectation values of symmetrized operators defined
according to the following convention:

hÂiÂjÂkis ¼
1

6
ðhÂiÂjÂki þ hÂiÂkÂji

þ hÂjÂiÂki þ hÂjÂkÂii
þ hÂkÂiÂji þ hÂkÂjÂiiÞ ðB2Þ

when i ≠ j ≠ k, and

hÂ2
j Âkis ¼

1

2
ðhÂ2

j Âki þ hÂkÂ
2
jiÞ ðB3Þ

when i ≠ j.
Given the initial state with spins completely polarized

along the −z direction (i.e., hŜzi ¼ −N=2), the evolution is
governed by the equations

∂thŜzi ¼
�
−
e−2rΓ
2

−
e2rΓ
2

− γcoll − γrel

�
hŜzi

þ ð−Γ − γcollÞðhŜ2xi þ hŜ2yiÞ −
γrelN
2

; ðB4Þ

∂thŜ2xi ¼ ðe2rΓþ γcollÞhŜzi2

þ
�
ð2Γþ 2γcollÞhŜ2xi −

Γ
2
−
γcoll
2

�
hŜzi

þ ð−e2rΓ − γcoll − 2γϕ − γrelÞhŜ2xi

þ ðe2rΓþ γcollÞhĈZZi þ
Nðγϕ þ γrel

2
Þ

2
; ðB5Þ

∂thŜ2yi ¼ ðe−2rΓþ γcollÞhŜzi2

þ
�
ð2Γþ 2γcollÞhŜ2yi −

Γ
2
−
γcoll
2

�
hŜzi

þ ð−e−2rΓ − γcoll − 2γϕ − γrelÞhŜ2yi

þ ðe−2rΓþ γcollÞhĈZZi þ
Nðγϕ þ γrel

2
Þ

2
; ðB6Þ

∂thĈZZi ¼ ðγcoll þ Γþ γrelÞhŜzi þ ðe2rΓþ γcollÞhŜ2xi
þ ð−e−2rΓ − e2rΓ − 2γcoll − 2γrelÞhĈZZi

þ ðe−2rΓþ γcollÞhŜ2yi þ
γrelN
2

; ðB7Þ

where hĈZZi ¼ hŜ2zi − hŜzihŜzi. We stress that if we
assume that Eq. (11) is a result of coupling the spin system
to a cavity interacting with an engineered squeezed
reservoir with photon loss κint, then we have

Γ ¼ 4g2

ðκsqz þ κintÞ2
κsqz ðB8Þ

and

γcoll ¼
4g2

ðκsqz þ κintÞ2
κint; ðB9Þ

as we discuss in the main text and show in detail in
Appendix A.

APPENDIX C: COOPERATIVITY SCALING
OF THE ξ2R PARAMETER

In this Appendix, we provide a derivation of the
cooperativity scaling of the Wineland parameter ξ2R. We
concentrate our analysis on the weak dephasing limit, and
start with the case where γϕ ¼ 0 and where only the local
decay γrel as well as the collective cavity-induced decay
γcoll are present. A scenario where local spin dephasing is
dominant can lead to substantially altered behavior of the
system and is the subject of Appendix E and Sec. VA.

1. Analytical derivation

We begin by linearizing the mean-field-theory equations
of motion shown in Appendix B by focusing on the limit
where hŜzi stays fixed at −N=2. This approximation
closely reflects the true system dynamics when the spin
number N is large and when the single cooperativities ηϕ or
ηrel are not much larger than unity, resulting in effective
spin squeezing that is far from the Heisenberg limit. Hence,
taking hŜzi ¼ −N=2 (i.e., spins keeping their polarization
throughout the evolution and in the steady state), the
Wineland parameter takes a simple form,

ξ2R ¼ 4

N
hŜ2yiSS; ðC1Þ

which we can write using the results in Appendix B as

ξ2R ¼ ðN þ 1Þγcoll þ ðNe−2r þ 1ÞΓþ γrel
ðN þ 1Þγcoll þ ðN þ e−2rÞΓþ γrel

: ðC2Þ

Note that ξ2R gets smaller as r increases, and hence, in what
follows, we take the limit r → ∞. It is worth pointing
out, however, that choosing a finite r which satisfies
expð−2rÞ ≪ 1=

ffiffiffiffiffiffiffi
Crel

p
is sufficient to reproduce the scaling

of ξ2R derived below. In the large-r limit, we find

ξ2R ¼ ðN þ 1Þγcoll þ Γþ γrel
ðN þ 1Þγcoll þ ΓN þ γrel

: ðC3Þ

Next, we use Eqs (12) and (13 of the main text to rewrite the
above expression as

ξ2R ¼
Nþ1
N κint þ ðκsqzþκintÞ2

4G2 γrel þ κsqz
N

Nþ1
N κint þ ðκsqzþκintÞ2

4G2 γrel þ κsqz
: ðC4Þ
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We consider a limit where N → ∞, while G ¼ ffiffiffiffi
N

p
g stays

fixed. In such a case, the last term of the numerator can be
dropped. Here it is crucial to point out that in an
experimental setting, one will typically not have much
control over κint and γrel, while κsqz can be tuned at will
through appropriate reservoir engineering (see Sec. VII).
Hence, it is important to understand what value of κsqz
should be chosen to maximize the amount of squeezing that
this protocol can achieve. At first glance, one might think
that choosing κsqz as large as possible (i.e., κsqz → ∞) is
ideal, as that maximizes the amount of bosonic squeezing
that the spin-coupled cavity experiences. From Eq. (12),
however, we see that such a choice will actually limit the
value of Γ, which directly impacts the strength of the
squeezed-vacuum reservoir that the spins see [see Eq. (11)
in the main text], resulting in the squeezing performance
being strongly limited by the value of γrel. Hence, as
we see shortly, the right thing to do is to still choose
κsqz ≫ κint; γrel, but yet not too large, so that the
Γ-controlled process is dominant over the local spin decay
γrel. To see this explicitly, we minimize Eq. (C4) with
respect to κsqz. Assuming N ≫ 1, this leads to

ξ2R ≈ 2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2

κintγrel
þ 1

s
þ 1

!−1

¼ 2ffiffiffiffiffiffiffi
Crel

p þO
�

1

Crel

�
; ðC5Þ

where, in the second line, we use Eq. (10) of the main text
to express the result in terms of the collective cooperativity
Crel and then expand in the limit of large Crel. Our above
expression shows the Crel−1=2 cooperativity scaling for the
dissipative protocol, which outperforms the Crel−1=3 behav-
ior of the OAT method [35] in the case where spin decay is
the dominant local noise process. The optimal value of κsqz
that results in Eq. (C5) reads

κoptsqz ¼
�
κ2int þ

4G2κint
γrel

�1
2

≈ 2G
ffiffiffiffiffiffi
κint
γrel

r
¼ κint

ffiffiffiffiffiffiffi
Crel

p
; ðC6Þ

which confirms the need for κsqz ≫ κint (given large Crel),
while also showing that it should not be infinitely
large. Finally, we stress that ξ2R is ultimately limited by
κint=ðκint þ κsqzÞ; hence, it is crucial that an appropriate κsqz
can be realized in an experimental setting.
While the above result is calculated in the limit where

γϕ ¼ 0, a similar expression is valid when some local
dephasing is present (i.e., γϕ ≠ 0). In such a case, one can
simply assume γrel → γrel þ 2γϕ in Eq. (C4). As we discuss
in more detail in Sec. VA of the main text, however, this is

only true when γϕ is not too large, namely, when
γϕ ≲ Nγrel. Otherwise, a local dephasing process can have
a significant impact on the evolution and therefore dra-
matically limit the steady-state performance of the protocol.

2. Mean-field-theory simulations

In this section, we present mean-field-theory simulations
of the dissipative protocol obtained using the full (non-
linear) equations shown in Appendix B. We consider the
case where local spin decay dominates over local spin
dephasing, and in particular, work in the limit of γϕ ¼ 0.
The plot in Fig. 11 shows the scaling of the Wineland

parameter as a function of the collective cooperativity Crel.
The parameters are κint ¼ 500g, γrel ¼ 0.04g, giving
ηrel ¼ 0.2, while the number N of spins is varied in order
to modify Crel. At each blue point, both r and κsqz are
optimized in order to minimize ξ2R. The orange curve shows
the corresponding fit, which is calculated using the three
data points with largest Crel. We see good agreement with
the cooperativity scaling we discuss in the main text and
derive in detail in the section above (where we linearize the
equations of motion). For comparison, the black dashed
line describes the optimized squeezing of the engineered
bosonic reservoir. The black solid line shows an ideal
Heisenberg scaling 2=ðN þ 2Þ. We also plot the dotted
black curve, which corresponds to the squeezing one would
get from the OAT protocol in the limit where γrel dominates
over γϕ (in the large-Crel limit); see Ref. [35]. The
simulations confirm that the dissipative protocol can indeed
outperform the OAT approach.

FIG. 11. Scaling of the Wineland parameter ξ2R as a function of
collective cooperativity Crel. The blue curve corresponds to ξ2R
calculated by evolving the full (nonlinear) mean-field equations
of motion for the dissipative system (see Appendix B). Here
κint ¼ 500g, γrel ¼ 0.04g, giving ηrel ¼ 0.2. The number N of
spins is changed in order to vary Crel. At each blue point, both r
and κsqz are optimized in order to minimize ξ2R. The orange
dashed curve shows the corresponding fit (calculated over the
three data points with the largest Crel). The black dashed line
describes the optimized squeezing of the engineered bosonic
reservoir. The solid black line shows an ideal Heisenberg scaling
2=ðN þ 2Þ. Finally, the black dotted curve shows the OAT scaling
as calculated in Ref. [35].
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APPENDIX D: EVEN-ODD EFFECT

In this Appendix, we briefly review previous results on
the dissipative steady state of Eq. (2) in the main text, and
we derive Eq. (16) of the main text. We then comment on
variance detection measurements required to use the even-
odd effect as a sensor, and we discuss the impact of local
dissipation.

1. Properties of the steady state

Agarwal and Puri derived that the steady state of
Eq. (2) is

ρ̂ðjÞSS ∝ Σ̂−1ðΣ̂†Þ−1 ¼ ðΣ̂†Σ̂Þ−1 ðD1Þ

if the Hermitian operator Σ̂†Σ̂ is invertible [22]. Using the
nonunitary transformation eθŜz , where θðrÞ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðrÞp

,
one can express the jump operator Σ̂ðrÞ as

Σ̂ðrÞ ¼ −2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðrÞ coshðrÞ

p
eθðrÞŜz Ŝye−θðrÞŜz : ðD2Þ

Therefore, the eigenstates of Σ̂ðrÞ are

jj; mðrÞi ∝ eθðrÞŜz jj; miy; ðD3Þ

where jj; miy are the eigenstates of Ŝy corresponding to an
eigenvalue m ∈ f−j;…; jg [22].
If N is odd, both Σ̂ðrÞ and Σ̂†ðrÞ have only nonzero

eigenvalues and Σ̂ðrÞ†Σ̂ðrÞ is invertible. Defining the
eigenstates of Σ̂ðrÞ†Σ̂ðrÞ,

Σ̂ðrÞ†Σ̂ðrÞjψki ¼ λkjψki ðD4Þ

with positive eigenvalues 0 < λ0 ≤ … ≤ λ2j, one can
evaluate Eq. (D1) and obtains

ρ̂ðjÞSS ¼ 1P2j
k¼0

1
λk

X2j
k¼0

1

λk
jψkihψkj; ðD5Þ

which is expression (16) of the main text. This is the
generic form for the steady state of a master equation with a
single jump operator that has no zero eigenvalues [103].
If N is even, Σ̂ðrÞ has a zero eigenvalue in each subspace

of angular momentum j and the associated eigenstates are
the dark states

jψdk½j; r�i ∝ eθðrÞŜz jj; 0iy ðD6Þ

given by Eq. (6) of the main text. These dark states are zero
eigenstates of Σ̂ðrÞ†Σ̂ðrÞ too; therefore, Σ̂ðrÞ†Σ̂ðrÞ is not
invertible. Informally speaking, if one inverted Σ̂ðrÞ†Σ̂ðrÞ
in the presence of a zero eigenvalue, the term in Eq. (D5)
associated with the zero eigenvalue would diverge, and

only the dark state would contribute to ρ̂ðjÞSS after normali-

zation, ρ̂ðjÞSSðrÞ ¼ jψdk½j; r�ihψdk½j; r�j.

2. Using the even-odd effect for sensing

As we describe in Sec. III D of the main text, the
sensitivity of the steady state on the parity of the number
N of spins can be used for sensing. Experimentally, sudden
changes in the parity of N can be induced by various
mechanisms. Trapped atoms can be physically lost from the
trap by collisions with background gas, internal collisions,
and photon-assisted processes [104]. If the spin-1=2 degree
of freedom is a subspace of an atomic multilevel structure,
undesired internal transitions can occur, which take the
atom out of the spin-1=2 subspace and effectively remove it
from the collective dynamics even though it may still be
trapped [25]. Moreover, one could devise a system where
the coupling strength of a single spin to the cavity and, thus,
to the collective spin depends on an external parameter.
A change of this single-spin coupling strength modifies the
number of collective spins, which is collectively amplified
and yields a large change of the steady state.
Note that such effective atom loss events do not

change the collective expectation value hŜyi ¼ 0 of the
distribution. However, the statistics of the fluctuations hŜ2yi
depends on the parity, as shown in Fig. 12. The parity
ofN can thus be inferred by imposing a threshold condition
on the variance hŜ2yi measured using spin-noise spectros-
copy [54–60].

3. Impact of local dissipation

So far, our analysis of even-odd effects in the steady state
has focused on the idealized case without any single-
spin dissipation: γrel ¼ γϕ ¼ γcoll ¼ 0. We find that the
Wineland parameters for even and odd N differ strongly in
the regime e2r ≳ N, as shown in Fig. 3 of the main text.
Figure 13 shows that if local dissipation is taken into

FIG. 12. Ŝy probability distribution of the steady state of Eq. (2)
for N ¼ 200 (solid lines) vs N ¼ 201 (dashed lines). The
probability distributions for even and odd N differ if the relation
e2r ≳ N holds. In the limit e2r ≫ N, the odd-N distribution
develops a fat tail of large fluctuations.
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account, spin squeezing is reduced, but the ratio between
the Wineland parameters for even and odd N remains large.
Moreover, for a fixed value of the squeezing parameter r,
the ratio of theWineland parameters in the presence of local
dephasing can even be larger than the corresponding ratio
obtained for γϕ ¼ 0. For fixed local dissipation rates, the
ratio is largest around the onset of the even-odd effect. At
this optimum squeezing parameter rmax, effective single-
spin cooperativities much larger than unity Γ=γϕ ≫ 1 or
Γ=γrel ≫ 1 are required to observe a ratio of the Wineland
parameters greater than 2.

APPENDIX E: LIOUVILLIAN PERTURBATION
THEORY OF THE SLOW TIMESCALE

In this Appendix, we use Liouvillian perturbation theory
[61] to analyze the emergence of the long relaxation
timescale in the presence of local dephasing, which is
discussed in Sec. VA of the main text. We also provide a
simple physical argument to understand this effect.

1. Hilbert space of N spin-1=2 systems and
permutational invariance

The addition of angular momenta of N spin-1=2 systems
gives rise to bN=2c þ 1 subspaces of total angular momen-
tum j, where j takes values between jmax¼N=2 and jmin¼0
(1=2) if N is even (odd) [105]. For N > 2, all but the
maximum-angular-momentum subspace are degenerate
since there are multiple ways to combine N spin-1=2
systems to a total angular momentum j < N=2 [33] (for
an illustration, see, e.g., Ref. [106]). If local dissipative

processes act identically on each spin-1=2 system, the
equations of motion are invariant under permutation of
the spins [34]. Consequently, if the system is initialized in a
permutationally invariant state, e.g., any state in the sub-
space j ¼ jmax, the collective and local dissipative processes
will preserve the permutational symmetry. Exploiting this
symmetry, one can derive an effective quantum master
equation which requires significantly fewer degrees of
freedom to describe the system [34] and gives rise to
efficient numerical simulation of large spin ensembles [107].

2. Analysis of the slow timescale

Our starting point, the quantum master equation (11) of
the main text, belongs to the class of permutationally
invariant systems described above. In the following, we
focus on the case γcoll ¼ γrel ¼ 0. Introducing the dimen-
sionless time τ ¼ Γt, the equation can be rewritten in the
form dρ̂=dτ ¼ L0ρ̂þ εL1ρ̂, where we introduce the dimen-
sionless superoperators

L0 ¼ D½Σ̂ðrÞ�; ðE1Þ

L1 ¼
XN
k¼1

D
�
σ̂ðkÞz

2

�
; ðE2Þ

and the dimensionless perturbation strength ε ¼ 2γϕ=Γ.
In the absence of local dephasing ε ¼ 0, the superoperator

L0 has bN=2c þ 1 different steady states ρ̂ðjÞ0 , each of them
living in a different subspace of collective angular momen-
tum j. Weak local dephasing γϕ ≪ Γ enables incoherent
transitions between adjacent angular-momentum subspaces
[34], which can be visualized as a trajectory in a triangular
ðj; mÞ state space [108]. This perturbation lifts the degen-
eracy of the steady states and opens a new dissipative gap
that determines the relaxation timescale toward the new
unique steady state.
The first-order corrections to the vanishing eigenvalues

of L0 are given by the eigenvalues of the tridiagonal matrix

Mj;j0 ¼ Tr½1̂ðj0ÞL1ρ̂
ðjÞ
0 � ðE3Þ

containing the transition rates j → j0 between collective
angular-momentum subspaces. Here, 1̂ðjÞ is the identity
operator in the angular-momentum subspace j. For even N,
the transition rates are shown in Fig. 14(a). They depend on
the structure of the dark state (6) given in the main text,

Γj→j−1 ¼
Xj−1

m¼−jþ1

Γð5Þ
j;m;mjcðjÞm j2; ðE4Þ

Γj→jþ1 ¼
Xj
m¼−j

Γð6Þ
j;m;mjcðjÞm j2; ðE5Þ

FIG. 13. Ratio between the steady-state Wineland parameters
for even and odd N without local dissipation (solid black line),
with local dephasing (dashed lines), and with local relaxation
(dash-dotted lines) calculated using the quantum master equation
Eq. (11) of the main text. The parameters are from top to bottom:
γϕ=Γ ¼ ð0.00005; 0.0005; 0.005; 0.05Þ and γrel=Γ ¼ 0 for the red
curves and γrel=Γ ¼ ð0.0001; 0.001; 0.01; 0.1Þ and γϕ=Γ ¼ 0 for
the blue curves. Inset: corresponding plot of the Wineland
parameters for N ¼ 30 (solid lines) vs N ¼ 31 (dashed lines)
without local dissipation (black lines), with local dephasing (red
lines, γϕ=Γ ¼ 0.00005, γrel=Γ ¼ 0), and with local relaxation
(blue lines, γϕ=Γ ¼ 0, γrel=Γ ¼ 0.0001).
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where cðjÞm are the expansion coefficients of the dark state,

and Γð5;6Þ
j;m;m are the transition rates derived in Ref. [34] using

the notation introduced in Ref. [107]. Note that, in our case,
L1 is dimensionless such that the transition rates (E4)
and (E5) are dimensionless, too. The asymptotic decay rate,
i.e., the absolute value of the smallest gap in the spectrum
of M, is shown in Fig. 14(b).
For r ¼ 0, the unperturbed steady states are the

ground states of each angular-momentum subspace, ρ̂ðjÞ0 ¼
jj;−jihj;−jj. Therefore, transitions are only possible
toward subspaces of larger angular momentum
Γj→j−1 ¼ 0, and the relaxation dynamics is dominated
by the bottleneck of the smallest nonzero transition
rate ΓN=2−1;−N=2þ1→N=2;−N=2þ1 ¼ 1=N.
For r ≠ 0, transition rates Γj→j−1 are nonzero and

dominate over the rate ΓN=2−1→N=2 if the condition
r > 1=

ffiffiffiffi
N

p
holds. As a consequence, an initial state in

the maximum-angular-momentum subspace j ¼ N=2 will

undergo a directed hopping process toward lower-
angular-momentum subspaces until it reaches a subspace
j0 where “downward” and “upward” rates are balanced,
Γj0→j0−1 ≈ Γj0−1→j0 . Note that the downward rates Γj→j−1
are almost constant as a function of j, whereas the upward
rates Γj→jþ1 depend strongly on j, as shown in Fig. 14(a).
The asymptotic decay rate toward the steady state is
proportional to 1=N if the transition rates in the vicinity
of the equilibrium point j0 scale proportionally to 1=N. An

inspection of the rates Γð5;6Þ
j;m;m listed in Ref. [107] shows that

this is the case if j ≫ N=2 and m ≪ 0. For a given
squeezing parameter r, these conditions can be fulfilled
if N is sufficiently large,

N ≫ ear; ðE6Þ
as shown in Fig. 14(b). Numerically, we find an exponent
a ≈ 5; see inset of Fig. 14(b).
In the limit r → ∞, the asymptotic decay rate converges

to the constant value 1=2.

3. Physical argument for the slow timescale

The existence of a bottleneck relaxation rate causing a
1=N scaling of the asymptotic decay rate for local dephas-
ing can be understood by an intuitive argument. To explain
it, we focus on the transition rate ΓN=2−1;−N=2þ1→N=2;−N=2þ1,
which is the bottleneck determining the asymptotic decay
rate in the limit r < 1=

ffiffiffiffi
N

p
. The states that are involved in

this transition can be parametrized as [109,110]

jpi ¼ 1ffiffiffiffi
N

p
XN
j¼1

e2πijp=Njji; ðE7Þ

where p ∈ f0;…; N − 1g. Here, jji denotes the N-particle
state where the jth spin is in the excited state and all others
are in the ground state. The p ¼ 0 state has total angular
momentum j ¼ N=2; i.e., we can identify it with the state

j0i≡ jN=2;−N=2þ 1i ðE8Þ

in the maximum-angular-momentum subspace. In contrast,
the N − 1 states with p > 0 have total angular momentum
j ¼ N=2 − 1. Therefore, the index p > 0 allows us to label
the N − 1 degenerate states in the j ¼ N=2 − 1 subspace,

jpi≡ jN=2 − 1;−N=2þ 1; pi for p > 0: ðE9Þ
Local dephasing of spin n changes one sign in the super-
position (E7),

1

2
σ̂ðnÞz jpi ¼ −

1

2
jpi þ 1ffiffiffiffi

N
p e2πinp=N jni; ðE10Þ

and thus creates an overlap between the orthogonal states
j0i and jp > 0i that is proportional to 1=N,

(a)

(b)

FIG. 14. (a) Transition rates j − 1 → j (solid) and j → j − 1
(dashed) between different angular-momentum subspaces due to
local dephasing for N ¼ 128 and Γ ¼ 1. (b) Asymptotic decay
rate in the presence of local dephasing for r ¼ 0.2, 0.5, 1.0, 1.4,
and 4.0 (bottom to top). The dashed black line indicates 1=N
scaling obtained for r ¼ 0. Inset: scaling exponent a in 1=Na as a
function of N and r. The data points indicate the positions where
a becomes smaller than 0.99, 0.98, 0.95, and 0.9 (left to right).
The dash-dotted black lines are a guide to the eye and indicate e5r

scaling.
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VðnÞ
0;p ¼ h0j 1

2
σ̂ðnÞz jp > 0i ¼ 1

N
e2πinp=N: ðE11Þ

For identical dephasing processes on all N spins and for a
collective initial state, i.e., a uniform statistical mixture
of all N − 1 states jN=2 − 1;−N=2þ 1; pi, the total
upward transition rate between the two collective angular-
momentum subspaces is

ΓN=2−1;−N=2þ1→N=2;−N=2þ1

¼
XN−1

p¼1

1

N − 1

XN
n¼1

jVðnÞ
0;pj2 ¼

1

N
; ðE12Þ

which is the bottleneck of the relaxation process and
features the 1=N scaling with system size. Note that the
corresponding downward rate is of the order of unity
because we have to sum over all N − 1 possible target
states jp > 0i too,

ΓN=2;−N=2þ1→N=2−1;−N=2þ1

¼
XN−1

p¼1

XN
n¼1

jVðnÞ
0;pj2 ¼

N − 1

N
: ðE13Þ

Also note that local relaxation does not lead to a similar
emergence of the slow timescale because the overlap
corresponding to Eq. (E11) will be only proportional to
1=

ffiffiffiffi
N

p
and is thus canceled by the summation performed

in Eq. (E12).

APPENDIX F: OPTIMAL PARAMETERS
IN MASTER EQUATIONS

In this section, we show how the optimal protocol
parameters vary as a function of increasing system size
N in simulations from Fig. 5 of the main text. In the case of
the dissipative protocols, the optimization includes varying
both r as well as κsqz, whereas in the case of OAT, the spin-
cavity detuning Δc (see Appendix G) is varied. The results
are shown in Fig. 15.

APPENDIX G: EFFECTIVE ONE-AXIS-TWIST
QUANTUM MASTER EQUATION

In this Appendix, we present the effective model that we
consider when discussing the OAT protocol both in the
main text and in Appendix C 2. In particular, following
Refs. [27,35], we envision an ensemble of spins disper-
sively coupled to a bosonic cavity. After adiabatically
eliminating the cavity, the spin-only quantum master
equation can be approximated by [35]

_̂ρ ¼ −i½χðŜ2 − Ŝ2zÞ; ρ̂� þ
κintg2

Δ2
c þ ðκint

2
Þ2D½Ŝ−�ρ̂

þ γrel
X
k

D½σ̂ðkÞ− �ρ̂; ðG1Þ

with

χ ¼ g2Δc

Δ2
c þ ðκint

2
Þ2 ; ðG2Þ

and with Δc representing the cavity-spin detuning, g the
cavity-spin coupling strength, κint the decay rate of the
cavity, and γrel the local spin decay. We point out that we
assume in the simulations that Δc is a tunable parameter,
over which we optimize in order to maximize the amount of
spin squeezing that the protocol can achieve.

APPENDIX H: SCALING OF THE WINELAND
PARAMETER ξ2R IN THE LIMIT ηrel → ∞

When analyzing the performance of the dissipative-spin-
squeezing protocol in the main text as one means of
implementation, we envision engineering the required
dissipator by coupling a spin ensemble to a lossy cavity
that in turn interacts with an appropriately engineered
squeezed bath. Furthermore, in our cooperativity scaling
analysis (see Appendix C and Sec. IV), we investigate the
limit of weak single-spin cooperativity ηrel ≤ 1. It is also
interesting to consider a different asymptotic regime, where
the internal cavity loss κint is negligible, giving an
extremely large ηrel. We focus on the specific case where
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FIG. 15. Values of optimal parameters obtained from master equation simulations of both the dissipative as well as the OAT protocol,
which are used to generate Fig. 5 of the main text. Left and center panels show the optimal values of κint and r [plot shows expð2rÞ] that
result from the dissipative protocol simulations. The right panel shows the optimal spin-cavity detuning that is used in for the OAT
protocol. See Fig. 5 for details about the rest of the parameters that we use.
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κint ¼ 0, and the only undesired dynamics is due to single-
spin relaxation at a rate γrel. Such a situation could be
realized without any cavity by directly irradiating an
ensemble of two-level atoms with squeezed light. While
this situation was analyzed in Refs. [22,24], the impacts of
single-spin relaxation were not studied.
The master equation in our chosen limit is thus,

_ρ ¼ ΓD½Σ̂½r��ρ̂þ γrel
X
k

D½σ̂ðkÞ− �ρ̂: ðH1Þ

The key dimensionless parameter that describes the com-
petition of the desired collective dissipative dynamics and
the unwanted relaxation is

η̃ ¼ Γ
γrel

: ðH2Þ

Once again, concentrating our attention on the large-N
limit and fixing hŜzi ¼ −N=2, we can approximate the
Wineland parameter using the mean-field equations of
Appendix B as

ξ2R ≈
η̃þ 1

Nη̃þ 1
: ðH3Þ

In the above expression, we already take the limit r → ∞,
which minimizes ξ2R. As one would expect, achievable
squeezing increases as η̃ gets larger, but more importantly,
we have that ξ2R ∝ 1=N. We can also define a quantity
analogous to a collective cooperativity in this simplified
system,

C̃ ¼ Nη̃; ðH4Þ

which then lets us write

ξ2R ∝
1

C̃
; ðH5Þ

assuming η̃ ≤ 1 and C̃ ≫ 1.

APPENDIX I: MODELING EXPERIMENTAL
IMPERFECTIONS AS AN EFFECTIVE-

TEMPERATURE SQUEEZED RESERVOIR

In this Appendix, we show that the generalized model
(29) describing an engineered reservoir that stabilizes an
impure steady state can capture the impact of collective
excitation and relaxation if the squeezing parameter r and
the effective thermal occupation number nth are adjusted
properly. To prove this, we start with the fully general
quantum master equation

_̂ρ ¼ ΓD½Σ̂�ρ̂þ Γ0D½Σ̂†�ρ̂þ γD½Ŝ−�ρ̂þ γ0D½Ŝþ�ρ̂; ðI1Þ

which can model, e.g., interaction with an impure squeez-
ing reservoir and a finite-temperature collective-decay
reservoir if the ratios Γ=Γ0 and γ=γ0 are chosen properly.
Equation (I1) is equivalent to a quantum master equation of
the form given in Eq. (29),

_̂ρ ¼ Γ̃D½Σ̃�ρ̂þ Γ̃0D½Σ̃†�ρ̂; ðI2Þ

Σ̃ ¼ coshðr̃ÞŜ− − sinhðr̃ÞŜþ; ðI3Þ

where we define a new squeezing parameter r̃ and new
decay rates Γ̃, Γ̃0 as follows:

1

tanhð2r̃Þ ¼
1

tanhð2rÞ þ
γ þ γ0

Γþ Γ0
1

sinhð2rÞ ; ðI4Þ

Γ̃ ¼ ðΓþ Γ0Þ coshð2rÞ þ γ þ γ0

2 coshð2r̃Þ
þ Γ − Γ0 þ γ − γ0

2
; ðI5Þ

Γ̃0 ¼ Γ̃ − Γþ Γ0 − γ þ γ0: ðI6Þ

Condition (I4) can be satisfied for arbitrary nonnegative
rates Γ, Γ0, γ, and γ0. Collective excitation or decay γ0 ≠ 0 or
γ ≠ 0, respectively, will decrease the squeezing parameter;
i.e., we always have r̃ ≤ r. Sufficient (but not necessary)
conditions to obtain non-negative decay rates Γ̃ and Γ̃0 are

Γþ γ − γ0

2
≥ 0; ðI7Þ

Γ0 þ γ0 − γ

2
≥ 0: ðI8Þ

Note that these conditions are satisfied if γ ¼ γ0, which is
the case for the trapped-ion implementation discussed in
Sec. VII. There, we have Γ0 ¼ 0 and γ ¼ γ0 ¼ γheat ≪ Γ
(see Sec. VII). Expanding the general results (I4)–(I6) in
the small parameter γheat=Γ, we find

r̃ ≈ r − sinhð2rÞ γheat
Γ

; ðI9Þ

Γ̃ ≈ Γ
�
1þ coshð2rÞ γheat

Γ

�
; ðI10Þ

Γ̃0 ≈ Γ coshð2rÞ γheat
Γ

: ðI11Þ

This corresponds to an impure squeezed reservoir with
reduced squeezing parameter r̃ < r, effective thermal
occupation number nth ¼ coshð2rÞγheat=Γ, and unchanged
decay rate Γ, as shown in Eqs. (32) and (33).
Similarly, for a perfect squeezing reservoir and small

zero-temperature collective decay, i.e., Γ0 ¼ γ0 ¼ 0 and
γ ¼ γcoll ≪ Γ, one finds
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r̃ ≈ r −
1

2
sinhð2rÞ γcoll

Γ
; ðI12Þ

Γ̃ ≈ Γ
�
1þ γcoll

Γ

�
ð1þ nthÞ; ðI13Þ

Γ̃0 ≈ Γ
�
1þ γcoll

Γ

�
nth; ðI14Þ

nth ≈
sinh2ðrÞ
1þ γcoll

Γ

γcoll
Γ

; ðI15Þ

i.e., the presence of collective decay can be understood in
terms of an impure squeezing reservoir with decreased
squeezing parameter r̃ < r, effective temperature nth, and
an enhanced decay rate Γþ γcoll.

APPENDIX J: OPTIMAL SQUEEZING
PARAMETER FOR AN IMPURE

SQUEEZED RESERVOIR

In this Appendix, we summarize the numerical results
for the optimal squeezing parameter ropt introduced in
Sec. VI. Numerical optimizations of the Wineland param-
eter (see Fig. 16) indicate that the optimal squeezing
parameter ropt is approximately consistent with a power-
law scaling

e2ropt ∝ Na × nbth; ðJ1Þ
where a ≈ 0.75 and b ≈ −0.25.
In the limits r ≫ ropt and N ≫ 1, these results can

qualitatively be understood using the heuristic picture
introduced in Sec. VI. An approximate steady state of
Eq. (29) is obtained by truncating the true steady state to its
two most important pure-state contributions,

ρ̂SS ≈
nth þ 1

2nth þ 1
jψdkihψdkj

þ nth
2nth þ 1

Σ̂†jψdkihψdkjΣ̂
−2hŜzidk

: ðJ2Þ

In the large-N and large-r limit, the mean-spin length hŜzi
and the variance hŜ2yi scale as

hŜziSS → −
nth þ 1

2nth þ 1

N2

4
e−2r; ðJ3Þ

hŜ2yiSS → þ nth þ 1

2nth þ 1

�
N2

8
e−4r þ 1

�
; ðJ4Þ

where the constant term in the brackets is due to the finite
hŜ2yi variance of the “first excited” state ∝ Σ̂†jψdk½r�i. Thus,
the Wineland parameter will diverge exponentially if the
constant becomes relevant, i.e., if we have roughly

e2r ≈ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nth þ 1

nth

s
: ðJ5Þ

Note that this result is only valid in the limits N ≫ 1 and
r ≫ ropt; i.e., it should not be expected to reproduce the
numerical scaling observed in Fig. 16 quantitatively.

APPENDIX K: IMPURE ENGINEERED
RESERVOIR: SCALING OF ξ2R WITH

MEAN-FIELD THEORY

In this Appendix, we provide a brief companion dis-
cussion to Sec. VI of the main text and explore a thermal
squeezed light reservoir model that has imperfect purity,
using mean-field theory. In particular, we consider the spin-
only master equation (29) of the main text, which we
reproduce here for completeness:

_̂ρ ¼ Γðnth þ 1ÞD½Σ̂�ρ̂þ ΓnthD½Σ̂†�ρ̂: ðK1Þ

Following Appendix B, we can once again write the
corresponding mean-field equations setting third cumulants

(a)

(b)

FIG. 16. Scaling of the optimal squeezing parameter ropt
introduced in Sec. VI and of the steady-state purity if the
engineered reservoir stabilizes an impure squeezed state [as
modeled by Eq. (29)]. For each value of nth and N, ropt is
determined by numerically minimizing ξ2R. (a) Scaling of e2ropt

with nth. The dashed lines are fits to a power law n−0.25th .
(b) Scaling of e2ropt with N. The dashed lines are fits to a power
law N0.75.
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to zero, which can be readily solved numerically. Of
particular interest is the scaling of the Wineland parameter
ξ2R, with the spin number N. The results are presented in
Fig. 17, where we show the ratio between the minimum
steady-state Wineland parameter obtained by solving the
mean-field equations of motion, and the ideal Heisenberg-
limited value ξ2R;HL ¼ 2=ðN þ 2Þ (which full theory pre-
dicts at nth ¼ 0). Each dot corresponds a solution with
optimized squeezing strength r, while the dashed curves are
fits to a horizontal line taken over the largest four values of
N for each nth. From the plot, it is clear that the mean-field
theory predicts approximately 1=N scaling at largeN which
is weakly skewed at smallest values of N that we consider.
These results are consistent with our full master equation
simulations presented in Sec. VI. Similar to a simple
bosonic theory prediction, we also find that the minimum
steady-state value of the Wineland parameter scales linearly
with growing nth. In particular, to a good approximation it
satisfies the phenomenological equation

ξ2R ≈ 2.8ð1þ 2nthÞ expð−2roptÞ; ðK2Þ

with ropt separately optimized for each nth. Finally, we
point out that, as can be seen from the blue curve of
Fig. 17, the mean-field-theory solution does not correctly
predict the prefactor of the 1=N in the case of nth ¼ 0 [i.e.,
where the corresponding ratio ξ2RðroptÞ=ξ2R;HL should be
equal to 1]. This is a somewhat expected behavior, as
in parameter regimes where the ξ2R may be either at or
near its Heisenberg-limited value, the state of the spin
ensemble is not Gaussian, which may substantially lower
the ability of mean-field theory to quantitatively describe
its behavior.
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[2] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P.
Treutlein, Quantum Metrology with Nonclassical States of
Atomic Ensembles, Rev. Mod. Phys. 90, 035005 (2018).

[3] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Im-
plementation of Cavity Squeezing of a Collective Atomic
Spin, Phys. Rev. Lett. 104, 073602 (2010).

[4] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and
P. Treutlein, Atom-Chip-Based Generation of Entangle-
ment for Quantum Metrology, Nature (London) 464, 1170
(2010).

[5] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K.
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