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Stochastic network dynamics are typically assumed to be memoryless. Involving prolonged dwells
interrupted by instantaneous transitions between nodes, such Markov networks stand as a coarse-graining
paradigm for chemical reactions, gene expression, molecular machines, spreading of diseases, protein
dynamics, diffusion in energy landscapes, epigenetics, and many others. However, as soon as transitions
cease to be negligibly short, as often observed in experiments, the dynamics develops a memory. That is,
state changes depend not only on the present state but also on the past. Here, we establish the first
thermodynamically consistent—dissipation-preserving—mapping of continuous dynamics onto a network,
which reveals ingrained dynamical symmetries and an unforeseen kinetic hysteresis. These symmetries
impose three independent sources of fluctuations in state-to-state kinetics that determine the “flavor of
memory.” The hysteresis between the forward- or backward-in-time coarse graining of continuous
trajectories implies a new paradigm for the thermodynamics of active molecular processes in the presence
of memory, that is, beyond the assumption of local detailed balance. Our results provide a new
understanding of fluctuations in the operation of molecular machines as well as catch bonds involved
in cellular adhesion.
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I. INTRODUCTION

In the presence of a timescale separation, the coarse
graining of continuous-space dynamics to transitions on a
network yields memoryless Markovian kinetics. Such
Markov networks are routinely used for the description
of chemical reactions [1–3], gene expression [4,5], molecu-
lar machines [6], spreading of diseases [7], protein dynam-
ics [8–12], diffusion in energy landscapes [13], epigenetics
[14], and many others. Markov networks with only a few
discrete states are useful for the modeling of a physical
systems at large times in, for example, molecular machines
[6] and proteins [8–12]. One inherent feature of memory-
less dynamics is that the waiting time between consecutive
state changes is exponentially distributed [15] as captured,
e.g., by the Gillespie algorithm [1,12].
To highlight how memoryless state-to-state transitions

arise microscopically, we depict in Fig. 1(a) a realization of
a continuous-space diffusion in a double-well potential as a

function of time, which may represent, e.g., the extension
of a protein molecule interconverting between two con-
formational states [17]. As soon as the barrier between the
two wells is high enough, the system locally equilibrates
within each well before transiting to the other, which
renders the probability density of the exit time from either
well [exits from well 2 are highlighted in Fig. 1(a)] to a
good approximation exponentially distributed [see right
panel in Fig. 1(a)]. More generally, two conditions must be
satisfied for memoryless kinetics between metastable states
to emerge [18]. To provide an understanding of these two
conditions, it is useful to dissect each exit time into a
transition period [19–21] (see black bars) and the rest that
we call the dwell time (see orange bars). The first condition
requires that the system, once it leaves any of the
metastable states (e.g., state 2), quickly transits to the next
state (i.e., the transition-path time is negligibly short) or
rapidly returns to the initial state. In Fig. 1(a), the latter
condition is visible as short excursions within the long
“dwell-time” periods highlighted in orange. The second
condition requires dwell periods to be long enough for the
system to reach a local equilibrium in the initial well, which
guarantees that any potentially hidden degree of freedom
has also reached equilibrium. Memoryless kinetics thus
involves the interplay of long dwells and short “instanta-
neous” transitions.
A two-state Markov-jump process—representing the

minimum-to-minimum hopping in Fig. 1(a)—inherently
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neglects a finite duration of transitions that can nowadays
be probed in single-molecule fluorescence [22,23] or force
[24–26] spectroscopy experiments. Even when they are
short, random transition times encode important informa-
tion about the topological shape of the free-energy barriers
[27]. This implies that a non-Markovian network theory
that explicitly incorporates transition-path times, which is
the main aim of this work, is desirable even in the presence
of timescale separation.
More importantly, prolonged transition-path times

[22–26,28–30] resulting, e.g., from spatial transport of
molecules in chemical reactions under imperfect mixing
[31,32], in the presence of a rugged energy landscape [33]
as shown in Fig. 1(b), or external forces that destabilize
local minima as in Fig. 1(c), are bound to cause “mild”
violations of Markovianity. Moreover, dynamics in higher
dimensions allows for the coexistence of parallel transition
paths [27,29]. Parallel transition paths as depicted in
Fig. 1(d) allow for the coexistence of fast and slow time-
scales that can cause “strong” violations of Markovianity
manifested, e.g., as so-called catch bonds in cellular adhe-
sion [34–36] which we discuss below in more detail.
The idea to account for nonexponential waiting-time

distributions is not new and is, in fact, at the heart of the
generalized master equation [37] (see also Refs. [38–42]

with numerous applications that go beyond the scope of
this article). While these models were constructed and
applied phenomenologically to unravel interesting
phenomena such as anomalous diffusion [43–45], their
microscopic physical underpinning remains elusive.
Moreover, the phenomenological construction of the gen-
eralized master equation [37–41] assures only that it is
kinetically consistent, whereas it remains unclear under
which conditions the resulting renewal dynamics is thermo-
dynamically consistent. The latter turns out to be essential;
we show that coarse graining and time reversal, in fact, do
not commute giving rise to a phenomenon we coin kinetic
hysteresis. This has important consequences for the quan-
tification of dissipation.
To account for transitions with a finite duration in

complex networks as shown in Fig. 1(e), here we develop
a theory embodying an exact projection of continuous
dynamics on a graph onto a network with discrete states.
Diffusion on a graph arises quite generally from the
averaging of fast degrees of freedom in Hamiltonian
dynamics weakly coupled to a heat bath [46] (see also
Ref. [47]) and includes both a position-dependent force and
a position-dependent diffusion coefficient [48,49]. The
coarse-grained dynamics evolves as jumps between the
nodes. A state change occurs once the trajectory enters a

(a)

(b)

(c)

(d)

(e)

Exit  �me from 2

Exit  �me from 2 of bond

Exit  �me from 2

FIG. 1. Breakdown of Markovian and emergence of non-Markovian kinetics. (a) Left: diffusion in a double-well potential as a reduced
model of the dynamics of a protein molecule transitioning between an unfolded (state 1) and a folded (state 2) conformation. Each exit
event from state 2 to state 1 is highlighted in blue. Right: the histogram (shaded region) of the exit time from state 2 is well approximated
by a memoryless single exponential decay (dashed line). Orange bars below the trajectory highlight dwell periods in the reduced state 2,
and black bars the duration of transitions from state 2 to state 1. (b) Left: diffusion in a potential with a diffusive barrier. Right: the
histogram (shaded region) of the exit time from state 2 alongside a single exponential decay with the same mean exit time (dashed line)
that, however, only poorly approximates the statistics of exit. (c) Double-well potential from panel (a) “tilted” by an additional pulling
force that destabilizes the (folded) state 2. (d) Schematic of rupture pathways of a “catch bond” under force. The bond can rupture along
two possible pathways: a fast pathway 1 (double arrow) and a slow pathway 2 that involves an intermediate conformational change. As
before, the orange and black bars denote the dwell and transition periods, respectively. The probability density of the lifetime of the bond
is shown below, whereby the probability densities depicted by the histogram (shaded region) and dashed line have the same mean. The
stark disagreement between the two reflects that the rupture is not memoryless. (e) Schematics of a general network with a subnetwork
with five states highlighted in black. Transitions between states 1 and 3 (dashed line) are assumed to be slow.
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new node for the first time (see also Ref. [41], where the
process is referred to as “milestoning”).
Let us highlight two elementary “building blocks” of a

network, which we call cycles and branching points (see
Fig. 2), which are in fact not considered in Ref. [41]. The
presence of cycles is required to enable a strongly driven
system to constantly exchange (free) energy with the
environment, thereby facilitating e.g., a biased transport.
Consider an adenosine triphosphatase (ATPase) which has a
threefold rotational symmetry [see Fig. 2(a)]. An external
mechanical torque applied to the system causes a rotation
[50], which in turn effectively gives rise to a nonconservative
force field as illustrated in Fig. 2(b). In other words, upon
closing a cycle 1 → 2 → 3 → 1 [see Fig. 2(c)], the system
has made a 360° turn while dissipating M × 360° of free
energy.We say that a network is strongly driven if the energy
exchange substantially exceeds the thermal energy kBT,
which prevents the emergence of an equilibrium
Boltzmann distribution. Note that the continuous dynamics
on the graph shown in Fig. 2(c) inter alia takes into account
possible intermediate metastable states observed, e.g.,
in Ref. [51].
Networks may have a genuinely multidimensional

underlying topology that in turn allows for branching
points as illustrated in Fig. 2(d). Branching points allow
for the existence of multiple cycles; i.e., they account for
multiple dissipative mechanisms. We consider the dynam-
ics along the blue arrows in Fig. 2(d) to be effectively one

dimensional, which assumes that the degrees perpendicular
to the arrows are quickly relaxing [41,49]. More pre-
cisely, by considering graph networks as in Fig. 1(e), we
assume that the dynamics is effectively concentrated along
“tubes” connecting metastable states and/or branches.
For example, complex topological free-energy landscapes
can display such tubelike structures [52]. Later, we relax
the assumption of paths concentrating along tubes and
consider more general types of microscopic dynamics. In
the following, we first outline how one can utilize dynamics
on a graph to understand the emergence of non-Markovian
dynamics on networks.

A. Coarse graining

We first consider a subgraph with five states highlighted
in Fig. 1(e). A continuous trajectory on the graph is
depicted in Fig. 3(a), where the time runs from bright to
dark. Consider a gedanken experiment in which we record
a “blinking” whenever the continuous trajectory enters a
node that changes color upon each state change [Figs. 3(a)
and 3(b)]. The time series of state changes arising from
such a forward-in-time coarse graining is shown in
Fig. 3(b) alongside recurrences, i.e., revisitations of nodes
(see solid line and crosses, respectively). We measure the
(local) joint probability density to exit state i after a time t
and enter state j, ℘loc

jji ðtÞ. Its marginal over time—the so-
called splitting probability—defined as

ϕloc
jji ¼

Z
∞

0

℘loc
jji ðtÞdt ð1Þ

and is normalized according to
P

j ϕ
loc
jji ¼ 1. Whenever

℘loc
jji ðtÞ deviates appreciably from an exponential function

as in Fig. 3(c), the continuous trajectory does not locally
equilibrate in i before changing state to j, giving rise to
memory in the coarse-grained dynamics. The reduced state
change depicted in Fig. 3(c) forms a semi-Markov process
[53,54] (see also Refs. [37,40]).
In the following, we explain the salient features of memory

and the constraints that it imposes on the construction of
thermodynamically consistent network dynamics.

B. Summary of the main results

As our first main result, we prove that the splitting
probability obeys a reflection identity—the generalization
of local detailed balance (see Sec. III):

kBT lnðϕloc
jji =ϕ

loc
ijj Þ ¼ gðiÞ − gðjÞ þ

Z
j

i
FðxÞ · dx; ð2Þ

where kBT is the thermal energy, the quantity gðiÞ − gðjÞ
[defined in Eq. (15)] is strictly conservative, and the last
term denotes the force integrated along the link from node i
to node j. Equation (2) connects the mesoscopic dynamics

(a) (b)

(c) (d)

FIG. 2. Rationale and building blocks of coarse graining. (a)–
(c) Unicyclic (driven) systems and (d) branching point. (a) Ro-
tation angle θt describing a system or observable driven by a
nonequilibrium torque M along a periodic potential with three
metastable states. (b) The driving tilts the potential (dashed lines)
which leads to work exchange along a cycle 1 → 2 → 3 → 1.
(c) Network representation of (a) as in Fig. 1(e) (for correspond-
ing trajectories, see Fig. 12). (d) Multiple cycles require branch-
ing points (blue arrows), for example, generated by a
multidimensional force field with a local pitchfork bifurcation
[14] (left panel depicts the corresponding local potential).
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in the presence of the memory embodied in ϕloc
jji to the

microscopic dissipative force F on the underlying graph.
The force F may have a globally nonconservative con-
tribution and alone encodes any violation of microscopic
reversibility (i.e., detailed balance). The last term in Eq. (2)
allows for an exchange of mechanical or (electro) chemical
energy. Equation (2) ceases to hold if the coarse graining
hides cycles [55,56], which we address in the dedicated
Sec. VI A. Crucially, in both cases, the coarse graining into
a discrete-state dynamics in the presence of memory must
not commute with the time reversal, which gives rise to a
phenomenon we refer to as kinetic hysteresis that is
explained in Sec. III and illustrated in Fig. 6. In addition,
we explain how the kinetic hysteresis resolves a puzzling
conflict between two mutually contradicting views on
irreversibility [53,54].
By means of the gedanken experiment in Fig. 3(a), we

dissect each waiting time t between two consecutive state
changes as depicted in Fig. 3(b) into a dwell period τ
spanning the time between the last state change until the
last recurrence before the next state change, and the
transition-path time δt, which is the time between the last
recurrence and the next state change. The waiting time
becomes the sum t ¼ τ þ δt. This decomposition is in fact
the key step toward understanding the emergence and
manifestations of memory in network dynamics. As our
second main result, we prove the statistical independence of
local dwell and transition-path times emerging from an
exact coarse graining of the underlying continuous dynam-
ics (proof shown in Appendix B), i.e.,

ψ jjiðtÞ≡
℘loc
jji ðtÞ
ϕloc
jji

¼
Z

t

0

℘tr
jjiðt − τÞ℘dwell

i ðτÞdτ; ð3Þ

where ℘tr
jji and ℘dwell

i are the probability densities of the
transition path and dwell time, respectively. Using Eq. (1),
one finds that the independence holds if the new state j is
already known. Equation (3) embodies the following sym-
metries: (i) The dwell time is a state variable—it does not
dependon the final state j—and (ii) the transition-path time is
reflection symmetric, ℘tr

ijjðtÞ ¼ ℘tr
jjiðtÞ (see also Ref. [57]).

We prove both symmetries in Appendix B and illustrate
symmetry (i) in Fig. 11 while symmetry (ii) is demonstrated
in Fig. 13(c) as well as Table VII. Equation (3) is somewhat
surprising since we find that slow transition kinetics, i.e.,
℘tr
jjiðtÞ ≠ δðtÞ, in fact (seemingly paradoxically) affect the

statistics of dwell time ℘dwell
i .

As our third and main practical result, we derive explicit
formulas for the moments of transition-path time and dwell
time, which are given in Eqs. (11)–(13). While moments of
transition-path times are found to obey recursion integral
formulas [58], we identify redundant integrals in the first
two moments of the transition-path time that can be omitted
and, interestingly, lead to an independent proof of the main
finding in Ref. [27]. Moreover, we derive, for the first time,
analytical formulas for the moments of the dwell time. The
main consequence of this result is that transitions dictate the
amplitude of fluctuations of the waiting time between any
consecutive state change (see Sec. VA). We apply our main
finding to two opposing scenarios. First, we show that large

(a) (b)

(c)

FIG. 3. Coarse-grained dynamics. (a) Projection of a trajectory of the full dynamics on the subgraph in Fig. 1(e) onto a plane (spanned
by x1x2). Time runs from bright to dark. The network is represented by black lines with each reduced state 1;…; 5. A second projection
onto the x2 ¼ 0 plane (gray line) reveals recurrences (colored crosses) and state changes (black crosses). (b) Coarse graining yields a
time series of state changes (solid line); the time interval corresponds to the box in (a). One dwell interval “τ” and one transition-path-
time interval “δt” are highlighted; their sum t ¼ δtþ τ is the local first-passage time from state i (here i ¼ 3) to a neighboring state j
(here j ¼ 1). Long recurrence times are highlighted by vertical arrows. (c) Normalized probability density of local first-passage time
ψ jji ≡ ℘loc

jji ðtÞ=ϕloc
jji [see also (b)] from i ¼ 3 to j ¼ 1, 2. Details of the model are given in the Appendix E 1.
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“super-Markovian” fluctuations in the waiting time (life-
time) observed in experiments with catch bonds [34,36] are
unique signature parallel transitions between states that are
unequally fast. Second, we show that symmetric stopping
times of the entropy production (here called waiting time)
in stationary driven systems [59–61] automatically imply
equally fast transition times, which in turn yields “sub-
Markovian” dynamics, i.e., suppressed waiting-time fluc-
tuations. Our theoretical results are directly applicable to
the analysis of experimental time series.

C. Relation to previous works and nomenclature

Before we derive our results, let us briefly explain how
the three main quantities, transition-path time δt, dwell time
τ, and waiting time t [see Fig. 3(b)], relate to, and appeared
in, previous works. The following paragraph summarizes
the different terminologies used across the disciplines,
which in turn helps us to identify and clarify the core of
the conflict between Refs. [53,54].
First, the term waiting time [53] frequently appears under

the terms (conditional) first-passage time [62,63], lifetime
[63], stopping time [59], residence time, folding time [23],
and even dwell time [30,64,65] or cycle time [65]. Note that
the waiting and dwell time coincide once the transition
paths become instantaneous as in Refs. [64,65], and the
inverse of the mean waiting time is also called Kramer’s
reaction velocity (rate) [66]. As illustrated in Fig. 1(d), the
lifetime of a (catch) bond [34–36,67,68] represents a
waiting time in the bound state. Second, the transition-
path time [22,26,28,29,69] is sometimes also referred to as
transition-event duration [58], translocation time [57], and
occasionally, transition time [24,29] or transit time [26].
Third, the dwell time is also referred to as residence time
[70] or “loops” [20,21]. The distinction among these three
quantities is important for understanding the following
puzzling conflict concerning the fundamental notion of
“irreversibility” [53,54].
A trajectory obeying Hamilton’s equations of motion is

physically reversible, yet mathematically irreversible. That
is, if we naively mathematically revert time along such a
phase-space trajectory (i.e., we simply read it backward),
the resulting trajectory will violate the equations of motion
unless we take into account the well-known physical fact
that momenta change sign under time reversal (that is,
unless we “physically” revert time). In thermodynamics,
this reversibility translates into the concept of detailed
balance, which implies (at equilibrium) that the probability
of any path is identical to the probability of the physically
time-reverted path.
A network with a clear timescale separation, as depicted,

e.g., in Fig. 1(a), that violates detailed balance may
nevertheless “locally equilibrate” with all connected res-
ervoirs prior to a transition to the consecutive state. In this
case, the local detailed balance relation relates the forward
and backward transition probabilities (or rates) to the

entropy flux [71,72]. If states connected to different
reservoirs are connected by links, the network can sustain
probability fluxes between these states in a nonequilibrium
steady state. This in turn breaks physical time-reversal
symmetry [6]. Once a clear timescale separation, and
thereby, a local equilibrium, cease to exist, the connection
between the forward or backward path probabilities and the
entropy flux becomes more subtle. In particular, the deep
connection between the breaking of detailed balance and
the breaking of (mathematical) time-reversal symmetry in
semi-Markov processes [as depicted in Fig. 3(b)] [54] has
been put into question in Ref. [53]. In fact, the example in
Fig. 3 turns out to invalidate the main conclusion of
Ref. [54]. In order to restore the view put forward in
Ref. [54], we find that transition paths must be “odd” under
time reversal, which gives rise to a phenomenon we call
kinetic hysteresis. The kinetic hysteresis, in fact, restores
the logical connection between the breaking of time-
reversal symmetry and the breaking of detailed balance.

D. Structure of the article

The remainder of this article is structured as follows: In
Sec. II, we define diffusion on a graph depicted in Fig. 3
along with the precise coarse graining into digitized states.
We discuss the limitations of the coarse graining, define
transition-path time and dwell-time functionals, and
explain their independence and symmetries that follow
from Eq. (3). In Sec. II D, we present the main practical
result. In Sec. III, we derive Eq. (2) and prove the
thermodynamic consistency of the coarse graining.
Surprisingly, we find in Sec. IV that the coarse graining
must not commute with time reversal, which gives rise to a
kinetic hysteresis. The kinetic hysteresis turns out to
reconcile two contradicting views on the thermodynamics
of irreversibility, namely, those between Refs. [53,54]. The
central implications of Eqs. (10)–(13) are discussed in
Sec. V, where we identify three fundamental sources of
noise in the waiting time and explain the practical impli-
cations of deviations from Markovianity, in particular, the
emergence of sub-Markovian fluctuations in driven peri-
odic systems in Sec. V C and super-Markovian fluctuations
in the presence of parallel transition paths in Sec. V B.
Section VI provides a broader perspective of our results
including the relation between the coarse graining and
milestoning [18,63] (see Refs. [3,73] for a more elaborate
exposé). We conclude in Sec. VII.
The derivations are rather involved and therefore rel-

egated to a series of appendixes. Details about stochastic
differential equations on a graph and their numerical
implementation are given in Appendix A. The proof of
Eq. (3) along with the entailed symmetries are shown in
Appendix B. Our results are derived on the basis of a
novel decomposition of paths shown in Appendix B 6,
which represents a generalization of the renewal theorem
[74]. The quite lengthy and tedious derivation of
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Eqs. (10)–(13) is explained in the Supplemental Material
[75]. Equation (2) is proven in Appendix D, and the
symmetries are tested in Appendix E.

II. MODEL

A. Diffusion on a graph

The full system’s dynamics is assumed to evolve as
piecewise continuous space-time Markovian diffusion on a
graph as shown in Fig. 3(a) with potential (weak) dis-
continuities at the set of all nodes i ∈ Ω. We denote all
neighbor nodes of i by N i ⊂ Ω. For example, in Fig. 3(a),
the set of neighboring states of state 2 are N 2 ¼ f1; 3; 4g.
At any time t between the last passage by i in the direction
of j at time tini and the next visit of a node j ∈ N i or the
return to i at time tfin, i.e., tini < t < tfin, the system is
assumed to satisfy the anti-Itô (or Hänggi-Klimontovich
[76,77]) Langevin equation

_xt ¼ βDjjiðxtÞFjjiðxtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjjiðxtÞ

q
⊛ ξt; ð4Þ

where xt [see Fig. 4(a)] denotes the instantaneous distance
from node i in the leg i − j with 0 < xt < ljji, DjjiðxÞ and
FjjiðxÞ are the diffusion landscape and force field along the
leg directed from i to j, respectively, β≡ 1=ðkBTÞ, and ξt is
standard Gaussian white noise with zero mean, i.e., hξti ¼
0 and hξtξt0 i ¼ δðt − t0Þ. The symbol “⊛” denotes the anti-
Itô product (see Appendix A 1), and ljji ¼ lijj denotes the
length of the path connecting nodes i and j (see Fig. 4).
Once a node i is reached from within a leg, the

consecutive leg is chosen, without loss of generality,
randomly from the set of all neighbors j0 ∈ N i with equal
probability; i.e., the microstate x ¼ ðxt; j; iÞ in Fig. 4(a)
changes ð0; j; iÞ → ð0; j0; iÞ. Thereupon, the dynamics
again evolves according to Eq. (4) until the next visit of
a node. Similarly, as soon as the node j is reached, the
microstate changes to ðljji; j; iÞ → ð0; k; jÞwith k randomly
chosen among the neighbors of node j (k ∈ N j) with

equal probability. This procedure fully specifies the full
system’s dynamics. In Appendix A 6, we translate the
Langevin equation (4) into a Fokker-Planck equation,
and in Appendix D 3 we explain in detail how one can
account for discontinuities in the diffusion landscape and
force field.
Three remarks are in order. First, in what follows we

assume the Langevin equation (4) to determine the time
evolution of the microstate along any link depicted by the
gray lines in Fig. 4. It is shown that such a dynamics
naturally emerges when possibly hidden degrees of free-
dom (perpendicular to the gray lines) are quickly relaxing
[49]; that is, the full system’s trajectories concentrate along
“tubes.” Strikingly, ignoring a possibly higher-dimensional
embedding renders the diffusion coefficient spatially de-
pendent [49] due to entropic effects. Diffusion on a graph
also emerges from Hamiltonian dynamics weakly coupled
to a heat bath [46].
Second, the Langevin equation (4) can globally violate

detailed balance. Nevertheless, for any i ∈ Ω and j ∈ N i,
the force translates along any link into the local potential

UjjiðxÞ≡ −
Z

x

0

FjjiðyÞdy ð5Þ

for 0 < x < lijj. The representation of the microstate by
design entails a redundancy, meaning that x ¼ ðxt; j; iÞ and
x̃ ¼ ðljji − xt; i; jÞ are the samemicrostate (see Fig. 4). This
imposes the following reflection symmetries: DijjðxÞ ¼
Djjiðljji − xÞ as well as FijjðxÞ ¼ −Fjjiðljji − xÞ, and hence,
UijjðxÞ ¼ Ujjiðljji − xÞ −UjjiðljjiÞ. If a global potential U
exists, that is, UjjiðljjiÞ ¼ Uj − U i, ∀ i; j ∈ Ω with j ∈ N i

the dynamics is said to obey detailed balance. Conversely,
if no such global potential exists, microscopic reversibility
is said to be broken (see also Appendix D 1).
Third, we propagate Eq. (4) numerically using the

Milstein scheme provided in Appendix A 3 whenever the
diffusion coefficient is nonconstant “DjjiðxÞ ≠ const.”
Otherwise, we use the stochastic Runge-Kutta scheme
[78] described in Appendix A 4.

B. Coarse graining to state changes on a network

According to the gedanken experiment outlined in Fig. 3,
the continuous trajectory is coarse grained into a time series
of recurrences and state changes on a network. Consecutive
visits of the continuous trajectory of the same node cor-
respond to recurrences [see colored crosses in Figs. 3(a)
and 3(b)], whereas transitions between distinct nodes yield
state changes [see black crosses in Fig. 3(a) and line in
Fig. 3(b)]. In between two consecutive state changes,
the reduced network state remains in the initial state [see
Fig. 3(b)]. This exactly specifies the coarse-grained tra-
jectory on the network.
The dwell time τ corresponds to the sum of all con-

secutive recurrence times tr since the last state change.

(a) (b)

FIG. 4. Microstate versus network state on the path between
nodes i and j separated by a distance ljji. (a) The microstate
x≡ ðxt; j; iÞ at distance xt from node i in the direction toward
node j is driven by a force F, where Fjji denotes the parallel
component of the force. (b) The microstate measured by the
distance x̃t ¼ ljji − xt from node j is equivalent to the one from
(a); i.e., x ¼ ðxt; j; iÞ and x̃ ¼ ðx̃t; i; jÞ are equivalent.
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One dwell period is highlighted in Fig. 3(b). The transition
time δt corresponds to the time between the last recurrence
and the instance of the state change. The local waiting time
t for a transition i → j is formally the sum of the dwell time
and transition-path time t ¼ δtþ τ and corresponds to the
time interval between two consecutive first entrances of
nodes. Since the complete dynamics is stochastic, these
quantities correspond to random variables. The joint
probability density of a waiting time at i and consecutive
transition to j corresponds to ℘loc

jji ðtÞ, and the dwell and

transition-path time are distributed according to ℘dwell
i ðτÞ

and ℘tr
jjiðδtÞ, respectively. Precise formal definitions of the

waiting-, dwell-, and transition-path-time functionals enter-
ing Eq. (3) are given in the following subsection. In
Appendix A 5, we explain the numerical evaluation of
both dwell and transition-path time.
Let us briefly discuss the strengths and the limitations of

the coarse graining. First, as we show Sec. III the coarse
graining preserves the thermodynamic entropy production.
Second, the coarse graining preserves node-to-node cur-
rents [79,80] and its fluctuations, which are discussed
in Sec. V C. Third, first passage functionals of the full
microscopic model are preserved (see Appendix C 3).
These are, for instance, crucial for catch-bond rupture
experiments carried out in Refs. [34–36,67,68] (see
Sec. V B). Fourth, the coarse graining retains vital infor-
mation [27] encoded in transition-path times, which are the
key to understanding the emergence of memory in
the network kinetics that we discuss in Sec. V. However,
the coarse graining has one shortcoming. Because of the
aforementioned redundancy (see Fig. 4), the statistics of
occupation time [81] (also known as “local time” or
“empirical density” [82]) is not preserved. Occupation-
time statistics on graphs were studied, for example, in
Ref. [62]. We note that in the presence of a timescale
separation, transitions become effectively instantaneous
[see Fig. 1(a)], and in this limit, occupation times within
the metastable regions are preserved, while concurrently
the kinetics becomes memoryless (see Sec. III C).

C. Definition of transition-path-time and
dwell-time functionals

Using the gedanken experiment depicted in Fig. 3(b), we
define the dwell time τ as the time between the first
“blinking” and the last blinking (last recurrence) of the
same color (state), while the transition-path time denotes
the time span between the last recurrence and the first
following change of color. While the gedanken experiment
allows for an intuitive definition of the dwell and transition-
path time, we now provide precise formal definitions that
allow us to relate the gedanken experiment to existing
definitions of transition-path times [19].
The transition path from node i to node j starts with the

last recurrence to node i and ends with the first visit of

another node j conditioned that i has not been visited in
between. Suppose that xt denotes the distance from node i
toward node j satisfying the Langevin equation (4) between
said nodes. Then the transition-path time is defined as the
random variable [19]

δt¼ lim
y→0

inf
t
ftjxt ¼ ljji ∧ x0 ¼ y ∧ ð0< xτ ∀ 0 ≤ τ ≤ tÞg;

ð6Þ

whose probability density function is denoted by ℘tr
jjiðδtÞ.

Note that an unsuccessful transition attempt terminates as
soon as xt ¼ 0, whereas a transition is successfully com-
pleted once xt ¼ ljji. Since transitions correspond to
successful attempts only, we need to discard all unsuc-
cessful attempts by introducing the transition Green’s
function Gtr

jji defined as follows.
The probability density starting from x0 ¼ y to be

found after time t at distance x from node i in direction
to node j, while never having either returned to state i or
reached state j, is denoted by Gtr

jjiðx; tjyÞ. The probability
density satisfies the initial condition Gtr

jjiðx; 0jyÞ ¼
δðx − yÞ. We translate the Langevin equation (4) into a
Fokker-Planck equation [83] (see also Appendix A 6)
∂tGtr

jjiðx; tjyÞ ¼ −∂xĴ
F
jjiðxÞGtr

jjiðx; tjyÞ, where Ĵ F
jjiðxÞ≡

βDjjiðxÞFjjiðxÞ −DjjiðxÞ∂x is the current operator, and
the boundary conditions are absorbing Gtr

jjið0; tjyÞ ¼
Gtr

jjiðljji; tjyÞ ¼ 0. The absorbing boundaries effectively
terminate the process once either of the nodes i or j is
reached. The transition-path time statistics are determined
by taking the limit of successful trajectories in Eq. (6), that
is, y → 0 (starting from node i) and x → ljji (ending in node
j). The corresponding probability density of transition-path
time reads

℘tr
jjiðδtÞ ¼ lim

y→0
lim
x→ljji

Ĵ F
jjiðxÞGtr

jjiðx; δtjyÞR
∞
0 Ĵ F

jjiðxÞGtr
jjiðx; tjyÞdt

: ð7Þ

The dwell time is defined as follows: First, we define in
node i the state-j-dependent conditional first-passage time
tj ¼ infftjx0 ¼ 0 ∧ xt ¼ ljtjig, where the index j ¼ jt
denotes the randomly chosen state following state i, which
in turn can be used to define the dwell time as

τ ¼ sup
t
ftjx0 ¼ 0 ∧ xt ¼ 0 ∧ t ≤ tjg: ð8Þ

The probability density of dwell time is denoted by
℘dwell
jji ðτÞ. We prove in Appendix B that the dwell time τ

has in fact the same distribution for all final states j, which
is manifested in the property ℘dwell

jji ðτÞ ¼ ℘dwell
i ðτÞ sym-

metry (i) in Eq. (3). Moreover, we prove in Appendix B the
independence of dwell and transition-path times, which
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allows us to represent the probability density of the
conditional waiting time as a convolution as in Eq. (3).

D. Main practical result

A straightforward translation of Eq. (4) into a Fokker-
Planck equation with appropriate boundary and internal
continuity conditions allows us to obtain explicit results for
the splitting probability and the statistics of dwell and
transition-path time, which follow from some quite tedious
algebra (see Supplemental Material [75]).
More precisely, in the Supplemental Material Sec. I in

Ref. [75], we show that the path decomposition from
Appendix C can be “inverted” to conveniently derive the
statistics of waiting time ℘loc

jji ðtÞ, which after insertion of the
results derived in the Supplemental Material Sec. II in
Ref. [75]—so-called unconditioned first-passage times—
finally yields the main practical result, Eqs. (10)–(13), as
shown in the Supplemental Material Sec. III in Ref. [75].
For convenience, we introduce the following essential

auxiliary integrals:

IðkÞjji ≡
Z

ljji

0

dy1

Z
y1

0

dy2;…;
Z

yk−1

0

dykg
ðkÞ
jji ; ð9Þ

where gðkÞjji are depicted in Table I with the local potential

Ujji defined in Eq. (5). In the following, we require only the

first five integrals IðkÞjji (k ¼ 1;…; 5). Using the auxiliary

integrals in Eq. (9), the splitting probabilities read

ϕloc
jji ¼

�X
k∈N i

Ið1Þjji =I
ð1Þ
kji

�
−1
; ð10Þ

and the first two moments of the transition-path time
become

hδtitrjji ¼
Ið3Þjji
Ið1Þjji

and hδt2itrjji ¼ 2ðhδtitrjjiÞ2 − 2
Ið5Þjji
Ið1Þjji

; ð11Þ

where the second moment is generally sub-Markovian,
i.e., hδt2itrjji ≤ 2ðhδtitrjjiÞ2. See also Ref. [27] for an alter-

native proof, where hδt2itrjji ≤ 2ðhδtitrjjiÞ2 corresponds to a
coefficient of variation being smaller than 1. Some further

extended algebra yields the first two moments of the
average local dwell time

hτidwelli ¼
X
k∈N i

ϕloc
kji ½Ið2Þkji − hδtitrkji�;

hτ2idwelli ¼ 2ðhτidwelli Þ2

þ
X
k∈N i

ϕloc
kji ½2Ið2Þkji hδtitrkji − 2Ið4Þkji − hδt2itrkji�; ð12Þ

wherefrom follows the variance of the dwell time
σ2dwell;i ¼ hτ2idwelli − ðhτidwelli Þ2. The independence of dwell
and transition-path times in Eq. (3) immediately yields the
binomial sum for the nth moment of the local first-passage
time

htnilocjji ¼
Xn
l¼0

�
n
l

�
hδtlilocjji hτn−liloci ; ð13Þ

where the forward or backward symmetry implies
hδtlilocjji ¼ hδtlilocijj . The nth moment of the exit time is then

simply given by htniexiti ¼ P
k ϕ

loc
kji htnilockji yielding the

variance σ2exit;i ¼ ht2iexiti − ðhtiexiti Þ2. Note that htiexiti is
given in Eq. (S47) and ht2iexiti can be found in Eq. (S50)
in the Supplemental Material [75]. According to Eq. (13),
the latter can be decomposed into three noise contributions
σ2exit;i¼σ2dwell;iþσ2tr;int;iþσ2tr;ext;i, where σ

2
dwell;i ¼ hτ2idwelli −

ðhτidwelli Þ2, the intrinsic noise due to transition-path time is
given by σ2tr;int;i ¼

P
k ϕ

loc
kji ½hδt2itrkji − ðhδtitrkjiÞ2�, and the

extrinsic noise among different transition paths is given
by σ2tr;ext;i ¼

P
k ϕ

loc
kji ðhδtitrkjiÞ2 − ðPk ϕ

loc
kji hδtitrkjiÞ2.

Equations (10)–(13) are the main practical result of this
paper. Notably, in Eq. (12), we determine for the first time
the moments of dwell time. We emphasize that the results
Eqs. (10)–(13) contain no redundant integrals that were
eliminated in a quite tedious calculation shown in the
Supplemental Material Secs. II.D and III in Ref. [75]. This
final step is crucial for the derivation of the main result in
Sec. V. Moreover, due to the positivity of the surviving
auxiliary integrals (9), Eq. (11) provides an independent
proof of the main finding of Ref. [27]. If the network
contains infinitely long legs (lj−ji → ∞), the auxiliary
integrals diverge. This leads to diverging moments of

TABLE I. Integrands entering Eq. (9) at a glance.

k gðkÞjji

1 eβUjjiðy1Þ=Djjiðy1Þ
2 eβUjjiðy1Þ−βUjjiðy2Þ=Djjiðy1Þ
3 eβUjjiðy1Þ−βUjjiðy2ÞþβUjjiðy3Þ=Djjiðy1ÞDjjiðy3Þ
4 eβUjjiðy1Þ−βUjjiðy2ÞþβUjjiðy3Þ−βUjjiðy4Þ=Djjiðy1ÞDjjiðy3Þ
5 eβUjjiðy1Þ−βUjjiðy2ÞþβUjjiðy3Þ−βUjjiðy4ÞþβUjjiðy5Þ=½Djjiðy1ÞDjjiðy3Þ�Djjiðy5Þ
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dwell time that in turn may trigger interesting phenomena
such as anomalous diffusion and “weak ergodicity break-
ing” [43–45,84]. Even in this case, the independence
between transition and dwell time in Eq. (3) is expected
to hold. We now address the thermodynamic consistency of
the coarse graining.

III. THERMODYNAMIC CONSISTENCY OF THE
COARSE GRAINING

A. Splitting probability encodes thermodynamics

In this section, we derive our first main result, Eq. (2),
and explain its implications. In particular, we show that
the coarse graining into the reduced-state dynamics pre-
serves the dissipation (entropy production) of the under-
lying microscopic continuous dynamics in the presence of
memory. The emergence of a kinetic hysteresis is discussed
in the following section. Using Eq. (10), one obtains

ln
ϕloc
jji

ϕloc
ijj

¼ ln

�X
k∈N j

1

Ið1Þkjj

�
− ln

�X
k∈N i

1

Ið1Þkji

�
þ ln

Ið1Þijj
Ið1Þjji

; ð14Þ

where Ið1Þjji ¼ R ljji
0 DjjiðxÞ−1eβUjjiðxÞdx [cf. Eq. (9) and

Table I]. To derive Eq. (2), we multiply Eq. (14) by the
thermal energy and define

gðαÞ≡ −kBT ln

�X
k∈N α

1

Ið1Þkjα

�
; ð15Þ

with α ¼ i, j. It remains to be shown that the last term in
Eq. (14) is in fact the force integrated along the path starting
from node i and ending in node j as in Eq. (2), which we
prove in the following paragraph.
Using the auxiliary integrals from Eq. (9), we find

ln
Ið1Þijj
Ið1Þjji

¼ ln

2
64
R ljji
0

e
βUijjðxÞ

DijjðxÞ dxR ljji
0

e
βUjjiðxÞ

DjjiðxÞ dx

3
75 ¼ ln

2
64
R ljji
0

e
βUjjiðljji−xÞ−βUjjiðljjiÞ

Djjiðljji−xÞ dxR ljji
0

e
βUjjiðxÞ

DjjiðxÞ dx

3
75

¼ −βUjjiðljjiÞ; ð16Þ

where in the second step we use the symmetries DijjðxÞ ¼
Djjiðljji − xÞ and UijjðxÞ ¼ Ujjiðljji − xÞ − UjjiðljjiÞ, which
are discussed in the paragraph following Eq. (5) in Sec. II A,
and in the last step we use the fact that the integrals are
identical up to the constant e−βUjjiðljjiÞ. We use β ¼ 1=ðkBTÞ
and insert the definition of the local potential in Eq. (5)

UjjiðljjiÞ ¼ −
R ljji
0 FjjiðxÞdx into Eq. (16) to obtain

kBT ln
Ið1Þijj
Ið1Þjji

¼
Z

ljji

0

FjjiðxÞdx ¼
Z

j

i
FðxÞ · dx; ð17Þ

where in the last stepwe identifyFjji as the component of the
force F along the link i → j [see Fig. 4(a)]. Inserting
Eqs. (15) and (17) into Eq. (14) finally yields Eq. (2), which
completes the proof of the first main result.

B. Entropy production rate

It is important to understand why Eq. (2) in fact encodes
thermodynamic consistency, that is, why the coarse grain-
ing preserves the total entropy production rate of the
underlying system at long times. During a long-time
interval of length t, we observe njjiðtÞ transitions from
state i to state j, which is a random number that in the limit
of long times displays a non-negative stationary probability
flow _njji ≡ limt→∞ njjiðtÞ=t ≥ 0. This stationary probability
flow (see, e.g., Refs. [54,85]) can be calculated from
_njji ¼ ϕloc

jji πi=
P

k htiexitk πk, where π is the unit eigenvector

of the splitting matrix, i.e., πj ¼
P

i ϕ
loc
jji πi. While detailed

balance implies _njji − _nijj ¼ 0, the violation of this equal-
ity, i.e., _njji ≠ _nijj, reflects a genuine breaking of detailed
balance. Using the force field along the continuous graph,
one can conveniently express the entropy production of the
microscopic dynamics as

_SSS ≡X
i;j

_nij

Z
j

i
dx · F=T; ð18Þ

where
R j
i dx · F is the dissipated “work” along a transition

i → j at temperature T. Inserting Eq. (2) into Eq. (18) we
obtain

_SSS ¼ kB
X
i;j

_njji

�
gðjÞ
T

−
gðiÞ
T

þ ln
ϕloc
jji

ϕloc
ijj

�

¼ kB
X
i;j

_njji ln
ϕloc
jji

ϕloc
ijj

; ð19Þ

where in the final step we use Kirchhoff’s law stating that
all incoming flows and outgoing flows are conserved, i.e.,P

j _nijj ¼
P

j _njji. We emphasize that Eq. (19) allows us to
express the entropy production of the underlying micro-
scopic dynamics in Eq. (18) solely in terms of the coarse-
grained network dynamics (ϕjji and _njji). This finding
renders the coarse graining (see Fig. 3) thermodynamically
consistent. Moreover, Eq. (19) explicitly does not require
the underlying microscopic force field F entering the right-
hand side of Eq. (18) to be known.
A few additional remarks are in order. First, the coarse

graining preserves the stationary entropy production rate
since it does not hide cycles [55]. The preservation of
cycles by the coarse graining is explicitly explained in
Appendix D 1. Possible extensions to the theory including
hidden cycles will be discussed in Sec. VI. In the presence
of hidden cycles, Eq. (19) is expected to underestimate the
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entropy production rate. Second, in the limit of a timescale
separation, Eq. (19) coincides with the entropy production
in Markov networks [86], whereby Eq. (18) encapsulates
the local detailed balance relation [6]. In the following
subsection, we briefly address this limit, which arises in the
presence of high local free-energy barriers that in turn yield
memoryless kinetics.

C. The peculiar limit of local detailed balance

In the case of high local (free-) energy barriers corre-
sponding to Bjji → ∞ and Bijj → ∞ in Fig. 5 for each pair
i, j, the full microscopic trajectory locally equilibrates
in each well prior to any transition. In this limit, the
transition rate to jump from node i to node j becomes
wi→j ≡ ϕloc

jji =htiexiti , and in turn Eq. (2) implies (see proof in
Appendix D 2)

kBT ln
wi→j

wj→i
≃
Z

j

i
FðxÞ · dxþ Uj − U i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

“work” along transition i→j

þ F i − F j

zfflfflfflffl}|fflfflfflffl{free-energy difference

;

ð20Þ

where U i denotes the potential energy of node i, the first
term on the right denotes the external free-energy input
along the transition (i.e., “dissipated work”), and the free
energy of state i is defined by F i ¼ −kBT lnZi with

partition function Zi ≡P
k∈N i

R x�
kji

0 e−β½U iþUkjiðxÞ�dx. The
symbol “≃” denotes asymptotic equality “¼,” here taken
in the limit of high local (free-) energy barriers (Bjji → ∞
and Bijj → ∞). Equation (20) reflects the so-called local

detailed balance [6] (or partial equilibrium [3]). When there
is no work performed along the transition, local detailed
balance also implies global detailed balance. Local detailed
balance is violated as soon as a single barrier Bjji ceases to
be high. Interestingly, local detailed balance [Eq. (20)] can
be violated even in systems obeying detailed balance
globally. In this case, the waiting-time distribution becomes
nonexponential as in Fig. 3(c).
It is worth mentioning that the approximation (20)

affects only the free-energy difference. This approximation
still exactly satisfies

T _SSS ¼ kBT
X
ij

_njji ln
wi→j

wj→i

¼
X
ij

_njji

�Z
j

i
FðxÞ · dxþ Uj − U i þ F i − F j

�
:

ð21Þ

The equality follows from Kirchhoff’s law stating that
incoming and outgoing currents balance each otherP

j _njji ¼
P

j _nijj, as well as from Eqs. (18) and (19) with
wi→j ¼ ϕloc

jji =htiexiti .

IV. TIME REVERSAL AND KINETIC
HYSTERESIS

The dissipation in a system was found to be closely
linked to the breaking of time-reversal symmetry (measured
by the Kullback-Leibler divergence) in Hamiltonian sys-
tems under time-dependent driving [87,88], Markovian
diffusion [89–91], and Markov-jump dynamics [92,93]
to name but a few. These findings imply that a microscopic
trajectory Γ τ ¼ xðtÞ0≤t≤τ in a stationary ensemble of
paths with measure P relates to the steady-state dissipation
rate via

_SKL ¼ kB lim
τ→∞

1

τ

�
ln

P½Γ τ�
P½ΓR

τ �
	
; ð22Þ

where ΓR
τ ¼ xðτ − tÞ0≤t≤τ is the time-reversed trajectory,

and h� � �i is the average over the forward path measure
P½Γ τ�. Note that we consider overdamped dynamics; i.e.,
the microstate instantaneously “loses” momentum which
is odd under time reversal (e.g., see Refs. [87,88]). In
Fig. 3(a), the time-reversed trajectory ΓR

t corresponds to the
color-gradient line with time running from dark to bright. In
fact, by design the entropy production rates in Eq. (22)
coincide with the entropy production rate in Eq. (18), and
therefore also with the one deduced from the coarse-
grained trajectory Eq. (19); i.e., _SSSKL ¼ _SSS holds. Thus,
the entropy production rate _SSS measures both the breaking
of time-reversal symmetry of the underlying diffusive
dynamics and the breaking of detailed balance.

FIG. 5. Local potential with local equilibration. Local potential
UjjiðxÞ ¼ −

R
x
0 FjjiðyÞdy between one pair of nodes i and j. The

two states are separated by a single maximum at x�jji of the local
potential characterized by Fjjiðx�jjiÞ ¼ 0, while satisfying

FjjiðxÞ < 0 if x < x�jji and FjjiðxÞ > 0 if x > x�jji. Local equili-
bration occurs if the local free-energy barriers are high, meaning
that Bjji ≫ kBT and Bijj ≫ kBT.
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Two contradicting views have been put forward [53,54]
when addressing coarse-grained dynamics depicted in
Fig. 3(b) that represents a semi-Markov chain. While
Ref. [53] showed that the breaking of time reversibility
does not imply breaking of detailed balance, Ref. [54] came
to the exact opposite conclusion. We now show that this
conflict in fact unravels a counterintuitive phenomenon.
Determining the breaking of time-reversal symmetry in a

coarse-grained process according to Eq. (22) can in general
be challenging. However, for a semi-Markov process one
can elegantly determine the relative entropy rate in Eq. (22)
from the waiting-time density [54,85]

_SCGKL ¼ _SSS þ kB
X
i;j;k

ϕloc
kjj _njjiDKL½ψkjjðtÞkψ ijjðtÞ�; ð23Þ

which follows immediately from the main result in
Ref. [54] [see Eqs. (2)–(4) therein] along with the insertion
of Eq. (19) and the definition of the Kullback-Leibler
divergence DKL½pðtÞkqðtÞ�≡

R
∞
0 pðtÞ lnpðtÞ=qðtÞdt ≥ 0.

Equation (23) quantifies the mathematical time irrevers-
ibility of the coarse-grained process depicted in Fig. 3(b).
In contradiction to Ref. [53], the last term in Eq. (23)

was believed to allow for the detection of “broken
detailed balance in the absence of observable currents”
[54]. Here we surprisingly find that the Kullback-Leibler
divergence overestimates the entropy production, i.e.,
_SCGKL ≥ _SKL ¼ _SSS. Notably, the process in Fig. 3(a), which
is a manifestly equilibrium process with _SSS ¼ 0, would
paradoxically display a strictly positive rate _SCGKL > 0. This
follows immediately from the fact that the waiting-time
densities in Fig. 3(c) are not equal. Thus, (coupled)
anisotropic waiting-time distributions as in Fig. 3(c) are
a signature of mathematical irreversibility [53], whereas
they are in general not a signature of the breaking of
detailed balance as apparently erroneously concluded in
Ref. [54]. Interestingly, we do not find any technical
mistake in the calculation in Ref. [54], yet our model
provides a counterexample. How can we reconcile this?
It turns out that the coarse-grained trajectory depicted in

Fig. 3(b) displays the following counterintuitive phenome-
non. If we coarse grain the same trajectory backward in
time, we discover, somewhat surprisingly, a kinetic hyste-
resis. That is, the time-reversed coarsened trajectory (see
dotted gray line Fig. 6), where time is running from right to
left, differs from the forward one. This hysteresis allows for
a unique decomposition of each waiting time t in any given
node into a dwell time τ—the interval in which the forward
and time-reversed coarsened trajectory coincide—and a
transition-path time δt—the interval in which they differ
(see Fig. 6).
To physically revert time, we must also physically revert

the gedanken experiment of the state visits [see colored
crosses in Figs. 6 and 3(b)]. Thus, each state visit at the end
of a forward-in-time dwell period marks the first state

change in the time-reversed experiment. In other words, the
time reversal must be carried out before the coarse graining,
not after. This restores the connection between the breaking
of physical time-reversal symmetry and violations of
detailed balance; i.e., it reconciles the opposing views
put forward in Refs. [53,54].
There is an analogy between transition paths and

momenta, which explains the problem in Ref. [54]. If
we were to reverse in time a trajectory in an equilibrium
system (without changing the sign of momenta), we would
obtain an unphysical time-reversed trajectory that can never
be observed; i.e., Eq. (22) would yield a diverging entropy
production rate at equilibrium. To avoid this unphysical
result, one must take into account that momenta in fact
change sign under time reversal [87,88,92]. Hence, we find
that the transition paths, similar to momenta in under-
damped systems [87,88], in some sense are odd under time
reversal, which gives rise to the kinetic hysteresis in Fig. 6.
In other words, the “coarse graining” and “time reversal”
must not commute, which will lead to a paradigm shift in
the understanding of time reversal in the presence of
transition paths with a finite duration.
Some further remarks are in order. The thermodynami-

cally inconsistent second term in Eq. (23) vanishes if the
waiting-time distribution is decoupled from the state
change [54] as studied in Refs. [94–96], which in fact
follows from Eq. (3) in the limit of instantaneous transition-
path times ℘tr

jjiðtÞ ¼ δðtÞ. That is, in this limit the waiting-

time distribution ψ jjiðtÞ ¼ ℘dwell
i ðtÞ does not depend on j.

Second, our finding _SCGKL ≥ _SSS does not contradict
Refs. [88,97] since the path weight of the coarse-grained
process is not a marginal path weight of the full one (see
Sec. II B and Fig. 4). Third, until now, we considered the
coarse graining into individual nodes (i.e., all cycles were
preserved). It has been found that for certain network
topologies, the lumping of nodes that hides cycles may lead
to what is called a “second-order semi-Markov process”
[54]. The kinetics in the presence of such “lumped” nodes
is discussed in Sec. VI B. In this case, the connection
between the entropy production rate and coarse-grained
dynamics embodied in Eqs. (18) and (19) is expected to
disappear.

FIG. 6. Kinetic hysteresis. The coarse graining does not
commute with time reversal. Transitions are “odd” under time
reversal, while dwell periods are “even,” i.e., dwell periods
commute with time reversal. The state change is the same as
in Fig. 3.
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V. THREE SOURCES OF FLUCTUATIONS

A. Transition noise dictates the amplitude
of fluctuations

Memory in state changes emerges locally as a result of
long-recurrence and transition-path times. Long-recurrence
times arise whenever the continuous trajectory becomes
trapped in the legs of the subgraph without changing state
[see vertical arrows in Fig. 3(b) or Fig. 6]. Long-transition-
path times are due to slow dynamics between a pair of
adjacent nodes. Imagine that only one leg in Fig. 1(e), say,
3 → 1, displays slow or recurrent dynamics, e.g., because
of slow diffusion and/or the absence of an energy barrier.
Then, not only is ψ1j3 clearly nonexponential [see blue line
in Fig. 3(c)], but strikingly, also ψ2j3 and all others become
nonexponential [see green line in Fig. 3(c)]; the waiting-
time distribution becomes “coupled” [39,43,98] to the state
change. Note that this problem cannot be solved within the
framework of the generalized master equation [37] because
the coupling has to be “put in by hand.”
In order to understand the emergence these anisotropic

local “waiting times,” we dissect fluctuations of time
required to exit state i as ℘exit

i ðtÞ≡P
j ℘

loc
jji ðtÞ. The inde-

pendence of dwell and transition-path times in Eq. (3)
implies three independent contributions to fluctuations

σ2exit ¼ σ2dwell þ σ2tr;int þ σ2tr;ext; ð24Þ

where σ2 ≡ ht2i − hti2 denotes the variance, and we
further decompose fluctuations of transition-path time
into intrinsic fluctuations along the respective legs of
the subgraph σ2tr;int ¼

P
j ϕ

loc
jji σ

2
tr;jji and the extrinsic scatter

of mean transition-path times among distinct legs σ2tr;ext≡P
j ϕ

loc
jji ðhδtitrjjiÞ2 − ðPj ϕ

loc
jji hδtitrjjiÞ2. The three contribu-

tions in Eq. (24) are explained in Fig. 7(a) and given
explicitly in Sec. II D.
When σ2tr;ext vanishes, i.e., hδtitrjji ¼ hδtitrkji for all j, k [see

Fig. 7(a) left], the fluctuations of exit time are sub-
Markovian since σexit ≤ htiexitj . In turn, super-Markovian
fluctuations, that is, σexit ≥ htiexit, necessarily imply the
existence of multiple exit pathways with distinct transition-
path times [see Fig. 7(a) right]. This proves that one can
infer, in general, the existence of parallel transition path-
ways without actually resolving individual pathways,
which is our third main result of this paper (for proof,
see the last subsection in the Supplemental Material [75]).
Below, we illustrate this main finding by means of two
opposing examples.

B. Super-Markovian exit dynamics reflect parallel
unequally fast transition paths

In a first demonstration of the practical implications of
our results, we address the counterintuitive catch-bond

phenomenon [35,67] depicted in Fig. 1(d) (see also
Refs. [34,36]). A ligand bound to a receptor is pulled by
a constant force F until the bond ruptures (details about the
model are given in Appendix E 2). The time of rupture
corresponds mathematically to the exit time from the bound
state. A characteristic of catch bonds is that they rupture
along two possible pathways. One pathway involves a
conformational change of the receptor that prolongs the
transition-path time. In turn, this gives rise to a non-
monotonic force dependence of the rupture time [see
Fig. 7(c)]. That is, within a certain interval of F—the
so-called catch-bond phase [34–36,68]—the bond counter-
intuitively survives longer if we pull stronger. The mean
lifetime htiexit and its standard deviation σexit reconstructed
according to Refs. [35,67] are depicted in Fig. 7(c), where
the lines denote exact results (see Sec. II D) and symbols
are deduced from 500 simulated rupture events. A larger
pulling force increases the likelihood of choosing the slow
path [see black line in Fig. 7(b)] and in turn amplifies
extrinsic noise [see shaded areas reflecting relative noise
contributions in Fig. 7(b) as well as red symbols in Fig. 7
(a)]. The observed fluctuations are evidently super-
Markovian, i.e., σexit ≥ htiexit, and therefore immediately
imply the existence of at least two rupture pathways that are
not equally fast σtr;ext ≠ 0. We show the decomposition of
the lifetime of the bond into dwell and transition-path time
along the individual pathways in Appendix E 2 (see
Fig. 11). If transition-path times can be measured explicitly,
one can alternatively detect parallel paths by means of the
coefficient of variation as explained in Ref. [27], which for
the sake of completeness is shown in Appendix E 2 e
(see Fig. 10).

C. Symmetry in transitions causes sub-Markovian
exit dynamics

We now consider the scenario where extrinsic transition
noise vanishes, implying σexit ≤ htiexit. Particularly impor-
tant examples are the steady-state operation of driven
molecular machines and the more abstract “stopping times”
of the thermodynamic entropy production [59–61]. We
consider an ATPase operating under the influence of a
nonequilibrium torque M, were M ¼ 0 refers to the torque
at which the ATPase stalls [50]. The rotation of the ATPase
evolves as diffusion in a periodic potential with period
2π=3 reflecting the 120° rotational symmetry of the motor,
and a barrier height of 5kBT separating the well-defined
minima [see Fig. 1(d)]. The torque is accounted for by
tilting the potential [see Figs. 2(a) and 2(b) and
Appendix E 3]. The continuous rotation is coarse grained
into a unicyclic network with three rotational states,
whereby the statistics of rotational state changes remain
exact. The statistics of exit time from either minimum are
depicted in Fig. 7(e).
The probability densities to make a step in the forward

(þ) and backward (−) direction after time t are given by
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℘loc
� ðtÞ ¼ ϕ�℘exitðtÞ yielding a mean-squared angular

deviation [16,37], hδθ2t i≡ hθ2t i − hθti2 [see proof in
Appendix E 3, Eq. (E4)]

hδθ2t i
ð120°Þ2 ≃ 4ϕþϕ−

t
htiexit þ ðϕþ − ϕ−Þ2

tσ2exit
ðhtiexitÞ3 ; ð25Þ

where ≃ denotes asymptotic equality in the limit t → ∞.
Memoryless Markovian kinetics would predict σMexit ≡
htiexit ≥ σexit and thus systematically overestimate fluctua-
tions [dotted line in Fig. 7(f)]. Memory is particularly
pronounced in the regime of strong driving, i.e., ϕþ ≫ ϕ−

or ϕ− ≫ ϕþ. Notably, we find the so-called thermodynamic
uncertainty relation [79,80] to bound fluctuations from
below [Fig. 7(f), solid line; for a proof, see Appendix E 4].
Our results thereby yield a “sandwich” bound on actual
fluctuations in driven cycle-graph (i.e., ring-shaped)
networks.

VI. MARGINAL OBSERVATIONS
AND HIDDEN CYCLES

So far, we have discussed a non-Markovian network
theory that accounts for transition paths without hidden
cycles. We now show how one can generalize our results to

(a)

(c)

(e) (f)

(b)

(d)

FIG. 7. Manifestations of transition noise and “flavor of memory.” (a) The partitioning of noise contributions mapped onto a triangle;
the center of the triangle represents the equipartitioning of noise sources σ2dwell ¼ σ2tr;int ¼ σ2tr;ext ¼ σ2exit=3. The left corner corresponds to
Markov kinetics σ2tr;ext ¼ σ2tr;int ¼ 0, and the left edge (blue line) to “sub-Markov” kinetics σ2tr;ext ¼ 0. The top corner corresponds to a
vanishing dwell and extrinsic transition noise σ2dwell ¼ σ2tr;ext ¼ 0, whereas the right corner depicts the limit of vanishing dwell and
intrinsic transition noise σ2dwell ¼ σ2tr;int ¼ 0. The boxed probability density functions (p.d.f. ℘tr) are shown for illustrative purposes. The
kinetic hysteresis increases along the gray arrow. The red circles depict the results of the catch-bond example for different pulling forces
F shown in panels (b) and (c) [results depicted by larger symbols are additionally illustrated in (c)], and orange symbols show the results
for the driven ATPase shown in panel (f). (b),(c) Reconstructed catch-bond experiment. (b) shows ϕ2j0, the probability of taking the slow
pathway 2 (black line); the shaded areas depict the fraction of dwell (σ2dwell=σ

2
exit), extrinsic (σ

2
tr;ext=σ2exit), and intrinsic (σ

2
tr;int=σ

2
exit) noise,

respectively. (c) depicts the mean htiexit and standard deviation σexit of the bond’s lifetime. Lines correspond to exact results, and
symbols are deduced from 500 rupture experiments. Red circles depict pulling forces considered in panel (a). The density of the lifetime
of the bond at F ¼ 20 pN is shown in Fig. 1(d). (d)–(f) Driven molecular motor displaying a vanishing extrinsic transition noise
σtr;ext ¼ 0. (d) Free-energy landscape as a function of the angle θt with a barrier height of 5kBT (blue line; see Appendix E 3 for details)
that becomes tilted due the action of the torque M (red arrow); dotted lines denote network states, i.e., free-energy minima. (e) Scaled
probability density of exit time from a state (i.e., first-passage time to an angular displacement of �2π=3 ¼ �120°) as a function of the
dissipation per step (i.e., torque M multiplied by the rotation step 120°) of magnitude 0,2,5,10, and 20kBT. (f) Steady-state mean-
squared angular deviation hδθ2t i compared with the a Markov-jump approximation hδθ2t iM as a function of the dissipation. The full line
depicts the lower bound (E7) derived in Appendix (E4) using the thermodynamic uncertainty relation (TUR) [79,80]; the individual
noise contributions for selected points (open symbols) are shown in panel (a). Parameters: (b),(c) see Appendix E 2; (d)–(f) see
Appendix E 3.
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systems with hidden cycles. Strikingly, we show that an
evaluation of the mean waiting time from a partial
observation alone can reveal non-Markovian fingerprints
of the full network dynamics. Moreover, we discuss future
perspectives and show what can be learned from estab-
lished coarse-graining schemes known as milestoning.

A. Marginal observations reveal fingerprints
of non-Markovianity

Detecting even a single cycle in an experiment can
be challenging because it requires us to resolve two
parallel transition paths as achieved, e.g., in Ref. [29]. It
thus may not always be feasible to monitor more than one
existing cycle.
To describe such scenarios, we need to account for

possible hidden nodes that cannot be detected as shown in
Fig. 8(a). For example, among the five states listed Fig. 3, it
may be that we can monitor only three states, say, states
1–3. In other words, recurrences and state changes to states
4 and 5 are assumed not to be monitored. In this case, we
can directly observe the nontrivial cycle 1 → 2 → 3,
whereas the second elementary cycle 3 → 2 → 4 → 3
shown in Fig. 3 is not directly visible—it corresponds 3 →
2 → 3 in the marginal observation [compare dotted and
solid line in Fig. 8(a)]. Once a network has hidden cycles
with a nonzero affinity (see Ref. [86] and Appendix D 1),
we expect Eq. (2) not to hold in conjunction with the
possible breakdown of the forward or backward symmetry
of the transition-path time within the marginal observation
as demonstrated in Ref. [28]. It is worth mentioning that
both the dotted and the solid lines depicted in Fig. 8(a) will
generally represent a semi-Markov process and that the
independence between transition-path time and dwell time
as in Eq. (3) is expected to be preserved.
We explain in Appendix C 3 how one can apply the

network theory we develop to study marginal observations.

More precisely, the waiting-time distribution of a marginal
state change to the other states within a subset can be
described by all the local waiting-time distributions ℘loc

jji ðtÞ
[see Eq. (C10)]. Thus the path decomposition, which
generalizes the classical renewal theorem [74] that is fully
explained in Appendix C and used to derive our results, can
be used further to generalize our results in order to include
marginal observations.
Appendix C 4 shows that the marginal dynamics along

3 → 1 is slower and concurrently also less likely than the
marginal dynamics along 3 → 2. Note that both Markov-
state kinetics [1,2,4–14] as well as isotropic (decoupled)
renewal processes [37,43,44,94,96] would invariably infer
transition 3 → 1 to be erroneously faster on average than
3 → 2 (see Appendix C 4). This is because the direct
transition 3 → 1 takes longer than the paths 3 → 2 that
involve a detour through the intermediate state 4. Markov
models, for example, do not allow for this to happen
because they assume transitions to occur instantaneously.
Therefore, one can detect non-Markovianity of the under-
lying network dynamics solely on the basis of mean
waiting times in the marginal observation. Similarly,
symmetric waiting-time distributions in renewal processes
render the duration of all transitions from any state equal,
such that any path involving a detour is bound to take
longer on average. In other words, memory in the marginal
observation in Fig. 8 cannot emerge solely from ignoring
states 4 and 5. Notably, this has a mean waiting time along
3 → 1 that is different from the mean waiting time along
3 → 2, which was concluded to be a sign of mathematical
time-reversal symmetry breaking in Ref. [43] and confused
to be a signature of broken detailed balance in Ref. [54].
Since the model satisfies detailed balance, these findings
need to be revised for both the marginal observation and
the full observation, as soon as transition paths are not
instantaneous. We thus expect the kinetic hysteresis, which
accounts for transition paths being odd under time reversal
as explained in Fig. 6, to extend to marginal observations.
Note that if the marginal observation hides away cycles, we
expect Eq. (19) to be a lower bound to the entropy
production rates, while the rate in Eq. (23) for the marginal
observation in Fig. 8(a) becomes nonzero at equilibrium.
A correct interpretation of marginal observations in the

presence of memory therefore requires the thermodynami-
cally consistent coarse graining derived in our work. More
severe manifestations of memory are found in driven net-
works [see the catch-bond analysis in Fig. 1(d) or Table V].

B. Lumping nodes into mesostates

In the following, we discuss the coarse graining that
lumps multiple states into a few “mesostates” as shown in
Fig. 8(b). In this figure, we lump five states into a pair of
clustered mesostates A ¼ f1; 2g and B ¼ f3; 4; 5g. The
lumped state changes from a hidden semi-Markov process
[99], for which we expect the waiting and dwell time to not

(a)

(b)

FIG. 8. Marginal observations and lumping of states. (a) Mar-
ginal state-change trajectory (black line) if states 4 and 5 are
hidden. (b) Lumping of states into A ¼ f1; 2g and B ¼ f3; 4; 5g.
The colored crosses correspond to state visits of all five states as
in Fig. 3.
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depend only on the current state; that is, Eq. (3) is expected
to be violated.
Lumped dynamics emerging from hidden Markov mod-

els have been studied thoroughly from a thermodynamic
point of view [100]. However, in contrast to our example in
Fig. 8(b), Ref. [100] presumed transition paths to be infini-
tely fast. The trajectory depicted Fig. 8(b) displays three
transitions between clusters A and B, which occur along
three distinct continuous transition pathways, while the last
transition involves the prolonged transition δt between
states 1 and 3 which is highlighted in Figs. 3(b) and 6.
As soon as states are lumped, the waiting-time density in

a lumped state Eq. (3) depends also on the states visited
before said state. The dwell-time statistics then depends not
only on the current state. For example, the dwell-time
statistics in certain lumped networks was found to develop
a “transition memory” [101], which depends on the future
j, current i, and the past k state [54]; i.e., the dwell-time
symmetry Eq. (3) is violated ℘dwell

i → ℘dwell
jjik . In this case,

we furthermore expect the independence between dwell
time and transition-path time to be violated.
Notably, one of our examples shown in Figs. 7(b)

and 7(c) in fact involves lumped states. There we measure
the lifetime of a bond that can rupture along two pathways.
After rupture, the bond remains in two distinct states that
we effectively lump into one ruptured state [see Fig. 1(d)].
Furthermore, any exit-time distribution from a state i
represents a passage from i to the lumped set N i of all
states adjacent to i.
We demonstrate in Appendix C 4 (see also discussion in

the previous subsection) how one can deduce the waiting-
time distribution from one state within B into either state in
the lumped mesostate A ¼ f1; 2g. Choosing the set of
target states to be either of the two mesostates (A ¼ A or
A ¼ B), we can deduce the waiting-time statistics to any
cluster.
To obtain a physically consistent coarse graining, tran-

sition paths should be considered to be odd under time
reversal. The kinetic hysteresis is thus also important to
properly account for the thermodynamic entropy produc-
tion rate in the presence of lumping. As soon as the lumping
hides cycles, Eq. (19) is expected to bound the entropy
production in the lumped system from below [54,55,100].
If all lumped states relax quickly and the transitions
between all lumped states are fast, the lumped dynamics
becomes approximately Markovian [18].
Next we explain how one can conceptually extend the

applicability of our results to more general types of
underlying microscopic dynamics, i.e., other than diffusion
on a graph, via a proxy—the so-called milestoning meth-
odology (see, e.g., Refs. [3,18,41,42,73,101,102]).

C. Milestoning

Milestoning is a (numerical) method for deriving discrete
state kinetics from an underlying continuous dynamics

[3,73]. We now highlight how milestoning allows us to
extend our results to systems with microscopic dynamics
other than diffusion on a graph. To this end, we identify or
replace the nodes (or states) in the network by “milestones”
such that each recurrence in Fig. 3 becomes a passage
through a milestone [63].
Milestones can represent hypersurfaces [41] or hyper-

volumes, i.e., cores [18]. In Ref. [41], milestones were
introduced as a hypersurface-to-hypersurface hopping,
while the underlying dynamics perpendicular to the mile-
stones was assumed to be the slowest degree of freedom
that is effectively one dimensional. Our work now addi-
tionally introduces cycles and branch points (see Fig. 2),
which allow for a nonvanishing rate of steady-state dis-
sipation. Equation (2) shows, for the first time, that a coarse
graining based on milestoning robustly preserves the rate of
dissipation both arbitrarily far from equilibrium and in the
presence of memory. In other words, local detailed balance
[6] is allowed to be violated. It will be interesting to further
account for the thermodynamics of transition memory
[101], which can be caused by fast interhypersurface
dynamics or by lumping of hypersurfaces that may lead
to what is called a semi-Markov process of second order
[54]. In this latter case, a splitting probability of the
transition i → j that depends also on the state k directly
preceding i.
A slightly different milestoning approach presented in

Ref. [18] is based on cores which are small volumes in
phase space. In the scenario when transition-path times
become short, milestoning already emerged as a valuable
tool to deduce a (memoryless) master equation in a
kinetically consistent manner [18] (cf. third paragraph in
the Introduction therein). While Eq. (2) may not hold
anymore exactly, we expect that it will still provide a useful
estimate for entropy production. Our results illustrate that
milestoning leads to a robust and thermodynamically
consistent coarse graining without requiring the dynamics
to be Markovian. We therefore anticipate the milestoning
based on cores to become a valuable tool for extending our
results also to those types of microscopic dynamics that
may not be directly described by a diffusion on a graph. To
illustrate the rationale behind this idea, we briefly sketch
how a generic discrete-state dynamics obtained by mile-
stoning relates to the results derived from our model of
diffusion on a graph and the marginal observation depicted
in Fig. 8(a).
In a Markov-jump processes, each recurrence is in fact

extended in time and exponentially distributed. To capture
this in our model, we must simply adopt finite cores [18]
that effectively “smear out” the nodes (i.e., crosses in
Fig. 8) to continuous segments. The transition time ð2 → 3Þ
in the marginal observation becomes the time span over
which we would detect the hidden state 4. That is, the full
and marginal state change differs. We may now concep-
tually replace, to a very good approximation, all hidden
parts of the network with a sufficiently dense Markov
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network with the appropriate topology and adopt Ref. [102]
which explains how to deduce transition-path-time statis-
tics between any pair of marginally observed states in
Markov-jump networks in quite general context. The
entropy production of the reduced network dynamics
was in turn evaluated in Ref. [53]. We may thus consider
Refs. [18,53,102] and the coarse graining outlined in Fig. 3
to provide a generic blueprint for constructing a thermo-
dynamically consistent coarse graining.

VII. CONCLUSION

Emerging from the mapping of continuous dynamics are
three elementary independent sources of fluctuations in
state transitions on a network: dwell-time fluctuations and
the intrinsic and extrinsic noise arising from random
transition-path times. The balance of these noise channels
depicted in the noise triangle in Fig. 7(a) yields Markovian,
sub-, or super-Markovian fluctuations and thus sets the
flavor of memory. A vanishing extrinsic transition noise
causes sub-Markovian dynamics as in the driven ATPase
[Fig. 7(a), orange symbols]. Markovian dynamics is domi-
nated by dwell noise (left corner). Super-Markovian fluc-
tuations (observed, e.g., in catch-bond dynamics) are
dominated by extrinsic transition noise (right corner).
The noise triangle allows for a conclusive inference of
underlying dominant hidden continuous paths in general
networks solely from the observed fluctuations in state
transitions. The kinetic hysteresis between forward and
time-reversed state trajectories that arises in the presence of
transition noise (gray arrow) provides a new understanding
of the breaking of time-reversal symmetry in the presence
of memory [54,94–96]. The widely adopted principle of
local detailed balance is found to be a peculiarity of the
Markovian limit, not a general feature of time-reversal
symmetry. Our results pave the way toward a deeper
understanding of network dynamics far from equilibrium
including current fluctuations in active molecular systems
[79,80]. Even though we deduce the dissipation in the long-
time limit here, the generalization of the local detailed
balance relation in Eq. (2) holds at any time and includes
networks with infinitely many states as well as transient
dynamics. Our work thus enables investigations of transient
network dynamics.
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APPENDIX A: FROM DIFFUSION ON A GRAPH
TO STATE CHANGES ON A NETWORK:

RIGOROUS COARSE GRAINING

In this Appendix, we first describe the stochastic
dynamics of individual trajectories and its numerical
implementation. The translation of the Langevin equation
for the time evolution of individual trajectories into a
Fokker-Planck equation for the time evolution of proba-
bility densities on a graph is explained in the last
subsection.

1. Stochastic differential equation on a graph

We parametrize xt (the microstate at time t) in such a way
that the reduced state it represents the last visited network
state it ∈ Ω ¼ f1;…; Ng. The microstate is assumed to be
fully characterized by xt ¼ ðxt; jt; itÞ, where xt denotes
the distance from the last visited network state it along the
link to network state jt as shown in Fig. 4(a), where it ¼ i
and jt ¼ j. The variable xt ¼ ðxt; jt; itÞ fully determines
the microstate configuration on the graph at time t.
Denoting the distance between two nodes i and j by
lijj ¼ ljji, the distance function xt must lie within the
interval 0 ≤ xt ≤ ljtjit . The “instantaneously” targeted state
jt and the last visited state it do not change until xt reaches
either the “inner boundary” xt ¼ 0 or the “outer boundary”
xt ¼ ljtjit . After this, the variables change according to
the rule described in Table II. In Fig. 3(a), each cross
corresponds to the visit of a state, where each revisit of the
state (recurrence) with the same color corresponds to all
incidents xt ¼ 0 in which the “inner boundary is hit.”
Conversely, each state change corresponds to hitting
the outer boundary xt ¼ ljtjit [see thick black crosses in
Fig. 3(a)], after which the latest visited state becomes
itþ0 ¼ jt, and the instantaneously targeted state is chosen,
without loss of generality, with equal probability among
the neighbors jtþ0 ∈ N jt . The microstate description

TABLE II. Detailed description of the update rules of the microstate during time step “t → tþ dt.” Each variable βt is randomly
chosen among the states adjacent to k,N k, with a uniform probability 1=jN kj, where jN kj denotes the number of elements in the setN k
and k ¼ it; jt. Note that the rules listed in the table do not change the microstate (see Fig. 4).

Update conditions at the border

Variable Meaning Outer boundary (xt ≥ litjjt ) Inner boundary (xt ≤ 0Þ
it Latest visited state itþdt ¼ jt itþdt ¼ it
xt Current distance from latest visited state xtþdt ¼ ðlitjjt − xtÞ xtþdt ¼ −xt
jt Currently targeted new network state Generate randomly βt ∈ N jt

and set jtþdt ¼ βt

Generate randomly βt ∈ N it
and set jtþdt ¼ βt
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deliberately contains a redundancy since microstates xt ¼
ðxt; jt; itÞ and x̃t ¼ ðljtjit − xt; it; jtÞ correspond to the same
microstate configuration, even though the last component
of x̃t does not represent the last visited state (see Fig. 4).
The microstate xt ¼ ðxt; jt; itÞ evolves such that both the

last visited state it and the instantaneously targeted state jt
remain unchanged during each interval, in which the
distance xt lies within the interval 0 < xt < ljtjit , which
corresponds to xt ≠ 0 and xt ≠ ljtjit . During the time when
both jt and it are constant, the distance xt between two
connected nodes evolves according to the anti-Itô Langevin
equation (4), which can also translate into the following
equivalent Itô-Langevin equation:

_xt ¼ βDjtjitðxtÞFjtjitðxtÞ þDjtjit
0 ðxtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjtjitðxtÞ

q
ξt;

ðA1Þ

where Djji0 ðxÞ ¼ ∂xDjjiðxÞ, i ¼ it, and j ¼ jt. Note that
the anti-Itô differential equation is also referred to as the
Hänggi-Klimontovich [76,77] equation (see also more
recently Refs. [103,104]), while Ref. [77] derives the
Stratonovich variant of Eq. (A1) called the “kinetic form.”
Equations (4) and (A1) follow from the assumption that the
inverse friction coefficient (mobility) satisfies the Einstein
relation μjjiðxÞ ¼ βDjjiðxÞ readily inserted in the first term
of Eq. (A1).
Equations (4) and (A1) describe the time evolution of

the first component of the microstate xt ¼ ðxt; jt; itÞ.
Numerical schemes to propagate Eqs. (4) and (A1) are
presented below, where Appendix A 2 shows a naive
simple Euler method, and Appendix A 3 the celebrated
Milstein scheme [105]. For systems with multiplicative
noise (i.e., with a microstate-dependent noise amplitude),
we generate trajectories according to the Milstein scheme
described in Appendix A 3. For systems with additive noise
[constant noise amplitude, that is, DjjiðxÞ ¼ const], we use
the scheme shown in Appendix A 4 (adopted from
Ref. [78]). Functionals of trajectories, such as the dwell-
and transition-path-time periods, are evaluated irrespective
of the chosen numerical integration scheme of the Langevin
equation as we explain in Appendix A 5.

2. Naive anti-Itô Euler scheme (strong order 0.5)

The simplest way to numerically integrate the anti-Itô
Langevin equation (4) from t to time tþ Δt is the following
anti-Itô Euler scheme:

x̃t ¼ xt þ βDjtjitðxtÞFjtjitðxtÞΔtþ σjtjitðxtÞẐt;

xtþΔt ¼ x̃t þ ½σjtjitðx̃tÞ − σjtjitðxtÞ�Ẑt; ðA2Þ

where σjjiðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjjiðxÞΔt

q
, and Ẑt is a standard

normally distributed random number, i.e., Ẑt ∼N ð0; 1Þ.

The first line of Eq. (A2) estimates the updated position
with the value x̃t, after which the second line effectively
“replaces” the last term of the first line by σjtjitðx̃tÞẐt.
Equation (A2) becomes the well-known Euler-Maruyama
method if DijjðxÞ is constant, since the second line then
simplifies to xtþΔt ¼ x̃t. Once the position exceeds the
outer boundary xtþΔt; x̃t > ljtjit or the inner boundary
xtþΔt; x̃t < 0, jt and it are updated according to Table II.
We note the pathwise error of the Euler scheme (A2) (i.e.,
the strong error) [105] is expected to scale as ∝ Δt0.5; i.e.,
the scheme is of the strong order 0.5.

3. Milstein scheme (strong order 1.0)

Since to our knowledge higher-order stochastic Runge-
Kutta schemes can be found only in the literature for Itô
or Stratonovich integrals [105], we now use the Itô
representation of the equation of motion (A1). In the case
of multiplicative noise Djji0 ðxÞ ≠ 0, the Euler scheme from
Appendix A 2 can be improved according to the Milstein
scheme [105], which is of strong order 1.0 (i.e., pathwise
error scales as ∝ Δt1.0). This scheme propagates the system
from time t to time tþ Δt according to

xtþΔt ¼ xt þ ½βDjtjitðxtÞFjtjitðxtÞ þDjtjit
0 ðxtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjtjitðxtÞΔt

q
Zt þ

Djtjit
0 ðxtÞ
2

½Z2
t − 1�Δt

¼ xt þ βDjtjitðxtÞFjtjitðxtÞΔt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DjtjitðxtÞΔt

q
Zt þ

Djtjit
0 ðxtÞ
2

½Z2
t þ 1�Δt;

ðA3Þ

where Zt ∼N ð0; 1Þ. The last term in the second line of
Eq. (A3) reduces the pathwise error from ϵ ∝ Δt0.5 to
ϵ ∝ Δt1.0. In the last step in Eq. (A3), we solely combine
the terms containing the derivative of the diffusion coef-
ficient. Once the position exceeds the outer boundary
xtþΔt > ljtjit or the inner boundary xtþΔt < 0, jt and it
are updated according to Table II.

4. Stochastic Runge-Kutta with additive
noise (strong order 1.5)

For the simulation of stochastic trajectories with a
constant diffusion coefficient DjjiðxÞ ¼ const ¼ D (i.e.,
additive noise), we use an explicit stochastic Runge-
Kutta scheme of strong order 1.5 from Ref. [105] (see
also Ref. [78]), which involves the following steps assum-
ing a time increment Δt. In order to update from xt to xtþΔt,
we first generate two independent standard normally
distributed random numbers Ẑt ∼N ð0; 1Þ and ζt∼N ð0;1Þ,
calculate R̂t ¼ Ẑt=2þ ζt ×

ffiffiffi
3

p
=6, and then update the

position according to [78]
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qt ¼ xt þ
1

2
βDFjtjitðxtÞΔt;

q�t ¼ qt þ
3

2
σR̂t;

xtþΔt ¼ xt þ σẐt þ
�
βDFjtjitðqtÞ þ 2βDFjtjitðq�t Þ

3

�
Δt;

ðA4Þ
where σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2DΔt
p

. We emphasize that this stochastic
Runge-Kutta scheme is of strong order 1.5 and assumes
the diffusion coefficient to be constant. Moreover, this
scheme requires two random numbers instead of one in each
iteration step. A quite comprehensive collection of further
higher-order stochastic integration schemes can be found in
Ref. [105], which in contrast to Eq. (A4) require generating
non-Gaussian random numbers.

5. Evaluation of dwell- and transition-path-time
functionals

The waiting time in one reduced network state spans the
time period between the first entrance into a network state
on a graph until the first entrance to another state (see
Fig. 3), i.e., the time between two state changes. The dwell
and transition-path time dissect the residence-time interval
into two separate intervals, in which the last recurrence
(revisit) of the same state before changing to another state
terminates the dwell time τ and initiates the transition-path-
time period δt that in turn spans the remaining time until the
state changes. To numerically evaluate the dwell- and
transition-path-time functionals defined in Eqs. (6) and
(8), we perform the following computational steps.
Whenever the position xt exceeds the outer boundary

xt ≥ ljtjit (i.e., the state changes) or the inner boundary xt ≤
0 (i.e., to a recurrence), which both represent a “state visit,”
the variables jt, it are updated according to Table II. Any
update of jt, it according to Table II is accompanied by a
change of dwell time τ and transition-path time δt accord-
ing to Table III. Thereby, Trec denotes the last recurrence of
a network state and T last the time of the last state change.
Each transition event is stored in a list for all transitions γ
(see second step in Table III).

6. Fokker-Planck equation on local starlike graph

The preceding subsection deals with single trajectories.
One can cast the Langevin equation (A1) into a partial
differential equation for the probability density function—
the so-called Fokker-Planck equation—as follows [83]. We
pick without loss of generality a state of interest i and focus
on a local starlike graph spanned by the ith state. For a pair
of neighboring states j; k ∈ N i at distances x and y within
0 ≤ x ≤ ljji and 0 ≤ y ≤ lkji, the probability density to find
the system in the state ðx; j; iÞ after time t starting initially
from ðy; k; iÞ denoted by Piðx; j; tjy; kÞ satisfies the
Fokker-Planck equation

∂tPiðx; j; tjy; kÞ
¼ −∂xJiðx; j; tjy; kÞ
¼ ∂xe

−βUjjiðxÞDjjiðxÞ∂xe
βUjjiðxÞPiðx; j; tjy; kÞ

≡ L̂F
jjiðxÞPiðx; j; tjy; kÞ; ðA5Þ

where UjjiðxÞ ¼ −
R
x
0 Fjjiðx0Þdx0, and without any loss of

generality, we assume the diffusion constant to be con-
tinuous Djjið0Þ ¼ Dkjið0Þ for all j; k ∈ N i. Note that
Jiðx;j;tjy;kÞ≡DjjiðxÞ½βFjjiðxÞ−∂x�Piðx;j;tjy;kÞ denotes
the probability flux away from i, and L̂F

jjiðxÞ denotes
the (forward) Fokker-Planck operator. The initial proba-
bility density is set to Piðx; j; tjy; kÞ ¼ δðx − yÞδjk, where
δðx − yÞ is the delta function and δjk the Kronecker delta.
The inner boundary conditions read

Pið0; j; tjy; kÞ ¼ Pið0; j0; tjy; kÞ; ∀ j0 ∈ N i;X
j

Jið0; j; tjy; kÞ ¼ 0; ðA6Þ

which reflect that trajectories are continuous and fluxes
are conserved according to Kirchhoff’s law. Note that
the generalization to both diverging force kicks and
discontinuous diffusion landscapes is explicitly dis-
cussed in Appendix D 3. Hence, we may derive all
results based on Eq. (A6) in order to render the
derivations less tedious.

TABLE III. Update of dwell- and transition-path-time functionals. The initial position is assumed to be x0 ¼ 0,
and time of the last recurrence is initially set to Trec ¼ 0 along with the time of the last state change to T last ¼ 0. Each
passage across an outer boundary results in a transition-path time δt and dwell time τ that correspond to one
transition event along a single transition γ.

Update conditions at the boundary

Step Functional Outer boundary (xt ≥ ljtjit ) Inner boundary (xt ≤ 0Þ
1st � � � Set Trec ¼ t
2nd Splitting transition Store one transition γ ¼ ðit → jtÞ
3rd Dwell time τ Store τ ¼ Trec − T last in transition γ
4th Transition-path time δt Store δt ¼ t − Trec in transition γ
5th � � � Set T last ¼ Trec ¼ t
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There are two distinct boundary conditions at the outer
end of the jth leg adjacent to node i (i.e., j ∈ N i), which
correspond to

Piðljji; j; tjy; kÞ ¼ 0

�
if the jth outer

boundary is absorbing;

Jiðljji; j; tjy; kÞ ¼ 0

�
if the jth outer

boundary is reflecting:
ðA7Þ

For all absorbing ends, Piðx; j; tjy; kÞdx is the probability
that a trajectory starting from distance y from state i in the
direction toward state kwill be at time twithin the interval x
and xþ dx having never reached any of the neighboring

states ≠ i. In this case, the survival probability Siðtjy; kÞ ¼P
j

R ljji
0 Piðx; j; tjy; kÞdx decays monotonically in time

from Sið0jy; kÞ ¼ 1 to Sið∞jy; kÞ ¼ 0. More precisely, if
Piðljji; j; tjy; kÞ ¼ 0, ∀ j ∈ N i, we obtain [83,106]

℘loc
jji ðtÞ ¼ Jiðljji; j; tj0; kÞ

¼ −DjjiðljjiÞ∂xPiðx; j; tjy; kÞjx¼ljji ; ðA8Þ

where ℘loc
jji is the local state-to-state kinetics with

−∂tSiðtj0; kÞ ¼
P

j ℘
loc
jji ðtÞ ¼ ℘exit

i ðtÞ for all k; the

Laplace transform of ℘loc
jji is given in Eq. (C5).

APPENDIX B: PROOF OF SYMMETRY
AND INDEPENDENCE OF DWELL AND

TRANSITION-PATH TIME USING GREEN’S
FUNCTION THEORY

In the following, we prove that diffusive dynamics on a
graph (A5) renders dwell and transition-path times condi-
tionally independent functionals. We first show that the
aforementioned conditional independence follows directly
from the definition of the coarse graining (last visited state)
based on the gedanken experiment from Fig. 3. Using
Green’s function theory, we then prove the following two
symmetries entering Eq. (3): (i) The dwell-time statistics
solely depend on the initial state, and (ii) the transition-path
time obeys a forward or backward symmetry.

1. Proof of conditional independence between
transition-path and dwell time

The independence of transition-path and dwell time
follows immediately from the coarse graining of the full
trajectory once we realize that it effects an “erasure of
memory.”
The microstate xt ¼ ðxt; jt; itÞ is characterized by the last

visited state it, and the distance xt from the last visited state
in the direction to the instantaneously targeted state jt. Each
recurrence in Fig. 3 highlighted by colored crosses repre-
sents a state visit xt ¼ 0, which in turn fully determines
the microstate via xt ¼ ð0; jt; itÞ¼̂ð0; k; itÞ¼̂ðljtjit ; it; jtÞ,

where the symbol “¼̂ ” refers to parameters corresponding
to the same instantaneous microstate (see Fig. 4). Since the
microstate xt is assumed to follow Markovian kinetics, we
find that the future state visit depends only on the last state
visit not on the state visits before, which triggers a renewal
of the dynamics. Since a transition spans the time after the
last revisit of a state (recurrence) and the dwell time spans
the time before the last revisit of a state [see Fig. 3(b)], the
said revisit of a state causes their statistical independence.
This completes the proof of independence between tran-
sition-path and dwell time. In the following, we derive the
symmetries of transition-path and dwell times using the
underlying Fokker-Planck equation on a graph.

2. Laplace transform of the Fokker-Planck
equation on a graph

Let us first write the Fokker-Planck equation in terms of
the current operator Ĵ F

jjiðxÞ ¼ −DjjiðxÞe−βUjjiðxÞ∂xe
βUjjiðxÞ,

which allows us to rewrite Eq. (A5) in the form

∂tPiðx; j; tjy; kÞ ¼ −∂xĴ
F
jjiðxÞPiðx; j; tjy; kÞ: ðB1Þ

The Laplace transform P̃iðx; j; sjy; kÞ ¼
R
∞
0 e−st ×

Piðx; j; tjy; kÞdt transforms the Fokker-Planck
equation (B1) into

½sþ ∂xĴ
F
jjiðxÞ�P̃iðx; j; sjy; kÞ ¼ δðx − yÞδjk: ðB2Þ

From Eq. (B2) follows the continuity of probability
P̃iðx; j; sjy; jÞjx¼yþ0 ¼ P̃iðx; j; sjy; jÞjx¼y−0 and jump

discontinuity at x ¼ y of the current Ĵ F
jjiðxÞ

P̃iðx; j; sjy; jÞjx¼yþ0 − Ĵ F
jjiðxÞP̃iðx; j; sjy; jÞjx¼y−0 ¼ 1.

Let us now express the solutions P̃i in terms of the
homogeneous solutions ψ in

jjiðxÞ;ψout
jji ðxÞ satisfying

½sþ ∂xĴ
F
jjiðxÞ�ψ in

jjiðxÞ ¼ 0; ½sþ ∂xĴ
F
jjiðxÞ�ψout

jji ðxÞ ¼ 0;

ðB3Þ
with ψ in

jjið0Þ ¼ 0 and ψout
jji ðljjiÞ ¼ 0. Introducing further the

current functions JinjjiðxÞ≡ Ĵ F
jjiðxÞψ in

jjiðxÞ and Joutjji ðxÞ≡
Ĵ F

jjiðxÞψ in
jjiðxÞ, one can easily check that the limit y → 0

yields the solution

P̃iðx; jj0; kÞ ¼
ψout
jji ðx; sÞ=ψout

jji ð0; sÞP
n∈N i

Joutnji ð0; sÞ=ψout
nji ð0; sÞ

; ðB4Þ

which is equal for all k ∈ N i and continuous in x ¼ 0.
Conversely, the currents are discontinuous at x ¼ 0 accord-
ing to Eq. (B2). Equation (B4) also solves P̃iðljji; jj0; kÞ ¼
0 for all j; k ∈ N i. The Laplace transform of the first-
passage-time density ℘̃loc

jji ðsÞ is obtained from the outward

current [83,106] at position x ¼ ljji, finally yielding
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℘̃loc
jji ðsÞ≡ Ĵ F

jjiðxÞP̃iðx; jj0; kÞjx¼ljji

¼
Joutjji ðljji; sÞ=ψout

jji ð0; sÞP
k∈N i

Joutkji ð0; sÞ=ψout
kji ð0; sÞ

: ðB5Þ

The zeroth-order moment of Eq. (B5)—the splitting prob-
ability—is in turn simply given by

ϕloc
jji ≡ ℘̃loc

jji ð0Þ ¼
Joutjji ðljji; 0Þ=ψout

jji ð0; 0ÞP
k∈N i

Joutkji ð0; 0Þ=ψout
kji ð0; 0Þ

: ðB6Þ

In the following, we decompose Eq. (B5) exactly into the
splitting probability, transition-path-time, and dwell-time
statistics.

3. Transition-path-time statistics from Green’s function
along a single leg with absorbing boundary conditions

Before taking the limit in Eq. (7), we Laplace transform
the Green’s function G̃tr

jjiðx; sjyÞ ¼
R∞
0 e−stGtr

jjiðx; tjyÞdt
which, using the solutions Eq. (B3), can be written in
the form [107–109]

G̃tr
jjiðx; sjyÞ ¼

8<
:

ψ in
jjiðy;sÞψout

jji ðx;sÞ
wjjiðy;sÞ if x ≥ y;

ψ in
jjiðx;sÞψout

jji ðy;sÞ
wjjiðy;sÞ if x ≤ y;

ðB7Þ

where we define the Wronskian satisfying [107,109]

wjjiðy; sÞ ¼ ψ in
jjiðy; sÞJoutjji ðy; sÞ − Jinjjiðy; sÞψout

jji ðy; sÞ
¼ wjjiðx; sÞeβUjjiðxÞ−βUjjiðyÞ:

ðB8Þ
At the boundaries, the Wronskian becomes wjjiðljji; sÞ ¼
ψ in
jjiðljji; sÞJoutjji ðljji; sÞ and wjjið0; sÞ ¼ −Jinjjið0; sÞψout

jji ð0; sÞ
due to ψout

jji ðljji; sÞ ¼ ψ in
jjið0; sÞ ¼ 0. Using

J̃trjjiðx; sjyÞ ¼ Ĵ F
jjiG̃

tr
jjiðx; sjyÞ ¼

ψ in
jjiðy; sÞJoutjji ðx; sÞ

wjjiðy; sÞ
ðB9Þ

for x > y, the Laplace image of the probability density of
the transition-path time becomes

℘̃tr
jjiðsÞ ¼ lim

y→0

J̃trjjiðljji; sjyÞ
J̃trjjiðljji; 0jyÞ

¼ lim
y→0

ψ in
jjiðy; sÞ

ψ in
jjiðy; 0Þ

×
wjjiðy; 0Þ
wjjiðy; sÞ

×
Joutjji ðljji; sÞ
Joutjji ðljji; 0Þ

¼ lim
y→0

Joutjji ðy; 0Þ½wjjiðy; sÞ þ Jinjjiðy; sÞψout
jji ðy; sÞ�

Joutjji ðy; sÞ½wjjiðy; 0Þ þ Jinjjiðy; 0Þψout
jji ðy; 0Þ�

×
wjjið0; 0Þ
wjjið0; sÞ

zfflfflfflfflffl}|fflfflfflfflffl{¼
Jin
jjið0;0Þψ

out
jji ð0;0Þ

Jin
jjið0;sÞψ

out
jji ð0;sÞ

×
Joutjji ðljji; sÞ
Joutjji ðljji; 0Þ

; ðB10Þ

where we perform the following algebraic steps. From the
first to the second line of Eq. (B10) we rewrite the first
fraction (which is formally undetermined “0=0” in the limit
y → 0) first by using Eq. (B8) with x ¼ 0, inserting the
resulting ψ in

jjiðy; sÞ, and using limy→0 wjjiðy; sÞ ¼ wjjið0; sÞ.
Since Joutjji ðy; sÞ does not have a singularity in the limit
limy→0 Joutjji ðy; sÞ, the singularity 0=0 is solely encoded in
the bracketed term “½� � �� → 0,” and cancels in the limit
y → 0 in both the numerator and denominator. Employing
l’Hôpital’s rule (on the bracketed terms “½� � ��”), we now
determine their first derivative with respect to y at y ¼ 0,

Djjið0Þ
∂
∂y ½wjjiðy;sÞþJinjjiðy;sÞψout

jji ðy;sÞ�y¼0

¼βDjjið0Þ
"
− wjjið0;sÞ

zfflfflfflfflffl}|fflfflfflfflffl{¼−Jin
jjið0;sÞψout

jji ð0;sÞ

βUjji0ð0Þ−sψ in
jjið0;sÞ

zfflfflfflfflffl}|fflfflfflfflffl{¼0

ψout
jji ð0;sÞ

þJinjjið0;sÞ
∂
∂yψ

out
jji ðy;sÞ

#
y¼0

¼−Jinjjið0;sÞJoutjji ð0;sÞ;

ðB11Þ

where Ujji0ðyÞ ¼ ∂yUjjiðyÞ, and we deduce ∂ywjjiðy; sÞ ¼
−Ujji0ðyÞwjjiðy; sÞ from the left side of Eq. (B8). Further-
more, we use ∂yJinjjiðy; sÞ ¼ −sψ in

jjiðy; sÞ following from
Eq. (B3), and finally employ Joutjji ðy;sÞ¼−DjjiðyÞ×
βUjji0ðyÞψout

jji ðy;sÞ−DjjiðyÞ∂yψ
out
jji ðy;sÞ. InsertingEq. (B11)

into Eq. (B10) and applying l’Hôpital’s rule finally yields
the Laplace transform of the probability density of the
transition time

℘̃tr
jjiðsÞ ¼

Joutjji ð0; 0Þ
Joutjji ð0; sÞ

Jinjjið0; sÞJoutjji ð0; sÞ
Jinjjið0; 0ÞJoutjji ð0; 0Þ

×
Jinjjið0; 0Þψout

jji ð0; 0Þ
Jinjjið0; sÞψout

jji ð0; sÞ
×
Joutjji ðljji; sÞ
Joutjji ðljji; 0Þ

¼
ψout
jji ð0; 0ÞJoutjji ðljji; sÞ

ψout
jji ð0; sÞJoutjji ðljji; 0Þ

: ðB12Þ

Since a function and its Laplace image are mapped one to
one, Eq. (B12) fully characterizes the statistics of tran-
sition-path time.
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4. Forward and backward symmetry of
transition-path-time statistics

The statistics of the corresponding backward transition
can be determined in an analogous manner as Eq. (B12).
Identifying ψout

ijj ðy; sÞ ¼ ψ in
jjiðljji − y; sÞ and Joutijj ðy; sÞ ¼

−Jinjjiðljji − y; sÞ the backward transition-path-time statistics
℘̃tr
jjiðsÞ become

℘̃tr
ijjðsÞ ¼

ψ in
jjiðljji; 0ÞJinjjið0; sÞ

ψ in
jjiðljji; sÞJinjjið0; 0Þ

¼ wjjiðljji; 0Þwjjið0; sÞ
wjjiðljji; sÞwjjið0; 0Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼1
Eq:ðB8Þ

ψout
jji ð0; 0ÞJoutjji ðljji; sÞ

ψout
jji ð0; sÞJoutjji ðljji; 0Þ

¼ ℘̃tr
jjiðsÞ; ðB13Þ

where the first step follows from Eq. (B12), and in the
second step we use Eq. (B8); in the last step, we identify
℘̃tr
jjiðsÞ in Eq. (B12), which completes the proof of

℘̃tr
ijjðsÞ ¼ ℘̃tr

jjiðsÞ. In other words, we hereby prove that
the duration of both transitions i → j and j → i is iden-
tically distributed.
A similar derivation can be found in Ref. [57] for

underdamped systems in which the momentum is assumed
to be equilibrated.

5. Dwell-time statistics obey a state symmetry

Let t denote the time of exiting from state i toward state j
for the first time and δt the corresponding transition-path
time, which are distributed according to the probability
densities ℘loc

jji ðtÞ and ℘tr
jjiðδtÞ, respectively. The Laplace

transform of ℘loc
jji ðtÞ and ℘tr

jjiðδtÞ is denoted by ℘̃loc
jji ðsÞ and

℘̃tr
jjiðsÞ. The transition-path-time statistics ℘tr (or ℘̃tr) do not

depend on the time at which a transition path begins and,
hence, are independent of the time interval before τ ¼ t − τ
that is called the dwell-time period. Therefore, we can
obtain the statistics of the dwell time via deconvolution
which in Laplace space becomes simple division

℘̃dwell
jji ðsÞ¼

℘̃loc
jji ðsÞ

ϕloc
jji ℘̃

tr
jjiðsÞ

¼
Jout
jji ðljji;sÞ
ψout
jji ð0;sÞP

k∈N i

Jout
kji ð0;sÞ

ψout
kji ð0;sÞ

P
k∈N i

Jout
kji ð0;0Þ

ψout
kji ð0;0Þ

Jout
jji ðljji;0Þ
ψout
jji ð0;0Þ

ψout
jji ð0;sÞJoutjji ðljji;0Þ

ψout
jji ð0;0ÞJoutjji ðljji;sÞ

¼
P

k∈N i
Joutkji ð0;0Þ=ψout

kji ð0;0ÞP
k∈N i

Joutkji ð0;sÞ=ψout
kji ð0;sÞ

¼ ℘̃dwell
i ðsÞ; ðB14Þ

where in the second line we insert ℘̃loc
jji ðsÞ from Eq. (B5),

ϕloc
jji from Eq. (B6), and ℘̃tr

jjiðsÞ from Eq. (B12); in the last

line of Eq. (B14), we cancel equal terms in the numerator
and denominator, respectively. Strikingly, we find that the
result does not depend on the final state j, which is why the
dwell-time statistics obeys a state symmetry, meaning that
it depends only on the initial state i. Therefore, we can write
℘̃dwell
jji ðsÞ as ℘̃dwell

i ðsÞ in the last step of Eq. (B14). Since the
product ℘̃loc

jji ðsÞ ¼ ϕloc
jji ℘̃

tr
jjiðsÞ℘̃dwell

jji ðsÞ in Laplace space
becomes a convolution in the time domain, we hereby
complete the proof of Eq. (3).

6. Concluding remarks on the proofs

To summarize this section, we show in Appendix B 1
that each change of state i → j in a network is taken with
(splitting) probability ϕloc

jji and has a corresponding dis-
tribution of residence time t in turn being a sum of
conditionally independent dwell time τ and transition-path
time δt ¼ t − τ (for a given transition between the pair of
states i → j). We prove two symmetries. First, we prove in
Appendix B 4 that the statistics of transition-path time
obeys a forward or backward symmetry ℘tr

jjiðδtÞ ¼ ℘tr
ijjðδtÞ.

Second, the statistics of dwell time is proven in Eq. (B14) to
depend solely on the initial state i; that is, the dwell-time
statistics does not depend on the state j to which the
trajectory finally transits.

APPENDIX C: DECOMPOSITION OF PATHS

1. Generalized renewal theorem

The classical renewal theorem [74] connects the first-
passage-time density to the propagator Pða; Tji0Þ, which is
the probability to find the network in state iT ¼ a at time T
given that it was initially in state i0. It can be understood as
a decomposition of paths: Any system that starts at i0 and
arrives at iT ¼ a at time T must have reached a for the first
time at time t ≤ T (it ¼ a) and then either stayed there or
returned again after time T − t. In mathematical terms, this
corresponds to [74]

Pða; Tji0Þ ¼
Z

T

0

dtPða; T − tjaÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
return probability

paji0ðtÞ
zfflfflffl}|fflfflffl{first passage i0→a

; ðC1Þ

where paji0ðtÞdt denotes the probability that the process
starting from i0 reaches the position it0 ¼ a for the first time
within the interval t ≤ t0 ≤ tþ dt. We refer to paji0ðtÞ as the
unconditioned first-passage-time density to the target state
a given that the system initially started from i0. We call a
first-passage problem “unconditioned” if there is just one
target state a as in Eq. (C1). The renewal theorem (C1) that
connects the propagation of a system characterized by P to
unconditioned first-passage functionals embodied in the
probability density paji0ðtÞ has been routinely used to study
first-passage phenomena [106,110].
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To study conditional first-passage problems [106] that
involve more than a single-target state a, we need to
generalize the renewal theorem (C1) in the following
way. Let us consider a set of target states A corresponding
to a subset of all network states Ω ¼ f1;…; Ng, that is,
A ⊂ Ω. A conditional first-passage problem asks for the
first time until the system reaches the target state a ∈ A
given that it has not yet visited any of the other target states
from Anfag. The problem is characterized by the joint
density ℘A

aji0ðtÞ to enter the set of targetA for the first time
at time t and hitting the specific target a ∈ A upon starting
from i0, with normalization

P
a∈A

R
∞
0 ℘A

aji0ðtÞdt ¼ 1.
Note that the full set of neighboring states as targets A ¼
N i0 corresponds to ℘A

aji0 ¼ ℘loc
aji0 for all a ∈ N i0 . In the

spirit of the classical renewal theorem (C1), we find that the
conditional first-passage density to any subset A, ℘A is
related to the simpler unconditioned first-passage-time
densities according to

paji0ðtÞ ¼ ℘A
aji0ðtÞ þ

X
a0∈Anfag

Z
t

0

paja0 ðt0 − tÞ℘A
a0ji0ðt0Þdt0

≡ ℘A
aji0ðtÞ þ

X
a0∈Anfag

paja0 � ℘A
a0ji0ðtÞ; ðC2Þ

which is a generalization of the renewal theorem to con-
ditioned first-passage problems; in the last step, we introduce
“�” as the one-sided convolution operation. An illustration of
the generalized renewal theorem for a network with five
states Ω ¼ f1; 2; 3; 4; 5g and two target states A ¼ f1; 2g
with initial condition i0 ¼ 3 is shown in Fig. 9. In the
simplest case, when the subset A contains a single element

A ¼ fag, we consistently obtain paji0ðtÞ ¼ ℘fag
aji0ðtÞ; i.e., the

conditioned first-passage problem becomes a unconditioned
one. Laplace transforming the renewal theorem (C2), where
the Laplace transform of some generic function fðtÞ is
defined as f̃ðsÞ ¼ R∞

0 e−stfðtÞdt (tacitly assuming that all
functions are of exponential order), we obtain

p̃aji0ðsÞ ¼ ℘̃A
aji0ðsÞ þ

X
a0∈Anfag

p̃aja0 ðsÞ℘̃A
a0ji0ðsÞ; ðC3Þ

where the convolution in the last term of Eq. (C2) becomes
a product after the Laplace transform. It is worth men-
tioning that Eq. (C3) via Eq. (25) links diffusion to
(unconditioned) first-passage statistics of currents as
studied in Ref. [111] (see also Refs. [112–114]).
In the Supplemental Material Sec. I.A [75], we show

how the generalized renewal theorem Eq. (C3) can
be used to deduce explicit conditional moments of
first-passage time, which correspond to a multitarget
search problem, in terms of simpler unconditioned
“single-target” quantities. As we explain below (see
Appendix C 3) one can in fact construct any network
problem by solving for networks with a specific and
simpler starlike topology. This sequential strategy, which
we explain in the following, allows for a systematic study
of general networks.

2. Renewal theorem on starlike graphs

Let us for now focus on graphs with a starlike topology,
where all n ¼ N − 1 “outer nodes” are target states, that is,
A ¼ f1; 2;…; ng, and the starting node is the “inner state”
i0 ¼ N as depicted in Fig. 10. In the case of a starlike
topology (i.e., A ¼ N i0 and ℘A

aji0 ¼ ℘loc
aji0), the renewal

theorem Eq. (C3) simplifies, meaning that it can be inverted
more easily.
In a first crucial step, we realize that each path on a

starlike graph, which starts from one end of the star a to
another end a0 ≠ a, must pass through the center i0. That is,
the unconditioned first-passage time from a to a0 is the sum
of first-passage time from a0 to i0 and the first-passage
time from i0 to a, which effectively implies p̃aja0 ðsÞ¼
p̃aji0ðsÞp̃i0ja0 ðsÞ [see Fig. 10(c)]. Using p̃aja0 ðsÞ¼ p̃aji0ðsÞ×
p̃i0ja0 ðsÞ for a0 ≠ a, the renewal theorem (C3) in matrix
form becomes

(a) (b)

FIG. 9. Illustration of generalized renewal theorem. (a) Network with five states Ω ¼ f1; 2; 3; 4; 5g. The dashed box encloses one set
of target stateA, which is here chosen to beA ¼ f1; 2g. The network corresponds to the subnetwork from Fig. 1(e) in the main text (see
also Fig. 3 therein). (b) Path decomposition according to generalized renewal theorem from Eq. (C2) or equivalently Eq. (C3) for the
special case of two target states A ¼ f1; 2g with a ¼ 1. Each arrow tip corresponds to a path ending at the particular state without
having visited that state before; each filled dot is a state that may have been visited.
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uaðsÞ ¼
Xn
a0¼1

½DðsÞ þ uðsÞvðsÞ⊤�aa0 ℘̃loc
a0ji0ðsÞ; ðC4Þ

where uðsÞ and vðsÞ are vectors with elements uaðsÞ≡
p̃aji0ðsÞ and vaðsÞ≡ p̃i0jaðsÞ, respectively, and DðsÞ
denotes a diagonal matrix with elements DiiðsÞ ¼ 1−
uiðsÞviðsÞ, which corrects for p̃ajaðsÞ ¼ 1 ≠ p̃aji0ðsÞ×
p̃i0jaðsÞ. Using the Sherman-Morrison-Woodbury formula,
we are able to invert the matrix Dþ uv⊤ to get

℘̃loc
aji0ðsÞ ¼

uaðsÞ
1−uaðsÞvaðsÞ

1 − nþP
a0 ½1 − ua0 ðsÞva0 ðsÞ�−1

¼
suaðsÞ

1−uaðsÞvaðsÞ
ð1 − nÞsþP

a0
s

1−ua0 ðsÞva0 ðsÞ
; ðC5Þ

which is the central result of this subsection that allows us
to obtain conditional many-target first-passage-time distri-
butions from simpler unconditioned single-target first-
passage-time densities. The local splitting probability,
which formally reads ϕloc

aji0 ¼ ℘̃loc
aji0ð0Þ, can be obtained

by taking the limit s → 0.
In the Supplemental Material Sec. I.B [75], we show how

Eq. (C5) can be used to express the splitting probability
ϕloc
aji0 , the conditional mean first passage htilocaji0 , and the

second moment of exit time ht2iexiti0
¼ P

a ϕ
loc
aji0ht2ilocaji0 ,

merely in terms of simpler first and second moments of
unconditioned first-passage time htisinglejji ¼ −∂sp̃jjiðsÞjs¼0,

ht2isinglejji ¼ ∂2
s p̃jjiðsÞjs¼0 with only a single-target state.

The results for ϕloc
aji0, htilocaji0 , and ht2iexiti0

in terms of

unconditioned moments of first-passage times are dis-
played in the Supplemental Material Sec. I. B [75]
and can be used to derive the main practical result (see
Sec. II D) after some quite tedious calculations, which are
carried out as follows.
First, we derive all first and second moments of the

unconditioned first-passage time alongside the first two
moments of transition time (see Supplemental Material
Sec. II. D [75]). Second, we insert them into the expressions
for ϕloc

aji0, htilocaji0 , and ht2iexiti0
listed in the Supplemental

Material [75] [see Eqs. (S15), (S16), and (S19) therein],
which is carried out in the Supplemental Material Sec. III
[75]. This fully proves the results in Sec. II D.

3. Networks with general topology
from starlike subgraphs

The simplest network topology is a starlike topology, for
which we are able to conveniently express moments of
conditional first-passage times in terms of simple uncon-
ditioned first-passage moments as explained in the
Supplemental Material Sec. I.B [75]. In the following,
we show that according to Ref. [37] (see also Refs. [38–
40]), each network can be decomposed exactly into a full
set of subnetworks with a starlike topology. Thereby, each
starlike subgraph characterizes the local kinetics on a graph
in the vicinity of a network state. Hence, we use all starlike
subgraphs as building blocks to build and describe a
general network.
Suppose that we are dealing with a large-scale network

with a set of N states, such that for each state i ∈ Ω ¼
f1;…; Ng, there exists a nonempty set of neighboring
states N i ⊂ Ω with i ∉ N i. A fully connected network
corresponds to N i ¼ f1;…; i − 1; iþ 1;…; Ng. For the
five-state network in Fig. 11, all sets of neighboring states
are N 1 ¼ f2; 3g, N 2 ¼ f1; 3; 4g, N 3 ¼ f1; 2; 4; 5g,
N 4 ¼ f2; 3g, and N 5 ¼ f3g. The probability density that
starting from state i a nearest-neighboring state j ∈ N i will
be reached for the first time at time t is distributed
according to the probability density ℘loc

jji ðtÞ with a Laplace

transform ℘̃loc
jji ðsÞ, where ϕloc

jji ¼ ℘̃loc
jji ð0Þ ¼

R
∞
0 ℘loc

jji ðtÞdt is
the (splitting) probability that starting from i the next visited
state will be j. We define the matrix P̃ðsÞ as

P̃ðsÞij ¼


℘̃loc
ijj ðsÞ if i ∈ N j;

0 otherwise:
ðC6Þ

Note that P̃ðsÞ is a hollow matrix, since P̃ðsÞii ¼ 0. Taylor
expanding Eq. (C6), we obtain

P̃ðsÞ ¼ Φ − sT þOðsÞ2; ðC7Þ

where Φij ¼ ϕloc
ijj and T ij ¼ ϕloc

ijj htilocijj for i ∈ N j and
j ¼ 1;…; N. We emphasize that working in Laplace space

(a)

(c)

(b)

FIG. 10. Starlike graph. (a) Starlike graph with N states from
which n ¼ N − 1 are “outer states” a; a0 ¼ 1;…; n and one state
is called the “inner state” N. (b) Conditional first-passage paths
belonging to ℘̃loc

a0 ji0ðsÞ. (c) Illustration of p̃aja0 ðsÞ ¼ p̃aji0ðsÞ×
p̃i0ja0 ðsÞ, which holds for a0 ≠ a and effectively means that each
path starting from a0 must pass through the center i0 to reach the
other end a (a ≠ a0). The matrix DðsÞ in Eq. (C4) accounts and
corrects for p̃ajaðsÞ ¼ 1 ≠ p̃aji0ðsÞp̃i0jaðsÞ.
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allows us to conveniently add independent random variables.
Namely, for any two independent random variables t1 and t2
distributed according to the densities f1 and f2 with Laplace
transforms f̃iðsÞ ¼

R∞
0 fiðtÞe−stdt≡ he−stii, we have that

f̃1þ2ðsÞ ¼ he−sðt1þt2Þi ¼ he−st1ihe−st2i ¼ f̃1ðsÞf̃2ðsÞ. That
is, in Laplace space the sum of random variables is reflected
by the product of the Laplace transforms of the correspond-
ing probability densities [see also the last terms in the
generalized renewal theorem Eqs. (C2) and (C3)].
Conversely, a plain product in Laplace space becomes a
convolution in the time domain f1þ2ðtÞ ¼ f1 � f2ðtÞ.
Having established the local kinetics, we can now

determine the first-passage time to a set of target states
A starting from state i0 ∉ A (i0 ∈ ΩnA) for a general
network as follows. To select a target state and remaining
states, we first define the projection matrix onto target state
A and the rest, i.e., Ac ≡ΩnA, which are given by

1A ≡X
i∈A

jiihij and 1Ac ≡X
i∉A

jiihij ¼ 1 − 1A; ðC8Þ

respectively, where hij ¼ jii⊤ is a unit column vector with
all elements zero except the ith component and 1 is the
identity matrix. The matrices 1A and 1Ac are the indicator
functions of A and Ac, respectively. For example, for all
target states α ∈ A, we find 1Ajαi ¼ jαi and 1Ac jαi ¼ 0,
whereas for all remaining states β ∈ Ac, we have 1Ajβi ¼
0 and 1Ac jβi ¼ jβi. Starting from i0 ∈ Ac, the Laplace
transform of the probability density to hit the target state
a ∈ A “after the first step” (without having visited any
of the remaining states) is given by hajQð1ÞðsÞji0i ¼
hajP̃ðsÞji0i. Similarly, if we select all elements that perform
exactly one jump into a state j ∈ Ac and then enter a in
the second jump, we obtain hajP̃ðsÞjjihjjP̃ðsÞji0i, which
after summing over all intermediate nontarget states with
Eq. (C8), yields hajQð2ÞðsÞji0i ¼ hajP̃ðsÞ1AcP̃ðsÞji0i.
More generally, the Laplace transform of the probability
density to hit target a for the first time exactly after kth
transitions while transiting k − 1 times between nontarget
states is given by

hajQðkÞji0i ¼ hajP̃ðsÞ½1AcP̃ðsÞ�k−1ji0i: ðC9Þ

Summing now over all possible numbers of intermediate
transitions, we obtain a geometric sum that yields [37]

℘̃A
aji0ðsÞ≡

X∞
k¼1

hajQðkÞji0i ¼ hajP̃ðsÞ½1 − 1AcP̃ðsÞ�−1ji0i;

ðC10Þ

which is the main result of this subsection. This result
allows us to express conditional first-passage times toward
any set of targets A in terms of the local first-passage-time
densities. The inverse Laplace transform (s → t) of
Eq. (C10) yields the joint probability density ℘A

aji0ðtÞ that
the continuous trajectory starting from node i0 ∈ ΩnA ¼
Ac arrives at time t for the first time in state a ∈ A without
having visited any other state within A. The probability is
normalized according to

P
a∈A

R
∞
0 ℘A

aji0ðtÞdt ¼ 1. The
case in which A contains all neighbors of i0, that is,
A ¼ N i0 , one immediately obtains 1AcP̃ðsÞji0i ¼ 0, which
simplifies Eq. (C10) to ℘̃A

aji0 ¼ hajP̃ðsÞji0i ¼ ℘̃loc
aji0ðsÞ for

all a ∈ A ¼ N i0 . The independence between transition
time and dwell time Eq. (3) allows us to express nonzero
elements of the hollow matrix P̃ðsÞ in the form of the
product P̃ðsÞji ≡ ℘̃loc

jji ðsÞ ¼ ϕloc
jji ℘̃

tr
jjiðsÞ℘̃dwell

i ðsÞ for any

pair i; j ≠ i.
From Eq. (C10) follows the splitting probability, i.e., the

probability to reach a from i0 before reaching any other
state within A which reads

ϕA
aji0 ≡

Z
∞

0

℘A
aji0ðtÞdt ¼ ℘̃A

aji0ðsÞjs¼0

¼ hajΦð1 − 1AcΦÞ−1ji0i; ðC11Þ

where we use Φij ¼ ϕloc
ijj from Eq. (C7). Inserting the

matrix T ij ¼ ϕloc
ijj htilocijj from Eq. (C7) the mean first-

passage time from i0 to a conditioned not to visit any
state j ∈ Anfag in turn reads

htiAaji0 ¼ hajð1 −Φ1AcÞ−1T ð1 − 1AcΦÞ−1ji0i=ϕA
aji0 :

ðC12Þ

(a) (b)

FIG. 11. Network decomposition into starlike subgraphs. (a) Full graph with five network states. (b) All five starlike subgraphs. The
set of neighboring states contains N 1 ¼ f2; 3g, N 2 ¼ f1; 3; 4g, N 3 ¼ f1; 2; 4; 5g, N 4 ¼ f2; 3g, and N 5 ¼ f3g.
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A few remarks are in order before we prove Eq. (C12).
Equations (9)–(13) render Eqs. (C11) and (C12) fully
explicit. As an illustration, in Appendix C 4 we apply
Eqs. (C11) and (C12) to the synthetic network used in
Fig. 3, where a diffusive barrier along link 1–3 mimics the
effect of an entropic bottleneck [115] (details about the
model are given in Appendix E 1).
The conditional mean first-passage time (C12) follows

from

ϕA
aji0htiAaji0

≡
Z

∞

0

℘A
aji0ðtÞtdt ¼ −

∂
∂s ℘̃

A
aji0ðsÞjs¼0

¼ hajT ð1 − 1AcΦÞ−1ji0i
þ hajΦð1 − 1AcΦÞ−11AcT ð1 − 1AcΦÞ−1ji0i

¼ haj½1þΦ1Acð1 −Φ1AcÞ−1�T ð1 − 1AcΦÞ−1ji0i
¼ hajð1 −Φ1AcÞ−1T ð1 − 1AcΦÞ−1ji0i; ðC13Þ

where we use the product rule of differentiation
“∂ðfgÞ ¼ ð∂fÞgþ f∂g” and the formula ðd=dsÞA−1 ¼
−A−1ðdA=dsÞA−1 in the third line, and 1Acð1 −Φ1AcÞ−1 ¼
ð1 − 1AcΦÞ−11Ac in the second to last line, which finally
leads to Eq. (C12). Note that the cond-
itional mean first-passage time htiAaji0 ≡ ½R∞

0 ℘A
aji0ðtÞtdt�=

½R∞
0 ℘A

aji0ðtÞdt� is obtained by dividing Eq. (C13) by the
splitting probability Eq. (C11). This completes the proof
of Eq. (C12).
Higher moments can formally be obtained along the

same lines via Eq. (C10), such that the kth moment satisfies

ϕA
aji0htkiAaji0 ≡

Z
∞

0

℘A
aji0ðtÞtkdt¼ ð−1Þk ∂k

∂sk ℘̃
A
aji0ðsÞjs¼0:

ðC14Þ

Using Eq. (C10), we can effectively deduce any moment of
the first-passage time within the network from P̃ðsÞ.
If the network can be described by memoryless jump

dynamics [6] as, for instance, in the celebrated Gillespie
algorithm [1,2], the transitions between network states
are characterized by constant transition rates wi→j from
state i to state j. In this case, the time until the state changes
is exponentially distributed with the rate of leaving state i,
ri ¼

P
j∈N i

wi→j, yielding the same exit-time distribution
℘exit
i ðtÞ ¼ P

k PðtÞMki ¼ rie−rit irrespective of the final
state j, with probability ϕloc

jji ¼ wi→j=ri, i.e., ℘loc
jji ðtÞ=

ϕloc
jji ¼ ℘exit

i ðtÞ. A Laplace transform t → s of such mem-

oryless kinetics would yield P̃ðsÞMjji ¼ ϕloc
jji riðsþ riÞ−1

along with the kth moment htkilocjji ¼ hτkidwelli ¼ k!r−ki .

4. Fingerprints of memory

Unique fingerprints of memory in state-to-state kinetics
emerge already under minimal assumptions. Consider the
kinetics from state i0 ¼ 3 to the pair of target states A ¼
f1; 2g in the network depicted in Fig. 9(a) [see also the
trajectory in Figs. 3(a) and 6], which corresponds to

1A ¼

0
BBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA; 1Ac ¼

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCCA:

ðC15Þ

In order to infer the waiting-time distribution ℘loc for
the exit from all states, respectively, we simulate 4 × 105

exits from each state (see Fig. 14 in Appendix E 1). The
normalized waiting-time distribution for the exit from state
3 is genuinely heterogeneous [98]; i.e., it shows strong
variations between the respective legs [see Fig. 3(c) and see
Fig. 14 for a more detailed analysis of the complete
network]. The splitting probability and the local mean
waiting time are given by

Φ ≈

0
BBBBB@

0 0.33 0.25 0 0

0.5 0 0.25 0.5 0

0.5 0.33 0 0.5 1

0 0.33 0.25 0 0

0 0 0.25 0 0

1
CCCCCA;

T ≈

0
BBBBBB@

0 0.44 4.02 0 0

5.64 0 1.58 0.66 0

10.52 0.44 0 0.66 1.33

0 0.44 1.58 0 0

0 0 1.58 0 0

1
CCCCCCA: ðC16Þ

One can confirm that the system satisfies detailed balance,
since lnðΦji=ΦijÞ ¼ ln jN jj − ln jN ij holds, where jN ij is
the number of states adjacent to i.
We now inspect the probability to reach the target state 1

(2) within A before reaching state 2 (1). Note that a
trajectory may reach state 1 through the link 1–3 or via state
4. Such conditioned transition kinetics quantify nonlocal
effects and are particularly important for marginal obser-
vations; i.e., when we do not monitor all states but instead
only a subset (in this case, states 1–3) while the remaining
states are left as part of the “heat bath.” This scenario is very
relevant from an experimental point of view, since we can
typically monitor only a limited number of states.
After inserting Eqs. (C15) and (C16) into Eqs. (C11) and

(C12), respectively, we find ϕA
1j3 ¼ 0.4 and ϕA

2j3 ¼ 0.6
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while htiA
1j3 ≈ 8.26, htiA

2j3 ≈ 6.80. A Markov process would

presume isotropic mean waiting times T M
ij ¼ ϕijjhtiexitj ,

which yields htiA;M
1j3 ≈ 5.92 < htiA;M

2j3 ≈ 9.14, whereas

htiA
1j3 ≈ 8.26 > htiA

2j3 ≈ 6.80.

APPENDIX D: THERMODYNAMIC
CONSISTENCY OF COARSE GRAINING AND

DISCONTINUOUS FORCE FIELDS

In this Appendix, we connect the thermodynamic con-
sistency of the coarse graining to the preservation of cycles
[55], which implies that the entropy production rate [6,86]
is preserved in the coarse-grained process as discussed in
Sec. III B. This underlines that the violation of detailed
balance is entirely encoded in the splitting probabilities (see
also Ref. [53]). In addition, we derive the special limit of
local detailed balance in the presence of a timescale
separation. Finally, we consider discontinuous diffusion
coefficients and/or force fields.

1. Thermodynamic consistency follows from the
preservation of cycle affinities

Whether or not the system relaxes to an equilibrium
distribution is entirely encoded in the microscopic force
field F. If the force field is conservative, that is,
FðxÞ ¼ −∇UðxÞ, the resulting stationary state corresponds
to thermodynamic equilibrium. Detailed balance is said to
be broken if the time-independent force field has a nonzero
rotation, or equivalently, if at least one directed cycle C (see
thick arrows in Fig. 12) exists, for which the integral

A½C�≡
I
C
FðxÞ · dx ¼

Xν
α¼1

Z
iCαþ1

iCα

FðxÞ · dx ðD1Þ

called affinity [86] is nonzero. If we insert the first main
result, Eq. (2), into Eq. (D1), we obtain

A½C� ¼
Xν
α¼1

ln

"
ϕloc
iCαþ1

jiCα
ϕloc
iCαjiCαþ1

#
; ðD2Þ

where we use the fact that the terms involving the function
“g” form a vanishing telescope sum. Equation (D2) relates
the affinity of all cycles C exactly to the splitting proba-
bilities fϕloc

jji g. Therefore, detailed balance is satisfied as

soon as all closed cycles in a network satisfy A½C� ¼ 0.
This proves that the splitting probabilities alone encode the
breaking or validity of detailed balance.
Because of the preservation of cycle affinities [see

Eqs. (D1) and (D2)], the steady-state entropy production
is entirely encoded in the splitting probabilities fϕloc

jji g. This
can be understood as an alternative proof of the preserva-
tion of the entropy production shown in Sec. III B (see
also Ref. [55]).

2. The peculiar local equilibration

Let us now address the limit of a timescale separation
that leads to a local equilibration prior to any change of
state. In the limit of high free-energy barriers (i.e., Bjji →
∞ in Fig. 5), the first two auxiliary integrals (9) simplify to

Ið1Þjji ¼
Z

ljji

0

dy1
eβUjjiðy1Þ

Djjiðy1Þ
≃
Z

x�
jjiþϵ

x�
jji−ϵ

dy1
eβUjjiðy1Þ

Djjiðy1Þ
;

Ið2Þjji ¼
Z

ljji

0

dy1

Z
y1

0

dy2
eβUjjiðy1Þ−βUjjiðy2Þ

Djjiðy1Þ

≃
Z

x�
jjiþϵ

x�
jji−ϵ

dy1

Z
y1

0

dy2
eβUjjiðy1Þ−βUjjiðy2Þ

Djjiðy1Þ

≃ Ið1Þjji

Z
x�
jji

0

dy2e
−βUjjiðy2Þ; ðD3Þ

where we assume ϵ ≪ ljji. The (saddle-point) approxima-
tions in the first and third lines of Eq. (D3) follow from
eβUjjiðy1Þ being largest in the vicinity of y1 ≃ x�jji (see

Fig. 5). The last approximation follows from y2 ≤ y1 ≃ x�jji

and hence,
R y1
0 dy2e

βUjjiðy2Þ ≃
R x�

jji
0 dy2e

−βUjjiðy2Þ. Inserting
Eq. (D3) into the splitting probability in Eq. (10), and the
mean exit time in Eq. (S50) in the Supplemental Material
[75] yields the asymptotic rate of jumping from state i to
state j,

wi→j ¼ ϕloc
jji =htiexiti ≃

1

Ið1Þjji

X
k∈N i

Z
x�
kji

0

e−βUkjiðy2Þdy2;

≡ eβU i−βF i

Ið1Þjji
; ðD4Þ

where in the last step we define the free energy of state i,
F i ¼ −kBT lnZi to be given by the partition function

FIG. 12. One directed cycle C ¼ iC1 → iC2 →;…;→ iCν →
iCνþ1 ¼ iC1 (see thick red arrow lines) is highlighted which encloses
ν ¼ jCj ¼ 6 nodes within a total set of Ω ¼ 9 nodes.
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Zi ¼ e−βF i ≡P
k∈N i

R x�
kji

0 e−βU i−βUjjiðxÞdx. Note that U i

denotes the energy at node i since Ujjið0Þ ¼ 0. Inserting
the rates Eq. (D4) along with Eq. (17) into the left-hand side
of Eq. (20) yields the right-hand side of Eq. (20). This
completes the proof of the local detailed balance relation in
the limit of a timescale separation.
Let us now briefly comment on transition-path times in

the limit of a timescale separation. Since, high free-energy
barriers between any pair of state will eventually render all

higher-order integrals IðkÞijj negligibly small if k ≥ 3, the

transition-path time hδtitrjji ¼ Ið3Þjji =I
ð1Þ
jji is negligibly short

compared to the mean exit time from state i. More
precisely, it has been found for a parabolic barrier that
the transition-path time scales ∝ jUjji00ðx�jjiÞj−1 lnBjji
[24,30,70,116,117], i.e., decreases with Bjji due to
jUjji00ðx�jjiÞj−1 ∝ 1=Bjji [70], while the exit time grows

much faster [66,83,118], i.e., ∝ eβBjji . One can show that
a rectangular-shaped potential with a barrier height Bjji in

fact yields a constant finite transition-path time hδtitrjji ¼
Ið3Þjji =I

ð1Þ
jji in the limit Bjji → ∞, while at the same time the

exit time diverges ∝ eβBjji → ∞. The shape of the barrier
may therefore decide whether or not the transition-path
time is affected by the barrier height [70].

3. Generalization to discontinuous local potentials and
discontinuous diffusion landscapes

We first explain how one deals with discontinuous local
potentials in general. Next, we account for possible dis-
continuities in the diffusion landscape by removing them
through a linear stretch of coordinates. Therefore, discon-
tinuous diffusion landscapes can always be accounted for
by mapping the coordinate system onto a continuous
diffusion landscape but with possible discontinuities in
the local potential.

a. Discontinuous local potential

Let us begin with a discontinuous “diverging force kick”
at the node i toward state j which effectively means
FjjiðxÞ ¼ Fcont

jji ðxÞ þ ΔUjjiδðxÞ, where Fcont
jji ðxÞ is some

continuous force field, δðxÞ denotes the Dirac delta
function, and ΔUjji is the strength of the discontinuity.
The “force kick” yields the potential UjjiðxÞ ¼ −ΔUjji−R
x
0 F

cont
jji ðx0Þdx0. The local potential has a discontinuity once

Ujjið0Þ ¼ −ΔUjji ≠ 0. A single discontinuity between
states i and j is schematically depicted in Fig. 13 (see
blue line). The transition-path time is not affected by such
“kicks” since the transition path spans the time interval
after the last passage of state i until the first entrance into
state j, which can be confirmed by the following argument.
To formally avoid a discontinuity, we replace the

discontinuity ΔUjjiδðxÞ by a smoothened force ΔUjji=ϵ
within the interval 0 ≤ x ≤ ϵ and afterward take the
limit ϵ → 0. The auxiliary integrals according to Eq. (9)

become limϵ→0 I
ð2k−1Þ
jji ¼ ½Ið2k−1Þjji jΔUjji¼0� × e−βΔUjji and

limϵ→0 I
ð2kÞ
jji ¼ Ið2kÞjji jΔUjji¼0 (for k ¼ 1; 2…). Since all

the odd-valued k auxiliary integrals are affected by
the discontinuity in precisely the same manner

“Ið2k−1Þjji ∝ e−βΔUjji ,” we find that the first two moments
of transition-path time Eq. (11) are not affected by the
discontinuity.
Importantly, a kick of strength ΔUjji affects the splitting

probability ϕloc
jji of choosing a transition due to ϕloc

jji ∝

1=Ið1Þjji ∝ eβΔUjji [cf. Eqs. (9) and (10)]. Since the dwell time
is affected by both the splitting probability and the
transition-path time [cf. Eqs. (9) and (12)], a force kick
of strength ΔUjji does affect the dwell-time statistics.
Therefore, as an interim summary, we find that force kicks
arising from a discontinuous local potential (see Fig. 13)
affect both the splitting probability and the dwell-time
statistics, whereas the transition-path time is not affected.

b. Discontinuous diffusion landscape

Discontinuous diffusion landscapes, i.e., DjjiðxÞ satisfy-
ing Djjið0Þ ≠ Dkji for some k ≠ i, are dealt with in the
following manner. First, we locally rescale the coordinate
system such that the discontinuity disappears. Specifically,
we locally stretch the coordinates between nodes i and j,
ljji, homogeneously by a factor αjji (ljji → αjjiljji) to
obtain a rescaled diffusion landscape α2jjiDjjiðx=αjjiÞ and
a correspondingly rescaled local potential Ujjiðx=αjjiÞ−
β−1 ln αjji, where β−1 ¼ kBT is the thermal energy (see also
Sec. II.E in Ref. [48]). By choosing αjji such that the
diffusion landscape becomes continuous, we obtain a
mapping from a discontinuous diffusion landscape onto
a continuous one. Hence, discontinuous diffusion land-
scapes can be removed entirely via a linear change of local
coordinates. Such a rescaling gives rise to a discontinuous

FIG. 13. Discontinuous potential. Local potential between state
i three neighbor states. Along the leg from state i to state j the
potential has a discontinuity of strength ΔUjji.
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potential—a problem we have already solved above. In this
sense, all of the results presented here apply to dynamics on
a graph with both discontinuous diffusion and discontinu-
ous local potentials equally well. Notably, the results
derived in the Supplemental Material Sec. III [75], i.e.,
Eqs. (10)–(12) in Sec. II D, can be used unaltered in the
case of discontinuities in the potential and diffusion
landscapes.

APPENDIX E: MODEL PARAMETERS AND
ADDITIONAL CONFIRMATION OF THE

MAIN PRACTICAL RESULT

In Appendix E 1, we provide details about the “synthetic”
model discussed in Fig. 3 and Appendix C 3. We then
define the catch-bond model in Appendix E 2, which is
discussed in Sec. V B [see Figs. 1(d), 7(b), and 7(c)]. The
model from Figs. 7(d)–7(f) is provided in Appendix E 3,
where we also derive the upper bound depicted in Fig. 7(f).
The lower bound in Fig. 7(f) is proven in Appendix E 4 and
shown to saturate in Appendix E 5. In addition, we further
corroborate all of our main findings. In particular, we verify
symmetry (i) in Eq. (3) in Fig. 19(c). We test the reflection
symmetry of the transition-path time [symmetry (ii) in
Eq. (3)] in Fig. 21 as well as Table VII. In Tables IV and
VI and Fig. 17, we corroborate our main practical result
shown in Sec. II D.

1. Dynamics in the synthetic network
from Fig. 3 and Appendix C 3

We briefly state all model parameters and then provide
details about the analysis. Moreover, we use the model to
corroborate the main practical result (see Sec. II D).

a. Definition of the dynamics

The synthetic network in Fig. 3(a) [see also Fig. 14(a)] is
chosen to have one “slow” link between states 1 and 3

being separated by a connection of length l1j3 ¼ l3j1 ¼
12.5518 with embedded diffusion coefficient D3j1 ¼
D1j3 ¼ 1þ 4 × 16ðx=l3j1 − 1Þ2ðx=l3j1Þ2 and local force
F1j3ðxÞ ¼ 32kBTð2x=l1j3 − 1Þð1 − x=l1j3Þx=l21j3 (corre-

sponding to a local potential βU1j3 ¼ βU3j1 ¼ 16ðx=l3j1 −
1Þ2ðx=l3j1Þ2 with a 1kBT barrier). Note that the local force
is illustrated in Fig. 4(a), and the corresponding local
potential is taken from Eq. (5). To assure the mildest of
conditions, all remaining states are chosen to be separated
by the same distance ljji ¼ 1, diffusion landscape Djji ¼ 1,
and have the same force field FjjiðxÞ ¼ 96kBT × ð2x=
ljji − 1Þð1 − x=ljjiÞx=l2jji [i.e., local potential βUjjiðxÞ ¼
48ð1 − xÞ2x2, which corresponds to a 3kBT barrier sepa-
rating each pair of states]. This network (globally) satisfies
detailed balance, since UjjiðljjiÞ ¼ Uj − U i for all i, j with
U i ¼ Uj ¼ 0 [for the definition of detailed balance, see
paragraph including Eq. (5) or Appendix D 1].

b. Simulation of microstate dynamics

We generate individual trajectories using the stochastic
Milstein scheme from Appendix A 3 with time increment
Δt ¼ 10−4. A short segment of the trajectory is shown in
Fig. 3(a). In total, we simulate 400 000 exits from each state
and evaluate the probability density of the waiting time
between all pairs of states. The results are summarized
Figs. 14(b)–14(f), while Figs. 14(g)–14(i) display the same
probability densities on a semilogarithmic scale. The
probability densities depicted in Fig. 3(c) in the main text
are taken from Fig. 14(d), while the inset in Fig. 3(c)
represents Fig. 14(i). The gray lines in Fig. 14 correspond-
ing to the solid black line in Fig. 3(c) denote the long-time
asymptotics of the waiting-time distribution, which are
determined as explained in the following.

c. Analysis of the long-time asymptotics

The long-time asymptotics of waiting-time density in
state i becomes a single exponential decay ψ jji ∝ eμ

∞
i t with

the same exponent μ∞i for all exits to states j adjacent to i.
One can show that this implies the long-time asymptotics to
be determined by μ∞i ¼ limn→∞ nhtn−1iexit=htniexit. Note
that when the waiting-time distribution and long-time
asymptotics coincide [66,83,118], one can instead simply
use (n ¼ 1), i.e., μ∞i ≈ 1=htiexit. For examples violating the
latter assumption, it turns out that taking n ¼ 2 provides a
fairly good estimate μi ¼ 2htiexit=ht2iexit ≈ μ∞i (see also
Ref. [110]). We deduce the mean exit time and μi both from
the theory (Sec. II D) and the simulation. These estimates
are shown in Table IV. The thick gray lines in Fig. 14 are
deduced from the theory values in Table IV. This corrob-
orates the results in Sec. II D and shows that the long-time
asymptotics can fairly accurately be determined from the
first two moments of the exit time.

TABLE IV. Mean versus asymptotics. Each “experimental”
value is deduced from Nsim ¼ 4 × 105 simulated exits from each
state generated by the stochastic Milstein scheme with
Δt ¼ 10−4. The “theory” values are obtained from a numerical
evaluation of the results in Sec. II D [see also Eqs. (S47) and
(S50) in the Supplemental Material [75]]. Each experimental
value has a relative statistical error of about 1=

ffiffiffiffiffiffiffiffiffi
Nsim

p
≈ 0.0016.

Mean exit rate 1=htiexiti Rate μi ¼ 2htiexiti =ht2iexiti

State i Experiment Theory Experiment Theory

1 0.0617 0.0618 0.0634 0.0636
2 0.7496 0.7523 0.7909 0.7934
3 0.1140 0.1143 0.0960 0.0961
4 0.7509 0.7523 0.7929 0.7934
5 0.7523 0.7523 0.7944 0.7934
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d. Slow transitions amplify the long-time asymptotics

Whenever transitions are slow, we observe in Fig. 14 that
the long-time asymptotics of the local probability density
lies above the normalized gray line, which can be explained
as follows. When transitions are long, the probability
density ψ jjiðtÞ becomes negligibly small on timescales
shorter than the transition time t≲ hδtitrjji. Since ψ jjiðtÞ
must be normalized

R∞
0 ψ jjiðtÞdt ¼ 1, one inevitably

requires more weight of the probability density at long
times. Note that all lines plotted in Figs. 14(b)–14(i) are
probability densities which are normalized to unity. In other
words, the blue solid line in Fig. 14(i) is above the gray
thick line at long times since it is below the thick gray line
at short times.

2. Catch-bond analysis

In this subsection, we provide details about the
catch-bond analysis shown in Figs. 1(d), 7(b), and 7(c).
Dissecting the lifetime of a bond into the dwell and
transition time, we also corroborate symmetry (i) entering
the main result in Eq. (3) [see Fig. 19(c)].

a. The model

We employ a so-called switch catch-bond model [67]
with parameters chosen to reproduce experimental results
on bacterial adhesion bonds [34,35] (see also Ref. [36] for
related experiments). The local potential, Eq. (5), along the
jth pathway (j ¼ 1, 2) is decomposed into Ujj0ðxÞ ¼
Uð0Þ

jj0ðxÞ þ UloadðF; xÞ, where Uð0Þ
jj0ðxÞ≡Uloadð0; xÞ is the

(b)(a) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. State-to-state kinetics in the synthetic network. (a) Schematics of the network with a slow transition between states 1 and 3
(dashed line). All remaining connections (solid lines) are chosen to be equally fast with 3kBT barriers separating the network states.
(b)–(f) Probability density of local residence time ℘loc

jji starting from (b) i ¼ 1, (c) i ¼ 2, (d) i ¼ 3, (e) i ¼ 4, and (f) i ¼ 5, which are

deduced from 400 000 repeated exit events, respectively. The gray solid line denotes the estimated long-time asymptotics with the values
from Table IV. The densities of leaving states 2, 4, and 5 are identical for the synthetic model. (g)–(i) Probability densities on a log scale;
redundant densities are omitted since ℘exit

2 ¼ ℘exit
4 ¼ ℘exit

5 holds, and all histograms plotted in (c) and (e) correspond to the same density,
respectively, as well as ℘loc

2j3 ¼ ℘loc
4j3 ¼ ℘loc

5j3.
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(free-) energy profile at zero pulling force, and UloadðF; xÞ
accounts for a nonzero pulling force F. The potential along
pathway 1 U1j0ðxÞ and along pathway 2 U2j0ðxÞ is depicted
in Fig. 15, where solid lines represent potential values at
zero pulling force F ¼ 0, dashed lines show the tilted
potential under a moderate force F ¼ 30 pN, and the

dotted line corresponds to a pulling force F ¼ 60 pN.
Blue lines depict the potential along the fast pathway 1, and
orange lines the potential along the slow pathway 2. The
potential is formally defined as follows. Defining the scaled
dimensionless distance x̃≡ x=ð4.14 nmÞ, the potentials are
given by

βUpullðx; FÞ ¼ F
1 pN

×



50x̃2 if x̃ ≤ 0.01;

x̃ − 0.005 if x̃ > 0.01;

βUð0Þ
1j0ðxÞ ¼



8500x̃2 if x̃ ≤ 0.01714;

5.1 − 8160ðx̃ − 0.035Þ2 if 0.01714 < x̃ ≤ 0.06 ¼ l1j0=ð4.14 nmÞ;

βUð0Þ
2j0ðxÞ ¼

8>>><
>>>:

258.228x̃2 if x̃ ≤ 0.16458;

8.5 − 1200ðx̃ − 0.2Þ2 if 0.16458 < x̃ ≤ 0.28417;

−1.6þ 6378.95ðx̃ − 0.3Þ2 if 0.28417 < x̃ ≤ 0.33553;

12 − 9264.39ðx̃ − 0.36Þ2 if 0.33553 < x̃ ≤ 0.397 ¼ l2j0=ð4.14 nmÞ;

ðE1Þ

where l1j0¼0.06×4.14 nm¼0.248 nm and l2j0 ¼ 0.397×
4.14 nm¼ 1.64 nm. The dimensionless unit length x̃ ¼
x=ð4.14 nmÞ is used to connect thermal energy and force
according to kBT=ð1 pNÞ ¼ 4.14 nm. The diffusion coef-
ficient is set to be constant Djj0ðxÞ ¼ ð4.14Þ2 nm2 s−1 ¼
17.1 nm2 s−1 along both pathways j ¼ 1 and j ¼ 2.

b. Simulation results in Fig. 1(d)

We propagate the microstate with the stochastic
Runge-Kutta scheme given in Appendix A 4 with time
increment Δt ¼ 10−6 s. Setting the initial distance to
x0 ¼ 0, we simulate 104 ruptures for each force

F ¼ 0; 5 pN;…; 85 pN, respectively. Some selected prob-
ability densities with a logarithmic (increasing) binning
are shown in Fig. 16. Figure 16(a) depicts the probability
densities on a semilogarithmic scale only over a short period
of time (4 s). Figure 16 depicts the full-time range on a
double-logarithmic scale, which after normalization of time
t → t=htiexit, Fig. 16(c) allows us to conveniently depict the
shape of all distributions simultaneously on a linear scale as
in Fig. 16(d). That is, all scaled densities in Fig. 16(d) have
the same scaled mean at t=htiexit ¼ 1. We adopt the density
belonging to rectangles (F ¼ 20 pN) in Fig. 16 in the blue
shaded plot in Fig. 1(d). In Table V, we list the mean rupture
times along pathways 1 and 2, respectively, whereby the
length of the orange and black bars in Fig. 1(d) along the jth
pathway represent the values htijj0 at F ¼ 20 pN from
the table.
In contrast to the experiment [34], we assume here that

all trajectories instead of 99.2% start from x ¼ 0. We note
that the fit of the experimental data carried out in Ref. [34]
found the initial binding to take place with 99.2% in what
was called state 1, which corresponds here to the distance
x ¼ 0. Correspondingly, about 0.8% of experimental rup-
tures carried out in Ref. [34] are estimated to start in the
first intermediate minima along the slow path 2 (potential is
depicted in Fig. 15 in the main text).

c. Simulation of Figs. 7(b) and 7(c)

Using all 104 rupture events, we deduce in Fig. 17(a)
(see symbols) the splitting probability ϕ2j0 ¼ 1 − ϕ1j0,
the mean lifetime htiexit, and its standard deviation σexit ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2iexit − ðhtiexitÞ2

p
. The error bars denote the root-mean-

square error. The theoretical lines in Fig. 17(a) are obtained
by numerical integration of Eq. (9) along both pathways

)
(

( )

FIG. 15. Catch-bond free-energy landscape. The local potential
is set to Ujj0ðxÞ ¼ Uð0Þ

jj0 ðxÞ þ UloadðF; xÞ. The precise form of
U1j0 and U2j0 is given in Eq. (E1). For a biophysical setting
underpinned by the potential, see Fig. 5(a) in Ref. [35] [see also
Fig. 1(d) here].

DAVID HARTICH and ALJAŽ GODEC PHYS. REV. X 11, 041047 (2021)

041047-30



(1 and 2) and consecutive use of Eqs. (10)–(13). This
example nicely corroborates the validity of our results. In
Figs. 7(b) and 7(c), the number of ruptures is chosen to be
similar to those in typical experiments [34,36] (here 500
rupture events).

d. Interplay of fast and slow transitions
at finite statistics

The interplay between fast and slow transitions can lead
to a severe misinterpretation of experimental error estimates

(here at low pulling force). To see this, we presume that we
have only 200 ruptures measured [see Fig. 17(b)]. Clearly,
errors are expected to become larger, whereas at low
pulling forces we mistakenly estimate the errors to be
far too small. To understand this, we need to inspect the full
probability densities depicted in Fig. 16 (see circles,
F ¼ 10 pN). The probability density is negligibly small
at values t ≤ htiexit=2; i.e., the mean is mainly dominated
by extremely rare and extremely long transitions. This
situation becomes more severe at smaller forces. For
example, at F ¼ 5 pN we do not encounter a single rupture
along the slow path in the first 200 ruptures, which is why
we experimentally would not be able to see them. This is
the reason why the theory lines in Figs. 17(b) are 10
standard deviations away from the theory line at F ¼ 5 pN.
In other words, in reality, 200 ruptures alone at F ¼ 5 pN
lead to the same quality of statistics as an experiment with
only one or two ruptures.

e. Detection of parallel transition paths
according to Ref. [27]

If we are able transition path times δt directly, one can
also evaluate the coefficient of variation σ2tr=hδti2 ¼
ðhδt2i − hδti2Þ=hδti2. The result is shown in Fig. 18.

(a) (b)

(c) (d)

FIG. 16. Probability density of bond lifetime. (a) Probability densities on a semilogarithmic scale. (b) Probability densities on a log-log
scale. (c) Scaled probability density and scaled time on a log-log scale; the mean lifetime corresponds to t=htiexit ¼ 1. (d) Scaled
probability densities on a linear scale. Each probability density is estimated from 10 000 ruptures. All symbols are deduced from
histograms with equidistant binning in logarithmic time.

TABLE V. Asymmetry of the mean rupture time. The
mean rupture time hti1j0 and hti2j0 along pathways 1 and 2,
respectively. We highlight the results with a strong asymmetry
hti2j0=hti1j0 > 100.

Pulling force F ϕ1j0 hti1j0 hti2j0
10 pN 0.98 2.81 s 62 s
20 pN 0.81 6.32 s 77 s
30 pN 0.44 2.51 s 58 s
40 pN 0.17 0.43 s 33.2 s
50 pN 0.07 0.015 s 19.4 s
60 pN 0.05 0.004 s 11.35 s
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The coefficient clearly exceeds 1, which according to
Ref. [27] correctly implies multidimensional (parallel)
transition paths. Note in Sec. V B, we detect parallel
transition paths “merely” from measuring the lifetime of
the bond t ¼ δtþ τ, which formally represents a first-
passage time.

f. Dwell time is a property of the state

Using the individual trajectories for the catch-bond system,
we dissect the lifetime of a bond into a transition and dwell
period according to Eq. (3) in the main text. For brevity, we
merely show the result forF ¼ 30 pN at which the two paths
are taken with approximately equal probability. In Fig. 19(a),
we depict the histogram of the lifetime of the bond ℘exit

0 ðtÞ
(see green stars),which is dissected into the statistics of dwell-
time ℘dwell

0 (see blue circles) and the transition-time statistics
℘tr
0 ≡ ϕ1j0℘tr

1j0 þ ϕ2j0℘tr
2j0 (see orange rectangles), respec-

tively. The arrow “path 1” in Fig. 19(a) indicates ϕ1j0℘tr
1j0,

whereas the arrow “path 2” indicates ϕ2j0℘tr
2j0. Note that the

lifetime ℘exit
0 is equal to the convolution of dwell- and

transition-time distributions ℘exit
0 ¼ ℘tr

0 � ℘dwell
0 , which signi-

fies their statistical independence. Figure 19(b) depicts the
probability density of logarithmic time ln t, which is t℘ðtÞ
since

R∞
−∞ t℘ðtÞd½ln t� ¼ 1.

We now use the data to verify symmetry (i) in our second
main result Eq. (3), which states that the dwell-time
statistics is identically distributed along both pathways 1
and 2. To test this, we compare the histogram of dwell time
along path 1 ℘dwell

1j0 and the histogram along path 2 ℘dwell
2j0

with the estimated probability density along both pathways
℘dwell
0 in Fig. 19(c), where the inset depicts the results on a

linear scale. Figure 19(c) nicely illustrates their distribution
to be equal ℘dwell

0 ¼ ℘dwell
1j0 ¼ ℘dwell

2j0 (deviations are merely
arising from finite statistics). This example illustrates that
the dwell-time statistics does not depend on the pathway of
the rupture (states 1 and 2) but only on the initial state 0;
i.e., the dwell-time statistics solely depends on the initial
state (not on the final one). This example corroborates
Eq. (3) in the main text. Using fast three-color single-
molecule Foster resonance energy transfer, it is possible to
detect similar parallel transition paths in the binding of
disordered proteins [29].

g. Alternative experiment from Ref. [36]

Finally, we want to comment on the effect of changing
the length scale. Suppose the length x is stretched by a factor
λ such thatUjjiðxÞ → Ujjiðx=λÞ, i.e.,FjjiðxÞ → Fjjiðx=λÞ=λ,
which implies that the loading forceF becomes equivalent to
the loading force F=λ after rescaling. To address a related
experiment [36] displaying quite different timescales and
length scales, we need to scale the length by a factor λ (λ ≈ 3)
such that the maximum lifetime is found at F ≈ 10 pN as
reported in Ref. [36] instead of F ≈ 30 pN, which is shown
here in Fig. 17 (see also Ref. [34]). Moreover, scaling the
diffusion constant D → αD corresponds to an accelerated
time, which rescales the bond lifetime∝ α−1λ−2. To shift the
maximum lifetime from ≃30 s (see Fig. 17) to 1.2 s ¼
30 s=25 from the experiment in Ref. [36], we, in addition to
the scaled location of the maximum, scale the diffusion
constant by α ¼ 25 × λ−2 ≈ 2.78. With these scaled units we

(a)

(b)

FIG. 17. Catch-bond analysis with improved statistics. The
results for (a) 104 ruptures and (b) 200 ruptures. The error bars
denote the standard deviation and the lines the theoretical results.

FIG. 18. Coefficient of variation of transition-path time. Symbols
are obtained from 104 ruptures as in Fig. 17, and the theory lines
are deduced from Eq. (11). We define the mean transition time
hδti¼ϕ1j0hδti1j0þϕ2j0hδti2j0 and variance σ2tr¼ϕ1j0hδt2i1j0 þ
ϕ2j0hδt2i2j0− hδti20.
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obtain the same plots as shown in Fig. 17 [see also Figs. 7(b)
and 7(c) in themain text] butwith the x axis scaled by a factor
of 1=3, and the y axis is scaled by a factor of 1=25 to
quantitatively account for different experiment reported
in Ref. [36].
Summarizing, in this subsection we further confirm

Eqs. (10)–(13) in the main text by numerical experiments,
which are shown in Fig. 17 using more statistics (up to 104

rupture events). We test the decomposition of the bond
lifetime into its dwell and transition period according to
Eq. (3) in the main text, and we corroborate the theoretical
prediction that the dwell time indeed depends only on the
initial state but not the final state [see Fig. 19(c)].

3. ATPase with sine-wave potential

a. Model and energetics

We assume the dynamics of an idealized ATPase to be
described by the following model. The ATPase rotates
stochastically about one axis and experiences an angle-
dependent torque at rotation angle θt at time t. The torque is
assumed to have the following two contributions:

(i) A rotational free-energy potential [see blue shaded
lines Fig. 7(d)] that displays three well-defined
rotational states (minima) that are separated by
120°. The free energy exerts a conservative torque
proportional to the slope of the blue line. The potential
is given by UrotðθÞ ¼ ðB=2Þ½1 − cosðθ=3Þ� with the
implied conservative torque given by −∂θUrotðθÞ.

(ii) A nonequilibrium torqueM that embodies a sum of a
mechanochemical force arising from the hydrolysis
of an ATP molecule and a mechanical torque that is
applied to the shaft. More precisely, a tight coupling
with M ¼ Δμ=120° −Mmech is assumed, where
Δμ ¼ μATP − μADP − μPi

is the chemical free energy
released in the hydrolysis reaction to adenosine
diphosphate (ADP), ATP → ADPþ Pi, and Mmech

reflects a mechanical torque [50].

In Figs. 7(d)–7(f), we setB ¼ 5kBT and assume the diffusion
coefficient to be constant and without loss of generality
D ¼ 1. Moreover, we use scaled units xt ¼ θt=120°; that is,
distances are measured in units of a third of a revolution.
Using the scaled coordinate, the local potential, which
accounts for both torque (i) and mechanochemical force
(ii), is given by U�ðxÞ ¼ ðB=2Þ½1 − cosð2πxÞ� � ðM ×
120°Þx with l� ¼ 120°=120° ¼ 1, where “þ” accounts for
the potential along the counterclockwise direction and “−”
corresponds to the potential along the opposite direction.
Detailed balance is established whenever the chemical free
energy released per 120° step is balanced by the mechanical
torque (multiplied by 120°), i.e.,M ¼ 0 [see item (ii) above].
For convenience, we restrict our analysis to a periodic

rotation which has a sine-wave shape with barriers of
height B that separate two minima. Counting the minima in
the counterclockwise direction yields the set of states
Ω ¼ f1; 2; 3g, such that for each state i ∈ Ω the local
potential formally reads Ui�1ji ≡ U� with the convention
“i − 1 ¼ 3 if i ¼ 1” and “iþ 1 ¼ 1 if i ¼ 3.” The sets of
neighboring states are thenN 1 ¼ f2; 3g,N 2 ¼ f1; 3g, and
N 4 ¼ f1; 2g; that is, the three-state network is fully
connected. We want to compare the minima-to-minima
dynamics, which are generally non-Markovian, to a
Markov kinetics corresponding to an exponentially dis-
tributed waiting time with the same expected time htiexit of
leaving each minimum. Only two numbers become rel-
evant, B=ðkBTÞ and M × 120°=ðkBTÞ representing, respec-
tively, the barrier height separating two minima B and the
nonequilibrium driving M in units of the thermal energy
kBT. The diffusion constant is set to D� ¼ 1. To obtain the
numerical results in Figs. 7(e) and 7(f), we fix the barrier
height to B=ðkBTÞ ¼ 5 and use the stochastic Runge-Kutta
scheme (see Appendix A 4) with time incrementΔt ¼ 10−4

in dimensionless simulation units. We simulate all trajec-
tories until we observe in total 500 000 state-to-state
changes (i.e., minima-to-minima transitions). Note that a
different value for D ≠ 1 would not affect Figs. 7(e)

(a) (b) (c)

FIG. 19. Decomposition of the probability density of bond lifetime at pulling force F ¼ 30 pN into the probabilities of transition and
dwell time, respectively. (a) Probability densities of bond lifetime ℘exit, dwell time ℘dwell, and transition time ℘tr on a log-log scale.
(b) Result from (a) where the probability densities are transformed to logarithmic densities t℘ðtÞ, which is normalized according toR
∞
−∞ t℘ðtÞdðln tÞ ¼ R

∞
0 ℘ðtÞdt ¼ 1. (c) Test of ℘dwell

0 ¼ ℘dwell
1j0 ¼ ℘dwell

2j0 .
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and 7(f). The fluctuating rotational state as a function of
time is illustrated in Fig. 20 for various strengths of driving
M × 120°=ðkBTÞ ¼ 0, 5, 20, where each all-black bar
represents an equal duration Δt, indicating that a stronger
driving leads to faster rotation.

b. Splitting probability

The splitting probability involves the auxiliary integrals

Ið1Þþ ¼
Z

1

0

eβ
B
2
½1−cosð2πxÞ�−βðM×120°Þxdx;

Ið1Þ− ¼
Z

1

0

eβ
B
2
½1−cosð2πxÞ�þβðM×120°Þxdx; ðE2Þ

where we use Eq. (9) with k ¼ 1 and insert U�ðxÞ ¼
ðB=2Þ½1 − cosð2πxÞ�∓ ðM × 120°Þx and l� ¼ 1. Using
Eq. (10), one obtains after some algebra

ϕþ ¼ 1=Ið1Þþ
1=Ið1Þþ þ 1=Ið1Þ−

¼ ef

ef þ 1
¼ 1 − ϕ−; ðE3Þ

where we define f ¼ βðM × 120°Þ. Note that splitting
probabilities satisfy Eq. (2), which here corresponds to
lnðϕþ=ϕ−Þ ¼ f. Some values are listed in Table VI.

c. Symmetry of the waiting-time distribution

We prove in Appendix B a forward and backward
symmetry of the transition time “℘trþðδtÞ ¼ ℘tr

−ðδtÞ” [i.e.,
symmetry (ii) in our second main result in Eq. (3)]. To
numerically corroborate this main finding, we compare in
Table VII the mean transition time along the forwardþ and
backward − direction (as we explain in Appendix A 5). In
Fig. 21, we further compare the entire probability densities.
Because of the periodicity in each 120° step and the
forward or backward symmetry of the transition time
℘trþðδtÞ ¼ ℘tr

−ðδtÞ, Eq. (3) implies that the local waiting
is given by ℘loc

� ðtÞ ¼ ϕ�℘exitðtÞ, such that htki� ¼ htkiexit.
Therefore, the extrinsic transition noise vanishes, which in
turn according to the proof in the last subsection in the
Supplemental Material [75] implies the fluctuations to
be sub-Markov: σ2exit ≡ ht2iexit − ðhtiexitÞ2 ≤ ðhtiexitÞ2, that
is, ht2iexit ≤ 2ðhtiexitÞ2.
A few comments are in order. The symmetry of the local

mean waiting time htiþ ¼ hti−, was, to the best of our
knowledge, first discovered in Ref. [64] for lattice models
of kinesin motors (see also Ref. [65]). The extension to the
entire distribution ℘loc

� ðtÞ ¼ ϕ�℘exitðtÞ was later found in
studies for the stopping time of the thermodynamic entropy
production in active molecular processes [59]. The sym-
metry allows us to simplify the discussion by merely
focusing on the splitting probability ϕ� and the exit-time
distributions ℘exitðtÞ.

(a) (b) (c)

FIG. 20. Effect of nonequilibrium driving on single trajectories.
Realization of a stochastic trajectory of the ATPase toy model as
function of time (running from dark to bright) at (a) equilibrium
M ¼ 0, (b) at moderate nonequilibrium drivingM × 120° ¼ B ¼
5 kBT, and (c) at strong driving M × 120° ¼ 20 kBT. The length
of each trajectory is chosen to have the same average number of
transitions. To compare the different time units, we add the bars
Δt, which all span the same period of time.

TABLE VI. Comparing theory to simulation. Nonequilibrium driving is quantified in terms of
f ≡M × 120°=ðkBTÞ. The theoretical values for the splitting probability follow from Eq. (E3). By evaluating
the auxiliary integrals in Eq. (9) and using Eqs. (S47) and (S50) in the Supplemental Material [75], we obtain the
theoretical values for mean first exit time htiexit and the second moment of the exit time ht2iexit, and therefrom the
standard deviation σexit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2iexit − ðhtiexitÞ2

p
. Note that for f ¼ 20 the system is driven so strongly that no

backward transition is observed in 500 000 trajectories, which is why we experimentally determine ϕ− ¼ 0.

Splitting probability ϕ− ¼ 1 − ϕþ Mean exit time htiexit Standard deviation σexit

Nonequilibrium driving f Theory Experiment Theory Experiment Theory Experiment

0 0.500 000 0.500 910 5.4115 5.4158 5.3561 5.3533
2 0.119 203 0.119 490 3.7064 3.7066 3.6513 3.6469
5 0.006 692 0.006 654 1.2488 1.2474 1.1951 1.1940
10 0.000 045 0.000 048 0.2910 0.2916 0.2425 0.2428
20 2.06 × 10−9 0 0.0703 0.0705 0.0350 0.0350
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d. Exit-time statistics and implied number
of transitions

The number of exits after time t, nt, where one exit
corresponds to the event of leaving oneminima and reaching
any other minima for the first time, is stochastic and
influenced solely by the exit time ℘exitðtÞ. As we explain
above, the distribution of the waiting time is the same along
both directions þ and −, i.e., ψ� ¼ ℘loc

� ðtÞ=ϕloc
� ¼ ℘exitðtÞ.

At long times, the central limit theorem for renewal pro-
cesses [16] renders nt asymptotically normally distributed
with mean hnti ≃ t=htiexit and variance varðntÞ ≡ hn2t i−
hnti2 ≃ tσ2exit=ðhtiexitÞ3 ¼ t½ht2iexit − ðhtiexitÞ2�=ðhtiexitÞ3,
where ≃ denotes equality ¼ in the limit t → ∞ (see also
Ref. [37]). Applying the central limit theorem for the mean-
square angular deviation hδθ2t i≡ h½θt − hθti�2i, we obtain

hδθ2t i
ð120°Þ2 ¼ 4ϕþϕ−hnti þ ðϕþ − ϕ−ÞvarðntÞ

≃ 4ϕþϕ−
t

htiexit þ ðϕþ − ϕ−Þ
tσ2exit

ðhtiexitÞ3 ; ðE4Þ

where in the first step we relate the number of state-to-state
changes to the angular deviation, and in the second step we
use the central limit theorem. Equation (E4) proves Eq. (25)
in the main text. As soon as ℘exitðtÞ becomes memoryless,
that is,℘exitðtÞ ∝ e−t=htiexit ,nt becomesPoissonianwithmean
hntiM ¼ t=htiexit and variance varðntÞM ¼ t=htiexit, where
the superscript “M” signifies the restriction to memoryless
Markov jumps.

e. Proof of the upper bound in Fig. 7(f)

Using Eq. (E4), we obtain the ratio of the true
angular mean-squared deviation hδθ2t i and the one deduced
from a Markov-jump model that corresponds to setting
σMexit ¼ htiexit, i.e.,

hδθ2t i
hδθ2t iM

≃
4ϕþϕ−ðhtiexitÞ2 þ ðϕþ − ϕ−Þ2σ2exit

ðhtiexitÞ2 ; ðE5Þ

where equality holds as t → ∞, and the superscript M
denotes the Markov-jump limit (see also Ref. [95]).
Vanishing extrinsic noise renders the kinetics sub-
Markovian, σ2exit ≤ ðhtiexitÞ2 and immediately yields
hδθ2t i=hδθ2t iM ≤ 1. This implies the dotted line in Fig. 7(f)
to be a general upper bound on angular diffusivity.
In this subsection, we show that the splitting probability

for the ATPase modeled by a tilted periodic potential is
fully determined by the external driving f and is given by
Eq. (E3), which notably holds for any 120° periodic
potential. We relate the number of state-to-state transitions
to the exit time via the well-established central limit
theorem for renewal processes [16] (see also Ref. [37]).
We illustrate the forward and backward symmetry of
transition time in the mean (see Table VII) and the entire
distribution of transition time (see Fig. 21).
In the next section, we provide details about the lower

bound on the diffusivity in Fig. 7(f) set by the thermody-
namic uncertainty relation (TUR), and in the subsection
after that we further address biased diffusion obtained in the
limit of vanishing free-energy barriers (B → 0).

4. TUR in periodic systems

In the previous subsection [see Eq. (E5)], we derive an
upper bound on the diffusivity when extrinsic noise
vanishes. Conversely, a lower bound on the diffusivity
can be deduced from the so-called TUR [79,80]. In the limit
t → ∞, the TUR for unicyclic networks implies

hδθ2t i
hθti2

× ðϕþ − ϕ−Þ
t

htiexit ln
ϕþ
ϕ−

≥ 2; ðE6Þ

where hθti=120° → ðϕþ − ϕ−Þt=htiexit. Inserting Eqs. (E4)
and (E6) into Eq. (E5) yields

(a) (b)

FIG. 21. Test of forward and backward symmetry of transition
time. Probability density of transition time ℘tr

� in forward þ and
backward − direction for weakly (a) f ¼ 2 and (b) f ¼ 5. The
number of trajectories entering ℘tr

− are (a) n− ¼ 59745 and
(b) n− ¼ 3327 (see also Table VII). Deviations between blue
and orange lines in (b) are due to finite statistics (n− ¼ 3327); see
also Table VII for the number of observed backward transitions.

TABLE VII. Test of forward and backward symmetry of mean
transition time. The transition time is evaluated from 500 000
state-to-state changes. The statistical error in the mean transition
time hti− denotes the estimated approximately 95% confidence
interval.

Nonequilibrium
driving

Mean transition time
Number of

steps backwardhδtitrþ hδtitr−
0 0.0656 0.0656� 0.0001 250 457
2 0.0659 0.0660� 0.0002 59 745
5 0.0676 0.0685� 0.0009 3327
10 0.0712 0.0573� 0.0071 24
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hδθ2t i
hδθ2t iM

≥
2ðϕþ − ϕ−Þ
lnðϕþ=ϕ−Þ

¼ 2

f
ef − 1

ef þ 1
; ðE7Þ

where in the last step we define f ≡M × 120°=ðkBTÞ and
use ef ≡ ϕþ=ϕ− which follows from Eq. (2). The right-
hand side of the inequality (E7) is depicted in Fig. 7(f) by
the solid gray line and coincides with the result for plain
biased diffusion (i.e., with the barrier set to zero, B ¼ 0; see
below for more details). This completes the proof that the
mean-squared angular deviation (angular diffusivity) in all-
periodic one-dimensional systems must lie between the
dotted and solid gray lines in Fig. 7(f).

5. Plain biased diffusion saturates TUR

Let us finally consider plain biased diffusion, which in
the model from Appendix E 3 corresponds to setting B ¼ 0.
Adopting the reduced coordinates x ¼ θ=120° with l� ¼ 1
the local potential simplifies to βU� ¼ ∓βðM × 120°Þx≡
∓fx. The splitting probability is still given by Eq. (E3).
Using Eqs. (S47) and (S50) in the Supplemental Material
[75], we obtain the mean and variance of exit time

htiexit ¼ ef − 1

fðef þ 1Þ ;

σ2exit ¼ ht2iexit − ðhtiexitÞ2 ¼ 2ðe2f − 2fef − 1Þ
f3ðef þ 1Þ2 ; ðE8Þ

respectively, where we further insert the local potential
βU� ¼ ∓fx along with D� ¼ 1 into the first line of
the corresponding auxiliary integrals in Eq. (9). Inserting
Eqs. (E3) and (E8) into Eq. (E5) yields hδθ2t i=hδθ2t iM≃
2f−1ðef − 1Þðef þ 1Þ−1, which saturates the inequality
Eq. (E7).
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