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We discuss quantum variational optimization of Ramsey interferometry with ensembles of N entangled
atoms, and its application to atomic clocks based on a Bayesian approach to phase estimation. We identify
best input states and generalized measurements within a variational approximation for the corresponding
entangling and decoding quantum circuits. These circuits are built from basic quantum operations available
for the particular sensor platform, such as one-axis twisting, or finite range interactions. Optimization is
defined relative to a cost function, which in the present study is the Bayesian mean squared error of the
estimated phase for a given prior distribution; i.e., we optimize for a finite dynamic range of the
interferometer. In analogous variational optimizations of optical atomic clocks, we use the Allan deviation
for a given Ramsey interrogation time as the relevant cost function for the long-term instability.
Remarkably, even low-depth quantum circuits yield excellent results that closely approach the fundamental
quantum limits for optimal Ramsey interferometry and atomic clocks. The quantum metrological schemes
identified here are readily applicable to atomic clocks based on optical lattices, tweezer arrays, or trapped
ions. While in the present work variationally optimized circuits are found with classical simulations,
optimization can also be performed “on” the (physical) quantum sensor, also in regimes not accessible to
classical computations and in the presence of imperfections.
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I. INTRODUCTION

Recent progress in quantum technology of sensors has
provided us with the most precise measurement devices
available in physical sciences. Examples include the
development of optical clocks [1], atom [2] and light [3]
interferometers, and magnetic field sensing [4]. These
achievements have opened the door to novel applications
from the practical to the scientific. Atomic clocks and
atomic interferometers allow height measurements in
relativistic geodesy [5–8] or fundamental tests of our
understanding of the laws of nature [9–11], such as time
variation of the fine structure constant. In the continuing
effort to push the boundaries of quantum sensing, entan-
glement as a key element of quantum physics gives the
opportunity to reduce quantum fluctuations inherent in
quantum measurements below the standard quantum
limit (SQL), i.e., what is possible with uncorrelated

constituents [12]. Squeezed light improves gravitational
wave detection [13], allows life science microscopy below
the photodamage limit [14], and further, squeezing has
been demonstrated in atom interferometers [15–30].
However, beyond the SQL, quantum physics imposes
ultimate limits on quantum sensing, and one of the key
challenges is to identify and, in particular, devise exper-
imentally realistic strategies defining optimal quantum
sensors [31].
In our discussion below we focus on optimal Ramsey

interferometry, where “optimality” is defined as achieving
the best average signal-to-noise ratio for phase estimation
in a single-shot measurement. The distinguishing feature of
the present work is that we consider optimal Ramsey
interferometry with finite dynamic range; i.e., we wish
to achieve optimal sensitivity for phases ϕ in a given finite
interval of width δϕ [31–37] as is relevant for numerous
applications including atomic clocks [38–48]. To imple-
ment this optimal Ramsey interferometry we devise an
approach based on variational quantum circuits [49–56].
Here, entangled input states and the entangled measure-
ment protocols [57–63] defining the generalized Ramsey
interferometer are represented as variational quantum
circuits built from “natural” quantum resources available
on the specific sensor platform (see Fig. 1), which are
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optimized in light of a given cost function defining the
optimal interferometer. As we will show, already low-depth
variational quantum circuits can provide excellent approx-
imations to the optimal interferometer. Intermediate scale
atomic quantum devices [64,65], acting as programmable
quantum sensors [66], present the opportunity to imple-
ment these low-depth quantum circuits, defining an exper-
imental route toward optimal Ramsey interferometry.
As noted above, optimality of a quantum sensing

protocol is defined via a cost function C which is identified
in context of a specific metrological task. In our study of
variational N-atom Ramsey interferometry, we wish to
optimize for phase estimation accuracy defined as the mean
squared error (MSE) ϵðϕÞ relative to the actual phase ϕ,
averaged with respect to a prior distribution PðϕÞ with
width δϕ, which represents the finite dynamic range of the
interferometer. Thus the cost function is C≡ ðΔϕÞ2 ¼R
dϕϵðϕÞPðϕÞ. This corresponds to a Bayesian approach

to optimal interferometry where the prior width of the phase
distribution δϕ is updated through measurement to Δϕ
characterizing the posterior distribution. As outlined in
Fig. 1, our variational approach to optimal Ramsey inter-
ferometry seeks to minimize C over variational quantum
circuits, and thus identify optimal input states and mea-
surements for a given δϕ. Note that in the present work we
optimize a metrological cost function for the complete
quantum sensing protocol with variational quantum cir-
cuits. We distinguish this from variational state preparation
schemes, e.g., variational squeezed state preparation of
Ref. [66], where a squeezing parameter was optimized as
cost function.

We contrast our Bayesian approach of identifying a
metrological cost function to a Fisher information
approach, which optimizes accuracy locally at a specific
value of the phase, corresponding to the limit δϕ → 0 [3].
Discussions of fundamental limits in quantum sensing
are often phrased in terms of quantum Fisher information
and the quantum Cramér-Rao bound leading to definition
of the Heisenberg limit (HL) [67–69]. This identifies
Greenberger–Horne–Zeilinger (GHZ) states [70], saturat-
ing the HL, as the optimal states for Ramsey interferometry.
Furthermore, this leads to the conclusion that adding a
decoding step (see Fig. 1) is not beneficial for quantum
metrology since a separable measurement is optimal in this
context [68]. This conclusion, however, is not applicable to
phase estimation with finite prior width since the GHZ state
interferometry in single-shot scenarios is optimal only for
estimation of phase values in an interval δϕGHZ ∼ 1=N,
which shrinks as number of atoms N increases [37,71]; see
Sec. II F. In fact, for large priors δϕ tailored quantum input
states will differ greatly from squeezed spin states (SSS)
[72,73] or GHZ states [3,31], and a nontrivial measurement
is required for an optimal metrological protocol. Our
variational approach to optimal Ramsey interferometry
(see Fig. 1) finds these optimal entangling and decoding
circuits [74].
Our discussion of optimal single-shot Ramsey interfer-

ometry [78] has immediate relevance for atomic clocks
[12,88–91]. An optical atomic clock operates by locking
the frequency of an oscillator, represented by a classical
laser field with fluctuating frequency ωLðtÞ, to the tran-
sition frequency ωA of an ensemble of N isolated atoms [1].

FIG. 1. (a) Quantum circuit representation of Ramsey interferometer with uncorrelated atoms. The phase ϕ is imprinted on the atomic
spin superposition prepared by global π=2 rotation around y axis, Ryðπ=2Þ. Consequent rotation, Rxðπ=2Þ, and measurement of
difference m of atoms in eigenstates j↑i and j↓i in z basis allows estimating the phase ϕ using an estimator function ϕestðmÞ.
(b) Quantum circuit of a generalized Ramsey interferometer with generic entangling and decoding operations Uen and Ude, respectively.
Our variational approach (c) consists of an ansatz, where optimal Uen and Ude are approximated by low-depth circuits. These are built
from “layers” of elementary operations, which are provided by the given platform. We specify the variationally optimized quantum
sensor by circuits UenðθÞ and UdeðϑÞ [see Eqs. (6) and (7)], of depth nen and nde, respectively. Here θ≡ fθig and ϑ≡ fϑig are vectors of
variational parameters to be optimized for a given strategy represented by a cost function C defined here as Bayesian mean squared error
(BMSE) [see Eqs. (2) and (10)]. We illustrate the approach with a variational circuit built from global spin rotations Rx and one-axis-
twisting gates T x;z available in neutral atom and ion quantum simulation platforms, as discussed in Sec. II B. The circuit’s optimization,
shown as a feedback loop (in red), can be performed on a classical computer, or, if the complexity of underlying quantum many-body
problem exceeds capabilities of classical computers, on the sensor itself, thus leading to a (relevant) quantum advantage; see Sec. II G.
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The locking of the laser to the atomic transition is achieved
by repeatedly measuring the accumulated phase ϕ ¼R
T
0 dt½ωLðtÞ − ωA� in Ramsey interferometry with inter-
rogation time T. Importantly, the width δϕ of the distri-
bution of this phase increases with the Ramsey time T. It is
therefore critical to achieve a good phase estimate in
conjunction with a wide dynamic range for making an
accurate inference about the frequency deviation, and
ultimately for stabilizing the clock laser to the atomic
transition. Our variational approach for Bayesian phase
estimation is made to satisfy these requirements, and
provides optimal quantum states and measurements min-
imizing the instability in atomic clocks as measured by its
Allan deviation. We predict significant improvements over
previously known one-shot nonadaptive strategies. Our
predictions are backed up by comprehensive numerical
simulations of the clock laser and its stabilization to the
atomic reference in a closed feedback loop [90,91].
In the following, we first develop the general theory of

variationally optimized Ramsey interferometry based on
Bayesian phase estimation in Sec. II, and then apply this
theory to the specific problem of an optical atomic clock
in Sec. III.

II. QUANTUM VARIATIONAL OPTIMIZATION
OF RAMSEY INTERFEROMETRY

For concreteness, we consider estimation of the phase ϕ
in an atomic interferometer consisting of an ensemble of N
identical two-level atoms described as spin-1=2 particles
[12]. The general idea developed in the following applies
to any SU(2) interferometer. The interferometer encodes
the phase in the atomic state by evolving according to
jψϕi ¼ expð−iϕJzÞjψ ini. Here jψ ini is an initial probe state
[92], and Jx;y;z ¼ 1=2

P
N
k¼1 σ

x;y;z
k is the collective spin

with σx;y;z the Pauli operators. The task is to determine
the unknown phase ϕ by performing a measurement on
the atoms.

A. Bayesian approach to phase interferometry

The most general measurement is described by a positive
operator valued measure (POVM), that is a set fΠxg of
positive Hermitian operators such that

R
dxΠx ¼ 1. The

parameter ϕ is estimated on the basis of a measurement
result x using an estimator function ϕestðxÞ. The phase
estimation accuracy is characterized by a mean squared
error with respect to the actual phase ϕ,

ϵðϕÞ ¼
Z

dx½ϕ − ϕestðxÞ�2pðxjϕÞ; ð1Þ

where pðxjϕÞ ¼ TrfΠxjψϕihψϕjg is the conditional
probability of the measurement outcome x [3]. In our
discussion we consider the phase ϕ to be defined on the
interval −∞ < ϕ < ∞ [93].

In order to find an interferometer performing the most
accurate measurement of the phase ϕ we cannot minimize
the MSE (1) for all values of ϕ simultaneously. First, the
atomic interferometer is only sensitive to phase values
modulo 2π as expð−iϕJzÞ, and hence also pðxjϕÞ is
periodic. Thus, it cannot distinguish arbitrary phases.
Second, an initial state and measurement working well
for one phase value might be insensitive to another value.
Thus we consider an estimation error minimized for a
weighted range of phase values relevant for a given sensor
andmeasurement task. In the followingwe adopt a Bayesian
approach where the estimation error is averaged over a prior
phase distributionPðϕÞ. The cost function of interest is thus
defined as the MSE averaged over the prior distribution,
defining the Bayesian mean squared error (BMSE):

C≡ ðΔϕÞ2 ¼
Z

∞

−∞
dϕϵðϕÞPðϕÞ: ð2Þ

The prior distribution PðϕÞ reflects the statistical properties
of the unknown phase ϕ; hence it is, in general, sensor and
task dependent.
Optimal interferometry is based on minimizing the cost

function (2) over jψ ini, fΠxg, and ϕestðxÞ for the given prior
distribution. For simplicity, we focus on prior distribution
as a normal distribution centered around zero:

PδϕðϕÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðδϕÞ2
p exp

�
−

ϕ2

2ðδϕÞ2
�
: ð3Þ

This problem was addressed in Ref. [31], where the optimal
quantum interferometer (OQI) has been identified. Below,
we optimize the cost function (2) within a variational
quantum algorithmic approach.

B. Variational Ramsey interferometry

Our goal is to find an implementation of the optimal
interferometer given a restricted set of quantum gates
available on an experimental platform such as neutral atoms
or trapped ions. We will show that low-depth variational
quantum circuits of given depth [see Fig. 1(c)] are excellent
approximations to optimal interferometry, and can yield
significant improvements over SQL defined for uncorre-
lated atoms.
In the most general form the variational interferometer,

illustrated in Fig. 1(b), can be defined by a generic
entangling unitary operation Uen preparing an entangled
input state from the initial product state jψ0i ¼ j↓i⊗N ,

jψ ini ¼ Uenjψ0i; ð4Þ
and a decoding operation Ude transforming the projective
measurement of a typical observable Jz, with eigenbasis
jmi, into a generic projection:

Πxm ≡ jxmihxmj ¼ U†
dejmihmjUde: ð5Þ
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Here we consider the subspace spanned by the states jmi,
m ∈ f−N=2;…; N=2g, which are completely symmetric
under permutations of N atoms, and jψ0i ¼ j−N=2i. The
measurement amounts to counting the difference m of
atoms in state j↑i and j↓i. As shown in Ref. [34], this
assumption can be made without loss of generality. The
basis states jmi are given by the eigenstates of total spin
of maximum length, j ¼ N=2, thus satisfying J2jmi ¼
jðjþ 1Þjmi and Jzjmi ¼ mjmi. As shown in Ref. [31], the
optimal POVM may be restricted to the class of standard
projection von Neumann measurements Πx ¼ jxihxj,
hxjx0i ¼ δxx0 . Thus the measurement of the collective spin
component Jz transformed by a decoder Ude represents the
measurement problem in full generality.
We assume that the programmable quantum sensor

provides us with a set of native resource Hamiltonians

fHðiÞ
R g. The unitaries generated by these Hamiltonians

determine a corresponding native set of quantum gates
as variational ansatz for Uen and Ude. A generic example is
provided by global rotations RμðθÞ ¼ expð−iθJμÞ and the
infinite range one-axis-twisting (OAT) interaction [73]
T μðθÞ ¼ expð−iθJ2μÞ with μ ¼ x, y, z. Such interactions
have been realized on quantum simulation platforms
[15–29,94,95], and very recently also on an optical clock
transition [30]. Within this set of gates we constrain the
quantum circuits to be invariant under the spin x-parity
transformation ensuring an antisymmetric estimator at and
around ϕ ¼ 0 (see the Appendix B). The most general
circuits satisfying the x-parity constraint for a fixed number
nen and nde of layers of entangling and decoding gates are

UenðθÞ ¼ ½Rxðθð3ÞnenÞT xðθð2ÞnenÞT zðθð1ÞnenÞ � � �
×Rxðθð3Þ1 ÞT xðθð2Þ1 ÞT zðθð1Þ1 Þ�Ryðπ=2Þ ð6Þ

and

UdeðϑÞ ¼ Rxðπ=2Þ½T zðϑð1Þ1 ÞT xðϑð2Þ1 ÞRxðϑð3Þ1 Þ � � �
× T zðϑð1ÞndeÞT xðϑð2ÞndeÞRxðϑð3ÞndeÞ�: ð7Þ

Here the subscripts on the parameters indicate the layer
containing the same three gates and the superscript iden-
tifies the gate within the layer. The complexity of the circuit
is thus classified by ðnen; ndeÞ, and we have 3ðnen þ ndeÞ
(global) variational parameters in a ðnen; ndeÞ circuit,
independent of N. Note that here Uen and Ude commute
with particle exchange. The Hilbert space dimension for
dynamics in the symmetric subspace is linear in N, which
allows us to study theoretically the scaling for large particle
numbers N below—in contrast to the case of finite range
interactions in Sec. II G.
We note that conventional Ramsey interferometry with

uncorrelated atoms corresponds to the (0,0) circuit with
Uen ¼ Ryðπ=2Þ and Ude ¼ Rxðπ=2Þ. Here atoms are

prepared initially in a product state, or coherent spin state
(CSS), and remain in a product state during the evolution in
interferometer followed by measurement of Jy. Note that the
interferometerwith SSS as input, and theGHZ interferometry
emerge as (1,0) and (2,1) circuits, respectively.
In the presented entangler-decoder framework the per-

formance of the interferometer is described, similar to
Eq. (1), by the MSE,

ϵðϕÞ ¼
X
m

½ϕ − ϕestðmÞ�2pθ;ϑðmjϕÞ; ð8Þ

where the conditional probability is

pθ;ϑðmjϕÞ ¼ jhmjUdeðϑÞe−iϕJzUenðθÞjψ0ij2: ð9Þ

Therefore, the optimal interferometer found within the
restricted set of available operations is described by the
minimum of the BMSE:

ðΔϕÞ2 ¼ min
θ;ϑ;a

Z
∞

−∞
dϕ

X
m

ðϕ − amÞ2pθ;ϑðmjϕÞPδϕðϕÞ:

ð10Þ

To be specific, we assume for the prior a normal distribu-
tion PδϕðϕÞ with standard deviation δϕ [see Eq. (3)]. In
addition, Eq. (10) assumes a linear estimator ϕestðmÞ ¼ am
which is close to optimal, as shown below. We note that it is
possible to use the optimal Bayesian estimator, which,
however, is computationally demanding. We describe the
corresponding iterative procedure in Appendix D for the
case of a phase operator as observable.

C. Results of optimization

Results of interferometer optimizations [96] are shown in
Fig. 2 for N ¼ 64 atoms. The figure plots the ratio Δϕ=δϕ
of the root BMSE Δϕ relative to the normal prior width δϕ.
The more information we gain about the parameter ϕ in a
single measurement, the smaller the value of this ratio.
The black dotted line shows the result of the unrestricted

minimization of the cost function (2) with normal prior
[31], which we refer to as optimal quantum interferometer.
It defines the region (shaded area) inaccessible to any
N-particle quantum interferometer. The purple line repre-
sents performance of the conventional Ramsey interferom-
eter with CSS as input and a linear estimator, given by the
(0,0) circuit. Thus, the shaded area above the purple line
roughly defines the classically achievable performance.
The performance of the entanglement enhanced inter-

ferometer is shown with colored lines. The orange curve
represents a (1,0) circuit corresponding to a squeezed spin
state interferometer [72,73], employing the OAT interaction
to generate an entangled initial state with suppressed
fluctuations along the axis of the effective Jy measurement.
The minimum of the orange line is located at smaller δϕ
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values when compared to the minimum of the purple line
corresponding to the SQL. This manifests the fact that SSS
input state increases the sensitivity of the phase measure-
ment at the expense of dynamic range [88,97,98]. By
adding a single layer of a decoding circuit we obtain the
blue curve corresponding to the (1,1) interferometer with a
slightly enhanced sensitivity and dynamic range. The red
and green lines correspond to (1,3) and (2,5) circuits,
respectively, and show striking improvement in sensitivity,
providing an excellent approximation for the optimal
interferometer (black dotted line). Remarkably, the minima
of the red, green, and black curves are located at a wider
dynamic range δϕ than that of the CSS interferometer.
Hence the optimal entangled initial state and the effective
nonlocal observable allow us to achieve both a higher
phase sensitivity and a wider dynamic range.
To gain understanding of the physical meaning of the

measurements and initial states emerging from the numeri-
cal optimization, we show their Wigner functions in Fig. 3.
A formal definition of the Wigner distribution is provided
in Appendix C. The three columns correspond, in con-
secutive order, to the (1,0) circuit (SSS interferometer), the
optimal quantum interferometer of [31], and the (1,3)
circuit. The chosen prior width δϕ ≈ 0.7 is indicated in
Fig. 2 by the vertical dashed line. Figures 3(a)–3(c) show
3D views of the generalized Bloch sphere with Wigner
functions of the measurement operators shown in shades of
red and blue for Jy, the optimal observable, and U†

deJzUde

operators, respectively. A contour of constant color corre-
sponds roughly to a certain measurement outcome which is
obtained with the probability given by the overlap of
the contour with the Wigner function of a quantum state.
The states are shown in Figs. 3(a)–3(f) with the gray
outlined areas.
Figure 3(a) shows clearly the nonoptimality of the

SSS interferometer with a measurement of the spin pro-
jection Jy. Optimization of the SSS results in a moderate
level of squeezing (gray ellipse squeezed along the y axis).
More squeezing would produce stronger antisqueezing
along the z axis leading to overlap with more contours
of the Jy Wigner function, thus increasing the variance of
the measurement results for nonzero ϕ [88,98]. Another
limitation of the SSS interferometer, illustrated in
Figs. 3(d) and 3(g), is the reduced dynamic range in the
interval −π=2 and π=2. Figures 3(d) and 3(g) show that
states rotated by the phase angle ϕ ¼ 2π=3 > π=2 have the
same measurement statistics as states rotated by ϕ ¼ π=3.
Thus, phases outside the ½−π=2; π=2� interval cannot be
reliably estimated.
The optimal quantum interferometer is explained in the

central column of Fig. 3. Here Fig. 3(b) shows that the initial
state is squeezed significantly stronger than in the SSS
interferometer. This is possible because the corresponding
optimal measurement is very similar to the phase operator of
Pegg and Barnett [99], which has eigenstates with well-
defined phases (see Sec. II D for detailed comparison). One
can see that the color contours of the optimal measurement
Wigner function in Figs. 3(b) and 3(e) are aligned with the
meridians and thus overlap favorably with the strongly
squeezed initial state rotated by a wide range of phase
angles ϕ. Strikingly, the OQI can effectively use the full 2π
dynamic range, as illustrated in Figs. 3(e) and 3(g).
Finally, the (1,3) interferometer, presented in the third

column of Fig. 3, exhibits properties similar to the OQI.
Interestingly, the initial state in this case is not a conven-
tional squeezed state, as shown in Fig. 3(c), but a slightly
twisted one. This, however, does not impair the perfor-
mance of the interferometer as the effective measurement is
also twisted such that it matches the initial state rotated by a
wide range of phase angles. This peculiarity is a conse-
quence of the restricted gate set available for the variational
optimization in a realistic system. It is remarkable that
the low-depth (1,3) circuit already provides an excellent
approximation for the OQI.
The extended dynamic range of the variationally opti-

mized interferometer is explored in Fig. 4. Figures 4(a) and
4(b) show, respectively, the estimator expectation value,

ϕ̄est ≡
X
m

ϕestðmÞpðmjϕÞ; ð11Þ

and the estimator mean squared error (8) as functions of the
actual phase ϕ for an interferometer optimized for prior
width of δϕ ≈ 0.7 (indicated with vertical dashed lines).

FIG. 2. Performance of the variationally enhanced interfer-
ometer with N ¼ 64 particles. Performance is shown in terms of
the posterior phase distribution width relative to the prior width,
Δϕ=δϕ, for a given prior, that is, for a given dynamic range
of the interferometer. Colored lines show the performance
of variationally optimized circuits for the depth ðnen; ndeÞ of
entangling and decoding layers as indicated. The number of
variational parameters is given by 3ðnen þ ndeÞ. The perfor-
mance of the optimal quantum interferometer (OQI) [31] is
indicated by the dotted line. The shaded areas indicate the
classically accessible (purple) and the quantum mechanically
forbidden (gray) regions (for N ¼ 64). Related results applied to
atomic clocks are shown in Fig. 10.
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The estimator expectation value of the (0,0) and (1,0)
circuit (CSS and SSS interferometer) is given by a sine
function [purple and orange line in Fig. 4(a)]; thus, it can
unambiguously map the estimated phase to the actual phase
in the range between −π=2 and π=2. However, the useful
dynamic range of the interferometer is even narrower, as
shown by the estimator error in Fig. 4(b). The estimator
error of the SSS state is suppressed below the CSS
benchmark line only for phases between, roughly, −π=4
and π=4. The (1,1) interferometer [blue line in Figs. 4(a)
and 4(b)] starts to exploit the entangled measurement and
achieves a bit wider linear regime of ϕ̄est in Fig. 4(a) and a
wider region of suppressed estimator error in Fig. 4(b).
Although the minimum error of (1,1) circuit is larger than
that of (1,0) circuit, it still has superior overall sensitivity
as phases in the tails of the prior distribution are better
resolved.
Finally, more complex decoding operations employed by

the (1,3) and (2,5) circuit (red and green lines) allow us to
approach the performance of the optimal interferometer
(black dotted lines). The linear regime of ϕ̄est extends

(a)

(b)

FIG. 4. (a) Phase ϕ dependence of the estimator expectation
value [Eq. (11)] of the optimized N ¼ 64 particle interfero-
meter at different circuit depths ðnen; ndeÞ with 3ðnen þ ndeÞ
variational parameters, in comparison to the optimal quantum
interferometer (OQI). The optimization is performed for the prior
distribution width δϕ ≈ 0.7, indicated by the vertical lines.
(b) Mean squared error [Eq. (8)] corresponding to the estimator
expectation values curves above.

(a) (b) (c)

(d) (e)

(g)

(f)

FIG. 3. Visualization of quantum states jψϕi ¼ expð−iϕJzÞjψ ini, and quantum measurement operators as Wigner distributions on the
generalized Bloch sphere for N ¼ 64 and δϕ ≈ 0.7. The first [(a),(d)], second [(b),(e)], and third [(c),(f)] column correspond to
ðnen; ndeÞ ¼ ð1; 0Þ (squeezed input state, and Jy measurement operator), the optimal quantum interferometer, and to a (1,3) quantum
circuit, respectively. Measurement operators are visualized as colored contours on the Bloch sphere corresponding to different
measurement outcomes. The corresponding optimized (optimal) states jψϕi are shown at various angles ϕ as gray shaded areas. (a)–(c)
Three-dimensional view of the generalized Bloch sphere with a state rotated to ϕ ¼ π=3. (d)–(f) Top view of the Bloch sphere with the
state rotated to angles ϕ ¼ 0; π=3; 2π=3. (g) Measurement probability pðmjϕÞ [see Eq. (9)] corresponding to the overlap between the
contours of the measurement distribution and the respective state distribution, displayed in the same column. The three rows correspond
to the above three angles ϕ. Note that for the Jy measurement the distributions at angles π=3 and 2π=3 are indistinguishable in
measurement statistics. In contrast, for the OQI and the (1,3) quantum circuit these angles are well resolved.
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almost to the full 2π range, and the estimator error is well
suppressed for phases deeply within the tails of the prior.

D. Comparison between variational and phase operator
based interferometers

From a theory perspective it is interesting to compare the
performance of the variationally optimized interferometer
and the interferometer based on covariant measurement
[33,34]. Here covariant measurements represent the class of
measurements optimal for phase estimation with no a priori
knowledge and phase-shift symmetry, i.e., assuming a prior
distribution PðϕÞ ¼ ð2πÞ−1 and a 2π-periodic cost func-
tion, as opposed to the MSE (1).
In the case of clocks and magnetometry, the free

evolution encoding the phase ϕ is the collective spin
rotation e−iϕJz . The corresponding covariant measurement
optimal for estimation of the rotation angle ϕ can be
represented by the von Neumann measurement [100] with
phase operator Φ̂ [99], which we define in Appendix D.
In order to evaluate the performance of the phase

operator based interferometer (POI), we minimize the cost
function (2) for Φ̂ as the observable and the normal prior
PδϕðϕÞ. To this end, we use the optimal Bayesian estimator
known as the minimum mean squared error (MMSE)
estimator [3] and find the corresponding optimal initial
state jψ Φ̂i (see Appendix D for details). This results in the
optimal posterior width ΔϕPOI as discussed in Sec. II C for
the variationally optimized interferometer.
To compare different interferometers we consider their

performance at the optimal prior width with respect to the
OQI performance and define the ratio:

χ ¼ minδϕðΔϕ=δϕÞ
minδϕðΔϕOQI=δϕÞ

: ð12Þ

The χ value corresponds to the ratio of minima of an
interferometer and the OQI curves in Fig. 2. The OQI
corresponds to χ ¼ 1.
Figure 5 shows the χ − 1 value for variationally opti-

mized and Φ̂ based interferometers for various system sizes
up to N ¼ 512. The figure highlights suboptimality of the
POI (blue points) for the task of phase estimation with
nonperiodic cost function, as is relevant for frequency
estimation in, e.g., optical clocks. For small systems,
N ≲ 16, the POI is up to ∼10% less efficient than the
OQI and the variational (1,3) and (2,5) interferometers
(green and red points, respectively). The (1,3) circuit
outperforms POI for systems of up to N ∼ 40 atoms,
whereas (2,5) circuit is better for up to N ∼ 100 atoms.
In the limit of large number of atoms, N ⋙ 1, the POI
approaches the OQI performance. Empirical fitting indi-
cates convergence rate χPOI − 1 ∼ N−0.77, as N increases.
On the other hand, the variationally optimized interferom-
eters diverge from OQI linearly with N.

E. Variational optimization in the presence
of imperfections and noise

Variational optimization can be extended to include
imperfections and decoherence. This optimization can also
be carried out on the physical quantum sensor. This is
particularly beneficial when the experimental characteriza-
tion of imperfections and noise is incomplete.
There are various sources of imperfections and deco-

herence, which are relevant in our context. First, there
are control errors in implementing variational quantum
gates. These include offsets of control parameters and
Hamiltonian design errors. The latter are deviations of the
physically realized versus the ideal Hamiltonian, e.g., in the
implementation of one-axis-twisting interaction. However,
if these (unknown) control or design errors are static, i.e.,
do not fluctuate between experimental runs, a variational
algorithm performed on the device will still optimize, and
thus compensate in the best possible way for these errors in
Uen and Ude, i.e., find the best gate decomposition for given
building blocks. In addition, there will be decoherence due
to fluctuations of control parameters, or coupling to an
environment as in spontaneous emission or dephasing.
To incorporate the latter we need to extend the formalism

to density matrices instead of the previously discussed pure
states. Below, we illustrate this by an optimization of the
Ramsey interferometer in the presence of single-atom
dephasing noise during the Ramsey interrogation time T,
as one example of experimentally relevant decoherence.
Local dephasing noise is described by the Lindbladian
L∘ρ ¼ ð1=4ÞPN

j¼1 ðσzjρσzj − ρÞ. Thus the density matrix
after the Ramsey interrogation time,

ρϕ;γTθ ¼ e−iϕJzðeγTL∘ρθÞeiϕJz ; ð13Þ

can be expressed in terms of the dimensionless phase ϕ
accumulated during the Ramsey interrogation time T and

FIG. 5. Relative performance of the covariant, phase operator
based interferometer (POI) (blue) and the variational (1,3) and
(2,5) interferometers (green and red points, respectively) with
respect to the OQI for a given system size N. The χ ratio is
defined in Eq. (12), OQI corresponds to χ ¼ 1. The dashed lines
represent empirical scalings, green and red one scale as ∼N, and
blue is ∼N−0.77.
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the effective exposure to the dephasing noise γT with
dephasing rate γ. Here ρθ ¼ UenðθÞjψ0ihψ0jU†

enðθÞ, where
we used that the dephasing Lindbladian and the free
evolution of the clock supercommute. The particle permu-
tation symmetry of the Lindbladian enables us to simulate
systems at a cubic cost in N [101,102]. The conditional
probability, required to determine the BMSE in Eq. (10),
therefore reads

pθ;ϑðmjϕ; γTÞ ¼ hmjUdeðϑÞρϕ;γTθ U†
deðϑÞjmi: ð14Þ

Figure 6 shows that the optimized Δϕ=δϕ increases as
the noise increases, as expected. For a small γT=δϕ ¼ 0.01
the variational (1,3) interferometer is close to optimal
without noise. Remarkably for all ratios γT=δϕ≲ 1, the
minimum of the (1,3) interferometer remains well below
the uncorrelated (0,0) and the SSS (1,0) interferometers.
This ordering of the respective global minimum is inde-
pendent of N, whereas for γT=δϕ ¼ 10 none of the
entangling sequences improve significantly compared to
SQL [103].

F. Toward the Heisenberg limit

The variationally optimized interferometer with low-
depth quantum circuits found within the Bayesian frame-
work quickly approaches the accuracy of the optimal
Ramsey interferometer. We now discuss our results from
the perspective of reaching the Heisenberg limit.
The HL is a lower bound on the accuracy of an

interferometer imposed by quantum mechanics. For an
N-atom interferometer the HL and SQL are traditionally
written as

Δϕ2
HL ≥

1

N2
; Δϕ2

SQL ≥
1

N
; ð15Þ

which must be understood in the context of the quantum
Fisher information [67,69,104] and quantum Cramér-Rao
bound [33,105] (implying δϕ → 0). In contrast, in the
present work we have adopted a Bayesian approach, which
includes optimizing for a finite dynamic range δϕ. To
evaluate the performance of our quantum variational results
for a given circuit depth in comparison with HL, we adopt
below the Van Trees inequality [106,107] as a bound for
the BMSE.
In brief, for any given conditional probability distribu-

tion pðmjϕÞ, the Cramér-Rao inequality,

VðϕÞ ≥ 1

Fϕ
; ð16Þ

provides a bound on the variance of an unbiased (ϕ̄est ¼ ϕ)
estimator VðϕÞ≡P

m½ϕestðmÞ − ϕ̄est�2pðmjϕÞ based on
the Fisher information:

Fϕ ¼
X
m

½∂ϕ logpðmjϕÞ�2pðmjϕÞ: ð17Þ

For pure states, i.e., in the absence of decoherence,
Fϕ ≤ N2 in correspondence to the HL above. We empha-
size that the Cramér-Rao inequality seeks to identify
optimal unbiased estimators, which can in general be
achieved only locally in ϕ, i.e., in a small neighborhood
of a given phase, and not for a finite dynamic range as is the
goal in our Bayesian approach.
In the Bayesian framework, a bound on the BMSE is

imposed by the Van Trees inequality:

ðΔϕÞ2 ≥ 1

F̄ϕ þ I
: ð18Þ

Here, the first term in the denominator is the Fisher
information (17) averaged over the prior distribution,
F̄ϕ ¼ R

dϕPðϕÞFϕ. The second term is the Fisher infor-
mation of the prior distribution, I ¼ R

dϕPðϕÞ×
½∂ϕ logPðϕÞ�2, representing the prior knowledge. To iso-
late the measurement contribution from the prior
knowledge, we define an effective measurement variance
ðΔϕMÞ2 via

1

ðΔϕMÞ2
≡ 1

ðΔϕÞ2 − I ; ð19Þ

and obtain

ðΔϕMÞ2 ≥
1

F̄ϕ
≥

1

N2
; ð20Þ

reminiscent of the Cramér-Rao inequality (16). In case of a
normal prior distribution (3) we have I ¼ ðδϕÞ−2, and the

FIG. 6. Accuracy of an optimized N ¼ 64 particle interferom-
eter in the presence of single-particle dephasing noise exposures
γT=δϕ relative to the prior distribution width, indicated by
different line styles. The results are displayed for different circuit
complexities ðnen; ndeÞ with 3ðnen þ ndeÞ variational parameters.
For comparison the accuracy of the noise free optimal quantum
interferometer (OQI) is indicated by the black dotted line.
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effective measurement variance (19) reads ðΔϕMÞ−2≡
ðΔϕÞ−2 − ðδϕÞ−2.
In Fig. 7 we plot ðΔϕMÞ × N, the measurement error

scaled to the atom number, for the (2,5) variational
interferometer (solid lines) as a function of the prior width
δϕ for a range of atom numbers N. In addition, we indicate
the HL and the π-corrected HL (see below) as dotted lines
and show results for a GHZ interferometer with spin x-
parity measurement [70] (dashed lines). In the case of the
GHZ interferometer with a normal prior, we have

ðΔϕGHZ
M Þ2 ¼ eðNδϕÞ2

N2
− ðδϕÞ2; ð21Þ

showing that the GHZ interferometer attains the HL
uncertainty ΔϕM → 1=N for a given prior width δϕ only
for atom numbers N ≲ 1=δϕ. This fact is illustrated in
Fig. 7 by the dashed lines which diverge from the HL for
smaller and smaller δϕ as N grows. In contrast, the
variational interferometer (solid lines) is of the order of
the π-corrected HL [34,35,37,108], ΔϕM → π=N, for a
wide range of prior widths δϕ as N increases.
Intuitively, the emergence of π-corrected HL can be

understood as follows. The optimal N-atom quantum
interferometer can be described as a von Neumann
measurement in the particle permutation symmetric sub-
space [31,34]. Thus, there are N þ 1 possible measurement
outcomes to distinguish at most N þ 1 phase values in
the interval ½−π; π�. The corresponding estimation error
for evenly spread estimates reads Δϕ ∼ ð1=2Þ2π=
ðN þ 1Þ → π=N.
For large δϕ the solid lines in Fig. 7 exhibit strong

deviations from the asymptotic π-corrected HL behavior.
The cusps are explained by phase slips outside the interval

½−π; π� which lead to a squared estimation error of 4π2. For
a normal prior distribution, the performance of an inter-
ferometer limited by the π-corrected HL including the
phase slips is given by

ðΔϕπHL
M Þ2 ¼ π2

N2
þ 4π2

�
1 − erf

πffiffiffi
2

p
δϕ

�
: ð22Þ

Results of this section are obtained in the absence of
decoherence.

G. Finite range interactions

Our previous discussion assumed infinite range inter-
actions as entangling quantum resource, while, e.g., neutral
atoms stored in tweezer arrays feature finite range inter-
actions. The variational optimization of the BMSE can be
directly generalized to finite range interactions, which we
illustrate by optimizing a sensor based on Rydberg dressing
resources [109,110] DμðθÞ ¼ exp½−iθðHD

μ =V0Þ�, as is real-
ized in alkaline earth tweezer clocks [46–48]. The effective
interaction Hamiltonian we use for the optimization reads

HD
μ ¼

XN
k;l¼1

V0R6
C=4

jrk − rlj6 þ R6
C

σμkσ
μ
l ðμ ¼ x; y; zÞ; ð23Þ

where rk represents the position of particle k. The inter-
action strength at short distances V0 and interaction radius
RC depend on the Rydberg level and the dressing laser used
to let the particles interact [111].
Reference [66] presented a study of variationally opti-

mized spin-squeezed input states, and we refer to this work
for the elementary gates we employ as building blocks for
variationally optimizing entangling and decoding opera-
tions. In analogy to Eqs. (6) and (7), we write the entangler
and decoder, effectively replacing the T x;z by Dx;z. In a
similar way we can rewrite Eq. (9) to account for dynamics
in full 2N-dimensional Hilbert space.
Figure 8(a) shows the optimized Δϕ=δϕ for a 4 × 4

square array for RC ¼ a with a the lattice constant. We find
variational solutions approximating the OQI, similarly to
the OAT interactions in Fig. 2. In contrast to the infinite
range OAT interaction, we are not able to exactly reproduce
the optimal GHZ state interferometer at δϕ < 1=N.
Nonetheless, at any prior distribution width significant
improvement beyond the uncorrelated interferometer is
achieved, and in particular around global minimum of
the optimal interferometer (vertical dashed line), the
decoder-enhanced circuits clearly surpass sensitivity of
entangled input states only.
In Fig. 8(b) we further study the dependence on the scaled

interaction radiusRC=a for a fixedpriordistributionwidthδϕ
corresponding to the minima of variational and optimal
interferometer curves in Fig. 8(a) (vertical dashed line). We
see that even in the limit of an effective nearest-neighbor

FIG. 7. Plot of ΔϕMN, i.e., the standard deviation of an
effective measurement rescaled by the ensemble size N, versus
prior width δϕ. Solid lines show results for the optimized
interferometer with circuit depth ðnen; ndeÞ ¼ ð2; 5Þ in compari-
son to the analytic expression describing a GHZ state interfer-
ometer [Eq. (21)] shown with dashed lines and the π-corrected
Heisenberg limit including phase slips [Eq. (22)] shown
with dotted lines. The Heisenberg limit and the π-corrected
Heisenberg limit are indicated with dotted horizontal lines.
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interactionRC ¼ a a clear improvement beyond the classical
sensitivity limit is possible. As the interaction radius
increases, the root BMSE of the variationally optimized
interferometer decreases, ultimately reproducing the results
of infinite range interactions in the limit RC=a → ∞.
Theoretical treatment of the variational interferometry

with finite range interactions involves solution of a quan-
tum many-body problem. This, in general, is an exponen-
tially hard problem representing the regime where
variational optimization on the quantum sensor as a
physical device provides a (relevant) quantum advantage,
beyond the capabilities of classical computation.

III. APPLICATION TO ATOMIC CLOCKS

Atomic clocks realized with neutral atoms in optical trap
arrays or trapped ions provide us with natural entanglement
resources to implement variationally optimized Ramsey
interferometry. Below, we provide a study of a variationally
optimized clock assuming as quantum resources global
spin rotations and OAT, as realized, for example, with
trapped ions as Mølmer-Sørensen gate, or in cavity setups
with neutral atoms. This discussion is readily extended to
other platforms and resources.
Optical atomic clocks operate by locking the fluctuating

laser frequency ωLðtÞ to an atomic transition frequency
ωA [1]. To this end, an atomic interferometer is used to
repeatedly measure the phase ϕk ¼

R tkþT
tk dt½ωLðtÞ − ωA�

accumulated during interrogation time T at the kth cycle
of clock operation, i.e., k ¼ 1; 2;…. After each cycle, the
measurement outcome mk providing the phase estimate
ϕestðmkÞ is used to infer an estimated frequency deviation
ϕestðmkÞ=T. In combination with previous measurement
results this is used to correct the laser frequency fluctua-
tions via a feedback loop yielding the corrected frequency

of the clock ωðtÞ. For further details on the actual clock
operation we refer to Appendix G, where we also describe
our numerical simulations of optical atomic clocks. We
emphasize the importance of finite dynamic range in phase
estimation in identifying the optimal clock operation, as
provided by the Bayesian approach of Sec. II.
The relevant quantity characterizing the long-term clock

instability is the Allan deviation σyðτÞ for fluctuations of
fractional frequency deviations y≡ ½ωðtÞ − ωA�=ωA, aver-
aged over time τ ≫ T [1]. To connect the Bayesian
posterior phase variance of the optimized interferometer
(10) of Sec. II, we follow the approach of Ref. [90] to
obtain predictions for the clock instability in the limit of
large averaging time τ. Our predictions are supported by
numerical simulations of the closed servo loop of the
optical atomic clocks.
In the following we assume that interrogation cycles

can be performed without dead times (Dick effect). This
can be achieved using interleaved interrogation of two
ensembles [112]. For interrogation of a single ensemble,
Dick noise may pose limitations for interaction-enhanced
protocols especially for larger ensembles, as was ana-
lyzed for squeezed states in Ref. [91]. In Appendixes F
and H, we characterize in more detail the requirements
regarding dead time for the class of variational protocols
developed here.

A. Prediction of clock instability
in the Bayesian framework

As shown in Ref. [90], the Allan deviation can be well
approximated by means of the effective measurement
uncertainty ΔϕM which isolates the measurement contri-
bution from the prior knowledge, as in Eq. (19). Assuming
no dark times between interrogation cycles, the Allan
deviation reads

(a) (b)

FIG. 8. Performance of the variationally optimized N ¼ 16 Ramsey interferometer on a 4 × 4 lattice interacting via finite range
Rydberg dressing interactions (23) with interaction radii RC in units of the array spacing a. Colored lines show the reduction of the
posterior phase distribution width Δϕ relative to the prior distribution width δϕ for variationally optimized circuits complexity ðnen; ndeÞ
with 3ðnen þ ndeÞ variational parameters. The performance of the optimal quantum interferometer (OQI)[31] is indicated by dotted lines.
The shaded areas indicate the classically accessible (purple) and the quantum mechanically inaccessible (gray) regions. (a) Prior width
dependence of the optimized solution at RC=a ¼ 2. (b) Interaction range dependence of the optimal solution at a prior distribution width
δϕ ≈ 0.8 indicated by the vertical dashed line in (a).
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σyðτÞ ¼
1

ωA

ΔϕMðTÞ
T

ffiffiffiffi
T
τ

r
: ð24Þ

Here τ=T is the number of cycles of clock operation and
ΔϕMðTÞ≡ ½ðΔϕTÞ−2 − ðδϕTÞ−2�−1=2 is the effective meas-
urement uncertainty of one cycle. The posterior width ΔϕT
is found according to Eq. (10) assuming a prior width
δϕT ¼ ðbαTÞα=2 corresponding to laser noise dominated
spreading of the phase distribution within one interrogation
cycle. The labels α ¼ 1, 2, 3 specify temporal correlations
in the phase noise of the laser and correspond to atomic
clocks with a white-frequency-, flicker-frequency-, or
random-walk-frequency-noise-limited laser, respectively.
The laser noise bandwidth bα and the exponent α are
related to the power spectral density SLðfÞ ∝ f1−α of the
free running laser (see Appendix A). Representative exam-
ples for σyðτÞ when using variationally optimized protocols
are shown in Fig. 9. The solid lines result from numerical
simulations of the full feedback loop of an atomic clock in
which an integrating servo corrects out frequency fluctua-
tions over the course of multiple cycles; see Appendix G for
details. For the simulations we assume the atoms as ideal
frequency references without any systematic shift of ωA.
In atomic clocks the simulated Allan deviations pre-

sented in Fig. 9 are larger at small averaging times τ=T ∼ 1,
due to the delayed feedback, before reducing as σyðτÞ ∝
τ−1=2 at long averaging times τ=T ≫ 1 when all correlated
laser noise is corrected out. To determine long-term
stability the Allan deviation is measured experimentally
for a time τ long enough that clock instability has reached
this asymptotic scaling. Therefore, we introduce and
consider below a dimensionless prefactor for the asymp-
totic scaling,

σ ¼ ΔϕMðTÞffiffiffiffiffiffiffiffi
bαT

p ; ð25Þ

which gives the Allan deviation in units of ω−1
A ðbα=τÞ1=2, as

shown by the dashed lines in Fig. 9. In the following,
we use Eq. (25) to reevaluate the performance of the
optimized interferometers presented in Fig. 2 as the
achievable long-term clock instability σ at an averaging
time τ. In comparison to the framework of Sec. II, the
BMSE is replaced by the Allan deviation and the prior
width by the interrogation time T. We note that the scaling
of the Allan deviation with respect to T is more intricate
than the one of the BMSE with the prior width: On the one
hand, a large interrogation time means good accuracy in
frequency estimation, but on the other hand, it also broad-
ens the prior distribution and therefore degrades the phase
estimation.

B. Results of the clock optimization

Figures 10(a) and 10(b) show the achievable long-term
clock instability σ as a function of the interrogation time T
for clocks made of N ¼ 64 atoms and the flicker-noise-
limited laser. The purple line (in both panels) represents
performance of the conventional clock exploiting Ramsey
interferometer with CSS as input, collective spin projection
measurement, and a linear estimator, given by the circuit
(0,0). Thus, the shaded area above the purple line roughly
defines the performance achievable by classical clocks. In
the case of CSS based classical clocks the cost function (10)
can be analytically minimized [90] yielding the dimension-
less Allan deviation,

σCSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

bαT

�
eν

N
þ
�
1 −

1

N

�
sinh ν − ν

�s
; ð26Þ

where ν≡ ðδϕTÞ2. The expression (26) has two important
limits. For small interrogation times and, consequently,
small prior widths, the performance of the clock is limited
by the quantum projection noise of the uncorrelated
atoms as σSQL ¼ ðNbαTÞ−1=2. The SQL limited clock
instability σSQL (dashed purple line) decreases as the
interrogation time grows. For large interrogation times,
bαT ∼ 1, however, the laser noise becomes dominant
and generates accumulated phase values exceeding the
dynamic range of the atomic interferometer, thus leading
to the laser coherence time limit (CTL) [91] of the
clock σCSSCTL ¼ f½sinhðδϕ2

TÞ − δϕ2
T �=ðbαTÞg1=2 (dotted pur-

ple line). Between these two limits there exists an
optimal interrogation time delivering the minimum Allan
deviation σopt ≡minT σ which defines the optimal clock
performance.
The black dotted line in Figs. 10(a) and 10(b) shows the

instability of the optimal quantum clock (OQC), σOQC,
exploiting single-shot protocols with the optimal interfer-
ometer. The gray shaded region below the black dotted
curve is inaccessible to any N-particle clock not using
entanglement between different clock cycles for initial state

FIG. 9. Allan deviation representing a single run of a flicker-
frequency-noise-limited clock servo loop based on variationally
optimizedN¼64 particle interferometers at different circuit com-
plexities ðnen; ndeÞ and a Ramsey interrogation time b2T ≈ 0.5
(solid lines). For comparison the long time scaling predicted by
Eq. (25) is shown by the dashed lines.
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preparations and/or measurements. The laser CTL for the
optimal clock in the asymptotic limit of large N can be
estimated from Eq. (2) by assuming zero phase estimation
error within the ½−π; π� interval and ϵðϕÞ ¼ 4π2 outside of
the interval due to the phase slip:

σOQCCTL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π2

bαT

�
1 − erf

πffiffiffi
2

p
δϕT

�s
: ð27Þ

The green dotted line in Fig. 10(a) shows the laser CTL for
the optimal clock σOQCCTL . The optimal clock instability at
shorter interrogation times demonstrates two distinct scal-
ings corresponding to the two Heisenberg limits discussed
in Sec. II F. At very short times, ðbαTÞα=2 ≲ N−1, the GHZ
state based clock (red line) becomes optimal approaching
the instability limit given by the conventional HL, σHL ¼
N−1ðbαTÞ−1=2 (red dashed line). Larger interrogation times
correspond to wider prior phase distributions; hence the
π-corrected HL becomes the limiting factor, σπHL ¼
πN−1ðbαTÞ−1=2 (green dashed line). The optimal quantum
clock instability in the limit of large number of atoms,
N → ∞, is fundamentally restricted by the interplay
between the σπHL and σOQCCTL , as we discuss below.
The instabilities of clocks based on variationally opti-

mized interferometers employing quantum circuits of
various complexities are shown in Fig. 10(b) with solid
color lines. In particular, the orange line corresponds to the
SSS based clock, given by the circuit (1,0). As the circuit’s
depth grows, the enhanced dynamic range of the variational
interferometer shifts the laser CTL toward larger inter-
rogation times which in combination with suppressed shot

noise reduces the clock instability. The figure shows that
variational clocks of growing complexity quickly outper-
form the SSS clock and approach the optimal quantum
clock instability. Beyond the model predictions this
improvement is also observed in simulations of a full
clock operation using variationally optimized protocols, as
shown by the markers in Fig. 10(b). Deviations between
theory and numerical results can arise due to a number
of different effects. For one, the onset of fringe hops for
b2T ∼ 1 is not included explicitly in the models. Especially
for small N a sudden loss of stability, resulting from fringe
hops, can occur before reaching the CTL due to stronger,
non-Gaussian measurement noise [90,91]. In contrast, for
clocks with larger N and increasing complexity it is
expected that the onset of fringe hops and the minimum
of CTL coincide. Another source of discrepancy is the
assumption of a laser noise dominated prior width
δϕT ¼ ðbαTÞα=2. Propagation of the measurement uncer-
tainty and delay within the feedback control can lead to a
broadening of the true phase distribution. In particular,
protocols which are highly optimized to a particular prior
width may thus not achieve their predicted stability in the
simulations, e.g., around b2T ≈ 0.02 in Fig. 10(b).
Nevertheless, good agreement between the numerically

determined instability and the theory prediction is found
around the overall optimal protocols.
In Fig. 11 we study optimal instability of the variational

clocks σopt (corresponds to minima in Fig. 10) as a function
of the atomic ensemble size N. The CSS clock is repre-
sented by the purple line which scales asymptotically as
σCSSopt ∝ N−ð3α−1Þ=ð6αÞ. The scaling is a bit slower than the
conventional SQL limit ∝ N−1=2 due to the laser CTL

(b)(a)

FIG. 10. Dimensionless Allan deviation σ [see Eq. (25)] of a N ¼ 64 flicker-frequency-noise-limited clock at constant averaging time
τ as a function of the Ramsey interrogation time T rescaled to the bandwidth of the laser noise. The dotted black line indicates the
instability of the optimal quantum clock (OQC). (a) Analytic expressions for the instability of coherent spin state (CSS) and GHZ state
clock (solid lines) in comparison to quantum projection noise limits, namely the standard quantum noise limit (SQL), π-corrected
Heisenberg limit (πHL), HL (dashed lines), and the coherence time limits (CTL) of a CSS clock and the OQC (densely dotted lines).
(b) Variational approximation of the OQC at increasing circuit complexities ðnen; ndeÞwith 3ðnen þ ndeÞ variational parameters. Markers
show the numerically determined instability extracted from simulations of the full feedback loop of an atomic clock, described in detail
in Appendix G, for a selection of optimized protocols. The numerical data are displayed only up to values of b2T where no fringe hop
occurred within the 2 × 106 simulated clock cycles. Beyond this point an abrupt loss of stability was observed.
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which reduces the optimal interrogation time as N grows.
Any classical clock using one-shot protocols with collec-
tive spin measurements belongs to the shaded purple region
above the CSS clock line.
The N scaling of the optimal quantum clock is shown

with the black dotted line for system sizes up to N ¼ 64.
For larger system sizes we show the asymptotic behavior
(black dashed line) obtained by combining the noise
contributions of the π-corrected HL and the laser CTL,
σasym ≡minT ½σ2πHL þ ðσOQCCTL Þ2�1=2. Similar to the classical
clock scaling, the laser CTL prevents the optimal quantum
clock from achieving the Heisenberg scaling ∝ N−1,
instead, leading to a logarithmic correction in the large
N limit as found in Refs. [79,113]. The present approach
allows obtaining tighter bounds on the asymptotic scaling
for general α (see Appendix E). In particular, for the flicker-
noise-limited laser, α ¼ 2, the OQC instability scales as

σOQCopt ∝
ffiffiffi
π

p
N

½lnðz ln zÞ−1=2 þ lnðz ln zÞ1=2�1=2; ð28Þ

with z≡ 32N4=π and the corresponding optimal inter-
rogation time scaling as TOQC

opt ≃ πb−12 lnðz ln zÞ−1=2. The
gray shaded area below the dashed and dotted black lines is
inaccessible to quantum clocks without entangled clock
cycles. Finally, the variationally optimized clocks of
various circuit complexities are shown with solid color
lines and demonstrate scalings approaching the optimal
quantum clock as the circuit depth increases.
We have also studied performance of the variationally

optimized clocks experiencing individual atomic dephasing
during the interrogation period T. Similar to the results
of Sec. II E, the optimized clocks perform well for
decoherence rates small compared to the laser noise
bandwidth, γ=bα ≪ 1. For stronger noise, γ=bα ≳ 1, the

optimized clock instability approaches the one of the
classical clock, as expected. We also checked the perfor-
mance of optimized clocks for other types of laser noise
α ¼ 1, 3, and found no significant changes to the results
presented above.
In summary, atomic clocks based on variational quantum

interferometers with low-depth circuits can approach the
performance of the optimal quantum clock in single-shot
protocols. The variationally optimized clocks can be readily
complemented with more sophisticated interrogation
schemes [80,81], eventually also approaching the ultimate
quantum bound on the Allan deviation [82,114].

IV. OUTLOOK AND CONCLUSIONS

In this work we have studied optimal Ramsey interfer-
ometry for phase estimation with entangledN-atom ensem-
bles, and application of these optimal protocols to atomic
clocks. We have considered a Bayesian approach to
quantum interferometry, and have defined optimality via
a cost function, which in the present study is the BMSE for
a given prior distribution or, in the context of atomic clocks,
the Allan deviation for a given Ramsey time. The key
feature of the present work is that optimization is performed
within the family of operational quantum resources pro-
vided by a particular programmable quantum sensor plat-
form. Thus identifying the optimal quantum sensor is recast
as a variational quantum optimization where the entangling
circuits generating the optimal input state, and the decoding
circuits implementing the optimal generalized measure-
ment, are variationally approximated with the given re-
source up to a certain circuit depth. We have presented two
model studies: in our first model, we considered one-axis
twisting as quantum resource; our second model uses finite
range interactions as entangling operations. Our examples
demonstrate that already low-depth circuits provide excel-
lent approximations for optimal quantum interferometry.
We emphasize that the familiar discussions of interferom-
etry with spin-squeezing and GHZ states are included as
special cases. Furthermore, advanced measurement strate-
gies including adaptive measurement and quantum phase
estimation are not advantageous for the present problem, as
a von Neumann measurement has been proven optimal.
Given advances in building small atomic scale quantum

computers, or programmable quantum simulators which
can act also as quantum sensors, the variational approach
to optimal quantum sensing provides a viable route to
entanglement enhanced quantum measurements with
existing experimental entangling, possibly nonuniversal
resources, and optimizing in the presence of noise.
Indeed, trapped ions with Mølmer-Sørensen entangling
gates, and optical arrays interacting via Rydberg finite
range interactions or cavity setups, provide the necessary
ingredients provide the necessary ingredients to operate as
quantum sensors, while implementing such variational
protocols and quantum sensors. While first generation

FIG. 11. Particle number N dependence of the dimensionless
Allan deviation of a flicker-frequency-noise-limited clock at a
constant averaging time τ and the optimal Ramsey interrogation
time for different circuit complexities ðnen; ndeÞ with 3ðnen þ ndeÞ
variational parameters. For comparison we also show the per-
formance of the optimal quantum clock (dotted line) and the
asymptotic behavior [see Eq. (28)] obtained from the π-corrected
HL (dashed line).
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experiments might demonstrate optimal Ramsey interfer-
ometry for a specified dynamic range of the phase, and
optimization of quantum circuits “on the quantum sensor”
for various circuit depths (Sec. II), the present work also
promises application of variational quantum sensing on
existing quantum sensors, in particular atomic clocks
(Sec. III). The guiding principle behind the present work
of identifying for a sensing task the optimal sensing
protocol given the quantum resources provided by a
particular sensor and sensor platform is, of course, general
and generic, and applies beyond Ramsey interferometry,
and beyond the BMSE as cost function.
As an outlook, we emphasize that the search for optimal

sensing can also be run directly as a quantum-classical
feedback loop on the physical quantum sensor. This offers
the intriguing possibility of optimizing with given quantum
resources and in the presence of imperfections of the actual
device, which might include control errors and noise.
Further studies are needed to explore best optimization
strategies of the cost function on the classical side of the
optimization loop given the limited measurement budget on
the programmable quantum sensor. This applies to both the
initial global parameter search, supported by theoretical
modeling, and small iterative readjustments of optimal
operation points due to slow drifts of the quantum sensor.
Optimization on the (physical) quantum sensor can also

be performed in the regime of large particle numbers N,
which might be inaccessible to classical computations, i.e.,
in the regime of quantum advantage. Hybrid classical-
quantum algorithms have been discussed previously as
variational quantum eigensolvers for quantum chemistry
and quantum simulation, where “lowest energy” plays
the role of the cost function which is evaluated on the
quantum device. In contrast, in variational quantum sensing
we optimize quantum circuits in view of an “optimal
measurement” cost function, and it is the (potentially
large-scale) entanglement represented by the variational
many-particle wave function in N-atom quantum memory,
which provides the quantum resource and gain for the
quantum measurement.
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Note added.—Recently, Ref. [115] reported an experimen-
tal implementation of variationally optimized Ramsey
interferometry in a system of up to N ¼ 26 trapped ions,
in one-to-one correspondence to the present theoretical
work. This includes demonstration of quantum enhance-
ment in metrology beyond squeezing through low-depth,
variational quantum circuits, and on-device quantum-
classical feedback optimization to “self-calibrate” the varia-
tional parameters. In both cases it is found that variational
circuits outperform classical and direct spin-squeezing
strategies under realistic noise and imperfections.

APPENDIX A: LASER NOISE AND PRIOR
DISTRIBUTION WIDTH

To present results in Sec. III in dimensionless units, we
follow Ref. [90] and define an effective bandwidth b̃ via

σLð1=b̃ÞωA=b̃ ¼ 1; ðA1Þ

where σL is the Allan deviation of the uncorrected reference
laser. For a laser that is mainly limited by a single power
spectral density component, i.e., SLðfÞ ¼ h1−αf1−α, one
can unambiguously express the bandwidth in terms of the
prefactors h1−α in the power spectral density and the
respective Allan deviation [116], so that

b̃1 ¼
h0
2
ω2
A;

b̃2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h−12 ln 2

p
ωA;

b̃3 ¼ ðh−2=6Þ−1=3ð2πÞ−2=3ω−2=3
A : ðA2Þ

Numerical simulation of the clock feedback loop [90]
reveals that the dimensionless time bαT is related to the
prior distribution width of a stabilized clock by the relation
ðδϕÞ2 ¼ ðbαTÞα, where bα ¼ χðαÞ1=αb̃α is a rescaled band-
width, differing from b̃α only by an empirically determined
prefactor χ ≈ 1, 1.8, 2 for α ¼ 1, 2, 3. For a laser spectrum
containing all three contributions, Eq. (A1) can still be used
to determine an effective bandwidth, and servo loop
simulations of the clock can reveal the modified time
dependence of the prior distribution width enabling one to
extend the clock model to realistic laser noise parameters.
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APPENDIX B: SPIN x PARITY IN ENTANGLING
AND DECODING CIRCUITS

We consider global rotations Rμ, OAT interactions T μ

(see Sec. II B), and finite range dressing interactions Dμ

(see Sec. II G) with μ ¼ x, y, x as resources for the
variational optimization. Within this set of resources we
are able to ensure an antisymmetric estimator by imposing
invariance under the spin x parity Px on the entangler and
decoder, i.e., PxUenRyð−π=2ÞPx ¼ UenRyð−π=2Þ and
PxUdePx ¼ Ude under the spin x parity Px ¼ Rxðπ=2Þ,
since this implies

ϕ̄estðϕÞ ¼ hψ0jU†
eneiϕJzU

†
deJyUdee−iϕJzUenjψ0i

¼ −hψ0jU†
ene−iϕJzU

†
deJyUdeeiϕJzUenjψ0i

¼ −ϕ̄estð−ϕÞ; ðB1Þ

where we use that PxJxPx ¼ Jx, PxJy;zPx ¼ −Jy;z,
P†
x ¼ Px, and PxRyðπ=2Þjψ0i ¼ Ryðπ=2Þjψ0i. The most

general entangling and decoding sequences satisfying these
constraints are used in Eqs. (6) and (7) and displayed
in Fig. 1.

APPENDIX C: WIGNER DISTRIBUTION

In Secs. II C and II Ewevisualize collective spin operators
O like the density matrix ρ ¼ jψ inihψ inj of the initial state of
the interferometer [Eq. (4)] or the variationally decoded
measurement operator M ¼ P

m ϕestðmÞU†
dejmihmjUde

[decomposed in terms of the projection in Eq. (5)] by means
of the Wigner distribution [117].
To obtain the Wigner distribution, the operator is

expanded in terms of spherical tensors,

Tk;q ¼
XN=2

m;m0¼−N=2

ð−1Þj−m ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

p

×

�
j k j

−m q m0

�
jmihm0j; ðC1Þ

where ð j k j
−m q m0 Þ denotes the Wigner 3j symbol. O

can be represented in the spherical tensor basis,

O ¼
XN
k¼0

Xk
q¼−k

ck;qTk;q; ðC2Þ

where ck;q ¼ TrðOTk;qÞ. Replacing Tk;q in this represen-
tation by spherical harmonics Yk;qðθ;ϕÞ, one arrives at the
Wigner distribution,

WOðθ;ϕÞ ¼
XN
k¼0

Xk
q¼−k

ck;qYk;qðθ;ϕÞ; ðC3Þ

as a quasiprobability distribution on a generalized Bloch
sphere.
The Wigner function can be used to calculate the

expectation value,

TrðρMÞ ¼
Z

π

0

dθ
Z

2π

0

dφWMðθ;φÞWρðθ;φÞ; ðC4Þ

by integrating the overlap of the respective Wigner func-
tions over the generalized Bloch sphere. This implies that
we can interpret contours of the measurement distribution
with the different eigenvalues of the measurement operator
while the amplitude of the state distribution indicates how
much the state overlaps with the respective projection of the
measurement projection.

APPENDIX D: NUMERICAL OPTIMIZATION
OF THE PHASE OPERATOR BASED

INTERFEROMETER

Here we define the phase operator and describe an
iterative optimization procedure allowing us to minimize
the cost function (2) for a given observable using the
minimal mean squared error estimator [3]. The phase
operator Φ̂ reads [99,100]

Φ̂ ¼
XJ
s¼−J

ϕsjsihsj; ðD1Þ

ϕs ¼
2πs

2J þ 1
; ðD2Þ

jsi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

p
XJ
m¼−J

e−iϕsmjmi; ðD3Þ

where Jzjmi ¼ mjmi.
Our goal is to minimize the cost function Eq. (2) for the

observable Φ̂ and the MMSE estimator by finding the
optimal initial state jψ Φ̂i. The MMSE estimator reads [3]

ϕMMSE
est ðsÞ ¼

Z
ϕpðϕjsÞdϕ; ðD4Þ

where the conditional probability is pðϕjsÞ ∝ pðsjϕÞPðϕÞ
with pðsjϕÞ ¼ jhsje−iϕJz jψ inij2 and the observable eigen-
state jsi defined in Eq. (D3).
The optimization is performed iteratively. Initially we

start with s ¼ 0 eigenstate of Φ̂ as the input state

jψ ð0Þ
in i ¼ js ¼ 0i, which is a good approximation for a

state highly sensitive to phases around ϕ ¼ 0. The state
defines the corresponding MMSE estimator ϕMMSE

estð0Þ ðsÞ
as given by Eq. (D4). In the next iteration we find the

state jψ ð1Þ
in i minimizing the cost function (2) for the

given ϕMMSE
estð0Þ ðsÞ estimator by solving a corresponding

QUANTUM VARIATIONAL OPTIMIZATION OF RAMSEY … PHYS. REV. X 11, 041045 (2021)

041045-15



eigenproblem, as described in Ref. [31]. The iterative
procedure converges quickly, yielding the optimal initial

state for the POI jψ ðkÞ
in i→k→∞ jψ Φ̂i which, in turn, defines

the optimal estimator via Eq. (D4) and the corresponding
posterior width ΔϕPOI. This result is used in Sec. II D.

APPENDIX E: N SCALING OF THE OPTIMAL
QUANTUM CLOCK INSTABILITY

Here we derive asymptotic scaling of the optimal inter-
rogation time and the corresponding minimal instability
of the optimal quantum clock. As discussed in Sec. III,
the instability of clocks exploiting single-shot protocols is
fundamentally limited by the measurement shot noise given
by the π-corrected HL for short interrogation times T, and
the laser CTL for large T. For the dimensionless Allan
variance we write

ðσOQCÞ2 ¼ σ2πHL þ ðσOQCCTL Þ2

¼ 1

sπ2=α

�
π2

N2
þ 4π2

�
1 − erf

1ffiffiffiffiffiffiffi
2sα

p
��

; ðE1Þ

where s≡ π−2=αbαT is the dimensionless Ramsey time.
The goal is to minimize Eq. (E1) with respect to s in the
limit of large number of atoms, N → ∞. The derivative
with respect to s reads

d
ds

ðσOQCÞ2 ¼ −
1

s2π4=α

�
π2

N2
þ 4π2

�
1 − erf

1ffiffiffiffiffiffiffi
2sα

p
�

− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2π3α2

sα

r
e−1=2s

α

�
; ðE2Þ

and, using a self-consistent assumption for optimal time
s� ≪ 1, results in the following equation for s�:

es
−α� sα� ¼

8α2N4

π
: ðE3Þ

Here we used the error function asymptotic 1 − erfðxÞ →
e−x

2

=ð ffiffiffi
π

p
xÞ for x → ∞. Taking the logarithm of the

expression (E3) (s�, α, and N are positive). we obtain an
equation for w≡ s−α� ,

w − lnw ¼ ln z;

with z≡ 8α2N4=π. For z > e, the solution can be written as
the infinitely nested logarithm, wðzÞ ¼ lnðz lnðz lnðzðln…Þ
…ÞÞÞ, and can be checked by direct substitution. Using the
wðzÞ function we can express the optimal Ramsey time for
N ≫ 1 as follows:

bαTopt ¼ π2=αs� ¼
�
1

π2
wðzÞ

�
−1=α

: ðE4Þ

Finally, we substitute the optimal Ramsey time into
Eq. (E1):

ðσOQCopt Þ2 ≃ π2

N2

�
wðzÞ
π2

�
1=α

�
1þ 2

αwðzÞ
�
: ðE5Þ

We use Eqs. (E4) and (E5) and keep only the first two
logarithms in the definition of wðzÞ to obtain expressions
for the optimal interrogation time and minimal instability of
the optimal quantum clocks in Sec. III for α ¼ 2.

APPENDIX F: FINITE DEAD TIME IN THE
ATOMIC CLOCK PROTOCOL

Here we discuss upper limits to the dead times of atomic
clocks, which are required to reach the variationally
optimized stability presented in Sec. III. When each inter-
rogation cycle of duration TC ¼ TD þ T is composed of a
dead time TD > 0, and Ramsey free evolution time T, the
stability is reduced compared to the ideal case at TD ¼ 0
discussed in the main text.
Let us consider SLðfÞ ¼ h−1f−1 as the power spectral

density of the free running laser. In addition, we assume
that the protocols are sensitive to phase shifts during T only
and that all entangling and decoding operations are
included in the dead time where we assume no sensitivity.
Given these assumptions, the instability contribution of the
Dick effect is [118]

σ2DickðτÞ ¼
b2
ω2
Aτ

b2T
χð2Þ2 ln 2

1

d3
X∞
n¼1

sin2ðπndÞ
π2n3

; ðF1Þ

with χ given in Appendix A and the duty cycle d ¼ T=TC.
In addition, the instability predicted in the Bayesian
framework, Eq. (24), becomes

σ2BayðτÞ ¼
b2
ω2
Aτ

σ2

d
; ðF2Þ

with σ as defined in Eq. (25).
In the following we want to estimate below which

level of dead time the combined instability σyðτÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2BayðτÞ þ σ2DickðτÞ

q
is no longer dominated by the con-

tribution of the Dick effect. The minimal required duty
cycle dmin where the value for σ2DickðτÞ at optimal Ramsey
time b2Topt dives below the lowest variational instability is

dmin ¼ min

�
d

���� b2Topt

χð2Þ2 ln 2
1

d2
X∞
n¼1

sin2ðπndÞ
π2n3

≤ σ2opt

	
: ðF3Þ

From dmin one can directly infer the maximum fraction
R ¼ TD;max=TC ¼ 1 − Topt=TC ¼ 1 − dmin of dead time in
the clock cycle, where TC ¼ Topt þ TD;max. In the limit
R ≪ 1 it can be shown that − lnðRÞR2=ð1 − RÞ2 ∝
ðb2ToptÞσ2opt, so it is expected that for N ≫ 1 this ratio
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will eventually follow a similar scaling as σ2opt. The exact
relation is shown in Fig. 12. It is worth noting that R ≪ 1 is
still recommended for small ensemble sizes, even though
this condition is not required based on dmin, to prevent
unnecessarily increasing the clock instability. A more
complete model for the influence of dead time and the
Dick effect requires us to include the full spectral density
SLðfÞ of the laser and evaluate the sensitivity function
during the entangling and decoding dynamics.

APPENDIX G: NUMERICAL SIMULATION OF
THE VARIATIONAL CLOCK OPERATION

In order to see how well σ [Eq. (25)] reflects an
achievable instability, we perform numerical simulations
of all essential parts involved in the closed feedback loop of
an optical atomic clock when operating with the variation-
ally optimized Ramsey protocols.
Building up the simulations proceeds as follows.
(i) The free-running laser is simulated. Given a par-

ticular spectral density SLðfÞ ¼ h1−αf1−α and the
Ramsey time T, we generate a sequence of random
numbers ȳk¼ð1=TÞR tkþT

tk dt½ωLðtÞ−ωA�=ωA which
gives the average frequency fluctuations of the laser
without any feedback in each cycle k. Correlations
between different cycles, required when α ≠ 1, can,
e.g., be obtained in the time domain by implement-
ing ȳk as a random walk or a sum of multiple
damped random walks [90].

(ii) To stabilize the laser frequency for long averaging
times τ ≫ T, a feedback correction is applied to
the laser frequency at the end of each cycle. In the
simulations, the estimated frequency deviation
ȳest;k ¼ mk=ð2πωAT∂ϕm̄ðϕÞjϕ¼0Þ obtained from
measurement result mk at tk is multiplied by a gain
factor 0 < g ≤ 1 and subtracted from the true laser
frequency. This integrating servo corrects frequency
errors over ∼1=g cycles and is sufficient to achieve a

robust stabilization at τ=T ≫ 1=g for flicker-noise-
limited lasers [91]. However, to simulate the quan-
tum probabilities pðmjϕkÞ at tk the phase ϕk ¼
ωATȳ0k based on the actual laser noise ȳ0k is needed.
Thus, later measurements are affected not only by
the noise of the free-running laser but also by the
measurement results and corrections from earlier
cycles. To implement this efficiently, the simulation
runs sequentially. At the beginning the phase ϕ1 is
calculated for the first cycle only. Then the proba-
bilities pðmjϕ1Þ with this particular phase are
calculated and a single measurement result m1 is
sampled according to this distribution. The estimator
yest;1 is calculated and the servo corrects the laser
frequency so that ȳ02 ¼ ȳ2 − gȳest;1 is the actual noise
in the second cycle. This procedure is repeated in
each cycle with the corrected frequencies, meaning,
e.g., ϕ2 ¼ ωATȳ02.

(iii) The clock stability is evaluated, based on the
simulated sequence of stabilized frequency devia-
tions ȳ0k. The overlapping Allan deviation σyðτ ¼
nTÞ is calculated numerically from averages over n
cycles. Statistical averaging is performed over many
intervals of length n in a single run with ntot ≫ n
cycles and then averaging again over multiple runs.
Finally, the long-term instability is extracted by
fitting the prefactor to the asymptotic scaling
σyðτÞ ∝ τ1=2 reached typically after n ∼ 104 cycles
in simulations of ntot ¼ 2 × 106 cycles.

To compare numerical results to theory predictions, as
in Fig. 10(b), the values for T and h1−α in the simulations
are matched to reproduce the same laser induced prior
width ðδϕÞ2 ¼ ðbαTÞα.

APPENDIX H: CUMULATIVE
INTERACTION ANGLE

A relevant question regarding the Dick effect is the time
it takes to perform the entangling and decoding sequence.
The slowest timescale on a quantum simulator is usually
the interaction strength. Results presented in Figs. 2 and 10
were obtained for interaction angles ≤ π=2. From a
practical point of view, however, it might be beneficial
to consider smaller interaction angles.
Here we show that, close to the respective minima in

Figs. 2 and 10, the displayed results of the variationally
optimized interferometers can be well approximated by
quantum circuits with small cumulative interaction angles

θOAT ¼ Pnen
k¼1ðθð1Þk þ θð2Þk Þ þPnde

k¼1ðϑð1Þk þ ϑð2Þk Þ. In Fig. 13
we constrain each interaction angle to be positive and
smaller than a threshold that decreases with the depth of the
circuit. In addition, we require that the cumulative inter-
action angle θOAT is always smaller than or equal to π=2,
the interaction angle required to prepare a GHZ state.
Similarly to the OAT squeezing [73], the variational

FIG. 12. Largest fraction TD;max=TC of dead time compared to
cycle time for which the clock operation is limited predominantly
by the variationally optimized instability displayed in Fig. 11.
The overall instabilities at dead time fractions above the lines are
limited by the Dick effect instead.
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sequences can also work with a cumulative interaction that
decrease rapidly with N while the resulting Allan deviation
remains a good approximation of the unconstrained opti-
mization in Fig. 11.
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