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Network homophily, the tendency of similar nodes to be connected, and transitivity, the tendency of two
nodes to be connected if they share a common neighbor, are conflated properties in network analysis since
one mechanism can drive the other. Here, we present a generative model and corresponding inference
procedure that are capable of distinguishing between both mechanisms. Our approach is based on a
variation of the stochastic block model (SBM) with the addition of triadic closure edges, and its inference
can identify the most plausible mechanism responsible for the existence of every edge in the network, in
addition to the underlying community structure itself. We show how the method can evade the detection of
spurious communities caused solely by the formation of triangles in the network and how it can improve the
performance of edge prediction when compared to the pure version of the SBM without triadic closure.
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I. INTRODUCTION

One of the most typical properties of social networks
is the presence of homophily [1–4], i.e., the increased
tendency of an edge to exist between two nodes if they
share the same underlying characteristic, such as race,
gender, class, and a variety of other social parameters. More
broadly, when the underlying similarity parameter is not
specified a priori, the same homophily pattern is known
as community structure [5]. Another pervasive pattern
encountered in the same kind of network is transitivity
[6–8], i.e., the increased probability of observing an edge
between two nodes if they have a neighbor in common.
Although these patterns are indicative of two distinct
mechanisms of network formation, namely, choice or
constraint homophily [9] and triadic closure [10], respec-
tively, they are difficult to distinguish in nonlongitudinal
data. This is because both processes can result in the same
kind of observation: (1) The preferred connection between
nodes of the same kind can induce the presence of triangles
involving similar nodes, and (2) the tendency of triangles to
form can induce the formation of groups of nodes with a
higher density of connections between them, when com-
pared to the rest of the network [11,12]. This conflation
means we cannot reliably interpret the underlying

mechanisms of network formation merely from the abun-
dance of triangles or observed community structure in
network data.
In this work, we present a solution to this problem,

consisting in a principled method to disentangle homophily
and community structure from triadic closure in network
data, conditioned on mild modeling assumptions. This is
achieved by formulating a generative model that includes
community structure in a first instance and an iterated
process of triadic closure in a second. Based on this model,
we develop a nonparametric Bayesian inference algorithm
that is capable of identifying which edges are more likely to
be due to community structure or triadic closure, in addition
to the underlying community structure itself. What our
approach demonstrates is that, while at first it seems that
triadic closure and homophily generate similar patterns in
network structure, the different mechanisms also leave
behind particular traces in the network structure that can
be used to disambiguate between the two.
Several authors have demonstrated that triadic closure

can induce community structure and homophily in net-
works. Foster et al. [11,12] have shown that maximum
entropy network ensembles conditioned on prescribed
abundances of triangles tend to possess high modularity.
A more recent analysis of this kind of ensemble by López
et al. [13] showed that it is marked by a spontaneous size-
dependent formation of “triangle clusters.” Bianconi et al.
[14] have investigated a network growth model, where
nodes are progressively added to the network and con-
nected in such a way as to increase the amount of triangles;
they have shown that it is capable of producing networks
with emergent community structure. The effect of triangle
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formation on apparent community structure has been
further studied by Wharrie et al. [15], who showed that
those patterns can even be misleading for methods spe-
cifically designed to avoid the detection of spurious
communities in random networks. More recently,
Asikainen et al. [16] have shown that iterated triadic
closure can exacerbate homophily present in the original
network via a simple macroscopic model.
The approach presented in this work differs from

the aforementioned ones primarily in that it runs in the
reverse direction: Instead of only defining a conceptual
network model that demonstrates the interlink between
triadic closure and homophily given the prescribed
parameters, the proposed method operates on empirical
network data and reconstructs the underlying generative
process, decomposing it into distinct community structure
and triadic closure components. As we show, this
reconstruction yields a detailed interpretation of the under-
lying mechanisms of network formation, allowing us to
identify macroscale structures that emerge spontaneously
from microscale higher-order interactions [17,18], and in
this way, we can separate them from inherently macroscale
structures.
It is also worth mentioning some recent methods that

have been proposed that use triangles as a means of finding
communities in networks [19–21]. Although these methods
can be informative of the interplay between triangles and
large-scale structure, they cannot explain the formation of
the triangles themselves or identify the contribution of
pairwise homophily, as we do here. Likewise, there are also
methods that reconstruct networks via compositions of
higher-order building blocks [22,23] but which can make
no statement about any existing large-scale homophily.
Finally, a commonly used approach in the social sciences
literature is to model the occurrence of triangles and
homophily using exponential random graph models
(ERGMs) [24]. Generally, these models do not possess
likelihoods that can be expressed in closed form, making
their inference quite difficult without relying on approx-
imations. Furthermore, when they are used to model the
presence of triangles or other small subgraphs, they tend
to possess extreme degeneracies [11,25–28], rendering
them rather implausible models for clustered networks.
Additionally, when they are combined with homophily, this
is only usually done with observed homophilic traits not
latent ones as we consider here.
Our method is based on the nonparametric Bayesian

inference of a modified version of the stochastic block
model (SBM) [29,30] with the addition of triadic closure
edges and therefore leverages the statistical evidence
available in the data without overfitting. Importantly, our
method is capable of determining when the observed
structure can be attributed to an actual preference of
connection between nodes, as described by the SBM,
rather than an iterated triadic closure process occurring

on top of a substrate network. As a result, we can
distinguish between “true” and “apparent” community
structure caused by increased transitivity. A key concept
in the method that allows this distinction to be made is the
principle of maximum parsimony: In situations where both
transitivity and homophily serve as competing hypotheses,
their relative plausibility is evaluated based not only on how
well they can explain the data but also on the amount of
information needed to specify the particular model in the
first place. As we also demonstrate, this decomposition
yields an edge prediction method that tends to perform
better in many instances than the SBM used in isolation.
We emphasize that our approach is capable of perform-

ing the decomposition between homophily and triadic
closure from a single network observation without anno-
tations. At first, this might seem at odds with formal results
relating to similar but distinct decomposition problems,
which state that this kind of disentanglement is not possible
from a single network observation. In particular, Chang
et al. [31] considered a scenario of uncertain network
measurement and proved that, absent any modeling
assumption on how the edges of the network are initially
placed, it is not possible to estimate the network structure
from a single network observation. Similarly, Shalizi and
Thomas [32] famously proved that contagion (causal
inheritance of traits due to peer influence) cannot be
distinguished from homophily given a single network
observation. Both of these statements rely on a lack of
stipulation on how the networks are generated (which
formally cannot be distinguished from making an explicit
assumption that all networks are equally likely a priori).
However, whenever such stipulations are made, the sit-
uation changes. In particular, McFowland III and Shalizi
[33] have shown that as soon as the homophilic traits are
latent (instead of being observed directly as considered in
Ref. [32]) and can be modeled as a SBM, the disentangle-
ment becomes possible, even for a single network.
Likewise, if we use the SBM as a structured prior
distribution [34], it becomes possible to estimate the
magnitude of the measurement error as well as to recon-
struct noisy networks, even for a single network observa-
tion and when the error magnitude is unknown a priori.
Although the disentanglement problem that we consider
here is different from the aforementioned ones, and the
impossibility results do not carry over, we nevertheless
make use of the same kinds of modeling assumptions that
make the other problems feasible.
Our paper is organized as follows. In Sec. II, we describe

our model and its inference procedure. In Sec. III, we
demonstrate how it can be used to disambiguate triadic
closure from community structure in artificially generated
networks. In Sec. IV, we perform an analysis of empirical
networks, in view of our method. In Sec. V, we show how
our model can improve edge prediction. We end in Sec. VI
with a conclusion.
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II. STOCHASTIC BLOCK MODEL WITH
TRIADIC CLOSURE (SBM/TC)

Community structure and triadic closure are generally
interpreted as different processes of network formation.
With the objective of allowing their identification a pos-
teriori from network data, our approach consists in
defining a generative network model that encodes both
processes explicitly. More specifically, our generative
model consists of two steps, with the first one being
the generation of a substrate network containing “semi-
nal” edges, placed according to an arbitrary mixing
pattern between nodes, and an additional layer containing
triadic closure edges, potentially connecting two nodes if
they share a common neighbor in the substrate network
(see Fig. 1). The final network is obtained by “erasing” the
identity of the edges, i.e., whether they are seminal or due
to closure of a triangle. Conversely, the inference pro-
cedure consists in moving in the opposite direction; i.e.,
given a simple graph, with no annotations on the edges,
we consider the posterior distribution of all possible
divisions into seminal and triadic closure edges, weighted
according to their plausibility.
We denote the seminal edges with an adjacency matrix

A, and for its generation, we use the degree-corrected
stochastic block model (DC-SBM) [35], conditioned on a
partition b of the nodes into B groups, where bi ∈ ½1; B� is
the group membership of node i, which has a marginal
distribution given by [36]

PðAjbÞ ¼
Q

r<sers!
Q

rerr!!
Q

iki!Q
i<jAij!

Q
iAii!!

Q
rer!

×
Y
r

Q
kη

r
k!

nr!qðer; nrÞ

×

�BðBþ1Þ
2

þ E − 1

E

�−1

; ð1Þ

where ers ¼
P

ij Aijδbi;rδbj;s is the number of edges
between groups r and s (or twice that for r ¼ s),
er ¼

P
s ers, ki ¼

P
j Aij is the degree of node i, nr ¼P

i δbi;r is the number of nodes in group r, ηrk ¼P
i δbi;rδki;k is the number of nodes in group r with degree

k, E ¼Pij Aij=2 is the total number of edges, and qðm; nÞ
is the number of restricted partitions of integer m into at
most n parts. We refer to Ref. [36] for a detailed derivation
of this marginal likelihood, including also the extension for
hierarchical partitions that is straightforward to incorporate,
as well as latent multigraphs [37] (see the Appendix A),
both of which we used in our analysis. This model is
capable of generating networks with arbitrary degree
distributions and mixing patterns between groups of nodes,
including homophily [30,38].
The triadic closure edges are represented by an addi-

tional set of N “ego” graphs g, attributed to each node u of
A, where gðuÞ is the ego graph of node u. The ego graph
gðuÞ is only allowed to contain nodes that are neighbors of

u in A (excluding u itself) and edges that do not exist in A,
so any existing edge in gðuÞ amounts to a triadic closure in
A. The adjacency of gðuÞ is given by

gijðuÞ ¼
�
1 if ði; jÞ ∈ gðuÞ
0 otherwise:

ð2Þ

Let us denote the existence of an open triad ði; u; jÞ in A
with

mijðuÞ ¼ AuiAujð1 − AijÞ; ð3Þ

such that mijðuÞ ¼ 1 if the open triad exists, or 0 other-
wise, and we adopt the convention Auu ¼ 0 throughout.
Therefore, an edge ði; jÞ can exist in gðuÞ only if
mijðuÞ ¼ 1. Based on this, the ego networks are generated
independently with probability

PðgðuÞjA; puÞ ¼
Y
i<j

½pumijðuÞ�gijðuÞ½1 − pumijðuÞ�1−gijðuÞ;

ð4Þ

where pu ∈ ½0; 1� is the probability associated with node u
that controls the degree to which its neighbors in A end up
connected in gðuÞ. This process may result in the same edge
ði; jÞ existing in different graphs gðuÞ, if i and j share more
than one common neighbor in A. We therefore consider the
resulting simple graph GðA; gÞ, constructed by ignoring
any multiplicities introduced by the various ego graphs, i.e.,
with adjacency given by

FIG. 1. Schematic representation of the generative process
considered (top) and the associated inference procedure (bottom).
The generative process consists in the placement of seminal edges
according to a SBM and the addition of triadic closure edges
conditioned on the seminal edges (shown in red). The inference
procedure runs in the reverse direction, and given an observed
graph, it produces a posterior distribution of possible divisions of
seminal and triadic closure edges, with which edge marginal
probabilities on the edge identities can be obtained.
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GijðA; gÞ ¼
(
1 if Aij þ

P
u
gijðuÞ > 0

0 otherwise:
ð5Þ

The joint probability of the above process is then given by

PðG;g;Ajp;bÞ¼1fG¼GðA;gÞgPðAjbÞ
Y
u

PðgðuÞjA;puÞ; ð6Þ

where 1fxg is the indicator function. Unfortunately, the
marginal probability of the final graph,

PðGÞ ¼
X
g;A;b

Z
PðG; g;Ajp; bÞPðpÞPðbÞdp; ð7Þ

with PðpÞ and PðbÞ being prior probabilities, does not lend
itself to a tractable computation. Luckily, however, this is
not needed for our inference procedure. Instead, we are
interested in the posterior distribution

Pðg;A; bjGÞ ¼ PðG; g;AjbÞPðbÞ
PðGÞ ; ð8Þ

which describes the probability of a decomposition of an
observed simple graph G into its seminal graph A, the
underlying community structure b, and the triadic closures
represented by the ego graphs g. [Although the marginal
distribution PðGÞ appears in the denominator of the above
equation, we will see later that it is just a normalization
constant that does not, in fact, need to be computed.] The
marginal likelihood

PðG; g;AjbÞ ¼ PðGjA; gÞPðgjAÞPðAjbÞ ð9Þ

can be computed easily via

PðgjAÞ ¼
Y
u

Z
1

0

PðgðuÞjA; pÞPðpÞdp

¼
Y
u

��P
i<jmijðuÞP
i<jgijðuÞ

�
−1 1

1þPi<jmijðuÞ
�
; ð10Þ

where we have used a uniform prior PðpÞ ¼ 1 and omitted,
for simplicity, an indicator function setting PðgjAÞ ¼ 0 if
gij > 0 and mij ¼ 0 for any ði; jÞ, and with the remaining
likelihood term being only the indicator function,
PðGjA; gÞ ¼ 1fG¼GðA;gÞg. Although this choice of priors
makes the calculation very simple, it implies that we expect
the observed graphs to always have a large fraction of
triadic closures. In Appendix B, we describe a slight
modification of this model that makes it more versatile
with respect to the abundance of triadic closures, at the
expense of yielding somewhat longer expressions for the
likelihood. We note that we made use of the modifications

specified there in our ensuing analysis, as they can only
improve the use of the model.

A. Iterated triadic closures

Triadic closures increase the number of edges in the
network and, in this way, can introduce opportunities for
new triadic closures, involving both older and newer edges.
This naturally leads to a dynamical model, where gener-
ations of triadic closures are progressively introduced to the
network. [39] We can incorporate this in our model via
“layers” of ego graphs gðlÞ representing edges introduced in
generation l ∈ ½1;…; L�. For our formulation, it will be
useful to define the cumulative network at generation l,
defined recursively by

AðlÞ
ij ¼

(
1 if Aðl−1Þ

ij þP
u
gðlÞij ðuÞ > 0

0 otherwise;
ð11Þ

with boundary conditions Að0Þ ¼ A (henceforth, A refers
solely to the seminal network, whereas, e.g., Að1Þ is the
resulting network considering the first iteration of triadic
closures, and fAðlÞg refers to the set of all generations,
including the seminal network), and gð0ÞðuÞ being empty
graphs for all u, and we denote the final generation as
AðLÞ ¼ G. The formation of new triadic closure layers is
done according to the probability

PðgðlÞðuÞjAðl−1Þ; gðl−1Þ; pðlÞ
u Þ

¼
Y
i<j

h
pðlÞ
u mðlÞ

ij ðuÞ
i
gðlÞij ðuÞ

h
1 − pðlÞ

u mðlÞ
ij ðuÞ

i
1−gðlÞij ðuÞ; ð12Þ

where an open triad ði; u; jÞ at generation l is denoted by

mðlÞ
ij ðuÞ ¼ wðlÞ

ij ðuÞð1 − Aðl−1Þ
ij Þ; ð13Þ

so that mijðuÞ ∈ f0; 1g, where

wðlÞ
ij ðuÞ ¼

8<
:

1 if Aðl−1Þ
ui

P
v
gðl−1Þuj ðvÞþAðl−1Þ

uj

P
v
gðl−1Þui ðvÞ> 0

0 otherwise

ð14Þ

determines whether or not the open triad ði; u; jÞ at
generation l has at least one of the edges ðu; iÞ or ðu; jÞ
formed exactly at the preceding generation l − 1. This
restriction means that triadic closures at generation l can
only close new triads that have been introduced at gen-
eration l − 1, not previously. The reason for this is a matter
of identifiability: An edge at generation l that closes an
open triad that has been formed at generation l0 < l could
also have been generated in any of the intermediate
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generations ½l0; l − 1�, thus introducing an inevitable ambi-
guity in the inference. The above restriction removes the
ambiguity and forces the new generations to form triadic
closures that could not have existed in the preceding
generations (see Fig. 2). Note that this restriction does
not significantly alter the generality of the model since the
same final networks can still be formed with similar
probability [40].
With the above, the joint likelihood of all generations is

given by

PðfgðlÞg; fAðlÞgjb; pÞ

¼ PðAjbÞ
YL
l¼1

Y
u

PðgðlÞðuÞjAðl−1Þ; gðl−1Þ; pðlÞ
u Þ: ð15Þ

Following the same calculation as before, we obtain the
individual marginal likelihood at each generation l as

PðfgðlÞg;fAðlÞgjbÞ¼PðAjbÞ
YL
l¼1

PðgðlÞjAðl−1Þ;gðl−1ÞÞ; ð16Þ

with the individual terms in the product being entirely
analogous to Eq. (10),

PðgðlÞjAðl−1Þ; gðl−1ÞÞ

¼
Y
u

"�P
i<jm

ðlÞ
ij ðuÞP

i<jg
ðlÞ
ij ðuÞ

�−1
1

1þPi<jm
ðlÞ
ij ðuÞ

#
: ð17Þ

Finally, the posterior distribution for the reconstruction
becomes

PðfgðlÞg; fAðlÞg; bjGÞ ¼ PðG; fgðlÞg; fAðlÞgjbÞPðbÞ
PðGÞ : ð18Þ

Note that for L ¼ 1, we recover the previous model.
Having to specify L beforehand is not a strict necessity
since the inference will only occupy new generations if this
yields a more parsimonious description of the network [41].

B. Inference algorithm

The posterior distribution of Eq. (18) can be written
exactly, up to a normalization constant. However, this fact
alone does not allow us to directly sample from this
distribution, which can only be done in very special cases.
Instead, we rely here on the Markov chain Monte Carlo
(MCMC) method, implemented as follows. We begin with
an arbitrary choice of fgðlÞg, fAðlÞg, and b that is com-
patible with our observed graph G. We then consider
modifications of these quantities and accept or reject them
according to the Metropolis-Hastings criterion [42,43].
More specifically, we consider moves of the kind
Pðfg0ðlÞg; fAðlÞ0gjfgðlÞg; fAðlÞgÞ and accept them according
to the probability

min

�
1;
Pðfg0ðlÞg; fAðlÞ0g; bjGÞ
PðfgðlÞg; fAðlÞg; bjGÞ

×
PðfgðlÞg; fAðlÞgjfg0ðlÞg; fAðlÞ0gÞ
Pðfg0ðlÞg; fAðlÞ0gjfgðlÞg; fAðlÞgÞ

�
ð19Þ

which, as we mentioned before, does not require the
computation of the intractable marginal probability
PðGÞ. We also consider moves that change the community
structure, according to a proposal Pðb0jbÞ and accept with
probability

min

�
1;
PðAjb0ÞPðb0ÞPðbjb0Þ
PðAjbÞPðbÞPðb0jbÞ

�
: ð20Þ

For the latter, we use the merge-split moves described in
Ref. [44]. Iterating the moves described above eventually
produces samples from the target posterior distribution.
In Appendix C, we specify the details of the particular
move proposals we use.
Given samples from the posterior distribution, we can

use them to summarize it in a variety of ways. A useful
quantity is the marginal probability πij of an edge ði; jÞ
being seminal, which is given by

πij ¼
X

fgðlÞg;fAðlÞg;b
AijPðfgðlÞg; fAðlÞg; bjGÞ: ð21Þ

Conversely, the reciprocal quantity,

1 − πij; ð22Þ

FIG. 2. Example network illustrating how iterated triadic
closures are implemented in the model. The initial network
(black edges) receives the first generation of triadic closures (red
edges). The second generation (green edges) can only close triads
involving at least one edge of the first generation (red). The third
generation (blue edges), in turn, can only close triads involving at
least one edge belonging to the second generation (green).
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corresponds to the probability that edge ði; jÞ is due to
triadic closure, occurring in any generation or ego graph.
Therefore, the quantity π gives us a concise summary of
posterior decomposition of a network, and we use it
throughout our analysis. (It is easy to devise and compute
other summaries, such as the marginal probability of an
edge belonging to a given triadic generation, or a particular
ego graph, but we do not have use for those in our analysis.)

III. DISTINGUISHING COMMUNITY STRUCTURE
FROM TRIADIC CLOSURE

Here, we illustrate how triadic closure can be mistaken as
community structure and how our inference method is
capable of uncovering it. We begin by considering an
artificial example, where we first sample a fully random
network with a geometric degree distribution, N ¼ 100
nodes and E ¼ 94 edges, as shown in Fig. 3(a). This
network does not possess any community structure since
the probability of observing an edge is just proportional to
the product of the degrees of the endpoint nodes—indeed,
if we fit a DC-SBM to it, we uncover, correctly, only
a single group. Conditioned on this network, Fig. 3(b)
shows sampled triadic closure edges, according to the
model described previously, where each node has the same
probability pu ¼ 0.8 of having neighbors connected in
their ego graphs. In the same figure, we show the result
of fitting the DC-SBM on the network obtained by ignoring
the edge types. That approach finds five assortative
communities, corresponding to regions of higher densities

of edges induced by the random introduction of transitive
edges. However, one should not interpret the presence of
these regions as a special affinity between the respective
groups of nodes since they are a result of a random
process that has no relation to that particular division of
the network—indeed, if we run the whole process again
from the beginning, the nodes will most likely end up
clustered in completely different “communities.” If we now
perform the inference of our SBM with triadic closure
(SBM/TC), we obtain the result shown in Fig. 3(c). Not
only are we capable of distinguishing the seminal from the
triadic closure edges (AUCROC ¼ 0.92), but we also
correctly identify the presence of a single group of nodes,
which is in full accordance with the completely random
nature in which the network has been generated. In other
words, with the SBM/TC, we are not misled by the density
heterogeneity introduced by triadic closures into thinking
that the network possesses real community structure, and
we realize instead that they can be better explained by a
different process.
In the artificial example considered above, the result

obtained with the SBM/TC model is more appealing since
it more closely matches the known generative process that
was used. However, in more realistic situations, we need to
decide if it provides a better description of the data without
such privileged information. In view of this, we can make
our model selection argument more formal in the following
way. Suppose we are considering a partition bð1Þ found by
inferring the SBM on a given network, as well as another
partition bð2Þ and ego graphs fgðlÞg found with the SBM/TC

(a) (b) (c)

FIG. 3. (a) Example artificial network generated as a fully random graph with a geometric degree distribution, N ¼ 100 nodes and
E ¼ 94 edges, and (b) a process of triadic closure based on network (a) with parameter pu ¼ 0.8 for every node, with closure edges
shown in red. We also show the partition found by fitting the SBM to the resulting network and the description length obtained.
(c) Result of inferring the SBM/TC model, which uncovers a single partition—no community structure—and the closure edges shown in
red (the thickness of the edges corresponds to the marginal probabilities πij and 1 − πij for the seminal and closure edges, respectively).
We also show the description length of the SBM/TC fit.
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model. We can decide which one provides a better
description of a network via the posterior odds ratio,

Λ ¼ Pðbð2Þ; fgðlÞg;HSBM=TCjGÞ
Pðbð1Þ;HSBMjGÞ

ð23Þ

¼ PðG; fgðlÞg; fAðlÞg; bð2ÞÞ
PðG; bð1ÞÞ ×

PðHSBM=TCÞ
PðHSBMÞ

; ð24Þ

where PðHSBM=TCÞ and PðHSBMÞ are the prior probabilities
for either model. In case these are the same, we have

Λ ¼ e−ðΣSBM=TC−ΣSBMÞ; ð25Þ

where ΣSBM=TC and ΣSBM are the description lengths of
both hypotheses, given by

ΣSBM=TC ¼ − lnPðG; fgðlÞg; fAðlÞg; bð2ÞÞ; ð26Þ

ΣSBM ¼ − lnPðG; bð1ÞÞ: ð27Þ

The description length [45] measures the amount of
information necessary to encode both the data and the
model parameters and hence accounts for both the quality
of the fit and the model complexity. Thus, the model that is
most likely a posteriori is the one that most compresses
the data under its parametrization, and thus, the criterion
amounts to an implementation of Occam’s razor since it
points to the best balance between model complexity and
fitness.
Before we employ the above criterion to select between

both models considered, it is important to emphasize that
the pure SBM is “nested” inside the SBM/TC since the
former amounts to the special case of the latter when there
are zero triadic closure edges. In particular, if we use the
more general parametrization described in Appendix B, in
the situation with zero triadic edges (i.e., all fgðlÞg are
empty graphs gempty and A ¼ G), we have

PðG; fgðlÞ ¼ gemptyg;A ¼ G; bÞ ≥ PðG; bÞ
N þ 1

: ð28Þ

Therefore, in general, we must have

max
fgðlÞg;fAðlÞg;b

lnPðG; fgðlÞg; fAðlÞg; bÞ

≥ max
b

lnPðG; bÞ − lnðN þ 1Þ: ð29Þ

Since the last logarithm term becomes negligible for
large networks, typically the use of the SBM/TC can only
reduce the description length of the data. Therefore, in
situations where there is no evidence for triadic closure,
both models should yield approximately the same descrip-
tion length value.

In Fig. 3, we show the description lengths for both
models for the particular example discussed previously,
where we can see that the SBM/TC provides a substantially
better compression of the data, therefore yielding a more
parsimonious and hence more probable account of how the
data were generated—which happens to also be the true one
in this controlled setting.
We proceed with a more systematic analysis of how

triadic closure can interfere in community detection with
artificial networks generated by the SBM, more specifi-
cally, the special case known as the planted partition model
(PP), where the B groups have equal size and the number of
edges between groups is given by

ers ¼ 2E

�
c
B
δrs þ

1 − c
BðB − 1Þ ð1 − δrsÞ

�
; ð30Þ

where c ∈ ½0; 1� determines the affinity between the (dis)
assortative groups. For this model, we know that there are
critical values

c�� ¼ 1

B
� B − 1

B
ffiffiffiffiffiffiffihkip ; ð31Þ

such that if c ∈ ½c�−; c�þ�, then no algorithm can infer a
partition that is correlated to the true one from a single
network realization, as it becomes infinitely large, N → ∞
[46]. Starting from a network generated with the PP model,
we include triadic closure edges via the global probability
pu ¼ p for every node in the network. Based on the
resulting network, we attempt to recover the original
communities, using the SBM and the SBM/TC models.
A result of this analysis is shown in Fig. 4, where we
compute the maximum overlap [47] q ∈ ½0; 1� between the
inferred b̂ and true partition b, defined as

q ¼ max
μ

1

N

X
i

δμðb̂iÞ;bi ; ð32Þ

where μðrÞ is a bijection between the group labels in b̂ and
b, as well as the effective number of inferred groups
Be ¼ eS, where S is the group label entropy,

S ¼ −
X
r

nr
N
ln
nr
N
: ð33Þ

As can be seen in Fig. 4(a), the presence of triadic closure
edges can have a severe negative effect on the recovery of
the original partitions when using the SBM. In Fig. 4(b), we
see that the number of groups uncovered can be orders of
magnitude larger than the original partition, especially
when the latter is not even detectable. This shows that
the apparent communities that arise out of the formation
of triangles substantially overshadow the underlying true
community structure. The situation changes considerably
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when we use the SBM/TC instead, as shown Fig. 4(c).
In this case, the presence of triadic closure has no
noticeable effect on the detectability of the true community
structure, and we obtain a recovery performance indistin-
guishable from the SBM in the case with no additional
edges. As seen in Fig. 4(c), the same is true for the number
of groups inferred. These results seem to point to a robust
capacity of the SBM/TC model to reliably distinguish
between actual community structure and the density
fluctuations that result from triadic closures.

IV. EMPIRICAL NETWORKS

We investigate the use our method with a variety of
empirical networks. We begin with a network of co-
operation among students while doing their homework
for a course at Ben-Gurion University [48]. In Fig. 5(a), we
show the network and a fit of the DC-SBM, which finds
nine assortative communities. Based on this result—and
knowing that the partitions found by inferring the SBM, as
we do here, point to statistically significant results that
cannot be attributed to mere random fluctuations [30]—we
are tempted to posit that these divisions uncover latent
social parameters that could explain the observed co-
operation between these groups of students. However,
if we employ instead the SBM/TC, we obtain the result

shown in Fig. 5(b), which uncovers, instead, only a single
group, and an abundance of triadic closure edges. This is
not unlike the artificial example considered in Fig. 3, and it
points to a very different interpretation; namely, there is no
measurable a priori predisposition for students to work
with each other in groups, and the resulting network stems
instead from students choosing to work together if they
already share a mutual partner. Indeed, if we inspect the
description lengths obtained with each model, we immedi-
ately recognize the SBM/TC as the most plausible explan-
ation, and therefore, we deem the community structure
found by the SBM as an unlikely one by comparison.
We now turn to another social network, but this time, one

of friendships between high school students [49]. We show
the results of our analysis in Fig. 6. Using the SBM, we find
B ¼ 26 groups, shown in Fig. 6(a), which, at first, seems
like a reasonable explanation for this network. But instead,
with the SBM/TC, we find only B ¼ 9 groups and a
substantial amount of triadic closure edges, as seen in
Fig. 6(b). Unlike the previous example, the SBM/TC still
finds enough evidence for a substantial amount of com-
munity structure, although with fewer groups than the pure
SBM. The groups found with the SBM/TC have a strong
correlation with the student grades, as shown in Fig. 6(b),
except for the 11th and 12th grades, which seem to
intermingle more, and for which the model finds evidence
of more detailed internal social structures. This indicates
that most of the subdivisions of the grades found by the
pure SBM are in fact better explained by triadic closure
edges, and the a priori friendship preferences within these
grades are far more homogeneous than the SBM fit would
lead us to conclude. One particularly striking feature of
this analysis is that it imputes some seemingly clear

(a) (b)

(c) (d)

FIG. 4. Recovery of community structure for artificial networks
generated from the PP model with added triadic closure, as
described in the text, for networks with N ¼ 104 nodes, average
degree hki ¼ 5, B ¼ 10 planted groups, and uniform triadic
closure probability pu ¼ p, shown in the legend. Panels (a) and
(b) correspond to inferences done using the SBM, and (c) and
(d) correspond to those with the SBM/TC model. All results were
averaged over ten network realizations. The vertical dashed line
marks the detectability transition value c�þ described in the text.

(a) (b)

FIG. 5. Network of cooperation between students [48]. (a) Fit
of the SBM, yielding B ¼ 9 communities. (b) Fit of the SBM/TC,
uncovering a single community, and triadic closure edges shown
in red. The thickness of the edges corresponds to the marginal
probabilities πij and 1 − πij for the seminal and closure edges,
respectively.
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communities entirely to triadic closure. A good example is
the group highlighted with an arrow in Fig. 6(a), formed by
students in the 8th grade. According to the SBM/TC, this
group has arisen because of the formation of triangles
between an initially poorly connected subset of students,
formed by all friends of a single student, rather than an
initial affinity between them. Comparing the SBM and the
SBM/TC models, we see that the latter has a substantially
smaller description length value and hence needs consid-
erably less information to place all the edges in the
network. We emphasize that this criterion takes into
account not only the likelihood of the respective model
but also its complexity. In view of this, the SBM/TC

hypothesis is objectively more parsimonious, and in the
absence of further data, it should be considered more
plausible than the pure SBM.
Now, we consider an additional example, this time of

collaborations between researchers in network science [50],
shown in Fig. 6. For this network, the SBM finds B ¼ 27
communities. The interpretation here is the same as
previous analyses of the same network, namely, that these
communities are groups that tend to work together, with the
occasional collaboration across groups. On the other hand,
when we employ the SBM/TC, the difference is quite
striking. Most of the community structure found with the
pure SBM vanishes and is replaced by a substrate network

(a) (b)

(c) (d)

FIG. 6. Top panel: network of friendships between high school students—adolescent health (comm26) [49]. (a) Fit of the SBM,
yielding B ¼ 26 communities. (b) Fit of the SBM/TC, uncovering B ¼ 9 communities, with seminal (black) and triadic closure (red)
edges shown separately in the left and right panels. Bottom panel: network of collaborations between network scientists [50]. (c) Fit of
the SBM, yielding B ¼ 27 communities. (d) Fit of the SBM/TC, uncovering only B ¼ 3 groups, and triadic closure edges shown in red.
The thickness of the edges corresponds to the marginal probabilities πij and 1 − πij for the seminal and closure edges, respectively.
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with a substantial “core-periphery” mixing pattern formed
from two main groups, where the “core” (blue nodes) is
composed of perceived initiators of the collaborations
with the “periphery” (yellow nodes), which end up being
connected in the final network simply by virtue of the all-
to-all nature of multiway collaborations, captured here by
triadic closure edges. The core-periphery pattern is not
perfect, as we observe seminal edges between nodes of
every type, but most commonly, these exist between core
and periphery nodes and the core nodes themselves, which
therefore seem to have a predisposition to wider collabo-
rations. The difference between the description lengths of
both models is substantial, indicating that the SBM/TC
interpretation is indeed far more plausible.
Lastly, we consider the network of American football

games between colleges during the fall of 2000 [51], shown
in Fig. 7. For this network, we observe an interesting result,
namely, that the SBM and SBM/TC yield the exact same
inference, corresponding very closely to the known divi-
sion of the teams into “conferences” that tend to play with
each other more frequently, which means that the SBM/TC
gives a negligible probability of triadic closure edges.
Although we might expect this to occur for a network
that has very few or no triangles, and therefore substantial
evidence against triadic closure, this is not the case for the
particular network in question, which has, in fact, an
abundance of triangles, in addition to clear assortative
communities. The reason for this is that, in this particular
case, the SBM is fully capable of accounting for the
triangles observed, which, therefore, can be characterized
as being a “side effect” of the homophily between nodes of
the same group, instead of an excess that needs additional

explanation. We revisit this particular case in the following,
from a different angle.
One natural criticism of the SBM as a useful hypothesis

for real networks, however stylized it clearly is, is that it
assumes that edges are placed independently with proba-
bility OðB=NÞ for a network with N nodes and B groups,
assuming the group affinities are uniform for all groups.
One consequence of this is that the probability of observing
a spontaneous triadic closure edge will also scale with
OðB=NÞ. Therefore, if B ≪ N, we should not expect
any abundance of triangles, which is at odds with what
we observe in many empirical data. One problem with
this logic is that we do not know a priori the precise
relationship between B and N for finite empirical networks,
and therefore, we cannot rule out the SBM hypothesis
based simply on an observed abundance of triangles.
Auspiciously, with the SBM/TC at hand, we are in the
perfect position to evaluate the SBM in that regard and
understand how many of the observed triangles can be
attributed to an incidental link placement due to community
structure, or if they are, instead, better explained by explicit
triadic closure edges. A common way of quantifying the
amount of triangles in a network G is via its clustering
coefficient CðGÞ ∈ ½0; 1�, which determines the fraction of
triads in the network that are closed in a triangle, and is
given by

CðGÞ ¼
P

ijkGijGjkGkiP
ikiðki − 1Þ ; ð34Þ

where ki ¼
P

j Gij is the degree of node i. A meaningful
way to evaluate whether a given model PðGjθÞ with
parameters θ can capture what is seen in the data is to
compute the posterior predictive distribution,

PðCjGÞ ¼
X
G0

δðC − CðG0ÞÞ
X
θ

PðG0jθÞPðθjGÞ: ð35Þ

This involves sampling parameters θ from the posterior
PðθjGÞ, generating new networks G0 from the model
PðG0jθÞ, and obtaining the resulting population of CðG0Þ
values, which can then be compared to the observed value
CðGÞ. In this way, we can determine if the model used is
capable of capturing this aspect of the data. In Fig. 8,
we show the results of this comparison for the SBM and
SBM/TC (in Appendix D, we give more details about how
θ should be chosen in each case) using four data sets. For
three of the four networks, we observe what one might
expect: Although the SBM is capable of accounting for a
substantial amount of triangles (far more than one would
expect by naively assuming B ≪ N), it falls short of
explaining what is actually seen in the data. The SBM/
TC, on the other hand, accounts for a realm of possibilities
that comfortably includes what is observed in the data, with
a sufficiently high probability. For the remaining network

FIG. 7. Network of games between American college football
teams (NCAA college football 2000) [51]. The node colors show
the fit of the SBM and SBM/TC, both yielding the same B ¼ 11
communities. The SBM yields a description length of ΣSBM ¼
1761.1 nats, and the SBM/TC, ΣSBM=TC ¼ 1767.6 nats.
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in Fig. 8(c), NCAA college football 2000, as before, we
observe a different picture. Namely, both models produce
predictive posterior distributions that are essentially iden-
tical and fully compatible with what is seen in the data.
Therefore, we can say, with a fair amount of confidence,
that the fairly high clustering coefficient observed for this
network can, in principle, be attributed to community
structure alone, rather than triadic closure, contradicting
the intuition obtained from the asymptotic case where
B ≪ N, which is not applicable to this network.
We take the opportunity to emphasize that the results of

Fig. 8 demonstrate how the SBM/TC model is significantly
more well behaved than ERGMs designed to reproduce
triangle counts via a maximum-entropy formulation [25].
As demonstrated in Refs. [11,26–28], these models define
ensembles with strong degeneracies, with most sampled
networks having either very low or very high triangle counts,
but none with values similar to what is actually seen in the
modeled networks. This is not a phenomenon we observe
with the SBM/TC, where the clustering coefficient distribu-
tions are unimodal and concentrated on the empirical values.
We extend the previous analysis to a larger set of

empirical networks, as shown in Fig. 9, by summarizing
the compatibility of the posterior predictive distribution via
the z score,

z ¼ CðGÞ − hCi
σC

; ð36Þ

where hCi and σC are the mean and standard deviation of
the posterior predictive distribution. As we can see, there
are a number of networks for which the z-score values
lie in the plausible interval ½−2; 2� for both models, but
there is a much larger fraction of the data for which
the values for the SBM point to a decisive incompati-
bility, whereas the SBM/TC yields credible values more
systematically.
We can further exploit the decomposition that the

SBM/TC provides by quantifying precisely, for any given
network, how much of the observed clustering can be
attributed to triadic closure directly, or to community
structure indirectly. We can do so by computing the mean
clustering coefficient of the substrate seminal network from
the posterior distribution,

CSðGÞ ¼
X

fAðlÞg;fgðlÞg;b
CðAÞPðfAðlÞg; fgðlÞg; bjGÞ: ð37Þ

We can then compare this value with the coefficient
for the observed network CðGÞ, as we show in Fig. 9.
We identify a variety of scenarios, including situations
where the seminal network (and hence the community
structure) accounts for the majority of the observed
clustering, but most commonly, we observe that a sub-
stantial fraction can be attributed to more direct triadic
closure. Nevertheless, in many cases, the values of CSðGÞ
do not drop to negligible values, showing that the
presence of triangles cannot be wholly attributed to either
mechanism in these cases. Indeed, this variability seems
to indicate that the mere presence of a high or low density
of triangles, as captured by the clustering coefficient,
cannot be used by itself to evaluate whether triadic
closure or community structure is the leading underlying
mechanism of network formation.
Another aspect of the suitability of triadic closure as a

more plausible network model is that it tends to come
together with a less-pronounced inferred community struc-
ture since part of the density heterogeneity found is
attributed to the former mechanism rather than the latter.
In Fig. 9, we characterize this difference by the effective
number of groups found with both models. We see that the
discrepancy between them is once again quite varied, where
in some cases, it can be quite small, indicating that triadic
closure plays a minor role, while in other cases, it can be
quite extreme, indicating the dominant role that triadic
closure has in the respective networks.
Overall, what we seem to extract from these empirical

networks is that, in the majority of cases (though not all),
the observed structure seems to be better explained by a
heterogeneous combination of underlying mixing patterns
with a further distortion by an additional tendency of
forming triangles. The precise balance between these
two components varies considerably, in general, and needs
to be assessed for each individual network.

(a) (b)

(c) (d)

FIG. 8. Posterior predictive distributions of the clustering
coefficient, as described in the text, for the SBM and SBM/
TC as indicated in the legend, for different data sets. The vertical
line shows the empirical value CðGÞ. (a) Cooperation between
students (b) Adolescent health (comm26) (c) Scientific collab-
orations in Network Science (d) NCAA college football 2000.
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V. EDGE PREDICTION AND NETWORK
RECONSTRUCTION

As with every kind of empirical assessment, network
data are subject to measurement errors or omissions.
A common use of network models is to predict such
erroneous and missing information from what is more
precisely known [52,53]. The SBM has been successfully
used as such a model [34,53] since the latent group
assignments and the affinities between them can be learned
from partial network information, which in turn can be used
to infer what has been distorted or left unobserved. Another
common approach to edge prediction consists of attributing
a higher probability to a potential edge if it happens to form
a triangle [54]. As we have been discussing in this work,
these two properties—group affinity and triadic closure—
point to related but distinct processes of edge formation and
approaches to edge prediction that rely exclusively on
either one will be maximally efficient only if it happens to
be the dominant underlying mechanism, which, as we have
seen in the last section, is typically not the case. However,
with the SBM/TC model we have introduced, it should be
possible to accommodate both mechanisms at the same
time and, in this way, improve edge prediction in more
realistic settings. In the following, we show how this can be
done and demonstrate it with a few examples.
The scenario we consider is the general one presented in

Ref. [34], where we make nij measurements of node pair
ði; jÞ and record the number of times xij that an edge has
been observed. Based on this data, we infer the underlying
network G according to the posterior distribution

PðGjn; xÞ ¼ PðxjG; nÞPðGÞ
PðxjnÞ ; ð38Þ

with n ¼ fnijg and x ¼ fxijg. The measurement model
corresponds to a situation where the probabilities of
observing missing and spurious edges, p and q, respec-
tively, are uniform, leading to

PðxjG; n; p; qÞ ¼
Y
i<j

�
nij
xij

�
½ð1 − pÞxijpnij−xij �Gij

× ½qxijð1 − qÞnij−xij �1−Gij : ð39Þ

Assuming that both p and q are unknown a priori, i.e.,
PðpÞ¼PðqÞ¼1, amounts to the marginal probability [34]

PðxjG; nÞ ¼
Z

PðxjG; n; p; qÞPðpÞPðqÞdpdq ð40Þ

¼
�Y
i<j

�
nij
xij

���
E
T

�
−1 1

E þ 1

×

�
M − E
X − T

�
−1 1

M − E þ 1
: ð41Þ

FIG. 9. Top panel: values of the z score for the posterior
predictive distributions of the clustering coefficient, as described
in the text, for the SBM and SBM/TC, as indicated in the legend,
for different data sets. The solid horizontal lines mark the values
−2 and 2. Middle panel: values of the clustering coefficient
[Eq. (34)] computed for the original network, CðGÞ, and for the
inferred seminal network, CSðGÞ, averaged over the posterior
distribution according to Eq. (37), as shown in the legend. Bottom
panel: values of the effective number of inferred groups, as given
by Eq. (33), for the SBM and SBM/TC, as indicated in the legend.
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where we have

M ¼
X
i<j

nij; X ¼
X
i<j

xij; ð42Þ

E ¼
X
i<j

nijGij; T ¼
X
i<j

xijGij: ð43Þ

The network model comes into play via the prior PðGÞ. For
the SBM/TC model, this is

PðGÞ ¼
X

fgðlÞg;fAðlÞg;b
PðG; fgðlÞg; fAðlÞg; bÞ: ð44Þ

Once more, we avoid an intractable computation by
sampling instead from a joint posterior with the model
parameters, i.e.,

PðG; fgðlÞg; fAðlÞg; bjn; xÞ

¼ PðxjG; nÞPðG; fgðlÞg; fAðlÞg; bÞ
PðxjnÞ ; ð45Þ

so that the desired posterior distribution can be obtained by
marginalization,

PðGjn; xÞ ¼
X

fgðlÞg;fAðlÞg;b
PðG; fgðlÞg; fAðlÞg; bjn; xÞ: ð46Þ

In order to perform our comparison, we consider the
following particular setup for the data ðn; xÞ. Given a true
networkG, we select a random subset Pt of the edges (“true
positives”) and an equal-sized random subset Nt of “non-
edges” (“true negatives”), i.e., node pairs ði; jÞ for which
Gij ¼ 0, such that jPtj ¼ jNtj ¼ fE, where f ∈ ½0; 1� is a
free parameter and E is the total number of edges. We then
set nij → ∞ for all node pairs neither in Pt nor in Nt, with
xij ¼ nij if Gij ¼ 1 and xij ¼ 0 otherwise—these are parts
of the network about which we are perfectly certain. For the
node pairs in Pt and Nt, we set nij ¼ xij ¼ 0, meaning we
lack any data about them. We then compute the posterior
marginal probability

pij ¼
X
G

GijPðGjn; xÞ; ð47Þ

and we use it to evaluate the quality of the reconstruction.
We do so by computing the precision and recall, defined as

Precision ¼
P

ði;jÞ∈Pt
pijP

ði;jÞ∈Pt∪Nt
pij

; ð48Þ

Recall ¼
P

ði;jÞ∈Pt
pij

jPtj
; ð49Þ

which measures the fraction of correctly predicted edges,
relative to the total number of edges predicted, or the total
number of true edges, respectively.
In Fig. 10, we show the results of the above analysis for

some of the networks studied previously, using both the
SBM/TC model and the pure SBM. For most of them, the
SBM/TC model yields a superior predictive performance,
sometimes substantially. This shows that while community
detection via the SBM can, to some extent, detect the

FIG. 10. Distributions of precision and recall values, according
to the SBM and SBM/TC models, for four empirical networks,
and a fraction f ¼ 0.05 of omitted edges and the corresponding
number of omitted nonedges. The results were obtained for 200
different realizations of missing edges and nonedges.
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patterns induced by triadic closure, the more explicit
SBM/TC model does a better job, corroborating the model
selection arguments we have used previously. For networks
of games between American football college teams, the
situation is once again different, and we observe indistin-
guishable results between the SBM and SBM/TC. For this
network, as the previous analysis has established, triadic
closure seems to play an insignificant role, despite the
relative abundance of triangles. As a consequence, in this
case, the SBM/TC model offers no advantage in edge
prediction, but importantly, it does not degrade it either.
In a recent work, Ghasemian et al. [55] have performed a

large-scale analysis of over 200 edge prediction methods on
over 500 networks belonging to various domains. Although
the overall conclusion of that work was that no single
method dominates on every data, the predictive performance
of the different methods was far from uniform, with the
method above based on the SBM providing the single best
performance overall [56]. Interestingly, the situations where
the SBM approach yielded inferior performance were
precisely for social networks, for which some predictors
based on triadic closure performed better. Although our
results above fall short of a thorough and systematic analysis
of the wide domains of network data, since we consider only
a handful of networks, they nevertheless seem to give a good
indication that combining group affinity with triadic closure
could potentially eliminate this shortcoming for this par-
ticular class of network data.

VI. DISCUSSION

We have presented a generative model and a correspond-
ing inference scheme that is capable of differentiating
community structure from triadic closure in empirical
networks. We have shown that although these features
are typically conflated in traditional network analysis, our
method can pick them apart, allowing us to determine
whether an observed abundance of triangles is a by-product
of an underlying homophily between nodes or whether they
arise out of a local property of transitivity. Likewise, we
have also shown how our method can evade the detection of
spurious communities, which are not due to homophily but
arise instead simply out of a random formation of triangles.
Our approach shows how local and global (or mesoscale)

generative processes can be combined into a single model.
Since it contains a mixture of both mechanisms, our
method is able to decompose them for a given observed
network according to their inferred contributions. By
employing our method on several empirical networks,
we were able to demonstrate a wide variety of scenarios,
containing everything from a large number of triangles
caused predominantly by triadic closures, by a mixture of
community structure and triadic closures, and by commu-
nity structure alone. These findings seem to indicate that
local and global network properties tend to mix in non-
trivial ways, and we should refrain from automatically

concluding that an observed local property (e.g., large
number of triangles) cannot have a global cause (e.g., group
homophily), and likewise, an observed global property
(e.g., community structure) cannot have a purely local
cause (e.g., triadic closure). Our explicit mixture approach
could, in principle, also be extended to other types of local
structures such as reciprocity in directed networks [59] or
higher-order motifs, bringing further insights into how
these local properties are entangled with global ones.
Several authors had shown before that triadic closure can

induce the formation of community structure in networks
[11–16]. This introduces a problem of interpretation for
community detection methods that do not account for this,
which, to the best of our knowledge, happens to be the vast
majority of them. This is true also for inference methods
based on the SBM, which, although they are not susceptible
to finding spurious communities formed by a fully random
placement of edges [60] (unlike noninferential methods,
which tend to overfit [61]), [62] they cannot evade those
arising from triadic closure [15]. Our approach provides a
solution to this interpretation problem, allowing us to
reliably rule out triadic closure when identifying commun-
ities in networks.
We have also shown how incorporating triadic closure

together with community structure can improve edge
prediction, without degrading the performance in situations
where it is not present. This further demonstrates the
usefulness of approaches that model networks in multiple
scales, combining multiple edge generation mechanisms,
and points to a general way of systematically improving our
understanding of network data.

APPENDIX A: LATENT MULTIGRAPH SBM

The marginal likelihood of Eq. (1) is in fact obtained for
a multigraph model [36], where the adjacency entries can
take any natural value, Aij ∈ N. Although we could, in
principle, ignore this discrepancy since this kind of model
generates simple graphs as a special case, this comes at the
expense of a reduced expressiveness of the model [37]
because this kind of multigraph model cannot describe the
placement of single edges with high probability or account
for the emergent degree-degree correlations that must be
present in simple graphs. Instead, here we take the approach
proposed in Refs. [34,37] and consider a latent multigraph
A0, with A0

ij ∈ N, which is then converted into a simple
graph AðA0Þ simply by ignoring the edge multiplicities, i.e.,

Aij ¼
�
1 if Aij

0 > 0

0 otherwise:
ðA1Þ

The latent multigraph A0 is generated according to Eq. (1),
which means the simple graph A is generated according to
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PðAjbÞ ¼
X
A0

1fAðA0Þ¼AgPðA0jbÞ: ðA2Þ

Instead of working with this marginal probability directly
(which is intractable), we infer the latent edge multiplicities
as well from a joint posterior distribution

Pðg;A0; bjGÞ ¼ PðG; gjAðA0ÞÞPðA0jbÞPðbÞ
PðGÞ ; ðA3Þ

where the simple graph AðA0Þ is used for the triadic closure
likelihood PðG; gjAÞ. In this way, the inference procedure
is the same as the one described in the main text, with the
only modification being that we need to infer the integer
values of A0 rather than its binary values.

APPENDIX B: EXPECTED DENSITY OF
TRANSITIVITY

As mentioned in the main text, the choice of priors used
for Eq. (10) makes the calculation very simple, but it
implies that we expect the observed graphs to always have a
large fraction of triadic closures. An outcome of this is that
the probability of observing a final graph without any
triadic closure, i.e.,

P
uij g

0
ijðuÞ ¼ 0, is given by

Pðg0jAÞ ¼
Y
u

�
1þ

X
i<j

mijðuÞ
�
−1

ðB1Þ

¼ O

�
1

½hk2i − hki�N
�
; ðB2Þ

which is exponentially suppressed for a large number of
nodes N. Even though we are interested in modeling
networks that possess some amount of triadic closure,
we should be a priori more agnostic about the actual

amount, so as to also accommodate situations where this
property is not abundant. We can address this by noting that
the likelihood of Eq. (10) can be alternatively interpreted as
the one of a fully equivalent model given by

PðgjAÞ ¼
Y
u

X
Eu

PðgðuÞjA; EuÞPðEujAÞ; ðB3Þ

where

PðgðuÞjA; EuÞ ¼
1fEu¼

P
i<j

gijðuÞg�P
i<j

mijðuÞ
Eu

	 ðB4Þ

is the probability of uniformly sampling an ego graph gðuÞ
with exactly Eu ¼

P
i<j gijðuÞ edges, and

PðEujAÞ ¼
1

1þPi<jmijðuÞ
ðB5Þ

is the probability of uniformly sampling the number of
edges in gðuÞ in the allowed range ½0;Pi<j mijðuÞ�. This
interpretation allows us to do a small modification of our
model that makes it more versatile; namely, we separate the
nodes into two sets, according to an auxiliary binary
variable tu ∈ f0; 1g, such that if tu ¼ 0, then the corre-
sponding ego graph has no edges, PðEujA; tu ¼ 0Þ ¼ δ0;Eu

;
otherwise, it has a nonzero number of edges, sampled
uniformly as

PðEujA; tu ¼ 1Þ ¼ 1 − δEu;0P
i<jmijðuÞ

: ðB6Þ

The modified marginal distribution then becomes

PðgjAÞ ¼
X
t

�Y
u

X
Eu

PðgðuÞjA; EuÞPðEujA; tÞ
�
PðtjAÞ ðB7Þ

¼
�Y

u

��P
i<jmijðuÞP
i<jgijðuÞ

�X
i<j

mijðuÞ
�
δ
1;Θ½
P

i<j
gijðuÞ�

�P

uΘ½
P

i<jmijðuÞ�P
uΘ½
P

i<jgijðuÞ�
�

−1
×

1

1þPuΘ½
P

i<jmijðuÞ�
; ðB8Þ

where Θ½x� ¼ f1 if x > 0; else 0g is the Heaviside step
function, and we have used the prior

PðtjAÞ ¼
X
Nt

PðtjA; NtÞPðNtjAÞ; ðB9Þ

with

PðtjA; NtÞ ¼
1f
P

u
tu¼Ntg

Q
uΘ½
P

i<jmijðuÞ�tu

ð
P

u
Θ½
P

i<j
mijðuÞ�

Nt
Þ

ðB10Þ

and

PðNtjAÞ ¼
1

1þPuΘ½
P

i<jmijðuÞ�
: ðB11Þ
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The above amounts to sampling in sequence the number of
nodesNt and the partition t, both uniformly at random from
the allowed range. Although these equations take longer to
write, they are not much more difficult to use. As a result of
this parametrization, if we consider again the particular
graph with no triadic closures, i.e.,

P
uij g

0
ijðuÞ ¼ 0, it is

generated with probability

Pðg0jAÞ ¼ 1

1þPuΘ½
P

i<jmijðuÞ�
¼ O

�
1

N

�
; ðB12Þ

which is relatively large and no longer exponentially
suppressed for large N, meaning that our model can also
accommodate the same kinds of networks that are
sampled from the pure SBM, without triadic closures. This
does not mean that the modified model generates typical

networks with a substantially smaller number of transitive
edges, only that the variance with respect to this property is
larger, and the model is thus more indifferent about the
potential networks that are possible to observe.
As mentioned in the main text, this modification makes

the SBM fully nested inside the SBM/TC, as we have

PðG; g0;A ¼ GjbÞ ¼ PðGjbÞ
1þPuΘ½

P
i<jmijðuÞ�

ðB13Þ

≥
PðGjbÞ
N þ 1

; ðB14Þ

with g0 being empty ego graphs, and the last equality is
achieved if

P
i<j mijðuÞ > 0 for every node u.

1. Iterated triadic closure

For the generalized model with iterated triadic closures, the marginal likelihood is also analogous to Eq. (B8),

PðgðlÞjAðl−1Þ;gðl−1ÞÞ¼
(Y

u

" P
i<jm

ðlÞ
ij ðuÞP

i<jg
ðlÞ
ij ðuÞ

!X
i<j

mðlÞ
ij ðuÞ

#
δ
0;
P

i<j
g
ðlÞ
ij

ðuÞ−1
) P

u1f
P

i<j
mðlÞ

ij ðuÞ>0gP
u1f
P

i<j
gðlÞij ðuÞ>0g

!−1
1

1þPu1f
P

i<j
mðlÞ

ij ðuÞ>0g
:

ðB15Þ

APPENDIX C: MCMC MOVES

The MCMC algorithm described in the main text is
implemented with the following moves. The first is to
attempt to move an edge ði; jÞ in ego graph gðlÞðuÞ at its
current generation l ∈ ½0; L� to another ego graph gðl0ÞðvÞ
for v ≠ u at generation l0 ≠ l. We do so by first selecting an
edge ði; jÞ in G as well as a generation l, both uniformly at
random, and an ego node u that is relevant to edge ði; jÞ at
generation l, also uniformly at random. The number of ego
graphs that are relevant for this edge is given by

nðlÞij ¼
X
u

Aðl−1Þ
ui ð1 − Aðl−1Þ

uj Þ; ðC1Þ

which is independent on the value of gðl
0Þ

ij ðuÞ for any l0. We
then sample another generation l0 ≠ l and proceed in the

same way to sample a relevant ego node v. In either case, if
l ¼ 0 is selected, then the choice of an ego graph is not
made since we are simply selecting an entry ði; jÞ in A with
probability 1. The final probability of selecting the
move ði; j; u; lÞ → ði; j; v; l0Þ, assuming l > 0 and l0 > 0,
is given by

Pði; j; u; v; l; l0jfgðlÞg; fAðlÞgÞ ¼ 1

EGn
ðlÞ
ij n

ðl0Þ
ij LðLþ 1Þ

;

ðC2Þ

where EG is the number of edges in G. Given this selection,

we then make the change g0ij
ðlÞðuÞ ¼ gðlÞij − 1 and

g0ij
ðl0ÞðuÞ ¼ gðl

0Þ
ij þ 1, and accept it with probability

min

�
1;
Pðfg0ðlÞg; fAðlÞ0g; bjGÞPði; j; u; v; l; l0jfgðlÞg; fAðlÞ0gÞ
PðfgðlÞg; fAðlÞg; bjGÞPði; j; v; u; l0; ljfg0ðlÞg; fAðlÞgÞ

�
¼ min

�
1;
Pðfg0ðlÞg; fAðlÞ0g; bjGÞ
PðfgðlÞg; fAðlÞg; bjGÞ

�
; ðC3Þ

which is independent of the actual move probabilities since they remain the same after and before the move. Note that

invalid moves that result in gðlÞij < 0 or AðlÞ
ij < 0 are always rejected in this way.
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In addition, we also make a second kind of move by
selecting again an edge ði; jÞ in G as well as a generation l,
both uniformly at random, and an ego node u that is
relevant to edge ði; jÞ at generation l, with the same

probability as before. We then make the move g0ðlÞij ¼
gðlÞij � 1 with probability 1=2 and accept again according to

min

�
1;
Pðfg0ðlÞg; fAðlÞg; bjGÞ
PðfgðlÞg; fAðlÞg; bjGÞ

�
: ðC4Þ

If l ¼ 0 is selected, the move is different because of the
multigraph nature of A. Instead, we make the proposal
Aij → Aij

0 according to a geometric distribution with mean
Aij þ 1,

PðAij
0jAijÞ ¼

�
Aij þ 1

Aij þ 2

�
Aij

0
1

Aij þ 2
: ðC5Þ

In this case, the acceptance probability changes to

min

�
1;
PðfgðlÞg; fAðlÞ0g; bjGÞPðAijjAij

0Þ
PðfgðlÞg; fAðlÞg; bjGÞPðAij

0jAijÞ

�
: ðC6Þ

Finally, the last kind of move involves a change in
partition b → b0 from the proposal Pðb0jbÞ, which is
accepted with probability

min

�
1;
PðAjb0ÞPðb0ÞPðbjb0Þ
PðAjbÞPðbÞPðb0jbÞ

�
: ðC7Þ

For the latter, we use the merge-split moves, combined with
single-node moves, described in Ref. [44].
The moves above fulfill detailed balance, and when

combined, they also preserve ergodicity since they allow
every latent multigraph, decomposition into ego graphs,
and node partition to be sampled. Thus, with sufficiently
many iterations, the algorithm must eventually produce
samples from the desired posterior distribution.

1. Algorithmic complexity

We can break down the time complexity of the above
algorithm as follows. At any given time, we keep track of
all relevant ego graphs for each edge ði; jÞ in G, those that
have edge ði; jÞ in them, as well as the number of edges

EðlÞ
u ¼Pi<j g

ðlÞ
ij ðuÞ of every ego graph. Based on this

bookkeeping, whenever an entry gðlÞij ðuÞ (or Aij if l ¼ 0)
is modified, to compute the log-likelihood difference, we
only need to evaluate the common neighbors of i and j or
the new or removed open and closed triads ði; j; vÞ or
ðv; i; jÞ that affect the generation lþ 1, both of which can
be computed inOðki þ kjÞ. As a result, a whole “sweep” of
the MCMC algorithm, where each edge in G had a chance
to be moved by one of the proposals considered, has an
overall complexity of OðNhk2iÞ since each node i has ki

edges that need to be moved at every sweep, each of which
requires time Oðki þ kjÞ, with j being the other endpoint.
For the partition part of the algorithm, the overall

complexity of a sweep, where every node had a chance
to be moved to a different group, isOðEþ NÞ, independent
of the number of groups being occupied [44].
Combining the two kinds of moves gives us an overall

complexity of OðNhk2iÞ per sweep, which, for sparse
graphs with hk2i ¼ Oð1Þ, amounts to OðNÞ. This means
that it is possible, at least in principle, to apply this
algorithm for very large networks.
On top of the time it takes to perform sweeps of the

MCMC, there is also the mixing time of the Markov chain,
which determines how long one needs to wait before usable
samples from the posterior distribution are made. It is
difficult to estimate the mixing time, as it depends heavily
on the actual network structure being considered, but we
found that the algorithm gives usable results in a reasonable
amount of time even for networks with over a hundred
thousand to a million edges, although we did not attempt a
detailed investigation of networks that are much larger
than this.
We have evaluated the quality of the algorithm with

the analysis presented in Fig. 4, where networks from the
SBM/TC model were generated, and the inference was
performed in them. By comparing the obtained results with
the true values of the latent parameters, we observed that
the triadic closure component was identified with excellent
accuracy, and the SBM component was identified with an
accuracy indistinguishable from when considering only
the pure SBM case, all the way down to the detectability
transition. This gives us a very good amount of confidence
that the method converges, at least in controlled scenarios.
When applied to empirical networks, the diagnostics

performed would run the algorithm many times and
evaluate if similar results are produced, which happened
to be the case with the data analyzed.
A reference implementation of this algorithm is freely

made available as part of the graph-tool library [63].

APPENDIX D: PREDICTIVE POSTERIOR
DISTRIBUTION

The predictive posterior distribution considered in the
main text is

PðCjGÞ ¼
X
G0

δðC − CðG0ÞÞ
X
θ

PðG0jθÞPðθjGÞ; ðD1Þ

where θ are the parameters of model PðGjθÞ. Here, we
specify more precisely how these parameters are chosen
and sampled for the SBM/TC model. The marginal like-
lihood for the SBM given by Eq. (1) can be written
equivalently as [36]

PðAjbÞ ¼ PðAjk; e; bÞPðkje; bÞPðejbÞ; ðD2Þ

DISENTANGLING HOMOPHILY, COMMUNITY STRUCTURE, AND … PHYS. REV. X 12, 011004 (2022)

011004-17



where the likelihood of the microcanonical DC-SBM is
given by

PðAjk; e; bÞ ¼
Q

r<sers!
Q

rerr!!
Q

iki!Q
i<jAij!

Q
iAii!!

Q
rer!

; ðD3Þ

the prior for the degrees is

Pðkje; bÞ ¼
Y
r

Q
kη

r
k!

nr!qðer; nrÞ
; ðD4Þ

and the prior for the edge counts between groups is

PðejbÞ ¼
�BðBþ1Þ

2
þ E − 1

E

�−1

: ðD5Þ

For the triadic closure edges, we have the likelihood
PðgðuÞjA; puÞ of Eq. (4), which, given a uniform prior
PðpuÞ ¼ 1, gives us a Beta posterior distribution

PðpujgðuÞ;AÞ

¼ p

P
i<j

gijðuÞmijðuÞ
u ð1 − puÞ

P
i<j

ð1−gijðuÞÞmijðuÞ

BðPi<jgijðuÞmijðuÞ;
P

i<jð1 − gijðuÞÞmijðuÞÞ
; ðD6Þ

where Bðx; yÞ is the Beta function. Based on this para-
metrization, our predictive posterior distribution is obtained
by setting θ ¼ ðfpðlÞg; k; e; bÞ, amounting to

PðCjGÞ ¼
X
fgðlÞg
fg0ðlÞg
A;A0
k;e;b

Z
dfpðlÞgδfC − C½GðA; fgðlÞgÞ�g

�Y
l;u

PðgðlÞðuÞjpðlÞ
u ;AÞ

�
PðAjk; e; bÞ

×

�Y
l;u

PðpðlÞ
u jg0ðlÞðuÞ;A0Þ

�
Pðfg0ðlÞg;A0; k; e; bjGÞ: ðD7Þ

Operationally, this just means running our inference
algorithm to obtain our latent variables fg0ðlÞg; fAðlÞ0g; k; e
and b, and the triadic closure propensities pðlÞ from its
posterior, using those to obtain a new seminal network A
from the same SBM, together with its new ego graphs
fgðlÞg, and then finally computing the resulting clustering
coefficient.

APPENDIX E: NETWORK DATA SETS

Below are descriptions of the network data sets used
in this work. The codenames in parentheses correspond to
the respective entries in the Netzschleuder repository [64]
where the networks can be downloaded. Some of the
descriptions were obtained from the Colorado Index of
Complex Networks [65].
Adolescent health (add_health) [49]: A directed

network of friendships obtained through a social survey
of high school students in 1994. The ADD HEALTH data
are constructed from the in-school questionnaire; 90 118
students representing 84 communities took this survey in
1994–1995. Some communities had only one school; others
had two. Where there are two schools in a community,
students from one school were allowed to name friends in the
other, the “sister school.” For this analysis, a symmetrized
version of the original directed network has been used,
considering only its largest connected component. The
particular network named comm26 has been used. This
network has N ¼ 551 nodes and E ¼ 2624 edges.

Scientific collaborations in physics (arxiv_collab)
[66]: Cxollaboration graphs for scientists, extracted from
the Los Alamos e-Print arXiv (physics), for 1995–1999
for three categories, and additionally for 1995–2003 and
1995–2005 for one category. For copyright reasons, the
MEDLINE (biomedical research) and NCSTRL (computer
science) collaboration graphs from this paper are not
publicly available. For this analysis, only the largest
connected component of the networks was considered.
The particular networks named cond-mat-1999, hep-
th-1999 have been used, with the number of nodes and
edges, ðN;EÞ, given by (13861, 44619), (5835, 13815),
respectively.
Metabolic network (celegans_metabolic) [67]:

List of edges comprising the metabolic network of the
nematodeC. elegans. This network hasN ¼ 453 nodes and
E ¼ 4596 edges.
C. elegans neurons (celegansneural) [68,69]:

A network representing the neural connections of the
Caenorhabditis elegans nematode. For this analysis, a
symmetrized version of the original directed network
has been used. This network has N ¼ 297 nodes and
E ¼ 2359 edges.
Collins yeast interactome (collins_yeast) [70]:

Network of protein-protein interactions in Saccharomyces
cerevisiae (budding yeast), measured by co-complex asso-
ciations identified by high-throughput affinity purification
and mass spectrometry (AP/MS). For this analysis, only the

TIAGO P. PEIXOTO PHYS. REV. X 12, 011004 (2022)

011004-18



largest connected component of the network was considered.
This network has N ¼ 1004 nodes and E ¼ 8319 edges.
DNC emails (dnc) [71]: A network representing the

exchange of emails among members of the Democratic
National Committee, in the email data leak released by
WikiLeaks in 2016. For this analysis, only the largest
connected component of the network was considered. This
network has N ¼ 849 nodes and E ¼ 12038 edges.
Dolphin social network (dolphins) [72]: An undi-

rected social network of frequent associations observed
among 62 dolphins (Tursiops) in a community living in
Doubtful Sound, New Zealand, from 1994–2001. This
network has N ¼ 62 nodes and E ¼ 159 edges.
Ego networks in social media (ego_social) [73]: Ego

networks associated with a set of accounts of three social
media platforms (Facebook, Google+, and Twitter). Data
sets include node features (profile metadata), circles, and
ego networks, and were crawled from public sources in
2012. For this analysis, only the largest connected compo-
nent of the network was considered. The particular network
named facebook_0 has been used. This network has
N ¼ 324 nodes and E ¼ 2514 edges.
Maier Facebook friends (facebook_friends) [74]:

A small anonymized Facebook ego network, from April
2014. Nodes are Facebook profiles, and an edge exists if
the two profiles are “friends” on Facebook. Metadata give
the social context for the relationship between ego and alter.
For this analysis, only the largest connected component of
the network was considered. This network has N ¼ 329
nodes and E ¼ 1954 edges.
Within-organization Facebook friendships (faceboo-

k_organizations) [75]: Six networks of friendships
among users on Facebook who indicated employment at
one of the target corporations. Companies range in size
from small to large. Only edges between employees at the
same company are included in a given snapshot. Node
metadata give listed job type on the user’s page. The
particular networks named S1, S2 have been used, with the
number of nodes and edges, ðN;EÞ, given by (320, 2369),
(165, 726), respectively.
Little Rock Lake food web (foodweb_little_rock)

[76]: A food web among the species found in Little Rock
Lake in Wisconsin. Nodes are taxa (like species), either
autotrophs, herbivores, carnivores, or decomposers. Edges
represent feeding (nutrient transfer) of one taxon on
another. For this analysis, a symmetrized version of the
original directed network has been used. This network has
N ¼ 183 nodes and E ¼ 2494 edges.
NCAA college football 2000 (football) [51]: A

network of American football games between Division
IA colleges during regular season, Fall 2000. This network
has N ¼ 115 nodes and E ¼ 613 edges.
Game of Thrones coappearances (game_thrones)

[77]: Network of coappearances of characters in the
Game of Thrones series, by George R. R. Martin, and,

in particular, coappearances in the book “A Storm of
Swords.” Nodes are unique characters, and edges are
weighted by the number of times the two characters’
names appeared within 15 words of each other in the text.
This network has N ¼ 107 nodes and E ¼ 352 edges.
Google+ (google_plus) [78]: Snapshot of connec-

tions among users of Google+, collected in 2012. Nodes are
users, and a directed edge ði; jÞ represents user i added user
j to i’s circle. For this analysis, a symmetrized version of
the original directed network has been used, considering
only its largest connected component. This network has
N ¼ 201949 nodes and E ¼ 1496936 edges.
Jazz collaboration network (jazz_collab) [79]: The

network of collaborations among jazz musicians, and
among jazz bands, extracted from The Red Hot Jazz
Archive digital database, covering bands that performed
between 1912 and 1940. This network has N ¼ 198 nodes
and E ¼ 2742 edges.
Zachary Karate Club (karate) [80]: Network of

friendships among members of a university karate club.
Includes metadata for faction membership after a social
partition. Note that there are two versions of this network,
one with 77 edges and one with 78, because of an
ambiguous typo in the original study. (The most commonly
used is the one with 78 edges.) The particular network
named 78 has been used. This network has N ¼ 34 nodes
and E ¼ 78 edges.
Les Misérables coappearances (lesmis) [81]: The

network of scene coappearances of characters in Victor
Hugo’s novel “Les Miserables.” Edge weights denote the
number of such occurrences. This network has N ¼ 77
nodes and E ¼ 254 edges.
Malaria var DBLa HVR networks (malaria_genes)

[82]: Networks of recombinant antigen genes from the
human malaria parasite P. falciparum. Each of the nine
networks shares the same set of vertices but has different
edges, corresponding to the nine highly variable regions
(HVRs) in the DBLa domain of the var protein. Nodes are
var genes, and two genes are connected if they share a
substring whose length is statistically significant. Metadata
include two types of node labels, both based on sequence
structure around HVR6. For this analysis, only the largest
connected component of the network was considered. The
particular network named HVR_9 has been used. This
network has N ¼ 297 nodes and E ¼ 7562 edges.
Scientific collaborations in network science (nets-

cience) [50]: A coauthorship network among scientists
working on network science, from 2006. This network is a
one-mode projection from the bipartite graph of authors
and their scientific publications. For this analysis, only the
largest connected component of the network was consid-
ered. This network has N ¼ 379 nodes and E ¼ 914 edges.
Physician trust network (physician_trust) [83]: A

network of trust relationships among physicians in four
midwestern (USA) cities in 1966. Edge direction indicates
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that node i trusts or asks for advice from node j. Each of the
four components represents the network within a given city.
For this analysis, a symmetrized version of the original
directed network has been used, considering only its largest
connected component. This network has N ¼ 117 nodes
and E ¼ 542 edges.
Multilayer physicist collaborations (physics_col-

lab) [84]: Two multiplex networks of coauthorships
among the Pierre Auger Collaboration of physicists
(2010–2012) and among researchers who have posted
preprints on arXiv.org (all papers up to May 2014).
Layers represent different categories of publication, and
an edge’s weight indicates the number of reports written by
the authors. These layers are one-mode projections from
the underlying author-paper bipartite network. For this
analysis, only the largest connected component of the
network was considered. The particular network named
pierreAuger has been used. This network has N ¼ 475
nodes and E ¼ 7090 edges.
Political books network (polbooks) [85]: A network

of books about U.S. politics published close to the 2004
U.S. presidential election and sold by Amazon.com. Edges
between books represent frequent copurchasing of those
books by the same buyers. The network was compiled by V.
Krebs and is unpublished. This network has N ¼ 105
nodes and E ¼ 441 edges.
High school temporal contacts (sp_high_school)

[86]: These data sets correspond to the contacts and
friendship relations between students in a high school
in Marseilles, France, in December 2013, as measured
through several techniques. For this analysis, symmetrized
versions of the original directed networks have been used,
considering only their largest connected component. The
particular networks named diaries, survey, face-
book have been used, with the number of nodes and edges,
ðN;EÞ, given by (120, 502), (128, 658), (156, 1437),
respectively.
Student cooperation (student_cooperation) [48]:

Network of cooperation among students in the “Computer
and Network Security” course at Ben-Gurion University, in
2012. Nodes are students, and edges denote cooperation
between students while doing their homework. The graph
contains three types of links: time, computer, and partners.
For this analysis, only the largest connected component of
the network was considered. This network has N ¼ 141
nodes and E ¼ 297 edges.
9-11 terrorist network (terrorists_911) [87]:

Network of individuals and their known social associations,
centered around the hijackers that carried out the terrorist
attacks on September 11, 2001. Associations were
extracted after the fact from public data. The metadata
labels say which plane a person was on, if any, on 9=11.
This network has N ¼ 62 nodes and E ¼ 152 edges.
Madrid train bombing terrorists (train_terro-

rists) [88]: A network of associations among the

terrorists involved in the 2004 Madrid train bombing, as
reconstructed from press stories after the fact. Edge weights
encode four levels of connection strength: friendships, ties
to Al Qaeda and Osama Bin Laden, coparticipants in wars,
and coparticipants in previous terrorist attacks. This net-
work has N ¼ 64 nodes and E ¼ 243 edges.
Email network (uni_email) [89]: A network repre-

senting the exchange of emails among members of the
Rovira i Virgili University in Spain in 2003. For this
analysis, a symmetrized version of the original directed
network has been used. This network has N ¼ 1133 nodes
and E ¼ 10 903 edges.
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Guimerà, Consistencies and Inconsistencies between Model
Selection and Link Prediction in Networks, Phys. Rev. E 97,
062316 (2018).

[59] H. Safdari, M. Contisciani, and C. De Bacco, A Generative
Model for Reciprocity and Community Detection in Net-
works, Phys. Rev. Research 3, 023209 (2021).
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