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Exposing a many-body system to external drives and losses can transform the nature of its phases and
opens perspectives for engineering new properties of matter. How such characteristics are related to the
underlying microscopic processes of the driven and dissipative system is a fundamental question. Here, we
address this point in a quantum gas that is strongly coupled to a lossy optical cavity mode using two
independent Raman drives, which act on the spin and motional degrees of freedom of the atoms. This
setting allows us to control the competition between coherent dynamics and dissipation by adjusting the
imbalance between the drives. For strong enough coupling, the transition to a superradiant phase occurs, as
is the case for a closed system. Yet, by imbalancing the drives, we can enter a dissipation-stabilized normal
phase and a region of multistability. Measuring the properties of excitations on top of the out-of-
equilibrium phases reveals the microscopic elementary processes in the open system. Our findings provide
prospects for studying squeezing in non-Hermitian systems, quantum jumps in superradiance, and
dynamical spin-orbit coupling in a dissipative setting.
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I. INTRODUCTION

Open many-body systems can annul fundamental laws
that typically govern the physics of systems in thermal
equilibrium. In the idealized case of an ensemble of
interacting particles, isolated from the environment and
at zero temperature, the ground state is set by energy
minimization, and phase transitions arise from competing
energy contributions [1,2]. In open systems, however, the
interplay between coherent dynamics within the system and
its interaction with the environment gives rise to a much
richer set of phenomena [3–8]. Such interaction not only is
unavoidable, but can be exploited via the engineering
of external drives and coupling to specific baths [9–12].
The experimental access to many-body ground states
provided by ultracold atoms [13–15] laid the foundation
for a recent revival of interest in many-body systems
interacting with their environment. Experimental observa-
tions that are specifically due to the system’s openness

include the emergence of bistability [16–19], the
stabilization of insulating phases [20,21], the access to
absorbing-state phase transitions [22], the appearance of
dissipation-induced instabilities [23] and time crystals [24],
and the change in correlation properties [25,26] that can
signal non-Hermitian phase transitions [27].
Besides their fundamental interest, nonequilibrium phe-

nomena bear the prospect of becoming a powerful tool for
engineering new materials ranging from exciton conden-
sates to light-induced superconductors [28–32]. The prop-
erties of these phases of matter emerge from tuning the
elementary excitations by hybridization with the light field
[33,34], which provides a natural coupling to the external
environment in the presence of optical drives and losses
[35,36]. To gain further insight into this phenomenology,
it is desirable to achieve good experimental control over
coherent and dissipative channels and at the same time to
gain access to the microscopic properties lying at the origin
of the macroscopic phases [37].
In this work, we engineer a driven-dissipative many-

body system with global-range interactions that is subject
to tunable coherent and dissipative channels. Our realiza-
tion employs a quantum gas strongly coupled to an optical
cavity [38,39]. Building on schemes that have been
extensively exploited with thermal atoms where the atomic
spin is coupled to light fields [40–45], our implementation
also involves the density degree of freedom of the gas
[46–48]. We employ two Raman laser drives to control the
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strength of the co- and counterrotating terms of the
resulting light-matter coupling independently. In combina-
tion with photon loss from the cavity, this allows us to
explore different regimes of competing coherent coupling
and dissipation. Schematically, one can identify the follow-
ing processes (Fig. 1): The combined action of the two
drives coherently mixes two many-body atomic states (j0ai

and j1ai) with the cavity field into polariton modes. As the
strength of the drives increases, the excited polariton
mode j1i softens to the lowest-energy one j0i, and a
second-order phase transition occurs from a normal to a
superradiant phase that is phase locked to the drives. In
addition to this coherent process, each individual drive can
induce transitions from one atomic state to the other
(j0ai⇆j1ai), where photons are scattered into the cavity
mode and successively lost. As a result, adjusting the
relative strength of the two lasers yields to tuning the
effective polariton dissipation. This leads to qualitative
changes in the phase diagram of the system, with the
appearance of a dissipation-stabilized phase and a discon-
tinuous phase transition in a multistable region.
In our system, the presence of external drives and

dissipation leads to complex effects that cannot be inter-
preted as a simple competition between gain and loss rates,
as one would do, for instance, in studying the transition to
radiance in a laser. From the point of view of the atomic
system, the cavity decay constitutes a nonlocal dissipation
channel; this is a crucial feature to obtain the results
presented in this work, as detailed in the Appendix D.
To explain our observations, we provide a microscopic
description of our system and find an effective model that
allows us to connect the phase diagram to the underlying
properties of the polaritonic excitations, which we char-
acterize experimentally and theoretically.

II. SETUP AND TUNABLE DECAY

In our experiments, we trap a Bose-Einstein condensate
(BEC) inside a high-finesse optical cavity and pump
the atoms with a two-frequency optical standing wave,
perpendicular to the cavity axis [Fig. 1(b)]. The BEC is
formed byN¼105 atoms of 87Rb, prepared in themF ¼ −1
sublevel of the F ¼ 1 ground-state hyperfine manifold. A
magnetic field along the z direction is applied to generate a
Zeeman splitting ωz ¼ 2π · 48 MHz between the initial
state and themF ¼ 0 sublevel. The driving fields are far red
detuned from the atomic resonance with frequenciesωb and
ωr that lie on opposite sides of the dispersively shifted
cavity resonance ωc, i.e., ωr <ωc <ωb, and ωb−ωr∼2ωz.
The standing-wave modulations of the two drives overlap at
the position of the atoms, forming a one-dimensional lattice
potential with spacing λ=2 ¼ 784.7=2 nm. Each pump
beam realizes a cavity-assisted Raman coupling between
the mF ¼ −1 and mF ¼ 0 levels, as sketched in Fig. 1(c).
The resulting system is effectively described using two
atomic modes possessing both a well-defined spin and
motional state: the initial ground state of the trapped BEC
j0ai, and the excited-momentum state of the neighboring
Zeeman sublevel j1ai ∝ cosðkrecx̂Þ cosðkrecẑÞF̂þj0ai, with
F̂þ being the raising spin operator in the F ¼ 1 manifold
and ℏkrec ¼ 2πℏ=λ the recoil momentum. When increasing
the driving strength, the ground state j0ai evolves from a

(a)

(b)

(c)

FIG. 1. Competing coherent coupling and dissipation at a
superradiant phase transition. (a) A quantum gas interacts
coherently with a cavity mode via two tunable drives with mean
coupling strength η̄ and imbalance Δη, giving rise to two low-
energy polariton modes j0i and j1i, corresponding to decoupled
and coupled light-matter modes, respectively. Increasing η̄ soft-
ens the energy of j1i (black line); cavity dissipation is responsible
for the effective damping (γ↓) and amplification (γ↑) of the soft-
mode polariton j1i. For small enough Δη=η̄, the rates γ↓ and γ↑
are balanced, and the mode softening to zero energy at η̄ ¼ ηc is
accompanied by a phase transition from the normal phase
populating only j0i (gray shade) to the superradiant phase (green
shade), where j1i is occupied. By increasing Δη=η̄, the domi-
nating damping γ↓ of the soft mode leads first to bistability
(green-gray hashed region) and finally to the suppression of the
superradiant transition. (b) Sketch of the experimental setup and
(c) corresponding level scheme. A BEC inside a high-finesse
cavity (with resonant frequency ωc and field decay rate κ) is
illuminated transversally by two Raman lasers with coupling
strengths ηbðrÞ and frequencies ωbðrÞ. The BEC (j0ai) couples to a
spatially modulated state j1ai of the neighboring Zeeman sub-
level, separated by an energy ℏω̃z ¼ ℏðωz − 2ωrecÞ, with Zeeman
splitting ℏωz and recoil energy ℏωrec. In the superradiant phase, a
coherent field at frequency ω̄ (green) builds up in the cavity. The
two-photon transitions driven by each pump and the cavity field at
ω̄ are detuned from the bare atomic states j0ai and j1ai by ∓ ω0,
as indicated by the lower dashed lines. The dissipative channels
between modes j0i and j1i shown in (a) are due to Raman
scattering of photons from each single drive into the cavity (blue
and red wiggly arrows) and subsequent photon loss. The Lor-
entzian density of states of the cavity is sketched in orange.
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harmonically confined BEC to a stack of pancake-shaped
BECs trapped in the maxima of the standing-wave drives.
In a rotating frame defined by the driving frequencies,

the coherent dynamics of our system is described by the
many-body Hamiltonian

Ĥ ¼ −ℏΔcâ†âþ ℏω0Ĵz þ 2ℏη̄ðâþ â†ÞĴx
þ 2iℏΔηðâ − â†ÞĴy; ð1Þ

as detailed in Appendix B. Here, Ĵi¼x;y;z are the compo-
nents of the pseudospin operator associated with the
two many-body states j0ai (hĴzi ¼ −N=2) and j1ai
(hĴzi ¼ N=2), and âðâ†Þ is the annihilation (creation)
operator of the relevant cavity mode. The effective atomic
frequency is ω0 ¼ ðωb − ωrÞ=2 − ωz þ 2ωrec, with the
recoil energy ℏωrec and the cavity detuning Δc¼ ω̄−ωc,
where ω̄ ¼ ðωb þ ωrÞ=2 is the mean of the pump frequen-
cies. The light-matter coupling strengths are parametrized
by η̄ ¼ ðηb þ ηrÞ=2 and Δη ¼ ðηb − ηrÞ=2, with the cavity-
assisted Raman coupling ηbðrÞ arising from the ωbðrÞ
pump and the cavity mode. These two-photon Raman
couplings implement the independently tunable co- and
counterrotating terms of the light-matter interaction.
The dynamics of the open system due to photon losses
is well described by a master equation _̂ρ ¼ −i=ℏ½Ĥ; ρ̂� þ
L̂½ρ̂�, where the Lindblad superoperator L̂½ρ̂� ¼ κ½2â ρ̂ â†−
fâ†â; ρ̂g� accounts for the cavity field decay at rate
κ ¼ 2π · 1.25 MHz. The model introduced here is a gen-
eralized Dicke model that is predicted to exhibit rich
phenomenology [8,49–52]. Correspondingly, first experi-
ments exploring effective Dicke models with tunable co-
and counterrotating terms and different beam geometries
have been carried out using thermal atoms [42,53], whose
motional state is not well defined.
When the co- and counterrotating coupling terms

are balanced (Δη ¼ 0), Eq. (1) reduces to the Dicke
Hamiltonian [54,55]. In this limit, at low coupling η̄, the
system is in the normal phase with hĴxi ¼ 0, hâi ¼ 0, and
the lowest-energy polariton mode j0i is mostly occupied.
By increasing the coupling η̄, the energy of the first excited
polariton j1i, admixing both atomic states j0ai and j1ai and
the cavity photons, softens. As the energy of the polariton
j1i reaches zero, the system undergoes a second-order
phase transition to the self-organized superradiant phase
with hĴxi ≠ 0, hâi ≠ 0 [Fig. 1(a)] [39,56]. In real space,
the superradiant phase exhibits a density modulation
with period λ=2 along the x and z direction, while
the x component of the spin is staggered in a
checkerboard modulation with period λ [46]. The transition
occurs at a collectively enhanced critical coupling ηc

ffiffiffiffi
N

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω0ðΔ2

c þ κ2Þ=ð4ΔcÞ
p

, which is only slightly shifted
from the closed-system critical point for our parameters;
see Appendix C. On the other hand, if an imbalance Δη

between the coupling of co- and counterrotating terms is
introduced, the effect of dissipation on the system becomes
qualitatively different. Specifically, due to cavity loss, each
Raman drive ηbðrÞ is responsible for an effective decay γ↓ð↑Þ
of the polariton mode j1iðj0iÞ toward mode j0iðj1iÞ. In the
parameter regime of our experiment ω0 ≪ κ, the effective
decay rates take the form

γ↓ð↑Þ ¼ N
κ

Δ2
c þ κ2

η2bðrÞ; ð2Þ

which we derive in Appendix D using an effective Keldysh
action for the polariton modes. We identify that the
microscopic process corresponding to the effective decay
γ↓ð↑Þ is a collectively enhanced Raman scattering driven by
the ωbðrÞ pump beam, into the dissipatively broadened
density of states of the cavity, as sketched in Fig. 1(c). This
mechanism is analogous to the Raman decay lying at the
heart of superradiant Raman lasers [57–60]. Note that
the effective decays (2) are independent of the phase of the
cavity field. This is different from the coherent Raman
couplings leading to the superradiant phase, where the
intracavity field is always in or out of phase with the
effective driving field ω̄ [61]. The two processes γ↓ð↑Þ are
mediated by the same cavity mode, giving rise to effective
nonlocal decay and amplification channels for the popu-
lation of mode j1i. This allows the two processes to
compensate each other when the Raman drives are bal-
anced in strength or to globally enhance the dissipative
effects for imbalanced drives (see Appendix D). In par-
ticular, as we experimentally demonstrate, the effective
damping generated by these processes leads to a dramatic
modification of the superradiant phase transition, as well as
to new regions of multistability and hysteresis.

III. MEASUREMENT OF THE PHASE DIAGRAM

We restrict the experiments to the parameter space
0 ≤ Δη ≤ η̄; the properties of the system in the region
0 ≤ η̄ ≤ Δη are mirrored—cf. Eq. (1). We map out the
phase diagram of the system by ramping up the power of
the pump beams while keeping the ratio Δη=η̄ constant and
monitoring the cavity output with a heterodyne detection;
see Fig. 2(a). The onset of a superradiant phase is signalled
by the buildup of a coherent cavity field with frequency ω̄
above a critical coupling strength. We show in Fig. 2(b)
the measured mean intracavity photon number nph in the
ðη̄;ΔηÞ parameter space. At small imbalances Δη ≪ η̄, the
phenomenology of the Dicke phase transition is observed,
and the value of the coupling η̄ ≈ ηc at which the transition
occurs depends only weakly on Δη. In contrast, at larger
ratios Δη=η̄ > 0.71ð2Þ, the superradiant phase transition is
suppressed, and the system remains in the normal phase at
values of η̄ largely above ηc. We compare the measured
critical couplings with the phase boundaries obtained from
a mean-field treatment of our driven-dissipative model and
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observe consistency between the experiment and our
theoretical description. The phase boundaries are calcu-
lated from both the steady-state solutions and numerical
simulations including time-varying couplings, with no
free parameters (see Appendix C for details).
The existence of a dissipation-stabilized normal phase

near the line Δη=η̄ ¼ 1 is a consequence of the open
character of our system, as pointed out in previous theo-
retical works [8,50]. Specifically, the superradiant phase
originates from the coupling between the cavity and the
pseudospin of the atomic ensemble that, above a critical
value, pushes the normal phase to become an unstable
excited state. As a crucial ingredient of our system, photon
decay leads to an effective loss channel that stabilizes the
normal phase, giving rise to a population inversion scenario
[52]. To further characterize the dissipation-stabilized
normal phase, we measure the full phase diagram of the
system for different cavity detunings Δc. We observe that
the slope ðΔη=η̄ÞDSNP of the boundary between the dis-
sipation-stabilized normal phase and the superradiant
phase decreases for smaller cavity detunings [inset in
Fig. 2(b)]. This agrees with the predictions of our theoretical
model, by which we find that in the limit of large coupling
η̄ ≫ ηc the slope of the phase boundary is given by
ðΔη=η̄ÞDSNP ¼ κ=Δcð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ2

c=κ2
p

Þ; see Appendix C.

IV. PROBING THE EXCITATION SPECTRUM

The effective damping induced by the relative coupling
imbalance Δη=η̄ leads to a profound change in the super-
radiant phase transition and even suppresses it. This
observation is closely linked to the system’s spectrum of
collective excitations. We implement an experimental
protocol that allows for nondestructive, real-time monitor-
ing of the free evolution of the excited polariton mode j1i,
both in amplitude and in frequency. We promote a small
population of mode j0i to mode j1i by means of a Bragg
scattering process involving the transverse pump beams
and a 1-ms-long laser pulse injected into the cavity at
frequency ω̄þ ω0 þ δprobe. This small occupancy of the
excited mode produces a scattering of a weak field from
the pumps into the cavity also after the pulse ends, which
we monitor with the frequency-resolving heterodyne detec-
tor [62]. We shine the excitation pulse at a fixed time while
ramping up both couplings at constant ratios Δη=η̄. At the
falling edge of the pulse, the mean pump intensities
correspond to η̄=ηc ≈ 0.6 [Fig. 3(a)].
In Figs. 3(b)–3(e), we present single-shot spectrograms

of the cavity field showing the excitation pulse and the
subsequent evolution of the system for increasingly larger
values of Δη=η̄. In the Dicke limit [Δη=η̄ ¼ 0, Fig. 3(b)],
the main components of the spectrum evolve toward ω̄ as
the coupling η̄ is swept to larger values, reflecting the
softening of the excited mode energy. At the critical point
η̄ ¼ ηc, the energy gap between mode j0i and the soft

(b)

(a)

FIG. 2. Phase diagram. (a) Experimental protocol. We ramp
up the couplings η̄ (solid black line) and Δη (dashed black line)
within 10 ms at constant ratio Δη=η̄. A typical time trace of the
mean intracavity photon number nph for Δη=η̄ ¼ 0.34 is shown
(green line). For any Δη=η̄ < 0.71ð2Þ, a coherent cavity field
builds up in the cavity (superradiant phase) above a critical
coupling (gray vertical line). (b) Green: intracavity photon
number nph as a function of the couplings η̄ and Δη, obtained by
implementing the protocol shown in (a) for 51 different values
of Δη=η̄ and averaging over five repetitions. Labels NP, SP,
and DSNP stand for normal, superradiant, and dissipation-
stabilized normal phase, respectively. The dots indicate the
critical point extracted from the measured photon traces and
averaged within each subset of constant Δη=η̄ with the error
bars representing the standard error of the mean (SEM). The
slope ðΔη=η̄ÞDSNP of the dashed line corresponds to the smallest
value of Δη=η̄ at which the SP is not present (the uncertainty on
the slope is marked as a shaded orange region around the line).
The black line is a guide to the eye through the critical points
(obtained as a sliding average over seven points) and along the
measured boundary of the DSNP. We mark the boundary of the
SP obtained from a mean-field stability analysis (solid red line)
and from a numerical simulation of the measurement protocol
(dashed red line) [8]. For comparison, the analytical mean-field
result for the closed system is also plotted (blue dotted line).
The arrow indicates the measurement path followed in (a).
Inset: slope ðΔη=η̄ÞDSNP extracted from phase diagrams mea-
sured at different cavity detunings Δc and plotted vs −κ=Δc.
The upper (lower) vertical error bar corresponds to the smallest
(largest) value for η̄=Δη at which the phase transition is always
absent (present), while the horizontal ones arises from the
uncertainty of Δc. The lines are predictions from analytical
(solid) and numerical (dashed) calculations. For this measure-
ment, N ¼ 1.28ð8Þ × 105, ω0 ¼ 2π · 44ð2Þ kHz, and, in (a) and
(b), Δc ¼ −2π · 4.0ð2Þ MHz.
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mode j1i vanishes, and the superradiant phase transition
occurs, signalled by the buildup of a strong coherent
field at frequency ω̄. As the relative imbalance Δη=η̄ is
increased, the mode softening is accompanied by a faster
decay of the excitation amplitude during the experiment.
The 1=e lifetime τ of the free excitation extracted from
the integrated spectrograms decreases rapidly as the
relative imbalance Δη=η̄ is increased [Fig. 3(f)]. At the
same time, the superradiant phase transition occurs at a
coupling η̄ that depends only weakly on the coupling
imbalance Δη until, for large enough Δη=η̄, the transition
is fully suppressed.
The connection between the damping of the excitations

and the suppression of the superradiant phase transition can
be understood by analyzing the excitation spectrum of the
open system. We linearize the mean-field equations of
motion around the normal phase and study the low-energy
eigenfrequencies ω� of the corresponding dynamical
matrix, as a function of the coupling η̄=ηc and for different
values of Δη=η̄ [Figs. 3(g) and 3(h)]. The real part of the
spectrum captures the energy of the excited polariton, while
a negative (positive) imaginary part signals damping
(amplification). At first order in ω0=κ ≪ 1, the eigenfre-
quencies are given by

ω� ¼ −iðγ↓ − γ↑Þ � ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

η̄2

η2c

��
1 −

Δη2

η2c

�s
; ð3Þ

as illustrated in Appendix D. As the coupling η̄ increases
toward the critical point ηc, the phase transition occurs
whenever any of Im½ω�� becomes positive [55,63,64]. At
large enough ratios Δη=η̄, the damping rate γ↓ of the soft
mode is dominant; this counteracts the coherent buildup of
superradiance and stabilizes the normal phase.
We report in Fig. 3(f) (blue shaded region) an estimate of

the quasiparticle lifetime τ ¼ −ð2Im½ω��Þ−1 obtained from
the spectrum of the eigenvalues. For this estimation, we
assume that the couplings η̄ andΔη are kept fixed at the end
of the excitation pulse; this simplification provides a valid
approximation for the measured lifetime where τ varies
only slightly during the decay, i.e., as long as Δη=η̄≳ 0.05.
For a closer comparison with the experimental data, we
perform a numerical simulation of our experimental pro-
tocol including the excitation pulse [red shade in Fig. 3(f)].
To account for collisional interactions and spin dephasing,
the theoretical estimations include a phenomenological
atomic damping (see Appendix D), which we assume
constant throughout the dynamics.

(a) (b) (c) (d) (e)

(f)

(h)

(g)

FIG. 3. Properties of the excited polariton. (a) Experimental protocol. While ramping up the couplings η̄ (solid black line) and Δη
(dashed line) at constant Δη=η̄, we populate the excited mode j1i using a weak excitation pulse along the cavity axis (orange line).
Throughout this measurement, the maximal coupling η̄ at the end of the ramp is 2π · 1.16ð5Þ kHz. (b)–(e) Representative heterodyne
spectrograms for different ratios Δη=η̄, showing the frequency-resolved mean number of photons ñph, as a function of the frequency and
time. In (e), the large imbalance Δη=η suppresses the superradiant phase transition. (f) Data points: measured lifetime of the induced
excitations as a function of Δη=η̄. The error bars showcase the maximum between the SEM and the time resolution of the photon traces
(10 μs). Blue shaded region: predicted lifetime from the analytical eigenvalues [cf. (g) and (h)], assuming a phenomenological atomic
dephasing between 0 (upper bound) and 2π · 500 Hz (lower bound); the latter is of the order of the s-wave scattering rate. Red shaded
region: numerical simulation results. The values of Δη=η̄ shown in (b)–(e) are marked with gray vertical lines. (g),(h) Excitation
eigenvalues of the system, linearized around the normal phase, and assuming zero atomic dephasing. Colors indicate different Δη=η̄
values; line shape indicates stable normal phase (solid), stable superradiant phase (dotted), and bistability (dashed). For the results
presented here, N ¼ 9.6ð4Þ × 104, ω0 ¼ 2π · 48ð4Þ kHz, Δc ¼ −2π · 5.8ð1Þ MHz, and δprobe ¼ 2π · 2.0ð4Þ kHz.
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V. BISTABILITY AND HYSTERESIS

We focus now on the boundary between the superradiant
phase and the dissipation-stabilized normal phase observed
at large imbalances Δη=η̄. Previous theoretical works
predict an intermediate region where both phases are stable
(bistability) [8,50]. Accordingly, the occurrence of a first-
order phase transition is expected. The bistability can be
understood in terms of a competition between the coherent
and dissipative processes described above. By increasing
the relative imbalance Δη=η̄, the damping γ↓ fosters the
population of mode j0i and acts against the coherent
coupling responsible for superradiance. In the limit of
dominant dissipation, such damping makes the dissipation-
stabilized normal phase the unique stable steady state.
Conversely, in the regime of comparable coherent coupling
and dissipation, the phase to which the system converges
depends on its initial preparation. If the system is prepared

in the normal phase, it remains stable because of the
aforementioned damping. On the other hand, if the system
is initially in the superradiant phase, the dissipative damp-
ing toward mode j0i is counteracted by the presence of a
coherent intracavity field that contributes to keep mode j1i
significantly populated. In other words, preparing the
system in the organized, symmetry-broken superradiant
phase makes it more rigid against transitions assisted by
cavity dissipation.
To explore the boundary between the dissipation-

stabilized normal phase and the superradiant phase, we
initialize the system in the former phase by preparing the
BEC and ramping up the coupling η̄ above ηc at fixed
imbalance Δη=η̄ ¼ 0.78. From this initial state, the tran-
sition to the superradiant phase is crossed by reducingΔη at
constant η̄. Then, within the same experimental realization,
the direction of the Δη sweep is reversed and the
dissipation-stabilized normal phase is retrieved. The com-
parison between the forward and backward paths shows a
hysteretic behavior at the phase boundary, in agreement
with the expected discontinuous character of the transition;
see Fig. 4. By performing the hysteresis measurement at
different couplings η̄, an experimentally accessible region
where the superradiant and the dissipation-stabilized nor-
mal phase are both stable is mapped out [Fig. 4(c)]. We
verify that implementing the parameter loop in the opposite
direction also gives rise to hysteresis.

VI. CONCLUSION AND OUTLOOK

We show that varying the imbalance of co- and counter-
rotating coupling terms between a quantum gas and a lossy
optical cavity engenders a tunable competition between
coherent and dissipative processes across the superradiant
phase transition, leading to the emergence of a dissipation-
stabilized phase and hysteresis. Combining the control over
dissipative and coherent couplings with real-time access to
the dynamics allows us to identify the underlying micro-
scopic processes determining the observed phase diagram.
We note that, if the cavity dynamics is adiabatically traced
out, our system maps to a driven-dissipative version of the
anisotropic Lipkin-Meshkov-Glick model [65–69]—an
important reference model for quantum magnetism that
describes a many-body spin system with all-to-all inter-
actions. Furthermore, interesting phenomena are expected
near the boundary of the normal phase [52]; as visible
in Figs. 3(g) and 3(h), here the real parts of the eigen-
frequencies of the low-lying polariton merge, and their
imaginary part bifurcates such that one squeezes, while the
other broadens. In the Dicke limit, this phenomenon is
limited to the coupling interval between the bifurcation and
the transition point to the superradiant phase, which is very
narrow for typical experimental parameters [55]. Squeezing
of fluctuations can be obtained on a much wider range of
parameters at the boundary between the normal phase and
the dissipation-stabilized normal phase, where dissipation

(a)

(b)

(c)

FIG. 4. Hysteresis at the boundary between the superradiant
and the dissipation-stabilized normal phase. (a) Time trace of the
intracavity photons in a single typical experimental realization,
when crossing the boundary between the superradiant and the
dissipation-stabilized normal phase in opposite directions.
(b) Corresponding trajectory in the parameter space ðη̄;ΔηÞ.
The hysteresis is measured at constant η̄; an artificial offset along
η̄ is introduced between the forward and backward path in the
conceptual figure (b) for better visibility. The dashed arrow marks
the preparation of the system within 6 ms in the dissipation-
stabilized normal phase, starting from zero coupling. Each (down,
up) sweep of Δη across the bistability region (purple, orange) is a
3-ms-long S-shaped ramp. (c) Mapping the hysteresis region.
Dots: phase boundary detected during the forward (purple) and
backward (orange) path for different η̄. The positions of the
boundaries are determined from the photon traces by setting a
threshold of 36 mean intracavity photons, as indicated in (a) with
the gray line. The data points shown in (c) are mean values of
12–18 realizations, with the error bars representing the standard
deviation. As a guide to the reader, in the background of (b) and
(c), the analytical phase diagram highlights the region of stable
normal phase (white), stable superradiant phase (dark green),
and bistability (light green). The theoretical boundaries are
rescaled to the experimental data, with a single factor applied
to both couplings. For this measurement, N ¼ 1.10ð8Þ × 105,
ω0 ¼ 2π · 40ð5Þ kHz, and Δc ¼ −2π · 3.0ð5Þ MHz.

FRANCESCO FERRI et al. PHYS. REV. X 11, 041046 (2021)

041046-6



suppresses the change of the system’s steady state.
Characterizing the fluctuations of the normal modes in
this regime can shine light on the generation of squeezing
in the vicinity of exceptional points in non-Hermitian
systems [70–72]. Moreover, performing experiments with
small atom or photon numbers would unveil effects
beyond mean field, such as quantum jumps in the
bistability region, as predicted recently in Refs. [73,74].
Furthermore, combining our findings on prominent dis-
sipative effects with the generation of cavity-mediated
spin-orbit interaction [75,76] opens a way to study spin-
orbit coupling in a dissipative setting.
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APPENDIX A: EXPERIMENTAL DETAILS

1. BEC preparation and Zeeman shift characterization

We prepare a BEC of 87Rb atoms in the mF ¼ −1
Zeeman sublevel in the F ¼ 1 hyperfine manifold of
the 52S1=2 electronic level, using radio-frequency-assisted
evaporation in a magnetic quadrupole trap. The atom
cloud is optically transported and confined at the center
of the cavity mode by an optical crossed dipole trap Vext,
with frequencies ½ωhx;ωhy;ωhz� ¼ 2π · ½220ð3Þ; 24.6ð8Þ;
170.1ð3Þ� Hz. More information on the geometry of the
BEC and finite size effects is given in Appendix B 3.
We apply a magnetic field B ¼ Bzez, with Bz < 0.

To measure the Zeeman shift ωz between the sublevels
mF ¼ −1 (high-energy level) and mF ¼ 0 (low-energy
level), we employ cavity-assisted Raman transitions.
We illuminate the BEC with the transverse pump with
frequency ωr < ωc. Close to the two-photon resonance
ωr ≈ ωc − ωz, a large fraction of the BEC is transferred to
mF ¼ 0 via two-photon processes involving absorption of
photons from the red pump and emission into the cavity
mode, with an increase of the kinetic energy by 2ℏωrec.
In this Raman process, light is scattered into the cavity at
frequency ω̃ ¼ ωr þ ðωz − 2ωrecÞ, fulfilling energy con-
servation. We infer the Zeeman splitting ωz by measuring
the frequency ω̃ of the photons leaking out of the cavity
using a heterodyne detection scheme.

2. Optical cavity

The optical cavity is a quasi-planar and symmetric
Fabry-Perot resonator with a length of 176 μm and finesse
F ¼ 3.5 × 105. The TEM00 mode has a waist size
wc ¼ 25 μm. At the frequency of the cavity resonance
ωc employed in our experiment, the amplitude of the
electric field per photon is E0 ¼ 403 V=m.
The cavity is actively stabilized by locking the resonance

to the frequency of a reference laser with a wavelength of
830 nm, far from atomic resonance, using a Pound-Drever-
Hall technique. The intracavity intensity of the reference
laser corresponds to a lattice depth below 0.01ℏωrec, which
has negligible influence on the dynamics of the BEC in our
experiment. The 830-nm laser is referenced to the laser
generating the transverse pump beams via locking on a
transfer cavity.

3. Transverse pump characterization

The two transverse pumps (drives) are derived from
the same laser source. Their frequencies ωr and ωb are
independently adjusted by employing double-pass acoustic
optical modulators (AOMs) in separate optical paths and
recombining the beams afterward on the same optical table.
The combined fields are then sent to the experiment sharing
the same optical fiber to ensure high relative phase stability.
A small fraction of the beam is split close to the vacuum
chamber and overlapped with an optical local oscillator at
frequency ωLO, also derived from the same laser, on an ac
photodiode. The beat notes at frequencies ωr − ωLO and
ωb − ωLO are electronically separated and employed for
intensity stabilization of the individual pumps. The distance
between the retroreflecting mirror and the atomic cloud
is carefully adjusted such that the two standing waves
overlap maximally at the position of the atomic cloud. The
lattice depth associated to each pump is calibrated
by means of Kapitza-Dirac diffraction [77]. For all the
measurements presented in the main text, we increase
the transverse pump powers via S-shaped ramps of the
form Vr;bðtÞ ¼ Ṽr;b½3ðt=trampÞ2 − 2ðt=trampÞ3�2, where Ṽr;b

is the final lattice depth of the ωr;b pump and tramp is the
duration of the ramp.

4. Heterodyne detection

We monitor the photon field leaking out of the cavity by
separating on a polarizing beam splitter (PBS) the y- and
z-polarization modes and detecting each of them with
heterodyne setups. The detection branch for the z polari-
zation is used to produce the data discussed in this work.
The auxiliary detection setup for the y-polarized mode is
used to probe the cavity resonance at the end of each
experimental cycle.
In the heterodyne setup for the relevant z-polarized

mode, the light field from the cavity is interfered with
a local oscillator laser at frequency ωLO, and the high
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detection bandwidth of 250 MS=s allows for an all-digital
demodulation of the beat note at ω − ωLO over a broad
frequency range of [0, 125] MHz. In order to calibrate the
photon number, we inject an on-resonance laser field into
the empty cavity. We find the conversion factor between the
demodulated heterodyne signal and the mean intracavity
photon number by measuring the power after the PBS with
a power meter and using the knowledge on the losses of the
cavity mirrors.
The complex intracavity field αðtÞ ¼ XðtÞ − iYðtÞ is

obtained from the quadratures XðtÞ and YðtÞ after
digital demodulation at frequency δωD ¼ ω̄ − ωLO. The
power spectral density (PSD) is calculated as PSD(f)
=jFFTðαÞj2ðfÞ using a fast Fourier transform of the form
FFTðαÞðfÞ ¼ dt=

ffiffiffiffi
N

p P
i α

�ðtiÞe−i2πfti [23], where ti is the
time of the ith step and N is the total number of steps in
the integration window. To construct the spectrograms,
the traces are divided in time intervals of T ¼ 150 μs
with an overlap of 50% between subsequent intervals.
Finally, we calculate the photon number spectrograms as
ñph ¼ PSDðfÞ=T.

APPENDIX B: DERIVATION OF THE
HAMILTONIAN

In this Appendix, we derive the Hamiltonian in Eq. (1)
from the closed-system dynamics of our spinor BEC
coupled to the cavity.

1. Single-atom Hamiltonian

The Hamiltonian of a single atom coupled to the cavity
mode reads

Ĥ0
1 ¼ Ĥ0

at þ Ĥ0
cav þ Ĥ0

int: ðB1Þ

In the dispersive regime of atom-light interaction [78,79],
the optically excited atomic states of the atom can be
adiabatically eliminated, and the Hamiltonian of the bare
atom Ĥ0

at can be written in terms of the ground-state levels
jF;mFi only:

Ĥ0
at ¼

p̂2

2m
þ Vextðx̂Þ þ

X
F;mF

ℏωF;mF
jF;mFihF;mFj; ðB2Þ

where p̂ and m are, respectively, the momentum and the
mass of the atom, Vextðx̂Þ is the trapping potential, which is
kept fixed, and ℏωF;mF

is the energy of the jF;mFi atomic
level, with F denoting the hyperfine manifold and mF the
Zeeman sublevel. In our experiment, the 87Rb atoms are
initialized in jF ¼ 1; mF ¼ −1i, and near-resonant two-
photon Raman transitions couple them to jF ¼ 1; mF ¼ 0i.
Transitions to the F ¼ 2 manifold are off resonance by
the hyperfine splitting ωHF ¼ 2π · 6.834 GHz and can be
neglected. The internal dynamics of each atom can then be

described in terms of the spin operator F̂ ¼ ðF̂x; F̂y; F̂zÞT,
with F ¼ 1. The energy difference between the Zeeman
sublevels is determined by first- and second-order Zeeman

shifts ℏωð1Þ
z < 0 and ℏωð2Þ

z > 0, such that Eq. (B2) can be
written as

Ĥ0
at ¼

p̂2

2m
þ Vextðx̂Þ þ ℏωð1Þ

z F̂z þ ℏωð2Þ
z F̂2

z : ðB3Þ

The Hamiltonian of the bare cavity mode reads

Ĥ0
cav ¼ ℏωcâ†â; ðB4Þ

where the operator â† creates z-polarized photons in the
TEM00 cavity mode with resonance frequency ωc. In the
dispersive regime at which we operate, the interaction
between the light fields and the atom takes the form

Ĥ0
int ¼ αsÊ

ðþÞ · Êð−Þ − i
αv
2F

ðÊðþÞ × Êð−ÞÞ · F̂; ðB5Þ

where Êð−Þ (ÊðþÞ) is the negative (positive) part of the
total electric field at the position of the atom, with
ÊðþÞ ¼ ðÊð−ÞÞ†, and αs and αv are, respectively, the scalar
and vectorial polarizability at the frequency of the driving
lasers [48,78,79], with αs < 0 and αv > 0. In Eq. (B5), we
are neglecting an additional rank-2 tensor contribution to
the polarizability, which is justified for 87Rb at the wave-
length λ ¼ 784.7 nm at which we operate.
We consider classical y-polarized transverse pump fields

propagating along the z direction at frequencies ωr;b and a
quantized cavity field. The negative part Êð−Þ of the total
electric field is given by

Êð−Þ ¼ Er

2
frðx̂Þeye−iωrt þ Eb

2
fbðx̂Þeye−iωbt þ E0gðx̂Þâez;

ðB6Þ

with unit vectors ej (j ∈ fx; y; zg) and spatial mode
profiles frðx̂Þ, fbðx̂Þ, and gðx̂Þ. The two laser drives with
amplitude Er and Eb originate from the same optical fiber,
and their standing-wave modulations overlap in phase at
the position of the trapping potential. Given the small
frequency difference ωb − ωr ¼ 2π · 96 MHz, we can con-
sider the same wave vector k ¼ ω̄=c for the two drives
interacting with the atoms, with ω̄ ¼ ðωb þ ωrÞ=2, and
restrict to a single spatial profile frðx̂Þ ¼ fbðx̂Þ ¼ fðx̂Þ ¼
exp½−2x2=w2

x − 2y2=w2
y� cosðkzÞ. We also take gðx̂Þ ¼

exp½−2ðy2 þ z2Þ=w2
c� cosðkxÞ for the cavity mode profile.

We introduce the auxiliary Hamiltonian Ĥrot ¼
ℏω̄â†â − ℏω0

zF̂z and perform the unitary transformation
Û ¼ exp½ði=ℏÞĤrott�, with ω0

z ¼ ðωb − ωrÞ=2. By making
use of the rotating wave approximation, we obtain the time-
independent Hamiltonian
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Ĥ1 ¼ Ĥat þ Ĥcav þ Ĥs þ Ĥv; ðB7Þ

where

Ĥat ¼ p̂2

2m
þ Vextðx̂Þ þ ℏδzF̂z þ ℏωð2Þ

z F̂2
z ðB8Þ

and

Ĥcav ¼ −ℏΔcâ†â; ðB9Þ

with cavity detuning Δc ¼ ω̄ − ωc and effective linear shift

δz ¼ ωð1Þ
z þ ω0

z. The interaction part has a scalar and a
vectorial contribution Ĥs and Ĥv given by

Ĥs ¼
αs
4
ðE2

b þ E2
rÞfðx̂Þ2 þ αsE2

0â
†âgðx̂Þ2; ðB10Þ

Ĥv ¼
αv
8
E0½ðEb þ ErÞðâþ â†ÞF̂x

þ ðEb − ErÞiðâ − â†ÞF̂y�fðx̂Þgðx̂Þ; ðB11Þ

respectively. Note that we apply a global rotation of the
cavity field of the form â → âeiπ=2. The first term in the
scalar interaction Ĥs [cf. Eq. (B10)] describes the attractive
potential created by the transverse drives, giving rise to a
one-dimensional lattice along the z direction, with on-axis
depth VTP ¼ −αsðE2

b þ E2
rÞ=4, and to an additional con-

finement along the x and y direction. The second term in Ĥs
is responsible for the dispersive shift of the cavity reso-
nance and for a weak one-dimensional lattice potential
along the x direction. We define the maximal dispersive
frequency shift per atom as U0 ¼ αsE2

0=ℏ. The vectorial
interaction Ĥv in Eq. (B11) produces a spin-changing
Raman transition between the Zeeman sublevels of the
F ¼ 1 manifold. The spin-changing terms F̂x and F̂y are
mediated by orthogonal quadratures of the cavity field and
can be tuned by the sum or difference of the two pump
fields, respectively.

2. Many-body Hamiltonian

We derive the Hamiltonian for the many-body system
of N atoms in a degenerate Bose gas using the second-
quantization formalism. Using the single-atom results
from the previous section, the many-body Hamiltonian
can be written as

ĤMB¼ Ĥcavþ
Z

Ψ̂†ðxÞðĤatþĤsþĤvÞΨ̂ðxÞdx; ðB12Þ

where the Ψ̂ðxÞ is the spinor atomic field operator
Ψ̂ðxÞ ¼ ½Ψ̂þ1ðxÞ; Ψ̂0ðxÞ; Ψ̂−1ðxÞ�T , fulfilling the bosonic
commutation relations ½Ψ̂iðxÞ; Ψ̂†

jðx0Þ� ¼ δijδðx − x0Þ and

½Ψ̂iðxÞ; Ψ̂jðx0Þ� ¼ 0, with i; j ¼ þ1; 0;−1. At this level, we
neglect collisional interactions assuming low densities.
We set the half-frequency differenceω0

z between the drives
close to the energy separation between levels jmF ¼ −1i
and jmF ¼ 0i, i.e., ω0

z ≈ ωz, with ωz ¼ −ωð1Þ
z þ ωð2Þ

z ¼
2π · 48 MHz. Thus, spin-changing Raman transitions to

jmF¼þ1i are off resonance by Δþ1≈2ω
ð2Þ
z ¼2π ·0.7MHz.

The large detuning Δþ1 determines the fastest timescale
of the atomic evolution. This allows us to adiabatically
eliminate the atomic operator Ψ̂þ1 and restrict the dynamics
to the two Zeeman sublevels with mF ¼ 0;−1. The effect
of the eliminated state leads to a subkilohertz energy shift
of state jmF ¼ 0i, which we neglect.
We map our system to an effective generalized Dicke

model by further restricting the Hilbert space to two
spin-momentum modes, in the same spirit as previous
works [46,56]. In the normal phase, the BEC, prepared in
mF ¼ −1, occupies the ground state of the total trapping
potential, resulting from the combination of the external
trap Vext and the attractive lattice potential VTP of the laser
drives [cf. Eq (B10)]. We label this ground state as j0ai,
with corresponding wave function Φ0a

ðxÞ. The cavity-
mediated spin-changing interaction couples j0ai to a
density-modulated state j1ai in mF ¼ 0, with wave func-
tion Φ1a

ðxÞ ¼ NΦ0a
ðxÞ cosðkxÞ cosðkzÞ, with N being a

normalization factor. Within this two-mode description, the
spinor field operator takes the form Ψ̂ðxÞ ¼ ½0;Φ1a

ðxÞĉ1a ;
Φ0a

ðxÞĉ0a �T , where ĉ0a and ĉ1a are bosonic annihilation
operators for the respective atomic modes. The correspond-
ing expression for the many-body Hamiltonian is

ĤMB ¼ −ℏ½Δc − NIðVTPÞU0�â†âþ ℏω0ðVTPÞĴz
þ αv
4
ffiffiffi
2

p MðVTPÞE0½ðEb þ ErÞðâþ â†ÞĴx
þ iðEb − ErÞðâ − â†ÞĴy�; ðB13Þ

where we introduce collective pseudospin N=2 operators
Ĵx ¼ ðĉ†1a ĉ0a þ ĉ†0a ĉ1aÞ=2, Ĵy ¼ ðĉ†1a ĉ0a − ĉ†0a ĉ1aÞ=2i, and

Ĵz ¼ ðĉ†1a ĉ1a − ĉ†0a ĉ0aÞ=2. We indicate with ℏω0ðVTPÞ
the energy difference between the bare atomic modes.
The quantities IðVTPÞ and MðVTPÞ are overlap integrals
defined by IðVTPÞ ¼ h0ajgðxÞ2j0ai=N and MðVTPÞ ¼
h0ajfðxÞgðxÞj1ai=N, respectively. In writing Eq. (B13),
we neglect the dependence of the dispersive cavity shift on
Ĵz, which is a valid approximation whenever the system is
not deep into the superradiant phase.
By considering ℏω0ðVTPÞ as a constant and taking

its value in the limit of small VTP, i.e., ℏω0 ¼
ℏðω0

z − ωz þ 2ωrecÞ, we can write the Hamiltonian in
Eq. (B13) in terms of the parameters defined in the
main text:
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ĤMB ¼ −ℏΔcâ†âþ ℏω0Ĵz þ ℏðηb þ ηrÞðâþ â†ÞĴx
þ iℏðηb − ηrÞðâ − â†ÞĴy; ðB14Þ

where we use the substitution ½Δc−NIðVTPÞU0�→Δc and
define ℏηbðrÞ ¼ ðαv=4

ffiffiffi
2

p ÞMðVTPÞE0EbðrÞ. Parametrizing
Eq. (B14) in terms of η̄ ¼ ðηb þ ηrÞ=2 and Δη ¼
ðηb − ηrÞ=2 produces the Hamiltonian given in Eq. (1).
A slight rearrangement of terms gives

ĤMB ¼ −ℏΔcâ†âþ ℏω0Ĵz þ ℏηbðâĴþ þ â†Ĵ−Þ
þ ℏηrðâ†Ĵþ þ âĴ−Þ; ðB15Þ

with Ĵ� ¼ Ĵx � iĴy. From Eq. (B15), it is apparent that
the couplings ηb and ηr tune the strength of the co- and
counterrotating term of the light-matter interaction, respec-
tively. In the limit ηr ¼ 0, the Hamiltonian (B15) reduces to
the Tavis-Cummings model [80].

3. Mapping between Hamiltonian couplings and
experimental parameters

We describe the mapping between the measured power
of the transverse pump beams and the Raman couplings ηb
and ηr introduced in the main text. The BEC is trapped
in the combined potential of the harmonic confinement
VextðxÞ and of the attractive potential created by the
transverse pumps VTPðxÞ ¼ −VTPfðxÞ2, which has con-
tributions from the two drives, i.e., VTP ¼ Vb þ Vr. We
monitor the power of each drive and extract the corre-
sponding value of VbðrÞ in real time as described in the
previous section.
To calculate the wave function Φ0a

, we consider spin-
independent s-wave scattering and employ a Thomas-
Fermi approximation for the interacting BEC in the total
trapping potential [81]. Spin-changing collisions can be
neglected due to the large second-order Zeeman shift

ωð2Þ
z ¼ 2π · 0.35 MHz at which we operate [82]. In addi-

tion, we treat the one-dimensional lattice created by the
transverse pump in the limit of large depth and approximate
the lattice as a succession of independent harmonic traps.
This is justified by the fact that, in our experiments,
the superradiant phase transition occurs at large
VTP ≳ 25ℏωrec. We then calculate the three-dimensional
overlap integrals IðVTPÞ and MðVTPÞ defined in the
previous subsection by using the expressions of the
mode functions fðxÞ ¼ exp½−2x2=w2

x − 2y2=w2
y� cosðkzÞ

and gðxÞ ¼ exp½−2ðy2 þ z2Þ=w2
c� cosðkxÞ, with waist sizes

½wx; wy; wc� ¼ ½24; 27; 25� μm. For comparison, the esti-
mated semiaxes of the modulated BEC near the super-
radiant transition are ½5.5; 8.0; 6.5� μm in the three
directions, respectively. The divergence of each mode over
the extension of the BEC is negligible. The Raman
couplings ηb and ηr are then found:

ηbðrÞ ¼
MðVTPÞ
2
ffiffiffi
2

p αv
sgn½αs� · αs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
U0VbðrÞ

ℏ

r
; ðB16Þ

where αv=αs ¼ −0.928 and sgn½αs� ¼ −1 at the wave-
length of the laser drives.
The overlap integral MðVTPÞ converges to Mmax ¼

0.68 at large lattice depths. In the regime VTP ≳ 25ℏωrec at
which the superradiant phase transition occurs, MðVTPÞ
deviates from Mmax by less than 2%. For simplicity, we
then assume MðVTPÞ ¼ Mmax when applying the con-
version in Eq. (B16) throughout the paper.

APPENDIX C: PHASE DIAGRAM

For completeness, in this Appendix, we provide the
mean-field steady-state solutions of the effective model (1).
A similar treatment is conducted in Ref. [8]. The solutions
are used to compute the analytical phase boundaries in
Figs. 2 and 4.

1. Analytical calculation of the steady state

Starting from the Hamiltonian in Eq. (1), we consider
dissipation due to photons leaking out from the cavity at
rate κ in the form of a Lindblad operator:

L½â� ¼ κ½2â ρ̂ â† − fâ†â; ρ̂g�: ðC1Þ

We disregard the spin decay rate due to the negligible
spontaneous emission between Zeeman sublevels. At this
level, we also neglect the role of spin dephasing, which
would lead to a negligible shift of the phase boundaries for
our experimental parameters. Using the master equation

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þ L½â�; ðC2Þ

we obtain mean-field equations of motion (EOMs) of
the form

d
dt

α ¼ iΔcα − i2
ffiffiffiffi
N

p
η̄X − 2

ffiffiffiffi
N

p
ΔηY − κα;

d
dt

X ¼ −ω0Y − 4
ffiffiffiffi
N

p
ΔηαImZ;

d
dt

Y ¼ ω0X − 4
ffiffiffiffi
N

p
η̄αReZ;

d
dt

Z ¼ 4
ffiffiffiffi
N

p
η̄αReY þ 4

ffiffiffiffi
N

p
ΔηαImX; ðC3Þ

where the mean-field order parameters are hâi ¼ ffiffiffiffi
N

p
α;

hĴxi ¼ NX, hĴyi ¼ NY, and hĴzi ¼ NZ. Introducing the
renormalized couplings η̄N ¼ ffiffiffiffi

N
p

η̄ and ΔηN ¼ ffiffiffiffi
N

p
Δη and

imposing the spin constraint X2 þ Y2 þ Z2 ¼ 1
4
, we can

solve analytically for α, X, Y, and Z in the steady state.
The normal phase corresponds to the trivial steady-state
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solution αRe ¼ αIm ¼ X ¼ Y ¼ 0, Z ¼ −1=2, with αRe ¼ Re½α� and αIm ¼ Im½α�. The nontrivial solutions of
Eq. (C3) [8] read

αRe ¼ � ffiffiffi
c

p

2a22b1 þ a2b22 − 2a2b3ða1 þ b1Þ þ 2a1b23 þ sgn½ΔηN − η̄N �a2jb2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − 4ða1 − b1Þða2 − b3Þ

p
2½a22b21 þ a21b

2
3 þ a1a2ðb22 − 2b1b3Þ�

s
;

αIm ¼ b22 − sgn½ΔηN − η̄N �jb2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðb1 − a1Þða2 − b3Þ þ b22

p
2b2ða2 − b3Þ

αRe;

X ¼ −
ΔcαRe þ καIm

2η̄N
; Y ¼ ΔcαIm − καRe

2ΔηN
; Z ¼ Aω0; ðC4Þ

with

a1 ¼ 16A2η̄2N; a2 ¼ 16A2Δη2N; b1 ¼ ðκ2=Δη2N þ Δ2
c=η̄2NÞ=4;

b2 ¼ κΔcð1=η̄2N − 1=Δη2NÞ=2; b3 ¼ ðκ2=η̄2N þ Δ2
c=Δη2NÞ=4; c ¼ 1=4 −A2ω2

0;

A ¼ −
ðη̄2N þ Δη2NÞΔc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη̄2N − Δη2NÞ2Δ2

c − 4κ2η̄2NΔη2N
p
16η̄2NΔη2N

: ðC5Þ

2. Analytic expressions for the phase boundaries

We find an analytic expression for the slope of the
dissipation-stabilized normal phase starting from the
expression of Z from Eq. (C4):

Z ¼ −
ðη̄2N þΔη2NÞΔc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη̄2N −Δη2NÞ2Δ2

c − 4κ2η̄2NΔη2N
p
16η̄2NΔη2N

ω0:

ðC6Þ

Requiring Z to be real results in the condition

ðη̄2 − Δη2Þ2Δ2
c − 4κ2η̄2Δη2 ≥ 0: ðC7Þ

The equality provides the slope of the boundary between
the superradiant phase and the dissipation-stabilized nor-
mal phase; cf. Fig. 2:

ðΔη=η̄ÞDSNP ¼ κ=Δc

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ2

c=κ2
q �

ðC8Þ

for Δc < 0. Moreover, from Eq. (C6) we also obtain the
stability boundary of the normal phase. Specifically, in the
normal phase, we set Z ¼ −1=2 on the left-hand side of
Eq. (C6) and square both sides; we then solve for ΔηN,
obtaining the following expression:

ΔηN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4η̄2N jΔcjω0 − ω2

0ðΔ2
c þ κ2Þ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4η̄2N − ω0jΔcj

p ; ðC9Þ

which allows us to find the boundaries of the bistability
region shown in Figs. 4(b) and 4(c) in the main text.

3. Numerical simulations of the mean-field dynamics

In order to simulate the time evolution of the system, we
numerically solve the semiclassical EOMs in Appendix B,
Eq. (B3). For this purpose, we use the MATLAB built-in
“ode45” solver which is based on a Runge-Kutta (4,5)
method [83]. It employs variable time step sizes, and the
error tolerance in each step is constrained to 10−8. To
sample the fluctuations on top of the mean-field observ-
ables and allow for a phase transition to take place,
we assume an initially small photon field of the form
αðt ¼ 0Þ ¼ ½randnð0; 0.5Þ þ i · randnð0; 0.5Þ�= ffiffiffiffi

N
p

with
pseudorandom numbers randn(0,0.5) sampled from a
normal distribution with ðμ; σÞ ¼ ð0; 0.5Þ. This assumption
is compatible with an initial coherent vacuum state
for the cavity field, since h ffiffiffiffi

N
p ðαþ α�Þ=2iS ¼ 0 and

varS½
ffiffiffiffi
N

p ðαþ α�Þ=2� ¼ 1=4, where hiS and varS denote
the average and variance, respectively, over a sufficiently
large number of samples S.

4. Measurement of the phase diagram

a. Experimental protocol and data processing

To measure the phase diagram, we prepare a BEC in
mF ¼ −1 and ramp up the power of the driving lasers
at constant cavity detuning Δc. The calibrated hetero-
dyne signal is used to construct photon number spectro-
grams ñphðf; tÞ as described in the next section. We
integrate them in a narrow frequency range of P ¼ ½ω̄=2π −
2.5 kHz; ω̄=2π þ 2.5 kHz� to obtain the photon traces
nphðtÞ ¼

P
f∈P ñphðf; tÞ of the cavity field at the frequency

ω̄ characteristic of the superradiant phase.
The phase diagram in Fig. 2(b) of the main text is

obtained by combining measurements for 51 different
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ratios Δη=η̄, with five realizations each. From each
realization, we extract the coupling ramps η̄ðtÞ and
ΔηðtÞ by monitoring in real time the power of the
driving lasers, as well as the time trace of the mean
cavity photons nphðtÞ [cf. Fig. 2(a) in the main text].
After parametrizing nph as a function of η̄ and Δη, the
color plot in Fig. 2(b) of the main text is obtained by
averaging the different experimental realizations in the
ðη̄;ΔηÞ parameter space within squared bins with
size 2π · 24 Hz.
From each experimental realization, we extract the

time tth at which the superradiant phase transition occurs
by fitting nphðtÞ with a piecewise linear and power
law function. The critical couplings are obtained as
ðη̄th;ΔηthÞ ¼ ½η̄ðtthÞ;ΔηðtthÞ�. The dots in Fig. 2(b) are
the average of the critical couplings ðη̄th;ΔηthÞ from
measurements taken with the same ratio Δη=η̄. The error
bars are the corresponding standard error of the mean.

The experimental boundary between superradiant phase
and the dissipation-stabilized normal phase [dashed line in
Fig. 2(b) in the main text] corresponds to the smallest value
of Δη=η̄ at which the phase transition is not observed in at
least one of the experimental realizations, which we define
as ðΔη=η̄ÞDSNP. The upper (lower) boundary of the orange
shaded region around this line marks the smallest (largest)
ratio Δη=η̄ at which the phase transition is absent (present)
in all realizations. These bounds provide an uncertainty to
the slope ðΔη=η̄ÞDSNP.

b. Theory comparison

We plot in Fig. 5 the phase diagrams obtained from the
numerical simulations and analytic steady-state calcula-
tions for the experimental parameters in Fig. 2 in the main
text. The red lines in each plot indicate the boundaries
of the superradiant phase assuming a threshold photon
number of nph;th ¼ 5. We attribute the small shift of the

FIG. 5. Theoretical phase diagrams from numerical mean-field simulations (a) and analytic steady-state calculations (b). For both
methods, we consider ðω0;Δc; κÞ ¼ 2π · ð44 kHz;−4.0 MHz; 1.25 MHzÞ and N ¼ 1.28 × 105 atoms, to match the experimental
parameters. For the numerics, we carry out 427 simulations at 61 different coupling ratios Δη=η̄ and use S-shaped coupling ramps with
tramp ¼ 10 ms, as in the experiment. The boundary of the superradiant phase is marked in red.

(b)(a) (c)

FIG. 6. Phase diagrams for different cavity detunings Δc=2π ¼ −5.0ð2Þ (a), −4.0ð2Þ (b), and −3.0ð2Þ MHz (c). For these
measurements, N ¼ 1.28ð8Þ × 105 and ω0 ¼ 2π · 44ð2Þ kHz. Each of the phase diagrams is a collection of 200–350 individual
realizations with different coupling imbalances Δη=η̄. The slope of the dashed line corresponds to ðΔη=η̄ÞDSNP as described in the text.
The orange shaded region around the dashed line marks the uncertainty on such a slope.
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phase boundaries of the numerical simulations from the
analytical results to residual nonadiabatic effects.

c. Phase diagrams for different cavity detunings

We record experimental phase diagrams for three differ-
ent cavity detunings Δc and display the results in Fig. 6.
From each phase diagram, we extract the slope of the phase
boundary ðΔη=η̄ÞDSNP and its uncertainty as discussed
above. The results of ðΔη=η̄ÞDSNP vs −κ=Δc are shown
in the inset in Fig. 2(b) in the main text.

d. Absence of additional self-organization processes

The drive at frequency ωr, red detuned from cavity
resonance, may induce spurious atomic self-organization
that does not involve a change of the mF state [56]. If
present, this process is accompanied by the buildup of a
coherent cavity field with the same polarization (along y)
and frequency (ωr) as the driving laser. During our
measurements, we continuously monitor such a cavity
field with the auxiliary heterodyne setup and never observe
any signal above noise. The suppression of spin-preserving
self-organization is due to the large detuning jωr − ωcj and
to the presence of the second drive at frequency ωb.

APPENDIX D: EXCITATION SPECTRUM

In this Appendix, we detail the derivation of the
excitation spectrum from our mean-field model. We then
provide a theoretical background and numerical validation
for the method used in Sec. IV to probe the properties of the
polariton modes.

1. Spectrum of the open system

To find the spectrum of the open system, we consider the
system’s EOMs (C3) and expand the order parameters as
α¼α0þδα, X ¼ X0 þ δX, Y¼Y0þδY, and Z ¼ Z0 þ δZ
around the steady states ðα0; X0; Y0; Z0Þ, chosen to be
either the normal or the superradiant phase. A similar
treatment is used in Refs. [7,8]. The linearized EOMs read

d
dt

0
BBBBBB@

δαRe

δαIm

δX

δY

δZ

1
CCCCCCA

¼ M0

0
BBBBBB@

δαRe

δαIm

δX

δY

δZ

1
CCCCCCA
; ðD1Þ

with

M0 ¼

0
BBBBBBB@

−κ −Δc 0 −2ΔηN 0

Δc −κ −2η̄N 0 0

0 −4ΔηNZ0 −Γϕ −ω0 −4ΔηNα0Im
−4η̄NZ0 0 ω0 −Γϕ −4η̄Nα0Re
4η̄NY0 4ΔηNX0 4ΔηNα0Im 4η̄Nα

0
Re 0

1
CCCCCCCA
; ðD2Þ

where for completeness we phenomenologically include
atomic dephasing at rate Γϕ. This damping term is
compatible with a Lindblad term of the form L½Ĵz� ¼
Γϕ½2Ĵzρ̂Ĵz − fĴzĴz; ρ̂g�. From the diagonalization of the
dynamical matrix in Eq. (D2), we obtain the eigenfrequen-
cies and eigenmodes of the system around the steady states.
Since in our experiment jΔcj ≫ ω0, a clear separation
between the photonlike and atomlike polariton modes
exists. The polariton mode j1i discussed in the main text
is the atomlike mode obtained by linearizing around the
normal phase. The eigenfrequencies associated to this
polariton mode are the eigenvalues ω� presented in
Figs. 3(g) and 3(h). The ω− branch corresponds to the
annihilation of a particle in the unexcited mode j0i and the
creation of a particle in the polariton mode j1i. The ωþ
branch corresponds to the opposite process.

2. Polaritonic decay rates γ↓ð↑Þ
The decay rates γ↓ð↑Þ of the low-energy polariton modes

can be derived from the diagonalization of the dynamical

matrix in Eq. (D2). Here, we derive the simplified ana-
lytical expression of γ↓ð↑Þ given in Eq. (2) in the main text,
which results from a perturbative expansion of the eigen-
values of the system in the small parameter ω0=κ ≪ 1,
which is well justified for our experiment. We do not
consider spin dissipation and use the Keldysh action
formulation [6,52]. First, we bosonize the spin using
Holstein-Primakoff transformation, Ŝz ¼ b̂†b̂ − ðN=2Þ,
Ŝþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − b̂†b̂

p
b̂, with b̂ being a bosonic annihilation

operator. We then write the Keldysh action in the frequency
domain and integrate out the cavity degree of freedom,
obtaining the spin-only action

Sspin¼
Z �

b̂�
c b̂�

q

� 0 ½Gspin
A �−1

½Gspin
R �−1 Dspin

K

!�
b̂c

bq

�
; ðD3Þ

where the four-component Nambu spinor is given by
b̂i ¼ ½b̂iðωÞb̂�i ð−ωÞ�, i ¼ c, q, and the inverse Green’s
functions and Keldysh component are, respectively,
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½Gspin
A �−1 ¼ ð½Gspin

R �−1Þ† ¼

0
B@ω − Nη2b

iκ−ω−Δc
− Nη2r

−iκþω−Δc
− ω0 − 2NηbηrΔc

ðωþiκÞ2−Δ2
c

− 2NηbηrΔc

ðωþiκÞ2−Δ2
c

−ω − Nη2b
−iκþω−Δc

− Nη2r
iκ−ω−Δc

− ω0

1
CA; ðD4Þ

Dspin
K ¼ −2iκ

0
B@

Nη2b
κ2þðωþΔcÞ2 þ

Nη2b
κ2þðω−ΔcÞ2 Nηbηr

�
1

κ2þðωþΔcÞ2 þ
1

κ2þðω−ΔcÞ2
�

Nηbηr
�

1
κ2þðωþΔcÞ2 þ

1
κ2þðω−ΔcÞ2

�
Nη2b

κ2þðω−ΔcÞ2 þ
Nη2b

κ2þðωþΔcÞ2

1
CA: ðD5Þ

We derive the eigenvalues as the zeros of the determinant of the inverse advanced Green’s function in Eq. (D4):

2Nη2bð−Δcω0 − Nη2r þ iκωþ ω2Þ þ ½Nη2r þ ðω0 − ωÞð−Δc þ iκ þ ωÞ�½Nη2r þ ðωþ ω0Þð−Δc − iκ − ωÞ� þ N2η4b ¼ 0:

ðD6Þ

We perform a first-order expansion in ω0=κ ≪ 1 by approximating ωþ iκ ≈ iκ and solve Eq. (D6) for ω. We obtain

ω� ≈ iN
κ

κ2 þ Δ2
c
ðη2b − η2rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½−4NΔη2Δc þ ðκ2 þ Δ2

cÞω0�½−4Nη̄2Δc þ ðκ2 þ Δ2
cÞω0�

p
κ2 þ Δ2

c
; ðD7Þ

¼ −iðγ↓ − γ↑Þ � ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

η̄2

η2c

��
1 −

Δη2

η2c

�s
: ðD8Þ

We note that this result can be obtained also from a linear
analysis after adiabatic elimination of the cavity field. The
rates γ↓ð↑Þ describe the dissipative damping (amplification)
of the polariton mode j1i, as discussed in the main text.
They can be rewritten in the form

γ↓ð↑Þ ¼ Nη2bðrÞρðω̄Þ; ðD9Þ

where ρðω̄Þ ¼ κ=½ðω̄ − ωcÞ2 þ κ2� is the density of states of
the cavity at the frequency ω̄ of the cavity field; cf. Fig. 1.
The expression (D9) indicates that the mechanism at the
origin of damping (amplification) γ↓ð↑Þ is the scattering of
photons from a single drive with strength ηbðrÞ into the bath
of vacuummodes provided by the cavity, accompanied by a
transfer of population from mode j1iðj0iÞ to mode j0iðj1iÞ.
The expression in Eq. (D9) is valid in the limit ω0 ≪ κ.

A more accurate estimation for γ↓ð↑Þ can be obtained using
Fermi’s golden rule [51] and the limit in which only a single
drive is present, i.e., ηb ¼ 0 or ηr ¼ 0. The result is

γ↓ð↑Þ ¼ Nη2bðrÞρðω̃þð−ÞÞ; ðD10Þ

with ω̃� ¼ ω̄� ω0. The frequency of the field scattered
into the cavity by each drive deviates from ω̄ by �ω0,
according to energy conservation [see also Fig. 1(c) for a
schematic visualization].
The correction obtained by using Fermi’s golden rule

becomes particularly relevant near the Dicke limit ηb ¼ ηr.
Without this correction, the rates γ↓ð↑Þ compensate each

other [cf. Eq. (D9)], and the imaginary part of Eq. (D8) is
zero for all η̄ < η̄c, resulting in a vanishing damping rate.
The result obtained with Fermi’s golden rule allows us to
account for higher orders of ω0=κ, leading to a nonzero
damping. By plugging Eq. (D10) into the expression for the
eigenvalues Eq. (D8), we find that, in the Dicke limit, the
effective damping rate of the polariton mode j1i is

γ↓ − γ↑ ¼ −4Nη2b
κΔcω0

ðΔ2
c þ κ2Þ2 ; ðD11Þ

where we again make use of ω0 ≪ κ. This result is in
agreement with previous derivations [84] and provides
insights into the physical origin of a finite effective polar-
iton damping in the driven-dissipative Dicke model.

3. Nonlocal vs local dissipation

Dissipation is present in our system as photon losses
affecting the cavity mode, which is modeled by the
Lindblad superoperator L̂½ρ̂�¼ κ½2â ρ̂ â†−fâ†â; ρ̂g�. From
the point of view of the atomic ensemble, this constitutes a
nonlocal dissipation channel [85], as the individual pseu-
dospins are collectively coupled to the bath via the coupling
to the same cavity mode â. The nonlocal character of
dissipation is crucial to obtain the results presented in this
work. We elucidate this point by comparing our system to
an analogous model featuring bidirectional local dissipa-
tion. For simplicity, in this subsection, we neglect the
motional degrees of freedom of the atoms. For the auxiliary
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model with local dissipation, we consider the same
Hamiltonian as in Eq. (1) and a Lindblad superoperator
L̂Γ½ρ̂� ¼ Γ↑

P
N
i¼1D½ŝþi � þ Γ↓

P
N
i¼1D½ŝ−i �, with D½x̂� ¼

2x̂ ρ̂ x̂† − fx̂†x̂; ρ̂g and where ŝ−i and ŝþi are the jump
operators for the pseudospin of a single atom i. Such a
form of dissipation could be obtained, for instance, by
enhancing the spontaneous emission from the optically
excited levels in our Raman scheme; cf. Fig. 1(c) [86]. This
gives rise to dissipative transfers of population from state
j0aiðj1aiÞ to j1aiðj0aiÞ controlled by the rate Γ↑ ðΓ↓Þ.
Although the gain-loss competition in this scenario looks

similar to the one of our system, in which the dissipative
rates γ↑ and γ↓ appear, the overall effect of dissipation is
substantially different. As described in the previous para-
graph, in the Dicke limit Δη ¼ 0 the decay rates γ↑ and γ↓
compensate each other (to first order), giving rise to an
overall polariton damping Im½ω�� ≈ γ↑ − γ↓ ¼ 0 below the
critical point η̄ < ηc [cf. Eq. (2)]. This compensation is at
the heart of our capability to tune the effective dissipation,
and eventually to minimize it, by acting on the relative
strength of the two Raman drives. In contrast, spontaneous
emission leads to an overall polariton damping Im½ω�� ≈
Γ↑ þ Γ↓ for η̄ < ηc [86]. The two counteracting processes
Γ↓ and Γ↑ cannot compensate each other.
The different behavior of the two models reflects the

local or nonlocal character of the coupling to the bath. A
quantum jump due to spontaneous emission projects the
atomic ensemble to a state with reduced total pseudospin

j ˆJ⃗j < N=2, i.e., leads to a reduced coherence within the
system. Conversely, a quantum jump due to photon loss
from the cavity mode does not lead to any local projection

and preserves the spin coherence, i.e., j ˆJ⃗j ¼ N=2.

4. Probing excitations

a. Experimental protocol

To measure the evolution of the excitation spectra, we
prepare a BEC ofN ¼ 9.6ð4Þ × 104 atoms inmF ¼ −1 and
ramp up the coupling strengths ηr;bðtÞ within tramp ¼
9.1 ms. The experimental parameters for these measure-
ments are ω0¼2π ·48ð4Þ kHz and Δc¼−2π ·5.8ð1ÞMHz.
While ramping up the coupling, we inject an excitation
field through the cavity between t ∈ ½3.0; 4.0� ms. The
excitation field is derived from the same laser source at
784.7 nm as the transverse drives and the local oscillator
for the heterodyne setup. Its frequency can be independ-
ently tuned via a double-pass AOM. The amplitude of the
excitation field corresponds to 7.2(1) intracavity photons;
its frequency is chosen to be close to the polariton
resonance ω̄þ ω0. By this method, we typically transfer
<10% of the atomic population in the excited polariton
mode j1i. After the end of the excitation pulse, the polariton
mode evolves freely according to the dynamics of the open
system. We monitor this free evolution in real time via the

spectrum of the associated photon field. The relative phase
between the excitation field and the Raman drives is not
actively stabilized and is subject to slow drifts between
different experimental realizations, due to changes in the
optical paths. This relative phase influences the transfer
efficiency to the excited mode j1i, similarly to Bragg
spectroscopy, but does not affect the free evolution of the
excitation in time and frequency.

b. Relation between the polariton dynamics
and the cavity spectrogram

Here, we show how the dynamics of the polaritonic
excitation can be derived from the associated cavity field,
detected with a heterodyne setup, as done in Sec. IV.
Since the population in mode j1i prepared by the excitation
pulse is small, we can linearize the mean-field dynamics
of the system around the normal phase. By substituting
ðαRe; αIm; X0; Y0; Z0Þ ¼ ð0; 0; 0; 0;−1=2Þ in Eq. (D2)
and linearizing the pseudospin conservation δZ ¼
−ðX0δX þ Y0δYÞ=Z0 ¼ 0, we obtain a 4 × 4 stability
matrix M in the basis ðδαRe; δαIm; δX; δYÞT .
Diagonalization of this matrix leads to

D¼S−1MS¼

0
BBB@
−iΔþ 0 0 0

0 −iΔ− 0 0

0 0 −iωþ 0

0 0 0 −iω−

1
CCCA; ðD12Þ

where Δþ ¼ −Δ�
− and ωþ ¼ −ω�

− because M has real
coefficients. The pairsΔ�, ω� correspond to the photonlike
and atomlike polariton modes, respectively, with jRe½Δ��j≈
jΔcj and jRe½ω��j ≤ ω0 [87]. The eigenfrequencies depend
on the couplings η̄ andΔη, which are time dependent in our
experimental protocol. The coupling sweeps are, however,
slow enough to allow the system to evolve adiabatically,
and the polariton modes evolve independently of each
other. By decomposing into polariton modes, the evolution
of the cavity field quadratures can be written as

αReðtÞ ¼ δαReðtÞ ¼
X
j¼�

cpjeiΔjt þ
X
j¼�

cajeiωjt; ðD13Þ

where clj are complex coefficients, with clþ ¼ c�l− and
l ¼ p, a denoting photon and atom, respectively. Because
of the large separation jΔcj ≫ ω0, the photonlike mode
cannot be excited by the external pulse on resonance with
the atomlike mode and can be neglected. We, thus, find

αReðtÞ ¼ c0 cosðRe½ωþ�tþ ϕ0ÞeIm½ωþ�t: ðD14Þ

The initial conditions c0 and ϕ0 are determined by the
externally induced excitation process. An analogous
expression holds for αIm, allowing one to directly relate
the real and imaginary part of the polariton frequency to
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the measured cavity output. Specifically, from Eq. (D14),
we find that, since Im½ω�� < 0, the amplitude of the
field nph decays as nph ∝ e2Im½ω��t, with a corresponding
1=e-decay time τ ¼ −ð2Im½ω��tÞ−1, which is the result
used in Sec. IV.

c. Data processing and comparison to theory

The experimental values of the excitations lifetime
shown in Fig. 3(f) of the main text are extracted from
the heterodyne measurement of the cavity output in the
following way. We consider the photon number spectro-
gram ñphðω; tÞ and set t ¼ 0 to the end of the excitation
pulse. We first extract the time tc at which the superradiant
phase transition occurs by integrating ñphðω; tÞ on a
frequency interval −ωlim ≤ ω − ω̄ ≤ ωlim with ωlim ¼ 2π ·
10 kHz ≈ 0.2ω0 and setting a transition threshold of 100
intracavity photons. Such a threshold is large enough to
capture only the coherent field in the superradiant phase
but still small enough to detect reliably the critical point.
For large ratios Δη=η̄ leading to the dissipation-stabilized
normal phase, tc is taken as the average of the transition
times extracted where the superradiant phase builds up. To
study the time evolution of the polaritonic excitations, we
integrate ñphðω; tÞ on a larger frequency range ωlim ¼ 2π ·
150 kHz ∼ 3ω0 to get the photon trace nphðtÞ, with a time
resolution of 10 μs. We extract the lifetime τ from the
cumulative signal sðtÞ ¼ R t0 nphðt0Þdt0. For nph ∝ e−t=τ, sðtÞ
takes the form sðtÞ ¼ smaxð1 − e−t=τÞ. Since for most of the
data points the lifetime is significantly shorter than the
transition time tc, we determine τ by the time at which
sðtÞ reaches a fraction ð1 − e−1Þ of its maximum below tc.
The results of this estimation are in agreement with the
ones obtained from a fit of sðtÞ but more robust especially
for weak signals. As an exception, for the single dataset at
Δη=η̄ ¼ 0 the condition τ ≪ tc is not fulfilled, and τ is
extracted from a fit of sðtÞ with the exponential model.
We neglect the experimental realizations in which the
atomic response during the excitation pulse is below the
noise level. The data shown in Fig. 3(f) of the main
text are averaged values of τ over 10–25 realizations,
with the error bar representing the maximum between
standard error of the mean and the time resolution of the
photon trace.
We compare the values of τ extracted experimentally

with the theoretical expectations from the excitation eigen-
frequencies of the system. According to the description
given in Appendix C, we expect that nphðtÞ ∝ e2Im½ω��t,
which provides an analytical estimation of the lifetime
τan ¼ −ð2Im½ω��Þ−1. If the couplings vary in time, the
decay of the photon number nphðtÞ is, in general, non-
exponential. However, a meaningful estimation for the
measured lifetime τ at large enough imbalance ratio
Δη=η̄≳ 0.05 is provided by the value τan obtained for

the instantaneous couplings η̄ and Δη just after the
excitation pulse [88].
To account for processes leading to dephasing of the

individual atomic spins, such as collisions, we introduce a
phenomenological atomic dephasing rate Γϕ, as described
in Appendix C. In Fig. 3(f) of the main text, the blue shaded
region shows the lifetime estimated from the eigenvalues
and assuming Γϕ ¼ 0 (upper bound) and Γϕ ¼ 2π · 500 Hz
(lower bound, corresponding to the estimated collision rate
in the total trapping potential).
For a closer comparison to the experiment, a numerical

simulation including time-varying coupling is performed,
using the method described in Appendix C [red shaded
region in Fig. 3(f) of the main text]. The shaded region
includes results of simulations performed for different
initial phase ϕprobe ∈ ½0; 2πÞ of the excitation drive, which
we do not control in the experiment, and an atomic
dephasing rate Γϕ varying in the same interval described
in the previous paragraph.

5. Numerical simulations of the probing method

We simulate numerically the experimental protocol that
we implement to probe the excitation spectrum of our
system and described in Sec. IV. For this purpose, we
extend the theoretical model and incorporate an additional
intracavity probe beam. We consider a classical z-polarized
electric field propagating along the cavity axis:

Eprobeðt; xÞ ¼ Ẽprobe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nprobeðtÞ

q
cosðkrecxÞe−iωprobet−iϕprobe ;

ðD15Þ

with ωprobe ¼ ω̄þ ω0 þ δprobe. Here, nprobeðtÞ, ϕprobe, and
δprobe are, respectively, the average intracavity photon
number, relative phase, and detuning with respect to the
cavity field associated with the polariton branch ωþ at low
couplings (ω̄þ ω0). Moreover, Ẽprobe is the electric field
per photon in this beam.
Following an analogous approach to the derivation of the

Hamiltonian Ĥ in Appendix B, we obtain a time-dependent
many-body Hamiltonian describing the interaction of the
light-matter system with the probe field:

Ĥexc ¼ ĤMBþ 4ℏη̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nprobeðtÞ

q
sin ½ðω0þ δprobeÞtþϕprobe�Ĵx

þ 4ℏΔη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nprobeðtÞ

q
cos ½ðω0þ δprobeÞtþϕprobe�Ĵy:

ðD16Þ

The probe beam drives the atomic coherences Ĵx;y, similar
to cavity-enhanced Bragg spectroscopy techniques [89].
Hence, we expect to coherently transfer non-negligible
atomic populations to the excited state if we approach the
low-coupling two-photon resonance δprobe → 0.
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We derive mean-field equations of motion from the
Hamiltonian in Eq. (D16) and numerically solve them to
simulate the experimental conditions of our excitation
probing method; cf. Fig. 3. We plot the resulting spectro-
grams of the PSD in Fig. 7. The coupling imbalances Δη=η̄
and the parameters ðω0;Δc; κ; NÞ are chosen in accordance
with the experimental observations in Figs. 3(b)–3(e).
Depending on the choice of Δη=η̄, we transfer between
8% and 12% of the atoms to the excited state at the end of
the probe pulse. The results from the numerical simulations
are in good agreement with the experimental results at
different coupling imbalances: While in the Dicke limit the
excitations are long lived and a complete mode softening
toward the superradiant phase is observed, the polaritonic
excitations damp faster for increasingly large coupling
imbalances, as observed in the experiment.

APPENDIX E: HYSTERESIS MEASUREMENT

1. Data processing

For every single hysteresis measurement, we fix the
coupling strength η̄ and record the photon number nph
extracted from the heterodyne detector as a function of
the other coupling strength Δη. To further process the
raw data, we smoothen it by applying a moving average
over 51 subsequent points. Subsequently, we define a
threshold photon number for the detection of a stable
superradiant phase.
In order to extract the threshold of the superradiant

region, we set a threshold of 36 mean photons, which is
5 times above the noise level. Around this value, the width
of the hysteresis is independent on the choice of the
threshold. We determine and compare the critical coupling
strength for the forward (backward) path, as shown in
purple (orange), in Fig. 4 of the main text and in Fig. 8
below. The critical couplings are used to map out the

hysteresis region for different coupling strengths η̄. For
every data point, we take on average 15 measurements,
with at least 12 and at most 18 repetitions.

2. Hysteresis loops in opposite directions

Our hysteresis measurement is potentially sensitive to
atom loss and heating during the experimental protocol.
These processes affect the collective atom-cavity coupling
and, consequently, shift the stability boundaries of the
different phases. To ensure that the measured bistability
region is not substantially biased by a variation of the
collective coupling due to these effects, we complement
the measurement shown in Fig. 4 of the main text with the
result of a hysteresis loop performed in the opposite
direction; see Fig. 8. Hysteresis is observed also in this
second measurement protocol, confirming that the effect of
atom loss and heating is not substantial.

(a)
(c)

(b)

FIG. 8. Hysteresis at the boundary between the superradiant
phase and the dissipation-stabilized normal phase. The hysteresis
is measured starting in the superradiant phase and performing a
loop of the coupling Δη in the opposite direction as the one
shown in the main text. (a) Representative time trace of the mean
photon number nph during the loop. (b) Corresponding trajectory
in the parameter space ðη̄;ΔηÞ. An artificial offset in η̄ is
introduced between the forward and backward paths for better
visibility. (c) Boundaries of the normal phase detected during the
forward (purple) and backward (orange) path for different η̄. The
position of the boundaries is determined from the photon traces
by setting a threshold of 36 mean intracavity photons, as
indicated with a gray line in (a). The data points are mean values
of 12–20 realizations, with the error bars representing the
standard deviation. As a guide to the reader, in the background
in (b),(c), the phase diagram from analytical calculations shows
the region of stable normal phase (white), stable superradiant
phase (dark green), and bistability (light green). The theoretical
boundaries are rescaled to the experimental data, with a single
factor applied to both couplings. This scaling factor is chosen
to overlay the theoretical phase boundary between the super-
radiant and bistability regions (dashed red line) and the corre-
sponding experimental data point with the largest coupling η̄.
For these measurements, we employ the following experimental
parameters: N ¼ 1.10ð8Þ × 105, Δc ¼ −2π · 3.0ð5Þ MHz, and
ω0 ¼ 2π · 40ð5Þ kHz.

(a) (b) (c) (d)

FIG. 7. Spectrograms of the cavity field from numerical
simulations of our experimental protocol to probe excitations;
cf. Fig. 3. We consider the coupling imbalances Δη=η̄ ¼ 0 (a),
0.105 (b), 0.322 (c), and 0.821 (d). For the numerical simulation,
we choose ðω0;ω; κ;ΓÞ ¼ 2π · ð48 kHz; 5.8 MHz; 1.25 MHz;
100 HzÞ and N ¼ 9.6 × 104 atoms. The couplings are increased
via an S-shaped ramp within 9.1 ms to η̄ < 2π · 1.16 kHz at
fixed ratio Δη=η̄. Moreover, a blue-detuned probe with
δprobe ¼ 2π · 2 kHz, nprobe ¼ 7.2 photons, and ϕprobe ¼ 0 illumi-
nates the system between −1 ms < t < 0 ms.
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