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Quantum emitters in the presence of an electromagnetic reservoir with varying density of states, or
structure, can undergo a rich set of dynamical behavior. In particular, the reservoir can be tailored to have a
memory of past interactions with emitters, in contrast to memoryless Markovian dynamics of typical open
systems. In this article, we investigate the non-Markovian dynamics of a superconducting qubit strongly
coupled to a superconducting waveguide engineered to have both a sharp spectral variation in its
transmission properties and a slowing of light by a factor of 650. Tuning the qubit into the spectral vicinity
of the passband of this slow-light waveguide reservoir, we observe a 400-fold change in the emission rate of
the qubit, along with oscillatory energy relaxation of the qubit resulting from the beating of bound and
radiative dressed qubit-photon states. Furthermore, upon addition of a reflective boundary to one end of the
waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of
the qubit’s emission rate, corresponding to the round-trip travel time of an emitted photon. By in situ tuning
of the qubit-waveguide interaction strength, we also probe a crossover between Markovian and non-
Markovian qubit emission dynamics in the presence of feedback from waveguide reflections. With this
superconducting circuit platform, future studies of multiqubit interactions via highly structured reservoirs
and the generation of multiphoton highly entangled states are possible.
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I. INTRODUCTION

Spontaneous emission by a quantum emitter into the
fluctuating electromagnetic vacuum, and the corresponding
exponential decay of the emitter excited state, is an
emblematic example of Markovian dynamics of an open
quantum system [1]. However, modification of the electro-
magnetic reservoir can drastically alter this dynamic,
introducing “non-Markovian” memory effects to the emis-
sion process, a consequence of information backflow from
the reservoir to the emitter [2–5]. A canonical example of
this, considered in early theoretical work [6–8], is the
behavior of a quantum emitter whose natural emission
frequency lies close to the gap edge of a photonic band-gap
material [9,10] where a sharp transition of the photonic
density of states (DOS) occurs. Inside the band gap, the

emitter sees a reservoir devoid of electromagnetic states,
while just outside of the band gap lies a continuum of
states. This structure of the photonic band-gap reservoir
leads to a strong dressing of the emitter and a resulting
emission dynamics modified by the interplay between
bound and radiative emitter-photon resonant states [11–15].
More recently, theoretical studies have explored how a

structured reservoir with non-Markovian memory alters the
entanglement within a quantum system coupled to such a
reservoir [16–18]. This has led to the paradigm of reservoir
engineering, where non-Markovianity is a quantifiable
resource for quantum information processing and commu-
nication. Theory work from this quantum information
perspective shows that long-lived reservoir correlations
can be used for the generation and preservation of entan-
glement [19,20] and quantum control [21] of a quantum
system, enhancement of the capacity of quantum channels
[22], and the synthesis of exotic many-body quantum states
of light from single emitters [23].
In practice, observation of non-Markovian emission

phenomena can be achieved by strongly coupling an
emitter to a single-mode waveguide—a one-dimensional
(1D) reservoir with a continuum of states. Waveguides
which break continuous translational symmetry, or which
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host resonant elements within the waveguide, are of
particular interest in this regard owing to the structure in
their spectrum [24–26]. For example, an array of coupled
resonant elements leads to a constriction of the 1D
continuum of guided modes to a transmission band of
finite bandwidth, with sharp transitions in the photonic
DOS occurring at the band edges as in a photonic band-gap
material.
Spectral constriction of the waveguide continuum, and

the concomitant frequency dispersion, can also result in the
slowing of light propagation which enables observation of
additional non-Markovian phenomena. For instance, by
placing a reflective boundary (mirror) on one end of a slow-
light waveguide, a fraction of the emitter’s radiation can be
fed back from the waveguide reservoir to the emitter at
significantly delayed timescales [27–29]. The non-
Markovian regime is reached when τdΓ1D > 1, where
Γ1D is the emitter’s emission rate into the waveguide and
τd is the round-trip travel time of an emitted photon.
Theoretical studies show that such non-Markovian time-
delayed feedback in a 1D waveguide reservoir can lead to
revivals in the excited-state population of an emitter as it
undergoes spontaneous emission decay [27,30–35], reali-
zation of stable bound states in a continuum [36,37], and
enhanced collective effects including multipartite entangle-
ment and superradiant emission from emitters interacting
via a common waveguide channel [18,38–42]. This decep-
tively simple mechanism of time-delayed feedback can also
be used for the generation of multidimensional photonic
cluster states by a single emitter and has been proposed as a
means for generating the universal resource states neces-
sary for measurement-based quantum computation [23].
Superconducting microwave circuits incorporating

Josephson-junction-based qubits [43,44] represent a near-
ideal test bed for studying the quantum dynamics of
emitters interacting with a 1D continuum [45,46]. In
comparison to solid-state and atomic optical systems
[47–50], superconducting microwave circuits can be cre-
ated at a deep-subwavelength scale, giving rise to strong
qubit-waveguide coupling far exceeding other qubit dis-
sipative channels. This has enabled a variety of pioneering
experiments probing qubit-waveguide radiative dynamics,
employing waveguide spectroscopy [29,51–53], time-
dependent qubit measurements [54–57], and analysis of
higher-order field correlations [58,59]. Recent experiments
also explore the coupling of superconducting qubits to
acoustic wave devices, demonstrating the capability of
these systems to produce significant time-delayed feedback
and remote entanglement of qubits [53,57].
In this work, we present the design and characterization

of an all-electrical slow-light waveguide consisting of a
chain of coupled lumped-element superconducting reso-
nators patterned on a silicon microchip. We demonstrate
that this compact, low-loss microwavewaveguide has sharp
band edges and a passband with group delay of 55 ns per

centimeter over an 80-MHz bandwidth. Through the
addition of strongly coupled Xmon-style superconducting
qubits [60,61] to the slow-light waveguide, we are able to
realize a quantum emitter-reservoir system operating deep
within the non-Markovian limit. Spectroscopic measure-
ment of the coupled system shows the emergence of
dressed qubit-photon resonant states near the band edges
of the constricted passband of the waveguide [7,8,52].
Using nonadiabatic tuning of the qubit emission frequency,
we also measure the time-dependent dynamics of the qubit
excited-state population when it is resonant at different
points across the band gap and passband of the waveguide.
We directly observe nonexponential, oscillatory radiative
decay of the qubit, which modeling indicates is a result of
the interference of the pair of bound and radiative dressed
qubit-photon states that exist on either side of the band edge
of the slow-light waveguide [11]. Furthermore, by termi-
nating one end of the slow-light waveguide with a reflective
boundary, we explore the effects of time-delayed feedback
on the qubit emission as it emits into the passband of the
slow-light waveguide. In this regime, we observe multiple,
well-resolved revivals in the qubit excited-state population
and explore the crossover between Markovian and non-
Markovian emission dynamics through in situ tuning of the
qubit coupling to the waveguide. From this series of
measurements, we estimate the achievable fidelity of
entangling a number of photon pulses via qubit emission
and subsequent time-delayed feedback and find that the
demonstrated qubit-waveguide system is a promising plat-
form for the sequential generation of multidimensional
photonic cluster states as described in the theoretical
proposals of Refs. [23,62–64].

II. SLOW-LIGHT METAMATERIAL WAVEGUIDE

In prior work studying superconducting qubit emission
into a photonic band-gap waveguide [54], we employed a
metamaterial consisting of a coplanar waveguide (CPW)
periodically loaded by lumped-element resonators. In that
geometry, whose circuit model simplifies to a transmission
line with resonator loading in parallel to the line, one
obtains high-efficiency transmission with a characteristic
impedance approximately that of the standard CPW away
from the resonance frequency of the loading resonators and
a transmission stop band near resonance of the resonators.
The spectral characteristics of the metamaterial in Ref. [54]
were studied via spontaneous emission lifetime and Lamb-
shift measurements of a weakly coupled superconducting
qubit, which revealed information about the local DOS at
the qubit frequency that was consistent with the metama-
terial engineered dispersion. In contrast, here we seek a
waveguide with high transmission efficiency, slow-light
propagation within a transmission passband, and consid-
erably stronger qubit coupling to the waveguide-guided
modes. The stronger coupling renders the Born approxi-
mation inapplicable in such a system, where the effect of
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the qubit interaction with the photonic reservoir takes on
significantly more complexity than simply a decay rate
dependent solely on the DOS at the qubit frequency.
Furthermore, the increased propagation delay gives rise
to non-Markovian memory effects in the waveguide-medi-
ated interactions between qubits, for which the waveguide
degrees of freedom can no longer be traced out, as in
Ref. [55], for instance.
Large delay per unit area can be obtained by employing a

network of subwavelength resonators, with light propaga-
tion corresponding to hopping from resonator to resonator
at a rate set by near-field interresonator coupling. This area-
efficient approach to achieving large delays is well suited to
applications where only limited bandwidths are necessary.
However, realizing such a waveguide system in a compact
chip-scale form factor requires a modular implementation
that can be reliably replicated at the unit-cell level without
introducing spurious cell-to-cell couplings. In optical
photonics applications, this sort of scheme is realized in
what are called coupled-resonator optical waveguides, or
CROW waveguides [65,66]. Here, we employ a periodic
array of capacitively coupled, lumped-element microwave
resonators to form the waveguide. Such a resonator-based
waveguide supports a photonic channel through which light
can propagate, henceforth referred to as the passband, with
bandwidth approximately equal to 4 times the coupling
between the resonators, J. The limited bandwidth directly
translates into large propagation delays; as can be shown
(see the Appendix B), the delay in the resonator array is
roughly ω0=J longer than that of a conventional CPW of
similar area, where ω0 is the resonance frequency of the
resonators.
Optical and scanning electron microscope (SEM) images

of the unit cell of the metamaterial slow-light waveguide
used in this work are shown in Fig. 1(a). The cell consists of
a tightly meandered wire inductor section (L0; false color
blue) and a top shunting capacitor (C0; false color green),
forming the lumped-element microwave resonator. Note
that these delineations between inductor and capacitor
are not strict and that the meandered wire inductor (top
shunting capacitor) has a small parasitic capacitance (para-
sitic inductance). The resonator is surrounded by a large
ground plane (gray) which shields the meander wire section.
Laterally extended “wings” of the top shunting capacitor
also provide coupling between the cells (Cg; false color
green). Note that at the top of the optical image, above
each shunting capacitor, we include a long superconducting
island (Cq; false color green); this is used in the next section
as the shunting capacitance for Xmon qubits. Similar
lumped-element resonators have been realized with internal
quality factors of Qi ∼ 105 and small resonator frequency
disorder [54], enabling propagation of light with low
extinction from losses or disorder-induced scattering [67].
The waveguide resonators shown in Fig. 1(a) have a bare
resonance frequency of ω0=2π ≈ 4.8 GHz, unit-cell length

d ¼ 290 μm, and transverse unit-cell width w ¼ 540 μm,
achieving a compact planar form factor of d̄=λ ¼ ð ffiffiffiffiffiffi

dw
p Þ=

ð2πv=ω0Þ ≈ 1=60, where v is the speed of light in a CPWon
an infinitely thick silicon substrate.
The unit cell is to a good approximation given by the

electrical circuit shown in Fig. 1(b), in which the photon
hopping rate is J ∝ Cg=C0 [68]. We choose a ratio of
Cg=C0 ≈ 1=70, which yields a delay per resonator of
roughly 2 ns. Note that we achieve this compact form
factor and large delay per resonator while separating
different lumped-element components by large amounts
of ground plane, which minimizes spurious cross talk
between different unit cells. Analysis of the periodic
circuit’s Hamiltonian and dispersion can be found in
Appendix B, where the dispersion is shown to be

(b)

(c)

(d)

(a)

FIG. 1. Microwave coupled resonator array slow-light wave-
guide. (a) Optical image of a fabricated microwave resonator unit
cell. The capacitive elements of the resonator are false colored in
green, while the inductive meander is false colored in blue. The
inset shows a false-colored SEM image of the bottom of the
meander inductor, where it is shorted to ground. (b) Circuit
diagram of the unit cell of the periodic resonator array waveguide.
(c) Theoretical dispersion relation of the periodic resonator array.
See Appendix B for the derivation. (d) Transmission through a
metamaterial slow-light waveguide spanning 26 resonators and
connected to 50-Ω input-output ports. Dashed blue line: theo-
retical transmission of finite array without matching to 50-Ω
boundaries. Black line: theoretical transmission of finite array
matched to 50-Ω boundaries through two modified resonators at
each boundary. Red line: measured transmission for a fabricated
finite resonator array with boundary matching to input-output
50-Ω coplanar waveguides. The measured ripple in transmission
is less than 0.5 dB in the middle of the passband. (e) Measured
group delay τg. Ripples in τg are less than δτg ¼ 5 ns in the
middle of the passband.
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ωk ¼ ω0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðCg=C0Þsin2ðkd=2Þ

q
. Figure 1(c) shows a

plot of the theoretical waveguide dispersion for an infinitely
periodic waveguide, where the frequency of the band edges
of the passband are denoted with the circuit parameters of
the unit cell.
For finite resonator arrays, care must be taken to avoid

reflections at the boundaries that would result in spurious
resonances [see Fig. 1(d), dashed blue curve, for example].
To avoid these reflections, we taper the impedance of the
waveguide by slowly shifting the capacitance of the
resonators at the boundaries. In particular, we modify
the first two unit cells at each boundary, but, in principle,
more resonators could have been modified for a more
gradual taper. Increasing Cg to increase the coupling
between resonators, and decreasing C0 to compensate
for resonance frequency changes, effectively impedance
matches the Bloch impedance of the periodic structure in
the passband to the characteristic impedance of the input-
output waveguides [69]. In essence, this tapering achieves
strong coupling of all normal modes of the finite structure
to the input-output waveguides by adiabatically transform-
ing guided resonator array modes into guided input-output
waveguide modes. This loading of the normal modes
lowers theirQ such that they spectrally overlap and become
indistinguishable, changing the DOS of a finite array from
that of a multimode resonator to that of finite-bandwidth
continuum with singular band edges. Further details of the
design of the unit cell and boundary resonators can be
found in Appendix C.
Using the above design principles, we fabricated a

capacitively coupled 26-resonator array metamaterial
waveguide. The waveguide is fabricated using electron-
beam deposited aluminum (Al) on a silicon substrate and
is measured in a dilution refrigerator; transmission mea-
surements are shown in Figs. 1(d) and 1(e), and further
details of our fabrication methods and measurement setup
can be found in Appendix A. We find less than 0.5 dB
ripple in transmitted power and less than 10% variation in
the group delay (τg ≡ −ðdϕ=dωÞ, ϕ ¼ arg½tðωÞ�, where t
is transmission) across 80 MHz of bandwidth in the center
of the passband, ensuring low distortion of propagating
signals. Qualitatively, this small ripple demonstrates that
we have realized a resonator array with small disorder and
precise modification of the boundary resonators. More
quantitatively, from the transmitted power measurements,
we extract a standard deviation in the resonance frequen-
cies of 3 × 10−4 × ω0 (see Appendix D). Furthermore, we
achieve τd ≈ 55 ns of delay across the 1-cm metamaterial
waveguide, corresponding to a slow-down factor given by
the group index of ng ≈ 650. We stress that this group
delay is obtained across the center of the passband rather
than near the band edges where large (and undesirable)
higher-order dispersion occurs concomitantly with large
delays.

III. NON-MARKOVIAN RADIATIVE DYNAMICS

In order to study the non-Markovian radiative dynamics
of a quantum emitter, a second sample is fabricated with a
metamaterial waveguide similar to that in the previous
section, this time including three flux-tunable Xmon qubits
[61] coupled at different points along the waveguide [see
Figs. 2(a)–2(c)]. Each of the qubits is coupled to its own XY
control line for excitation of the qubit, a Z control line
for flux tuning of the qubit transition frequency, and a
readout resonator (R) with separate readout waveguide
(RO) for dispersive readout of the qubit state. The qubits
are designed to be in the transmon limit [60] with large
tunneling to charging energy ratio (see Refs. [54,70] for
further qubit design and fabrication details). As in the test
waveguide in Fig. 1, the qubit-loaded metamaterial wave-
guide is impedance matched to input-output 50-Ω CPWs.
In order to extend the waveguide delay further, however,
this new waveguide is realized by concatenating two of the
test metamaterial waveguides together using a CPW bend
and internal impedance-matching sections. The Xmon
qubit capacitors are designed to have capacitive coupling
to a single unit cell of the metamaterial waveguide, yielding
a qubit–unit-cell coupling of guc ≈ 0.8J.
In this work, only one of the qubits, Q1, is used

to probe the non-Markovian emission dynamics of the
qubit-waveguide system. The other two qubits are to be
used in a separate experiment and are detuned from Q1

by approximately 1 GHz for all of the measurements
that follow. At zero flux bias (i.e., maximum qubit
frequency), the measured parameters of Q1 are ωge=2π ¼
5.411 GHz, η=2π¼ðωef−ωgeÞ=2π¼−235MHz, ωr=2π ¼
5.871 GHz, and gr=2π ¼ 88 MHz. Here, jgi, jei, and jfi
are the vacuum, first excited, and second excited states of
the Xmon qubit, respectively, with ωge the funda-
mental qubit transition frequency, ωef the first excited-
state transition frequency, and η the anharmonicity. ωr is
the readout resonator frequency, and gr is the bare coupling
rate between the qubit and the readout resonator.
As an initial probe of qubit radiative dynamics, we

spectroscopically probe the interaction of Q1 with the
structured 1D continuum of the metamaterial waveguide.
These measurements are performed by tuning ωge into the
vicinity of the passband and measuring the waveguide
transmission spectrum at low power (such that the effects of
qubit saturation can be neglected). A color-intensity plot of
the measured transmission spectrum versus flux bias used
to tune the qubit frequency is displayed in Fig. 2(d). These
spectra show a clear anticrossing as the qubit is tuned
toward either band edge of the passband [an enlargement
near the upper band edge of the passband is shown in
Fig. 2(e)]. As shown theoretically [11,12], in the single-
excitation manifold, the interaction of the qubit with the
waveguide results in a pair of qubit-photon dressed states
of the hybridized system, with one state in the passband
(a delocalized “continuum” state) and one state in the band
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gap (a localized “bound” state). This arises due to the
large peak in the photonic DOS at the band edge (in the
lossless case, a van Hove singularity), the modes of which
strongly couple to the qubit with a coherent interaction rate
of ΩWG ≈ ðg4uc=4JÞ1=3, resulting in a dressed-state splitting
of 2ΩWG. This splitting has been experimentally shown to
be a spectroscopic signature of a non-Markovian interac-
tion between an emitter and a photonic crystal reservoir
[51,52]. Further details and discussion can be found in
Appendixes B and E.
The dressed state with frequency in the passband is a

radiative state which is responsible for decay of the qubit
into the continuum [8]. On the other hand, the state with
frequency in the gap is a qubit-photon bound state, where
the qubit is self-dressed by virtual photons that are emitted
and reabsorbed due to the lack of propagating modes in the
waveguide for the radiation to escape. This bound state
assumes an exponentially shaped photonic wave function
of the form

P
x e

−jxj=λâ†xjvaci, where jvaci is the state with
no photons in the waveguide, â†x is the creation operator of a
photon in unit cell at position x (with the qubit located at
x ¼ 0), and λ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ðEb − ω0Þ

p
is the state’s localization

length. In the theoretical limit of an infinite array, and in
the absence of intrinsic resonator and qubit losses, the
qubit component of the bound state does not decay even
though it is hybridized with the waveguide continuum,
a behavior distinct from conventional open quantum
systems. Practically, however, intrinsic losses and the

overlap between the bound state’s photonic wave function
and the input-output waveguides results in decay of the
qubit-photon bound state.
In complement to spectroscopic probing of the qubit-

reservoir system and in order to directly study the pop-
ulation dynamics of the qubit-photon dressed states, we
also perform time-domain measurements as shown in
Fig. 3. In this protocol [illustrated in Fig. 3(a)], we excite
the qubit to state jei with a resonant π pulse on the XY
control line and then rapidly tune the qubit transition
frequency using a fast current pulse on the Z control line
to a frequency (ω0

ge) within, or in the vicinity of, the slow-
light waveguide passband. After an interaction time τ, the
qubit is then rapidly tuned away from the passband, and the
remaining qubit population in jei is measured using a
microwave probe pulse (RO) of the readout resonator
which is dispersively coupled to the qubit. The excitation
of the qubit is performed far from the passband, permitting
initialization of the transmon qubit while it is negligibly
hybridized with the guided modes of the waveguide.
Dispersive readout of the qubit population is performed
outside of the passband in order to minimize the loss
of population during readout. Note that, as illustrated in
Fig. 3(a), the qubit is excited and measured at different
frequencies on opposite sides of the passband; this is
necessary to avoid Landau-Zener interference [71].
Results of measurements of the time-domain dynamics

of the qubit population as a function of ω0
ge (the estimated

(b)(a) (d)

(c)

(e)

b

FIG. 2. Artificial atom coupled to a structured photonic reservoir. (a) False-colored optical image of a fabricated sample consisting of
three transmon qubits (Q1, Q2, and Q3) coupled to a slow-light metamaterial waveguide composed of a coupled microwave resonator
array. Each qubit is capacitively coupled to a readout resonator (false-color dark blue) and an XY control line (false-color red) and
inductively coupled to a Z flux line for frequency tuning (false-color light blue). The readout resonators are probed through feedlines
(false-color lilac). The metamaterial waveguide path is highlighted in false-color dark purple. (b) SEM image of the Q1 qubit, showing
the long, thin shunt capacitor (false-color green), XY control line, the Z flux line, and coupling capacitor to the readout resonator (false-
color dark blue). (c) SEM enlarged image of the Z flux line and superconducting quantum interference device (SQUID) loop of the Q1

qubit, with Josephson junctions and its pads false colored in crimson. (d) Transmission through the metamaterial waveguide as a
function of the flux. The solid magenta line indicates the expected bare qubit frequency in the absence of coupling to the metamaterial
waveguide, calculated based on the measured qubit minimum and maximum frequencies and the extracted anharmonicity. The dashed
black lines are numerically calculated bound-state energies from a model Hamiltonian of the system; see Appendix E for further details.
(e) Enlargement of transmission near the upper band edge, showing the hybridization of the qubit with the band edge, and its
decomposition into a bound state in the upper band gap and a radiative state in the continuum of the passband.

COLLAPSE AND REVIVAL OF AN ARTIFICIAL ATOM … PHYS. REV. X 11, 041043 (2021)

041043-5



bare qubit frequency during interaction with the wave-
guide) are shown as a color-intensity plot in Fig. 3(b). In
this plot, we observe a 400-fold decrease in the 1=e excited-
state lifetime of the qubit as it is tuned from well outside the
passband to the middle of the slow-light waveguide
passband, reaching a lifetime as short as 7.5 ns. Beyond
the large change in qubit lifetime within the passband,
several other more subtle features can be seen in the qubit
population dynamics near the band edges and within the
passband. These more subtle features in the measured
dynamics show nonexponential decay, with significant
oscillations in the excited-state population that is a

hallmark of strong non-Markovianity in quantum systems
coupled to amplitude damping channels [72,73].
The observed qubit emission dynamics in this non-

Markovian limit are best understood in terms of the
qubit-waveguide dressed states. Fast (i.e., nonadiabatic)
tuning of the qubit in state jei into the proximity of the
passband effectively initializes it into a superposition of the
bound and continuum dressed states. The observed early-
time interaction dynamics of the qubit with the waveguide
then originate from interference of the dressed states, which
leads to oscillatory behavior in the qubit population
analogous to vacuum-Rabi oscillations [74]. The frequency
of these oscillations is thus set by the difference in energy
between the dressed states. The amplitude of the oscil-
lations, on the other hand, quickly decay away as the
energy in the radiative continuum dressed state is lost into
the waveguide.
All of these features can be seen in Fig. 3(c), which

shows plots of the measured time-domain curves of the
qubit excited-state population for bare qubit frequencies
near the top, middle, and bottom of the passband. Near the
upper band-edge frequency, we observe an initial oscil-
lation period as expected due to dressed-state interference.
Once the continuum dressed state decays away, a slower
decay region free of oscillations can be observed (this is
due to the much slower decay of the remaining qubit-
photon bound state). Finally, around τ ≈ 115 ns, there is an
onset of further small-amplitude oscillations in the qubit
population. These late-time oscillations can be attributed to
interference of the remaining bound state at the site of the
qubit with weak reflections occurring within the slow-light
waveguide of the initially emitted continuum dressed state.
The 115-ns timescale corresponds to the round-trip time
between the qubit and the CPW bend that connects the two
slow-light waveguide sections.
In the middle of the passband, we see an extended region

of initial oscillation and rapid decay, albeit of smaller
oscillation amplitude. This is a result of the much smaller
initial qubit-photon bound-state population when tuned to
the middle of the passband. Near the bottom of the pass-
band, we see rapid decay and a single period of a much
slower oscillation. This is curious, as the dispersion near the
upper and lower band-edge frequencies of the slow-light
waveguide is nominally equivalent. Further modeling
shows that this is a result of weak nonlocal coupling of
the Xmon qubit to a few of the nearest-neighbor unit cells
of the waveguide. Referring to Fig. 1(c), the modes near the
lower band edge occur at the X point of the Brillouin zone
edge, where the modes have alternating phases across each
unit cell; thus, extended coupling of the Xmon qubit causes
cancellation effects which reduce the qubit-waveguide
coupling at the lower-frequency band edge. Further detailed
numerical model simulations of our qubit-waveguide sys-
tem via a tight-binding model and a circuit model, as well
as the correspondence between the observed dynamics and

(b)

(a)

(c)

Lower band edge

Upper band edge

FIG. 3. Non-Markovian radiative dynamics in a structured
photonic reservoir. (a) Pulse sequence for the time-resolved
measurement protocol. The qubit is excited while its frequency
is 250 MHz above the upper band edge, and then it is quickly
tuned to the desired frequency (ω0

ge) for a interaction time τ with
the reservoir. After interaction, the qubit is quickly tuned below
the lower band edge for dispersive readout. (b) Intensity plot
showing the excited-state population of the qubit versus inter-
action time with the metamaterial waveguide reservoir as a
function of the bare qubit frequency. (c) Line cuts of the intensity
plot shown in (b), where the color of the plotted curve matches
the corresponding horizontal dot-dashed curve in the intensity
plot. Solid black lines are numerical predictions of a model with
experimentally fitted device parameters and an assumed 0.8%
thermal qubit population (see Appendix E for further details).
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the theory of spontaneous emission by a two-level system
near a photonic band edge [11], are given in Appendix E.

IV. TIME-DELAYED FEEDBACK

In order to further study the late-time, non-Markovian
memory effects of the qubit-waveguide dynamics, we
also perform measurements in which the end of the
waveguide furthest from qubit Q1 is terminated with an
open circuit, effectively creating a “mirror” for photon
pulses stored in the slow-light waveguide reservoir. As
illustrated in Fig. 4(a), we achieve this in situ by connecting
the input microwave cables of the dilution refrigerator to
the waveguide via a microwave switch. The position of the
switch, electrically closed or open, allows us to study a
truly open environment for the qubit or one in which
delayed feedback is present, respectively (see Appendix A
for further details).
Performing time-domain measurements with the mirror

in place and with the qubit frequency in the passband, we
observe recurrences in the qubit population at 1 and 2
times the round-trip time of the slow-light waveguide that
do not appear in the absence of the mirror [see Fig. 4(b)].
The separation of timescales between full population
decay of the qubit and its time-delayed reexcitation
demonstrates an exceptionally long memory of the res-
ervoir due to its slow-light nature and places this experi-
ment in the deep non-Markovian regime [27]. The small
recurrence levels as they appear in Fig. 4(b) are not due to
inefficient mirror reflection but rather can be explained
as follows. Because the qubit emits toward both ends of
the waveguide, half of the emission is lost to the
unterminated end, while the other half is reflected by
the mirror and returns to the qubit. In addition, the
exponentially decaying temporal profile of the emission
leads to inefficient reabsorption by the qubit and further
limits the recurrence (see, for instance, Refs. [75,76] for
details). These two effects can be observed in simulations
of a qubit coupled to a dispersionless and lossless wave-
guide (pink dotted line; for more details, see Ref. [31] and
Appendix G). The remaining differences between the
simulation and the measured population recurrence (blue
solid line) can be explained by the effects of propagation
loss and pulse distortion due to the slow-light waveguide’s
dispersion.
We also further probe the dependence of this phenome-

non on the strength of coupling to the waveguide con-
tinuum by parametric flux modulation of the qubit
transition frequency [77] when it is far detuned from the
passband. This modulation creates sidebands of the qubit
excited state, which are detuned from ωge by the frequency
of the flux tone ωmod. By choosing the modulation
frequency such that a first-order sideband overlaps with
the passband, the effective coupling rate of the qubit with
the waveguide at the sideband frequency is reduced
approximately by a factor of J 1

2½ϵ=ωmod�, where ϵ is

the modulation amplitude and J 1 is a Bessel function of
the first kind (ϵ=ωmod is the modulation index). Keeping a
fixed ωmod, we observe purely exponential decay at small
modulation amplitudes. However, above a modulation
amplitude threshold, we again observe recurrences in the
qubit population at the round-trip time of the metamaterial
waveguide, demonstrating a continuous transition from
Markovian to non-Markovian dynamics (see Appendix G
for further comparisons between these data and the theo-
retical model in Ref. [31]).

(a)

(b)

(c)

FIG. 4. Time-delayed feedback from a slow-light reservoir with
a reflective boundary. (a) Illustration of the experiment, showing
the qubit coupled to the metamaterial waveguide which is
terminated on one end with a reflective boundary via a microwave
switch. (b) Measured population dynamics of the excited state of
the qubit when coupled to the metamaterial waveguide terminated
in a reflective boundary. Here, the bare qubit is tuned into the
middle of the passband. The onset of the population revival occurs
at τ ¼ 227 ns, consistent with round-trip group delay ðτdÞ
measurements at that frequency, while the emission lifetime of
the qubit is ðΓ1DÞ−1 ¼ 7.5 ns. The magenta curve is a theoretical
prediction for emission of a qubit into a dispersionless, lossless
semi-infinite waveguide with equivalent τd and Γ1D (see Appen-
dix G for details). (c) Population dynamics under parametric flux
modulation of the qubit, for varying modulation amplitudes,
demonstrating a Markovian to non-Markovian transition. When
the modulation index (ϵ=ωmod) is approximately 0.4, we have
Γ1DðϵÞ ¼ 1=τd; the corresponding dynamical trace is colored
in blue.
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V. CONCLUSION

In conclusion, by strongly coupling Xmon qubits to a 1D
structured photonic reservoir consisting of a metamaterial
slow-light waveguide, we are able to probe the non-
Markovian dynamical regime of waveguide quantum
electrodynamics. In this regime, we observe nonexponen-
tial qubit spontaneous decay near the band edges of
the slow-light waveguide, attributable to interference result-
ing from the splitting of the qubit state into a radiative
state in the passband and a bound state in the band-gap
region of the metamaterial waveguide. Moreover, by
placing a reflective boundary on one end of the wave-
guide, we observe recurrences in the qubit population
at the round-trip time of an emitted photon, as well as a
Markovian to non-Markovian transition when varying the
qubit-waveguide interaction strength.
The demonstrated ability to achieve a true finite-

bandwidth continuum with time-delayed feedback opens
up several new research avenues for exploration [28,30–
42,78]. As a straightforward extension of the current work,
one may probe the qubit-waveguide-mirror system in a
continuous, strongly driven fashion and use tomography to
study photon correlations in the output radiation field [28].
This output field, with an expected photon stream of high
entanglement dimensionality, has a direct mapping to
continuous matrix product states which can used for analog
simulations of higher-dimension interacting quantum fields
[78,79]. With technical advancements in the tomography of
microwave fields [59,80] and realization of single-micro-
wave-photon qubit detectors [81–83], the basic tools for
characterization of these entangled photonic states and their
quantum many-body-system analogues are now available.
Looking forward even further, the use of the multilevel

structure of the transmon qubit, in conjunction with a
second distant qubit side coupled to the waveguide as a
switchable mirror, can be used to generate 2D cluster states
[23]. This system is capable of entangling consecutively
emitted photons as well as photons separated in time by the
round-trip waveguide delay τd, thus achieving an N ×M
2D cluster state, where N is limited by the number
of nonoverlapping photons that can fit in the slow-light
waveguide and N ·M is limited by the coherence time
of the emitter. With our achieved device parameters, we
estimate that a 3 × 3 2D cluster state could be generated
with fidelity greater than 50% (see Ref. [23] and
Appendix F for further details). Realistic improvements
in τd and T�

2 could increase the size of the state by at least
an order of magnitude, with even further improvement
possible via incorporation of compact high kinetic induct-
ance superconducting thin-film resonators or acoustic delay
lines [57,84]. Additionally, by controlling the number
of reflections a photon undergoes before exiting the
metamaterial waveguide, cluster states of 3D or higher
entanglement dimensionality can be generated, enabling

the realization of fault-tolerant measurement-based quan-
tum computation schemes [23,64,85].
The essential paradigm of our experiment, consisting of a

single artificial atom coupled to a waveguide with a long
propagation delay and sharp spectral cutoffs, could, in
principle, be achieved in other solid-state and atomic optical
systems, such as trapped atoms coupled to a nanofiber
or defect centers coupled to photonic crystal waveguides
[47–50]. The challenge with such modalities, however, is
achieving a large coupling of the emitter to the guidedmodes
of the waveguide relative to its decay rate as well as the
propagation delay of the waveguide. From an application
standpoint, however, the optical domain is of great interest
due to the mature technology in single-photon detectors,
photonic integrated circuits for linear and nonlinear optics,
and optical fibers for long-range communication.
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APPENDIX A: FABRICATION AND
MEASUREMENT SETUP

1. Device fabrication

The devices used in this work are fabricated on 10 mm ×
10 mm silicon substrates [float zone grown, 525 μm thick-
ness, >10 kΩ-cm resistivity], following similar techniques
as in Ref. [70]. After standard solvent cleaning of the
substrate, our first aluminum (Al) layer consisting of the
ground plane, CPWs, metamaterial waveguide, and qubit
capacitor is patterned by electron-beam lithography of our
resist followed by electron-beam evaporation of 120 nm
aluminum at a rate of 1 nm=s. A liftoff process performed
in n-methyl-2-pyrrolidone at 80 °C for 2.5 h (with 10 min of
ultrasonication at the end) then yields the aforementioned
metal structures.
In our qubit device, the Josephson junctions are fabri-

cated using double-angle electron beam evaporation of
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60 and 120 nm of Al (at 1 nm=s) on suspended Dolan
bridges, with an intervening 20-min oxidation and a
subsequent 2-min oxidation at 10 mbar, followed by lift-
off as described above. Note that, prior to the double-
angle evaporation, the sample is cleaned by an oxygen
plasma treatment and a HF vapor etch. Finally, in order to
electrically connect the evaporated Josephson junctions to
the first Al layer, a 6-min argon ion mill is performed
to locally remove surface aluminum oxide around the areas
of overlap between the first Al layer and the Josephson
junctions, which is followed by evaporation of an addi-
tional “bandage” layer of 140 nm Al that electrically
connects the metal layers. Asymmetric Josephson junctions
are fabricated in all qubit SQUID loops to reduce dephasing
from flux noise, with a design ratio of the larger junction
area to the smaller junction area of approximately 6.

2. Measurement setup

A schematic of the measurement chain used in this
work is shown in Fig. 5. Measurements are performed in a
3He=4He dry dilution refrigerator, with a base fridge
temperature at the mixing chamber (MXC) plate of
Tf ¼ 12 mK. The waveguide sample is wire bonded to
a CPW printed circuit board (PCB) with coaxial connectors
and housed inside a small copper box that is mounted to the
MXC plate of the fridge. The copper box and sample are

mounted inside a cryogenic magnetic shield to reduce the
effects of stray magnetic field.
Attenuators are placed at several temperature stages of

the fridge to provide thermalization of the coaxial input
lines and to reduce thermal microwave noise at the input to
the sample. We use different attenuation configurations for
our gigahertz microwave lines (Metamaterial IN, XY, RO
input, TWPA pump) as compared to our flux line (Z), with
significantly less attenuation for the latter, for reasons
explained in Ref. [88]. In addition, we include in the flux
line a (reflective) low-pass filter, with corner frequency at
500 MHz, to minimize thermal noise photons at higher
frequencies while maintaining short rise and fall time of
pulses for fast flux control. Also note that the 40-dB
attenuation of the “Metamaterial IN” line at the MXC plate
includes a 20-dB thin-film “cold attenuator” [87] to ensure
a more complete reduction of thermal photons in the
metamaterial waveguide.
Our amplifier chain at the “Output” line consisted of a

traveling-wave parametric amplifier (TWPA) as the initial
amplification stage [86], followed by a CITCRYO4-12A
high-mobility electron transistor amplifier mounted at the
4 K plate, and additional amplifiers at room temperature
(Miteq AFS3-00101200-42-LN-HS, AMT A0262). For
operation of the TWPA, a microwave pump signal is added
to the amplifier via the coupled port of a 20-dB directional
coupler, with its isolated port terminated in 50 Ω. In
between the two amplifiers, we include a reflective band-
pass filter (thermalized to the MXC plate) to suppress noise
outside of 4–8 GHz and use superconducting NbTi cables
to minimize loss from the MXC plate to the 4 K plate. We
also include two isolators in between the directional
coupler and the sample in order to shield the sample from
the strong TWPA pump, as well as an isolator in between
the TWPA and the directional coupler in order to suppress
any standing waves between the two elements due to
spurious impedance mismatches; our isolators consist of
three port circulators with the third port terminated in 50 Ω.
All 50-Ω terminations are rated for cryogenic operation and
are thermalized to the MXC plate in order to suppress
thermal noise from their resistive elements.
We also employ microwave switches in our measure-

ment chain in order to provide in situ experimental
flexibility in the following manner. As discussed in the
main text, in between the Metamaterial IN chain and the
metamaterial waveguide, we place a Radiall R573423600
microwave switch. By electrically opening the switch, we
can establish an open circuit at the end of the waveguide
furthest from Q1, effectively creating a mirror for emission
from Q1 and thereby inducing time-delayed feedback.
In addition, in order to utilize our amplifier chain for

either spectroscopic or time-domain measurements within
the same cooldown, we employ Radiall R577432000 2 × 2
microwave switches for selective routing of the outputs of
the metamaterial waveguide or the readout waveguide to

FIG. 5. Schematic of the measurement chain inside the dilution
refrigerator. See Appendix text for further details (“dir” is
shorthand for “directional”, and “term” is shorthand for “termi-
nation”). See Fig. 2 for electrical connections at the sample.
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the amplification chain. With our switch configuration, we
ensure that, when routing the readout waveguide output to
the amplification chain, the metamaterial waveguide output
is connected to a 50-Ω termination. This allows us to
maintain a 50-Ω environment at the metamaterial output at
all times and thereby ensures that the metamaterial wave-
guide remains an open quantum system due to its coupling
to the 50-Ω continuum of modes. By employing two 2 × 2
switches instead of one, we have the ability to bypass the
TWPA amplifier if desired, although ultimately the TWPA
is used when collecting all measurement data presented in
Figs. 2–4.
For spectroscopic measurements, the Metamaterial IN

and Output lines are connected to the input and output,
respectively, of a ZNB20 Rohde & Schwarz vector network
analyzer. For time-domain measurements, gigahertz exci-
tation and readout pulses are generated by up-conversion of
megahertz IF in-phase (I) and quadrature (Q) signals
sourced from a Keysight M320XA arbitrary waveform
generator (AWG), utilizing a Marki IQ-4509 IQ mixer
and a LO tone supplied by a BNC 845 microwave
source. Following amplification, output readout signals
are down-converted (using an equivalent mixer and the
same LO source) and subsequently digitized using an
Alazar ATS9360 digitizer. For all measurements, qubit
flux biasing is also sourced from a M320XA AWG, the
TWPA pump tone is sourced by an Agilent E8257D
microwave source, and all inputs to the dilution refrigerator
are low-pass filtered and attenuated such that the noise
levels from the electronic sources are reduced to a 300 K
Johnson-Nyquist noise level.

APPENDIX B: CAPACITIVELY COUPLED
RESONATOR ARRAY WAVEGUIDE

FUNDAMENTALS

1. Band structure analysis

We consider a periodic array of capacitively coupled LC
resonators, with the unit-cell circuit diagram shown in
Fig. 1(b). The Lagrangian for this system can be con-
structed as a function of node fluxes ϕx of the resonators
and is written as

L ¼
X
x

�
1

2
C0

_ϕ2
x þ

1

2
Cgð _ϕx − _ϕx−1Þ2 −

ϕx
2

2L0

�
: ðB1Þ

Since we seek traveling-wave solutions to the problem, it is
convenient to work with the Fourier transform of the node
fluxes, defined as

ϕk ¼
1ffiffiffiffiffi
M

p
XN
x¼−N

ϕxe−ikxd; ðB2Þ

where M ¼ 2N þ 1 is the total number of periods of a
structure with periodic boundary conditions, d is the lattice

constant of the resonator array, and k are the discrete
momenta of the first Brillouin zone’s guided modes and are
given by k ¼ ð2πm=MdÞ for integer m ¼ ½−N;N�. Using
the inverse Fourier transform

ϕx ¼
1ffiffiffiffiffi
M

p
X
k

ϕkeikxd; ðB3Þ

we arrive at the following k-space Lagrangian:

L ¼
X
k

�
1

2
C0

_ϕk
_ϕ−k þ

1

2
Cg

_ϕk
_ϕ−kj1 − e−ikdj2 − ϕkϕk

2L0

�
;

ðB4Þ

where we note that j1 − e−ikdj2 is equivalent to
4 sin2 ðkd=2Þ. We then obtain the Hamiltonian via the
standard Legendre transformation using the canonical
node charges Qk¼ð∂L=∂ _ϕkÞ¼ _ϕ−k½C0þ4Cgsin2ðkd=2Þ�,
yielding

H ¼
X
k

�
1

2

QkQ−k

½4Cgsin2ðkd=2Þ þ C0�
þ ϕkϕ−k

2L0

�
: ðB5Þ

Promoting charge and flux to quantum operators and
utilizing the canonical commutation relation ½ϕ̂k; Q̂k0 � ¼
iℏδkk0 , we define the following creation and annihilation
operators:

âk ¼
ffiffiffiffiffiffiffiffiffiffiffi
mkωk

2ℏ

r �
ϕ̂k þ

i
mkωk

Q̂−k

�
;

â†k ¼
ffiffiffiffiffiffiffiffiffiffiffi
mkωk

2ℏ

r �
ϕ̂−k þ

i
mkωk

Q̂k

�
; ðB6Þ

where mk ¼ ½C0 þ 4Cg sin2 ðkd=2Þ�. The resulting disper-
sion relation ωk, plotted in Fig. 1(c), is given by

ωk ¼
ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
Cg

C0
sin2ðkd=2Þ

q ; ðB7Þ

where ω0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
L0C0

p
and ½âk; â†k0 � ¼ δkk0 . Expressing the

flux and charge operators in terms of âk and â†k0 and
substituting them into Eq. (B5), we recover the second-
quantized Hamiltonian in the diagonal k-space basis:

Ĥ ¼
X
k

ℏωk

�
1

2
þ â†kâk

�
: ðB8Þ

Note that, given the translational invariance of the capac-
itively coupled resonator array circuit, it is expected that the
Hamiltonian would be diagonal in the Fourier plane-wave
basis (Bloch theorem).
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Also note that, for two capacitively coupled LC reso-
nators, their coupling J ¼ ðω0=2Þ½Cg=ðC0 þ CgÞ� is posi-
tive valued [68] due to the fact that the antisymmetric odd
mode of the circuit is the lower-energy eigenmode. This
results in positive-valued photon hopping terms in the
Hamiltonian, which directly lead to a maximum in fre-
quency at the Γ point and opposite directions of the phase
velocity and group velocity in the structure, as observed in
other dispersive media [89–91].

2. Comparison to tight-binding model

In the limit C0 ≫ Cg, the dispersion is well approxi-
mated to first order by a tight-binding model with
dispersion given by ωk ¼ ωp þ 2J cos ðkdÞ, where J ¼
ω0ðCg=2C0Þ is approximately the nearest-neighbor cou-
pling between two resonators of the resonator array and
ωp ¼ ðω0 − 2JÞ is the center of the passband. The differ-
ence in the two dispersion relations reflects the coupling
beyond nearest neighbor that arises due to the topology of
the circuit, in which any two pairs of resonators are
electrically connected through some capacitance network
dependent on their distance. The magnitude of these
interactions is captured in the Fourier transform of the
dispersion. Consider the Fourier transform for the annihi-
lation operator of the (localized) mode of the individual
resonator located at position x:

âk ¼
1ffiffiffiffiffi
M

p
X
x

âxe−ikxd: ðB9Þ

Substituting Eq. (B9) into Eq. (B8), we arrive at the
following real-space Hamiltonian:

Ĥ ¼ ℏ
X
x

X
x0

Vðx − x0Þâ†xâx0 ; ðB10Þ

where Vðx − x0Þ is the distance-dependent interaction
strength between two resonators located at positions x
and x0 and is simply given by the Fourier transform of the
dispersion relation:

Vðx − x0Þ ¼ 1

M

X
k

ωke−ikdðx−x
0Þ: ðB11Þ

For example, substituting the tight-binding dispersion
ωk ¼ ωp þ 2J cos ðkdÞ into Eq. (B11) yields Vðx − x0Þ ¼
ωpδx;x0 þ 2Jðδx−x0;1 þ δx−x0;−1Þ, which, upon substitution
into Eq. (B10), recovers the tight-binding Hamiltonian with
only nearest-neighbor coupling.
In Fig. 6(a), we plot the magnitudes of nearest-neighbor

(x − x0 ¼ 1), next-nearest-neighbor (x − x0 ¼ 2), and next-
next-nearest-neighbor (x − x0 ¼ 3) couplings in the capac-
itively coupled resonator array as a function of Cg=C0,
calculated numerically via the discrete Fourier transform of

the dispersion relation. It is evident that for smallCg=C0 the
nearest-neighbor coupling overwhelmingly dominates.

3. Qubit coupled to passband of a waveguide

The Hamiltonian of a transmonlike qubit coupled to the
metamaterial waveguide via a single unit cell, where only
the first two levels of the transmon (jgi; jei) are considered,
can be written as (ℏ ¼ 1; d ¼ 1)

Ĥ ¼ ωgejeihej þ
X
k

ωkâ
†
kâk þ

gucffiffiffiffiffi
M

p
X
k

ðâ†kσ̂− þ âkσ̂þÞ;

ðB12Þ

where ωk is given by Eq. (B7). For an infinite array, the
time-independent Schrödinger equation Ĥjψi ¼ Ejψi has
two types of solutions in the single-photon manifold: There
are scattering eigenstates, which have an energy within
the passband, and there are bound states that are energeti-
cally separated from the passband continuum. We demon-
strate this in the following analysis. First, we substitute into
Ĥjψi ¼ Ejψi the following ansatz for the quantum states
of the composite qubit-waveguide system, i.e., for dressed
states of the qubit:

jψi ¼ ceje; vaci þ
X
k

ckâ
†
kjg; vaci; ðB13Þ

(a)

(b)

FIG. 6. (a) Magnitude of nearest-neighbor, next-nearest-neigh-
bor, and next-next-nearest-neighbor interresonator couplings in
an (infinite) capacitively coupled resonator array as a function of
the Cg=C0 ratio. The bare resonator frequency is chosen to be
4.8 GHz. (b) Magnitude of delay per resonator and bandwidth of
the passband as a function of the Cg=C0 ratio. The bare resonator
frequency is again chosen to be 4.8 GHz, and the calculated
delays are for frequencies in the middle of the passband.
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where jvaci corresponds to no excitations in the waveguide.
Doing this substitution and subsequently collecting terms,
we arrive at the following coupled equations for ce and ck:

ce ¼
gucffiffiffiffiffi
M

p
X
k

ck
E − ωge

; ðB14Þ

ck ¼
gucffiffiffiffiffi
M

p ce
E − ωk

: ðB15Þ

By further assuming that the waveguide supports a
continuum of modes (which is appropriate for a finite
tapered waveguide, as described in the main text), the
sum can be changed into an integral

P
k → ð1=ΔkÞ×P

k Δk → ð1=ΔkÞ
R
π
−π dk, where Δk ¼ 2π=M. In this con-

tinuum limit, E can be found by first substituting Eq. (B15)
into Eq. (B14) and subsequently dividing both sides by ce,
which yields the following transcendental equation for E:

E ¼ ωge þ
1

2π

Z
dk

g2uc
E − ωk

; ðB16Þ

where the integral on the right-hand side of Eq. (B16) is
known as the “self-energy” of the qubit [11,13,14]. Note
that, in the opposite limit of a single resonator (where ωk
takes on a single value and the density of states ∂ω=∂k
becomes a delta function at that value), Eq. (B16) yields the
familiar Jaynes-Cummings splitting

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ g2uc

p
.

Computation of the self-energy for E such that E > ωk or
E < ωk ∀ k, i.e., for energies outside of the passband,
yields real solutions for Eq. (B16). On the other hand, for
energies E inside the passband, the self-energy integral
contains a divergence at E ¼ ωk for real E, while there is no
divergence if E is allowed to be complex with an imaginary
component; thus, Eq. (B16) has complex solutions
when ReðEÞ is inside the passband. While a Hermitian
Hamiltonian such as the one in Eq. (B12) by definition does
not contain complex eigenvalues, it can be shown that the
magnitude of the imaginary component of complex sol-
utions of Eq. (B16) gives the decay rate of an excited qubit
for a qubit dressed state with energy in the passband. For
further details, we suggest Refs. [8,13,14] to the reader.
Thus, the existence of complex solutions of Eq. (B16)
reflect the fact that qubit dressed states with energy in the
passband are radiative states that decay into the continuum,
characteristic of open quantum systems coupled to a
continuum of modes. In contrast, the dressed states with
(real) energies outside of the passband do not decay and are
known as qubit-photon bound states in which the photonic
component of the dressed-state wave function remains
bound to the qubit and is not lost into the continuum.
For further analytical progress, we consider only the

upper band edge and make the effective-mass approxima-
tion. This approximation is tantamount to assuming the
dispersion is quadratic, such that ωk ≈ ω0 − Jk2, which is

obtained in the limit of small Cg=C0 (where ωk is well
approximated by the tight binding cosine dispersion) and
small k [where cosðkÞ to second order is approximately
1 − k2=2]. This approximation is appropriate when ωge is
close to the upper band edge, where the qubit is dominantly
coupled to the Γ-point k ¼ 0 modes close to the band edge
due to the van Hove singularity in the DOS, and when the
lower band edge is sufficiently detuned from the qubit.
Complementary analysis for the lower band edge can also
be done in the same manner. For a more detailed derivation,
see Refs. [7,8,13,92,93].
Under the effective-mass approximation, the self-energy

integral in Eq. (B16) can be easily analyzed by taking the
bounds of integration to infinity and is calculated to be
g2uc=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðE − ω0Þ

p
. For ωge ¼ ω0, Eq. (B16) then has the

following two solutions:

Eb ¼ ω0 þ ðg4uc=4JÞ1=3; ðB17Þ

Er ¼ ω0 − eiπ=3ðg4uc=4JÞ1=3: ðB18Þ

These two solutions are indicative of a splitting of the qubit
transition frequency by the band edge into two dressed
states: a radiative state with energy Er in the passband and a
bound state with energy Eb above the band edge. The
magnitude difference between the dressed-state energies is
2ðg4uc=4JÞ1=3, which is the frequency of coherent qubit-to-
photon oscillations for an excited qubit at the photonic
band edge.
For the remainder of the analysis, we focus on the qubit-

photon bound state of the system. The wave function of the
bound state with energy E can be obtained by first
substituting Eq. (15) into Eq. (B13), which yields

jψEi ¼ ce

�
jei þ gucffiffiffiffiffi

M
p

X
k

1

E − ωk
â†kjg; vaci

�
: ðB19Þ

The qubit and photonic components of the bound state can
be calculated from the normalization condition of jψEi:

jcej2
�
1þ 1

2π

Z
dk

���� guc
E − ωk

����
2
�

¼ 1: ðB20Þ

By assuming E > ω0, the integral in Eq. (B20) is calculated
to be equal to g2uc=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðE − ω0Þ3

p
, which yields the follow-

ing magnitude for the qubit component of the bound state:

jcej2 ¼
�
1þ 1

2

E − ωge

E − ω0

�
−1
; ðB21Þ

whereas the photonic component is simply
R
dkjckj2 ¼

1 − jcej2. We can, thus, see that, when E ≈ ωge ≠ ω0, the
qubit is negligibly hybridized with the passband modes
and jcej2 ≈ 1. On the other hand, as ωge → ω0 we have
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jcej2 → 2=3, indicating that the bound-state photonic
component contains half as much energy as the qubit
component when the qubit is tuned to the band edge.
We can also obtain the real-space shape of the photonic

bound state by inserting Eq. (B9) into Eq. (B19), where for
a continuum of modes in k space we arrive at the following
photonic wave function:

X
x

e−jxj=λâ†xjg; vaci; ðB22Þ

up to a normalization constant, where λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ðE − ω0Þ

p
and the qubit is assumed to reside at x ¼ 0. We, thus, find
an exponentially localized photonic wave function for the
bound state. The localization length λ increases as J
increases, indicating that the bound state becomes more
delocalized across multiple resonators as the strength
of coupling between the resonators in the waveguide
increases, whereas λ diverges as the E → ω0, which is
associated with full delocalization of the bound state as its
energy approaches the continuum of the passband.

4. Group delay

Lowering the ratio Cg=C0 effectively lowers the photon
hopping rate J between resonators and can, thus, be chosen
to significantly decrease the group velocity of propagating
modes of the structure, albeit at the cost of decreased
bandwidth of the passband modes. The group delay per
resonator may be obtained from the inverse of the group
velocity ∂ωk=∂k, while the bandwidth can be calculated to
be equal to ω0ð1 − 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Cg=C0

p Þ; both are plotted in
Fig. 6(b). Note that, although the group velocity approaches
zero near the band edge, a traveling pulse at the band-edge
frequency would experience significant distortion due to
the rapidly changing magnitude of the group velocity near
the band edge. At the center of the passband where the
dispersion is nearly linear, however, it is possible to have
propagation with minimal distortion.
Hence, in order to effectively use the coupled resonator

array as a delay line, the coupling should be made
sufficiently high such that the bandwidth of propagating
modes (where the dispersion is also nearly linear) is
sufficiently high and the effect of resonator frequency
disorder due to fabrication imperfections is tolerable. After
the resonator coupling constraints have been met, the
desired delay may be achieved with a suitable number
of resonators. It is, thus, evident that the ability to fabricate
resonators of subwavelength size with minimal frequency
disorder is critical to the effectiveness of implementing a
slow-light waveguide with a coupled resonator array.
An appropriate metric to compare the performance of the

resonator array as a delay line against dispersionless wave-
guides is to consider the delay achieved per area rather than
per length, in order to account for the transverse dimensions
of the resonators. In addition, typical implementations of

delay lines with CPW geometries commonly require a high
degree of meandering in order to fit in a packaged device;
thus, the pitch and turn radius of the CPW meandered trace
also must be taken into account when assessing delay
achieved per area. However, by making certain simplifying
assumptions about the resonators, it is possible to gain
intuition on how efficient the resonator array is in achieving
long delays compared to a dispersionless CPW. For the
resonators implemented in the main text (see Fig. 1), the
capacitive elements of the resonator are electrically con-
nected to one end of the meander while the opposite end
of the meander is shunted to ground. This geometry is,
therefore, topologically similar to a λ=4 resonator, and,
consequently, the lengths of the meander and a conven-
tional λ=4 CPW resonator will be similar to within an order
of magnitude for conventional implementations (here, λ is
the wavelength of the CPW resonator mode).
Thus, by approximating that a single resonator of the

array occupies the same area as a λ=4 section of CPW, a
direct comparison between the delays of the two different
waveguides can be made. In the tight-binding limit, the
group delay per resonator in the middle of the passband
is approximately equal to 1=2J, where J is the coupling
between two resonators of the array. Hence, for N reso-
nators τarrayd =τCPWd ¼ ½ðN=2JÞ=ðNλ=4vÞ� ∼ ω0=J, where τd
is group delay and v is the group velocity of light in the
CPW. Hence, the resonator array is more efficient as a delay
line when compared to conventional CPW by a factor of
approximately ω0=J (assuming group velocity is approx-
imately equal to phase velocity in the CPW). In practice,
this factor also depends on the particular geometrical
implementations of both kinds of waveguide. For example,
for the resonator array described in Fig. 1, ω0=J ≈ 120 and
τd ¼ 55 ns delay is achieved in the middle of the passband
for a resonator array of area A ¼ 6 mm2. This constitutes a
factor of 60 (500) improvement in delay per area achieved
over the CPW delay line in Ref. [56] (Ref. [94]).

APPENDIX C: PHYSICAL IMPLEMENTATION
OF FINITE RESONATOR ARRAY

1. Geometrical design of unit cell

As shown in Fig. 1, the unit cell of the resonator array in
this work includes a lumped-element resonator formed
from a tightly meandered wire with a large “head”
capacitance and “wing” capacitors which, in addition to
providing the majority of the capacitance to ground, are
used to couple between resonators in neighboring unit cells.
The meandered wire has a 1-μm pitch and a 1-μm trace
width for tight packing. From the top of the meander
inductor is the head capacitor and a pair of thin metal
capacitor strips which extend to the lateral edges of the unit
cell (the wing capacitors). The ground plane in between the
resonators’ meander inductor and the lateral wing capac-
itors acts as an electrical “fence,” restricting the meander
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from coupling to neighboring resonators via stray capaci-
tance or mutual inductance. This ensures that the bulk of
the coupling between resonators is from the resonators’
wing capacitive elements, thereby facilitating theoretical
analysis of the structure using a simple single resonator per
unit-cell model. Furthermore, we include ground metal
between the thin metal capacitor traces of neighboring unit-
cell wing capacitors. In this way, the ground planes above
and below the resonator array are tied together at each unit-
cell boundary, thereby suppressing the influence of higher-
order transverse, slot-line modes of the waveguide.
In addition, anticipating integration with Xmon qubits,

we incorporate into our unit-cell design a Xmon shunting
capacitance to ground, along with pads for facile addition
of Josephson junctions. This ensures that the addition of a
qubit at a particular unit-cell site in the resonator array
minimally affects the capacitive environment surrounding
that unit cell and prevents the breaking of translational
symmetry of the resonator array due to the addition of
qubits. The capacitance between the Xmon capacitor and
the rest of the unit cell is designed to be approximately 2 fF,
yielding a qubit–unit-cell coupling of guc ≈ 0.8J.

2. Matching of the finite resonator array
to input-output CPWs

It has been previously shown that, for a finite coupled
cavity array, low-ripple transmission at the center of

the passband is possible by appropriate variation of the
interresonator coupling coefficients for a few of the resona-
tors adjacent to the ports, effectively matching the finite
periodic structure to the input-output ports [95]. In the case
of capacitively coupled electrical resonators, modifying the
coupling capacitance in isolation results in a renormaliza-
tion of the resonance frequency and, thus, constitutes a
scattering center for propagating light. Thus, concurrent
modification of both the coupling capacitance and the
shunt capacitance to ground for the boundary resonators is
necessary to achieve low-ripple transmission in the middle
of the passband, as previously shown in filter design theory
[96]. By constraining the total capacitance in each modified
resonator to remain constant (and keeping the inductance
constant), the total number of parameters to adjust in order
to achieve low ripple transmission is merely equal to the
chosen number of resonators to be modified, resulting in
a low-dimensional optimization problem. A filter design
software such as Microwave Office can be used to provide
initial guesses on the optimal circuit parameters with high
accuracy, which can then be further optimized.
In the main text, we present results on matching of a

resonator array spanning 26 resonators to 50-Ω CPWs via
modification of two resonators at each of the array-CPW
boundaries. The geometrical design of the boundary
resonators is shown in Fig. 7. The number of boundary
resonators to modify (two) is chosen as a compromise

(a) (c)

(d)

FIG. 7. (a) CAD diagram showing the end of the finite resonator array, including the boundary-matching circuit (which in this case
includes the first two resonators) and the first unit cell. (b) Corresponding circuit model of the end of the finite resonator array.
(c) Enlarged SEM images of the first (left) and second (right) boundary-matching resonators. (d) Transmission spectrum of the full
resonator array consisting of 22 unit cells and two boundary-matching resonators on either end of the array (for a total of 26 resonators).
Measured data are plotted as a red curve, and the circuit model fit is plotted as a black curve. Fit model parameters are given in the text.
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between device simplicity and spectral bandwidth over
which matching occurs. In principle, however, more
resonators could have been used for matching of the finite
structure to the ports in order to decrease the ripples in the
transmission passband near the band edges. Referring to
the notation in Fig. 7(b), the targets for the unit-cell
resonator and boundary resonator elements extracted from
Sonnet [97] electromagnetic simulations are C2g ¼ 89 fF,
C1g ¼ 8.9 fF, Cg ¼ 6.47 fF, C2 ¼ 269 fF, C1 ¼ 351 fF,
C0 ¼ 353 fF, and geometric inductance L0 ¼ 2.92 nH.
The individual capacitive and inductive elements have
parasitic inductance and capacitance, respectively, and,
thus, are not simulated separately. Rather, circuit para-
meters for the three different resonators are extracted by
simulating the whole resonator circuit. We extract the
circuit element parameters from these simulations by
numerically obtaining the dispersion for an infinite array
of each of the three types of resonators via the ABCD
matrix method [69]. This yields ω0 and Cg=C0; Cg is
obtained from the B parameter of the ABCD matrix (which
contains information on the series impedance of the unit-
cell circuit). We find this method of extracting parameters
from simulation to give much higher accuracy when
compared to other approaches, such as simulating unit-
cell elements separately.
Figure 7(d) shows a plot of the measured transmission

spectrum of the fabricated 26-unit-cell slow-light wave-
guide based upon the above design and presented in the
main text (cf. Fig. 1). A circuit model fit to the measured
transmission spectrum yields the following circuit element
parameters for boundary and central waveguide unit cells:
C2g ¼ 87.5 fF, C1g ¼ 7.3 fF, Cg ¼ 5.05 fF, C1 ¼ 352.1 fF,
C2 ¼ 275.5 fF, C0 ¼ 353.2 fF, and geometric inductance
L0 ¼ 3.151 nH. Based upon this model fit, we are thus
able to realize good correspondence (within 3%) between
design and measured capacitances to ground, while extrac-
ted coupling capacitances are systematically lower by
approximately 1.5 fF. We attribute the systematically
smaller coupling to stray mutual inductance between
neighboring meander inductors, which tends to lower the
effective coupling impedance between the resonators. The
slightly larger fit inductance compared to design is to be
expected, as the kinetic inductance of the meander trace is
not included in the simulation. According to Ref. [98], for a
1-μm trace width and 120-nm-thick aluminum wire, the
expected increase in the total inductance due to kinetic
inductance is approximately 5% of the geometric induct-
ance, in reasonable correspondence to the measured value.

APPENDIX D: DISORDER ANALYSIS

Fluctuations in the bare resonance frequencies of the
lumped-element resonators making up the metamaterial
waveguide break the translational symmetry of the wave-
guide and effectively lead to random scattering of traveling

waves between different Bloch modes. This scattering
results in an exponential reduction in the probability that
a propagating photon traverses across the entire length of
the waveguide. Furthermore, if the strength of scattering is
large relative to the photon hopping rate, Anderson
localization of light occurs where photons are completely
trapped within the waveguide [67]. Thus, the aforemen-
tioned strategy for constructing a slow-light waveguide
from an array of weakly coupled resonators is at odds with
the inherit presence of fabrication disorder in any practi-
cally realizable device. Therefore, a compromise must be
struck between choosing an interresonator coupling low
enough to provide significant delay but high enough
such that propagation through the metamaterial waveguide
is not significantly compromised by resonator frequency
disorder.
Figure 8(a) shows numerical calculations of the trans-

mission extinction in the metamaterial waveguide as a
function of σ=J, where σ is the resonator frequency
disorder. This analysis is performed for a 50-unit-cell
waveguide, with C0 ¼ 353.2 fF, Cg ¼ 5.05 fF, and Li ¼
3.101 nHþ δi. Here, Li is the inductance of the ith unit
cell, and δi are random inductance variations in each unit
cell that give rise to a particular resonator frequency
disorder σ. These Li are calculated by (i) determining
the resonator frequencies of each unit cell by drawing from
a Gaussian distribution with mean ω0 and variance σ2 and
(ii) solving for the corresponding inductances given the
resonator frequencies and a fixed C0. Note that we model
the disorder as originating from inductance variations,
rather than C0 or Cg variations, based on the fact that
earlier work shows that disorder in superconducting micro-
wave resonators is primarily due to variations in kinetic
inductance [99]. As we see in Fig. 8(a), in order for the
average transmission to drop by less than 0.5 dB (10%), the
normalized resonator frequency disorder must be less
than σ=J < 0.1.
In order to quantify the resonator frequency disorder

in our fabricated resonator array, one can analyze the
passband ripple in transmission measurements [99]
[cf. Figs. 1(d) and 1(e)]. Given that the effect of tapering
the circuit parameters at the boundary is to optimally
couple the normal modes of the structure to the source
and load impedances, the ripples in the passband are merely
overlapping low-Q resonances of the normal modes.
Therefore, we can extract the normal mode frequencies
from the maxima of the ripples in the passband, which are
shifted with respect to normal mode frequencies of a
structure without disorder.
Furthermore, the mode spacing is dependent on the

number of resonators and, in the absence of disorder,
follows the dispersion relation shown in Fig. 1(c), where
the dispersion is relatively constant near the passband
center and starts to shrink near the band edges. In the
presence of disorder, however, this pattern breaks down as
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the modes become randomly shifted. Our approach is
therefore as follows. Starting with the fit parameters
presented in Appendix C, we simulate transmission
through the metamaterial waveguide for varying amounts
of resonator frequency disorder σ. For each level of
disorder, we perform simulations of 500 different disorder
realizations, and for each different disorder realization we
compute the standard deviation in the free spectral range of
the ripples, ΔFSR. This deviation in free spectral range is
then averaged over all disorder realizations for each value
of σ, yielding an empirical relation between ΔFSR and σ.
The numerically calculated empirical relation between

variation in free spectral range and frequency disorder is
plotted in Fig. 8(b). Note that the minimum of ΔFSR at
σ ¼ 0 is set by the intrinsic dispersion of the normal mode

frequencies of the unperturbed resonator array. As such, in
order to yield a better sensitivity to disorder, we choose to
use only the center half of the passband in our analysis
where dispersion is small. From the data in Fig. 1(d),
we calculate the experimental ΔFSR. Comparing to the
simulated plot in Fig. 8(b), this level of variance in the
free spectral range results from a resonator frequency
disorder within the array at the 1-MHz level (or 2 ×
10−4 of the average resonator frequency), corresponding
to σ=J ≈ 1=30. We extract similar disorder values across a
number of different metamaterial waveguide devices real-
ized using our fabrication process.

APPENDIX E: MODELING OF QUBIT Q1
COUPLED TO THE METAMATERIAL

WAVEGUIDE

In this Appendix, we present modeling of the interaction
between Q1 and the metamaterial waveguide. Note that,
while we observe dynamics that are due to emission and
propagation of single-photon radiation field states, which
are nonclassical states of light, in the single-excitation limit
the dynamics of the qubit can also be described by a
classical circuit model, where the qubit is represented by a
faux resonator. Thus, here we share both viewpoints of
analysis, and we employ two separate models to represent
our system: a tight-binding model with nearest- and next-
nearest-neighbor coupling, which we analyze via a numeri-
cal master equation solver, and a classical circuit model
(shown in Fig. 10). We find excellent agreement between
the two models.

1. Tight-binding model

a. System Hamiltonian and model formalism

For transient time-domain simulations, instead of using
the Hamiltonian presented in Eq. (B12), we instead employ
the following tight-binding model (with individual reso-
nator positions denoted by the indices x and i):

Ĥ ¼ ωgejeihej þ
XM
x¼1

ωxâ
†
xâx þ ðJxâ†xâxþ1

þ Jnnnâ
†
xâxþ2 þ H:c:Þ þ

X
i¼1;3;4

giσ̂xðâ†i þ âiÞ; ðE1Þ

where M is the number of resonators, ωx are the frequen-
cies of the individual resonator modes, and, as discussed
in Appendix B, in our parameter regime the capacitively
coupled resonator array Hamiltonian can be well approxi-
mated as a tight-binding Hamiltonian with dominant
nearest-neighbor coupling Jx and small (approximately
J=100) next-nearest-neighbor coupling Jnnn (which we
keep as a constant in the model for simplicity). In our
model, for all unit cells we set ωx ¼ ωp ¼ ω0 − 2J, which
is the passband center frequency and constitutes the bare

(a)

(b)

FIG. 8. (a) Numerically calculated extinction as a function of
disorder. Here, σ is the disorder in the bare frequencies of the
(unit-cell) resonators making up the metamaterial waveguide, and
J is the coupling between nearest-neighbor resonators in the
resonator array. 50 unit cells are used in this calculation, which
includes taper-matching sections at the input and output of the
array that bring the overall passband ripple to 0.01 dB. For a
given disorder strength σ, disorder extinction is calculated by
taking the mean of the transmission across the passband for a
given disorder realization and subsequently averaging that mean
transmission over many disorder realizations. Note that the
calculated values depend on the number of unit cells. (b) Numeri-
cally calculated variance in normal mode frequency spacing as a
function of disorder. See the text for details on the method of
calculation of ΔFSR. The dashed line indicates the experimentally
measured ΔFSR, which is extracted from the data shown
in Fig. 1(d).
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resonator frequency ω0 renormalized by its coupling to
neighboring resonators; however, for the taper resonators,
we introduce moderate detunings in order to capture the
weak reflections within the slow-light waveguide evidenced
by the measured data (see Fig. 3). Furthermore, we include
qubit coupling to multiple resonators in the array in our
model with couplings gi, where i indicates resonator position
in the array, in order to capture both guc and theweaknonlocal
coupling of the qubit to a few of the neighboring unit cells
that is evidenced by the measured data.
Going into the rotating frame of the passband center fre-

quency ωp and applying the rotating wave approximation

to remove counterrotating terms, we arrive at the following
Hamiltonian:

Ĥ ¼ Δgejeihej þ
XM
x¼1

δxâ
†
xâx þ ðJxâ†xâxþ1 þ Jnnnâ

†
xâxþ2

þ H:c:Þ þ
X

i¼1;3;4

giðâ†i σ̂− þ âiσ̂þÞ; ðE2Þ

where Δge ¼ ωge − ωp and δx ¼ ωx − ωp; see Fig. 9(a) for
a visual diagram of the model. It can be shown that
the Hamiltonian in Eq. (E2) preserves the number of

(a)

(b)

(c)

(d)

(e)

FIG. 9. Master equation numerical simulations of our qubit–slow-light waveguide system. (a) Diagram of tight-binding model used in
simulations. Simulation parameters are described in the text. Note that the next-nearest-neighbor coupling Jnnn, which is present in the
model for all resonators, is omitted from the diagram for readability purposes. (b) Simulation of Fig. 3(b) dataset. Band edges are
highlighted in dashed yellow lines, while dashed black lines are guides to the eye. (c) Scatter plot of the eigenenergies of the Hamiltonian
in Eq. (E2) with Δge=ð2πÞ ¼ 83 MHz (in the single-excitation manifold) offset by ωp. The orange curve is a plot of the dispersion
relation [see Eq. (B7)]. The eigenmode with energy outside of the passband corresponds to the bound state of the system jbi. (d) Plot of
photonic states of the system as a function of position x. Top: plot of the photonic wave function of the bound eigenstate of the system
jbi in open red dots; “norm” indicates that the photonic wave function coefficients hxjbi are normalized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x jhxjbij2

p
, where jxi

corresponds to the state j01; 02;…; 1x;…; 0M; gi. The solid black line corresponds to a plot of Aejx−3j=λ, where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ðEb − ω0Þ

p
and

A is a normalization constant. Bottom: plot of the photonic portion of the simulated qubit-waveguide state after t ¼ 90 ns. The solid blue
line corresponds to a simulation with initial state j01; 02;…; 0M; ei; the dashed black line corresponds to a simulation with initial state
jbi. ρnormxx refers to the scaled density matrix element ρxx=ð

P
10
x¼1 ρxxÞ. This particular scaling is chosen because it similarly scales the

photonic part of the state within the first ten resonators of the array, thereby aiding visual comparison between the blue and dashed black
curves. (e) Comparison of the dynamics simulated by a modified tight-binding model of a qubit coupled to a metamaterial waveguide
(left) and by population equations of motion derived in Ref. [11] (right). Refer to (b) for the color bar. Both models assume
guc=2π ¼ 19 MHz, as well as J=2π ¼ 33 MHz. See the text for a description of the modified model. We use ðg4uc=4JÞ1=3 in place of β for
simulations using Eqs. (2.21)–(2.28) from Ref. [11].
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excitations N by noting that the commutator ½Ĥ; N̂� ¼ 0

with N̂ ¼ P
M
x¼1 â

†
xâx þ σ̂þσ̂−. Consequently, the dynam-

ics of the system can be partitioned into subspaces with a
fixed excitation number, and, for the purposes of model-
ing the data in Fig. 3 of a qubit’s radiative dynamics in a
structured photonic reservoir, we need only to consider the
subspaces of N ¼ 0, 1. The Hamiltonian in this reduced
subspace can be computed by explicitly evaluating the
matrix elements hϕjĤjϕ0i between different states fjϕig
in the zero- and single-excitation manifold and, sub-
sequently, directly used in numerical master equation
simulations. Finally, while the Hamiltonian in Eq. (E2)
generates the unitary dynamics of the system, the external
loading of the system to the input-output 50-Ω wave-
guides is incorporated into the model via dissipation
with rate κ50Ω in the first and last resonators of the array,
which is generated in our master equation simulations
via collapse operators which transfer population from
the single-excitation states j11; 02; 03;…; 0M; gi and
j01; 02; 03;…; 1M; gi to the (trivial) zero-excitation ground
state of the system j01; 02; 03;…; 0M; gi. Note that master
equation simulations of the qubit’s non-Markovian radi-
ative dynamics are possible here only due to the fact that
we are explicitly simulating all the photonic degrees of
freedom of the slow-light waveguide in addition to the
qubit’s degrees of freedom. A Lindbladian master equa-
tion simulation of solely the qubit’s degrees of freedom,
with the photonic degrees of freedom traced out, would
not capture its non-Markovian radiative dynamics.
Moreover, a simulation of the entire qubit-waveguide
system is amenable here only due to our restriction of
the Hilbert space to its low-energy sector and quickly
grows intractable if a higher number of excitations is
allowed.
Referring to Eq. (E2) and Fig. 9(a), our model assumes

the following parameters (2π factors are omitted for read-
ability): M¼ 50;δ1 ¼ δ50 ¼ δ0 ¼−13.9MHz, δ2 ¼ δ24 ¼
δ27 ¼ δ49 ¼ δ00 − 4.7 MHz, δ25 ¼ δ26 ¼ δ000 ¼ 323 MHz,
J1 ¼ J24 ¼ J26 ¼ J49 ¼ J0 ¼ 44.1MHz, J2 ¼ J23 ¼ J27 ¼
J48 ¼ J00 ¼ 32.47 MHz, J25 ¼ J000 ¼ 349 MHz, Jnnn ¼
0.3 MHz, all other Jx ¼ J ¼ 32.52 MHz, all other
δx ¼ 0, and κ50 Ω ¼ 169.92 MHz (note that the values of
δ000 and J000 are very different from other values in order to
accurately capture the circuit of the waveguide’s bend
section as discussed in the main text). Note that these
parameters are consistent with the circuit parameters
of the model shown in Fig. 10 that is later discussed.
Furthermore, in the model, we couple the qubit to the first,
third, and fourth resonators of the array (as opposed to
just the third resonator), with couplings g1 ¼ 2.2 MHz,
g2 ¼ guc ¼ 26.4 MHz, and g3 ¼ 3.5 MHz. Physically, the
coupling to resonators 1 and 4 is not intentional and is due
to parasitic capacitance. We set g2 ¼ 0 in the model,
because the second metamaterial resonator is not expected
to parasitically couple to the qubit as strongly as the first

and fourth resonators due to the absence of an interdigitated
capacitor or an integrated Xmon shunting capacitance (see
Fig. 7 for images of the second resonator of the meta-
material waveguide). The g1 and g4 parasitic couplings are
crucial to reproduce some of the subtle features in the
measured data; this is discussed in detail below.

b. Dynamical simulations and eigenenergy analysis

Figure 9(b) shows the simulated dynamics from numeri-
cal master equation simulations as a function of Δge (note
that bare qubit frequency ωp þ Δge is shown in the plot
instead for comparison purposes to Fig. 3) with initial state
j01; 02;…; 0M; ei. It is evident that there is agreement
between Fig. 9(b) and the measured data in Fig. 3(b),
indicating that our model captures the salient dynamical
features of our measured data. Furthermore, with the
Hamiltonian in Eq. (E2), we can numerically calculate
its eigenstates and the eigenenergy spectrum; as an exam-
ple, the spectrum when Δge=ð2πÞ ¼ 83 MHz is plotted in
Fig. 9(c). Figure 9(c) shows a band of states within the
passband and a state with energy outside of the passband.
Because M ¼ 50, the Hamiltonian is that of a finite-
sized system, and the band of states within the passband
represent the normal modes of the finite waveguide
structure; however, in the presence of input and output
waveguides, they represent a band of scattering states that
support wave propagation between the input and output
waveguides. The state with energy outside of the band,
however, is the bound eigenstate jbi. We calculate bound-
state energies as a function of bare qubit frequency Δge,
and, converting bare qubit frequency to the physically
applied flux through the SQUID loop used to tune the qubit
frequency Φ (via measured qubit minimum and maximum
frequencies and the extracted anharmonicity), we numeri-
cally obtain the predicted energy of the system’s bound
eigenstates as a function of flux bias and plot it in Fig. 2(d)
as dashed black lines. As Fig. 2(d) shows, we obtain good
quantitative agreement between the prediction of our model
and the spectroscopically measured bound-state energies of
the qubit-waveguide system.
In our model, the g3 coupling primarily sets the coupling

of the qubit to the metamaterial waveguide. Its magnitude
relative to the J between the unit cells, along with the qubit
frequency ω0

geðΦÞ, predominantly determines the frequency
of oscillations near the band edge, as well as the decay rate
into the waveguide in the passband. In the absence of other
parasitic couplings, this decay rate is theoretically deter-
mined to be ∼g2uc=v½ω0

geðΦÞ� [92], where v½ω0
geðΦÞ� is the

group velocity of the metamaterial waveguide at the qubit-
waveguide interaction frequency ω0

geðΦÞ. The parasitic
coupling g4, however, is necessary to replicate the asym-
metry in the dynamics near the upper and lower band edges.
This is because the lower band-edge modes have an
oscillating charge distribution between unit cells, while
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the upper band-edge modes have a slowly varying charge
distribution across the unit cells (which is typical of 1D
tight-binding systems). The parasitic coupling of the qubit
to the neighboring unit cell, therefore, has the effect of
lowering the qubit coupling to the lower band-edge modes
due to cancellation effects arising from the opposite charges
on neighboring resonators for lower band-edge modes. On
the other hand, coupling of the qubit to the upper band-edge
modes which have slowly varying charge distributions is
enhanced.
In addition, in simulations, the onset of oscillations seen

at τ ≈ 115 ns could be delayed or advanced by increasing
or decreasing the number of resonators in between the qubit
and the bend in the metamaterial waveguide model, while it
could be removed altogether by removing the bend section.
This indicates that these late-time oscillations are a result of
spurious reflection of the qubit’s emission at the bend, due
to the imperfect matching to the 50-Ω coplanar waveguide
in between the two resonator rows (which is manifested in
this model through parameters δ000 and J000). Note that this
impedance mismatch and reflections are amplified near the
band edges, where the Bloch impedance rapidly changes.

c. Photonic state spatial analysis

In the main text, the observed qubit emission dynamics
into the slow-light waveguide are described in terms of
the interplay of the qubit-waveguide dressed states, in
particular, the bound and continuum dressed states of the
qubit-waveguide system. Here, we further elucidate this
description of our system via our modeling, using as an
illustrative example the dynamics of the system when
the qubit is tuned 18 MHz above the upper band edge
[Δge=ð2πÞ ¼ 83 MHz], corresponding to the brown curve
in Fig. 3(c).
First, in the main text, we assert that initializing the qubit

in state jei with its frequency in the proximity of the
passband effectively initializes it into a superposition of
bound and continuum dressed states. This can be explicitly
verified by first numerically calculating the eigenstates
and the eigenenergy spectrum of the Hamiltonian, as is
done for Fig. 9(c). As previously discussed, the state with
energy outside of the band is the bound eigenstate jbi, and
the photonic component of its wave function is plotted in
the top of Fig. 9(d). It is evident from Fig. 9(d) that the
photonic component of the bound-state wave function is
localized around resonator 3, which is the unit cell that
the qubit is predominantly coupled to. As discussed in
Appendix B, the bound state is exponentially localized
with localization length approximately λ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J=ðEb−ω0Þ
p

,
where Eb is the energy of the bound state; this theoretical
photonic wave function is plotted in the top of Fig. 9(d)
with a solid black line and shows good agreement with
the numerically calculated jbi wave function plotted in
red open dots. Numerically calculating the overlap between
the j01; 02; 03;…; 0M; ei state and the bound eigenstate

yields jhbjj01; 02; 03;…; 0M; eij2 ≈ 0.8, agreeing well with
Eq. (B21).
Second, in the main text, we also assert that the

amplitude of the early-time oscillations quickly dampens
away as the energy in the radiative continuum dressed state
is quickly lost into the waveguide, while the energy in the
bound state remains localized around the qubit, albeit
slowly decaying (details of this slow decay are given in
the next paragraph). In order to illustrate this point, in
the bottom of Fig. 9(d), we plot the photonic portion of
the system’s state at time t ¼ 90 ns, at which point the
early-time oscillations have subsided and the qubit can be
observed to be slowly decaying. It is evident that, while part
of the state is delocalized in the array, a significant portion
is still localized around the qubit location; this portion
corresponds to the bound-state portion of the initial state
j01; 02; 03;…; 0M; ei after time evolution.
Third, in order to understand the slow decay of the qubit

following the early-time oscillations, note that a non-
negligible proportion of the bound-state wave function is
found on resonator 1, the taper resonator directly coupled to
the output waveguide, signifying finite overlap between the
bound state and the external 50-Ω environment of the
output waveguide. This overlap constitutes the dominant
intrinsic loss channel for the bound state and leads to its
slow decay, which in the t → ∞ limit results in the full
decay of the qubit even if its frequency is tuned outside the
passband. Near the band edges, it is this loss that results in a
slow population decay as compared to the initial fast
dynamics in the data [see top of Fig. 3(c) for a clear
example] and results in the feature highlighted by dashed
black lines in Fig. 9(b). This feature would be flat for an
infinite-sized resonator array, and there would be partial
“population trapping” [14] of the qubit in the t → ∞ limit if
its bare frequency were detuned from the passband and
there were no other intrinsic loss channels. Note that the g1
coupling between the qubit and the resonator directly
coupled to the 50-Ω port is necessary to quantitatively
replicate the slow decay rates of the qubit when its
frequency is outside of the passband. In the absence of
the g1 coupling, this overlap is not sufficiently high in the
simulations given the coupling of the qubit to the meta-
material waveguide (extracted from separate measurements
in the passband). Therefore, this overlap is made larger,
while minimizing the increase to the overall coupling of the
qubit to the metamaterial waveguide, by incorporating the
small g1 coupling to the first resonator of the array.
Finally, it can be observed in Figs. 3(b) and 9 that there

are differences in both duration and amplitude between
the early-time oscillations and the late-time oscillations
that occur at τ ≈ 115 ns. This is because, when the qubit
frequency is near the band edges, the reflected emission is
distorted through its propagation in the metamaterial wave-
guide due to the significant dispersion near the band edges.
This results in a spatiotemporal broadening of the emitted
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radiation, which is evident in the bottom of Fig. 9(d). The
frequencies of both sets of oscillations, however, are set by
guc and J as discussed in the main text.

d. Comparison to paradigmatic model of spontaneous
emission near the edge of a photonic band gap

As alluded to in the main text, the early-time oscillations
observed in our work are, qualitatively, a generic feature
of the interaction between a qubit and a band edge in a
dispersive medium and not merely an attribute of our
specific system. In order to illustrate this point, in Fig. 9(e),
we further compare the initial oscillations to the theory
presented by John and Quang in Ref. [11] of a qubit whose
frequency lies in the spectral vicinity of a band edge. The
model assumed for Ref. [11] is that of an atom (qubit)
with point dipole coupling to an infinite periodic dielectric
environment, whose frequency is in the spectral vicinity
of only a single band edge. Thus, in order to make a
comparison to this theory, we change the model of our
system described by Eq. (E2) and Fig. 9(a) in the following
manner: (i) We remove the parasitic couplings of the qubit
to neighboring unit cells, in order to simplify the coupling
to a single point coupling, (ii) we increase the size of the
array and move the qubit to the middle in order to remove
boundary effects from the dynamics, and (iii) we reduce the
overall coupling of the qubit to the metamaterial waveguide
so it predominantly couples to only the band edge it is least
detuned from. Note, however, that the dispersion relation of
the waveguide is different than the dispersion assumed in
Ref. [11]. Nonetheless, above the band edge, we see good
qualitative agreement between the dynamics modeled both
by the modified model and the population equation of
motion derived in Ref. [11] [in particular, Eq. (2.21)],
with both simulations exhibiting very similar oscillatory
decay to what is observed in Figs. 9(b) and 3(b). This
further confirms our interpretation of the early-time non-
Markovian dynamics in Fig. 3 discussed in the main text:
that the nonexponential oscillatory decay is due to the
interaction between the qubit and the strong spike in the
density of states at the band edge.

2. Circuit model

In addition to dynamical master equation simulations,
we also perform modeling via classical circuit analysis,
where the qubit is represented by a linear resonator;
this is an accurate representation of the qubit-waveguide
system in the single-excitation limit. Time-resolved
dynamical simulations are performed with the LTSpice
numerical circuit simulation package, while frequency
response simulations are performed with Microwave
Office and standard circuit analysis. Our model, shown
in Fig. 10, assumes the following metamaterial waveguide
parameters: C2g ¼ 92.5 fF, C1g ¼ 7.8 fF, Cg ¼ 5.02 fF,
C2 ¼ 273 fF, C1 ¼ 351.2 fF, C0 ¼ 353.2 fF, and L0 ¼
3.099 nH, which are obtained from fitting the transmission

through the metamaterial device shown in Fig. 2(a) with
the qubit detuned away (600 MHz) from the upper band
edge. While, in principle, there are three independent
parameters for every resonator (capacitance to ground,
coupling capacitance, and inductance to ground), the set of
metamaterial parameters above in addition to the qubit
parameters is sufficient to achieve quantitative agreement
between simulations and our data.
Our model utilizes a qubit capacitance (excluding the

capacitance to the metamaterial waveguide) of CΣ ¼ 77.8
fF, which, when assuming Ec ≈ −ℏη, is consistent with
measurements of the anharmonicity that is extracted by
probing the two-photon transition between the jgi and jfi
states. Furthermore, in the model we couple the qubit to
the first, third, and fourth resonators of the array, with
capacitive couplings C1qg ¼ 0.16 fF, C3qg ¼ 1.9 fF, and
C4qg ¼ 0.25 fF, respectively, while C2qg ¼ 0 fF, for repro-
ducing both the dominant and the subtle features in the
measured data due to the same reasons described in the
preceding discussion.

a. Time domain

Figure 10(b) shows the simulated dynamics of our circuit
model as a function of the bare qubit frequency (where the
qubit inductance is swept to change the bare qubit
frequency). It is evident that there is agreement between
Fig. 10(b) and the measured data in Fig. 3(b), indicating
that our circuit model captures the salient dynamical
features of our measured data. Moreover, we find excellent
agreement between our circuit model and the tight-binding
model presented in the preceding discussion, which is
expected given that the parameters of the circuit model map
nearly directly to the parameters of the tight-binding model.
Thus, both models are appropriate for analyzing the data in
Fig. 3, and the insights into the system gained from the
tight-binding model in the preceding discussion directly
carry over to this circuit model.

b. Frequency domain

In addition to time-domain simulations of our cir-
cuit model representing the fabricated qubit-waveguide
system, in Fig. 10(c), we plot an intensity color plot of
the transmission through the slow-light waveguide as the
bare qubit frequency is tuned across the passband using the
circuit model [cf. the corresponding measurement data
plotted in Fig. 2(d)]. Note that, in order to capture the
background transmission levels as well as the interaction of
the qubit with the background transmission, we include a
small direct coupling capacitance of 0.75 fF between the
first and last resonators of the array. These two resonators
have the largest cross talk. This is due to the large portion
of charge contained in the interdigitated capacitors
between the resonators and the input-output waveguides.
In simulations without this background transmission, the
qubit mode breakup near the band edge and signatures of
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the bound-state outside of the passband are significantly
weaker.
In addition, the series capacitance of the boundary

resonators coupled to the input-output waveguides is made
7 fF higher than the series capacitance of the boundary
resonators coupled to the short CPW section in the bend,
which is due to the proximity of the large bond pads used to
probe the waveguides. Our simulations are in excellent
qualitative agreement with the data presented in Fig. 2(d).
They also capture the spectroscopic non-Markovian fea-
tures of our data—the repulsion of the bound state’s energy

from the band edge and the persistence of the bound state
even when the bare qubit frequency overlaps with the
passband (see Refs. [51,52,92] for further details).

APPENDIX F: UTILIZATION OF
METAMATERIAL WAVEGUIDE FOR
2D CLUSTER STATE GENERATION

We envision leveraging the large time delay and sharply
varying photonic DOS of a slow-light metamaterial wave-
guide, along with the transmon qubit multilevel structure,

(a)

(b) (c)

FIG. 10. (a) Full circuit model used in simulations. All inductors are made equivalent, with inductance L0. Parameters are further
discussed in the text. (b) Simulation of Fig. 3(b) dataset. The intensity plot is of energy in the faux-qubit resonator normalized by the
initial energy; this simulated time-dependent normalized energy corresponds directly to the qubit’s excited-state population
measurements in Fig. 3(b). Simulation parameters are described in the text. Band edges are highlighted in dashed yellow lines,
while dashed black lines are guides to the eye. (c) Simulation of Fig. 2(d) dataset. Circuit model and simulation parameters are described
in the text. Simulations are done with the aid of the Microwave Office software package.

COLLAPSE AND REVIVAL OF AN ARTIFICIAL ATOM … PHYS. REV. X 11, 041043 (2021)

041043-21



to generate a 2D photonic cluster state. Given a typical
transmon anharmonicity of 300 MHz, tuning the e − f
transition instead of the g − e transition into the middle of
the passband situates the g − e transition frequency more
than 200 MHz above the upper band edge in our current
waveguide devices. The corresponding level structure then
consists of two metastable states (jgi and jei) and a third
level (jfi) that is strongly coupled to the waveguide. It has
been previously shown that such a ladderlike level structure
can be utilized to generate 1D cluster states of time-bin
photonic qubits through a sequential emission process
[62,100,101].
In addition, the non-Markovian nature of the slow-light

waveguide reservoir can be further exploited to enrich this
one-dimensional entanglement to higher dimensions via
time-delayed feedback [23]. In the case of 2D cluster state
generation, this can be accomplished by using a metama-
terial waveguide terminated on one end, coupling an
emitter qubit to the terminated end of the waveguide,
and using a second tunable qubit coupled to the output port
of the waveguide as a single-photon switchable mirror
[102]. This mirror could be periodically switched on and
off in a manner where consecutively emitted photons reflect
on the mirror, interact a second time with the qubit, and
subsequently exit through the waveguide output port with-
out additional reflections, with facile access to the photons
for subsequent measurement enabled by matching of the
slow-light metamaterial waveguide to a 50-Ω output wave-
guide. This resource-efficient scheme, requiring only two
qubits, entangles photons separated in time by τd in
addition to the 1D entanglement between consecutively
emitted photons, thus achieving a N ×M 2D cluster state,
where N is limited by the number of time-bin qubits that
can fit in the slow-light waveguide and N ·M is limited by
the coherence time of the emitter. And, remarkably,
increasing the number of qubit-photon interaction events
by simply increasing the number of reflections in the
metamaterial waveguide allows for generation of cluster
states with even higher entanglement dimensionality, pav-
ing the way for fault-tolerant measurement-based quantum
computation [23,64,85].
Moreover, leveraging the rapid flux control of the qubit’s

transition frequency confers several additional advantages
to the generation of multidimensional cluster states. For
instance, it enables selective coupling and decoupling of
the jfi state to the waveguide via control of the detuning of
the e − f transition to the passband, allowing for high-
fidelity manipulation of the emitter’s three-level quantum
state separate from photon emission and reabsorption.
Additionally, controlling the qubit-waveguide interaction
strength via parametric flux modulation of the qubit
frequency, as discussed in the main text, allows for pulse
shaping of the emitted photons [103–105], which yields
multiple benefits. First, the fidelity of the photon reabsorp-
tion process can be significantly improved by shaping the
photons to have a time-symmetric envelope with bandwidth

less than Γ1D [23,75,76]. This directly improves the fidelity
of the entanglement between time-bin photonic qubits that
occurs via the time-delayed feedback mechanism. Second,
pulse shaping allows for precompensation of the waveguide
residual dispersion near the middle of the passband [106],
preventing broadening and distortion of propagating pho-
tons that could hinder their eventual measurement.
Already with our achieved device parameters of τd ¼

227 ns and T�
2 ¼ 3 μs (measured at a flux-insensitive

sweet spot), along with an increased Γ1D by a factor of
2, entangling between individual time-bin qubits can be
performed with over 95% fidelity through the techniques
discussed in Ref. [23], allowing for generation of cluster
states of up to approximately nine photons. Note that, due
to the enhancement of the qubit-waveguide interaction
strength via the slow-light effect [107,108], doubling the
Γ1D achieved in this work corresponds to only a small
increase of approximately 2 fF in the capacitive coupling of
the qubit to the metamaterial waveguide. Furthermore,
realistic increases in τd and T�

2 would increase the size
of possible states by at least an order of magnitude, with
ample room for more substantial improvement via incor-
poration of even more compact high kinetic inductance
superconducting thin-film resonators for larger delays, and
utilization of error-protected qubits [109,110] or lower-loss
superconducting films [111] for higher qubit coherence.
Finally, we note that techniques for tomography of micro-
wave fields [59,80], and single-photon detection of micro-
wave photons utilizing superconducting qubits [81–83],
have attained significant maturity over the past decade,
enabling characterization of generated cluster states and
their use in measurement-based quantum computation.

APPENDIX G: MODELING OF QUBIT
COUPLED TO DISPERSIONLESS

WAVEGUIDE IN FRONT OF A MIRROR

In this Appendix, we present modeling of the time-
delayed feedback phenomenon described in the main text.
Here, we employ a dispersionless waveguide in our model
instead of our slow-light waveguide in order to compare our
data to the dynamics of an ideal scenario where pulse
distortion and propagation losses are absent. We employ a
dispersionless waveguide with equivalent round-trip delay
of τd ¼ 227 ns to the slow-light waveguide. The theoretical
model we use is described at length in Ref. [31]; below, we
briefly summarize the derivation of the model found in this
reference.
Reference [31] starts with the following Hamiltonian,

where the coupling to different waveguide modes is now
allowed to vary as a function of k:

Ĥ ¼ ωgejeihej þ
Z

dkωkâ
†
kâk þ

Z
dkgkðâ†kσ̂− þ âkσ̂þÞ;

ðG1Þ
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and the same single-excitation ansatz of Eq. (B13), but with
time-dependent coefficients ceðtÞ and ckðtÞ (and where a
continuum of modes is already assumed). Following
similar analysis to Appendix B, Eqs. (G1) and (B13)
are substituted into the time-dependent Schrödinger equa-
tion ∂tjψðtÞi ¼ −iĤjψðtÞi, and, after collecting terms and
going into the rotating frame of the qubit, the authors
arrive at the following system of coupled differential
equations:

_ceðtÞ ¼ −i
Z

dkgkckðtÞ; ðG2Þ

_ckðtÞ ¼ −iΔkckðtÞ − igkceðtÞ; ðG3Þ

where Δk ¼ ωge − ωk. The authors then explicitly integrate
Eq. (G3) to obtain a solution for ckðtÞ and substitute
that solution into Eq. (G2). In order to evaluate the
resultant equation of motion for ceðtÞ, the authors make
the following assumptions: (i) They assume the dispersion
is linearized around the qubit frequency such that
ωk ¼ ωge þ vðk − k0Þ, where v is the group velocity,

and (ii) gk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ1Dv=π

p
sin kx0, where x0 is the qubit

position in the waveguide. The particular form of gk is
chosen by asserting that the field assumes a sin kx spatial
profile such that the field fulfills the boundary condition of
being zero at the waveguide termination; thus, the field
strength at the qubit is sin kx0. With these expressions for
ωk and gk, the resultant equation of motion for ceðtÞ can be
simplified to the following form:

_ceðtÞ ¼−
Γ1D

2
ceðtÞþ

Γ1D

2
ei2k0x0ceðt− τdÞθðt− τdÞ; ðG4Þ

where τd is the round-trip delay and θ is the Heaviside step
function; the first term on the right-hand side is responsible
for the decay of the qubit, while the second term is
responsible for photon reabsorption. Equation (G4) is
finally solved via methods described in Ref. [112], yielding
the following analytic expression for the dynamics of a
qubit excited-state population when coupled to a semi-
infinite dispersionless waveguide:

ceðtÞ ¼ eΓ1Dt=2
X
n

1

n!

�
Γ1D

2
eiϕþΓ1Dτd=2

�
n

× ðt − nτdÞnθðt − nτdÞ; ðG5Þ

where ϕ ¼ 2k0x0 is the round-trip phase gained by the
propagating emitted pulse.
Substituting Γ1D=ð2πÞ ¼ 21 MHz and τd ¼ 227 ns into

Eq. (G5), we obtain the magenta curve plotted in Fig. 4(b).
As discussed in the main text, our measured dynamics
compare favorably to the ideal scenario of no dispersion-
induced distortion of the traveling emitted pulse, as well as

no propagation losses, captured by the model discussed
above. Thus, the limited recurrence observed can be mostly
attributed to emission into the open end of the waveguide,
as well as inefficient reabsorption of the emitted wave
packet due to its exponential shape.
In addition, we also plot in Fig. 11 similar compari-

sons between this ideal model of the observed time-
delayed feedback phenomenon and the data shown in
Fig. 4(c). For this comparison, we choose to plot the
five line cuts plotted in white in Fig. 4(c), along with
comparisons to the theoretical model. The agreement
between the two for all five curves is similar to the
agreement observed in Fig. 4(b). Quantification of the
non-Markovianity of the discussed model under various
parameters is presented in Ref. [27]; however, as the
reference notes, there are many competing manners to
quantify non-Markovianity.

FIG. 11. Replots of the five (white) line cuts in Fig. 4(c), with
accompanying theoretical predictions for emission of a qubit
into a dispersionless, lossless semi-infinite waveguide. In the
theoretical model, τd is maintained fixed for all simulations, while
the qubit emission rate Γ1D and round-trip phase ϕ are allowed
to vary as fit parameters to capture the effects of the changing
flux-modulation amplitude, which not only changes Γ1D but also
causes a residual dc shift of the average qubit frequency [77],
which, in turn, affects ϕ. Moreover, a thermal qubit population
of 2.4% is assumed. From top to bottom, the fit parameters Γ1D
and ϕ are, respectively, Γ1D=2π ¼ 0.17 MHz, ϕ ¼ π=2.6;
Γ1D=2π ¼ 0.6 MHz, ϕ ¼ π=2.6; Γ1D=2π ¼ 1.8 MHz, ϕ ¼
π=2.1; Γ1D=2π ¼ 5 MHz, ϕ ¼ π=2.6. Note that the parameter
ϕ has a negligible effect for dynamics involving large Γ1D, where
revival events are clearly discernible, and, for dynamics involving
small Γ1D, ϕ simply modulates the emission rate. However, for
intermediate Γ1D such as Γ1D=2π ¼ 0.6 and 1.8 MHz, the shapes
of the population dynamics curves are sensitive to ϕ.
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