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In Heisenberg models with exchange anisotropy, transverse spin components are not conserved and can
decay not only by transport, but also by dephasing. Here, we utilize ultracold atoms to simulate the dynamics
of 1D Heisenberg spin chains and observe fast, local spin decay controlled by the anisotropy. However, even
for isotropic interactions, we observe dephasing due to a new effect: an effective magnetic field created by
superexchange. If spatially uniform, it leads only to uniform spin precession and is, therefore, typically
ignored. However, we show through experimental studies and extensive numerical simulations how this
superexchange-generated field is relevant and leads to additional dephasing mechanisms over the exchange
anisotropy: There is dephasing due to (i) inhomogeneity of the effective field from variations of lattice depth
between chains; (ii) a twofold reduction of the field at the edges of finite chains; and (iii) fluctuations of the
effective field due to the presence of mobile holes in the system. The latter is a new coupling mechanism
between holes and magnons. All these dephasing mechanisms have not been observed before with ultracold
atoms and illustrate basic properties of the underlying Hubbard model.
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I. INTRODUCTION

The famous Heisenberg Hamiltonian, also called the
Heisenberg–Dirac–van Vleck Hamiltonian [1–3], describes
localized particles on a lattice interacting via spin-exchange
couplings. Despite its apparent simplicity, it serves as a
paradigmatic model for a host of emergent phenomena, such
as ferromagnetism (due to Coulomb exchange, also called
potential or direct exchange), antiferromagnetism (due to
kinetic exchange from tunneling, also called superexchange)
[4], and spin-glass physics [5], as well as exotic states of
matter like topologically ordered quantum spin liquids [6].
The dynamics of such models is also very rich and multi-
faceted and is under active, intense investigation. For
example, in one dimension, Heisenberg spin models (with
spin quantum number S ¼ 1=2) have the special property of
being integrable, whereby stable quasiparticles exist at all

temperatures. This gives rise to a breakdown of simple
hydrodynamics with accompanying varied spin transport
behaviors [7–11]. Understanding this has led to the recent
development of a theory of generalized hydrodynamics
[12,13]. In higher dimensions, the interplay of spontaneous
symmetry breaking can lead to long-lived, metastable,
prethermal states in addition to the onset of regular spin
diffusion [14–16] or even turbulent relaxation with universal
scaling of spin-spin correlations [17].
Ultracold atoms in optical lattices forman ideal platform to

realizeHeisenberg spinmodels and probe their dynamics in a
controlled fashion [18]. In deep lattices where atoms are
localized and Mott insulators form [19], superexchange
processes via second-order tunneling yield effective
Heisenberg spin models, with potential tunability of the
strength, sign, and anisotropy of the spin-exchange inter-
actions [20–23]. Until very recently, all experimental studies
addressed the special case of an isotropic Heisenberg model
[24–31]. However, in Ref. [32], we show how to overcome
this limitation and implement Heisenberg models with
tunable anisotropy of the nearest-neighbor spin-spin cou-
plings, by using 7Li and varying the interactions through
Feshbach resonances.We are able to show that the anisotropy
profoundly changes the nature of transport of longitudinal
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spin components after a quantum quench from a so-called
longitudinal spin helix [Fig. 1(b)] and observe ballistic,
subdiffusive, diffusive, and superdiffusive behavior in differ-
ent parameter regimes. These results bear some similarities
with those of spin transport close to equilibrium but strik-
ingly differ in other aspects, prompting the need for further
theoretical investigation.
In this paper, we study the relaxation of transverse spin

components after quantum quenches from a transverse spin
helix [Fig. 1(a)] and observe even more dramatic effects of
the anisotropy. In the classical limit, any transverse spin
helix for any anisotropy is stationary, since the torques
exerted on a given spin by its neighboring spins cancel
exactly (see the Appendix C 1). Therefore, what we study
here are the effects of quantum fluctuations on their
stability. In contrast to longitudinal spin patterns, which
can decay only by transport, transverse spin components
can decay also by dephasing. We focus here on two
paradigmatic models, which represent complementary spin
physics: the XX model, which has only transverse spin-spin
couplings and can be mapped to a noninteracting system of
fermions, and the XXX model, which has isotropic spin
couplings. For the XX model, we observe and explain that
the decay is faster for spin-helix patterns with longer

wavelengths, in strong contrast to spin transport, where
slower dynamics occurs for longer modulations. We also
identify several dephasing mechanisms not discussed
before. For the XXX model, we identify a symmetry-
breaking term in the Bose-Hubbard model: an effective
magnetic field caused by different scattering lengths for the
spin j↑i and spin j↓i states. This superexchange-induced
effective magnetic field is often ignored, since a spatially
uniform field can be eliminated in the bulk by going into an
appropriate corotating frame. Here, we show that the
presence of the effective field is actually significant and
gives rise to three additional dephasing mechanisms, all of
which more or less contribute equally, resulting in drasti-
cally different decay behavior of spin-helix patterns with
different orientations, i.e., transverse or longitudinal. (Both
would have naïvely been expected to decay with identical
timescales for isotropic spin interactions.) One is an
inhomogeneous effect where the effective magnetic field
is nonuniform between different chains in our sample. This
can be eliminated with a spin-echo technique. The second is
due to dephasing occurring at the ends of finite chains. The
third is due to the presence of mobile holes resulting in a
fluctuating effective magnetic field in the bulk, i.e., a hole-
magnon coupling.
Our work shows the limitations of a pure spin model in

capturing spin dynamics realized with ultracold atoms and
demonstrates the need for a theoretical model explicitly
featuring hole-magnon couplings (the so-called bosonic t̃-J
model) in order to reach a more complete description of
experiments. The new insight into hole-magnon coupling
should be important for other systems and materials where
such couplings are present, such as high-temperature
superconductors [33–35].

II. EXPERIMENTAL METHODS

The spin models are implemented with a system of two-
component bosons in an optical lattice, which is well
described by the Bose-Hubbard model. These two states
(lowest and second-lowest hyperfine states of 7Li), labeled
j↓i and j↑i, forma spin-1=2 system. In the idealized scenario
of a Mott insulating regime at unity filling, bosons cannot
tunnel, and the effective Hamiltonian for the remaining spin
degree of freedom is given by the spin-1=2Heisenberg XXZ
model [20–23]:

H¼
X
hiji

�
JxyðSxi Sxj þSyi S

y
jÞþJzS

z
iS

z
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hz
2
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�
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where Sx, Sy, and Sz are the spin-1=2 Pauli operators
and the sum is over nearest-neighbor pairs of sites hiji. In
leading order, one obtains for the transverse coupling
Jxy ¼ −4t̃2=U↑↓ and for the longitudinal coupling
Jz ¼ 4t̃2=U↑↓ − ð4t̃2=U↑↑ þ 4t̃2=U↓↓Þ, both mediated by
superexchange. Here, t̃ is the tunneling matrix element
between neighboring sites, while U↑↑, U↑↓, and U↓↓ are
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FIG. 1. Geometry of the experiment. The initial state is a
transverse (a) or longitudinal (b) spin helix where the spin vector
winds within the Sx-Sy plane (a) or Sz-Sx plane (b). The
transverse helix (a) is a pure phase modulation of spin j↑i and
j↓i states, whereas the longitudinal helix (b) also involves
population modulation. Deep optical lattices along the x and y
directions create an array of independent spin chains. The z lattice
is shallower and controls spin dynamics along each chain.
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the on-site interaction energies. The effective magnetic field
strength is hz ¼ 4t̃2=U↑↑ − 4t̃2=U↓↓. Note that the total
magnetization

P
i S

z
i in the Sz direction is conserved by the

Hamiltonian.
The magnitude of superexchange can be varied over 2

orders of magnitude by changing the lattice depth, which
scales the entire Hamiltonian. The anisotropy Δ ≔ Jz=Jxy
is controlled via an applied magnetic field which tunes the
interactions through Feshbach resonances in the lowest two
hyperfine states. In the regime studied here, the transverse
coupling is positive (Jxy > 0). The ability to tune the
anisotropy over a wide range of values, both positive
and negative, allows us to explore dynamics beyond
previous experiments [24–28] in which Δ ≈ 1.
One-dimensional (1D) chains are created by two

perpendicular optical lattices whose depths Vx,Vy ¼ 35ER
are sufficient to prevent superexchange coupling on exper-
imental timescales. A third orthogonal lattice along the z
direction with adjustable depth Vz controls the superex-
change rate in the chains (Fig. 1). Here, ER ¼ h2=ð8ma2Þ
denotes the recoil energy, where a ¼ 0.532 μm is the lattice
spacing, m the atomic mass, and h Planck’s constant. After
preparing a transverse spin helix [Fig. 1(a); this work] or a
longitudinal spin helix [Fig. 1(b); as in our previous work
[32]] withwavelength λ (andwave vectorQ ¼ 2π=λ) in each
chain [27,36,37], time evolution is initiated by rapidly
lowering Vz. The dynamics following this quench is then
(approximately) governed by the 1D XXZ model Eq. (1).
After an evolution time t, the dynamics is frozen by rapidly
increasing Vz, and the atoms are imaged in the j↑i state via
state-selective polarization-rotation imaging with an optical
resolution of about six lattice sites. For imaging the trans-
verse spin, we apply a π=2 pulse first, so that we observe the
magnetization in the Sx direction. To distinguish homo-
geneous from inhomogeneous dephasing, we can use a spin
echo by applying a π pulse (with a typical duration of
tπ ¼ 150 μs ≪ ℏ=Jxy) after half of the evolution time t.
Integrating the images along the direction perpendicular

to the chains yields a 1D spatial profile of the population in
the j↑i state, averaged over all spin chains. As in Fig. 1, the
spin helix exhibits a sinusoidal spatial modulation of the
density of j↑i atoms, observed as a characteristic stripe
pattern with a normalized contrast cðtÞ. During the evolu-
tion time t, the 100% contrast of the initial spin helix
decays, and we determine the dependence of cðtÞ on lattice
depth Vz, wave vectorQ, and anisotropyΔ. Analyzing each
decay curve cðtÞ yields a decay rate γ, among other fit
parameters (see Fig. 6 in Appendix A for data fitting
methods).
In general, we measure the spin dynamics at two or more

different lattice depths Vz and verify that the decay curves
cðtÞ collapse when time is rescaled by the corresponding
spin-exchange time ℏ=Jxy, confirming that the dynamics is
driven by superexchange. These time units are obtained
from the experimentally determined lattice depth using an
extended Hubbard model (detailed in Ref. [32]).

III. RESULTS

A. XX model

We first consider a very anisotropic system by realizing
the Heisenberg model tuned to the noninteracting point
(Δ ¼ 0) and study the decay of the transverse spin helix for
different wave vectors Q [Figs. 2(a) and 2(b)]. We find the
decays are quick, all having timescales on the order of a few
spin-exchange times ℏ=Jxy, much faster than the decay of
the longitudinal spin helix which is driven by ballistic
transport. Importantly, the transverse decay rate even
increases for longer wavelengths of the helix, showing
that the decay is not caused by transport where magneti-
zation redistributes in space and equilibrates, for which we
would expect slower rates for longer modulations, but by
dephasing where magnetization is locally created or
removed.
Some insight into the fast timescales of transverse decay

is obtained by taking theQ → 0 limit, where the initial state
becomes a uniformly polarized state. This state is obviously
not an eigenstate of the quantum XX model and is,
therefore, unstable. Further simplification to a two-site
(double-well) system allows us to analytically diagonalize
the Heisenberg Hamiltonian, which gives a level structure
as shown in Fig. 2(c) (for hz ¼ 0). When Δ ¼ 1, the
transverse spin state j →→i ≔ ðj↑i þ j↓iÞðj↑i þ j↓iÞ=2 is
an eigenstate of the Hamiltonian as all triplet states are
degenerate and, hence, does not evolve. However, for
Δ ≠ 1, the degeneracy is lifted, and the state j →→i shows
a beat note at the frequency of the energy splitting
Jxyð1 − ΔÞ=2. For Δ ¼ 0, this indicates a dephasing time
for transverse spins on the order of a few spin-exchange
times ℏ=Jxy, in qualitative agreement with our observa-
tions. For many sites, there will be a spectrum of beat
frequencies leading to irreversible dephasing locally.
We can explain the unusual Q dependence of the exper-

imentally observed transverse decay with a semiclassical
analysis of spin dynamics (see Appendices C 1 and C 2). In
the classical limit, spin-helix states satisfy the Landau-
Lifshitz equations of motion ∂tS⃗iðtÞ¼ð∂H=∂S⃗iÞ×S⃗iðtÞ¼0
for any wave vectorQ and, therefore, do not decay (this is, in
fact, true for any anisotropy Δ), because the torques exerted
on S⃗i by its neighbors cancel exactly. Here, S⃗i is a classical
spin vector, which corresponds to the S → ∞ limit of a
quantum mechanical spin. For finite S, we can study the
effects of quantum fluctuations with a large spin (1=S)
expansion. We find that the Fourier modes of the fluctua-
tions carrying momentum k have a dispersion relation
ωk ∝ Jxyj cosðQaÞ sinðka=2Þj. As the characteristic energy
scales of all modes are proportional to j cosðQaÞj, this
indicates, in a somewhat surprising fashion, that the dynam-
ics of the spin helix is faster for longer wavelengths than
for smaller wavelengths. The slowest dynamics occurs at
Qa ¼ π=2 (or λ ¼ 4a), where neighboring spins are at an
angle of 90°. This state is robust (at least to leading order)
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against decay induced by quantum fluctuations, because the
fluctuations of a spin which points, e.g., in the Sx direction
are in the Sy-Sz plane and, for Δ ¼ 0, do not cause any
precession of their immediate neighboring spins (which
point along the �Sy direction).
This prediction is furthermore corroborated by a fully

quantum (S ¼ 1=2) but short-time expansion of the order
parameter of the spin helix (see Appendix C 3). Numerical
simulations, as seen in Figs. 2(b) and 8(a), also verify this
by showing a very good collapse of the decay curves of all
experimentally considered wave vectors Q upon rescaling
time by a factor of cosðQaÞ. This holds even up to

evolution times t longer than would be expected to be
valid for the semiclassical analysis or short-time expansion.
Unsurprisingly, deviations from this relation are seen as the
wave vector approaches Q ¼ π=ð2aÞ, for which the simple
approaches would predict a vanishing decay rate. However,
note that the transverse spin helix with Q ¼ π=ð2aÞ can be
shown to be an exact eigenstate of the XX model with
appropriate boundary conditions [38,39].
Experimentally, we find that the decay rate of the

transverse helix as a function of wave vector Q can be
fitted very well as the sum of the predicted cosðQaÞ
dependence together with a constant term, as shown in
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FIG. 2. Spin dephasing and spin transport for the XX model [Δ ≈ 0, (a),(b)] and the isotropic XXX model [Δ ≈ 1, (d),(e)]. (a) Spin
relaxation at Δ ≈ 0. Transverse spin-helix contrast cðtÞ for Qa ¼ 2π × 0.032, 0.138, and 0.160 (bright to dark orange). The curves for
different lattice depths 11ER (∘) and 13ER (□) collapse when times are rescaled in units of the corresponding spin-exchange times
ℏ=Jxy ¼ 1.71 (∘) and 4.30 ms (□). The transverse spin decays on a timescale of a few spin-exchange times which increases for smaller
wavelengths λ ¼ 2π=Q. (b) Wave-vector dependence. The initial decay rates [orange points; with values from (a) highlighted] follow a
cosine dependence γðQÞ ¼ γ1 cosðQaÞ þ γ0 (solid orange line) with a constant background rate γ0 ¼ 0.20ð2ÞJxy=ℏ (dashed orange
line). This is in strong contrast to the longitudinal spin helix (purple) which shows linear scaling with Q (indicating ballistic transport).
A spin echo (π pulse at time t=2) reduces the background rate to γ0 ¼ 0.13ð3ÞJxy=ℏ (dashed blue line). The black solid squares are
numerical results for a single chain and the defect-free XX model (with hz ¼ 0) with a fit γðQÞ ¼ γ1 cosðQaÞ (solid line) to the points
with Qa ≤ 2π × 0.075. The gray open squares are numerical results for the t̃-J model with 5% hole fraction (see Appendix E 1).
(c) Energy levels of the Heisenberg Hamiltonian for two spins in a double-well potential. For Δ ≠ 1, the triplet states are split. (d) Spin
relaxation at Δ ≈ 1. Transverse spin-helix contrast cðtÞ for Qa ¼ 2π × 0.056 without spin echo (orange) and with spin echo (blue). The
difference shows the presence of inhomogeneous dephasing. The curves taken for different lattice depths 11ER (∘) and 13ER (□)
collapse when times are rescaled in units of the corresponding spin-exchange times ℏ=Jxy ¼ 2.55 (∘) and 6.42 ms (□). (e) Wave-vector
dependence. Decay rates for the transverse helix [orange and blue points; with values from (d) highlighted] and longitudinal helix
(purple points), for Δ ≈ 1. The orange (no echo) and blue (with echo) solid lines are fits γðQÞ ¼ DQ2 þ γ0 assuming two contributions
to the decay rate: one quadratic term (indicating diffusive transport) with diffusion constant D (taken from the longitudinal spin
dynamics shown in purple), the other Q-independent γ0 (shown by the dashed lines). The spin echo reduces the background decay rate
γ0 by an amount of 0.036Jxy=ℏ (e) and 0.069Jxy=ℏ (b). These values are consistent with an inhomogeneous dephasing rate proportional
to the effective magnetic field hz, with (predicted) values hz ¼ 0.89Jxy (e) and 1.43Jxy (b).
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Fig. 2(b). The constant term represents additional dephasing
mechanisms that go beyond the idealizations of the spin
model (1), which we discuss below.

B. XXX model

When Δ ¼ 1, we realize the isotropic Heisenberg spin
model which, aside from the effective magnetic field hz,
satisfies ½H;

P
i S

α
i � ¼ 0 (α ¼ x, y, z). The presence of the

effective magnetic field term
P

hijiðhz=2ÞðSzi þ SzjÞ in
Eq. (1), which we can rewrite as

P
i hz;iS

z
i , explicitly

breaks this spin-rotational symmetry. Now, a uniform
(i.e., site-i-independent) field hz;i can be transformed away
by going into an appropriate rotating frame. In such a case,
the transverse and the longitudinal spin helix should show
exactly the same dynamical behavior.
However, as the results in Figs. 2(d) and 2(e) show, there is

a dramatic difference: The transverse helix decays much
faster than the longitudinal helix with the same wave vector
Q. In particular, the longitudinal helix exhibits a purely
diffusive scaling with wave vector Q; i.e., its decay rate
obeys γðQÞ ¼ DQ2, where D is a diffusion constant
(as shown in Ref. [32]), whereas the transverse helix has
an additional Q-independent decay rate of γ0 ¼
0.096ð10ÞJxy=ℏ, with the net decay rate fitted well by
γðQÞ ¼ DQ2 þ γ0. This lends naturally to the interpretation
that the system at this point realizes dynamics close, but not
equal, to a model where global transverse magnetization is
exactly conserved. In other words, there is not only a
transport channel under which the transverse helix decays
by, such that local magnetization profiles redistribute in
space and eventually equilibrate, but also a nontransport
(dephasing) channel, whereby transverse magnetization can
be created or removed locally, arising from explicit sym-
metry-breaking terms. (Note that for the highly anisotropic
case Δ ¼ 0 we cannot separate out such a transport part.)
In the following, we discuss and quantify three plausible

mechanisms leading to such dephasing. First, a careful read
of the Hamiltonian Eq. (1) indicates that the effective
magnetic field hz;i is explicitly nonuniform for systems of
finite sizes, as encountered in experiments. This stems from
the fact that all terms in the Hamiltonian arise from
superexchange, which requires pairs of sites, and that sites
at the edges of the system have fewer neighbors than sites in
the bulk (discussed further below). Hence, relevant
symmetry-breaking terms (i.e., which cannot be trans-
formed away) are already present in the idealized spin
model. Second, our experiment consists of an ensemble of
1D systems, and there is a small inhomogeneity in the
effective magnetic field strengths between chains due to
slight variations in the lattice depth caused by the Gaussian
shape of the laser beam. This can lead to a loss of measured
(ensemble-averaged) contrast due to destructive interfer-
ence from spins precessing at different rates, leading to a
Q-independent decay rate. Third, a natural deviation of our

experiment from the idealized spin physics governed by the
pure Heisenberg Hamiltonian Eq. (1) is the presence of a
small fraction of mobile holes in the spin chains caused by
nonadiabatic preparation of the Mott insulator and nonzero
temperature. Typical hole fractions lie between 5% and 10%
in the central part of theMott insulator [27,32]. In a simplified
picture, holes cause dephasing, because spins next to holes
experience only half the effective magnetic field. A mobile
hole, therefore, creates a fluctuating effective magnetic field,
causing dephasing of the transverse spin component. Below,
we present experimental studies and extensive numerical
simulations which find that all of these effects contribute
roughly equally a Q-independent decay rate.
We note also that, in the final data analysis, a reeval-

uation of the scattering lengths shows that our data is
actually not taken exactly at the isotropic point but at
Δ ¼ 0.93� 0.05. This deviation from isotropy is respon-
sible for aQ-independent decay rate of 0.015Jxy=ℏ, or 15%
of the observed difference between longitudinal and trans-
verse spin decay (Appendix E 3). When all these effects are
taken together, this accounts approximately for the exper-
imentally measured Q-independent decay rate γ0 for the
transverse helix.

C. Imaging the effective magnetic field

All the symmetry-breakingmechanismswediscuss above
involve the effective magnetic field. Therefore, we first
presenthowthis fieldcanbedirectlyobservedandquantified.
If we assume that the ensemble experiences two pro-

nounced values of the effective magnetic field, then the time
evolution of the cloud-averaged contrastcðtÞwill showabeat
note at a frequencywhich corresponds to the difference of the
two values of the effective magnetic field. This is the case for
our atom clouds, which feature a Mott insulator plateau
surrounded by a dilute shell of individual atoms [32] which
are pinned to their lattice sites by thegradient of the harmonic
trapping potential [40]. Many of these individual atoms do
not have neighbors for spin exchange and, therefore, do not
feel an effective magnetic field, while those in the Mott
insulator plateau do. The observed beat frequencies Ω¼
0.90ð1ÞJxy=ℏ (Fig. 3) agree well with the predicted value
of the superexchange-generated effective magnetic field
hz ¼ 0.89Jxy. As expected, the beat note ismore pronounced
by spatially selecting the outer parts of the cloud [Fig. 3(a)]
and disappears with a spin echo [Fig. 2(d)]. In Appendix B,
we describe an alternate spectroscopicmethod to observe the
effective magnetic field as a shift in the spin-flip frequency.
The presence of the effective magnetic field can also be

directly imaged by introducing a sufficiently large gradient
in the lattice depth between the chains. This can be
achieved by vertically displacing the z lattice relative to
the atom cloud (see Fig. 1), causing a gradient of the
effective magnetic field. As this field sets the “spiraling”
frequencies of the individual spin helices across the cloud
(simply arising from the on-site precession of the spins
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about the Sz axis), this translates to an observable tilt of the
whole stripe pattern [Fig. 4(a)].
The tilt angle grows linearly in time, with a rate

proportional to the effective magnetic field and the gradient
of the lattice depth (which we keep fixed). Externally
applied magnetic fields change the scattering lengths via
broad Feshbach resonances, and so we can tune the
effective magnetic field. The observed rates for the tilt
rotation versus applied magnetic field B are shown in
Figs. 4(b) and 4(c) and agree well with our theoretical
prediction. In particular, near B ¼ 848.1 G, the spin j↑i
and j↓i scattering lengths are identical a↑↑ ¼ a↓↓ and the
effective magnetic field is zero, evinced by the absence of
any tilt in time [Fig. 4(b); yellow data points].
We note that, in principle, such a rotation could also be

caused by an external magnetic field gradient. However, the
tilt angle would then not depend on the lattice depth Vz and
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contrast in the spatial wings for radii r ≥ 20a (blue filled
symbols, including approximately 7% of the atoms in the cloud)
decays faster with more pronounced oscillations. Data points for
diamonds are an average of measurements at 11ER and 13ER.
Open diamond symbols represent data for λ ¼ 10.4a and show
the same oscillation frequency but decay faster due to spin
transport. Lines are fits described in Appendix A. Curves are
offset from each other for clarity. The dotted lines indicate their
respective zeros. (b) The beat frequency Ω varies as a function of
the externally applied magnetic field B. The measured values for
ℏΩ (points) follow the theoretical prediction (without any
adjustable parameter) for the effective magnetic field hz (solid
line) which is tuned by varying the scattering lengths via
Feshbach resonances.
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FIG. 4. Direct observation of the effective magnetic field
through spin precession. (a) Rotation angle of the stripe pattern
as a function of evolution time t (filled symbols) for two lattice
depths 11ER (blue) and 13ER (yellow) without (solid line) and
with (dashed line) spin-echo pulse at t ¼ 5ℏ=Jxy. (b),(c) Tuna-
bility of the effective magnetic field hz. (b) Rotation angle as a
function of evolution time t for different magnetic fields B ¼
846.37 (red), 847.17 (blue), 847.59 (light blue), 848.00 (orange),
848.17 (yellow), 848.34 (purple), and 848.53 G (green). (c) An-
gular velocities obtained from linear fits in (b) compared to
predicted effective magnetic fields hz (solid line) with the scale
factor between the two y axes as a fitting parameter yielding
_ϕℏ=Jxy ¼ 0.037hz=Jxy ¼ 2.1°hz=Jxy, representing the (uncali-
brated) gradient of the lattice depth. Times are normalized by the
spin-exchange time ℏ=Jxy for the central part of the atom cloud.
The scaling factor is consistent with a displacement of the z-
lattice beam (1=e2 radius of 125 μm) by an amount of
29 μm ¼ 55a.
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the external magnetic field B. In a sufficiently deep lattice
(Vz ¼ 35ERÞ, for up to at least 40 ms, we do not observe
any discernible rotation, hence ruling out an external field
gradient.
When an echo pulse is added, the direction of the stripe

rotation is reversed, and, at twice the echo time, the stripe
pattern isvertical again, resulting inhighcontrast forvertically
integrated images [Fig.4(a);bottom].This showshowthespin
echo eliminates the effect of inhomogeneous effective fields
across the cloud, a technique we use below to quantify their
contribution to the dephasing of transverse spin patterns.

D. Dephasing mechanisms for the transverse spin helix

We now elaborate on and quantify the effects of three
possible dephasing mechanisms we identify, induced by the
effective magnetic field.

1. Effect of inhomogeneity in the effective magnetic field
between chains

The effect of inhomogeneity in the effective magnetic
field strengths between chains in the ensemble, arising from
slight variations in the lattice depth from the Gaussian
nature of the laser beams, can be eliminated by applying a
spin-echo pulse at half of the evolution time t.
Indeed, when adding spin-echo pulses to the experimen-

tal sequence, we find theQ-independent background decay
rate γ0 is reduced from 0.096(10) to 0.060ð3ÞJxy=ℏ [dashed
lines in Fig. 2(e)]. This is compatible with an effective
magnetic field distribution over different chains with a full
width at half maximum (FWHM) of 8.2%, corresponding
to variations in the lattice depth Vz of 1.6%, compatible
with experimental parameters.

2. Effect of finite chain lengths

As noted before, the effective magnetic field of the ideal
Heisenberg Hamiltonian Eq. (1) is necessarily nonuniform for
systems of finite sizes. To elaborate, the effective magnetic
field arises from superexchange involving nearest-neighbor
pairs of atoms, indicated already in the Hamiltonian Eq. (1),
where we deliberately write the magnetic field

P
hijiðSzi þ

SzjÞ as a sum over pairs hiji of sites to emphasize this fact.
This means, in particular, that, for a 1D chain, the effective
magnetic field is reduced to hz=2 at the ends, half the value in
the bulk. For hz ≠ 0, this nonuniformity hence cannot simply
be transformed away by going into an appropriate corotating
frame. Although this reduced field is localized at the ends of
the chain, it cannot be eliminated with an echo protocol, since
its effect propagates along the chain via spin dynamics as
illustrated in Fig. 10 (note the echo pulse removes inhomo-
geneous dephasing only for subsystems, which do not interact
with each other, such as separate chains in the ensemble).
This edge effect results in differences in the relaxation

between the transverse and the longitudinal spin helix: The
spins at the edges dephase rapidly, and this perturbation

then propagates through the entire chain. We perform
numerical simulations which show that, for chain lengths
of 10–20 spins, the edge effect causes a dephasing rate of
approximately 0.02Jxy=ℏ (Appendix E 4). Although the
diameter of the Mott insulator plateau we experimentally
realize is measured to be around 40 sites, we expect that
holes (with an estimated concentration of 5%–10%) [27,32]
in the outer region of the Mott plateau are localized by the
gradient of the trapping potential and create effectively
shorter chains in our sample. In contrast to that, in the
central region of the Mott plateau, where the trapping
potential is flat, holes are mobile, and their effect is
discussed below.
The edge effect can be viewed as an inhomogeneity of

the effective magnetic field realized within a single chain.
In addition to this effect, we have a harmonic trapping
potential in the experimental system, which along a given
chain creates an additional inhomogeneity, since it creates
an energy offset between neighboring sites and modifies
the superexchange rate by up to approximately 10% (see
the methods section in Ref. [32] for details). We estimate
that this is somewhat less important than the effect of the
50% reduced effective field at the ends of the chain.

3. Effect of mobile holes

We now explore a dephasing mechanism beyond the
pure spin model, namely, the presence of mobile holes in
the system. For negligible interactions, the dynamics of
holes can be described by a quantum random walk where
the time-dependent wave function at site i for a hole
initially localized at i ¼ 0 is the Bessel function
Ji(t=ðℏ=2t̃Þ). The square of the Bessel function shows
oscillations at frequencies ω ¼ 4t̃=ℏ or periods of
T ¼ ðπ=2Þℏ=t̃. Now, for a hold time T and with an echo
pulse at T=2 (described in the previous subsection), those
fluctuations are “rectified” and lead to enhanced dephasing
(note that the spin echo removes stationary inhomogeneous
magnetic fields but can enhance the effect of time-depen-
dent fluctuations [41]). This is evidence for hole-magnon
coupling: Holes carry a localized magnetic field which
couples to spin dynamics. Indeed, Fig. 5 shows a feature in
the spin-echoed contrast at early times on the order of the
tunneling time ℏ=t̃ in accordance with these predictions,
providing experimental evidence that mobile holes are
possibly present. By using a series of echo pulses at
frequency ω, one could map out the frequency spectrum
of the effective magnetic field, using concepts from
dynamic decoupling [41].
For times on the order of superexchange scales, the effect

of the hole-induced fluctuating effective magnetic field can
be captured by a simple model. From nuclear magnetic
resonance, it is well known that the dephasing time T2 of a
localized spin at z ¼ 0 is related to the magnetic field
fluctuations hz (measured in units of energy) and their
coherence time τc via 1=T2¼hh2ziτc=ℏ2¼Gðz¼0;ω¼0Þ=ℏ2,
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where Gðz; tÞ ¼ hhzðz; tÞhzð0; 0Þi is the autocorrelation of
the fluctuating magnetic field along the chain [42]. The
dephasing time T2 is the same for spin patterns with arbitrary
wave vector Q.
For a moving hole, the effective magnetic field has a

correlation function Gðz; tÞ which is identical to the (nor-
malized) density-density correlation function Jðz; tÞ of the
hole, multiplied by h2z [here, we neglect the fact that the
effective magnetic field at a given site depends on the holes
on the neighboring sites; see Eq. (1)]. For uncorrelated holes
with hole probabilityp, thevariance of the local occupation is
p with a coherence time τc ¼ 1.14ðℏ=2t̃Þ, where t̃ is the
tunnelingmatrix element [43]. The associated correlations of
the fluctuating effective magnetic field determine the T2

dephasing time for the spin helix 1=T2 ¼ 0.57h2zp=t̃ℏ.
Assuming p ¼ 0.1 (10% hole fraction) and using t̃ ¼
6.15Jxy (at Vz ¼ 11ER) and hz=Jxy ¼ 0.89, this leads to
an estimate of 1=T2 ≈ 0.007Jxy=ℏ.
This simple model of magnon-hole dynamics indicates

already the non-negligible effect of a small fraction of holes
and strongly suggests that a more generalized model

beyond the pure spin Heisenberg model Eq. (1) should
be considered. To this end and to substantiate the rough
estimate of the dephasing rate from the simple model, we
perform simulations of the bosonic t̃-J model which
explicitly take into account the presence of holes in the
Mott insulator near unity filling. This model allows holes to
be present but does not include double occupancies
of bosons, since they are suppressed by the large on-site
repulsion U. See Appendix F for its explicit form and
derivation beginning from the Bose-Hubbard model, as
well as an interpretation of its constituent terms in terms of
magnon-hole couplings. There, we also show that a non-
zero field strength hz is a necessary and sufficient condition
for the t̃-J model to break spin rotational symmetry,
justifying our identification of the effective magnetic field
as the agent giving rise to differences in dynamics between
the transverse and the longitudinal spin helix.
Numerical simulations using the bosonic t̃-J model for a

mobile hole fraction of 10%, with experimentally realized
parameters that would yield the XXX model (Δ ¼ 1) in the
ideal spin limit, show a Q-independent dephasing at a rate
around 0.026Jxy=ℏ for the experimental conditions in
Fig. 2(e) (see Appendix E 2), supporting the simplified
model of hole-induced dephasing presented above (but
providing a rate 3 times higher). Note that we cannot
experimentally measure the hole fraction and use here the
typical range of values of 5%–10% observed or inferred in
other experiments [27,32].

4. Summary of the dephasing mechanisms

At this stage, we account for the isotropy-breaking
dephasing rate of 0.096 (in units of Jxy=ℏ) through more
or less equal contributions from the edge effect (0.020),
effective magnetic field inhomogeneity between chains
which can be eliminated via spin echo (0.036), and mobile
holes (0.013–0.026, assuming a hole fraction p between
5% and 10% and linear dependence on p), as well as a
small deviation from isotropy (0.015). These numbers are
summarized in Table I. We regard some of the numbers as
only semiquantitative due to the nonexponential character
of the measured and calculated decay curves, but they
indicate which phenomena have to be accounted for in
quantum simulations of spin dynamics using ultracold
atoms in optical lattices.

5. Revisiting the XX model

Our considerations above illustrate the role of edge
effects and a small number of holes in the dephasing of
transverse spin. This should also contribute to the dephas-
ing in the XX model. Hence, we revisit it via simulations of
the bosonic t̃-J model with the appropriate experimental
parameters (see Appendix E 1) and can now account for
two experimental findings. For the Q-independent decay
rate, we note that the hz ¼ 1.43Jxy term is 1.6 times larger
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FIG. 5. Tunneling dynamics of mobile holes. Decay curves for
the XX model (Δ ≈ 0) at λ ¼ 10.4a without a spin-echo pulse
(orange) and with a spin-echo pulse (blue) after half the evolution
time t, measured for different lattice depths 9ER (△), 11ER (∘),
13ER (□), and 15ER (▽). The time axis has units of the
corresponding spin-exchange times ℏ=Jxy ¼ 0.64 (△), 1.71
(∘), 4.30 (□), and 10.29 ms (▽). Solid lines are fits (see
Appendix A). The spin echo generally slows down relaxation
slightly by eliminating inhomogeneous dephasing, except at early
times where relaxation is actually enhanced and the data points
reproducibly deviate from the solid line (data points at t ¼ 0.22
and 0.43ℏ=Jxy have to be excluded from fitting). The inset shows
the data points divided by the fit function and plotted with time in
units of the tunneling time ℏ=t̃, showing enhanced relaxation
around 1–2 tunneling times (the solid line is a guide for the eye).
More extensive studies with higher time resolution reproduce
similar features at around the tunneling time, but their shape is
sensitive to experimental conditions, including the atom number.

PAUL NIKLAS JEPSEN et al. PHYS. REV. X 11, 041054 (2021)

041054-8



compared to our experimental realization of the XXX
model, which explains the larger observed Q-independent
dephasing rate γ0 ¼ 0.20ð2ÞJxy=ℏ [Fig. 2(b)] semiquanti-
tatively. Furthermore, the simulations show that the ampli-
tude γ1 of the cosðQaÞ dependence is a function of the
concentration of holes [see Figs. 2(b) and 8]. We find that
the experimental data agree best with numerical simula-
tions for 5% holes.

IV. CONCLUSIONS

We have used ultracold atoms to implement the
Heisenberg model with tunable anisotropy. For the relax-
ation of transverse spin patterns, we have studied for the
first time four decay mechanisms: intrinsic dephasing by
anisotropic spin-exchange couplings, inhomogeneous
dephasing through a static superexchange-induced effective
magnetic field, dephasing through the ends of the chain, and
dephasing by a fluctuating effective magnetic field due to the
presence of mobile holes. One reason why several of these
mechanisms have not been observed before is that most
previous studies of spin dynamics in optical lattices have
used either fermions [24], for which the t̃-J model is always
explicitly spin rotationally symmetric and, therefore, hz ¼ 0,
or bosons comprised of 87Rb [25–28], for which the
spin j↑i and spin j↓i scattering lengths are almost identical
(a↑↑ ¼ 99.0a0, a↑↓ ¼ 99.0a0, and a↓↓ ¼ 100.4a0, with the
Bohr radius a0) [44], leading to a value of hz ≈ 0.014Jxy,
approximately 100 times smaller than for 7Li.
The experimental and theoretical results presented in this

work go beyond pure spin physics. They illustrate effects
caused by a small hole fraction that is generally present in
cold atomic quantum simulators. A more complete descrip-
tion of spin dynamics in such systems, therefore, requires
using the t̃-J model, which features magnon-hole couplings.
This coupling between density and spin is analogous to

the interplay of spin and charge degrees of freedom in

strongly correlated electronic systems, which is important,
for example, in understanding emergent many-body phe-
nomena like high-temperature superconductivity in cup-
rates [33–35]. Therefore, our platform presents an elegant
new setting where such physics can be emulated. More
generally, we regard our work as a starting point for
exploring spin dynamics in different dynamical regimes
as well as in generalized Heisenberg models.
Experimentally, the effect of mobile holes can be studied
by varying the lattice depth over a large range, which
affects hole dynamics (tunneling) differently than spin
dynamics (superexchange). A quantum gas microscope
will be able to select chains of a certain length and to
measure spin and hole dynamics with single-site resolution.
Exciting future directions include the study of spin polaron
dynamics [45], realizing long-lived, metastable prethermal
states in higher dimensions [14–16], and probing the onset
of turbulent spin relaxation utilizing larger spin quantum
numbers [17].
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APPENDIX A: DATA ANALYSIS

We determine the contrast C by a fit fðy; zÞ ¼
gðy; zÞ · ½1þ C cosðQzþ θÞ�=2 to the two-dimensional
phase-contrast images (see Fig. 6). Here, Q ¼ 2π=λ is the
wave vector, θ is a random phase which varies from shot to
shot due to small magnetic bias field drifts, and gðy; zÞ is a
two-dimensional envelope function which accounts for the
spatial distribution of all atoms n ¼ n↑ þ n↓ inside a sphere

of radius R such that gðy; zÞ ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2=R2 − z2=R2

p
·

Hð1 − y2=R2 − z2=R2Þ with the Heaviside function HðrÞ.
During the evolution time t, the contrast CðtÞ decays, and we
study the dependence of cðtÞ ¼ CðtÞ=Cð0Þ on lattice depth
Vz, wavelength λ, and anisotropy Δ.
For both longitudinal and transverse spin relaxation, we

find the decay curves can be well described by the sum of a
decaying part with decay rate γ and a (damped) oscillating
part with frequency ω, resulting in a fitting function

TABLE I. Q-independent decay rates for different dephasing
mechanisms at Δ ≈ 1, obtained through experimental studies
(spin echo for field inhomogeneity) and extensive numerical
simulations (edge effect, mobile holes, and experimental
deviation from isotropy). Numbers should be regarded as semi-
quantitative but, taken as a whole (second last row), strongly
suggest that they account for the net decay rate experimentally
observed (last row).

Dephasing mechanism Decay rate (Jxy=ℏ)

Edge effect 0.020
Field inhomogeneity 0.036
Mobile holes 0.013–0.026
Experimental deviation from Δ ¼ 1 0.015

Total 0.084–0.097
Experimentally measured rate 0.096(10)
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cðtÞ ¼ ða0 þ b0 cosωtÞe−γt þ c0. Here, a0, b0, c0, ω, and γ
are fitting parameters. These fits are used for Fig. 2(b)
(purple), in Fig. 2(d) (blue), and for Fig. 2(e) (purple and
blue). Special fitting procedures are used for the XX model
and for the beat note due to the effective magnetic field.

1. XX model

The decay curves cðtÞ for the transverse spin helix
[Fig. 2(a)] clearly show a slower decay rate for larger
values of Q. We can use the fitting function described
above, with the only difference of adding the constant offset
c0 in quadrature cðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða0 þ b0 cosωtÞe−γt�2 þ c20

p
[Fig. 2(a)] to reflect that the offset c0 arises due to an
experimental detection noise floor at the 10−2 level. The
actual physical contrast does decay to zero cðtÞ → 0.
Remarkably, the fitted oscillation periods [e.g., T ¼
11.6ð4Þℏ=Jxy at λ ¼ 10.4a] agree fairly well with the
energy splitting Jxy=2 for the two-spin Heisenberg model
[Fig. 2(c)], which implies an oscillation period of
T ¼ 4πℏ=Jxy ≈ 12.57ℏ=Jxy. With this fit function, the
slower decay for large wave vectors Q shows up mainly
in the oscillation frequency ω and not in the decay rate γ.
For a simpler characterization of the decay, we obtain the
initial decay rate by fitting a linear slope cðtÞ ¼ c0ð1 − γtÞ
to the initial decay in the range cðtÞ ≤ 0.4. Results of such
fits are shown in Fig. 2(b) (orange).

2. XXX model

a. Longitudinal spin relaxation [Fig. 2(e), purple]

As in our previous work [32] on spin transport, we use
the fitting function cðtÞ ¼ ða0 þ b0 cosωtÞe−γt þ c0.

b. Transverse spin relaxation with
spin echo [Figs. 2(d) and 2(e), blue]

The same fitting function yields oscillation frequencies ω
and oscillating fractionsb0=ða0 þ b0Þwhich agree fairlywell
with the longitudinal case, especially at largewave vectorsQ,
but with much larger error bars at small wave vectors Q,
because the decay rate γ is much faster than the oscillations.
For this reason,we constrain both parametersω andb0=ða0 þ
b0Þ to the values obtained in the longitudinal case.

c. Transverse spin relaxation without
spin echo [Figs. 2(d) and 2(e), orange; Fig. 3]

A beat note between the inner part and outer part
of the cloud is visible (Fig. 3), due to the difference
in effective magnetic fields. To determine the beat
frequency Ω, we generalize the fitting function to the sum
of two parts which interfere: jc1ðtÞeiΩt þ c2ðtÞj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðtÞ2 þ 2c1ðtÞc2ðtÞ cosðΩtÞ þ c2ðtÞ2

p
. Here, c1ðtÞ ¼

ða0 þ b0 cosωtÞe−γt is the contrast of the atoms in the inner
part of the cloud, and c2ðtÞ ¼ c2 is the contrast of the isolated
atoms in the outer part which preserve the contrast for a long
time. We can neglect the background c0 due to the detection
noise. In c1ðtÞ, we again constrain the two parametersω and
b0=ða0 þ b0Þ to the values obtained for longitudinal spin
relaxation.

APPENDIX B: SPECTROSCOPIC OBSERVATION
OF THE EFFECTIVE MAGNETIC FIELD

A spatially uniform effective magnetic field can always be
transformedaway in a suitable rotating frame.However, even
then, it can still be observed as a shift of the spin-flip
resonance. We rotate the spins via an adiabatic frequency
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FIG. 6. Contrast measurement. The central image represents raw data and shows the distribution of atoms in the j↑i state. The left
image is the two-dimensional fit as described in Appendix A. Every pixel is a local measurement of the column density (number of j↑i
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sweep, where the detuning corresponds to an external Bz
field (in the rotating frame) and the Rabi frequency to a Bx
field, realizing a Heisenberg model with magnetic fields.
Starting from a fully polarized state with all atoms in the j↓i
state and large detuning of the rf, we reduce the Bz field
adiabatically and observe the spin imbalance. The spins are
balanced when the detuning compensates for the effective
magnetic field created by superexchange. With this method,
we can observe the effective field for different lattice
depths (Fig. 7).

APPENDIX C: SEMICLASSICAL ANALYSIS AND
SHORT-TIME EXPANSION OF SPIN DYNAMICS

1. The classical transverse spin helix with any wave
vector Q does not evolve for any anisotropy Δ

We show here that, in the classical limit, the transverse
spin helix with any wave vector Q does not evolve under

the XXZ Hamiltonian (assuming the effective magnetic
field is uniform), for any isotropy Δ. The classical limit is
reached by taking the spin-quantum number S → ∞ or by
treating the spins as classical vectors S⃗i ¼ ðSxi ; Syi ; Szi Þ of

arbitrary length S ¼ jS⃗ij, which we set to 1=2 for com-
parison to the quantum spin system.
We start with the system initialized at t ¼ 0 in the helix

state S�i ð0Þ ¼ Se�iðQziþθÞ; Szi ð0Þ ¼ 0, and we untwist the
helix by using the rotation0
B@

Sxi
Syi
Szi

1
CA ¼

0
B@

− sinðQziÞ 0 cosðQziÞ
cosðQziÞ 0 sinðQziÞ

0 1 0

1
CA
0
B@

Tx
i

Ty
i

Tz
i

1
CA ðC1Þ

(we ignore the phase θ for simplicity), which gives S⃗i ↦ T⃗i

with T�
i ð0Þ ¼ 0, Tz

i ð0Þ ¼ S. The Hamiltonian Eq. (1) (with
hz ¼ 0) then transforms as

H ↦ HðQÞ ¼ Jxy
X
i

½cosðQaÞðTx
i T

x
iþ1 þ Tz

iT
z
iþ1Þ

þ sinðQaÞðTz
iT

x
iþ1 − Tx

i T
z
iþ1Þ�

þ Jz
X
i

Ty
i T

y
iþ1: ðC2Þ

The Landau-Lifshitz (LL) equations of motion for classical
spins read ∂tT⃗i ¼ ∂ T⃗i

HðQÞ × T⃗i. Upon changing variables

to T�
i ¼ Tx

i � iTy
i , we have

_Tþ
i ¼ 1

2
ifJzðT−

i−1 þ T−
iþ1 − Tþ

i−1 − Tþ
iþ1ÞTz

i

þ Jxy½sinðQaÞTþ
i ðT−

i−1 − T−
iþ1 þ Tþ

i−1 − Tþ
iþ1Þ

þ 2Tz
i ðTz

i−1 − Tz
iþ1Þ�

þ cosðQaÞ½−ðT−
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iþ1 þ Tþ
i−1 þ Tþ

iþ1ÞTz
i

þ 2Tþ
i ðTz

i−1 þ Tz
iþ1Þ�g; ðC3Þ

_T−
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i
�
; ðC4Þ

_Tz
i ¼ −

1

4
ifJzðT−

i þ Tþ
i ÞðT−

i−1 þ T−
iþ1 − Tþ

i−1 − Tþ
iþ1Þ

− JxyðT−
i − Tþ

i Þ½cosðQaÞðT−
i−1 þ T−

iþ1 þ Tþ
i−1 þ Tþ

iþ1Þ
þ 2 sinðQaÞð−Tz

i−1 þ Tz
iþ1Þ�g; ðC5Þ

and it is straightforward to verify that T�
i ðtÞ ¼ 0, Tz

i ðtÞ ¼ S
is a solution to the LL equations, as claimed.

2. Stability of the classical spin-helix state:
Dispersion relation of fluctuations

To understand the stability of the classical spin-helix
states, we linearize the equations of motion about the
classical solution and consider fluctuations. Now, Tz

i obeys
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FIG. 7. Spectroscopic observation of the effective magnetic
field hz as a shift in the spin-flip frequency for hz < 0 (bottom)
compared to hz ≈ 0 (top). Shown is the fraction of atoms in each
state as a function of the final detuning δ of a 22-ms sweep of the
rf frequency, starting at δ ¼ þ30 kHz with all atoms in the j↑i
state (closed circles) and no atoms in the j↓i state (open squares).
The detuning is relative to the single-particle transition frequency.
The power of the rf drive is also ramped to zero after the
frequency sweep to make the transition sharper. A nonzero
detuning δ for equal spin populations compensates for the
effective magnetic field hz which shifts the curves for a lattice
depth of 11ER (bottom) compared to 35ER (top) where hz ≈ 0.
For the sweep experiment, we choose the second-lowest (closed
circles) and third-lowest (open squares) hyperfine states of 7Li
due to the smaller sensitivity to external magnetic fields
(originating from a smaller differential magnetic moment). At
1025 G, the scattering lengths are approximately a↑↑ ≈ a↑↓ ≈
−50a0 and a↓↓ ≈þ350a0, leading to an estimate for an effective
magnetic field of hz ≈ −1.14Jxy ∼ h × ð−100 HzÞ, which is
consistent with our observation.
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the constraint Tz
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − Tþ

i T
−
i

p
, so fluctuations about the

classical solution simply entail

T�
i ðtÞ ¼ T̄�

i ðtÞ þ δT�
i ðtÞ þOððδTÞ2Þ ¼ δT�

i ðtÞ þOððδTÞ2Þ;
ðC6Þ

Tz
i ðtÞ ¼ SþOððδTÞ2Þ: ðC7Þ

Therefore, we get

δT�
i ¼ iS

2
½JzðδT−

i−1 þ δT−
iþ1 − δTþ

i−1 − δTþ
iþ1Þ

∓ cosðQaÞJxyðδT−
i−1 þ δT−

iþ1 þ δTþ
i−1

þ δTþ
iþ1 − 4δT�

i Þ�: ðC8Þ

We now expand in Fourier modes δT�
i ¼P

k δT
�
k e

iðkziþωktÞ with momentum k and dispersion ωk.
This reduces to an eigenvalue problem

ωk

�
δTþ

k

δT−
k

�
¼ SJxy

 
−½−2þ cosðkaÞ�cosðQaÞ−ΔcosðkaÞ cosðkaÞ½− cosðQaÞ þΔ�

cosðkaÞ½cosðQaÞ−Δ� ½−2þ cosðkaÞ� cosðQaÞ þΔ cosðkaÞ

!�
δTþ

k

δT−
k

�

ðC9Þ

with solution

ωk ¼ �2
ffiffiffi
2

p
JxyS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðQaÞ½−Δ cosðkaÞ þ cosðQaÞ� sin2ðka=2Þ

q
: ðC10Þ

Reducing to Δ ¼ 0 reproduces the expression quoted in the
main text for the XX model in Sec. III A. Note that we
could have equivalently obtained the same dispersion
relations by performing a spin-wave analysis, upon map-
ping the spins to Holstein-Primakoff bosons (in a large S
expansion) and performing a Bogoliubov transformation to
diagonalize the Hamiltonian in second order.

3. Short-time expansion of quantum dynamics

Owing to the factorizable nature of the initial spin-helix
state, we can analytically derive the short-time quantum
dynamics of the state without passing into a semiclassical
limit as done before. The basic object is the Taylor
expansion of a spin operator (in the transverse direction):

hSþi ðtÞi ¼ hSþi ð0Þi þ h∂tS
þ
i ð0Þitþ

1

2
h∂2

t S
þ
i ð0Þit2 þ � � � ;

ðC11Þ

where h·i is the expectation value in the spin state

jψðQÞi ¼ e−i
P

i
SziQzi jþ þ þ � � �i, where Sxi jþii ¼ Sjþii,

and

h∂tS
þ
i ð0Þi ¼ ih½H; Sþi �i; ðC12Þ

h∂2
t S

þ
i ð0Þi ¼ −h½H; ½H; Sþi ��i: ðC13Þ

Since the Hamiltonian is a sum of strictly local terms and
Sþi is an on-site term, the expressions in the commutators
are comprised of only finite-range terms with support
centered around site i. Using that the state factorizes into

a product state, we can easily evaluate the expression for
these terms. We find for general spin S

ih½H; Sþi �i ¼ 0; ðC14Þ

−h½H; ½H; Sþi ��i ¼ −S2eiQzi ½Jz − Jxy cosðQaÞ�2: ðC15Þ

(The vanishing of the term linear in t follows from time-
reversal symmetry.) Therefore,

hSþi ðtÞi ¼ SeiQzi −
1

2
S2eiQzi ½Jz − Jxy cosðQaÞ�2t2 þ � � � :

ðC16Þ
Extracting the Fourier component with wave vectorQ gives
the normalized contrast

cðtÞ ¼ 1 −
1

2
S½Jz − Jxy cosðQaÞ�2t2 þ � � � : ðC17Þ

A characteristic energy rate γ for the initial quadratic decay
can, therefore, be defined as cðtÞ ¼ 1 − γ2t2 þ � � �, yielding

γ ≔
ffiffiffi
S
2

r
jJxy½Δ − cosðQaÞ�j: ðC18Þ

Focusing now on Δ ¼ 0 and S ¼ 1=2, this shows that a
helix of wave vector Q decays with a rate going as
γ ∝ j cosðQaÞj. For Δ ¼ 1, we recover that γ ∝ Q2 in
the limit of Q ≪ 1=a (when the wavelength λ is large
compared to the lattice spacing a). More generally, for
arbitrary anisotropy Δ, there is a critical wave vector
ðQcaÞ ¼ arccosðΔÞ where decay is expected to be very
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slow; seeing such a dependence in experiments would be
interesting. This prediction is actually in line with that the
spin helix with wave vector ðQcaÞ ¼ arccosðΔÞ can be
proven to be an exact eigenstate of the XXZ Hamiltonian
with anisotropyΔwith appropriate boundary conditions, as
shown in Refs. [38,39].

APPENDIX D: NUMERICAL SIMULATION
DETAILS

Here, we present general details on the numerical
simulations performed. Unless otherwise specified, we
employ the time-evolving block decimation algorithm on
matrix product states defined on 1D chains of length
L ¼ 40a, with large enough bond dimension to ensure
convergence of local observables to a tolerance 10−4, via
the TeNPy library [46].
In the absence of holes, we simulate the Heisenberg

model (1), with the initial state the spin helix with wave
vector Q, which reads locally jψ iðQÞi ¼ eiðQziþθÞSzi jþii,
where Sxi jþii ¼ jþii ¼ ð1= ffiffiffi

2
p Þðj↑ii þ j↓iiÞ. Here, θ is

the global initial phase of the spin helix, which varies
from shot to shot in the experiment due to small magnetic
field bias drifts (Appendix A). We measure hSxi ðtÞi and fit
for each time slice a sine function in space with wave vector
Q (allowing its phase to be an independent parameter); the
amplitude of the sinusoidal modulation is the numerically
determined contrast cðtÞ normalized to unity at t ¼ 0. We
also average cðtÞ over θ ¼ 0, π=2 to account for the fact that
the global phase of the initial state in the experiments shifts
from measurement to measurement (we find that averaging
over these two values suffices to reproduce the full averaging
over θ; also see the methods section in Ref. [32]).
In the presence of holes, we simulate the bosonic t̃-J

model [Eq. (F1)]. We assume holes occur independently on
each site with probability p. In order to perform ensemble
averaging over the different hole positions of the initial
state, we employ the following computational trick. Let the
on-site Hilbert space be spanned by the states j0i,
j↑ii ≔ a†i↑j0i, and j↓ii ≔ a†i↓j0i. We define a pure state
on each site as

jΨiðQÞi ¼ eiφi
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
jψ iðQÞi þ ffiffiffiffi

p
p j0ii; ðD1Þ

where φi is some phase with value in ½0; 2πÞ. Clearly, in the
limit p → 0, the state jΨðQÞi ≔Qi jΨiðQÞi reduces to the
pure-spin helix (i.e., without holes) with wave vector Q.
Consider now the outer product of jΨiðQÞiwith itself when
p ≠ 0:

ρi ¼ ð1 − pÞjψ iðQÞihψ iðQÞj
þ eiφi

ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
jψ iðQÞih0ji þ H:c:þ pj0iih0ji: ðD2Þ

If we now average φ over the interval ½0; 2πÞ uniformly, the
ensemble-averaged reduced density matrix is

ρ̄i ¼
1

2π

Z
2π

0

dφ ρi ¼ ð1 − pÞjψ iðQÞihψ iðQÞj þ pj0iih0ji:

ðD3Þ

This reproduces the situation where holes occur locally and
independently on each site i with probability p.
In our simulations, we choose a random set of phase

angles ðφ1;…;φNÞ ∈ ½0; 2πÞN and time evolve the globally
pure state

Q
i jΨiðQÞi under the t̃-J Hamiltonian. We repeat

the simulation with different sets of phase angles sampled
randomly uniformly in ½0; 2πÞN and then average the
extracted contrast.
We find that, in practice, there are remarkably only very

small variations between different choices of phase angles
[i.e., a given random choice of

Q
i jΨiðQÞi is a typical

configuration], allowing us to perform the ensemble aver-
age with relatively few repetitions (at most 50 runs for each
Q and global phase θ).

APPENDIX E: NUMERICAL
SIMULATION RESULTS

1. XX model

For the XX model, we utilize parameters Δ ¼ 0 and hz ¼
1.43Jxy (thus, simulating the experimental conditions at
Vz ¼ 11ER), as well as t̃ ¼ 4.11Jxy, J↑↑=J↑↓ ¼ −0.32, and
J↓↓=J↑↓ ¼ 1.15. Here, Jσσ0 ≔ −4t̃2=Uσσ0 .
Figure 8 shows decay curves for p ¼ 0, 0.05, and 0.1.

The experimental decay rates γ ¼ 1=τ [in Fig. 2(b)] are
obtained from a linear fit cðtÞ ¼ c0ð1 − t=τÞ to the initial
decay [cðtÞ ≤ 0.4]. We use an equivalent procedure for the
theoretical data and determine the time τ0 where the
numerical simulations show a contrast of cðτ0Þ ¼ 0.4,
which we then convert to the theoretical decay rate
τ ¼ ð5=3Þτ0. As shown in Fig. 2(b), the numerical data
verifies the analytically predicted cosðQaÞ dependence of
the decay rate. This scaling starts to break down as
Q → π=ð2aÞ, because higher-order terms in the expansion
(either semiclassical or short-time) become important.
Inclusion of holes washes out the cosðQaÞ dependence.

2. XXX model

For the XXX model, we utilize parameters Δ ¼ 1 and
hz ¼ 0.80Jxy (thus, simulating the experimental conditions
at Vz ¼ 11ER), as well as t̃ ¼ 6.13Jxy, J↑↑=J↑↓ ¼ 0.61,
and J↓↓=J↑↓ ¼ 1.40.
Figures 9(a) and 9(b) show the results for a simulation

involving 10% holes, i.e., p ¼ 0.1. We fit the data between
cðtÞ ¼ 0.9 and 0.15 with a straight line (dashed) and obtain
a decay rate defined as twice the slope of the fit (this factor
is chosen because the slope of an exponential function at
half decay is reduced by a factor of 2). Because of the
nonexponential nature of the decay curves, for both
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numerical simulations and experimental data, there is some
arbitrariness in choosing “effective” decay rates which,
depending on the parameterization, could differ by up to
50%. By further fitting the decay rates for the six smallest

values of Q values to the form γðQÞ ¼ DQ2 þ γ0 (in order
to focus on the limiting Q → 0 behavior), we obtain a Q-
independent decay rate γ0 ¼ 0.019Jxy=ℏ and a diffusion
constant D ¼ 0.16a2=ðℏ=JxyÞ.
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FIG. 8. Transverse spin-helix decay for the XX model obtained from numerical simulations, with hole probability p ¼ 0 (a),(b),
p ¼ 0.05 (c), and p ¼ 0.1 [(c), inset] with hz ¼ 0 (a),(b) and hz ¼ 1.43Jxy (c) as in the experiment. The wavelengths in (a) are (from
bottom to top) λ ¼ 31.3a, 23.5a, 18.8a, 15.7a, 13.4a, 11.7a, 10.4a, 9.4a, 8.5a, 7.8a, 7.2a, 6.7a, 6.3a, 5.9a, 5.6a, 5.3a, 5.0a, 4.8a,
4.6a, 4.4a, and 4.0a. The decay curves for pure spin dynamics (a) show a wave-vector dependence of decay rates of the form
γ ∝ cosðQaÞ. Using rescaled time t cosðQaÞ, all decay curves collapse almost perfectly for wavelengths λ ≥ 6.3a, which covers the
range studied in the experiment. The presence of holes washes out the cosðQaÞ dependence (c), shown here for λ ≥ 6.3a and p ¼ 0.05.
At sufficiently high hole probability, e.g., p ¼ 0.1 [(c), inset], the wave-vector dependence vanishes almost completely.
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FIG. 9. Spin relaxation for the XXZ model. (a),(b) Isotropic model Δ ¼ 1 with finite hole concentration (p ¼ 0.1). (c),(d) Slightly
anisotropic Δ ¼ 0.93 with no holes (p ¼ 0). The colored solid lines in (a) and (c) are decay curves cðtÞ for different wavelengths
λ ¼ 31.3a, 23.5a, 18.8a, 15.7a, 13.4a, 11.7a, 10.4a, 9.4a, 8.5a, 7.8a, 7.2a, 6.7a, and 6.3a (from top to bottom). The dotted lines are
linear fits to determine decay rates, which are shown in (b) and (d) with a fit γ ¼ DQ2 þ γ0 (solid line).
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3. Near-isotropic XXZ model

We also investigate how a small deviation from the
isotropic point affects dynamics. One reason is that our
experimental data for the isotropic model is actually not
taken exactly at the isotropic point but at Δ ¼ 0.93� 0.05.
In the two-site model, the triplet splitting of Jxyð1 − ΔÞ=2
becomes 0.035Jxy=ℏ, but the full simulation presented here
shows that the effect is smaller.
We considerΔ ¼ 0.93 and hz ¼ 0.89Jxy (thus, simulating

the experimental conditions at Vz ¼ 11ER), as well as t̃¼
6.15Jxy, J↑↑=J↑↓¼0.53, and J↓↓=J↑↓¼1.41. Figures 9(c)
and 9(d) show the results for a simulation in the absence of
holes. We use the same method as for the XXX model to
determine decay rates from linear fits. We obtain a Q-
independent decay rate γ0 ¼ 0.015Jxy=ℏ and a diffusion
constant D ¼ 0.15a2=ðℏ=JxyÞ.

4. Dephasing from edge effects

We also use numerical simulations to study how the
inhomogeneity of the effective magnetic field at the ends
of finite chains leads to dephasing for transverse spin
components. We concentrate on theQ → 0 limit, i.e., a state
uniformly polarized in the Sx direction, with anisotropy
Δ ¼ 1.

If the effective magnetic field is globally uniform, the
transverse magnetization

P
ihSxi ðtÞi just oscillates in time

without decaying. However, the fact that the edges of the
chain feel an effective magnetic field strength which is half
that of the bulk causes dephasing of spins at the edges.
This disturbance, in turn, propagates into the bulk [see
Fig. 10(a)], so that the transverse magnetization decays in
time [see Fig. 10(b)]. For long chains, the decay rate
decreases as a function of length L, as the bulk dominates
the edges. This trend starts only for chains with L > 16a.
For smaller L, the trend is reversed due to few-body
dynamics.
We also explore the effect of the effective magnetic field

in the XX model. Comparison of simulations of the pure
spin model with and without an effective magnetic field of
hz ¼ 1.43Jxy shows that the edge effect for chains of length
L ¼ 40a give rise to a Q-independent decay rate of
0.04ℏ=Jxy, which amounts to shifting the black curve in
Fig. 2(b) (for hz ¼ 0) vertically.

APPENDIX F: DERIVATION
OF THE BOSONIC t̃-J MODEL

We derive here the bosonic t̃-J model

Ht̃−J ¼
X
hiji

�
JxyðSxi Sxj þ Syi S

y
jÞ þ JzS

z
i S

z
j −

hz
2
½Szi ðnj↑ þ nj↓Þ þ ðni↑ þ ni↓ÞSzj� þ cðni↑ þ ni↓Þðnj↑ þ nj↓Þ

�

−
X
hiji;σ

t̃ a†iσajσ þ H:c: −
X
hijki;σ

�
t̃2

U↑↓
a†iσnjσ̄akσ þ

t̃2

U↑↓
a†iσ̄S

σ
jakσ þ

2t̃2

Uσσ
a†iσnjσakσ

�
þ H:c: ðF1Þ

quoted in the main text. Here, spin σ ¼↑;↓, and aiσ and a
†
iσ

are bosonic lowering and raising operators, respectively, at

site i, such that S↑i ≡ Sþi ≔ a†i↑ai↓, S
↓
i ≡ S−i ¼ ðSþi Þ†, and

Sxi ¼ 1
2
ðSþi þ S−i Þ, Sy ¼ 1

2i ðSþi − S−i Þ, Sz ¼ 1
2
ðni↑ − ni↓Þ

form a representation of the Pauli algebra, upon restricting

the on-site Hilbert space to be spanned by three states: an
occupancy of a single boson (either spin j↑i or j↓i) or no
boson (hole). Also, c ¼ −ðt̃2=U↑↑ þ t̃2=U↓↓ þ t̃2=U↑↓Þ.
The above Hamiltonian illustrates that the previously

identified effective magnetic field term
P

hijiðhz=2ÞðSziþSzjÞ
in fact stems from a direct interaction term describing
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FIG. 10. Dephasing from the edges of the chains. (a),(b) Dynamics of an Sx-polarized (Q ¼ 0) state for an L ¼ 16a finite chain, with
anisotropy Δ ¼ 1 and hz ¼ 0.8Jxy reflecting the parameters of the experiment. (a) shows how the initially homogeneous phase of the
locally measured transverse spin hSxi ðtÞi gets distorted at the edges and how this perturbation propagates through the chain, leading to a
loss of overall contrast of the total transverse magnetization

P
ihSxi ðtÞi (b). A fit (dashed lines) to cosðωtþ ϕÞe−γt=2 determines the

decay rate γ, which is shown as a function of system size L in (c). A log-log plot shows the scaling γ ∝ L−1 for large L.
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magnon-density couplingSzi ðnj↑ þ nj↓Þ þ ði ↔ jÞ, the latter
of which reduces to the former upon taking the limit of no
holes, i.e., ðni↑ þ ni↓Þ ¼ 1 for every site i. The terms on the
lower line represent dynamics of holes in different flavors:
bare tunneling, density-assisted tunneling, and spin-flip-
assisted tunneling, which are additional magnon-hole cou-
plings. Note that they arise at the same order in perturbation
theory (in t̃=Uσσ0 ) as the pure spin couplings and, thus, in
principle, cannot be neglected, although they are suppressed
by the presenceof a small hole probabilityp. By inspecting the
expressions of Jz, hz, and these extra terms as a function of
U↑↑, U↑↓, and U↓↓, we see that at Δ ¼ 1 (isotropic spin
couplings) a nonzero hz is a necessary and sufficient condition
for the t̃-J model to break spin rotational symmetry. (Having
spin rotational symmetry requires all on-site interaction
energies to be equal U↑↑ ¼ U↑↓ ¼ U↓↓.) This justifies our
identificationof the effectivemagnetic field as the agent giving
rise to differences in dynamics between the transverse and the
longitudinal spin helix.
To derive the bosonic t̃-J model, the starting point is the

Bose-Hubbard Hamiltonian describing cold atoms moving
in a deep optical lattice (so that they are confined to the
lowest Bloch band):

H ¼ −
X
hiji;σ

t̃ða†iσajσ þ H:c:Þ þ 1

2

X
i;σ

Uσσniσðniσ − 1Þ

þ U↑↓

X
i

ni↑ni↓: ðF2Þ

We assume two components σ ¼↑;↓ and Uσσ0 ≫ t̃, such
that there are at most singly occupied sites. We derive the
effective model in this limit. We do not assume U↑↑, U↑↓,
and U↓↓ are necessarily equal between themselves.
We employ the expansion detailed in Ref. [47], where it is

shown how having multiple emergentUð1Þ charges emerge
in an effective Hamiltonian. The general setup is as such:
Let Γ1;…;Γm be m mutually commuting operators with
integer eigenvalue spacings, and consider the Hamiltonian

H ¼ ω⃗ · Γ⃗þ V; ðF3Þ

where V need not commute with Γi. In the limit of large jω⃗j,
we can derive an effective Hamiltonian

Heff ¼ ω⃗ · Γ⃗þH0
0⃗
þ 1

2

X
n⃗≠0⃗

½H0
n⃗; H

0−n⃗�
n⃗ · ω⃗

þ � � � ðF4Þ

(this turns out to be the so-called van Vleck expansion).
The effective Hamiltonian has emergent symmetries
½Heff ;Γi� ¼ 0; i.e., the Hamiltonian is symmetric with
respect to the m Uð1Þ charges Γi. Here, H0

n⃗ is the n⃗th
Fourier mode of the “interaction” Hamiltonian defined on
the m-torus Tm:

H0ðθ⃗Þ ¼ U†
0ðθ⃗ÞVU0ðθ⃗Þ; ðF5Þ

U0ðθ⃗Þ ¼ e−iθ⃗·Γ⃗; ðF6Þ

H0
n⃗ ¼

1

ð2πÞm
Z
Tm

dmθ e−in⃗·θ⃗H0ðθ⃗Þ: ðF7Þ

Applying this formalism to the Bose-Hubbard model, we
note that interactions there consist of three kinds:

U↓↓Γ1; Γ1 ¼
X
i

1

2
ni↓ðni↓ − 1Þ; ðF8Þ

U↑↑Γ2; Γ2 ¼
X
i

1

2
ni↑ðni↑ − 1Þ; ðF9Þ

U↑↓Γ3; Γ3 ¼
X
i

ni↑ni↓ ðF10Þ

and that Γi have integer eigenvalues andmutually commute.
We, therefore, identify ω1 ¼ U↓↓, ω2 ¼ U↑↑, and
ω3 ¼ U↑↓. We define

U0ðθ⃗Þ ≔ expð−iθ⃗ · Γ⃗Þ; ðF11Þ

which gives us

H0ðθ⃗Þ ≔ U0ðθ⃗Þ†
X
hiji;σ

t̃ða†iσajσ þ H:c:ÞU0ðθ⃗Þ: ðF12Þ

We have

eiθ3Γ3a†i↑e
−iθ3Γ3 ¼a†i↑þðiθ3Þ½ni↑ni↓;a†i↑�þ

ðiθ3Þ2
2!

× ½ni↑ni↓;½ni↑ni↓;a†i↑��þ���

¼a†i↑þðiθ3Þa†i↑ni↓þ
ðiθ3Þ2
2!

a†i↑ðn†i↓Þ2þ���
¼a†i↑e

iθ3ni↓ : ðF13Þ

Therefore,

eiθ3Γ3a†i↑e
−iθ3Γ3 ¼ a†i↑e

iθ3ni↓ ; ðF14Þ

eiθ3Γ3ai↑e−iθ3Γ3 ¼ ai↑e−iθ3ni↓ ; ðF15Þ

eiθ3Γ3a†i↓e
−iθ3Γ3 ¼ a†i↓e

iθ3ni↑ ; ðF16Þ

eiθ3Γ3ai↓e−iθ3Γ3 ¼ ai↓e−iθ3ni↑ : ðF17Þ

Next,
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eiθ2Γ2a†i↑e
−iθ2Γ2 ¼ a†i↑ þ ðiθ2Þ

�
1

2
ni↑ðni↑ − 1Þ; a†i↑

�
þ ðiθ2Þ2

2!

�
1

2
ni↑ðni↑ − 1Þ;

�
1

2
ni↑ðni↑ − 1Þ; a†i↑

��
þ � � � : ðF18Þ

A single commutator yields�
1

2
ni↑ðni↑ − 1Þ; a†i↑

�
¼ 1

2
½ni↑; a†i↑�ðni↑ − 1Þ þ 1

2
ni↑½ðni↑ − 1Þ; a†i↑�

¼ 1

2
a†i↑ðni↑ − 1Þ þ 1

2
ni↑a

†
i↑

¼ a†i↑ni↑ ðF19Þ

so the full expression becomes

eiθ2Γ2a†i↑e
−iθ2Γ2 ¼ a†i↑ þ ðiθ2Þa†i↑ni↑ þ

ðiθ2Þ2
2!

a†i↑ðni↑Þ2 þ � � �
¼ a†i↑e

iθ2ni↑ : ðF20Þ

Similarly, we have

eiθ2Γ2ai↑e−iθ2Γ2 ¼ e−iθ2ni↑ai↑: ðF21Þ

Therefore, there are four terms in H0ðθ⃗Þ:

U0ðθ⃗Þ†a†i↑aj↑U0ðθ⃗Þ ¼ a†i↑e
iðθ3ni↓þθ2ni↑Þe−iðθ3nj↓þθ2nj↑Þaj↑; ðF22Þ

U0ðθ⃗Þ†a†j↑ai↑U0ðθ⃗Þ ¼ a†j↑e
iðθ3nj↓þθ2nj↑Þe−iðθ3ni↓þθ2ni↑Þai↑; ðF23Þ

U0ðθ⃗Þ†a†i↓aj↓U0ðθ⃗Þ ¼ a†i↓e
iðθ3ni↑þθ1ni↓Þe−iðθ3nj↑þθ1nj↓Þaj↓; ðF24Þ

U0ðθ⃗Þ†a†j↓ai↓U0ðθ⃗Þ ¼ a†j↓e
iðθ3nj↑þθ1nj↓Þe−iðθ3ni↑þθ1ni↓Þai↓: ðF25Þ

Now, the n⃗th Fourier mode of H0ðθ⃗Þ enforces projectors of
certain occupation numbers between sites. For example, for
the first term and n1 ¼ 0, n2 ¼ 0, n3 ¼ 1, this is

a†i↑Pni↓−nj↓¼1Pni↑−nj↑¼0aj↑: ðF26Þ

We evaluate Eq. (F4), and the result is Eq. (F1) (ignoring the
constant term ω⃗ · Γ⃗).
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