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Correcting errors in real time is essential for reliable large-scale quantum computations. Realizing this
high-level function requires a system capable of several low-level primitives, including single-qubit and
two-qubit operations, midcircuit measurements of subsets of qubits, real-time processing of measurement
outcomes, and the ability to condition subsequent gate operations on those measurements. In this work, we
use a 10-qubit quantum charge-coupled device trapped-ion quantum computer to encode a single logical
qubit using the ½½7; 1; 3�� color code, first proposed by Steane [Phys. Rev. Lett. 77, 793 (1996)]. The logical
qubit is initialized into the eigenstates of three mutually unbiased bases using an encoding circuit, and we
measure an average logical state preparation and measurement (SPAM) error of 1.7ð2Þ × 10−3, compared to
the average physical SPAM error 2.4ð4Þ × 10−3 of our qubits. We then perform multiple syndrome
measurements on the encoded qubit, using a real-time decoder to determine any necessary corrections that
are done either as software updates to the Pauli frame or as physically applied gates. Moreover, these
procedures are done repeatedly while maintaining coherence, demonstrating a dynamically protected
logical qubit memory. Additionally, we demonstrate non-Clifford qubit operations by encoding a T̄jþiL
magic state with an error rate below the threshold required for magic state distillation. Finally, we present
system-level simulations that allow us to identify key hardware upgrades that may enable the system to
reach the pseudothreshold.
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I. INTRODUCTION

Large-scale quantum computers promise to solve classi-
cally intractable problems in areas such as quantum simu-
lation, prime factorization, and others [1–7]. However, these
complex quantum computations demand levels of precision
that are currently unachievable due to imperfect control and
noise in gate operations between physical qubits. In fact, it is
unlikely that analog physical qubit control will ever reach the
precision demanded by large-scale computations. Quantum
error correction (QEC) [8–10] was the key ingredient to digi-
tize quantum operations, making extremely low error rates
possible in principle. QEC works by redundantly encoding
quantum information into a protected subspacewithin a larger
Hilbert space of many physical qubits. Using a polynomially
scaling number of physical qubits, the probability of a

computation being corrupted can be suppressed exponentially,
making arbitrarily precise quantum computation feasible.
Achieving efficient error suppression by a QEC code

introduces several requirements for a quantum processor.
Not only do the error rates of the underlying physical
operations (initialization, unitary gates, and measurement)
need to be below a certain threshold [11–13], but the
quantum processor must interact with a classical computer
in real time to diagnose and correct errors. These inter-
actions between the quantum and classical processors need
to be repeated several times in every step of a computation,
defining new requirements in addition to the classic
DiVincenzo criteria [14]. These new criteria include the
ability to measure a subset of qubits with little impact on
other qubits and the ability to classically process measure-
ments and determine corrections faster than the system
decoheres. Additionally, the implementation should be
fault tolerant (FT) to at least the dominant physical layer
errors in order to prevent physical errors from cascading
and causing logical errors [15–17].
Several required elements of FT QEC of a single logical

qubit have been demonstrated on a variety of quantum
computing architectures: classical repetition codes [18–26],
error detection codes [27–33], the 5-qubit code [34–36], the
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[[7,1,3]] color code [37,38], the Bacon-Shor-13 code [39],
the 9-qubit Shor code [40,41], bosonic codes [42–46], as
well as primitives utilizing cluster states [47,48]. However, a
full demonstration of all necessary components for a FT
implementation of a QEC code capable of repeatedly
correcting all single-qubit errors has not yet been realized.
In this article, we report on realizing a FT implementa-

tion of the smallest instance of the color code [10,49–51].
Using a trapped-ion quantum charge-coupled device
(QCCD) quantum computer [52,53], we encode, control,
and repeatedly error correct a single logical qubit using
ten physical qubits. On the physical layer, trapped-ion
qubits use high-fidelity single- and two-qubit gates and
midcircuit measurements and resets to execute the quantum
circuits that fault tolerantly initialize the logical qubit,
manipulate it via logical single-qubit Clifford gates, per-
form error syndrome measurements, and apply corrections.
Importantly, the low cross talk during midcircuit measure-
ments [20,54] enables ancilla measurements of the error
syndromes without decohering the data qubits that encode
the logical information. The error syndrome measurements
are sent to a classical computer where real-time decoding
and tracking of errors and corrections occur. Since all of
this can be done with high fidelity and quickly compared to
the dephasing rate of the physical qubits, the logical qubit
can be repeatedly error corrected, a crucial feature of
scalable quantum computing. We perform these operations
with the six eigenstates of the logical Pauli operators and
initialize a magic state for non-Clifford operations. These
results demonstrate a universal set for quantum computa-
tion, with the notable exception of an entangling gate
between two logical qubits, which requires more qubits
than our system currently supports.

A. Background

QEC codes are identified by three parameters ½½n; k; d��,
where n is the number of physical qubits, k is the number of
logical qubits the code admits, and d is the code distance,
which is related to the minimum number of arbitrary single-
qubit errors the code will correct, t ¼ bd − 1=2c. The
½½7; 1; 3�� stabilizer code, commonly referred to as the
Steane code [10] and depicted in Fig. 1, is the smallest
example of the topological color code [49]. We refer to it as
a color code henceforth. The distance three code uses seven
physical qubits to encode a single logical qubit and protects
against all instances of a single physical qubit incurring an
error (t ¼ 1). Advantages of topological stabilizer codes
include requiring only local interactions, high error thresh-
olds, and minimal error detection overhead [49,55–57]. The
½½7; 1; 3�� color code has the added advantage of all single-
qubit and two-qubit Clifford gates being transversal and
naturally FT [58]. While the term “color code” generally
refers to any member of the family of color codes, we only
investigate one version here, so for simplicity, we drop the
½½7; 1; 3�� notation and refer to the code we study as the

color code. We also note that we place over bars and L
subscripts on logical qubit operators and states to distin-
guish them from physical qubit operators and states.
The color code, like all stabilizer codes, detects errors by

measuring a commuting set of operators known as stabi-
lizers (Fig. 1). The stabilizer measurements form an error
syndrome which is processed by a classical decoding
algorithm to determine a correction. This process must
be done during the quantum computation to enable general,
nontrivial logical computation, thus highlighting the need
for systems to determine corrections during real time and
not after the quantum computation has concluded. In this
paper, we define a QEC cycle as the process of measuring
syndromes, where syndromes are measured multiple times
to account for measurement errors as well as decoding and
updating corrections. Note that in general the determination
of corrections may be delayed until an operation, such as a
logical non-Clifford gate, requires a correction to be
determined before the computation can proceed. In our
experiments, however, we demonstrate the more demand-
ing situation where the determination of corrections is not
delayed but determined at the end of each QEC cycle.
Our quantum computer uses a Honeywell 2D surface

electrode ion trap (Fig. 2) similar to the one described in
Ref. [53]. The trap is loaded with ten 171Ybþ qubit ions and
ten 138Baþ sympathetic cooling ions. The color code is
implemented using all ten available qubits (Fig. 1), where
seven data qubits encode the logical state and three ancilla
qubits perform syndrome measurements. The trap can

1

2 3 4

5 6 7

FIG. 1. The ½½7; 1; 3�� color code. Physical qubits are indicated
by white circles. The seven data qubits are on the vertices of the
polygons, and three ancilla qubits for syndrome measurements in
the center of each polygon. For each polygon, the four qubits at
the vertices define both X-type and Z-type stabilizer measure-
ments used in each error correction cycle. The stabilizer gen-
erators and logical operators are tensor products of single-qubit
Paulis with support indicated by the physical qubit subscript
index. For example, implementing the logical Z̄ operation is done
with physical layer Z operations on qubits 5, 6, and 7. Likewise,
measuring Z̄ is done by measuring Z5Z6Z7 where the logical
qubit measurement outcome is the product of the three individual
physical qubit measurement outcomes. Although not shown,
Y-type stabilizers are generated by the X- and Z-type stabilizers
listed here.
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execute parallel quantum operations across three different
zones, and quantum circuits are executed as a series of
interleaved initialization, gating, measurement, and ion-
transport operations. With just three ion-transport primitive
operations, qubits can be arbitrarily rearranged in the
middle of a circuit: qubit ions paired with coolant ions
use (1) linear transport of fYb;Bag and fYb;Ba; Ba; Ybg
crystals, (2) split or combine operations to go between
fYb;Bag crystals and fYb;Ba; Ba; Ybg crystals, and
(3) physical (not quantum gate-based) swap operations
to switch the ordering of the qubit ions in a crystal by
transporting them around each other in two dimensions
[59]. These operations allow any two qubits to be paired for
entangling gates and allow qubits to be isolated for single-
qubit gates, initialization, and measurement. Dynamically
rearranging the ions during the circuits ensures the one-
dimensional geometry trap does not restrict the geometry
of codes used (the color code has a two-dimensional
geometry).
The system is programmed according to the quantum

circuit model. Logical qubit operations are compactly
described at the physical qubit level as quantum circuits
and are expressed in an extended version of OpenQASM 2.0

[60]. At the time of developing the QEC experiments
discussed in this paper, the OpenQASM language did not
fully support all of the conditional logical operations
needed for QEC. We, therefore, extended the language
to include classical assignment, classical operations, and
expanded comparison of registers. These OpenQASM
extensions were key enablers for the highly dynamical
QEC protocols we chose to implement [50].

II. EXPERIMENTS

In this section, we discuss our experiments demonstrat-
ing the QEC operations necessary for universal QEC
computation restricted to a single logical qubit.

A. QEC cycles

The main result of this paper is a full demonstration of
the ability to repeat QEC cycles, which includes the
determination of corrections during computation (see
Fig. 14). This demonstration consists of initializing a
logical Pauli basis state using a FT encoding circuit,
running multiple adaptive FT QEC cycles, and then
measuring in the appropriate logical basis, all while
tracking corrections, running a decoding algorithm, and
updating the corrections after each QEC cycle in real time.
A schematic of the overall procedure can be seen in Fig. 3
with additional details found in Fig. 10. We now detail the
various steps of this QEC protocol.

FIG. 2. The ion trap loaded with ten 171Ybþ qubit ions (red
circles) and ten 138Baþ coolant ions (white circles). The trap has
different functional regions, or zones, with functions determined
by the electrode geometry and laser beam configuration. Ion
transport is used to arrange ions into zones for gates and
measurements. The electrodes in red and blue denote regions
that support transport operations, including linear transport,
crystal split and combine, and physical swap. The green regions
support linear transport and storage of ions between gating
operations. The three regions where qubit initialization, gating,
and measurement occur are marked by the crossing laser beams.
In the gray region ions are loaded from an effusive atomic oven
behind the trap using photoionization.
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FIG. 3. A schematic of the QEC experiment. Here the steps
taken in a QEC experiment are outlined including repeat-
until-success initialization of a j0iL state, the logical rotation
of the state, conditional branching taken to perform syndrome
extraction fault tolerantly, decoding, the destructive logical
measurement, and the determination of a logical measurement
output. An extended version of this figure, which includes circuit
diagrams, can be found in Fig. 10.
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1. Logical state preparation

To prepare different logical basis states, fj0iL; j1iL;
jþiL; j−iL; j þ iiL; j − iiLg, we utilize a FT encoding
circuit. The encoding circuit first prepares j0iL and fault
tolerantly verifies successful preparation by measuring Z̄
[61] via three CNOT gates with an ancilla at the end as
shown in Fig. 10. If the measured ancilla is found in j0i, the
circuit succeeded and moves to the next step. If the ancilla
is found in j1i, all qubits are reinitialized, and the circuit
runs again. This procedure repeats until successful, up to
three iterations if necessary. This verification succeeds with
a total probability of 99.984(9)% with the first attempt
succeeding 97.9(2)% of the time. Regardless of successful
preparation, we proceed by rotating j0iL to another logical
Pauli basis state by the appropriate application of the X̄, H̄,
and S̄ operators as prescribed in Fig. 1 (see Fig. 16).

2. Adaptive syndrome extraction protocol

Next, to protect the logical qubit while idling during a
computation, we execute multiple QEC cycles and utilize
ancilla qubits to measure syndromes in a nondestructive
manner. The syndrome extraction protocol operates by
detecting changes in stabilizer measurement outcomes that
ideally give a þ1 eigenvalue. Because syndrome extraction
requires the use of noisy gates, syndrome measurements
must be repeated multiple times within a single QEC cycle
to be FT to syndrome measurement errors. For each FT
QEC cycle, we implement the flagged three-parallel syn-
drome extraction protocol described in Ref. [50] (see
Figs. 3, 10, and 14).
In order for the color code to be FT to all single-qubit

errors, we must account for a special case of a single-qubit
error called a “hook” error [55], which spreads to higher
weight errors causing logical errors; see Fig. 11(a). To
identify these hook errors from other errors of similar
syndrome signatures [see Fig. 11(b)], the decoder requires
two sets of syndrome measurements. First, the flagged
syndromes Sfi are measured using flagged parallel circuits
that measure stabilizers in a way that flags (identifies)
malignant hook errors. Then, if necessary, the second set of
unflagged syndromes Si is measured using standard
unflagged syndrome circuits to distinguish hook errors
from nonhook errors. Note that both sets of stabilizers
follow from the definitions given in Fig. 1, but we use the f
superscript to indicate syndromes measured using flagged
circuits instead of those measured with unflagged circuits.
The syndrome extraction protocol is adaptive and relies

on a comparison of previous unflagged syndrome mea-
surements to determine the next step in the protocol. If
previous unflagged syndrome measurements have not been
made yet (e.g., the first QEC cycle), the current syndromes
are compared to the trivial case of all þ1 syndromes. The
syndrome extraction protocol begins with the flagged
parallel circuits to measure syndromes, the first set being

fSf1 ; Sf5 ; Sf6g. The change in the current flagged syndrome

eigenvalue measurements Sfi compared to the last unflag-
ged syndrome eigenvalue measurements made in a pre-
vious QEC cycle Si;previous is determined. That is, ΔSfi ¼
Sfi × Si;previous is calculated. If there are no changes in stabi-

lizers’ measurements (i.e., ΔSf1 ;ΔS
f
5 ;ΔS

f
6 ¼ þ1;þ1;þ1,

which indicates no new errors have been detected), the
second set of flagged stabilizers fSf2 ; Sf3 ; Sf4g is also
measured. Then, if there are no changes in the second
set of flagged stabilizers’ measurements, the syndrome
extraction protocol is deemed complete. However, if
either of the flagged circuits do indicate a change in
syndromes, an additional and final round of syndrome
extraction is triggered using standard circuits without flags
fS1; S2; S3;…g. Finally, at the end of every QEC cycle,
syndrome changes are sent to a decoder to infer a
correction, and the baseline stabilizer values Si;previous are
updated in software for the next QEC cycle.
An additional description of the steps in adaptive

syndrome extraction protocol can be found in the flowchart
Fig. 3 as well as in the Appendix F in Fig. 17 and also in
Fig. 10, which is a more detailed flowchart including the
circuitry used.

3. Decoder

Our decoder algorithm consists of two steps using two
different lookup tables (see Tables I and II), analogous to
the decoders described in Refs. [62,63]. Lookup tables are
simple decoders that map syndromes to corrections. We
decode X and Z errors separately and correct at the logical
level instead of at the physical level (that is, the corrections
are whether to apply Ī, X̄, Ȳ, or Z̄). Physical errors can
always be decomposed into two commuting operators, one
logical operator and another operator that does not apply a
logical operator but at most changes the syndromes.
(Such errors that at most modify syndromes are products
of elements in the stabilizer and destabilizer groups. See
Ref. [64], Chap. 2 in Ref. [65], and Chap. 4 in Ref. [66].)
Therefore, the physical errors can be corrected by the
application of a logical correction and a syndrome update,
which is a record of the last measured set of syndromes
Si;previous. Given this record of syndromes measured from
the previous QEC cycle and the measurement of the current
set of syndromes, the changes in syndromes are calculated
(i.e., ΔSi ¼ Si × Si;previous and ΔSfi ¼ Sfi × Si;previous). It is
these changes in syndromes that are sent to the decoder to
come up with a logical correction. By concerning ourselves
with only the current changes in syndromes and not directly
modifying the syndromes via the correction, we are able to
mod out the part of the error that flips syndrome outcomes
and correct only the logical component. An advantage of
choosing to only consider corrections of logical errors is
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that it reduces the size of the decoder to a few if statements
in QASM (see Figs. 21 and 22).
For completeness, we now step through the two stages of

decoding during a QEC cycle. During a particular QEC
cycle, the decoder is called if and only if the final round of
syndrome extraction is triggered (i.e., the unflagged cir-
cuits; see Fig. 10).
The first stage in the decoding algorithm utilizes the

unflagged syndrome measurements Si and ignores the
flagged syndrome measurements Sfi since this decoder is
only concerned with the nonhook errors. Instead of sending
the directly measured unflagged syndromes Si, the changes
in syndromes are sent to the decoder. Because of symmetry,
the same lookup table decoder (see Table I) is used to
decode the X-type syndromes (ΔS1, ΔS2, and ΔS3) and the
Z-type syndromes (ΔS4, ΔS5, and ΔS6). Combining these
two X-type and Z-type syndrome corrections, a logical
correction is then determined for this first stage.
The second stage of the decoding algorithm utilizes the

flagging information to identify hook errors and to provide
an additional correction to update the one provided in the
first stage. Single-qubit hook errors produce the same
syndrome measurements in the unflagged circuits as other
less damaging single-qubit errors (see Fig. 11). Thus, to
distinguish between these two types of single-qubit errors,
we require additional syndrome information from the flag
circuits. To do this, we send both the changes in unflagged
syndrome measurements ΔSi and the changes in the
flagged syndrome measurements ΔSfi in the lookup table
decoder (see Table II). In particular, we once again decode
the X-type syndromes (ΔSf1 , ΔS

f
2 , and ΔSf3 versus ΔS1,

ΔS2, and ΔS3) and the Z-type syndromes (ΔSf4 , ΔS
f
5 , and

ΔSf6 versus ΔS4, ΔS5, and ΔS6) separately. The corrections
determined by the first lookup table and second lookup
table then determine the final logical correction for the
current QEC cycle given an overall logical Ī, X̄, Ȳ, or Z̄,

which is then used to update the software-tracked correc-
tion determined from previous QEC cycles. Note that the
combination of the conditional rounds of syndrome extrac-
tion and the second lookup table makes the QEC cycle FT
to single Pauli errors including hook errors as well as
measurement errors.
After the unflagged syndrome extraction is triggered and

the decoding process has completed, the record of the last
syndrome measurement Si;previous is then updated using the
syndromes measured by the unflagged syndrome measure-
ment circuits. In this FT protocol the unflagged syndromes
are treated as ideal measurements since they are only
measured in the event that a new error has been detected
and the code is only guaranteed to correct a single error. In
this way, the unflagged syndrome establishes the “ground
truth” of the last measured syndromes to be compared
against in future QEC cycles.

4. Pauli frame update

Applying corrections physically via noisy gates can
potentially induce more errors. Fortunately, many errors
can be corrected without implementing physical gate
operations and instead done with an essentially perfect
software correction. To this end, the correction for the
logical qubit is stored in a binary array, known as a Pauli
frame [67], during the computation. The Pauli frame is
represented by two bits, corresponding to the possible
corrections fĪ; X̄; Ȳ; Z̄g. At the end of each QEC cycle, the
new correction is combined with the previous Pauli frame
according to Pauli matrix multiplication rules, and the
binary array is updated (see the bottom of Fig. 17).
Finally, after completing a variable number of QEC

cycles, the data qubits are directly measured (see the
bottom of Fig. 14). The final destructive measurement

TABLE I. First lookup table decoder. This logical-level decoder
only considers the changes in unflagged syndrome measurements
ΔSi. The changes in syndromes corresponding to X-type and
Z-type stabilizer generator are decoded separately. A slash mark
separates the indices of the set of X-type and Z-type stabilizer
measurements, respectively, and the corresponding logical cor-
rections. The numbering of the syndromes ΔSi is consistent with
the numbering of the stabilizer generators in Fig. 1. The circuitry
for the measurement of these syndromes can be found in Fig. 10.
If a syndrome outcome is not indicated in the table, then the
logical correction is Ī. Note that this decoder is equivalent to the
one described in Fig. 21.

ΔS1=4 ΔS2=5 ΔS3=6 Correction

þ1 −1 þ1 Z̄=X̄
þ1 þ1 −1 Z̄=X̄
þ1 −1 −1 Z̄=X̄

TABLE II. Second lookup table decoder. This logical-level
decoder considers the changes in the flagged syndrome mea-
surements ΔSfi and unflagged syndrome measurements ΔSi to
give an additional correction to the first lookup table (see Table I).
The changes in syndromes corresponding to X-type and Z-type
stabilizer generator are decoded separately. A slash mark sepa-
rates the indices of the set of X-type and Z-type stabilizer
measurements, respectively, and the corresponding logical cor-
rections. The numbering of the syndromes ΔSi and ΔSfi is
consistent with the numbering of the stabilizer generators in
Fig. 1. The circuitry for the measurement of these syndromes can
be found in Fig. 10. If a syndrome outcome is not indicated in the
table, then the logical correction is Ī. Note that this decoder is
equivalent to the one described in Fig. 22.

ΔSf1=4 ΔSf2=5 ΔSf3=6 ΔS1=4 ΔS2=5 ΔS3=6 Correction

−1 þ1 þ1 þ1 −1 þ1 Z̄=X̄
−1 þ1 þ1 þ1 þ1 −1 Z̄=X̄
þ1 −1 −1 þ1 þ1 −1 Z̄=X̄
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projects the state into the logical X̄, Ȳ, or Z̄ basis based on
the logical single-qubit gate applied before measurement,
and from this measurement, two pieces of critical infor-
mation are extracted. First, the raw logical output is
calculated by multiplying the �1 outcomes of the non-
identity components of the logical operator being measured
(qubits 5, 6, and 7; see Fig. 1). Second, while the process of
measuring the data qubits is destructive to the quantum state,
the syndromes that commutewith themeasured operator can
still be constructed from the resulting classical information,
allowing for a final correction. For example, when meas-
uring the fidelity of jþiL, wemeasure all data qubits in theX
basis and the raw logical output is given by results of qubits
5, 6, and 7, while the syndrome is equal to the measurement
result tuple of fS1; S2; S3g. However, while for X̄ and Z̄
measurements it is sufficient to infer the syndromes using
stabilizers of the same Pauli type in Fig. 1, this is not the case
for the Y basis. Fortunately, in the special case of a Ȳ
measurement, we can infer the syndromes of the three Y
stabilizers that are the products of the X and Z stabilizers
listed in Fig. 1 that have identical nontrivial support. After
the syndromes are inferred from the final measurement, the
decoding algorithm is used to determine a correction, simply
whether to flip the raw logical output or not.

5. Results

The experimental results for the full QEC protocol
can be seen in Fig. 4. Each basis state and QEC cycle
iteration was run multiple times with a varying number of
trials. To better estimate the error bars due to experimental
noise fluctuations, we used a jackknife resampling method
[68] to estimate the average and the standard deviation of
the different trials for a given state. To estimate the
logical state preparation and measurement (SPAM) and
logical error rate per QEC cycle, we fit the data to an
exponential decay curve and extract the fitting parameters
as shown in Table III. In the protocol, logical SPAM is
equivalent to doing zero QEC cycles. We measured the
average logical SPAM error to be 1.7ð2Þ × 10−3, compared
to the 2.4ð4Þ × 10−3 SPAM error of our physical qubits.
The data in Fig. 4 show that while the initialization circuit
produces high-fidelity states, repeated QEC cycles intro-
duce significant logical errors of an average of approx-
imately 1.75(4)% per QEC cycle as determined by
exponential decay fits to the data (see Table III). We
observe that the logical Z̄ basis is more robust than the
other two bases, suggesting that logical Z̄ errors are more
common. As seen in Fig. 1, the Z̄ operator is composed of
only Zi operators on physical qubits, suggesting that qubit
dephasing is a significant source of error.
The experimental run time of the logical SPAM portion

of experiments, including the encoding circuit, two rounds
of single-qubit rotations, and the final measurement, is
< 60 ms, and each QEC cycle takes less than <200 ms.
Transport accounts for ∼10 ms of logical SPAM operations

and <70 ms of each QEC cycle. The remaining time is
dominated by the cooling operations, which occur prior to
each two-qubit gate, similar to the experiments detailed
in Ref. [53].
To put the logical qubit error rates and clock speed into

context by comparing to the physical layer; the dominant
error at the physical level is the two-qubit gate error of
∼3 × 10−3 (Table VI), and the physical layer clock speed

FIG. 4. Comparing the observed logical fidelities of the
six logical Pauli basis states over many QEC cycles. Averages
and standard deviations were determined by jackknife resampling
between individual experiments [68]. The large points with
error bars are experimental averages and standard deviations.
The smaller and lighter points are individual trials for a
given QEC cycle experiment. Note that for 0 QEC cycles,
numerous experimental trials have an error rate of 0 and,
thus, are not displayed due to the log scale. The lines are fits
to the experimental averages, where the fits are exponential
decay curves pLðcÞ ¼ 0.5þ ðpSPAM − 0.5Þð1 − 2pcycleÞc (see
Appendix B for derivation). Here pLðcÞ is the logical error rate
of a cycle c and logical basis L, pSPAM the logical SPAM error,
and pcycle is the logical QEC cycle error. Note that pSPAM is
determined directly from the 0 QEC cycle results and fixed
when determining the fits. Thus, from the fits, we obtain
estimates of pcycle. The values of pSPAM and pcycle are reported
in Table III.

TABLE III. Observed logical SPAM error pSPAM from 0 QEC
cycle experimental results. Here, logical error per QEC cycle
pcycle fit parameters for the six Pauli basis states are presented,
which are obtained via exponential decay fit and used in the
plotted curves in Fig. 4. The average pSPAM is 1.7ð2Þ × 10−3 and
the average pcycle is 1.75ð4Þ × 10−2.

State pSPAM pcycle

jþiL 1.7ð7Þ × 10−3 1.8ð1Þ × 10−2

j−iL 2.0ð7Þ × 10−3 1.7ð2Þ × 10−2

jþ iiL 1.2ð5Þ × 10−3 2.4ð1Þ × 10−2

j− iiL 2.6ð6Þ × 10−3 2.5ð1Þ × 10−2

j0iL 1.3ð5Þ × 10−3 1.16ð7Þ × 10−2

j1iL 1.4ð6Þ × 10−3 0.94ð7Þ × 10−2
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(one round of gating between random pairs of qubits) is
10.5 ms. We note that a complete understanding of the
overhead associated with QEC will have to wait until
logical qubit entangling operations are characterized.

B. Active versus software corrections

Pauli frame updates cannot always be used for a QEC
computation since Pauli operators have nontrivial trans-
formations under conjugation by non-Clifford gates. Thus,
to implement corrections stored in software, we either
physically apply the correction to the qubits before the gate
or adapt the non-Clifford gate to include the correction (see
Fig. 15). To demonstrate the ability to physically apply
corrections as needed, we use the logical S gate as a stand-
in for the non-Clifford T̄ gate. We first initialized the state
jþiL, ran one cycle of QEC to generate potential correc-
tions, physically applied a correction (either X̄, Ȳ, or Z̄)
according to the Pauli frame, physically applied logical S̄,
performed an additional QEC cycle, and measured in the Ȳ
basis (note S̄jþiL ¼ jþ iiL; see Fig. 12), achieving a
logical fidelity of 93(2)%.
We repeated this experiment without applying a physical

correction and instead rotated the Pauli frame according to
Pauli transformations of the physically applied S̄ gate. This
software-correction version of the experiment achieved a
logical fidelity of 92(1)%. These two error rates are not
significantly different from each other, thus demonstrating
the key ability to take software-tracked corrections and
apply them in real time as necessary.
Note, for comparison, that the fidelity of two QEC cycles

of the jþiL and jþ iiL logical basis states experiments
without the logical S gate (as given in Fig. 4) was found to
be 95.1(7)% and 95.2(8)%, respectively, while the fidelity
of logical S gate experiments, which also included a total of
two QEC cycles, was 93(2)% for the experiments with
physically applied corrections and 92(1)% for the experi-
ments with software-tracked corrections. This indicates that
the physical application of the logical S gate may have
resulted in roughly 2%–3% additional error. We leave
further investigation of the noise due to logical single-qubit
transversal gates to future studies.

C. Preparing a magic state

Universal quantum computing requires the ability to
implement non-Clifford gates, which, unlike Clifford gates,
cannot be constructed by simple transversal operations in
the color code. Non-Clifford gates can, however, be imple-
mented using state preparation primitives that produce so-
called magic states [69]. One choice of magic state that is
sufficient to complete a universal gate set is T̄jþiL ¼ ðj0iLþ
eiπ=4j1iLÞ=

ffiffiffi
2

p
, where T̄ ¼ diagð1; eiπ=4Þ. Note that we

cannot use the FT encoding circuit used for the logical
Pauli states because the verification step requires the meas-
urement of a logical operator which would collapse the T

state, and thus, we use a non-fault-tolerant encoding circuit
for the color code [70], shown in Fig. 13 (see Fig. 14). Once
prepared, T̄jþiL can be used to apply T̄ gates via gate
teleportation [71] in a system capable of logical two-qubit
gates. The fidelity of this operation is estimated bymeasuring
the operator T̄jþiLhþjLT̄† ¼ 1

2
½Ī þ 1ffiffi

2
p ðX̄ þ ȲÞ�, and we

report an error of 2.2(6)%. Theoretical analysis shows this
error level to be sufficiently low to serve as logical magical
state inputs to distillation protocols [69,72], indicatingwe are
able to produce high-quality, distillable states to implement
FT non-Clifford gates. However, a further study is needed to
analyze the performance of a full logical state distillation
protocol given our logical input state fidelity and an exper-
imental system, undergoing our particular noise, that is large
enough to enact such a logical protocol [73]. We leave these
studies to future numerical analysis as well as the exper-
imental validation that will eventually be required.

III. SIMULATIONS AND ANALYSIS

To help understand the noise in our system, we compare
the experimental results of the QEC protocol to numerical
simulations as seen in Fig. 5. The simulations are state-
vector simulations [66,74] utilizing a realistic error model

FIG. 5. Comparing the observed and simulated logical fidelities
of the logical Pauli bases. Averages and standard deviations were
determined by combining the data of both basis states of a given
basis and using jackknife resampling between individual experi-
ments [68]. The large points with error bars are experimental
averages and standard deviations. The smaller and lighter points
are individual trials for a given QEC cycle experiment. Note
that for 0 QEC cycles, numerous experimental trials have an error
rate of 0 and, thus, are not displayed due to the log scale. The
lines are fits to the simulated and experimental averages, where
the fits are exponential decay curves pLðcÞ ¼ 0.5þ ðpSPAM −
0.5Þð1 − 2pcycleÞc (see Appendix B for derivation). Here pLðcÞ is
the logical error rate of a cycle c and logical basis L, pSPAM the
logical SPAM error, and pcycle is the logical QEC cycle error.
Note that pSPAM is determined directly from the 0 QEC cycle
experiments and fixed when determining the fits. Thus, from the
fits, we obtain estimates of pcycle. The values of pSPAM and pcycle

are reported in Table IV.
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and experimentally measured error parameters (details in
Table VI). The error model includes simple depolarizing
gate noise, leakage errors, and modeling of coherent
dephasing noise during transport and cooling operations.
The simulation uses the same instructions that are gen-
erated by the compiler and sent to the quantum computer,
including the same gate decomposition, gate duration, and
transport operations.
Our analysis is presented in three sections. Section III A

describes how we use the measured data to complete our
microscopic system modeling and how we construct a
simple error channel at the logical level. Section III B
describes how the microscopic system model is used to
determine how individual error sources are manifested at
the logical level. Section III C describes our use of the
microscopic model to estimate the error levels required to
reach the pseudothreshold for this code.

A. Microscopic simulations and the
logical error channel

The complex physical layer error model can be distilled
to a much simpler logical error model described by an
asymmetric depolarizing channel,

ĒðρÞ ¼ ð1 − pLÞρþ pxX̄ρX̄ þ pyȲρȲ þ pzZ̄ρZ̄; ð1Þ

where the Pauli error probabilities px, py, and pz are fitting
parameters for both the experimental and simulation data.
Note that pL ¼ px þ py þ pz ensures the map is trace
preserving and pL is referred to as the logical error rate.
For individual basis states, only the Pauli operators that

do not commute with the state cause errors. For example,

the Z̄ basis is immune to Z̄-type noise but susceptible to
X̄- and Ȳ-type noise. Therefore, the error probabilities
associated with the different bases are given by the three
equations:

X̄ basis∶ pyz ¼ py þ pz;

Ȳ basis∶ pxz ¼ px þ pz;

Z̄ basis∶ pxy ¼ px þ py: ð2Þ

By fitting the experimental and simulated data of
individual basis states to exponential decay curves, the
probabilities pyz, pxz, and pxy are solved for and are
reported in Table IV. The system of equations in Eq. (2) can
then be inverted to solve for the depolarizing parameters
px, py, and pz and are reported in Table V.
For most of the error parameters, we have experimental

estimates (see Appendix D). However, accounting for
different sources of dephasing noise is not straightforward.
To account for dephasing, we vary the dephasing rate used
in the simulation and compare it with the experimental
results. The depolarizing parameters determine the logical
error rate pL, which we use to determine the best-fit
dephasing rate empirically.
The simulation and experimental results qualitatively

agree, suggesting that the most important sources of noise
are understood. However, further investigation is needed to
fully understand the impact of additional known errors and
unknown error sources. In particular, it is important that we
further characterize both coherent and incoherent phase
noise sources independent of QEC. We also note the bias in
the logical error model toward the Z̄ component and the

TABLE IV. Experimental and simulated logical SPAM error obtained from the data in Fig. 5. The average SPAM error rate is
1.6ð4Þ × 10−3 for experiment and 4.9ð1Þ × 10−4 for simulation, and the average QEC cycle error rate is 1.80ð6Þ × 10−2 for experiment
and 1.85ð7Þ × 10−2 for simulation.

SPAM QEC cycle

Basis Simulation Experiment Simulation Experiment

X̄∶ pyz 5.0ð1Þ × 10−4 1.8ð5Þ × 10−3 2.1ð1Þ × 10−2 1.89ð6Þ × 10−2

Ȳ∶ pxz 5.0ð1Þ × 10−4 1.6ð4Þ × 10−3 2.75ð4Þ × 10−2 2.4ð1Þ × 10−2

Z̄∶ pxy 4.8ð1Þ × 10−4 1.3ð4Þ × 10−3 7.3ð1Þ × 10−3 1.10ð4Þ × 10−2

TABLE V. Experimental and simulated logical SPAM and QEC cycle error channel rates for the channel in Eq. (1) given basis error
rates from Table IV.

SPAM QEC cycle

Error Simulation Experiment Simulation Experiment

px 2.4ð1Þ × 10−4 7ð4Þ × 10−4 7.1ð7Þ × 10−3 8.1ð6Þ × 10−3

py 2.4ð1Þ × 10−4 7ð4Þ × 10−4 2ð7Þ × 10−4 2.9ð6Þ × 10−3

pz 2.6ð1Þ × 10−4 1.1ð4Þ × 10−3 2.04ð7Þ × 10−2 1.61ð6Þ × 10−2

pL 7.4ð1Þ × 10−4 2.5ð4Þ × 10−3 2.77ð7Þ × 10−2 2.71ð6Þ × 10−2
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interesting asymmetry between the X̄ and Ȳ components.
While the Z̄ bias may be explained by the asymmetry in
the microscopic noise model from the presence of
dephasing, there is no such asymmetry between X and Y
in the physical layer error model. Therefore, we suspect
that the circuit structure tends to convert Z noise asym-
metrically; however, we leave a detailed analysis to
future work.
Since the dephasing errors manifest from different

sources (spatial and temporal magnetic field fluctuations,
relative phase drifts between different laser beams, etc.),
there are likely both coherent and incoherent sources of
qubit dephasing in our system. To gain an understanding of
the impact of coherent dephasing on the QEC protocol, we
ran both coherent (state-vector) and incoherent (stabilizer)
simulations. The coherent dephasing is modeled as the
channel,

RZðθÞρRZðθÞ† ¼ expð−iZθ=2Þρ expðþiZθ=2Þ; ð3Þ

which is applied between ideal gates where θ ¼
dephasing rate × duration. The duration corresponds to
the time it takes for transport operations or the qubit idling
time while operations are being applied to other qubits. For
the incoherent simulation, dephasing is modeled as the
Pauli twirled version of the coherent channel, where Z is
applied stochastically with a probability of

pdephase ¼ sinðθ=2Þ2: ð4Þ

The dephasing rate needed to account for the logical
QEC cycle error rate was 0.26 Hz for the coherent
simulation and 0.43 Hz for the incoherent simulation,
indicating that coherent buildup in the distance three
color code may affect its performance and should be
studied in future work. However, we expect such single-
qubit coherent noise to be less of an issue as the distance
of the code is increased as suggested by Ref. [75]. Note
that all simulation numbers reported were generated using
the coherent dephasing model; however, given identical
error parameters except for the dephasing rates mentioned
above, the results of the two simulations were nearly
identical.

B. Logical level error budget

How different error sources such as leakage and
dephasing translate from the physical level to the logical
level can be unclear. To understand how different micro-
scopic error sources contribute to QEC cycle logical errors,
we construct an error budget for three different physical
layer error categories: unitary gates (the single- and two-
qubit gates), measurement and initialization, and dephasing
noise. Here, measurement and initialization includes both

SPAM as well as midcircuit measurement and reset
(MCMR). Note that the three error categories contain
multiple noise mechanisms; for example, the unitary
gate errors contain not just depolarizing noise but also
spontaneous emission, which includes leakage as well (see
Appendix D for more details).
Ideally, errors at the physical level occurring with

probability OðpÞ should be suppressed by QEC to
Oðp2Þ. Therefore, we analyze the impact of errors using
a second-order model given by

pLðs; fpigÞ ¼ s
X

i

aipi þ s2
X

i;j

bijpipj

¼ s
X

i

Ai þ s2
X

i;j

Bi;j; ð5Þ

where pi are the relative probabilities of SPAM, two-qubit
gate, and dephasing errors at the physical level, and
Ai ≡ aipi and Bij ≡ bijpipj are coefficients we solve
for by scaling s and using a numerical fitting routine.
As discussed in the previous section, the pi parameters are
characterized independently, but the ai and bij coefficients
are complicated functions of both the circuit and error
structures that are currently not well understood. The Ai
and Bij coefficients are solved for using the microscopic
simulator. We first set two of the three error probabilities pi
and pj to zero and then calculate pLðs; pi ¼ 0; pj ¼ 0Þ in
simulations. By varying s in these simulations, we can fit
the simulation data to a parametrized curve with both linear
and quadratic components to determine Ak and Bkk for one
particular error category indexed by k. This is repeated for
the two other error categories, giving all three elements of A
and the three diagonal elements of B. The off-diagonal
elements of B are solved for by only setting one pi to zero
and setting s ¼ 1; for example, B1;2¼ 1

2
pLðs¼1;p3¼0Þ=

ðA1þA2þB1;1þB2;2Þ. The estimated individual and
correlated contributions to the logical error are shown
in Fig. 6.
The error budget breakdown indicates that the noise due

to unitary gates and dephasing account for the majority of
the logical error, accounting for approximately 45% and
49%, respectively, while measurement and initialization
account for the remaining 6%. However, studying only the
individual contributions obtained by the calculation in
Fig. 6, we miss some important information contained in
A and B. As can be seen in Fig. 6, the contribution to the
logical error that is linear in the physical errors A is
dominated by the gate errors. Ideally, the logical error
probability should be quadratic in the gate error, and the
large linear dependence is likely due to the leakage error
associated with the gate operations. This point will be
further illustrated below as we study the pseudothreshold of
the code.
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C. Pseudothreshold estimates

While the error budget is useful in studying the current
impact different physical error sources have on the QEC
protocol, we now investigate a simulation tool better suited
to predicting the protocol performance assuming improved
physical error rates.
For QEC to be helpful in computations, logical level

error rates must be below the physical level error rates. This
crossover point is known as the “pseudothreshold.” In
general, pseudothreshold estimates are difficult because
they require a detailed understanding of the system’s
underlying physics. However, in cases where the dominant
physical noise mechanism is known, one method is to scale
that noise mechanism in simulations and solve for the
pseudothreshold, defining it as the point where the logical
error rate is equal to the dominant physical noise source.
The largest error rate in the simulation model is the two-
qubit depolarizing error rate of p2 ¼ 3.1 × 10−3 (see
Appendix D for details). Note that the two-qubit gate
contributes not only depolarizing noise, but also leakage
noise via spontaneous emission at a probability of
5.5 × 10−4; however, to simplify discussions, we consider
only the two-qubit depolarizing rate. Also, while dephasing
has a large impact on the logical error budget, the physical
level dephasing error rate per physical qubit operation is an
order of magnitude lower than p2. That is, with a dephasing
rate of 0.26 Hz and each duration between gates, the
stochastic error probability averaged over the entire
circuit is approximately 2.2 × 10−4 for each qubit. Thus,
in the simulations, on the physical per operation level, the
dephasing error channel has a lower error rate than the two-
qubit depolarizing rate.
While our simulations lack the level of detail needed for

precise estimates, we use a crude model to estimate system

improvements needed to pass the conjectured pseudothres-
hold. To this end, we first simulated the logical error rate of
a single QEC cycle and scaled all physical error rates used
(see Table VI) by a common scaling factor. This is a coarse
view of how much our dominant bare physical error (the
two-qubit gate) needs to improve to reach the simulated
pseudothreshold. As seen in Fig. 7, simply improving all
our errors by a common factor is not enough to reduce our
logical error rate below the two-qubit depolarizing error
rate p2. To understand this, we also simulated three other
models with different relative error budget breakdowns,
first reducing the dephasing rate to 1=10 the original value,
then reducing the leakage rate to 1=10 the original value,
and then both reducing the dephasing and leakage rate to
1=10 their original value. By scaling these additional error
models by an overall scaling factor, we find that sup-
pressing the dephasing rate is likely not sufficient to reach
the pseudothreshold, but that substantially reducing the
relative leakage rate and the dephasing rate should put the
pseudothreshold within reach if the two-qubit gate error can
be reduced by approximately a factor of 3.

FIG. 6. The logical qubit error budget. The pie chart shows the
percent contribution to the logical QEC cycle error rate from the
physical noise due to SPAM and MCMR, unitary gates, and qubit
dephasing. A and B are the vector and matrix in Eq. (5) and the
elements are ordered as {SPAM and MCMR, gates, dephasing}.
The individual contributions in the pie chart indexed by i are
calculated as ðAi þ

P
j BijÞ=ð

P
i Ai þ

P
ij BijÞ.

FIG. 7. Comparison of the logical error rate to different error
models as the physical error rates are scaled. The dashed line is
equal to the physical layer two-qubit depolarizing error rate, p2,
times the scaling factor defining the x axis, which we use to
define our pseudothreshold line. The four solid lines represent the
logical qubit error rate for different simulated error model
scenarios. They are plotted as a function of an overall scaling
of the error model parameters. The red line (circles) uses our
current error model parameters estimate, which are detailed in
Table VI; the blue line (triangles) was generated assuming our
current error parameters except with the dephasing rate being
reduced by 10×; the green line (squares) was generated assuming
our current error parameters except with the leakage rate being
reduced by 10×; the purple line (stars) was generated by starting
with our current error parameters and suppressing both the
dephasing and the leakage rates by 10×. The vertical dotted line
(x ¼ 1=3) is approximately where the purple line crosses the
pseudothreshold. We find that reducing the leakage will be key to
achieving a QEC cycle logical error rate below pseudothreshold
(when the logical error rate is less than the leading physical error
rate). Note that some error bars are smaller than the markers.
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The relative importance of taming leakage errors is not
unexpected. Most QEC protocols were designed to correct
errors within the qubit manifold, an assumption that
leakage errors violate. When leakage errors occur (e.g.,
during spontaneous laser scattering events), leaked qubits
can spread errors as they interact with other qubits and the
circuits for the color code are, in fact, only FT to
qubit errors and not leakage errors. While leakage is not
a leading source of error in our system, if left untreated it
will saturate the system [76], eventually corrupting
all the qubits and the logical information. As shown in
Ref. [77], leakage errors can be reduced by roughly 3
orders of magnitude through physical mitigation tech-
niques. Alternatively, circuit-level techniques can be incor-
porated in the QEC procotol [51,78,79].
Additionally, we believe there are routes to improving

dephasing rates, including dynamical decoupling, addi-
tional shielding, and spatial phase tracking in the control
software to account for spatial inhomogeneities in the
magnetic field.

IV. CONCLUSION

In this work, we demonstrated the primitives needed for
quantum error correction restricted to a single logical qubit,
including high-fidelity state preparation and readout of
logical basis states and a magic state, logical single-qubit
gates, and repeatable error correction cycles. By establish-
ing the necessary hardware capabilities along with detailed
simulations of the processes, we can now begin developing
a QCCD system architecture that is optimized for compu-
tations at the logical level.
The experimental data and simulated results highlight

the need for substantial error rate improvements to get well
below the pseudothreshold. The largest contributor to the
physical level error budget is the two-qubit gate and, as
noted in Refs. [53,80], we believe the dominant error
mechanisms can be suppressed with upgraded electrode
voltage sources and laser systems. Using the simulator
developed here, we identify leakage and dephasing as
crucial sources of noise. Interestingly, while leakage is not
currently a dominant physical error, scaling the physical
error rates in simulation indicates that leakage will domi-
nate the logical error rate. While leakage errors are
particularly detrimental to code performance, they can be
converted to Pauli errors with the addition of a leakage
repumping routine [77] and should not present a funda-
mental roadblock. Perhaps surprisingly, even though
dephasing errors are relatively small compared to two-
qubit gate errors at the physical level, our logical qubit error
budget indicates dephasing errors have a large impact on
the code performance. Fortunately, trapped-ion hyperfine
qubits have been shown to exhibit much longer coherence
times [81] compared to our current dephasing rates, and we
believe this particular error can be significantly improved
by a combination of improved shielding, dynamical

decoupling, and accurate mapping of magnetic field inho-
mogeneities and spatial phase tracking in the control
software. Additionally, dephasing errors can be suppressed
further through speed improvements, which are currently
bottlenecked by laser cooling and transport operations, both
of which can be substantially improved through advanced
techniques [82,83], andwe note that smaller trap geometries
[84] or two-dimensional topologies [85] could also improve
transport times. At the logical level, some interesting noise
mitigation techniques include Pauli or Clifford twirling
[86–89], randomized compiling [90,91], circuit-level gadg-
ets to suppress coherent errors [92–94] and leakage errors
[78,79], subsystem codes, codes designed for biased noise
[95], and larger distance codes [75].
These experiments and emulation tools pave the way for

codesigning QCCD systems and QEC software to imple-
ment large-scale fault-tolerant quantumcomputers. The next
milestones on the road to a fully quantum error-corrected
computer include logical operations between multiple
qubits [33,96,97] and operation below the pseudothreshold.
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APPENDIX A: EXPERIMENTAL METHODS

The physical qubits are encoded in the 171Ybþ S1=2
hyperfine clock states jF¼ 0;mf ¼ 0i and jF ¼ 1; mf ¼ 0i
with F andmf, respectively, being the total angular momen-
tum and the z-projection quantum numbers. Gating oper-
ations are implemented with stimulated Raman transitions
[53,98] with single-qubit gates being performed with two-
ion fYb;Bag crystals using two copropagating circularly
polarized beams at 368.0 nm, and two-qubit operations
being performed with four-ion fYb;Ba; Ba; Ybg crystals
using two beamswith awave-vector differenceΔk coupling
to the axial motion. The single 171Ybþ axial center-of-mass
mode frequency is 1.0 MHz, and we use the first higher-
order mode at 1.74 MHz for entangling operations. Before
any two-qubit gate operations, motional excitations are
cooled out of the system using a combination of Doppler
and resolved sideband cooling on the 138Baþ ions.
We characterize physical qubit operations using error

rates extracted from parallel randomized benchmarking
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[99]. Physical qubits are initialized and measured
using standard optical pumping and state-dependent
fluorescence techniques [100] with an average SPAM error
of 2.4ð9Þ × 10−3, where the uncertainty indicates the
typical variations across the zones and over time. During
qubit measurement and reset, laser scatter and ion fluores-
cence absorbed by idle qubits cause errors ranging from
<1.0 × 10−4 to 3 × 10−3 depending on the measurement
zone and the other qubits’ physical locations. Single-qubit
and two-qubit gate errors are, respectively, measured to be
7ð1Þ × 10−5 and 3.0ð1Þ × 10−3. The memory error in a
depth-one circuit is benchmarked at < 5ð3Þ × 10−4. Our
estimates for errors in transport operations, such as physical
swap, are negligible compared to other errors.
We compile OpenQASM to a hardware-specific pulse

language that combines electrode and laser control. The
sequences are executed with arbitrary waveform generators
driving electrode voltages and direct digital synthesizers
components controlling laser pulses, both sequenced by a
distributed network of controllers which combine program-
mable logic components with ARM microprocessors. The
microprocessor allows for sequencing the error corrections
as optional laser pulses embedded in a fixed ion-transport
schedule. To execute conditional gates, qubit measurements
are analyzed and broadcast by a single microprocessor.
Typically, the conditional information is distributed in
parallel with unconditional circuit operations, and in worst-
case conditions adds <250 μs of distribution latency.

APPENDIX B: FIT EQUATION

The decay equation used to fit to logical error rates and
presented in the captions of Figs. 4 and 5 is derived from
coupled recursive relation equations. As an example and
without loss of generality, if the j0iL state is chosen and
initialization and measurement is done with fidelity
1 − pSPAM, and each QEC cycle preserves j0iL with
probability 1 − pcycle and flips the measurement outcome
to j1iL with probability pcycle, the measurement dynamics
are described by the equations

p0ðcþ 1Þ ¼ ð1 − pcycleÞp0ðcÞ þ pcyclep1ðcÞ;
p1ðcþ 1Þ ¼ ð1 − pcycleÞp1ðcÞ þ pcyclep0ðcÞ; ðB1Þ

with the initial conditions being

p0ð0Þ ¼ 1 − pSPAM;

p1ð0Þ ¼ pSPAM: ðB2Þ

Here, the variables p0ðcÞ and p1ðcÞ give the respective
probabilities of measurement outcomes j0iL and j1iL as a
function of the number of QEC cycles c. The solutions
to these equations are p0ðcÞ ¼ 0.5 − ðpSPAM − 0.5Þð1 −
2pcycleÞc and p1ðcÞ ¼ 0.5þ ðpSPAM − 0.5Þð1 − 2pcycleÞc

as shown in the main text for an arbitrary state initialization.
Note that since p1ðcÞ indicates a logical error has occurred,
since the state started as j0iL in the derivation, p1ðcÞ is
equivalent to pLðcÞ.
It is interesting to note that the decay equation can also

be derived from the continuous decay curve,

pLðcÞ ¼
1

2
½1 − a expð−bcÞ�; ðB3Þ

where a and b are fit parameters. One can then solve for
pSPAM and pcycle by noting that

pSPAM ¼ pLð0Þ ¼
1

2
ð1 − aÞ;

pcycle ¼ pLð1Þja¼1 ¼
1

2
½1 − expð−bÞ�: ðB4Þ

One then finds that

a ¼ 1 − 2pSPAM;

b ¼ − lnð1 − 2pcycleÞ: ðB5Þ
And after substituting Eqs. (B5) into Eq. (B3), one

recovers

pLðcÞ ¼ 0.5þ ðpSPAM − 0.5Þð1 − 2pcycleÞc; ðB6Þ
the same logical decay equation recovered in the discrete
case and mentioned in the captions of Figs. 4 and 5.

APPENDIX C: ADDITIONAL ANALYSIS OF
EXPERIMENTAL PERFORMANCE

In this Appendix, we provide additional details on the
performance of the QEC cycles experiments that the reader
might find informative.
As discussed in Sec. II A, the Pauli frame corrections

determined in the QEC cycles experiments were stored and
tracked in software. At the end of the computation (see
Sec. II A 4), the correction was combined with the meas-
urement of the logical operator and compared to the
expected result (corresponding logical state intended to
be initialized). By the end of each QEC computation,
numerous values are stored in classical registers. This
includes the expected logical outcome, the uncorrected
logical measurement outcome, the corrected logical meas-
urement outcome, and the final Pauli frame correction.
(Note that the syndrome history is not stored; therefore, we
do not have the data necessary to determine corrections
after the quantum computation.) Since both the uncorrected
and corrected logical outcomes are stored by the quantum
program, we can then compare the error rates as seen in
Fig. 8. While this is not a comparison of the performance of
a physical algorithm to a logical one, we see from the figure
that the corrections as determined by real-time decoding
resulted in a net reduction in logical error rate compared to
running the algorithm without decoding.
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In addition to the above classical information that is
stored in classical register, the branching taken during each
QEC cycle was also tracked. That is, the branching is the
conditional circuit path taken in multiple stages of syn-
drome extraction in a QEC cycle as discussed in Sec. II A 2
and depicted in Fig. 10. Using the labeling of the stages of
syndrome extraction as given in Fig. 10, we can define
three paths taken through a QEC cycle. The first path “A” is
when no changes in flagged syndrome measurements are
detected. This is the only path where the final round of
syndrome extraction is not triggered and can be labeled as
fSf1 ; Sf5 ; Sf6g → fSf2 ; Sf3 ; Sf4g. The second path “B” is when
a change in flagged syndrome measurements is detected
by the first triple of measured stabilizer and is labeled
fSf1 ; Sf5 ; Sf6g → fS1; S2; S3; S4; S5; S6g. The final path “C”
occurs when the second set of flagged syndrome mea-
surements detected a change. This path includes the maxi-
mum number of syndrome extraction and can be labeled
fSf1 ; Sf5 ; Sf6g → fSf2 ; Sf3 ; Sf4g → fS1; S2; S3; S4; S5; S6g.
As shown in Fig. 9, the probability per QEC cycle

of taking the path A is roughly 77% while the probability of
taking path B is approximately 12% and the probability of
taking C is about 10%. This indicates for each cycle the
majority of the time no change in physical error is detected
and with approximately equal probability a change in error
is found by either the first set of stabilizer measure or the
second. Figure 9 also indicates a slight decrease in the
probability of path A with increasing QEC cycles, sug-
gesting a small increase in the probability of error with
increased circuit depth. The error dependence on the circuit
depth is not yet well understood and requires further study.

APPENDIX D: SIMULATIONS AND MODELING

The simulator used in this work is a modified version of
the software PECOS [74] that receives instructions directly
from the compiler, which is composed of the native
quantum gate set, classical operations, and transport oper-
ations. That is, the instructions that were used to encode the

FIG. 8. Comparing the observed logical error rates for both
uncorrected and corrected logical bases results over many QEC
cycles. Averages (points) and standard deviations (error bars)
were determined by jackknife resampling between individual
experiments [68]. The lines are fits to the experimental averages,
where the fits are exponential decay curves pLðcÞ ¼
0.5þ ðpSPAM − 0.5Þð1 − 2pcycleÞc (see Appendix B for deriva-
tion). Here pLðcÞ is the logical error rate of a cycle c and logical
basis L, pSPAM the logical SPAM error, and pcycle is the logical
QEC cycle error. Note that pSPAM is determined directly from the
0 QEC cycle results and fixed when determining the fits.

FIG. 9. Comparing the circuit path taken through the QEC
cycles. Data averages and standard deviations were determined
by jackknife resampling between individual experiments [68].
Horizontal dotted lines correspond to the probability of taking the
indicated path after combining the data regardless of number of
QEC cycles. Labels A, B, and C are defined in Appendix C.

TABLE VI. Simulation error parameters. Except for the de-
phasing rate, the parameters used come from experimental
measurement or well-defined microscopic noise analysis. Values
based on microscopic noise analysis include further break-down
of the errors such as initialization error consisting of 1=3 bit-flip
errors and 2=3 leakage, and spontaneous emission consisting of
1=2 leakage error, 1=4X error, and 1=4Z error. The dephasing
rates used in the simulations were determined separately for the
incoherent and coherent simulations by adjusting the dephasing
rate until the logical error rate for a QEC cycle matched the value
found from the experiment.

Operation Channel Probability

Initialization Bit flip 1.66 × 10−6

Leakage 3.33 × 10−6

X=Y Single-qubit gate Depolarizing 7 × 10−5

Spontaneous emission 1.25 × 10−5

Two-qubit gate Depolarizing 3.1 × 10−3

Spontaneous emission 5.5 × 10−4

Measurement Bit flip 2.4 × 10−3

Cross talk Initialization 2.3 × 10−5

Measurement 2.3 × 10−4

Operation Channel Rate (Hz)

Dephasing Coherent 0.26
Incoherent 0.43
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QEC experiments in this paper and were executed by the
simulator were the same instructions that the QCCD device
was instructed to perform (before being translated to
hardware-specific pulses). The simulator models errors
both coherently using a state-vector back end [101] as
well as incoherently using a stabilizer simulation [66]. All
simulation results presented in this paper are coherent
simulations; however, both the coherent and incoherent
simulations produce nearly identical results given a dephas-
ing rate of 0.26 and 0.43 Hz, respectively.
The error model includes simple depolarizing gate noise,

leakage errors, and dephasing noise during transport and
cooling operations. Errors on physical qubits are modeled
as stochastic processes (excluding dephasing). Most errors
are applied with probabilities determined by independent
experiments as summarized in Table VI, except for dephas-
ing errors. The coherent simulation modeled dephasing as
RZðθÞ following ideal gates, where θ is the dephasing rate,
0.26 Hz times the time between gates due to qubit idling
or transport operations. For the incoherent simulations,
dephasing errors are applied as stochastic Z errors between
gate operations with a probability of p ¼ sinðθ=2Þ2. That
is, the probability obtained from Pauli twirling the coherent
channel. Note that here the same θ is used as the coherent
model. As discussed in the main text, both dephasing rates
(0.26 and 0.43 Hz) were empirically found.
Physical qubit initialization to j0i occurs at the beginning

of each circuit and after each measurement. The fidelity of
this procedure is limited by off-resonant coupling, which is
numerically simulated. The residual population remains in
the F ¼ 1 manifold, 2=3 of which is distributed in the

leakage states jF ¼ 1; mf ¼ �1i. The single-qubit and
two-qubit gate errors are modeled as being dominated
by a depolarization process whose amplitude is measured
via randomized benchmarking experiments. The sponta-
neous emission that occurs during stimulated Raman
transitions is estimated through atomic physics calculations
closely following Ref. [102]. While the spontaneous
emission is estimated to be small compared to the total
error, the leakage induced by the process is more detri-
mental than errors that keep the ion in the qubit subspace.
We, therefore, explicitly include this error in addition to the
depolarizing error. Note that the spontaneous emission
process is modeled as causing leakage with probability 1=2,
and causing X and Y errors each with probability 1=4.
Single-qubit rotations about the z axis are done entirely in
software, and therefore contribute negligible errors. We
model measurement errors as bit flips and note that leaked
qubits return measurement results that are indistinguishable
from j1i due to the measurement process described in
Ref. [100].

APPENDIX E: FLOW CHARTS

Here we present in Figs. 10–13 an overview of the
circuits and the control flow including a detailed schematic
of the QEC cycle, the active correction experiment, and the
non-FT encoding circuit used in the magic state prepara-
tion. Additionally, we provide examples of two different
error configurations in an effort to better explain the two-
stage decoder used.
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FIG. 10. A detailed schematic of the QEC demonstration. The encoding circuit first prepares j0iL and uses an ancilla to verify this
preparation. If the ancilla measured is found in j0i, the circuit succeeded and moves to the next step. If the ancilla is found to be in j1i,
then all qubits are reinitialized and the circuit ran again until successful, up to 3 times. After a maximum of three initialization attempts,
we proceed by applying single-qubit unitaries to make a logical rotation to prepare the desired logical state. Adaptive QEC cycles are
then performed. The first set of three syndromes is measured using the flag circuit fSf1 ; Sf5 ; Sf6g. If these syndromes do not indicate an

error, then the second set of three syndromes is measured fSf1 ; Sf3 ; Sf4g, and if no errors are indicated, the syndrome extraction protocol is
complete. If either of the flagged circuits does indicate an error, the protocol moves to measure all six stabilizers using the unflagged
circuit fS1; S2; S3;…g, thus completing the syndrome extraction. The syndrome information is then fed to the decoder to infer a
correction, and the Pauli frame is updated. Finally, the state is rotated to the appropriate basis for measurement using single-qubit
unitaries. Upon measurement, syndrome information is inferred and sent to the decoder for a final correction.
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FIG. 11. An outline of the decoder procedure and two different error configurations. (a) A single-qubit hook error occurs on an ancilla
and spreads to two data qubits. This triggers the additional round of syndrome extraction using the unflagged circuits. We denote the
errors on the data qubits (gray circles) and the changed syndrome measurements (black circles) pictorially on the color code figure. (b) A
single-qubit error occurs on a data qubit and causes a change in the syndrome measurements, again triggering an additional round of
syndrome extraction. In both (a) and (b) the final round of syndrome measurements are identical, meaning the first step of the decoder
cannot distinguish between these two error configurations. The second step of the decoder compares the syndromes measured within the
QEC cycle to distinguish between cases such as this. We see that the two sets of measured syndromes are different for the hook error but
the same for the single-qubit data error.
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FIG. 12. A schematic of the S̄ gate experiments. In this set of experiments, we compare physically applied corrections to implementing
the corrections in software using the Pauli frame. The main elements are the same as those used in Fig. 10. First, using the FT encoding
circuit, we prepare j0iL and rotate to jþiL with an H̄ gate. We then perform one QEC cycle to generate corrections. Next, we either
physically apply corrections to the qubits or update the Pauli frame in software, followed by physically applying the S̄ gate. We then
apply one last QEC cycle to generate further corrections, rotate to the Ȳ basis, and measure the data qubits. The final corrective steps
infer the syndromes, decode, and apply corrections to the output data as outlined in the main text and Fig. 10.

FIG. 13. A non-fault-tolerant encoding circuit used to prepare the magic state T̄jþiL.
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APPENDIX F: PSEUDOCODE

In this Appendix, we present pseudocode in Figs. 14–22 in the style of PYTHON to more clearly describe the specifics of
the hybrid quantum and classical programs ran as experiments in this paper.

FIG. 14. The main program for the repeated QEC cycle and the magic state experiment.
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FIG. 15. The main program for the active versus software correction experiment with the logical S.
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FIG. 16. Rotate logical j0i to the appropriate state.
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FIG. 17. A QEC cycle.

REALIZATION OF REAL-TIME FAULT-TOLERANT QUANTUM … PHYS. REV. X 11, 041058 (2021)

041058-21



FIG. 18. Rotate measurement to the correct logical basis.
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FIG. 19. A measurement in the logical Z basis.
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FIG. 20. Determining if the result is expected.
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FIG. 22. An additional decoder that updates the correction based on flag information.

FIG. 21. The basic 2D decoder that infers if a logical error has occurred.

REALIZATION OF REAL-TIME FAULT-TOLERANT QUANTUM … PHYS. REV. X 11, 041058 (2021)

041058-25



[1] R. P. Feynman, Quantum Mechanical Computers, Found.
Phys. 16, 507 (1986).

[2] P. W. Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer, SIAM Rev. 41, 303 (1999).

[3] P. W. Shor, Algorithms for Quantum Computation:
Discrete Logarithms and Factoring, in Proceedings of
the 35th Annual Symposium on Foundations of Computer
Science (IEEE, Piscataway, NJ, 1994), pp. 124–134.

[4] D. S. Abrams and S. Lloyd, Simulation of Many-Body
Fermi Systems on a Universal Quantum Computer, Phys.
Rev. Lett. 79, 2586 (1997).

[5] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Simulated Quantum Computation of Molecular
Energies, Science 309, 1704 (2005).

[6] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher,
M. Roetteler, and M. Troyer, Quantum Computing
Enhanced Computational Catalysis, Phys. Rev. Research
3, 033055 (2021).

[7] R. Orus, S. Mugel, and E. Lizaso, Quantum Computing for
Finance: Overview and Prospects, Rev. Phys. 4, 100028
(2019).

[8] P. W. Shor, Scheme for Reducing Decoherence in Quantum
Computer Memory, Phys. Rev. A 52, R2493 (1995).

[9] A. R. Calderbank and P.W. Shor, Good Quantum Error-
Correcting Codes Exist, Phys. Rev. A 54, 1098 (1996).

[10] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[11] D. Aharonov and M. Ben-Or, Fault-Tolerant Quantum
Computation with Constant Error Rate, SIAM J. Comput.
38, 1207 (2008).

[12] A. Y. Kitaev, Quantum Error Correction with Imperfect
Gates, Quantum Communication, Computing, and Meas-
urement (Springer, New York, 1997), pp. 181–188.

[13] E. Knill, R. Laflamme, and W. Zurek, Threshold Accuracy
for Quantum Computation, arxiv:quant-ph/9610011.

[14] D. P. DiVincenzo, The Physical Implementation of Quan-
tum Computation, Fortschr. Phys. 48, 771 (2000).

[15] D. Gottesman, Stabilizer Codes and Quantum Error
Correction, arxiv:quant-ph/9705052.

[16] D. Gottesman, An Introduction to Quantum Error
Correction and Fault-Tolerant Quantum Computation,
in Proceedings of Symposia in Applied Mathematics
(American Mathematical Society, Providence, RI, 2010),
Vol. 68, pp. 13–58.

[17] D. Gottesman, Theory of Fault-Tolerant Quantum
Computation, Phys. Rev. A 57, 127 (1998).

[18] Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A.
Dunsworth, D. Sank, C. Quintana, M. McEwen, R.
Barends, P. V. Klimov et al. (Google Quantum AI),
Exponential Suppression of Bit or Phase Errors with Cyclic
Error Correction, Nature (London) 595, 383 (2021).

[19] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme,
W. H. Zurek, T. F. Havel, and S. S. Somaroo, Experimental
Quantum Error Correction, Phys. Rev. Lett. 81, 2152
(1998).

[20] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R.
Blakestad, J. Britton, W.M. Itano, J. D. Jost, E. Knill, C.
Langer et al., Realization of Quantum Error Correction,
Nature (London) 432, 602 (2004).

[21] P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D.
Nigg, M. Chwalla, M. Hennrich, and R. Blatt, Experi-
mental Repetitive Quantum Error Correction, Science
332, 1059 (2011).

[22] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M.
Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau,
Repeated Quantum Error Correction on a Continuously
Encoded Qubit by Real-Time Feedback, Nat. Commun. 7,
11526 (2016).

[23] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio,
S. M. Girvin, and R. J. Schoelkopf, Realization of Three-
Qubit Quantum Error Correction with Superconducting
Circuits, Nature (London) 482, 382 (2012).

[24] D. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen,
O.-P. Saira, and L. DiCarlo, Detecting Bit-Flip Errors
in a Logical Qubit Using Stabilizer Measurements, Nat.
Commun. 6, 6983 (2015).
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