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Statistique et Modélisation, F-75013 Paris, France

(Received 18 September 2020; revised 27 August 2021; accepted 26 October 2021; published 10 January 2022)

The statistics of gap ratios between consecutive energy levels is a widely used tool—in particular, in the
context of many-body physics—to distinguish between chaotic and integrable systems, described,
respectively, by Gaussian ensembles of random matrices and Poisson statistics. In this work, we extend
the study of the gap ratio distribution PðrÞ to the case where discrete symmetries are present. This is
important since in certain situations it may be very impractical, or impossible, to split the model into
symmetry sectors, let alone in cases where the symmetry is not known in the first place. Starting from the
known expressions for surmises in the Gaussian ensembles, we derive analytical surmises for random
matrices comprised of several independent blocks. We check our formulas against simulations from large
random matrices, showing excellent agreement. We then present a large set of applications in many-body
physics, ranging from quantum clock models and anyonic chains to periodically driven spin systems. In all
these models, the existence of a (sometimes hidden) symmetry can be diagnosed through the study of the
spectral gap ratios, and our approach furnishes an efficient way to characterize the number and size of
independent symmetry subspaces. We finally discuss the relevance of our analysis for existing results in the
literature, as well as its practical usefulness, and point out possible future applications and extensions.
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I. INTRODUCTION

Symmetry considerations are an essential part of a
physicist’s toolbox, with countless applications in all fields
of physics, ranging from Noether’s theorem and gauge
theories to the description of phase transitions [1]. Another
frequent tool is the use of simplified models that success-
fully describe the important features of a physical phe-
nomenon without having to deal with all the microscopic
details. In this respect, randommatrix theory (RMT), which
was first initiated to understand the statistical properties
of energy levels in complex nuclei [2], is an extremely
successful approach that has also impacted various
branches in physics [3,4]. It then comes as no surprise
that symmetry properties are an integral part of RMT:
One of the best-known examples is the construction of

classical Gaussian ensembles from time-reversal symmetry
considerations. Depending on the underlying symmetry of
the system considered, it is best described by random
matrices belonging to one of the three following ensembles:
Gaussian orthogonal ensemble (GOE), Gaussian unitary
ensemble (GUE), and Gaussian symplectic ensemble
(GSE), whose entries are, respectively, real, complex, or
quaternionic randomvariables.Convenient to the description
of Floquet operators are the circular ensembles introduced by
Dyson [5]: circular orthogonal ensemble (COE), circular
unitary ensemble (CUE), and circular symplectic ensemble
(CSE). These ensembles have the same asymptotic level
spacing distributions as the Gaussian ensembles [4].
The celebrated conjectures of Berry and Tabor [6] and

Bohigas, Giannoni, and Schmit [7] state that RMT
describes the spectral statistics of quantum systems with
a chaotic semiclassical limit, whereas Poisson statistics
provides a description of systems with a classical integrable
limit. These two paradigms serve as reference points to
study the transitions between localization and ergodicity,
for instance, the Anderson transition as a function of
disorder [8]. Quite crucially, quantum many-body systems,
for which there is, in general, no semiclassical limit, also
display the same dichotomy: RMT statistics for chaotic
systems and Poisson statistics for quantum integrable
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systems, including those showing an emergent integrability
such as many-body localized systems [9,10]. Numerous
examples illustrate the usefulness of a RMT analysis of
quantum many-body spectra [9,11–14].
A universal tool in this respect is the study of the

distribution pðsÞ of level spacings, or gaps, defined as
the differences between consecutive energy levels, si ¼
λi − λi−1, assuming that the mean level density is fixed
to unity, i.e., hsi ¼ 1. RMT offers simple, powerful
predictions for the distribution pðsÞ in terms of three
different Wigner surmises corresponding to the three
Gaussian ensembles mentioned above [2]. These surmises
are obtained by a simple calculation on random 2 × 2
matrices, and they reproduce most of the features of
much larger random matrices, with high precision [15].
Normalizing the level spacing distribution requires knowl-
edge of the density of states, which is often not analytically
available. Numerically, one needs to perform an unfolding
of the spectrum, for which there exists different procedures
[6,13,16]. Unfolding can lead to spurious results [17], in
particular, because of finite-size effects; one may even find
instances where different unfolding procedures lead to
different physical interpretations of the same data. For
many-body systems, the density of states is generically far
from being uniform, which makes the use of the unfolding
procedure rather inaccurate.
A very useful alternative to the study of s has been

proposed by Oganesyan and Huse [14], in terms of the
gap ratio for three consecutive levels, ri ¼ minðsi=si−1;
si−1=siÞ. The key point is that considering the ratio of gaps
rather than the gaps themselves suppresses the need to
know or estimate the density of states and thus avoids the
numerical unfolding step. The probability distribution PðrÞ
of gap ratios is thus well suited to characterize statistical
properties of many-body spectra. The Poisson statistics
distribution PPoissonðrÞ ¼ 2=ð1þ rÞ2 can be easily derived
from a Poisson sequence. For the random matrix spectra,
analytical surmises of PGOEðrÞ; PGUEðrÞ, and PGSEðrÞ have
been obtained by Atas et al. [18] from the joint eigenvalue
distribution of 3 × 3 random matrices, and improved
estimates were obtained in Ref. [19] based on 4 × 4
matrices.
Because of its computational advantage (no unfolding

needed) and the existence of these analytical predictions,
the gap ratio r—in particular, its average hri and its
distribution PðrÞ—has become one of the most studied
metrics in the field of disordered quantum systems. For
instance, it is often used to characterize the change of
statistics across a many-body localization (MBL) transi-
tion, between an ergodic phase, for which the RMT pre-
dictions for PðrÞ are expected, and a many-body localized
phase, which displays emergent integrability and thus
PPoissonðrÞ gap ratio statistics [9,20,21]. The agreement
between the RMT-predicted PðrÞ and the numerical esti-
mate for a given model now routinely diagnoses quantum

chaotic models. Any discrepancy in the gap ratio as a
function of a model parameter is often interpreted as a sign
of a different physical behavior (see, e.g., Ref. [22]). The
distribution of gap ratios is also instrumental in analyzing
the symmetry properties of the SYK model and variants as
a function of the number of Majorana fermions [23–27].
Note that PðrÞ has also been measured experimentally to
probe an ergodic to MBL transition or crossover [28].
Applications of this metric were also performed in other
fields of study, such as in astrophysics [29], for statistics of
the zeros of the Riemann zeta function [18], or for
characterizing entanglement in quantum circuits [30].
The computation of the gap ratio statistics has been
extended in several ways, such as ratios of gaps for levels
with one or more other levels in between or non-Hermitian
matrices [19,31–37].
What happens to spectral statistics in the situation where

symmetries are present in the original Hamiltonian? In a
seminal work [38], Rosenzweig and Porter computed the
level spacing distribution PðsÞ of systems with several
independent random blocks [each being a random matrix
with spacing distribution pðsÞ]. This situation typically
occurs when a physical system displays discrete sym-
metries, in which case the number of blocks remains finite
in the thermodynamic limit. For continuous symmetries,
the number of blocks grows with the system size, and
ultimately, as many independent spectra are mixed, one
expects a Poisson distribution to emerge for large enough
systems. In an extension of the original work [38], Berry
and Robnik considered mixed phase spaces with both
ergodic and integrable blocks [39].
In general, one would be inclined to resolve the under-

lying symmetries by treating each block independently
and performing a block diagonalization. This is not always
possible. First, there are cases where a symmetry not
previously known or analyzed is discovered fortuitously
(e.g., by monitoring the gap ratio and seeing that it does not
converge to its expected value). Second, in some situations,
the block diagonalization is not known, too complex to
implement, or cannot be performed totally. The latter case
occurs, for instance, in systems with non-Abelian discrete
symmetries, where two symmetry operations that commute
with the Hamiltonian do not commute with each other (see,
e.g., Refs. [40,41]). Third, there are cases where the basis
transformation leading to a block structure in the
Hamiltonian is known but results in a Hamiltonian that
is more costly to analyze; this is, for instance, the case if a
sparse Hamiltonian leads to nonsparse blocks, inducing a
strong decrease in the performances of numerical routines
(we will present such an example in Sec. IV D).
In this work, we extend the Rosenzweig-Porter analysis

to the computation of the gap ratio statistics PðrÞ when
several independent blocks are present. We do so by cal-
culating the joint gap distribution Pðx; yÞ for a matrix with
several independent random blocks, each being a random
matrix with joint gap distribution pðs; tÞ. We obtain closed
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expressions for Pðx; yÞ and PðrÞ in terms of pðs; tÞ and its
primitives. These expressions are valid for an arbitrary
number of blocks. In the case of Gaussian randommatrices,
we use for pðs; tÞ a surmise given by the exact 3 × 3
distribution of RMT, which allows us to obtain expressions
for PðrÞ. However, our formula applies for an arbitrary
distribution pðs; tÞ. We note that a recent work [42]
provides estimates for PðrÞ and hri based on a surmise
obtained from explicit analytical calculations for small-size
matrices; however, it does not take into account all possible
level partitions. Our approach is quite different, as we
discuss below.
Our analytical estimates are virtually indistinguishable

from numerical simulations on large random matrices.
Our results explain several deviations for the distribution
PðrÞ or expectation value hri observed in the literature, as
discussed in Sec. VA. They can also be useful in several
situations such as thosementionedabove (whichwe illustrate
with various applications taken from many-body physics in
Sec. IV), as well as to estimate the number of effective
ergodic blocks in an incompletely thermalized system.
The paper is organized as follows. We first introduce the

problem in Sec. II, setting up the notations and summa-
rizing the useful literature as well as our own results.
Section III contains the derivation of the generic form
of PðrÞ when several independent blocks are present. We
then present results for the three Gaussian ensembles.
Section III D compares these analytically obtained results
to simulations performed on random matrices, showing an
excellent agreement. Section IV contains several realistic
applications of these results in many-body physics, with a
panel of different types of possible symmetries: clock
symmetries, symmetries in disorder realizations, dynamical
symmetries in Floquet systems, and disordered anyonic
chains with topological symmetries. In Sec. V, we finally
conclude by first discussing existing examples where our
work directly applies and then suggesting some further
perspectives.

II. SETTING

A. Random matrix ensembles

Let us first consider the case of a single Gaussian random
matrix H of size N, whose distribution is proportional to
expð− 1

2
trH2Þ. We denote by λ1 ≤ … ≤ λN the eigenvalues

of such a matrix. The density of eigenvalues is given by the
Wigner semicircle law ρðλÞ ¼ ð1=πNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N − λ2

p
[43].

Since there are NρðλÞδλ levels in an interval δλ, the
corresponding mean level spacing in the vicinity of
λ ¼ 0 is Δ ¼ π=

ffiffiffiffiffiffiffi
2N

p
, which gives a local density

1=Δ ¼ ffiffiffiffiffiffiffi
2N

p
=π. The joint distribution of eigenvalues is [4]

Pðλ1;…; λNÞ ¼ N
Y
i<j

ðλj − λiÞβe−a
P

N
i¼1

λ2i ; ð1Þ

where β ¼ 1, 2, or 4 is the Dyson index and N and a are
normalization constants.
In a region of constant density, the nearest-neighbor

spacing distribution pðsÞ is well approximated by the
Wigner surmise [2], corresponding to the exact result
obtained from Eq. (1) for 2 × 2 matrices,

pðsÞ ¼ aβsβe−bβs
2

; ð2Þ
where aβ, bβ are normalization constants, chosen in such a
way that hsi ¼ 1. In a similar way [18], one can approxi-
mate the joint distribution of consecutive nearest-neighbor
spacings pðs; tÞ by its exact expression for 3 × 3 matrices,
which can be obtained from Eq. (1) with N ¼ 3 by
integrating over one variable. It reads

pðs; tÞ ¼ Aβsβtβðsþ tÞβe−Bβðs2þstþt2Þ; ð3Þ
where the constant Bβ is such that both spacings are
normalized as hsi ¼ hti ¼ 1, and Aβ is the overall nor-
malization factor. From this expression, one can then obtain
the distribution of r ¼ minðt=s; s=tÞ as

pðrÞ ¼
Z

∞

0

dsdtpðs; tÞδ
�
r −min

�
s
t
;
t
s

��
ð4Þ

¼
Z

∞

0

dss(pðs; rsÞ þ pðrs; sÞ): ð5Þ

Since the distribution pðs; tÞ is symmetric in s and t, Eq. (4)
reduces to

pðrÞ ¼ 2

Z
∞

0

dsspðs; rsÞ: ð6Þ

This approach was carried out in Ref. [18], yielding

pðrÞ ¼ 1

Zβ

ðrþ r2Þβ
ð1þ rþ r2Þ1þ3

2
β
; ð7Þ

with Zβ the normalization constant.
Since Gaussian and circular ensembles have the same

asymptotic level spacing distribution, the same analysis
should be equally valid for circular ensembles, the only
difference being that the mean level spacing is Δ ¼ 2π=N,
and thus the density of states is uniform and proportional to
N, rather than circular and proportional to

ffiffiffiffi
N

p
. For finite

N, this difference in the shape of the density can result in
small differences between the circular and Gaussian
ensembles, which are expected to vanish in the large-
matrix limit. For the 3 × 3 matrices leading to the surmise
Eq. (7), the difference is already very small [44].

B. Compound spectrum: The
Rosenzweig-Porter approach

Let us now consider ensembles of random matrices of
size N, which can be decomposed into m independent
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blocks of sizes N1; N2…Nm, with
P

i Ni ¼ N. The ordered
eigenvalues λ1 < λ2 < � � � < λN of such a matrix can be
obtained by diagonalizing each block separately and order-
ing the eigenvalues so that the spectra of the blocks are
interlaced. Let N ¼ ðN1; N2…NmÞ be a vector of block
sizes. The compound spectrum fλi; 1 ≤ i ≤ Ng can be
characterized by its spacing distribution PNðsÞ, which is
the distribution of gaps si ¼ λiþ1 − λi. It can also be
characterized by the gap ratio distribution PNðr̃Þ, with
r̃i ¼ si=si−1, or [45] by the gap ratio distribution PNðrÞ,
with ri ¼ minðsi=si−1; si−1=siÞ ∈ ½0; 1�.
If there is a statistical symmetry between left and right

intervals, then the relation PNðr̃Þ ¼ ð1=r̃2ÞPNð1=r̃Þ holds,
which entails that PNðrÞ ¼ 2PNðr̃Þθð1 − r̃Þ [18]. In that
case, the distributions of r̃ and r essentially contain the
same information. As we shall see, this is the case for the
distributions considered in this paper, and therefore, as is
often done in numerical simulations, we concentrate on the
distribution PNðrÞ with r ∈ ½0; 1�.
If them blocks are independentGaussian randommatrices

given by theWigner-Dyson ensembles with index β, then the

spectrum of block i, fλðiÞq ; 1 ≤ q ≤ Nig, is characterized
by its mean level spacing around λ ¼ 0, given by Δi ¼
π=

ffiffiffiffiffiffiffiffi
2Ni

p
, or by its local density ρi ¼

ffiffiffiffiffiffiffiffi
2Ni

p
=π. The resulting

spectrum obtained by the superposition of them spectra has
density ρ ¼ P

i ρi. Introducing the normalized densities
μi ¼ ρi=ρ, we have μi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ni=N

p
. For the circular ensem-

bles, where densities are uniform over the unit circle,
μi ¼ Ni=N.
The Rosenzweig-Porter approach, which gives the near-

est-neighbor spacing distribution PðxÞ associated with the
compound spectrum, consists in assuming that the com-
pound spectrum is a superposition of independent and
identically distributed spectra with uniform density ρi and
with nearest-neighbor spacing distribution given by the
surmise Eq. (2). The computation proceeds by identifying
that a gap in the compound spectrum can originate either
from a gap in one of the spectra or from a gap between
eigenvalues from two distinct spectra. Considering all
possibilities and the probabilities attached to them leads
to the spacing distribution PðxÞ. This approach is detailed
in Sec. III A. These results were extended in Ref. [39] by
considering a mixed phase space, which amounts to adding
Poisson blocks to a chaotic Hamiltonian. Reference [39]
derives an explicit formula for PðxÞ for a Poisson block and
(N − 1) chaotic blocks with the same density.

C. Summary of our results

In this paper, we extend the Rosenzweig-Porter approach
to derive the joint distribution of consecutive nearest-
neighbor spacings Pðx; yÞ of a compound spectrum made
out of several spectra with arbitrary distribution. It is given
by the very compact expressions in Eqs. (27) and (28), for
which we give a probabilistic interpretation. We then obtain
PðrÞ from the analog of Eq. (6), namely,

PðrÞ ¼ 2

Z
∞

0

dxxPðx; rxÞ: ð8Þ

Applying our expressions to the RMT expressions, Eqs. (2)
and (3), we obtain a closed general expression for PNðrÞ.
We then apply this general formula to the case of identical
block sizes Ni ¼ N=m, for which we use the short notation
PmðrÞ. Some of these calculations result in exact closed
(albeit complex) forms; others require a numerical inte-
gration. Besides the full distribution, we also consider the
average gap ratio hrim ¼ R

1
0 rPmðrÞdr and the limiting

value for the vanishing gap ratio Pmð0Þ ¼ limr→0 PmðrÞ, as
they turn out to be of great practical use to identify the
existence of a symmetry [Pð0Þ ¼ 0 in the no-symmetry
case m ¼ 1]. In Sec. III E, we also consider the quantity
I1=4m ¼ R 1=4

0 drPðrÞ, which proves useful to identify sym-
metries in an experimental setting where few realizations of
the spectrum are available. Our results are summarized in
Table I. In the Supplemental Material [46], we provide a

TABLE I. Values of averages hri and probability at r ¼ 0 form
blocks, obtained from the surmise approach in Sec. III. The value
for m ¼ 1 is taken from Ref. [18]. Values for hrim obtained from
numerical simulations of random matrices are presented in
Table II in Sec. III D.

m GOE GUE GSE

hri [18] 1 0.53590 0.60266 0.67617

hrim 2 0.423415 0.422085 0.411762
3 0.403322 0.399229 0.392786
4 0.396125 0.39253 0.388686
5 0.392712 0.389805 0.387367
6 0.390821 0.388475 0.38684
7 0.389661 0.387745 0.386597
8 0.388898 0.387309 0.386474
9 0.388368 0.387033 0.386407
10 0.387986 0.386849 0.386368
11 0.387701 0.386721 0.386344
12 0.387482 0.38663 0.386329
… … … …

∞ (Poisson) 0.386294

Pmð0Þ 2 1.40805 1.5228 1.63484
3 1.71587 1.80758 1.88322
4 1.83279 1.9023 1.95178
5 1.88972 1.94334 1.97682
6 1.92175 1.96413 1.98765
7 1.94157 1.97582 1.9929
8 1.95469 1.98292 1.99568
9 1.96383 1.98748 1.99724
10 1.97046 1.99055 1.99817
11 1.97541 1.99269 1.99875
12 1.97922 1.99423 1.99912
… … … …

∞ (Poisson) 2
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Mathematica notebook, allowing one to reproduce our
calculations.

III. ANALYTICAL RESULTS

We now turn to the detailed proofs of our analytical
formulas. The reader not interested in the details of the
derivation can directly jump to Sec. III C for a comparison
to random matrix numerics, Sec. III D for a discussion on
how to compare to experimental results, or to Sec. IV for
several applications in many-body physics.

A. Nearest-neighbor spacing distribution PðxÞ
Since the function pðsÞ in Eq. (2) corresponds to spectra

with mean level spacing equal to 1, the spacing distribu-
tions of each spectrum are given by the function Eq. (2)
rescaled by the mean level spacing, i.e., pðρisÞ. We
introduce the functions

fðsÞ ¼
Z

∞

0

dapðsþ aÞ ð9Þ

and

gðsÞ ¼
Z

∞

0

da
Z

∞

0

dbpðsþ aþ bÞ: ð10Þ

The function fðsÞ gives the probability of having λiþ1 ≥ s
knowing that λi ¼ 0. The function gðsÞ gives the proba-
bility of having λiþ1 ≥ s knowing that λi ≤ 0, that is, the
probability of having a spacing of at least s. These
probabilities are related through the identities

g0 ¼ −f; g00 ¼ p: ð11Þ

Introducing the rescaled spacing x ¼ ρs, we have, from
Eq. (11),

gðρisÞ ¼ gðμixÞ;
μifðρisÞ ¼ −∂xgðμixÞ;
μ2i pðρisÞ ¼ ∂2

xgðμixÞ: ð12Þ

Spacings arise as empty intervals �λðiÞq ; λðjÞq0 ½ of length s with
i; j ¼ 1;…; m. We have to consider the two possibilities
i ¼ j or i ≠ j and calculate the probability densities
associated with each configuration.
Let us first consider the case where m ¼ 2 (we will later

generalize this analysis to more blocks). We consider the
following two cases:
(1) Configurations giving rise to an empty interval of

type �λðiÞq ; λðiÞqþ1½, such that λðjÞq0 < λðiÞq < λðiÞqþ1 < λðjÞq0þ1

for some q0. The probability of such a configuration
for i is given by pðρisÞ, while the probability for j is
gðρjsÞ since λðjÞq0 and λðjÞq0þ1

can be anywhere outside

�λðiÞq ; λðiÞqþ1½. Taking into account the probability μ2i to
have a level i at both ends of the interval, we get, for

the configuration �λðiÞq ; λðiÞqþ1½, a probability density
μ2i pðρisÞgðρjsÞ. Using Eq. (12), we can rewrite it
as ½∂2

xgðμixÞ�gðμjxÞ.
(2) Configurations giving rise to an empty interval of

type �λðiÞq ; λðjÞq0 ½, which are such that λðjÞq0−1 < λðiÞq <

λðjÞq0 < λðiÞqþ1. The probability of such a spacing for i is

given by fðρisÞ since λðiÞqþ1 can be anywhere in

�λðjÞq0 ;∞½, while the probability for j is fðρjsÞ since
λðjÞq0−1 can be anywhere in � −∞; λðiÞq ½. The probability
of having a level i and a level j at the ends of the
interval is given by μiμj, so the probability density of

configuration �λðiÞq ; λðjÞq0 ½ is μiμjfðρisÞfðρjsÞ. Using
Eq. (12), it can be rewritten as ½∂xgðμixÞ�½∂xgðμjxÞ�.

Summing these probabilities over i, j ¼ 1, 2, we get, for
the spacing probability PðxÞ of the mixed levels,

PðxÞ ¼ gðμ1xÞ∂2
xgðμ2xÞ þ gðμ2xÞ∂2

xgðμ1xÞ
þ 2½∂xgðμ1xÞ�½∂xgðμ2xÞ� ð13Þ

or, equivalently,

PðxÞ ¼ ∂2
xGðxÞ; GðxÞ ¼

Ym
i¼1

gðμixÞ: ð14Þ

The above reasoning proves Eq. (14) for m ¼ 2. In fact,
given the final expression, we can come up with a much
shorter proof of the validity of Eq. (14) for arbitrary m.
Indeed, the probability of finding an interval of a given
length between two consecutive eigenvalues is the second
derivative of the probability of finding an interval larger
than or equal to it with no eigenvalue in it [see Eqs. (10) and
(11)]. Therefore, PðxÞ must be the second derivative of the
probability of finding an empty interval larger than or equal
to x. The probability that no level of type i occurs in an
interval of size x is gðμixÞ. Since levels from different
sequences are independent, the probability that no level of
any type occurs in an interval of size x is simply the product
of all gðμixÞ, which directly entails Eq. (14). Incidentally,
one can check, using Eqs. (9)–(11), that PðxÞ in Eq. (14) is
properly normalized to 1.

B. Joint consecutive spacing distribution Pðx; yÞ
We now apply the same line of reasoning to the joint

distribution of two consecutive spacings. Our aim is to
obtain the joint distribution Pðx; yÞ in terms of the
distribution pðs; tÞ for a single spectrum.
Starting with the function pðs; tÞ in Eq. (3), we introduce

the function
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p̂ðsÞ ¼
Z

∞

0

dapðs; aÞ; ð15Þ

which is the marginal distribution of pðs; tÞ. Since pðs; tÞ
defined in Eq. (3) is symmetric in the exchange of s and t, the
marginal distribution can be equivalently taken by integrat-
ing over the first variable. Note that this expression differs
from the one in Eq. (2), which corresponds to the result for
2 × 2matrices,whilepðs; tÞwas obtained for3 × 3matrices.
Functionsf and g can then bedefined from p̂ as inEq. (9) and
(10). In terms of pðs; tÞ, their explicit form is

fðsÞ ¼
Z

∞

0

da
Z

∞

0

dbpðsþ a; bÞ ð16Þ

and

gðsÞ ¼
Z

∞

0

da
Z

∞

0

db
Z

∞

0

dcpðsþ aþ b; cÞ: ð17Þ

We also define the two-variable functions

e1ðs; tÞ ¼
Z

∞

0

dapðsþ a; tÞ;

e2ðs; tÞ ¼
Z

∞

0

dapðs; tþ aÞ ð18Þ

and

hðs; tÞ ¼
Z

∞

0

da
Z

∞

0

dbpðsþ a; tþ bÞ: ð19Þ

These functions are related through the identities

∂s∂th ¼ p; ∂sh ¼ −e2; ∂th ¼ −e1;

g0 ¼ −f; g00 ¼ p̂: ð20Þ

The analogs of Eqs. (12) are

gðρisÞ ¼ gðμixÞ; μifðρisÞ ¼ −∂xgðμixÞ; ð21Þ

μ2i pðρis; ρitÞ ¼ ∂x∂yhðμix; μiyÞ; ð22Þ

∂xhðμix; μiyÞ ¼ −μie2ðρis; ρitÞ; ð23Þ

∂yhðμix; μiyÞ ¼ −μie1ðρis; ρitÞ: ð24Þ

A sequence of two consecutive spacings arises as a

sequence of two empty intervals �λðiÞq ; λðjÞq0 ½ and �λðjÞq0 ; λ
ðkÞ
q00 ½,

with i; j; k ¼ 1;…; m. We have to consider all possibilities
for i, j, k and calculate the probability densities associated
with each configuration.
Once again, let us consider the simplest case m ¼ 3,

which we will later generalize. We only need to examine
four cases, corresponding to patterns iii, iij, iji, and ijk
and depicted in Fig. 1:

(1) Configurations λðiÞq < λðiÞqþ1 < λðiÞqþ2, which arise

whenever λðjÞq0 < λðiÞq < λðiÞqþ1 < λðiÞqþ2 < λðjÞq0þ1
for some

q0 and λðkÞq00 < λðiÞq < λðiÞqþ1 < λðiÞqþ2 < λðkÞq00þ1
for some

q00. The probability of such a configuration for i
is given by pðρis; ρitÞ, the probability for j is

g(ρjðsþ tÞ) since λðjÞq0 and λðjÞq0þ1
can be anywhere

outside �λðiÞq ; λðiÞqþ2½, and the same goes for k. Taking
into account the probability μ3i to have three levels i
at the ends of the intervals, we get, for this
configuration, a probability density μ3i pðρis; ρitÞ×
g(ρjðsþ tÞ)g(ρkðsþ tÞ). Using Eqs. (21)–(24), we
can rewrite it as μi½∂x∂yhðμix; μiyÞ�g(μjðxþ yÞ)×
g(μkðxþ yÞ).

(2) Configurations λðiÞq < λðiÞqþ1 < λðjÞq0 , which arise when-

ever λðjÞq0−1< λðiÞq < λðiÞqþ1< λðjÞq0 < λðiÞqþ2 and λðkÞq00 <

λðiÞq < λðiÞqþ1 < λðjÞq0 < λðkÞq00þ1
for some q00. The proba-

bility for i is e2ðρis; ρitÞ, the probability for j is
f(ρjðsþ tÞ), while the probability for k is
g(ρkðsþ tÞ). For this configuration, we get a
probability density μ2i μje2ðρis; ρitÞf(ρjðs þ tÞ)×
g(ρkðs þ tÞ) ¼ μi½∂xhðμix; μiyÞ�½∂ygðμjðx þ yÞ�×
g(μkðx þ yÞ). We used the fact that ∂ygðxþ yÞ ¼
g0ðxþ yÞ.

(3) Configurations λðiÞq < λðjÞq0 < λðiÞqþ1, which arise when-

ever λðjÞq0−1 < λðiÞq < λðjÞq0 < λðiÞqþ1 < λðjÞq0þ1
and λðkÞq00 <

λðiÞq < λðjÞq0 < λðiÞqþ1 < λðkÞq00þ1
for some q00. The proba-

bility for i is p̂(ρiðsþ tÞ), the probability for j is
hðρjs; ρjtÞ, and the probability for k is g(ρkðsþ tÞ).
For this configuration, we get a probability
density μ2i μjp̂(ρiðsþ tÞ)hðρjs; ρjtÞg(ρkðsþ tÞ) ¼
μjf∂x∂yg(μiðxþ yÞ)ghðμjx; μjyÞg(μkðxþ yÞ). We
used the fact that ∂x∂ygðxþ yÞ ¼ g00ðxþ yÞ.

(4) Finally, configurations λðiÞq < λðjÞq0 < λðkÞq00 , which

arise whenever λðjÞq0−1 < λðiÞq < λðjÞq0 < λðkÞq00 < λðjÞq0þ1

and λðkÞq00−1 < λðiÞq < λðjÞq0 < λðkÞq00 < λðiÞqþ1. The probabil-
ity for i is f(ρiðsþ tÞ), the probability for j is
hðρjs; ρjtÞ, and the probability for k is f(ρkðsþ tÞ).
For this configuration, we get a probability

FIG. 1. Four configurations of consecutive spacings considered
in Sec. III B. Different colors correspond to distinct spectra. The
three central levels are the ones from which the ratios are
calculated; the outer levels are at the same height to indicate
that their relative position is irrelevant.
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density μiμjμkf(ρiðsþ tÞ)hðρjs;ρjtÞf(ρkðsþ tÞ)¼
μjf∂xg(μiðxþ yÞ)ghðμjx;μjyÞf∂yg(μkðxþ yÞ)g.

We can now sum all contributions over i, j, k ¼ 1, 2, 3.
There are 27 terms, which can be put under the compact
form

Pðx; yÞ ¼ ∂x∂y½μ1hðμ1x; μ1yÞg(μ2ðxþ yÞ)g(μ3ðxþ yÞ)
þ μ2g(μ1ðxþ yÞ)hðμ2x; μ2yÞg(μ3ðxþ yÞ)
þ μ3g(μ1ðxþ yÞ)g(μ2ðxþ yÞ)hðμ3x; μ3yÞ�:

ð25Þ

Equation (25) has a simple probabilistic interpretation. Let
us define a function H as

Hðx; yÞ ¼
Z

∞

0

da
Z

∞

0

dbPðxþ a; yþ bÞ; ð26Þ

by analogy with Eq. (19). Thus, Hðx; yÞ gives the prob-
ability of having a triplet ðλq−1; λq; λqþ1Þ of levels of the
mixed spectrum such that λq−1 < λq − x and
λq þ y < λqþ1. In other words, Hðx; yÞ is the probability

that some level λðiÞq is such that all other levels λðjÞq0 verify

either λðjÞq0 < λðiÞq − x or λðiÞq þ x < λðjÞq0 (including the case
i ¼ j, in which case, of course, q0 ≠ q). At fixed i, the
probability of such a configuration is hðμix; μiyÞ for
spectrum i and g(μjðxþ yÞ) for all j ≠ i. Summing over
all i (and taking into account the probability μi to have a
level i in the middle), we get for Hðx; yÞ the expression
under the derivation symbols in Eq. (25).
In fact, this reasoning provides a proof of the general

case with an arbitrary number m of spectra. We thus have,
in the general case,

Pðx; yÞ ¼ ∂x∂yHðx; yÞ; ð27Þ

with

Hðx; yÞ ¼
Xm
i¼1

μihðμix; μiyÞ
Y
j≠i

g(μjðxþ yÞ): ð28Þ

One can check, using Eqs. (20)–(24), that Pðx; yÞ in
Eq. (27) is properly normalized to 1. Note that, although
in what follows we will apply Eqs. (27) and (28) to the
random matrix case, these equations are valid for an
arbitrary initial distribution pðs; tÞ of individual spectra.

C. Ratio distribution PðrÞ
In order to obtain PðrÞ, one first needs to evaluate

functions g and h to obtainHðx; yÞ using Eq. (28), then take
its derivativewith respect to x and y, and finally perform the
integration in Eq. (8). In the GUE and GSE cases, there are
no closed-form expressions for the function h, so we are left

with a double integral [one in the definition of h, one
corresponding to the final integration in Eq. (8)]. In the
GOE case, however, we obtain explicit expressions for g
and h, as we will show below, and thus we get a closed-
form expression for Pðx; yÞ. The remaining integral Eq. (8)
is doable analytically only in the case of a mixture ofm ¼ 2
spectra.

1. GOE case

In the GOE case, the joint distribution pðs; tÞ reads

pðs; tÞ ¼ 37

25π3
stðsþ tÞe−ð9=4πÞðs2þstþt2Þ: ð29Þ

Starting from Eq. (29) for pðs; tÞ and calculating explicitly
the functions g and h given in Eqs. (17) and (19), we get

gðsÞ ¼ U1ðsÞ −
s
2
U2ðsÞ −

s
2
U3ðsÞ ð30Þ

with

U1ðsÞ ¼ e−ð9=4πÞs2 ;

U2ðsÞ ¼ Erfc

�
3s
2

ffiffiffi
π

p
�
;

U3ðsÞ ¼ e−ð27=16πÞs2Erfc
�

3s
4

ffiffiffi
π

p
�
; ð31Þ

and

hðs; tÞ ¼ 9ðsþ tÞ
4π

V1ðs; tÞ þ
8π − 27s2

16π
V2ðs; tÞ

þ 8π − 27t2

16π
V3ðs; tÞ ð32Þ

with

V1ðs; tÞ ¼ e−ð9=4πÞðs2þstþt2Þ;

V2ðs; tÞ ¼ e−ð27s2=16πÞErfc
�
3ðsþ 2tÞ
4

ffiffiffi
π

p
�
;

V3ðs; tÞ ¼ e−ð27t2=16πÞErfc
�
3ð2sþ tÞ
4

ffiffiffi
π

p
�
: ð33Þ

One can then rewrite Eq. (28) as

Hðx; yÞ ¼
Xm
i¼1

X3
a1¼1

� � �
X3
am¼1

HðiÞ
a1…amVaiðμix; μiyÞ

×
Y
j≠i

Uaj(μjðxþ yÞ); ð34Þ

with HðiÞ
a1…am some polynomials of x, y and the μi, which

can be obtained explicitly from Eqs. (30) and (32).
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Functions Ui have the property that they transform into
each other under derivation. Namely, the derivative of any
function

P
i ciUi (with ci polynomial in s) is of the formP

i c̃iUi (with c̃i polynomial in s). The same property holds
for the Vi upon derivation with respect to s or t. Therefore,
using Eq. (27) and the expansion Eq. (34), we obtain

Pðx; yÞ ¼
Xm
i¼1

X3
a1¼1

� � �
X3
am¼1

PðiÞ
a1…amVaiðμix; μiyÞ

×
Y
j≠i

Uaj(μjðxþ yÞ); ð35Þ

where PðiÞ
a1…am are polynomials of x, y and the μi. Given the

definition of the functions Ui and Vi, Eq. (8) can be
expanded as a linear combination (with real coefficients
dependent on the μi) of integrals of the form

Z
∞

0

dxxke−λx
2
Ym
i¼1

ErfcðaixÞ; ð36Þ

with λ and the ai depending on the μi and on r (and possibly
ai ¼ 0). It appears that, in general, such an integral does not
have a closed form. However, in the case m ¼ 2, we have
the identity

Z
∞

0

dxxe−λx
2

ErfcðuxÞErfcðvxÞ

¼ 1

2λ
−
u tan−1

� ffiffiffiffiffiffiffiffi
λþu2

p
v

�
πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ u2

p −
v tan−1

� ffiffiffiffiffiffiffiffi
λþv2

p
u

�
πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ v2

p ; ð37Þ

from which one can deduce Eq. (36) for all odd values of k
by deriving with respect to λ and for all even values of k by
first integrating by parts and then deriving with respect to λ.
This yields a (rather lengthy) closed-form expression for
PðrÞ in the case m ¼ 2 (which is given in full in the
Supplemental Material [46]). In order to give an example of
the type of expression, we obtain Pð0Þ in the case of two
blocks of the same size:

Pð0Þ ¼ 1

168

�
408 − 144

ffiffiffi
2

p
þ 7

ffiffiffi
6

p
π

þ14
ffiffiffi
6

p
tan−1

�
1

4
ffiffiffi
3

p
�
− 28

ffiffiffi
6

p
tan−1

�
1ffiffiffi
6

p
��

≃ 1.40805: ð38Þ

For m blocks of the same size, we get Pð0Þ ¼ 1.71587 for
m ¼ 3 and Pð0Þ ¼ 1.83279 for m ¼ 4, as reported in
Table I.
In practice, the fastest way of obtaining PðrÞ for GOE

in the general case is to calculate Hðx; yÞ and Pðx; yÞ
analytically from the explicit expressions for h and g, using
Eq. (27) and (28), and to perform the last integral

numerically. The Mathematica notebook in the Supple-
mental Material [46] implements the two possibilities to
obtain PðrÞ. From the exact equation, numerical integration
over [0, 1] yields the mean ratio. For instance, for m blocks
of equal size, we get

hriGOE;mblocks ¼ 0.423415; 0.403322; 0.396125 ð39Þ

for m ¼ 2, 3, and 4 blocks, respectively, again reported in
Table I.

2. GUE case

In the GUE case, the joint distribution pðs; tÞ reads

pðs; tÞ ¼ 323
ffiffiffi
3

p

226π5
s2t2ðsþ tÞ2e−243

64πðs2þstþt2Þ: ð40Þ

The calculation of g and h for GOE was made possible by
the fact that either s or t is of degree 1 in the polynomial in
front of the exponential in Eq. (29). This is no longer the
case for GUE and GSE. However, g as well as the first
derivative of h can be obtained analytically. We find

gðxÞ ¼ −
729

ffiffiffi
3

p
x3

1024π2
e−ð243x2=64πÞ − Erfc

�
9

8

ffiffiffi
3

π

r
x

�

þ e−ð729x2=256πÞ
�
243ð243x4 þ 128πx2Þ

49152π2
þ 2

�

× Erfc

�
9

16

ffiffiffi
3

π

r
x

�

−
3

2
x

�
Erfc

�
27x
16

ffiffiffi
π

p
�
− 4T

�
27x

8
ffiffiffiffiffiffi
2π

p ;
1ffiffiffi
3

p
��

; ð41Þ

where Tðx; aÞ is Owen’s T function, defined as

Tðx; aÞ ¼ 1

2π

Z
a

0

dt
1

1þ t2
e−x

2ð1þt2Þ=2: ð42Þ

For h, we have hðx; yÞ ¼ R∞
0 e2ðxþ a; yÞda, with

e2ðx; yÞ ¼
Z

∞

0

dbpðx; yþ bÞ

¼ 314
ffiffiffi
3

p
x2e−½243ðx2þxyþy2Þ=64π�ðxþ 2yÞ

224π4

× (128π − 81ðx2 − 4xy − 4y2Þ)

þ
312e−ð729x2=256πÞx2Erfc( 9

16

ffiffi
3
π

q
ðxþ 2yÞ)

228π4

× ð19683x4 − 20736πx2 þ 16384π2Þ ð43Þ

and e1ðx; yÞ ¼ e2ðy; xÞ. Using the identities in Eq. (20), the
expression of Pðx; yÞ reads
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Pðx; yÞ ¼
Xm
i¼1

μihðμix; μiyÞ∂x∂y

�Y
j≠i

g(μjðxþ yÞ)
�

−
Xm
i¼1

μ2i e2ðμix; μiyÞ∂y

�Y
j≠i

g(μjðxþ yÞ)
�

−
Xm
i¼1

μ2i e1ðμix; μiyÞ∂x

�Y
j≠i

g(μjðxþ yÞ)
�

þ
Xm
i¼1

μ3i pðμix; μiyÞ
Y
j≠i

g(μjðxþ yÞ); ð44Þ

in which only the first sum involves the function h for
which no closed form is available. The ith term in that sum
is μihðμix; μiyÞqiðxþ yÞ, with qi an explicitly known
function involving only products of derivatives of g. For
this term, the integral in Eq. (8) yields a contribution

2μi

Z
∞

0

dxxhðμix; μirxÞqi(ð1þ rÞx)

¼ 2μi

Z
∞

0

dx
Z

∞

0

daxe2ðμixþ a; μirxÞqi(ð1þ rÞx):

ð45Þ

We numerically perform the twofold integrals in Eq. (45)
and the single integrals over x for all the other terms. For m
blocks of equal size, we obtain

Pð0Þ ¼ 1.5228; 1.80758; 1.9023 ð46Þ

and

hriGUE;m blocks ¼ 0.422085; 0.399229; 0.39253 ð47Þ

for m ¼ 2, 3, 4, respectively.

3. GSE case

For GSE, the joint distribution pðs; tÞ reads

pðs; tÞ ¼ 381
ffiffiffi
3

p

275515π8
s4t4ðsþ tÞ4e−ð311=21052πÞðs2þstþt2Þ: ð48Þ

The function g reads

gðxÞ ¼ −
3

2
x

�
Erfc

�
729x
320

ffiffiffi
π

p
�
− 4T

�
729x

160
ffiffiffiffiffiffi
2π

p ;
1ffiffiffi
3

p
��

− Erfc

�
243

160

ffiffiffi
3

π

r
x

�

þ
e−ð531441x2=102400πÞErfc

�
243
320

ffiffi
3
π

q
x
�

10368
Q1ðxÞ

−
531441

ffiffiffi
3

p
e−ð177147x2=25600πÞx3

262144000π2
Q2ðxÞ ð49Þ

with Q1, Q2 the polynomials

Q1ðxÞ ¼
523347633027360537213511521x10

10995116277760000000000π5

þ 8862938119652501095929x8

214748364800000000π4

þ 16677181699666569x6

167772160000π3
þ 2792914305201x4

81920000π2

þ 14703201x2

400π
þ 20736 ð50Þ

and

Q2ðxÞ ¼
16677181699666569x6

16777216000000π3

þ 94143178827x4

163840000π2
þ 531441x2

256π
− 32: ð51Þ

It can be checked that the second derivative of g is indeed
the marginal probability p̂ and that gð0Þ ¼ 1. Similarly to
the GUE case, h is not calculable in closed form, but we
have hðx; yÞ ¼ R∞

0 e2ðxþ a; yÞda, with

e2ðx; yÞ ¼
333x4

279514π7
e−½177147ðx2þxyþy2Þ=25600π�

�
R1ðx; yÞ

þ R2ðx; yÞe½177147ðxþ2yÞ2=102400π�

× Erf

�
243

320

ffiffiffi
3

π

r
ðxþ 2yÞ

��
; ð52Þ

where R1ðx; yÞ and R2ðx; yÞ are polynomials given by

R1ðx; yÞ ¼ 77760
ffiffiffi
3

p
ðxþ 2yÞð−773967052800000π2

× ð5x2 − 28xy − 28y2Þ þ 535570083993600π

× ð5x4 − 24x3yþ 88x2y2 þ 224xy3 þ 112y4Þ
− 1853020188851841ðx6 − 4x5yþ 12x4y2

− 32x3y3 − 176x2y4 − 192xy5 − 64y6Þ
þ 4697620480000000π3Þ ð53Þ

and

R2ðx; yÞ ¼ 328256967394537077627x8

− 379498534676857036800πx6

þ 493581389408501760000π2x4

− 475525357240320000000π3x2

þ 240518168576000000000π4: ð54Þ
The computation is then the same as for GUE. Using
Eqs. (44) and (45), we get, for m ¼ 2, 3, 4 blocks of
equal size,
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Pð0Þ ¼ 1.63484; 1.88322; 1.95178 ð55Þ

and

hriGSE;mblocks ¼ 0.411762; 0.392786; 0.388686: ð56Þ

We finally mention that theMathematica notebook in the
Supplemental Material [46] allows one to reproduce these
computations, as well as to consider different cases (other
values of m, unequal sizes of the m blocks, etc.).

4. Poisson (m → ∞) limit

One can easily check that, in the case of a mixture of m
spectra of the same size, one recovers the Poisson dis-
tribution in the m → ∞ limit. Indeed, in that case, the
function H reads

Hðx; yÞ ¼ h

�
x
m
;
y
m

�
g

�ð1þ rÞx
m

�
m−1

ð57Þ

and thus

PðrÞ ¼ 2

Z
∞

0

dxxgm−1
�∂x∂yh

m2
þm − 1

m2
ð∂xhþ ∂yhÞ

g0

g

þ h
m − 1

m2

�
ðm − 2Þ g

02

g2
þ g00

g

��
; ð58Þ

with functions h and g evaluated at ðx=m; rx=mÞ and
ð1þ rÞx=m, respectively. In the limit m → ∞, these
arguments go to 0. From the explicit expressions for g
and h, the only term in the square brackets that survives is
h½ðm − 1Þðm − 2Þ=m2�ðg02=g2Þ, which goes to 1. Using the
fact that gðxÞ ¼ 1 − xþOðx3Þ close to 0, we get

PðrÞ ≃ 2

Z
∞

0

dxx

�
1 −

ð1þ rÞx
m

�
m−1

→m→∞ 2

Z
∞

0

dxxe−ð1þrÞx ¼ 2

ð1þ rÞ2 ; ð59Þ

which is indeed the Poisson result.

D. Comparison with numerics

We now compare the gap ratio distribution PmðrÞ and
the mean value hrim obtained through the analytical
approach of Sec. III to direct numerical computations on
large random matrices. Numerical RMT spectra are com-
puted using the matrix models of Ref. [47], based on
tridiagonal matrices. These models are numerically faster to
diagonalize but otherwise equivalent to the dense ones.
By construction, the spectrum of a single RMT block of
linear size N has support in ½−2 ffiffiffiffi

N
p

; 2
ffiffiffiffi
N

p �. The supports
of a collection of blocks therefore overlap in the
½−2 ffiffiffiffiffiffiffiffiffiffi

Nmin
p

; 2
ffiffiffiffiffiffiffiffiffiffi
Nmin

p � region, where Nmin ¼ minj Nj is the

linear size of the smallest block in the collection. In order to
avoid boundary effects, we restrict the numerical compu-
tation of the level statistics to the central quarter of this
overlap region. The normalized densities μi in that region
are given by μi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNi=NtotÞ
p

, with Ntot ¼
P

j Nj the total
linear size. In all numerical computations presented here,
Ntot is at least 2 × 103, and 3.6 × 105 samples are used.
Figure 2 displays the results of this comparison for

m ¼ 2, 3, 4 (as well as the surmise of Ref. [18] for m ¼ 1)
and all Gaussian ensembles. The comparison is excellent,
and within the scale of this figure, there is no visible
difference between the analytically obtained PmðrÞ and the
numerical results Pnum

m ðrÞ. More precisely, we find that
the relative error jPmðrÞ − Pnum

m ðrÞj=PmðrÞ is always less
than 0.01. This also translates into an almost perfect
agreement (with no difference within error bars) between
hrim (from Table I) and the numerical estimates reported
in Table II.

FIG. 2. Distribution of the ratio of consecutive level spacings
PðrÞ for (from top to bottom) GOE, GUE, and GSE ensembles
and m ¼ 1 to m ¼ 4 blocks (from bottom to top at r ¼ 0). Solid
lines are the surmises obtained from Sec. III, except the m ¼ 1
case, for which the corresponding surmise Eq. (7) is taken from
Ref. [18]. Points are numerical results from random matrices of
size at least Ntot ¼ 2000, averaged over 3.6 × 105 histograms.
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We also compare analytical and numerical results for the
specific case of m ¼ 2 GOE blocks of different sizes. In
Fig. 3, we present results for the probability distribution
PðrÞ for different values of α ¼ μ1=ðμ1 þ μ2Þ (top panel) as
well as for the expectation value hri2;α as a function of α
(bottom panel). Here, again, the agreement between ana-
lytical and numerical results is striking. More precisely,
we find that the relative error jPmðrÞ − Pnum

m ðrÞj=PmðrÞ is
always less than 0.01 for block ratios α ≥ 0.2. For α < 0.2,

the relative error increases but remains below 0.05. The
seemingly crossing point in Fig. 3 is, in fact, not a crossing
point, as one can convince oneself by using the exact
expression for PGOE

2 ðrÞ and calculating its value with
enough precision in the vicinity of that point.
We conclude this comparison section by discussing

Ref. [42], which provides an analytical estimate for PðrÞ
for m ¼ 2, derived from a 4 × 4 surmise that is forced to
contain two levels of each of the m ¼ 2 blocks. This
estimate does not contain all possible patterns considered in
Sec. III B. The estimated value for hri obtained from this
approach is approximately close to the one presented in
Table I for the GOE and GUE but strongly differs for the
GSE, while our results in this latter case agree with the
numerical estimates in Table II.

E. Symmetry detection in an experimental context

The numerical comparisons in the previous subsection
are done for matrix sizes N ∼ 2000, and histograms are
obtained from many random realizations. This allows us to
compare to the analytical results, obtained in the thermo-
dynamic limit, with small enough statistical error bars. In
the context of numerical simulations, the quantities hrim
and Pmð0Þ given in Table I provide a signature allowing one
to identify the presence of a symmetry. This generalizes the
existing results for hri, which is a quantity routinely used in
numerical studies (see discussion in Sec. I) to identify the
chaotic nature of a spectrum.
While most of the applications of gap ratio statistics have

indeed used so far numerical spectra of many-body
systems, it is worth discussing applications to experimental
spectroscopies, which typically involve less statistics (less
realizations of disorder) and (sometimes) smaller spectra.
For instance, the experimental measurement of PðrÞ in
Ref. [28] was performed in a system with N ¼ 45 energy
levels and using four realizations of disorder. Other typical
experiments probing disordered many-body quantum sys-
tems (often in the context of many-body localization) in
various experimental platforms (cold atoms, trapped ions,
superconducting qubits) average experimental results over
6 [48–52], 12 [53], 20 [54], 24 [55], 30 [56], 50 [57,58],
and up to 197 [59,60] realizations of disorder. Most of these
platforms work on quantum systems with a minimum of
tens of qubits or atoms with corresponding many-body
spectra of at least N ¼ 1000 energy levels. In a different
physical context, spectroscopy experiments on nuclei allow
one to resolve quite a large number of energy levels (often
by combining results from different experimental tech-
niques), typically from hundreds to thousands [61,62].
Interestingly, already at sizes achievable experimentally,

our approach provides a signature of symmetries. As can be
seen in Table I, differences between values of hrim are quite
small. Having experimental investigations in mind, we
therefore propose considering instead the quantity

TABLE II. Values of averages hri for m blocks, as obtained
from simulations on random matrices. The value for m ¼ 1 is
taken from Ref. [18]. Notice the excellent agreement with the
surmise results reported in Table I.

m GOE GUE GSE

hri [18] 1 0.5307(1) 0.5996(1) 0.6744(1)

hrim 2 0.4235(5) 0.4220(5) 0.4116(5)
3 0.4035(5) 0.3992(5) 0.3927(5)
4 0.3963(5) 0.3924(5) 0.3886(5)

FIG. 3. Top panel: PGOE
2 ðrÞ, for various density ratios α (see

text). Note that αϕ ¼ 1=ð1þ ϕ2Þ (in golden color in both plots) is
the value that corresponds to the anyonic chain application
discussed in Sec. IV D. Bottom panel: hriGOE2 as a function of
α. In both plots, solid lines are predictions from the surmises of
Sec. III, and points are numerical results obtained on random
matrices of size at least Ntot ¼ 2000, averaged over 3.6 × 105

realizations.
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I1=4m ¼
Z

1=4

0

PmðrÞdr; ð60Þ

which is simply the integral of the distribution of r up to a
point chosen at r ¼ 1=4; this upper bound is arbitrary, but it
is close to the crossing point r ≈ 0.288 of PGOE

m¼2ðrÞ and

PGOE
m¼3ðrÞ. One can easily obtain a numerical estimate of I1=4m

from an experimental spectrum by counting the number of
ratios less than 1=4. From the analytical side, theoretical
expressions can be obtained from our exact formulas and
are given in Table III E.
To illustrate this approach, we give an example of a

“numerical experiment”where one can distinguish between
the cases m ¼ 2 and m ¼ 3 when the total number N of
available levels is small and realizations are scarce. In
Fig. 4, we display probability distributions for the quantity

I1=4m when data are collected from spectra of size N ¼ 180
and when 40 realizations of the experiment are available
(solid lines in Fig. 4). In such a case, the number of
available levels is very small since each block has sizeN=m
(90 for m ¼ 2 or 60 for m ¼ 3). The two histograms
associated with m ¼ 2 and m ¼ 3 are clearly distinguish-
able. In the case of an even smaller size, N ¼ 48, one needs
about 120 realizations to get a comparable width of the
histograms. These values of N and number of realizations
of disorder are comparable to the experimental situations
discussed above.
More interesting is the probability of the correct iden-

tification of the symmetry. If m ¼ 2, the experimentally
measured value would be smaller than 1

2
ðI1=42 þ I1=43 Þ (the

value that is equidistant from the m ¼ 2 and m ¼ 3 cases)
in 89.2% of cases. The criterion I1=4m thus provides an
additional tool, more suited to experimental situations
where the number of realizations is scarce.

IV. ILLUSTRATIONS IN QUANTUM
MANY-BODY PHYSICS

We now illustrate the usefulness of the above results by
comparing them with simulations on realistic spectra
obtained from quantum many-body problems. Most of
our examples are taken from one-dimensional lattice
models, mostly for computational convenience. In the
following, the lattice will thus be a one-dimensional chain
with L sites. Unless otherwise mentioned, wewill explicitly
break translation symmetry, as well as possibly other lattice
symmetries (such as reflection around the center of the
chain), to concentrate on the existence of a few blocks.
The existence of translation symmetry would result in the
existence of L blocks (labeled by the L reciprocal wave
numbers), resulting, as discussed earlier, in an (effective)
Poisson distribution for level spacings and gap ratios in the
thermodynamic limit. The translation symmetry will be
broken by using disorder characterized by a disorder
strength ϵ. In all the simulations presented below, we take
ϵ not too small (in order to avoid the proximity to the
translation-invariant case, which would cause stronger
finite-size effects) as well as not too large (to avoid, for
instance, a possible many-body localized phase, which
would also result in Poisson spectral statistics). In all
Hamiltonian systems we examine, we consider mid-spec-
trum eigenstates, obtained either by full diagonalization
(for the smaller Hilbert space sizes) or by the shift-invert
subset diagonalization method [63] for larger systems.

A. Quantum clock models

The first example deals with Q-state quantum clock
models, which are natural ZQ-symmetric generalizations of
the Ising quantum chain with Q-state quantum “spins” on
each site [64,65]. These exhibit a rich ground-state phase
diagram including ordered and disordered phases as well as

TABLE III. Value of I1=4m defined by Eq. (60) obtained from the
surmise approach in Sec. III.

m GOE GUE GSE

I1=4m 2 0.338171 0.250851 0.298583
3 0.37145 0.335806 0.363505
4 0.383474 0.361911 0.377903
5 0.389196 0.372592 0.382539
6 0.392374 0.3778 0.384388
7 0.394325 0.380654 0.385237
8 0.39561 0.382353 0.385667
9 0.396502 0.383429 0.385903

10 0.397146 0.384146 0.386039
11 0.397627 0.384641 0.386122
12 0.397996 0.384994 0.386175
… … … …

∞ (Poisson) 0.4

FIG. 4. Probability distribution of I1=4m for N=m GOE blocks
with m ¼ 2 (blue) and m ¼ 3 (orange). Histograms are obtained
from 20 000 values, each of which is calculated from 40
realizations of matrices of size N ¼ 180 (solid lines) and from
120 realizations for size N ¼ 48 (dashed lines). Vertical blue and
orange lines indicate the theoretical predictions for m ¼ 2 and 3,
respectively; the blue line is the mid-value 1

2
ðI1=42 þ I1=43 Þ.
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critical lines, and have attracted a lot of attention in recent
years due to their relation to parafermions, a ZQ generali-
zation of Majorana fermions [66], as well as with topo-
logical phases [67]. Furthermore, they are related to
cornerstone models of statistical mechanics, including
the Potts model (where the ZQ symmetry is promoted to
a larger, SQ symmetry) and the chiral Potts model [68,69].
On each site, we define a spin taking Q possible values

(0…Q − 1), as well as two operators σ and τ, which
generalize the Pauli matrices σz and σx of the Ising chain.
Here, σ measures the orientation of the spin, while τ rotates
it by one unit “around the clock”; as a result, they fulfill
the following algebraic rules: σQ ¼ τQ ¼ 1, σ† ¼ σQ−1,
τ† ¼ τQ−1, and στ ¼ ωτσ, with ω ¼ expð2iπ=QÞ, a Qth
root of unity.
Simple matrix representations are obtained in the basis

where σ is diagonal (the “fσg basis”):

σ ¼

0
BBBBB@

1

ω

. .
.

ωQ−1

1
CCCCCA
; τ ¼

0
BBBBB@

0 1

. .
. . .

.

. .
.

1

1 0

1
CCCCCA
:

ð61Þ

In the basis where τ instead is diagonal (the “fτg basis”),
the matrices are exchanged.
The standard Hamiltonian for quantum clock models is

written as a linear combination of ðτjÞa, a ¼ 1;…; Q − 1

on each site j and exchange terms ðσ†jσjþ1Þa, a ¼ 1;…;
Q − 1. It is invariant under a ZQ “clock” symmetry
σj → ωσj, and the associated conserved charge Z ¼Q

j τj has eigenvalues 1;ω;…ωQ−1. ForQ ≥ 3, the original
model has two other important symmetries: charge con-
jugation, which acts as τj → τ†j , σj → σ†j , and time reversal,
which is antiunitary (and therefore sends any constant to its
complex conjugate) and sends σj to σ†j while leaving τj
invariant.
The model we consider in the following breaks all

symmetries but ZQ:

HQ ¼ −
X
j

Jjσ
†
jσjþ1 þ Γτj þ igðτj − τ†jÞσjσ†jþ1 þ H:c:;

ð62Þ

where the sum runs over the L sites of the 1D lattice. For
practical computations, we restrict ourselves toQ ¼ 2, 3, 4.
The coupling constants Jj are independent random num-
bers uniformly taken from a box distribution ½J − ϵ; J þ ϵ�.
Since they are a priori different on each site, they break
invariance under translation or spatial reflection. The last
term breaks both time-reversal and charge conjugation

symmetry [this breaking could also have been achieved
by perturbing with the Uð1Þ charge Sz introduced
in Ref. [70]].
We first consider results of simulations performed in the

fσg basis, with a full Hilbert space of size QL. In the top
panel of Fig. 5, we present the average gap ratio for
different chain sizes. We clearly observe gap ratios that do
not tend to their GOE value hriGOE but rather to their
hriGOEm¼Q value as the size of the Hilbert space is increased.
This is expected, as the Hamiltonian possessesQ sectors of
identical sizeQL−1 labeled with the different eigenvalues of
the charge Z. Note, however, that working in the fσg basis
does not allow us to simply construct the Hamiltonian
blocks, as Z is off diagonal in that case. Furthermore, the
Hamiltonian is complex in this basis, and without any
further indication on the existence of the ZQ symmetry, it is
not clear why GUE statistics does not show up.
When switching to the fτg basis, Z is now diagonal, and

the blocks are easily constructed. Furthermore, the
Hamiltonian becomes real. Computing the average gap
ratio in each block leads to an asymptotic hriGOE value for
each block, showing that each block is indeed independent
and no further symmetry has been missed.
We further confirm these results by showing the full

distribution PðrÞ in the bottom panel of Fig. 5 forQ ¼ 2, 3,
4. When the full spectrum is taken, the distribution obtained
numerically for the largest system size is in excellent
agreement with the surmises PGOE

m¼QðrÞ obtained from
Sec. III.
Note the importance of the time-reversal symmetry

breaking term g ≠ 0 in Eq. (62) in this analysis. In the
presence of time-reversal symmetry (at g ¼ 0), the blocks
with Z and Z� are identical, leading to exact degeneracies.
These additional values at r ¼ 0 would result in effective
values of hri lower than their Poisson values for finite-size
systems.

B. Discrete symmetries in disorder distributions

In this section, we consider the Heisenberg spin chain in
the presence of a random external field hj:

HHeisenberg ¼
1

2

XL
j¼1

σj · σjþ1 −
XL
j¼1

hjσ
z
j; ð63Þ

where σx;y;z are the standard Pauli matrices, and we use
periodic boundary conditions. In general, this system hosts
a many-body localized phase at large enough disorder: In
particular, the model with box disorder has become the
standard model of MBL in one dimension [9,21]. When
disorder is reduced, the system undergoes a transition
towards a thermal phase, a signature of which is RMT-
like spectral statistics. Since uncorrelated disorder explic-
itly breaks all spatial symmetries, we expect the spectral
statistics in the thermal phase to be of GOE type.
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However, in the specific case of binary disorder, i.e.,
taking on discrete values hj ¼ �h, visible deviations from
the GOE gap ratio distribution were observed in the bulk of
the thermal phase [71]. The authors of Ref. [71] explained
that this phenomenon was due to the peculiarities of
discrete disorder distributions. Indeed, while on a finite-
size system a typical disorder configuration will break
all spatial symmetries, with discrete disorder distribu-
tions such as the binary one, there is a nonzero probability
that one or several of them are preserved, especially
when considering periodic boundary conditions. For exam-
ple, out of the 24 ¼ 16 possible binary disorder configu-
rations on L ¼ 4 sites, four are reflection symmetric:
ðþh;þh;þh;þhÞ, ðþh;−h;−h;þhÞ, … (actually, all
disorder configurations on L ¼ 4 sites have a spatial
symmetry: reflection, translation, inversion, that is
h ↔ −h, or a combination of them). Of course, when L
is increased, the probability of drawing a spatially sym-
metric configuration decreases exponentially fast; but
for the largest system sizes within reach of exact diago-
nalization techniques, the fraction of symmetric disorder
configurations is still large enough to significantly alter the
level statistics if disorder averaging is done “naively,” that
is, by uniformly sampling over disorder. A possible work-
around put forward in Ref. [71] is to discard the spatially
symmetric disorder configurations. If one insists on using
all samples, another possibility is to explicitly resolve the
symmetry block structure of the Hamiltonian, whenever
the disorder configuration happens to be symmetric. This
approach is cumbersome, especially given the number of
possible symmetries that must be taken into account.
In that context, using the surmise for several GOE blocks

proves useful. Indeed, the gap ratio in the thermal phase of
the model can be written as a sum over symmetry sectors:

PðrÞ ¼
X
m

wmPGOE
m ðrÞ; ð64Þ

where wm is the weight of the symmetry sector ofm blocks.
In the thermodynamic limit L → ∞, w1 → 1, while wm>1
decays exponentially fast to zero. Note that for samples
with two blocks (m ¼ 2), the two blocks are always of
the same size, whereas for samples with more than two
blocks, m > 2, the blocks are not necessarily of equal
size. While the expressions in the previous section allow
us to compute the surmise for these nonhomogeneous
samples, we can, to a good degree of approximation,
neglect their contribution to the gap ratio distribution.
Indeed, we find, by using simple combinatorics, that the
total weight

P
m>2 wm coming from samples with more

than two blocks is more than halved when L → Lþ 2, and
for L ¼ 18, it already represents less than 0.2% of the

FIG. 5. The Q-state clock model. Top panel: average gap ratio
hri for the model of Eq. (62) for different values of Q, as a
function of Hilbert space size jHj. Open symbols denote
simulations where the ZQ symmetry is resolved, in which case
the Hilbert space size is the block size QL−1 (we averaged data
over all Q equivalent blocks). Filled symbols denote results for
the full Hilbert space of size QL. The dashed lines represent the
values of hriGOEm obtained in Sec. III (taken from Table II), while
hriGOE is the numerical estimate for the GOE distribution taken
from Ref. [18]. The precision of our numerics allows us to clearly
distinguish the case m ¼ 4 blocks with hriGOEm¼4 from the Poisson
value hriPoisson, also represented in the plot. Simulation param-
eters are ϵ ¼ 0.5, J ¼ 1, Γ ¼ 0.8, and g ¼ 0.5. For Q ¼ 2,
instead of the time-reversal and charge conjugation breaking
term in Eq. (62), which vanishes when Q ¼ 2, we add a next-
nearest-neighbor interaction g2

P
j σjσjþ2 in order to break the

mapping to a free-fermion model (we take g2 ¼ 0.5). Statistics
are obtained by focusing on 200Q eigenstates in the middle of the
full spectrum, except for the smaller sizes where about 20Q
eigenstates were considered. Results are averaged over more than
4000 realizations of disorder, except for the largest size where
1000 realizations were used. ForQ ¼ 2, 3, 4, we obtained results
on chains of sizes up to L ¼ 17, 11, 9, respectively. Bottom
panel: probability distribution of the gap ratio PðrÞ, as obtained
from simulations of chains of sizes L ¼ 16, 10, 8 forQ ¼ 2, 3, 4,
respectively. Simulation parameters are the same as in the top
panel. The solid lines represent the surmises PGOE

m ðrÞ obtained
from the analytical computations in Sec. III.
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total weight. Therefore, we make the approximation
that PðrÞ ¼ w1PGOE

1 ðrÞ þ w2PGOE
2 ðrÞ.

In Fig. 6, we show the gap ratio distribution for the
Hamiltonian in Eq. (63) for L ¼ 18. We find w1 ¼
243936=218 ≃ 0.93, w2 ¼ 17640=218 ≃ 0.07. This system
size is of the order of what is achievable using state-of-the-
art exact diagonalization techniques targeting the middle of
the energy spectrum [63]. However, it is not large enough
for w2 to be negligible compared to w1. Indeed, as shown in
Fig. 6, incorporating the m ¼ 2 contribution visibly
improves the agreement with numerical data. Note the
clear difference at r ¼ 0 between Eq. (64) [for which
Pð0Þ ≠ 0, as in the numerical simulations of Eq. (63)] and
PGOEðrÞ, which vanishes at r ¼ 0 due to level repulsion.
Accordingly, the predicted average gap ratio using the
m ¼ 2 surmise hri ¼ w1hri1 þ w2hri2 ≃ 0.527 is closer to
the numerically computed value hri − hriHeisenberg ≃ 0.004
than the “naive” prediction involving only m ¼ 1:
hrim¼1 − hriHeisenberg ≃ 0.013.

C. Floquet spin chain model

We next consider both a static and a Floquet spin-1=2
chain model. Floquet systems have attracted much interest
because, while they are amongst the simplest nonequili-
brium Hamiltonian systems, they exhibit new nontrivial
properties that are not observed in their static cousins.
In particular, single-particle Floquet systems can host
topological phases that have no static equivalent [72].
Interacting many-body Floquet systems a priori exhibit

no such interesting phases of matter since the combination
of the interaction and driving is expected to heat up the
system to an infinite-temperature featureless state [73–75].
However, it has been shown [76–79] that the addition of
disorder, hindering energy propagation throughout the
system via a MBL mechanism, can prevent heating and
give rise to new, interacting, Floquet phases, such as
discrete time crystals [80,81]. Here, we study an interacting
Floquet system, along with its static counterpart, for
comparison. In the following, we show that the Floquet
system exhibits an extra symmetry, which can be associated
with Floquet topological modes. In order to detect the
symmetry, we adjust the system parameters so as to be in
the thermal phase of the model. Then, level statistics is
expected to follow RMT predictions, enabling us to employ
our surmises to detect the Floquet symmetry.
We work with the following spin-1=2 Hamiltonians:

Hx ¼
XL
j¼1

gσxj ;

Hz ¼
XL
j¼1

Jσzjσ
z
jþ1 þ

XL=2−1
k¼0

h2kþ1σ
z
2kþ1; ð65Þ

again with periodic boundary conditions, which we com-
bine to form a time-independent Hstatic ¼ Hx þHz and a
time-dependent model:

HdrivenðtÞ ¼
	
2Hz if 0 ≤ tmod τ < τ=2

2Hx if τ=2 ≤ tmod τ < τ:
ð66Þ

Because the drive is periodic, Hdrivenðtþ τÞ ¼ HdrivenðtÞ,
such a model is indeed a Floquet system.
In the Floquet setting, energy is not conserved. It is

replaced by quasienergy, which is defined up to arbitrary
shifts by 2π=τ. More specifically, let us introduce the
Floquet operator UF ¼ expð−iτHxÞ expð−iτHzÞ, which
is the evolution operator over one drive period. To the
unitary Floquet operator, we can associate a Floquet
Hamiltonian HF, defined as UF ¼ expð−iτHFÞ, whose
eigenvalues εα and associated eigenvectors are, respec-
tively, the quasienergies and the Floquet eigenstates, which
hold information about the dynamics and steady-state
properties of the system [82]. In practice, when computing
level statistics, we will therefore use the quasienergies εα
exactly like energies in the static case.
Going back to the system in Eq. (65), we remark that the

random longitudinal fields hj ≠ 0 break both the Ising and
the translation symmetries. Our model differs from the
most commonly used one in that hj ¼ 0 on even sites. This
does not change the physics of the model but can induce
an extra symmetry in the driven case, as we discuss
below. Finally, note that driving the system does not
break its time-reversal symmetry. We therefore expect a

FIG. 6. Probability distribution of the gap ratio from the
Heisenberg model of Eq. (63) with L ¼ 18 spins, with periodic
boundary conditions. Data are averaged over all realizations of
the binary transverse field hj ¼ �1=2 (218 in total, 3914 of which
are nonequivalent up to symmetries) and over 150 eigenstates
around infinite temperature energy E ¼ ðEmin þ EmaxÞ=2. The
red solid line represents the analytical prediction, Eq. (64): a
linear combination of surmises PGOE

m ðrÞ obtained from the
analytical computations in Sec. III. For comparison, the green
solid line shows the predicted distribution when two block
contributions are not taken into account. Inset: difference
δPðrÞ between the numerical data and these surmises.
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GOE (respectively, COE) level statistics in the time-
independent (respectively, driven) case [44,74,75,83].
Since the COE and GOE ensembles are asymptotically
described by the same statistics, we will compare simu-
lations in the driven case to the corresponding GOE
statistics.
We choose the parameter set g ¼ Γ × 0.9045, h2kþ1 ¼

0.809þ 0.9045 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Γ2

p
ϵk, Γ ¼ 0.9, τ ¼ π=4, where the

ϵk are uniformly distributed random numbers of zero mean
and unit variance. This choice of parameters has been
shown [84–86] to give good agreement with COE level
statistics on the accessible system sizes for the related
model where the longitudinal field is also nonzero on the
even sites: h2k ≠ 0. This is indeed the case for the time-
independent system, as can be seen in Fig. 7. However, the
top panel of Fig. 7 shows that there is a dip in the average
gap ratio hri around J ¼ 1 for the driven system. The
numerical estimate for hri at this special point appears to

coincide with the surmise value for two GOE blocks of
equal size given in Table I. The level statistics (bottom
panel of Fig. 7) is also compatible with the gap ratio
statistics PGOE

m¼2ðrÞ. Driving the otherwise fully GOE system
therefore appears to give rise to a new Z2 dynamical
symmetry at the J ¼ 1 point.
We now rationalize the emergence of this symmetry. We

find that the associated conserved operator is

X ¼
YL=2−1
k¼0

σx2kþ1: ð67Þ

Indeed, while this operator acts, in general, nontrivially on
the Hz Hamiltonian, we have, at the special point J ¼ 1,

XeiHzXe−iHz ¼
YL
j¼1

iσzjσ
z
jþ1 ¼ ð−1ÞL=2; ð68Þ

and thus X commutes with the Floquet operator, up to a
global phase factor that can be absorbed in the definition of
UF. This indicates the existence of two COE blocks of
identical sizes in the Floquet Hamiltonian and hence
explains the agreement with the analytically obtained
gap probability distribution PGOE

2 ðrÞ. Note that setting hj ¼
0 on odd (or even) sites is necessary for this extra symmetry
to exist. Remark that when open boundary conditions are
used, the above commutator in Eq. (68) becomes propor-
tional to σz1σ

z
L, a nontrivial boundary term. We can interpret

this boundary term as creating a pair of excitations [87]. If
the model were brought to the MBL regime (e.g., by
increasing the strength of the disorder term hj), these
excitations would become localized at both ends of the
chain, signaling the topological nature of the observed Z2

symmetry. However, in that case, the level statistics would
become Poisson, and we would not be able to detect the
symmetry using our RMT approach. Finally, we note that
the argument carries over when we add a third contribution
Hy ¼

PL=2−1
k¼0 hyσ

y
2kþ1. It breaks the time-reversal sym-

metry, turning the two-block COE structure of the J ¼ 1
point into a two-block CUE structure.

D. Anyonic chain

Our final application deals with chains of interacting
anyons, which are exotic particles interpolating between
bosonic and fermionic statistics. They are predicted to
occur in some two-dimensional systems such as fractional
quantum Hall states [88,89] and offer exciting perspectives
for topological quantum computation [90]. More precisely,
we consider a disordered version of the “golden chain”
model of Fibonacci anyons [91]. As more technical back-
ground is needed to introduce the model and its various
representations, we first give a summary of our results.
When periodic boundary conditions are imposed on the

FIG. 7. Top panel: average gap ratio as a function of J in the
time-independent and driven spin-1=2 chain model, Eq. (65).
Bottom panel: gap ratio distributions at J ¼ 1 for the time-
independent and driven case (points), and comparison with the
surmise distribution for m ¼ 1 and m ¼ 2 GOE blocks (solid
lines). In the time-independent case, the average is performed
over 2000 disorder realizations (except at the J ¼ 1 point where
5000 realizations are used), and 100 eigenstates around infinite-
temperature energy E ¼ ðEmin þ EmaxÞ=2, for the system of size
L ¼ 14, while in the driven case, the average is performed over
2000 disorder realizations and all eigenstates of the system of
size L ¼ 12.
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chain of anyons, there is a nontrivial topological symmetry
that decomposes the Hamiltonian into two blocks of unequal
size. Resolving this symmetry is not easy, but it can, in
principle, be done at the price of turning theHamiltonian into
a dense matrix, rendering numerical simulations on large
systems difficult. Our results instead allowus to use a simpler
representation for numerics (with sparse, real symmetric
matrices), which can nevertheless be confronted with RMT
predictions and hence probe ergodic physics. This can be
seen in Fig. 8, where the results for hri and PðrÞ allow us to
characterize the spectral statistics of the model with the two
interlaced sectors. At an extra numerical cost, and with the
further requirement to study different representations of the
model, we can identify the states in each of these two sectors
and check that they follow regular single-block GOE
statistics (squares and triangles in the top panel of Fig. 8).
In the following, we present in detail the different represen-
tations of the model of disordered Fibonacci anyons, which
allow us to draw these conclusions.
The statistics of anyons [92] are generally encoded in a

set of fusion rules analogous to the composition rules for
angular momenta, as well as transformation rules relating
the different possible ways to fuse together three or more
particles (the so-called “F-symbols”) [93]. In the case of
Fibonacci anyons, there are only two types of particles: the
trivial particle, labeled by 1, and the Fibonacci anyon,
labeled by τ. They are characterized by the fusion rule
τ × τ ¼ 1þ τ; that is, bringing together two Fibonacci
anyons yields either the trivial particle or another Fibonacci
anyon. This is analogous to the situation where two spin-1

2

particles brought together can be decomposed into a spin-0
and a spin-1 particle. In addition, the trivial fusion rules
1 × 1 ¼ 1 and 1 × τ ¼ τ hold [91].
Now, suppose we have a chain of L indistinguishable

Fibonacci anyons. A pair of adjacent anyons may be fused
together, yielding either 1 or τ. Recursively performing all
possible fusions, we end up with a single anyon, again either
1 or τ. The set of all different ways by which the L particles
pair up and fuse to yield a single particle has the structure of a
Hilbert space and is called the fusion space. In contrast with
the case of spins, this Hilbert space does not have a tensor
product structure. In order to construct a basis for this Hilbert
space, it is convenient to consider the different “fusion paths”
that describe the outcome of each fusion, starting from the
leftmost pair (particle 1 with particle 2, then the resulting
particle with particle 3, and so on). Each fusion path can be
written as a sequence jx1x2…xLi, where for each i,
xi ∈ f1; τg, and xiþ1 is the outcome of the fusion of xi with
τ (x1 being the outcome of the fusion of the first two
particles). Since the fusion of 1 with τ always yields τ, no
two consecutive 1s are allowed in the sequence of xi. In fact,
the basis is given by all strings that do not contain any pair of
consecutive 1s.
In the case of periodic boundary conditions, xLþ1 ¼ x1,

and the number of basis states jHj is related to the

Fibonacci sequence, jHðLÞj ¼ FL−1 þ FLþ1, where FL
is the Lth Fibonacci number with F0 ¼ 0 and F1 ¼ 1.
It is well known that the ratio of consecutive Fibonacci
numbers goes to limi→∞Fiþ1=Fi¼ϕ, with ϕ¼ð1þ ffiffiffi

5
p Þ=2

the golden mean, hence the name golden chain. A peda-
gogical introduction to the Hilbert space and Hamiltonian
construction of the golden chain model can be found
in Ref. [94].

FIG. 8. RSOS model. Top panel: average gap ratio hri for the
RSOS model in Eq. (71), as a function of Hilbert space size. Blue
circles are the results for the full spectrum of the Hamiltonian (69);
squares and triangles are those in the Y ¼ ð1� ffiffiffi

5
p

=2Þ sectors.
The dashed lines represent the results for the (single-block) GOE
distribution of Ref. [18] and from the surmise computations in
Sec. III for m ¼ 2 GOE blocks with size ratio ϕ−2. Data in the
Y ¼ ð1þ ffiffiffi

5
p Þ=2 sector were obtained by comparing the energy

spectrum in the loop representation with noncontractible loop
weight 2 cos ðπ=5Þ and the RSOS representation. Data in the Y ¼
ð1 − ffiffiffi

5
p Þ=2 were obtained by considering the rest of the states in

the RSOS representation.We focus onmid-spectrum eigenstates of
the RSOS spectrum, obtaining about 300 eigenstates for every
disorder realization. Results are averaged over between 300 and
1000 realizations of disorder of strength ϵ ¼ 0.2. Bottom panel:
probability distribution of the gap ratio PðrÞ, as obtained from
simulations of a RSOS chain of size L ¼ 22. The solid line is the
surmise PGOE

m¼2;α¼1=ð1þϕ2ÞðrÞ obtained from the analytical compu-

tations in Sec. III.
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Following the seminal work [91], a Hamiltonian can then
be constructed by assigning a different energy for each
possible outcome of the fusion of two nearest neighbors at
sites j and jþ 1. Assigning a zero energy to an outcome 1
and −Jj to an outcome τ, the Hamiltonian takes the form

H ¼ −
X
j

JjΠj;jþ1; ð69Þ

where Πj;jþ1 is the projector into the trivial particle of two τ
particles located at sites j and jþ 1. This is the analog
of the Heisenberg coupling for SUð2Þ spins-1=2, which
assigns a different energy to the fusion channels of pairs
of neighboring spins. The projectorΠj;jþ1 acts on a basis state
jx1x2…xLi by changing xj to a superposition of 1
and τ in a way depending on xj−1 and xjþ1; an explicit
expression can be found in Ref. [91]. The coupling con-
stants Jj are taken from a random distribution PðJÞ ¼
ϵ−1J−1þ1=ϵθðJÞθð1 − JÞ, with θ the Heaviside step function
(ϵ ∈ ½0;∞� characterizes the disorder strength and J ∈ ½0; 1�).
Once again, the main interest for using a disordered coupling
constant is to break lattice symmetries in the chain. We use
periodic boundary conditions in the following.
A practical representation for numerical simulations

is to recast the above fusion paths in terms of sequences of
heights jh1h2…hLi, where hi ∈ f1; 2; 3; 4g and
jhi − hiþ1j ¼ 1, through the mapping 1; τ → 1, 3 for i
odd, 1; τ → 4, 2 for i even. This defines a “restricted
solid-on-solid” (RSOS) model, namely, the p ¼ 4 case of
the Ap [also known as SUð2Þp−1] family, where for generic p
the heights are allowed to run between 1 and p [95,96]. In this
formulation, the projectors Πj;jþ1 of Eq. (69) can be reex-
pressed in terms of operators ej, whose action is defined as

ejjh1…hj−1hjhjþ1…hLi

¼ δhj−1;hjþ1

X
h0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð πhjpþ1

Þ sinð πh
0
j

pþ1
Þ

q

sinðπhjþ1

pþ1
Þ

j…hj−1h0jhjþ1…i:

ð70Þ
The operators ej form a representation of the Temperley-Lieb
(TL) algebra [97], namely, e2j ¼

ffiffiffiffi
Q

p
ej, ejej�1ej ¼ ej, and

eiej ¼ ejei for ji − jj ≥ 2, where we have definedffiffiffiffi
Q

p ¼ 2 cos ½π=ðpþ 1Þ�. In the present case, p ¼ 4, and
one indeed checks that Πj;jþ1 ¼ ð1= ffiffiffiffi

Q
p Þej. Up to the

irrelevant 1=
ffiffiffiffi
Q

p
proportionality factor, the Hamiltonian

Eq. (69) is therefore reexpressed in the RSOS representation as

HRSOS ¼ −
X
j

Jjej: ð71Þ

A subtlety to keep in mind is that the RSOS formulation acts
separately on two equivalent sectors, which correspond to
putting even or odd heights on even sites, respectively. For
periodic boundary conditions, hLþ1 ¼ h1, each of these sectors

has sizeFLþ1 þ FL−1 and yields a copy of the original anyonic
chain. The spectrum of the original Hamiltonian Eq. (69) is
therefore obtained by restricting to one of these sectors (which
is what we do in the following).
The Hamiltonian Eq. (71) is real, which is one reason

this representation is often used in numerics. In Fig. 8 (blue
circles), we present the results for the average gap ratio hri
and its distribution PðrÞ for Eq. (71), for different chain
sizes [and thus Hilbert space sizes jHðLÞj] and weak
disorder ϵ ¼ 0.2, for states located in the middle of the
spectrum and corresponding to the sector with even heights
on even sites. For this small value of disorder, we expect a
random matrix theory behavior, but the value of hri is
clearly different from the GOE statistics for a single block.
The size of the Hilbert space, which is the sum of two
Fibonacci numbers, may suggest the existence of two
blocks of different sizes (denoted N1 and N2 in the
following). A first simple test is to compare the expectation
value hriRSOS ≃ 0.452 to the values obtained for two GOE
blocks of different sizes (Fig. 3 in Sec. III D). This leads to
a possible value around α ¼ N1=ðN1 þ N2Þ ∈ ½0.27; 0.3�,
corresponding to a size ratio N1=N2 ∈ ½0.37; 0.43�, close to
ϕ−2 ¼ limL→∞ðFL−1=FLþ1Þ ≃ 0.382. This strongly sug-
gests that the spectrum of the periodic RSOS chain is
composed of two independent GOE blocks of size N1 ¼
FL−1 and N2 ¼ FLþ1. In the top panel of Fig. 8, we also
represent the predicted value hrim¼2;α¼1=ð1þϕ2Þ ¼ 0.453186,
to which the numerical data indeed appear to tend. This is
further confirmed by the numerical distribution of PðrÞ
(bottom panel of Fig. 8), which is an excellent match to the
one obtained from the surmise (see Sec. III) of two GOE
blocks with ratio ϕ−2.
We can, in fact, trace back this decomposition to the

existence of a “hidden” symmetry of a topological nature
[91,98–100], namely, an operator Y corresponding to an
extra τ particle circling around the system and whose matrix
elements in the basis of fusion paths may be written as

hx01…x0LjYjx1…xLi ¼
YL
i¼1

ðFx0iþ1
τxiτÞ

x0i

xi−1
; ð72Þ

where theF-symbols ðFx0iþ1
τxiτÞ

x0i
xiþ1

can be found, for instance, in

Ref. [91]. The operator Y has two distinct eigenvalues 1
2
ð1�ffiffiffi

5
p Þ and commutes with the Hamiltonian Eq. (69), therefore
defining two symmetry subspaces. A subtlety arises in the
RSOS representation, which, as discussed above, has two
independent sectors andwhere the action ofY maps one onto
the other. We can overcome this difficulty by computing the
action of Y2, which acts separately in the odd and even
sectors: This allows us to define in each sector two orthogo-
nal subspaces of dimensions FLþ1 and FL−1, respectively,
which precisely reproduces the numerical observationsmade
above [101].
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Now, it is important to remark that the action of Y is
highly nonlocal, and its matrix expression in the RSOS
representation is not sparse. Therefore, while we know, in
principle, how to decompose the Hamiltonian into two
GOE blocks, it is not possible, to the best of our knowledge,
to do so while keeping it sparse and real. One may ask
whether other representations of our model might help with
this problem. There are, indeed, other ways to represent the
TL algebra, from which the spectrum of Eq. (69) can be
recovered. Below, we consider two such representations:
the loop representation and the spin chain representation.
These representations allow us to tell which subspace each
eigenvalue corresponds to.
Loop representation.—In the loop representation [97],

the Hilbert space is spanned by the configurations of
noncrossing valence bonds between L vertical strands,
and the TL generator ei acts by contracting together the
strands at sites i and iþ 1. The composition rules of the TL
algebra express the fact that lines can be continuously
deformed without crossing and that closed loops contribute
a weight

ffiffiffiffi
Q

p
. From there, one can recover the eigenvalues

of the anyon chain corresponding to each symmetry sector
by assigning a special weight to noncontractible loops that
close around the cylinder [103], respectively, 2 cosðπ=5Þ
and 2 cosð2π=5Þ, which is nothing but the corresponding
eigenvalue of Y. However, the loop model contains
significantly more states than the anyonic chain, as the
loops carry additional nonlocal information that is absent in
the RSOS representation. This brings many difficulties, the
first being that the maximum size L that can be reached
using exact diagonalization techniques is lower, and the
second being that it is not obvious at all how to extract from
the loop model spectrum the set of eigenvalues that are
present in the RSOS one [104]. Furthermore, the loop
representation leads to a non-Hermitian matrix representa-
tion of the Hamiltonian, which also decreases the efficiency
of simulations.
Spin chain representation.—Another representation is in

terms of a spin-1=2 chain, with Hilbert space ðC2Þ⊗L, on
which the TL generators act as [102]

ei ¼ −
�
eiðφ=LÞσþi σ

−
iþ1 þ e−iðφ=LÞσ−i σ

þ
iþ1 þ

cos γ
2

ðσziσziþ1 − 1Þ

−
i sin γ
2

ðσzi − σziþ1Þ
�
: ð73Þ

Here, the matrices σx;y;zi act as Pauli matrices on the ith spin
and as the identity elsewhere, and γ is defined byffiffiffiffi
Q

p ¼ 2 cos γ. The role of the twist parameter φ is
analogous to that of the weights of noncontractible loops
in the geometrical representation. More precisely, the
Hamiltonian built out of Eq. (73) commutes with the
global magnetization Sz ¼ P

i σ
z
i , and the eigenvalues of

the RSOS model are recovered in the Sz ¼ 0 sector upon
setting φ ¼ π=5 and φ ¼ 2π=5, respectively. As for the loop
case, the Sz ¼ 0 sector contains more states than the RSOS

ones, leading to the difficulties mentioned above (see
Refs. [105–107] for other occurrences in related models).
Moreover, this Hamiltonian is complex in the σz basis, which
also leads to a decreased numerical efficiency.
We use simulations both in the loop and spin chain

representations, and we check on small systems (up to
L ¼ 18) that all states in the RSOS representation can
indeed be found in the loop representation (using non-
contractible loop weight taking either 2 cosðπ=5Þ or
2 cosð2π=5Þ values) or the spin chain representation (using
a twist taking either π=5 or 2π=5 values). The simulations
in the loop model with noncontractible loop weight
2 cosðπ=5Þ are simpler (as all loops have the same weight),
and we could reach larger systems. This allowed us to
identify all states in the Y ¼ ð1þ ffiffiffi

5
p Þ=2 sector for chains

of size up to L ¼ 24 (see Fig. 8).
Besides allowing us to identify this two-block structure

in HRSOS chains with periodic boundary conditions, the
actual value of hri and distribution PðrÞ for N1=N2 ¼ ϕ−2

will be useful as a marker of an ETH/ergodic phase when
increasing the value of disorder. Indeed, it has been
proposed [108] that disordered SUð2Þ3 chains could lead
to a new form of nonergodic critical phase whose behavior
is different from a many-body localized phase. This
putative new critical phase could be identified by the
departure of spectral statistics from the reference values
displayed above.

V. SUMMARY, RELATION TO PREVIOUS
WORKS, AND PERSPECTIVES

In summary, we analyzed and computed the statistics of
the gap ratio r, an essential tool in diagnosing many-body
quantum chaos, when the existence of symmetries results in
a block structure of the matrix under consideration. The
analytical results we obtain, based on an extension of a
seminal work of Rosenzweig and Porter [38], are virtually
indistinguishable from numerical simulations on large
random matrices. While a closed form can only be obtained
in limited cases, our formulation [based on Eqs. (8), (27),
(28)] is compact and generic enough to be implemented
easily for all cases of interest. Through several examples of
applications, we showed the validity and usefulness of our
results to identify or probe symmetries in many-body
quantum physics. In this final part of our paper, we relate
our findings to previous works (including a reinterpretation
of results available in the literature) and provide leads for
possible extensions.

A. Relation to and reinterpretation of previous results

We now relate our findings to others obtained in studies
of spectral statistics in various contexts. Some attempts
have been made to count the number of symmetries in
chaotic systems [34,35,109]. In the Appendix, we provide a
comparison between our results and the techniques pro-
posed to detect symmetries in Ref. [109]. Our results allow
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one to indirectly discover symmetries in a many-body
chaotic system or to bypass them when they are too
complex or costly to implement numerically. There have
been several cases of unusual values of PðrÞ or hri reported
in the previous literature, which our work directly eluci-
dates. For instance, it applies to the spectral statistics of the
Hamiltonian of the fractional quantum Hall effect when
orbital inversion is not resolved in the numerics [110]. Our
analysis also explains the results obtained on the 2D square
lattice quantum Ising model [111] in momentum sectors
k ¼ ð0; 0Þ and k ¼ ðπ; πÞ where not all symmetries are
resolved. The value Pðr ¼ 0Þ ≃ 1.4 strongly suggests an
unresolved Z2 symmetry there. Our analysis also accounts
for the results in the one-dimensional t − t0 − V clean
fermionic model of Ref. [112] when the inversion sym-
metry-breaking field is small, for spectral statistics of the
Bose-Hubbard chain [113] when the reflection around the
center of the chain is not resolved, as well as for
quasiperiodic tilings [114] when phase and parity sym-
metries are not considered. Another context where our
work is relevant is the bosonic SYK model with two-body
interactions [26] where the gap ratio distribution (see Fig. 6
in Ref. [26]) appears to be close to PGUE

m¼2ðrÞ, suggesting a
two-block GUE structure (for instance, due to a particle-
hole symmetry), instead of an integrability signature as
originally suggested in Ref. [26]. For some values of the
number of Majorana fermions, the bipartite SYK model
introduced in Ref. [115] displays the average gap ratio
value hri2 that we derive for the GOE ensemble.
In another direction, our analysis could be useful to

discover fracton models [116–120] where the Hamiltonian
decomposes in several different Krylov-independent blocks
(and this is not necessarily based on an unresolved
symmetry), which necessarily implies a nonadherence to
the single-block gap ratio statistics [18]. A related case is
the excellent description of level statistics in an effective
quantum ice model [121] with the use of PGOE

m¼4ðrÞ,
accounting for the existing four topological sectors.

B. Perspectives

Our work can be extended in several directions. In a
straightforward way, it is possible to extend the analysis to
several blocks with different spectral statistics, for instance,
the coexistence of GOE and GUE blocks in the same
spectrum. This applies to the quantum Hall work of
Ref. [110], where different momentum sectors have differ-
ent spectral statistics. Also, it is possible to see the effect of
combining integrable and chaotic blocks, in the spirit of the
work of Ref. [39] on mixed phase spaces. This would apply
to models with integrable “Krylov” subspaces coexisting
with ergodic blocks [117–119] or to the effective model of
the MBL transition proposed in Ref. [122] with one ergodic
block and random independent energies.
Our approach is general enough that it should apply

mutatis mutandis to other RMT ensembles or other joint

distributionspðs; tÞ. Here, we considered theWigner ensem-
bles with a quadratic potential in Eq. (1). More generally, β
ensembles with different potentials can be treated in the same
way. For instance, β-Laguerre ensembles, with a logarithmic
potential, are connected with Wishart matrices and are
relevant to characterize entanglement spectra (for a review,
see, e.g., Ref. [123]). Entanglement spectra can also exhibit a
block structure inherited from the symmetry of the under-
lying quantum state from which they are formed. Other
natural extensions include replacing Eq. (3), which is our
starting point, by the equivalent expression for matrices of
larger sizes: Indeed, Ref. [19] obtains, from the exact
expression of the joint spacing distribution for 4 × 4 matri-
ces, an expression forPðrÞ that is more accurate than Eq. (7)
by an order of magnitude. Another possible direction is to
study the non-Hermitian situation [37] with symmetries.
A natural generalization would be to consider higher-

order spacing ratios: As was shown numerically in
Refs. [34,35], higher-order ratios of random matrices with
m-fold symmetry can be related with ratios of random
matrices with Dyson exponent m, allowing one to detect
underlying symmetries. An extension to our work could
provide analytical grounds to these observations.
Finally, it would be interesting to analyze the case of

weak symmetry breakings (with small matrix elements
between different blocks), using a perturbative approach to
estimate PðrÞ in the same vein as the computation per-
formed for the level spacing distribution in Ref. [124].
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APPENDIX: COMPARISON WITH OTHER
TECHNIQUES PROPOSED TO DETECT
SYMMETRIES IN CHAOTIC SYSTEMS

In view of a practical use for different available methods,
in this Appendix, we provide elements for a comparison
between the approach presented in our work with the
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methods suggested in Ref. [109] for quantum chaotic
systems.
In Ref. [109] (in particular, in its Sec. VI), two indicators

of chaos (the correlation hole and the distribution of off-
diagonal elements of local observables) are highlighted to
detect chaos without spectrum unfolding and even in the
presence of symmetries. Such indicators were introduced
and considered in earlier works (see, e.g., Refs. [131–136]
and references therein).
We first discuss the correlation hole technique,

which refers to the existence and detection of a dip
in the average survival probability jhΨð0ÞjΨðtÞij2 ¼
jhΨð0Þj expð−iHtÞjΨð0Þij2 after a quench from an initial
state jΨð0Þi. Results of Ref. [135] indicate that the dip
appears after the Thouless time and before the Heisenberg
time, which both scale exponentially with system size for
many-body systems. The correlation hole is a useful
method to detect quantum chaos, and it appears to detect
chaos even in the presence of symmetries [133,136].
However, this goal is different from the one of the current
paper, which focuses on positively detecting symmetries
using the gap ratio method (and without the assumption of
chaos, as we highlighted). Furthermore, the two approaches
do not have the same computational practicality: The
correlation hole method require one to compute the time
evolution of the system up to very long times, which, in
practice, means computing all eigenstates and all eigen-
values of H. This limits this approach to small systems
accessible to full diagonalization. Iterative methods, e.g.,
using Krylov space techniques, allow one to compute the
survival probability on larger systems but cannot reach
the exponential times required to probe the existence of the
correlation hole. On the other hand, the gap ratio method
advocated in the present work requires only some eigen-
values in the middle of the spectrum and no eigenstates. It is
thus amenable to subset methods such as the shift-invert
technique [63], which allow one to treat much larger
systems (e.g., matrices of sizes up to 107 in Ref. [63]).
The second technique discussed in Ref. [109]

deals with the distribution of off-diagonal elements of
local observables and consists in computing the ratio

R ¼ jhαjOjβij2=jhαjOjβij2 between the second and first
moments of the distribution of off-diagonal elements O
between two different eigenstates jαi; jβi. Section VI of
Ref. [109] suggests (albeit not making any definitive claim)
that R can detect symmetries by taking the value mπ=2
whenm sectors (of the same size) are present (the value π=2
comes from the Gaussian distribution of off-diagonal
matrix elements in chaotic systems [131]). Contrary to
the correlation hole method, the R method does not require
the full set of eigenstates but only some and is thus, in
principle, typically amenable to the same system sizes
as the gap ratio method. However, it suffers from an
important drawback: To be useful for symmetry detection,
this method requires the observableO to commute with the

symmetry generators, which means that one needs to know
the symmetries in advance. One could imagine testing
different observables in the hopes that one of them
commutes with the symmetry generators. But this is clearly
not error prone, as we now show by performing compu-
tations on the same example as in Ref. [109]: Depending on
the observable O we choose, we obtain different results,
leading to different conclusions on the number of sym-
metries or sectors.
We consider the following one-dimensional S ¼ 1 spin

model:

HS1 ¼
XL−1
i¼1

ðSxi Sxiþ1 þ Syi S
y
iþ1 þ SziS

z
iþ1Þ

þ
XL−1
i¼1

ðSxi Sxiþ1Þ2 þ ðSyi Syiþ1Þ2 þ ðSzi Sziþ1Þ2 þ ϵ1Sx1

ðA1Þ

[Eq. (3) in Ref. [109]]. The last term is a boundary random
magnetic field (ϵ1 taken uniformly in a box ½−ϵ; ϵ� with
ϵ ¼ 0.05), which is added to avoid spatial reflection
symmetry, as in Sec. VI of Ref. [109]. We first consider
the same observableO ¼ SzL=2 as in Ref. [109]. In that case,
as we show in Fig. 9, we obtain for the ratio R the same flat
curves as observed in Fig. 3(d) in Ref. [109], with a plateau
around R ¼ π. According to the reasoning of Ref. [109],
this could suggest that there are two independent sectors. If
we now compute R for another local observable O ¼ SxL=2,
the data for the corresponding R in Fig. 9 now appear much
closer to 2π, pointing towards four symmetry sectors. The
conclusion thus depends on the observable chosen. On the
contrary, computing the average gap ratio (inset of Fig. 9,
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FIG. 9. RðOÞ for O ¼ SzL=2 (bottom data) and O ¼ SxL=2 (top
data) for the spin-1 model Eq. (A1), as a function of energy
difference ω ¼ jEα − Eβj between eigenstates jαi and jβi. Inset:
average gap ratio hri as a function of system size (here, ϵ ¼ 1).
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here with ϵ ¼ 1 so that the spatial reflection symmetry is
strongly suppressed but not changing any symmetry in the
model), we obtain hri ≃ 0.396, which, according to the
results in Table I of this work [GOE results since Eq. (A1)
has real matrix elements] indicates four sectors. A more
thorough analysis of the symmetries in the model (A1)
[137] confirms that there are indeed four symmetry sectors
of identical size.
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