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Density matrix exponentiation (DME) is a general technique for using a quantum state ρ to enact the
quantum operation e−iρθ on a target system. It was first proposed in the context of quantum machine
learning, but has since been shown to have broad applications in quantum metrology and computation. No
experimental demonstration of DME has been performed thus far due to its demanding circuit depths and
the need to efficiently generate multiple identical copies of ρ during the finite lifetime of the target system.
In this work, we describe the first demonstration of the DME algorithm, which we accomplish using a
superconducting quantum processor. Our demonstration relies on a 99.7% fidelity controlled-phase gate
implemented using two tunable superconducting transmon qubits. We achieve a fidelity surpassing 90% at
circuit depths exceeding 70 when comparing the output of the circuit executed on our quantum processor to
a simulation assuming perfect operations and measurements.
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I. INTRODUCTION

Density matrix exponentiation (DME) maps the density
matrix of a first system (ρ) into the operator UDME ¼ e−iρθ,
which acts on a second system (σ). The first system ρ may
be any single- or multiqubit density matrix, including
mixed and entangled states, and need not be known to
the experimenter; we refer to this state as an “instruction.”
We refer to the second system σ as the “data.” Because of
the no-cloning theorem [1], it is impossible to perfectly

implement the mapping ρ ↦ UDME using just one copy of
an unknown ρ. However, in Ref. [2], Lloyd et al. realized
that by supplying N copies of ρ, each of which implements
the operation e−iρθ=N , one can implement UDME with
exponentially fewer copies than would be required for
tomographic reconstruction of ρ.
The DME algorithm has two remarkable properties: The

circuit depth required to implement DME to a desired
precision ϵ scales as OðlogðdÞθ2=ϵÞ (where d is the
dimension of ρ), and the number of copies of ρ required
scales only as Oðθ2=ϵÞ, independent of d [2–4]. In
comparison to the number of copies of ρ required for
tomographic reconstruction to accuracy ϵ, this represents an
exponential reduction in sample number [5]. The time- and
sample-complexity speed-ups afforded by DME make it a
key enabling protocol for a class of efficient algorithms
relating to both quantum computation (using ρ to manipu-
late σ) and quantum metrology (using σ to study ρ).
The power of DME can be understood intuitively by a

comparison of its function to that of instructions in classical
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and quantum computing (Fig. 1). In a classical computer,
both the instructions and the data are defined using classical
bits and operations [Fig. 1(a)]. Information from one step in
an algorithm can be easily passed forward from one step to
the next, because the data and instructions are formally
similar. In a typical quantum-computing application, the
data are quantum, but the operations are determined using
classical compilers [Fig. 1(b)]. This is efficient for appli-
cations that require no feed forward of information but can
be prohibitively costly if the algorithm requires extracting
more than classical information from the data. Feeding
quantum data forward first requires that it be tomograph-
ically reconstructed, an exponentially costly process [5], so
that it can be compiled into a new set of equivalent classical
instructions. With DME, however, a fixed scaffolding of
classically defined gates is used to implement an operation
that is already encoded directly in a quantum instruction
[Fig. 1(c)]. In this case, no tomographic reconstruction
is needed to use this information in further processing
steps, which can create significant savings for certain
applications [3,4,6].
A number of known algorithms take advantage of the

efficiency enabled by DME:
(i) Private quantum software execution. In this appli-

cation, the action of an unknown (private) unitary U
on an arbitrary quantum state may be efficiently
emulated using a relatively small set of provided

input-output relations fρing↦U fρoutg. Private quan-
tum software execution utilizes a controlled-DME

process for which pairs of ρin and ρout serve as
instructions in successive steps. If provided with
enough copies of ρin and ρout, an intercepting party
could, in principle, perform tomographic recon-
struction of all inputs and outputs and use this
information to reconstruct the process that U imple-
ments. However, the number of copies of the states
required for DME is far fewer than the number of
copies required to perform full tomography: The
“owner” of U can provide enough copies of the
states to enable DME but not enough copies to
perform tomography. In this way, the action ofU can
be emulated without compromising the privacy of U
itself [3].

(ii) Hamiltonian simulation. DME has also been pro-
posed as a subroutine in a variation of Hamiltonian
simulation. Standard Hamiltonian or quantum sim-
ulation, for quantum chemistry, for example, is
concerned with the complexity of implementing
the operator e−iHt. By presenting a Hamiltonian in
the form of a density matrix, Kimmel et al. showed
that DME enables a sample-optimal strategy for
performing quantum simulation [4].

(iii) Quantum principal component analysis. By using
DME to turn a state into an operator, quantum phase
estimation can be implemented on that operator to
extract the dominant eigenvalues and eigenvectors
of ρ. This requires exponentially fewer copies of ρ
than any other known methods and is the original
application envisioned for DME [2,4,7].

(a) (b) (c)

FIG. 1. Schematic representations of computing architectures. (a) Classical programming to generate classical operations (functions).
Instructions are definedbya classical bit stringg that uniquelydetermines aBoolean logic functionfg. The control layer executes the resulting
circuit on data bits s to produce the output fgðsÞ. (b) Classical programming to generate quantum operations. Instructions are defined by a
classical bit string g that uniquely determines a unitary operationUg. The gate sequence is applied to the quantum hardware (data qubits σ) to

execute the unitary operation U ¼ expð−iHgtÞ, where Hg is the quantum circuit Hamiltonian, to produce the output UgσU
†
g . If any

components of the instruction string depend on information from previous steps in the algorithm, that information must be tomographically
extracted from σ and then classically recompiled. (c) DME to generate quantum operations. In DME, the quantum operation is stored in the
quantum instruction state ρ. Classical hardware generates N partial SWAP operations, a co-rotation enacted by a Heisenberg interaction
betweenqubits σ and ρ (see text) along the same axis, over a small, classically chosen rotation angle δ ¼ θ=N. These partial SWAPoperations
implement the unitary operation U ¼ e−iρθ without first requiring classical compilation of the information contained in ρ.
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(iv) Entanglement spectra. Pichler et al. [8] showed that
if one is presented with a large entangled state—too
large for standard tomographic protocols to practi-
cally reconstruct—its entanglement spectrum can still
be revealed efficiently by a protocol usingDMEas the
key subroutine. This leads to a novel and resource-
efficient form of reduced-complexity benchmarking.

(v) Quantum machine learning. DME has been shown to
play a role in providing quantum speed-up for quan-
tum semidefinite programming [6] and to efficiently
construct quantum support vector machines [9], albeit
with demanding requirements on the input states.

In this work, we demonstrate the first experimental
implementation of the DME algorithm using a super-
conducting quantum processor [10]. Specifically, we apply
DME to a system comprising two superconducting qubits:
a data qubit prepared in state σ and an instruction qubit
prepared in state ρ. In Sec. II, we review the DME protocol
in its original construction, which requires N physical

copies of the instruction state. In Sec. III, we describe a
technique we develop to efficiently refresh the instruction
state using only a single physical instruction qubit [11].
This is a significant technical simplification that makes this
demonstration possible. In Sec. IV, we demonstrate that our
DME implementation indeed performs a rotation on the
data qubit that is defined by the state of the instruction
qubit. Finally, in Sec. V we explore the dynamics of the
protocol as a function of N and benchmark its performance
using state and process tomography.

II. THE DME PROTOCOL

DME implements the unitary operation UDME ¼ e−iρθ

on quantum data according to an instruction ρ and a
classically chosen angle θ. In concrete terms, if the data
and instructions are single-qubit pure states σ and ρ, DME
rotates σ by an angle θ about an axis defined by the Bloch

(a)

(b)

(c) (d)

FIG. 2. Demonstration of the two-qubit effective density matrix exponentiation algorithm. (a) DME algorithm using active reset and
reinitialization to reprepare the instruction state ρ after each δSWAP operation. (b) Implementation of DME2 in which QME is used to
approximately reinitialize the instruction qubit to ρin without active reset and repreparation (see text for details). The substep parameter n
is stepped from 0 to N. In the experiment, we perform n rounds of δSWAPþ QME, measure the two-qubit density matrix, and trace
over each subsystem to extract the individual data and instruction qubit density matrices [σðnÞ and ρðnÞ, respectively]. (c) Substeps of
DME2ðjþihþj; 4; π=2Þ corresponding to RXðπ=2Þ on the target qubit at the final step (n ¼ N). Black lines are guides to the eye.
(d) Substeps of DME2ðj0ih0j; 8; πÞ corresponding to RZðπÞ on the target qubit at n ¼ N.
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vector of ρ. More generally, σ and ρ are multiqubit states,
and they need not be pure states.
The protocol that implements DME partitions UDME

into a sequence of N steps [Fig. 2(a)], each comprising a
“partial SWAP” operation δSWAP≡ e−iSWAPδ [12] that is
applied between σ and ρ [2]. The SWAP operation between
two qubits can be enacted by a Heisenberg interaction,

SWAPij ¼
1

2

�
1ðiÞ1ðjÞ þ σ̂ðiÞx σ̂ðjÞx þ σ̂ðiÞy σ̂ðjÞy þ σ̂ðiÞz σ̂ðjÞz

�
:

The protocol relies on the relation

Trρ½e−iSWAPδσ ⊗ ρeiSWAPδ� ¼ σ − iδ½ρ; σ� þOðδ2Þ
¼ e−iρδσeiρδ þOðδ2Þ:

That is, σ undergoes unitary evolution of the form e−iρδ

(to first order in δ) rotating by a small angle δ. By the
reciprocity of SWAP operations, ρ undergoes a comple-
mentary unitary evolution about σ, leaving it in a state that
differs from the original quantum instruction. As a result,
the instruction qubits must be refreshed at each step to
provide a new identical copy of the instruction state ρ.
Choosing δ ¼ θ=N and repeating the δSWAP step N times
[Fig. 2(a)] approximately yields the desired operator,

DMEðρ; N; θÞ → e−iρθ þO
�
θ2

N

�
: ð1Þ

We derive the error scaling in the Appendix H. This result
is closely related to the Trotterization of noncommuting
Hamiltonians to perform quantum simulations [13]. Similar
to how dividing a quantum simulation into smaller steps
reduces errors stemming from the Trotter approximation,
partitioning DME into more steps with a smaller partial
SWAPangle δ per step reduces theDMEdiscretization error.
Of course, the trade-off for increased precision is a need

for more copies of the quantum instructions. There are three
general approaches to supplying the N copies of the
instruction state ρ needed to execute DME:
(1) Teleport copies of the quantum instructions from a

third party to the qubits comprising ρ.
(2) Identically prepare the instructions on N copies of ρ

[hardware parallelization, as in Fig. 1(c)].
(3) Identically prepare the same set of qubits comprising

ρ after each δSWAP [sequential preparation in time,
Fig. 2(a)].

The first option may find use in, for example, private
quantum software execution; however, it would add signifi-
cant complexity to this first demonstration. The second
option is the one envisioned in the original DME proposal
[2], but it requires that allN copies ofρmust be able to couple
to the data qubit (for example, by swapping fresh copies of ρ
into the qubits that couple to σ or by using a system with a
highly connected graph). In this work, we choose option 3:

We refresh the same instruction qubit multiple times to avoid
the need for teleportation or large numbers of instruction
qubits and to allow us to easily vary N.

III. GENERATING N COPIES OF ρ

The most obvious approach for using one qubit to
generate N copies of ρ [Fig. 2(a)] is to use measurement-
conditioned active feedback to reset the instruction qubit to
its ground state and then reprepare the instruction state
ρ [14]. However, due to measurement infidelity and the
decoherence that occurs during the relatively long duration
of the requisite measurement, feedback, and preparation
steps, the conventional active-reset approach would intro-
duce an unacceptable level of errors for studying DME on
current noisy quantum processors. We instead introduce an
alternative approach [Fig. 2(b)] called quantum measure-
ment emulation (QME) to minimize such errors and achieve
the largest possible circuit depths. QME approximately
reinitializes the instruction qubit in the time required for a
single-qubit gate at the cost of a small loss in state purity.
QME is a probabilistic operation that mimics an ensemble-

averaged qubit measurement [11]. For intuition, note that for
a sufficiently small angle δ, the states of the two qubits are
only slightly altered after a δSWAP operation. In this case,
a projective measurement of the instruction qubit in the
eigenbasis of ρwould reset the instruction qubit to its original
state with high probability. Similarly, an ensemble-averaged
measurement of many such identically prepared states (i.e., a
measure-and-forget step) would reproduce the original ρ
with only a slight depolarization. QME mimics this feature
without actually performing a measurement by imposing a
dephasing channel aligned to the axis of ρ.
The QME operation randomly applies either an identity

gate (1) or a π rotation in the instruction qubit eigenbasis
according to a Bernoulli process with probability p ¼ 0.5:

ð2Þ

where ν is a normalized vector parallel to the original
instruction state. For instruction states aligned with the
axes of the Bloch sphere, QME represents a probabilistic
application of a Pauli gate. We incorporate QME into
our circuit by interleaving δSWAP and QME operations
[Fig. 2(b)]. The QME operations are randomized within
each instantiation of the circuit, and in the same spirit as
randomized compiling [15], the outcomes of multiple such
randomized instantiations are averaged to mimic a single
circuit with an active reset of ρ.
The choice of using QME as opposed to active feedback

stems from a balanced consideration: Even using the fastest
reset protocols currently reported for superconducting
qubits, the time to reset a qubit is on the order of
500 ns [14]. Using QME, we are able to approximately
reprepare the qubit state in the time of a single-qubit gate, in
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our case, 30 ns. Technically, the trace distance between a
state before and after a δSWAP interaction is approx-
imately δ. Using QME to approximately reset the qubit
reduces this to approximately δ2. Thus, for small δ the
state after QME is closer to its original quantization axis.
However, the QME-enabled reset of ρ is approximate due
to depolarization, which introduces an additional error term
to the DME protocol (see Appendix I for derivation). For
our two-qubit demonstration of DMEwith QME (which we
denote DME2), the total operation and error scaling is

DME2ðρ; N; θÞ → e−iρθ þ O
�
θ2

N

�
|fflfflfflffl{zfflfflfflffl}
discretization

þO
�
θ2

N

�
|fflfflfflffl{zfflfflfflffl}

QME

: ð3Þ

Despite the added error term [cf. Eq. (1)], QME effectively
supplies the requisite copies of ρ with less error than would
be incurred with an active feedback approach in our system
due to decoherence of the data qubit during the increased
algorithmic runtime required for active feedback.

IV. IMPLEMENTING THE DME2 ALGORITHM

We implement DME2 using two frequency-tunable
superconducting asymmetric transmon qubits [16,17] in
an xmon layout [18]. Single-qubit gate fidelities on both
qubits exceed 99.9% (see Appendixes A and B). We use the
two-qubit controlled-phase (CZ) gate, which can be imple-
mented by flux tuning one of the qubits near resonance with
the j11i ↔ j20i transition resulting in a phase shift of the
j11i state [19,20]. To reduce leakage to the j20i state, we
use a variant of an optimal waveform shape [21], which is
symmetrized around the sweet spot of the qubit [22]. This
technique results in a reduced impact of long timescale
variation due to flux transients and reduces sensitivity to
flux noise [22]. As a result, our CZ gate has a 99.7% fidelity
measured with randomized benchmarking (see Appendix C
for more details on gate calibration).
To realize the δSWAP operation, we use the open-source

software CIRQ [23] to find an optimal decomposition of the
δSWAP in terms of CZ and single-qubit gates. Any two-
qubit unitary can be decomposed into single-qubit gates
and CZ gates via [24]

ð4Þ

where each represents (potentially different) general
single-qubit gates that depend on the value of δ, and is
the CZ gate. While this is not the only way to decompose
δSWAP, this particular choice allows us to rely solely on
high-fidelity gates whose performance can be validated and
efficiently optimized, a crucial part of calibrating for high-
fidelity algorithmic performance (see Appendix D for
details on compilation).

By relying solely on randomized benchmarking to cal-
ibrate our gates, we do not observe optimal performance of
the algorithm. Because of the repetitive structure of DME2,
small remnant coherent errors accumulate during circuit
execution. To remedy this effect, we develop a calibration
routine to amplify the small coherent errors, allowing us to
accurately determine their magnitude and correct them (see
Appendix C for details on this process).
We now turn to demonstrating the DME2 protocol with a

known σ and ρ. In Figs. 2(c) and 2(d), we interrupt the
algorithm after n ≤ N steps and perform state tomography
(see Appendix E for details of the tomographic protocol) to
visualize the evolution of the data qubit and instruction
qubit as the DME2 protocol proceeds. We use an initial
state σin ¼ jþ iihþij for the data qubit, and we intro-
duce the notation DME2ðρin; N; θÞ to indicate the initial
instruction state ρin, total number of steps N, and the phase
rotation θ. Figure 2(c) shows an implementation of
DME2ðjþihþj; 4; π=2Þ. Since ρ is chosen to be x polarized,
this instruction encodes the operation RXðπ=2Þ, a π=2
rotation about the x axis. Figure 2(d) shows an implemen-
tation of DME2ðj0ih0j; 8; πÞ encoding the instruction
RZðπÞ, a π rotation about the z axis. In both cases, σ
undergoes a rotation about an axis defined by ρin, which is
visible in the step-by-step tomographic reconstruction of
the data qubit state σðnÞ. QME maintains the quantization
axis direction of the instruction qubit state ρðnÞ, albeit with
gradual depolarization consistent with the effects of QME.
The classically defined δSWAP operations are identical in
these two cases; it is the change in the instruction state ρin
that causes a different operation on the data qubit. Thus, the
implemented quantum operation on σ is uniquely deter-
mined by the state of another quantum system, a demon-
stration of how the state ρin “instructs” the operation to be
executed on the state. We emphasize that in this case, ρ is a
known quantum state, but outside of this proof-of-principle
demonstration it need not be. We only need to know how to
generate ρ, we need not know its state.

V. BENCHMARKING THE DME2 ALGORITHM

We now turn to benchmarking our implementation of the
DME2 algorithm. First, we execute DME2 with a data state
σin ¼ j0ih0j and instruction state ρin ¼ jþ iihþij, while
varying the total steps N (Fig. 3). This allows us to probe
the interplay between discretization error (which decreases
with N) and decoherence and noise-induced error (which
increases withN). We use two angles θ ¼ π and θ ¼ π=2 to
elucidate the effects of changing the overall angle. For each
experiment, we
(1) Perform the full algorithm DME2ðρin; N; θÞ with

many QME randomizations.
(2) Tomographically reconstruct the densitymatrix σðNÞ

for each N and average over QME randomization.
(3) Calculate the fidelity between σðNÞ and an ideal

rotation with no discretization or processor error, as
given by σideal ¼ e−iρinθσineiρinθ.
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σideal can equivalently be thought of as either resulting from
a perfect unitary rotation or as the result of executing DME
when implemented on an error-free processor with an

infinite number of copies of the quantum instructions. In
Fig. 3(b), we plot the state fidelity between the exper-
imentally measured data qubit density matrix σðNÞ and
σideal calculated according to [25]

Fs(σðNÞ; σideal) ¼ Tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðNÞ

p
σideal

ffiffiffiffiffiffiffiffiffiffi
σðNÞ

pq �
2

: ð5Þ

There are two sources of error we must consider in
interpreting Fs(σðNÞ; σideal) as N is increased: the approxi-
mate nature of the algorithm, which causes errors that
reduce withN, and imperfections in the quantum processor,
which cause errors that increase with N. This tension is
reflected in the immediate increase in Fs(σðNÞ; σideal) as a
function of N due to diminishing discretization error, while
the gradual reduction for higher N reflects decoherence and
finite gate fidelities.
In order to quantitatively assess the role of discretization

versus decoherence, we simulate the circuit in Fig. 3(a)
assuming perfect gates and no decoherence, but including
the discretization error arising from the approximate nature
of DME2. We sample every possible combination of QME
gates for a DME2 circuit of length N and simulate the
application of each circuit to the experimentally measured
ρin ⊗ σin (thus accounting for state-preparation errors).
Figure 3(b) (dashed lines) show the result of calculating
state fidelity between the noise-free simulation and the
ideal rotation for both θ ¼ π=2 (blue curves) and θ ¼ π
(red curves).
Tomodel the crossover fromdiscretization-limited to noise-

limited fidelity, we add amplitude-damping and dephasing
channels to our simulation, using coherence parameters from
independent measurements (see Appendix A). The fidelity
between the simulated output states including decoherence
effects [denoted σ̃simðNÞ] and σideal is plotted in Fig. 3(b) (solid
lines) and shows good agreement with the experimental
data, indicating we are mostly limited by decoherence effects
and not coherent errors in the gates.
The simulated and experimental curves in Fig. 3 reflect

the interplay between finite-N (discretization) error and
processor (noise and decoherence) errors. At small N, the
error is dominated by the approximate nature of DME2 as
given in Eq. (3). The error is greater for larger θ, consistent
with error scaling as Oðθ2=NÞ. For large N, the discretiza-
tion error improves and the processor’s performance is
instead limited by finite gate fidelity and decoherence; here,
the curves for θ ¼ π and θ ¼ π=2 begin to converge.
The algorithm is at its most accurate for intermediate N,
where discretization error is relatively low and the circuit
is sufficiently free of compounding physical errors. This
trade-off (improved performance with increasing circuit
depth until gate fidelities become limiting) is a generic
property of Trotterized quantum algorithms on noisy
processors in the absence of error-correction protocols
[26]. As a point of comparison for timescales, on the

(a)

(b)

(c)

FIG. 3. Algorithm performance as a function of N. (a) Circuit
schematic for DME2ðjþ iihþij; N; θÞ. Data qubit is initialized in
σin ¼ j0ih0j. (b) State fidelity (Fs) of the data qubit state σ to the
ideal state σideal ¼ e−iρinθσineiρinθ as a function of the total DME
steps (N). The instruction qubit is initialized to the jþ iihþij
state, resulting in an ideal operation e−ijþiihþijθ ¼ RyðθÞ. The x
axis shows the number of δSWAPþ QME steps N (bottom,
black), circuit depth (bottom, gray), and active circuit clock time
(top). Data for θ ¼ π (π=2) are shown with red=⋄ (blue=∘)
markers. Dashed lines are the state fidelity between σideal and a
simulated output of the DME2ðjþ iihþij; N; θÞ circuit, assuming
perfect gates [denoted σsimðNÞ]. Solid lines are the same
simulation as shown in dashed lines, but with amplitude-damping
and depolarizing channels added, to simulate decoherence effects
[denoted σ̃simðNÞ]. (c) State fidelity of the measured σðNÞ to
simulated output of the DME2ðjþ iihþij; N; θÞ circuit with
perfect gates [σsimðNÞ]. Error bars are determined from bootstrap
analysis (detailed in Appendix F).
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top axis of Fig. 3(b), we plot the wall-clock run-time of the
circuit that is executed. A single DME2 step, i.e., a δSWAP
followed by a QME application, takes 335 ns (including
settling times; see Appendix A for details).
Finally, to asses our experimental ability to accurately

implement DME2, we plot in Fig. 3(c) the fidelity between
σðNÞ and the simulated output of the DME2ðjþ iihþij;
N; θÞ circuit in the absence of noise [σsimðNÞ�. To circuit
depth 73, this fidelity exceeds 0.90.
We next perform quantum process tomography to assess

the error budget of the DME2 implementation independent
of the target state. Here, we view DME2 as a quantum
channel ΛDME2

, which in the operator-sum representation
can be defined via a process matrix χ:

ΛDME2
ðρin; N; θÞ∶ ρ ↦

Xd2
j;k¼1

χjkðρin; N; θÞσjρσk: ð6Þ

From the process matrix, it is possible to define a process
fidelity between two different processes [27]

Fpðχ; χ0Þ ¼ Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ0
p

χ
ffiffiffiffi
χ0

pq �
2
: ð7Þ

To calculate the process fidelity of our implemented
algorithm, we experimentally reconstruct the full process

matrix χðρin; N; θÞ of the channel ΛDME2
, for a set of

instruction states (ρin) given by the cardinal points on the
Bloch sphere. For each ρin, we sweep N to find the optimal
point Nopt defined as the value of N which has the highest
process fidelity to the ideal rotation Uideal ¼ e−iρinθ. The
mean Nopt for θ ¼ π=2 is 4 at circuit depth 25; for θ ¼ π,
this increases to 8 at circuit depth 49, a direct reflection of
the Oðθ2=NÞ scaling of DME2.
In Fig. 4, we plot the process fidelity of our DME2

demonstration when compared to three different theoretical
processes to elucidate the sources of error in our exper-
imental implementation.

(i) χidealsim : The process representing the ideal rota-
tion Uideal.

(ii) χDME
sim : The process representing an implementa-

tion of DME in which the instruction state is
removed and replaced by a perfect copy after
every substep performed with perfect gates and no
decoherence.

(iii) χDME2

sim : The process representing an implementation
of DME2, i.e., combining δSWAPs with QME,
performed with perfect gates and no decoherence.

Comparing each of these processes to the experimen-
tally extracted process elucidates different aspects of
the DME algorithm, both generally and specific to the

(a)

(b) (c) (d) (e)

FIG. 4. Benchmarking process fidelity of DME2 for θ ¼ π=2 and θ ¼ π. (a) Circuit schematic. Single-qubit process tomography is
performed for a set of six instruction states ρin representing cardinal points of the Bloch sphere. (b),(d) Process fidelities between
measured process maps and simulated processes for six instruction states and θ ¼ π=2 in (b) and θ ¼ π in (d). Gray (×marker) denotes
the fidelity Fpðχ; χidealsim Þ between the measured process map χ and a simulated ideal process χidealsim , e.g., a rotation of angle θ around the
axis given by the Bloch vector of ρin. The data are presented at N ¼ Nopt determined as the step number at which the fidelity to χidealsim is
maximized; Nopt is indicated by the number above each bar. Dark blue or red (⋄ marker) indicates the fidelity Fpðχ; χDME

sim Þ between the
measured process map and a simulation of the original DME algorithm (assuming perfect gates and no decoherence). Light blue or red
(∘ marker) shows the fidelity Fpðχ; χDME

sim Þ between the measured process map and a simulation of DME2 (assuming perfect gates, no
decoherence, and QME to reinitialize the instruction qubit at each step). (c) Representative process matrices for χðj − iih−ij; 3; π=2Þ
(blue) and a simulation of χDME2

sim ðj − iih−ij; 3; π=2Þ (wire frame). Colored process matrix elements indicate points with magnitude
χij > 0.02; other elements are gray for clarity of scale. (e) Similar to (c) but for χðj1ih1j; 9; πÞ.
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implementation in this work. The data for θ ¼ π=2 are
provided in Fig. 4(b) in blue, and the data for θ ¼ π are
provided in Fig. 4(c) in red.
The fidelity Fpðχ; χidealsim Þ is plotted in gray and is overall

greater for π=2 than for π. This is qualitatively consistent
with the Oðθ2=NÞ scaling of the discretization error and
holds across all cardinal settings of the instruction state.
This process fidelity reflects the combination of errors
arising from the discretized nature of density matrix
exponentiation and the errors from imperfect gates and
the approximate nature of QME.
The fidelity Fpðχ; χDME

sim Þ is shown in dark blue and red.
The infidelity in this comparison reflects the physical errors
arising from imperfect gates and the error from using QME
to approximate the repreparation of ρin. The difference
between Fpðχ; χidealsim Þ and Fpðχ; χDME

sim Þ is a reflection of a
finite-N error intrinsic to the DME algorithm.
Finally, we wish to benchmark how well our quantum

processor implements DME2 by comparing to a simulation
of DME2 with perfect gate implementation (i.e., χDME2

sim ).
The fidelity Fpðχ; χDME2

sim Þ is shown in light blue and red.
This fidelity is the most direct metric for the performance of
our processor and its ability to execute the algorithm as
intended. The simulation of the output of DME2 is
performed by sampling over all QME randomizations
and averaging their effect. The average process fidelity
between experimental output of DME2 and a simulation of
the corresponding circuit without noise over all instruction
settings is 0.91 for θ ¼ π=2 and 0.87 for θ ¼ π; this
algorithmic fidelity is overall reduced for θ ¼ π because
Nopt occurs at deeper circuit depth incurring more gate
errors and decoherence effects.

VI. SUMMARY AND OUTLOOK

Here, we use a superconducting quantum processor to
demonstrate an implementation of the density matrix
exponentiation algorithm [2]. Our implementation takes
advantage of a 99.7% fidelity controlled-phase gate
combined with a novel quantum measurement emulation
technique to supply approximately reset copies of the
instruction qubit required in the algorithm. We achieve
state fidelities exceeding 0.9 at circuit depth of 73 sequen-
tial gates and process fidelities close to 0.9, independent of
the setting of the instruction qubit, when comparing
measured state- and process-tomographic data to a simu-
lation of the same circuit assuming perfect gates and
measurements. While for technical reasons we use pure
states in DME2, the original DME algorithm handles mixed
states and efficiently extends to multiqubit systems requir-
ing only the ability to perform controlled versions of the
SWAP operation between pairs of data and instruction
qubits [3,4,8,28].
While DME was originally proposed in the context

of a specific quantum machine-learning algorithm, its

implications may be far more profound: It represents a
fundamentally different approach to quantum computer
programming. Since DME can map a quantum state into a
quantum operator, it opens the possibility of encoding
quantum algorithms directly into quantum states and
executing those algorithms on other quantum states. This
idea has lead to the notion of “quantum software states”
enabled by the use and efficiency of DME [4]. In classical
computing, the data and the instructions are conceptually
interchangeable, since they can both be fully described by
bit strings. This data or instruction symmetry is known as
homoiconicity. The “quantum software” paradigm offers an
appealing quantum analog to classical homoiconicity: In
fully quantum software, the data and the instructions are
both stored in quantum states and thus interchangeable,
mimicking homoiconicity from classical computation. This
framework may lead to applications in the development
of new efficient quantum algorithms, since no tomo-
graphic reconstruction will be needed to learn the quantum
instructions. One challenge may be to develop pro-
gramming frameworks for this approach to quantum
computing.
This work also demonstrates that DME, and by exten-

sion other Trotterized algorithms and processes, is funda-
mentally best suited to the fault-tolerant (FT) quantum-
computing era. On a “noisy intermediate-scale quantum”
(NISQ) device [29], even with high-fidelity gates, we are
able to perform only a handful of DME steps before being
limited by decoherence and errors in the system. On NISQ
devices, Trotterized algorithms are still important to study
and perform in the near term because of the lessons they
teach about quantum simulations, deep quantum circuits,
and highly symmetric algorithms. However, their true
power will be unleashed in the FT era in which system
performance is no longer limited by physical errors. In a FT
processor, algorithm performance is not constrained by the
number of gates that can be performed during the lifetime
of the qubits. Rather, performance will be limited by the
scaling of the algorithms themselves (the number of logical
qubits required and the associated circuit depths). This is
the era in which DME will shine: The high dimensionality
of the logical subspace on the one hand and the ability
to increase N without concern for decoherence on the
other, pushes the processor into a regime where the
exponential scaling differences between DME and tomog-
raphy are significant, and the ability to reduce error by
increasing N becomes a relatively straightforward matter of
state reset.
Conceptually, we expect that novel applications of DME

will take advantage of the same phenomenon leveraged by
hybrid classical-quantum algorithms in the NISQ era, such
as the variational quantum eigensolver (VQE) [30]: One
can often parametrize the gates required to generate a
quantum state of interest, even when the system is too large
to simulate the application of those gates and the generated
quantum state is unknown. VQE and related algorithms
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take advantage of this parametrization to prepare an
unknown state and perform partial tomography on it to
classically extract elements of interest. DME offers an even
more powerful lever: By efficiently preparing the state and
using active reset to reinitialize it many times over the
course of a DME protocol, the full information contained in
the instruction state can be used to perform operations and
feed into an algorithm without its quantum information
ever being revealed to the classical world. Several examples
of algorithms that take this approach are described in
the Introduction to this paper, but we suspect that the
research community has just begun to scratch the surface of
potential applications of quantum instructions. It is our
hope that our demonstration of the feasibility of DME even
in a NISQ system will spark development of even more
such applications.
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APPENDIX A: DEVICE PARAMETERS

The quantum processor used in this work has
three asymmetric “xmon”-style qubits in a linear chain
[16–18]. We use the two leftmost qubits in this protocol; the
third is detuned and idles in its ground state. Figure 5(a)
shows a schematic of the readout and control setup used
to control the qubits. Figure 5(b) shows a scanning electron
micrograph of a device identical to the one used in this

work. In Table I, we summarize the parameters of the
two qubits used for the experiments in the main text.
The measured lifetime T1 and Ramsey coherence time
T2R exhibit temporal fluctuations consistent with other
reports [31,32].
For a qubit undergoing frequency modulation (e.g., to

implement the CZ gate), frequency-dependent T1 (and T2R)
variations mean that the static coherence times do not
necessarily set the relevant limiting timescale for the qubits
[31]. To account for the frequency-dependent variations in
coherence as the target qubit undergoes the CZ trajectory,
we employ an effective T1 (T2R) parameter denoted T̃1

(T̃2R). These effective coherence times take into account
any frequency-dependent variations of coherence as the

(a)

(b)
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FIG. 5. (a) Schematic of readout and control wiring used for
these experiments. The microwave line of qubit 3 is used to drive
single-qubit gates on qubit 2. (b) SEM picture of identically
fabricated device to the processor used in this work.
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qubit frequency undergoes the trajectory to enact a CZ gate.
The effective coherence times are used in simulations
of the device performance during two-qubit gates. Since
the frequency of qubit 2 is fixed during the CZ gate, its
effective coherence times are identical to the idling coher-
ence times.
Figure 6(a) shows an example measurement of T̃1.

We prepare the state j10i (an eigenstate of the CZ gate),
apply n CZ gates in sequence, and measure the pro-
bability of staying in the j10i state. The exponential decay
is fitted, and we find a characteristic number of gates
nT̃1

≈ 264. The CZ gate time is 60 ns, and we use a 5-ns
spacing between each pulse, leading to an effective decay
time T̃1 ¼ nT̃1

tCZ ≈ 17 μs.
To measure the effective coherence time T̃2R [Fig. 6(b)],

we prepare the j þ 0i state, apply n CZ gates, and apply
a final Xπ=2 pulse before measuring. Unlike a standard
Ramsey measurement, in which we would idle between
the Xπ=2 pulses, here we perform back-to-back CZ gates,
effectively aggregating decoherence effects over the full
frequency range of the CZ gate. To ensure an oscillatory
behavior, a small single-qubit phase error is added
(ϕq1 ≠ 0) equivalent to performing a detuned Ramsey
experiment. Fitting an exponentially damped sine function
gives a characteristic decay number nT̃2R

≈ 76 CZ gates.
We again estimate the effective coherence time as
T̃2R ¼ nT2R

tCZ ≈ 5 μs. Using the δSWAP decomposition
in Eq. (4) with single-qubit gate times of 30 ns, two-qubit
gate times of 60 ns, and a settling time of 5 ns between each
pulse, we arrive at a single DME step taking 335 ns of

wall-clock time. As a point of comparison to the algorithm
run-time, the qubit coherence times are on the order of 10 to
40 μs (see Table I), but care must be taken when comparing
these numbers, since one qubit is undergoing flux tuning,
removing it from its sweet spot and reducing its effective T2

time (see Fig. 6).
In Table II, we list the major experimental components

used in the experiment.

TABLE I. Parameters of the two qubits used in this work. See
text for details of the definition of T̃1 and T̃2R.

Qubit 1 Qubit 2

Parameter (σ, target) (ρ, instruction)

Idling frequency, ωi=2π 4.748 GHz 4.225 GHz
Anharmonicity, η=2π −175 MHz −190 MHz
Coupling strength, g=2π 10.6 MHz
Readout resonator
frequency, fi=2π

7.251 GHz 7.285 GHz

Junction asymmetry 1∶5 1∶10
Readout assignment fidelity 0.981 0.972

Relaxation time at idling
point, T1

23 μs 39 μs

Coherence time at idling
point, T2R

13 μs 25 μs

Effective relaxation time
undergoing CZ trajectory, T̃1

≈17 μs (Same as idling)

Effective coherence time
undergoing CZ trajectory, T̃2R

≈5 μs (Same as idling)

Single-qubit gate time, t1qb 30 ns 30 ns
Two-qubit gate time, tCZ 60 ns

(a)

(b)

(c)

(d)

FIG. 6. (a) Measurement circuit to extract effective T1-like
decay time denoted T̃1. (b) Probability of measuring qubit 1 in the
excited state, as the number of CZ gates is increased. The number
nT̃1

sets a characteristic gate number, which can be converted
into a characteristic time, T̃1. (c) Measurement circuit to extract
effective T2R-like decay time denoted T̃2R. We essentially
perform a Ramsey measurement but interleave CZ gates. (d) Prob-
ability of measuring qubit 1 in the excited state, as the number of
CZ gates is increased. The number nT̃2R

gives the effective
coherence time T̃2R ≈ 5 μs.
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APPENDIX B: GATE CHARACTERIZATION

The native gate set of our processor comprises
microwave-driven single-qubit x and y rotations RXðϕÞ
and RYðϕÞ, single-qubit virtual-z rotations RZðϕÞ, and the
two-qubit CZ gate [33]. In particular, we calibrate a
numerically optimized 99.7% fidelity CZ gate [19,34]
using the symmetrized “NetZero” optimal control wave-
form that reduces leakage and noise sensitivity [21,22,35].
We use a combination of metrics to quantify the quality

of qubit operations during the algorithm. These techniques
include single- and two-qubit randomized benchmarking
(RB) as well as novel techniques for amplifying and
correcting coherent errors. Figure 7 shows single-qubit
Clifford randomized benchmarking of the single-qubit
operations on both qubits 1 [Fig. 7(b)] and 2 [Fig. 7(c)].
Each trace averages 25 randomizations of the RB circuit
[36]. The reference curves [circuit diagram in Fig. 7(a),
gray dashed box] are fit to a function of the form

fðmÞ ¼ Apm þ B: ðB1Þ
For the one-qubit Clifford reference curve, we denote p
by pR. The average error per Clifford gate C can be
calculated as

ϵR ¼ 1

2
ð1 − pRÞ: ðB2Þ

The error associated with a specific single-qubit gate
is extracted by performing interleaved randomized bench-
marking (IRB). We fit the IRB data [circuit diagram in
Fig. 7(a), red dashed box] for the relevant gate (denoted g)
to Eq. (B1) (denoting by pg the p value for gate g).
Then, normalizing the error rate to the one-qubit Clifford
reference [37],

ϵg ¼
1

2
ð1 − pg=pRÞ: ðB3Þ

Using this procedure, we find an average Clifford gate
fidelity (FR ¼ 1 − ϵR) of 0.9987 for qubit 1 and 0.9987
for qubit 2. The average gate fidelity (i.e., F̄ ¼ h1 − ϵig) over
all single-qubit gates is 0.9991 for qubit 1 and 0.9994 for
qubit 2.

In Fig. 8, we assess the two-qubit gate fidelity using
randomized benchmarking. The protocol is identical to the
single-qubit case, except we measure the probability of
being in the j00i state after the sequence [36]. We use
48 randomizations for both reference and interleaved
measurements [circuits shown in Fig. 8(a)]. In Fig. 8(b),
we show the result of the RB and IRB measurements.
The error bars are 1σ standard deviations of the output
distribution of the 48 random circuits. The fit is again
performed using Eq. (B1), and error margins are extracted
using forward propagation of weights based on the standard
deviation at each m to ensure accurate error bounds. This
is achieved using the ABSOLUTE_SIGMA option of the
PYTHON SCIPY.OPTIMIZE.CURVE_FIT function. The two-
qubit Clifford reference error rate is calculated similarly
to Eq. (B2) (with p being the two-qubit Clifford reference
value denoted p2r), but the error per Clifford gate is
modified to

ϵ2r ¼
3

4
ð1 − p2rÞ: ðB4Þ

TABLE II. Major experimental equipment used in the experi-
ment. “Drive” is short for qubit drive; “pump” is microwave
source used to activate a traveling-wave parametric amplifier.

Component Manufacturer Type

Control Chassis Keysight M9019A
AWG Keysight M3202A
ADC Keysight M3102A
LO/rf/drive/pump Rohde & Schwartz SGS100
Refrigerator BlueFors XLD
dc bias Yokogawa GS 200

(a)

(b)

(c)

FIG. 7. (a) Circuit diagrams for measuring the reference curve
(gray dashed box) and interleaved curve for a single-qubit gate g
(red dashed box) relevant for Clifford randomized benchmarking
for a single qubit. (b) [(c)] Results for reference (gray) and
interleaved (varying colors for each gate) randomized bench-
marking for qubit 1 [qubit 2].
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Then, ϵCZ is found by performing IRB and fitting the
interleaved data to get pCZ and normalizing to the 2QB
reference error. Doing so, we find a CZ gate fidelity

FCZ ¼ 1 − ϵCZ ¼ 0.9972� 0.0035: ðB5Þ

To achieve “last-mile” improvements in fidelity, we use
numerical optimization techniques to fine-tune the param-
eters of the NetZero waveform, with the RB decay curve as
a cost function [22,34].

APPENDIX C: COHERENT ERROR
REDUCTION

As practitioners of quantum computing have explored
more complex circuits at greater depth and with more
underlying structure, it has become evident that RB is a
limited metric for the performance of a gate (see, e.g.,
Refs. [38–40] and references therein). In particular, small
coherent errors can cause disproportionately deleterious
effects in algorithms with a repetitive structure (such as
Trotterized algorithms), and RB is ill-suited to characterize
such small coherent errors because it is designed to
randomize over them.
To minimize the effects of coherent errors in the CZ gate,

we implement a calibration technique which relies on
process tomography of long strings of CZ gates (Fig. 9).

The general controlled-phase gate (denoted CZϕ01;ϕ10;ϕ11
) is

given by

CZϕ01;ϕ10;ϕ11
¼

2
6664
1 0 0 0

0 e−iϕ01 0 0

0 0 e−iϕ10 0

0 0 0 e−iϕ11

3
7775: ðC1Þ

If ϕ01 ¼ ϕ10 ¼ 0 and ϕ11 ¼ π, this produces the target CZ
gate. However, for small deviations from these parameters
it is still possible to achieve ≳0.99 randomized bench-
marking fidelities. Since small phase deviations can com-
pound to form larger errors—specifically in algorithms
with a repeating pattern like DME or quantum-error-
correction protocols—we develop other calibration strate-
gies to detect and correct such errors.
Our amplification protocol is comprised of implement-

ing a circuit with two back-to-back blocks of CZϕ01;ϕ10;ϕ11

followed by identity gates on both qubits designed to mimic
the presence of single-qubit gates, as shown in Fig. 9(a).
If the CZ gate contains no phase errors, this sequence
produces an identity operation, irrespective of the number
(n) of such two-CZ blocks applied. We perform two-qubit

(a)

(b)

FCZ = 0.9972 ± 0.0035

Fref = 0.9700 ± 0.0026

Interleaved CZ
Clifford reference

FIG. 8. (a) Gate sequences for measuring the two-qubit Clifford
reference (gray dashed box) and interleaved CZ (red dashed box)
RB numbers. (b) Example decay curve of Pj00i as the number of
two-qubit Clifford gates (m) is increased. Each data point is
averaged over k ¼ 48 randomizations of the choice of Clifford
gates. Error bars are 1σ standard deviations at each point from the
48 measurements, and fitting is performed using forward propa-
gation of points weighted by their error bars.

(a)

(b)

FIG. 9. (a) Gate sequence used to perform process tomography
of a sequence of an even number of CZ gates to get the chi matrix
χðnÞ used to compare with the identity process map to infer
coherent errors. The gate sequence will nominally implement χ11
up to overall system decoherence (visible as the overall decrease
of both the linear and oscillating measurements) if there are
no phase errors in the CZϕ01;ϕ10;ϕ11 gate. (b) The gate fidelity
Fg(χðnÞ; χ11) as the number of CZ gates (2n) is increased. With
no phase errors in the CZ gate, Fg decreases monotonically. With
a phase error in the CZ gate, Fg will oscillate with the period
indicating the scale of the phase error.
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process tomography to extract the process matrix χðnÞ. We
compare χðnÞ to the process map of a two-qubit identity
operation (χ11) via the average gate fidelity Fg(χðnÞ; χ11),
which is related to the process fidelity Fpðχ; χ0Þ [defined in
Eq. (F2)] according to [41]

Fgðχ; χ0Þ ¼
dFpðχ; χ0Þ þ 1

dþ 1
; ðC2Þ

where d is the dimensionality of the Hilbert space (d ¼ 4 in
the case of a two-qubit gate).
Figure 9(b) shows the gate fidelity of a circuit optimized

to remove phase errors from the CZ gate (red circles), and
one in which a CZ gate with phase errors is used (blue
squares). In the optimized case, the monotonic gate fidelity
decay stems only from decoherence effects. However, in
the presence of a coherent phase error, the gate fidelity
oscillates with n. In this specific example, after roughly
25 CZ gates, the phase error has effectively rotated by 2π,
corresponding to an approximate per-step error of 2π=25 ≈
0.08π in one of the phases. The evolution of the process
maps is useful both practically (for achieving higher-
performance gates) and scientifically (for understanding
the limitations of RB). By examining the details of the
process maps, we are able to infer in which of the
parameters ϕ01, ϕ10, or ϕ11 the error appeared and to
correct accordingly. This minor correction typically does
not change the fidelity as measured with RB (except in the
case of particularly egregious phase errors). From Fig. 9(b),
it is also clear that process tomography of a single CZ

instance does not reveal the coherent error: The first data
point for the sequence with phase errors has nearly identical
fidelity to the optimized gate. Both of these facts are
consistent with a growing understanding that RB may not
be the optimal approach to identifying and correcting
coherent errors in single- and multiqubit gates. Finally,
the identity gates are inserted between the CZ gates to as
closely as possible mimic the generic optimal gate
sequence of a two-qubit algorithm, without exploiting
any specific structure of an algorithm.

APPENDIX D: COMPILATION

As we mention in the main text, we implement δSWAP
using single-qubit gates and the entangling CZ gate; see
Eq. (5). The open-source software package CIRQ [23] is
used to determine the appropriate single-qubit gate param-
eters for a given δSWAP. A conceptually transparent
approach to generating a δSWAP uses the decomposition

ðD1Þ

where

ðD2Þ

is a partial CZ gate, and is the CNOT gate with qubit 2 as

the target. The CZδ gate can in turn be compiled using an
additional decomposition

ðD3Þ

However, such an approachwould introduce two CZ gates for
each CZδ gate, adding significant circuit depth overhead.We
use a more generalized and gate-efficient approach, relying
on the fact that any two-qubit gate can generically be
decomposed into a circuit with the structure [24,42]

ðD4Þ

Here, Ri;j is a single-qubit gate acting on qubit i at moment j
in the circuit. By using the identity

ðD5Þ

and absorbing the Hadamard gates (H) into the neighboring
single-qubit gates, the circuit in Eq. (D4) becomes identical
to the circuit in Eq. (4).
We use the open-source software CIRQ [23] to determine

the settings of the single-qubit gates for each value of δ. The
single-qubit rotations around the x, y axes are decomposed
according to RZð−φÞRXðθÞRZðφÞ (the PHASEDXPOWGATE

in CIRQ), and the RZ rotations are performed virtually [43].
The δSWAP is implemented using the SWAPPOWGATE

function in CIRQ (the SWAPPOWGATE has a factor of 2
difference, relative to our definition of δSWAP). Thus, we
are able to compose a unique composite gate sequence for
each δSWAP relying only on high-fidelity single- and two-
qubit gates.
Figure 10 shows the full compilation protocol. To

construct the full DMEðρ; N; θÞ circuit, we append N
copies of the compiled δSWAP gate using δ ¼ θ=N,
interleaving the requisite QMEν on qubit 2 (the instruction
qubit, ρ) to emulate the effect of measurements. Rows 1 and
2 show the generic structure and gate decomposition of our
implementation of DME2. The final layer of single-qubit
gates in the δSWAPδSWAP at step n can be recompiled
together with the QMEν and the first layer of single-qubit
gates in the δSWAP at step nþ 1. We use CIRQ to slice out
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these three layers (row 2) of single-qubit gates, recompile
them into a single layer (row 3), and reinsert them (row 4).
Finally, in row 5 we show an example waveform output
from our signal generation software, implementing the first
n ¼ 3 steps in an N ¼ 5 DME2 program.
Our compilation relies upon a restricted set of gates that

are readily characterized and numerically optimized. The
final compiled circuit has a regular structure (each CZ gate
is followed by exactly one layer of single-qubit gates),
amenable to generic tuneup protocols for reducing coherent
error buildup. These features enable it to achieve high
algorithmic fidelity at significant circuit depth.

APPENDIX E: STATE AND PROCESS
TOMOGRAPHY

Quantum state tomography is performed by taking
advantage of independent single-shot readout of all four
computational states f00; 01; 10; 11g. We first calibrate the
measurement operators by building a matrix ¯̄β that maps
the two-qubit Pauli matrices σ̂11; σ̂1Z; σ̂Z1, and σ̂ZZ onto the
measurement probabilities pij:

p⃗ ¼ ¯̄β σ⃗; ðE1Þ

where

p⃗≡

0
BBB@

p00

p01

p10

p11

1
CCCA and σ⃗ ≡

0
BBB@

σ̂11

σ̂1Z

σ̂Z1

σ̂ZZ

1
CCCA: ðE2Þ

The ¯̄β matrix is calibrated using techniques drawn from
Ref. [44]; a full motivation and derivation of the technique
can be found there. For a measurement of p⃗ with perfect
fidelity and no qubit decay during measurements, all
components of ¯̄β have amplitude 0.25; deviations from
this amplitude correspond to a calibration of such meas-
urement errors. We begin by calibrating the single-qubit ¯̄β
matrices, namely,

�
p0

p1

�
¼

�
β01 β0Z

β11 β1Z

��
σ̂1

σ̂Z

�
ðE3Þ

FIG. 10. Details of δSWAP and DME compilation. Row 1: the density matrix exponentiation algorithm implemented using partial
SWAP operations and the simulated quantum measurement (QME) gate. Row 2: decomposing each δSWAP according to Eq. (D4).
Each substep at this step requires eight layers of gates (seven for δSWAP decomposition and one for QME). Row 3: the three layers of
single-qubit gates stemming from the end of the δSWAP of step n, followed by QME, and the first layer of single-qubit gates in δSWAP
of step nþ 1 can be recompiled into a single layer. Row 4: the recompiled gates are reinserted into the algorithm result in the optimal
structure of exactly one CZ gate, followed by a single layer of single-qubit gates. Row 5: example waveform output to the I,Q (x, y) ports
and the flux-tuning pulse (labeled Φ) implementing the NetZero waveform used to implement the CZ gate [21,22].
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by fitting Rabi oscillations in p0 and p1 for each qubit.
Because the two-qubit probability vector p⃗ is generated
from correlations between single-qubit measurements, the
two-qubit ¯̄β matrix is given by the tensor product of the
single-qubit matrices, e.g., ¯̄β ¼ ¯̄β1 ⊗ ¯̄β2.
An arbitrary 4 × 4 matrix including a two-qubit

density matrix ρ may be mapped onto the Pauli basis
according to

ρ ¼
X

i;j¼f1;X;Y;Zg
cijσ̂ij: ðE4Þ

The general 4 × 4 matrix of this form has 16 degrees of
freedom; trace normalization of a physical density matrix
reduces this to 15. The native readout gives us access to the
components of ρ contained in σ̂Z. We gain information
about the other components by performing one of nine
premeasurement rotations drawn from

R ¼ R1 ⊗ R2; ðE5Þ

where

R1;2 ¼
8<
:

RYð− π
2
Þ mapping σ̂X ↦ σ̂Z;

RXðπ2Þ mapping σ̂Y ↦ σ̂Z;

1 mapping σ̂Z ↦ σ̂Z:

ðE6Þ

For data in Fig. 2 (Figs. 3 and 4), we perform 2000
(500) single-shot measurements for each tomographic
rotation in order to ensure accurate estimates of p⃗.
Each of the nine rotation-and-measurement pairings
provides four linearly independent measurements of a
form similar to Eq. (E1), for a total of 36 equations
that overspecify 15 degrees of freedom. We perform
maximum-likelihood estimation [45] to derive the pos-
itive semidefinite Hermitian matrix that is most consistent
with our combined measurement results.
Single-qubit density matrices in Figs. 2 and 3 are

extracted by performing partial traces over the two-qubit
density matrix calculated using the approach described
above; the data in Fig. 4 are drawn from single-qubit
tomography performed on the target qubit using a similar
protocol.
Single-qubit quantum process tomography, as presented

in Fig. 4, is performed using standard techniques [42]. The
target qubit is sequentially prepared in four input states

σin ¼ fj0ih0j; j1ih1j; jþihþj; jiihijg; ðE7Þ

which span the single-qubit Hilbert space. These prepared
states are then passed through the process DME2ðρin; N; θÞ,
and single-qubit state tomography is performed to extract

the set of mappings fσin⟼
DME2ðρin;N;θÞ

σðNÞg. Linear com-
binations of these mappings provide the process map χ

that reveals the effect of the quantum channel on an
arbitrary input density matrix. We then employ techniques
developed in Ref. [46] to efficiently project χ onto the
closest completely positive and trace-preserving (CPTP)
mapping χCPTP ensuring physicality of the process.

APPENDIX F: BOOTSTRAP ERROR ANALYSIS

We employ bootstrapping techniques to derive the
uncertainty bounds in Figs. 3 and 4. In principle, one
could simply take a sample of many QME randomizations
and calculate the mean and uncertainty within that dataset.
However, those error bars are not representative of the error
in the DME2 protocol; rather, they represent the uncertainty
of a protocol in which only a single QME randomization is
used to perform DME2. As a result, these error bars are
unphysically large, particularly at small N where the
protocol chooses from one of only a few paths that have
very different outcomes.
The true uncertainty of the DME2 protocol is captured by

(i) accumulating enough QME samples to ensure sufficient
randomizations, (ii) building density or process matrices
from the average outcome of all these randomizations, and
then (iii) repeating this process many times with different
randomizations to estimate the uncertainty. This is precisely
what bootstrapping accomplishes [47].
The following describes the protocol for extracting

boostrapped averages and uncertainties for Fig. 3. For
each data point representing a unique setting of
DME2ðρin; N; θÞ, we employ the following protocol:
(1) For a given instantiation of the QME gates, exe-

cute DME2ðρin; N; θÞ and perform two-qubit state
tomography.

(2) For rQME different instantiations of QME gates,
repeat step 1 to accumulate the experimental density
matrices from which bootstrapped samples will
be drawn.

(3) Using sample with replacement, select nsamp samples
from the rQME datasets and average the density
matrices together. This represents a single boot-
strapped density matrix.

(4) Perform a partial trace over the instruction qubit to
extract the reduced density matrix of the target
system.

(5) Calculate the state fidelity to the states of interest.
(6) Repeat steps 3–5 a total of Nsamp times to extract

mean fidelities and 1σ uncertainties.
State fidelity is calculated according to [25]

Fsðσ; σ0Þ ¼ Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ0
p

σ
ffiffiffiffi
σ0

pq �2

: ðF1Þ

The bootstrapping protocol for generating process maps
and process fidelities in Fig. 4 is similar to that used for
state tomography, but we lay it out here explicitly for
completeness.
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(1) For a given instantiation of the QME gates, prepare
the target input states fσing, apply DME2ðρin; N; θÞ,
and perform single-qubit state tomography to gen-
erate the mappings fσin ↦ σðNÞg required for proc-
ess tomography.

(2) For rQME different instantiations of QME gates,
repeat step 1 to produce a set of 4 × rQME single-
qubit density matrices.

(3) For each of the four σin, select an independent
sample with replacement of nsamp σout instances
and average together, leaving four averaged map-
pings fσin ↦ σoutg.

(4) Calculate the process matrix using the averaged
mappings σin ↦ σðNÞ. This represents a single
bootstrapped process matrix.

(5) Calculate the process fidelity to the process of
interest.

(6) Repeat steps 3–5 a total of Nsamp times to extract
mean fidelities and 1σ uncertainties.

The process fidelity between two χ matrices is given
by [27]

Fpðχ; χ0Þ ¼ Tr
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ0
p

χ
ffiffiffiffi
χ0

pq �
2
: ðF2Þ

In Fig. 3, we collect rQME ¼ 295 circuit randomizations;
in Fig. 4, we collect rQME ¼ 105 circuit randomizations.
In both cases, we use nsamp ¼ 100 and Nsamp ¼ 50. The
number of QME randomizations used for process tomog-
raphy is limited by experimental time due to the significant
additional experimental overhead required for process
tomography in comparison to state tomography, and due
to the fact that in Fig. 4 we characterize processes for six
settings of ρ. The bootstrap sample size nsamp and number
of bootstrap samples Nsamp are chosen somewhat arbitrar-
ily, as in all bootstrapping implementations, but are desig-
ned to ensure that each bootstrapped sample approaches a
central limit with respect to the underlying QME randomi-
zation. A graphical representation of the convergence under
QME randomizations is shown in Fig. 12; more details are
provided in Appendix J.

APPENDIX G: CIRCUIT SIMULATION
WITH NOISE

In order to show the qualitative consistency between the
data in Fig. 3 and a model of coherence-limited imple-
mentation of the DME2 protocol, we simulate the random-
ized DME2 circuits with added decoherence. We input a
DME2 circuit generated by CIRQ to a software tool that adds
decoherence (amplitude damping and dephasing) channels
corresponding to the identity for duration(s) of the preced-
ing one- or two-qubit gate. An example of this procedure is
shown in Fig. 11.
The channel E that composes amplitude damping and

dephasing is given by

Eqkðt1QBÞ∶ ρqk ↦
X
i¼1;2
j¼1;2;3

Ai;Γ1
ðt1QBÞDj;Γϕ

ðt1QBÞρqk

×D†
j;Γϕ

ðt1QBÞA†
i;Γ1

ðt1QBÞ; ðG1Þ

where Ai;Γ1
ðtÞ is the amplitude-damping process

(with Γ1 ¼ 1=T1), and Dj;Γϕ
ðtÞ is the dephasing process

(Γϕ ¼ 1=T2R − 1=2T1), Γ1;qk and Γϕ;qk are the appropriate
coherence parameters for qubit k, and t is the time of
the preceeding single- or two-qubit gate on that qubit. The
amplitude-damping and dephasing Krauss operators are
given by

A1;Γ1
ðtÞ ¼

�
1 0

0 e−Γ1;qkt=2

�
; ðG2Þ

A2;Γ1
ðtÞ ¼

�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−Γ1;qkt

p

0 0

�
; ðG3Þ

D1;Γϕ
ðtÞ ¼

�
e−Γϕ;qkt=2 0

0 e−Γϕ;qkt=2

�
; ðG4Þ

D2;Γϕ
ðtÞ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−Γϕ;qkt

p
0

0 0

�
; ðG5Þ

D3;Γϕ
ðtÞ ¼

�
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−Γϕ;qkt

p
�
: ðG6Þ

The channel Ẽ is defined similarly to E, but decoherence
rates in the process definitions are replaced with their
effective coherence parameters. The channel Ẽ thus
accounts for the modified coherence properties as qubit 1
undergoes the CZ trajectory (see Fig. 6).
Each instrumented circuit yields a QME-dependent

density matrix representing the simulated finite-coherence
circuit output for that QME realization. These density
matrices are averaged over all 2N QME realizations (for
a DME2 circuit with N steps), thus producing the noisy
simulated two-qubit DME2 output state denoted “Sim.
Fsðσ; σidealÞ with decoherence” and plotted as a solid line

FIG. 11. Instrumenting the DME2 circuit for simulation of
decoherence-induced errors.

M. KJAERGAARD et al. PHYS. REV. X 12, 011005 (2022)

011005-16



in Fig. 3(b). For the simulations presented, we use
parameters T1 ¼ 20 μs, T2R ¼ 10 μs for both qubits, and
effective coherence times for qubit 1 of T̃1 ¼ 10 μs and
T̃2R ¼ 5 μs during the channel Ẽ. These parameters are
qualitatively consistent with, but overall reduced from,
the measured parameters in Table I. This difference may
indicate additional coherent errors not captured by this
model (e.g., from residual σ̂Zσ̂Z interaction or leakage out
of the computational subspace).

APPENDIX H: ALGORITHMIC ERROR IN DME

In this section, we show that the algorithmic error in
DMEðρ; N; θÞ (the version of DME in which the instruction
state is refreshed with a new, perfect copy after each Trotter
step) may be modeled as an amplitude-damping channel
and derive its scaling with the parameters of the algorithm.
We do so first for a specific instruction state and then
generalize to an arbitrary instruction. Throughout, we use
σ̂i to indicate the corresponding Pauli matrix.
Suppose that we have instruction and target qubits

initially in states ρ and σ, respectively, and apply the
operation e−iSWAPδ to the joint state ρ ⊗ σ. We first
consider the special case in which ρ ¼ j0ih0j and then
show how this generalizes to an arbitrary state. The effect of
the δSWAP on the target qubit is given by the quantum
channel

Eρ¼j0ih0j
δSWAP ðσÞ ¼ Trρðe−iSWAPδ½σ ⊗ j0ih0j�eiSWAPδÞ: ðH1Þ

Next, we use the fact that

eiSWAPδ ¼ cosðδÞσ̂11 þ i sinðδÞSWAP; ðH2Þ

which follows from the fact that SWAP2 ¼ σ̂11 where σ̂11
is the two-qubit identity matrix. Using this together with the
identity Trρ½SWAPðX ⊗ YÞ� ¼ YX (where Trρ is a partial
trace over the second subsystem), we find

Eρ¼j0ih0j
δSWAP ðσÞ ¼ cos2ðδÞσ þ i cosðδÞ sinðδÞ½σ; j0ih0j�

þ sin2ðδÞj0ih0j: ðH3Þ

Using the matrix representation of σ in the fj0i; j1ig basis,
we find that σ transforms as

�
σ000 σ001
σ010 σ011

�
¼

�
σ00 þ σ11 sin2ðδÞ cos δe−iδσ01
cos δeþiδσ10 σ11 cos2ðδÞ

�
;

ðH4Þ

where σij ¼ hijσjji as measured in the fj0i; j1ig basis. The
channel that implements this transformation has a simple
interpretation as the composition of a rotation and an
amplitude decay.

Let

Uρ¼j0ih0j
δ ð·Þ ¼ e−iδj0ih0jð·Þeiδj0ih0j ¼ e−iðδ=2Þσ̂Zð·Þeþiðδ=2Þσ̂Z

ðH5Þ

be the superoperator corresponding to the unitary e−iδj0ih0j,
or equivalently, the superoperator corresponding to the
rotation by angle δ around the z axis. Also, let Ap be
the amplitude-damping channel described by the Kraus
decomposition

ApðσÞ ¼ A1σA
†
1 þ A2σA

†
2; ðH6Þ

where

A1 ¼
�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
�
; A2 ¼

�
0

ffiffiffiffi
p

p
0 0

�
: ðH7Þ

This amplitude-damping channel describes the process in
which the system in state j1i decays to state j0i with
probability p. It can be shown that the amplitude-damping
channel satisfies the condition

Ap∘Uδ ¼ Uδ∘Ap ðH8Þ

for all θ ∈ ½0; 2πÞ. This equality implies that the action of
this channel is invariant under rotations around the z axis.
Then, using Eq. (H4) one can show that

Eρ¼j0ih0j
δSWAP ðσÞ ¼ Asin2ðδÞ∘UδðσÞ ¼ Uδ∘Asin2ðδÞðσÞ: ðH9Þ

The overall effect of one Trotter step of DMEN can
therefore be understood as the following: (i) applying
the unitary e−iδj0ih0j to the system σ, followed by (ii) apply-
ing the amplitude-damping channel Asin2 δ to the system σ.
Note that because of the condition in Eq. (H8), by flipping
the order of steps (i) and (ii), we get the same final state.
Now suppose we repeat the above operation N times.

That is, we prepare the instruction qubit in state ρ ¼ j0ih0j,
couple it to σ via the unitary e−iSWAPδ, then discard the
instruction qubit and prepare it again in state j0ih0j, and
repeat the above procedure with N different copies of ρ.
Then, using Eq. (H8) one can show that, given an initial
state σ, the final state of the target system will be

½Eρ¼j0ih0j
δSWAP �

NðσÞ ¼ ½Asin2ðδÞ∘Uδ�NðσÞ
¼ AN

sin2ðδÞ∘UNδðσÞ: ðH10Þ

Since amplitude-damping channels are closed under com-
position, we see that

AN
sin2ðδÞ ¼ A1−cos2NðδÞ: ðH11Þ
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Therefore, the overall effect on the target system is
equivalent to applying the perfect unitary e−iNδj0ih0j, and
then applying the amplitude-damping channel A1−cos2NðδÞ.
Now, suppose in the above procedure, instead of state

j; ih0j we prepare the instruction qubit in state jϕihϕj¼
Vj0ih0jV†, where V is an arbitrary unitary. Then, using the
fact that SWAPðV⊗V 0Þ¼ ðV 0⊗VÞSWAP, one can show
that the overall effect of this transformation on the target
system can be described as a unitary rotation e−iNδjϕihϕj
followed by an amplitude-damping channel in the basis
defined by state jϕi and its orthogonal state.
To translate explicitly to the language of the main text, let

δ ¼ θ=N and ρ ¼ jϕihϕj, and use the above procedure to
implement the unitary e−iρθ on the target system σ, using N
copies of the instruction state ρ. From Eq. (H11), we find
that the overall error in this procedure is determined by the
probability pN ¼ 1 − cos2NðδÞ. Then, for δ ∈ ð0; 2π� and
N ≫ 1, we have

pN ¼ 1 − cos2N
�
θ

N

�
≈ 1 − e−

θ2

N ≈
θ2

N
for large N:

ðH12Þ

In the limit of large N, this corresponds to an algorithmic
error for the DMEN algorithm ofOðθ2=NÞ, as quoted in the
main text.

APPENDIX I: ALGORITHMIC ERROR
DUE TO QME

Here we provide an intuitive picture for the QME
operation as well as a formal proof of the modified
algorithmic error bound in Eq. (3) of the main paper.
We build the intuition for this section by returning to the

concrete example from Appendix H, i.e., the instruction
qubit prepared in ρ ¼ j0ih0j. We also suppose that the
target qubit is prepared in an orthogonal state, say, σ ¼
jþ iihþij (which is an eigenstate of the Pauli matrix σ̂YÞ.
Since δSWAP is a symmetric operation by the logic in
Appendix H, the state of ρ following a small δSWAP
interaction is given by a rotation about the y axis followed
by an amplitude-damping channel (which we neglect for
the moment). In this case, the state of the instruction qubit
becomes

ρ0 ¼
�

cos2ðδÞ − cosðδÞ sinðδÞ
− cosðδÞ sinðδÞ sin2ðδÞ

�
: ðI1Þ

The trace distance between ρ and ρ0 is of order jδj.
However, if we measure and forget the state of the
instruction qubit in the basis of its original quantization
axis (i.e., the z basis), the coherent off-diagonal compo-
nents of the density matrix are dephased, and we are left
with

ρ00 ¼
�
cos2ðδÞ 0

0 sin2ðδÞ

�
: ðI2Þ

The trace distance between ρ00 and ρ is of order δ2. Because
DME operates in the δ ≪ 1 regime, we have δ2 ≪ δ.
Measuring and forgetting therefore leaves the instruction
qubit in a slightly perturbed state that is closer to that of the
initial state ρ.
The intuition developed for ρ ¼ j0ih0j extends naturally

to an arbitrary initial state ρ ¼ jνkihνkj in a basis defined
by ν ¼ fjνki; jν⊥ig. A small arbitrary rotation will result in
the state

ρ0 ¼ cos2ðβÞjνkihνkj þ sin2ðβÞjν⊥ihν⊥j
þ cosðβÞ sinðβÞðeiϕjνkihν⊥j þ e−iϕjν⊥ihνkjÞ; ðI3Þ

where β and ϕ generically parametrize the rotation. A
measurement in the basis ν dephases the off-diagonal
elements in this basis, leaving

ρ00 ¼ cos2ðβÞjνkihνkj þ sin2ðβÞjν⊥ihν⊥j; ðI4Þ

which is closer than ρ0 to ρ by a factor of jβj.
Performing a physical measurement along an arbitrary

axis ν generically would require (i) rotating ν onto the z
axis, (ii) performing a projective readout, and (iii) rotating
back to the original axis. All of these steps require finite
clock time: Single-qubit gates (measurements) typically
require tens (hundreds) of nanoseconds to complete. We
would like to avoid this significant experimental overhead
while still maintaining the ability to partially restore the
instruction qubit to its initial state. Instead of physically
performing the measurement, we can apply the unitaries
fσ̂1; σ̂νgwith equal probabilities,where σ̂ν¼ n̂k ·ðσ̂X; σ̂Y; σ̂ZÞ
and n̂k is a unit vector parallel to ρ. Such protocols may be
equivalently thought of as an approach to turning a coherent
error into an incoherent error along a known axis. This
protocol is the QME operation used in the main paper.
When averaged over many iterations, the randomized

QME operation dephases the system in the ν basis, just as
in Eqs. (I3) and (I4). Assuming the instruction qubit is
initially in state ρ0, it turns out that the resulting state is the
same for measurement and random gate application, i.e.,

1

2
ðjνkihνkjρ0jνkihνkj þ jν⊥ihν⊥jρ0jν⊥ihν⊥jÞ

¼ σ̂1ρ
0σ̂1 þ σ̂νρ

0σ̂ν
2

¼ 1

2π

Z
2π

0

dγe−iγσ̂νρ0eiγσ̂ν : ðI5Þ

These three terms represent, respectively, measuring and
forgetting, random gate application, and phase randomi-
zation. Their equivalence can be understood more formally
from the standpoint of the stochastic master equation,
to which Ref. [48] provides an accessible introduction.
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This approach is also related to the quantum Zeno effect, in
which persistent measurement along an axis of interest
“pins” the qubit state to that axis by continuously dephas-
ing any rotations away from it [49].
Finally, we calculate the additional error introduced to

the DME algorithm by the use of QME. For this, we return
to the specific case where ρ ¼ j0ih0j (though this also
generalizes to arbitrary ρ). As in Appendix H, we apply
the unitary e−iSWAPδ to the joint state σ ⊗ j0ih0j, and
then randomly apply one of the unitaries fσ̂1; σ̂Zg to the
instruction qubit. Then, it can be shown that the total state
of instruction and target qubit is given by

1

2
ðe−iSWAPδ½σ ⊗ j0ih0j�eiSWAPδ

þ ðσ̂1 ⊗ σ̂ZÞe−iSWAPδ½σ ⊗ j0ih0j�eiSWAPδðσ̂1 ⊗ σ̂ZÞÞ
¼ Eρ¼j0ih0j

δSWAP ðσÞ ⊗ j0ih0j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DME

− sin2ðδÞh1jσ1i½j0ih0j ⊗ σ̂Z�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QME error

;

where Eρ¼j0ih0j
δSWAP ðσÞ is the quantum channel defined in

Eq. (H9). Note that the first term Eρ¼j0ih0j
δSWAP ðσÞ ⊗ j0ih0j is

exactly the desired state which can be used for the next
round of DME. On the other hand, the second term
sin2ðδÞh1jσ1i½j0ih0j ⊗ σ̂Z� can be treated as an error. To
find the contribution of this term in the total error, we use
the fact that the trace norm is nonincreasing under any
trace-preserving quantum operation F : kF ðXÞktr ≤ kXktr,
where k · ktr is the trace norm, i.e., the sum of the absolute
value of the eigenvalues of the operator.
For the second term in Eq. (I6), we have

ksin2ðδÞh1jσj1i½j0ih0j ⊗ σ̂Z�ktr
¼ 2sin2ðδÞh1jσj1i ≤ 2sin2ðδÞ: ðI6Þ

Therefore, the additional error introduced by each appli-
cation of QME is bounded by 2 sin2ðδÞ. Repeating this
process N times, and using the triangle inequality for the
trace norm, we find that the distance between the final total
system state and the state produced by DME is bounded
by 2N sin2ðδÞ. Choosing δ ¼ θ=N, we find that the
overall additional error introduced by the use of QME is
bounded by

2N sin2ðδÞ ¼ 2N sin2
�
θ

N

�
≤
2θ2

N
: ðI7Þ

The right-hand side of Eq. (I7) is the QME-induced-error
contribution cited in the main text.

APPENDIX J: QUANTIFYING THE IMPACTS OF
FINITE QME RANDOMIZATIONS

To properly implement the probabilistic nature of the
QME operation, we instantiate each DME2 circuit a

number of times. Consider as an example the N ¼ 3
version of the DME2 circuit from Fig. 3,

In this case, each QME presents a random choice between
applying RYðπÞ or 1 at each occurrence. For an N step
DME2 there are 2N configurations of QME gates. In the
experiment, it is infeasible to sample all 2N realizations, and
instead we sample a smaller number denoted r. The circuits
below show r ¼ 3 random example realizations of the
circuit,

In the experiment, a total rQME of circuits are executed,
providing a sample from which we can extract average
properties. The generic process for extracting average
properties over r instantiations is sketched in Fig. 12.
From the datasets used in the main paper, we can

also explore algorithmic behavior as the randomiza-
tions of QME increase toward the central limit. In
Figs. 12(b)–12(d), we plot three relevant figures of
merit as a function of r and N for the θ ¼ π dataset
of Fig. 3 in the main text. Figure 12 shows the evolution
of the state fidelity of the output state as a function of r.
For all values of N, we observe that after approximately
50 randomizations, the effect of introducing more
circuits with random choices of QME gates does not
significantly alter the result. Figure 12(c) shows the
concurrence of the two-qubit density matrix, a measu-
rement of bipartite entanglement in the system [50].
After just a few randomizations r > 10, concurrence
goes to zero, indicating that (quantum) correlations are
suppressed, as expected. There may also be classical
correlations between the σ and ρ subsystems. In
Fig. 12(d), we therefore plot the mutual information
Iðσ; ρÞ between each subsystem, where

IΩðσ; ρÞ ¼ S(TrσðΩÞ)þ S(TrρðΩÞ) − SðΩÞ ðJ1Þ
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is the mutual information, and SðΩÞ ¼ −TrðΩ lnΩÞ is
the von Neumann entropy of the density matrix Ω. Here
we again observe that after r > 10, any correlations
between the subsystems are effectively removed.
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