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We develop an efficient approach for computing two-particle response functions and interaction vertices
for multiorbital strongly correlated systems based on the rotationally invariant slave-boson framework.
The method is applied to the degenerate three-orbital Hubbard-Kanamori model for investigating the origin
of the s-wave orbital antisymmetric spin-triplet superconductivity in Hund’s metal regime, previously found
in the dynamical mean-field theory studies. By computing the pairing interaction considering the particle-
particle and the particle-hole scattering channels, we identify themechanism leading to the pairing instability
around Hund’s metal crossover arises from the particle-particle channel, which contains the local electron
pair fluctuation between different particle-number sectors of the atomic Hilbert space. On the other hand, the
particle-hole spin fluctuations induce the s-wave pairing instability before entering Hund’s regime. Our
approach paves the way for investigating the pairing mechanism in realistic correlated materials.
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I. INTRODUCTION

Slave-boson approaches are among the most widely used
theories for describing strongly correlated systems [1–7]. In
particular, the saddle-point approximation of the slave-
boson method provides a reliable description of the local
correlation effects, while requiring a relatively low com-
putational cost compared to dynamical mean-field theory
(DMFT) [8]. The development of the rotationally invariant
slave-boson (RISB) saddle-point approximation [9], equiv-
alent to the Gutzwiller approximation (GA) [10,11], has
also been extended to realistic multiorbital systems, in
combination with density functional theory [12,13], uncov-
ering many intriguing phenomena, including the selective-
Mott transition [7,14,15], Hund’s metal behavior [16–19],
valence fluctuations, and correlation induced topological
materials [20–22].

Recently, RISB has been reformulated as a quantum
embedding theory, where the interacting lattice problem is
mapped to an impurity problem coupled to a self-consis-
tently determined environment [21], similar to DMFT and
density matrix embedding theory (DMET) [8,23,24]. In
particular, the RISB saddle-point equations are equivalent
to the “noninteracting bath” DMET (NIB-DMET) self-
consistent equations when setting the quasiparticle renorm-
alization matrix to unity and enforcing an additional
constraint on the structure of the physical density matrix
[25,26]. In addition, the two methods, originally proposed
for describing the ground state or low-temperature proper-
ties, have been extended to study the finite-temperature
effects, the nonequilibrium dynamics, the excited states,
and the single-particle spectral functions in correlated
systems [27–33].
So far, RISB is mostly used for investigating the single-

particle spectral functions and the static local observables.
However, the two-particle response functions and the
corresponding interaction vertices are also important for
explaining the emergent phenomena in correlated materi-
als, e.g., the spin-fluctuation-mediated pairing in unconven-
tional superconductors [34]. Therefore, it is important to
extend RISB to study these quantities. Indeed, it is possible
to compute the two-particle response functions with the
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Gaussian fluctuation approach around the slave-boson
saddle point [3,4,35–44]. However, the technique has so
far been restricted to the single-orbital Hubbard model. On
the other hand, the development of the time-dependent
Gutzwiller approximation has been extended to multi-
orbital systems and applied to the two-orbital Hubbard
model for spin susceptibilities [45–51]. To the best of
our knowledge, the theories have not been generalized
to compute arbitrary two-particle response functions and
quasiparticle interaction vertices for multiorbital systems.
In this work, we develop an efficient approach to

compute general susceptibilities and quasiparticle interac-
tion vertices based on fluctuation around the RISB saddle
point, allowing a diagrammatic analysis for the pairing
mechanism. We apply our method to the degenerate three-
orbital Hubbard-Kanamori model to investigate the origin of
the s-wave orbital-antisymmetric spin-triplet pairing insta-
bility inHund’smetal regime, previously found in theDMFT
and GA studies [52–55]. We show that, in agreement with
DMFT [53], our approach captures the s-wave spin-triplet
pairing instability around Hund’s metal crossover. By inves-
tigating the pairing interaction considering the particle-
particle and the particle-hole scattering channels, we identify
that the mechanism leading to the local s-wave orbital-
antisymmetric spin-triplet pairing arises from the particle-
particle channel, which contains the local electron pair
fluctuation between different particle-number sectors of
the local Hilbert space. Interestingly, the particle-hole
spin-fluctuation mechanism for the s-wave pairing, consid-
ered also in previous works [53,56,57], induces the s-wave
pairing instability slightly before entering Hund’s regime.
Possible applications of our formalism to NIB-DMET are
also discussed.

II. MODEL

We consider the following generic multiorbital Hubbard-
Kanamori model:

Ĥ ¼
X
kαβσ

ϵkαβd
†
kασdkβσ þ

X
i

Ĥloc½fd†iασ; diασg�; ð1Þ

where α is the orbital index, σ is the spin index, i is the unit-
cell label, and k is the momentum conjugate to i. As a proof
of principle and for pedagogical reasons, we assume a
three-orbital degenerate model with the energy dispersion
of a two-dimensional square lattice with the nearest-
neighbor hopping:

ϵkαβ ¼ −2t½cosðkxÞ þ cosðkyÞ�δα;β; ð2Þ

where α ∈ f1; 2; 3g, and we set t ¼ 1 as the energy unit.
However, we note that our formalism applies to multiorbital
Hubbard models with a general hopping matrix and an
arbitrary number of orbitals. The term Hloc represents the
following operator:

Ĥloc½fd†i;α; diαg�
¼ U

X
α

niα↑niα↓ þU0 X
α<α0;σ

niασniα0σ̄

þ ðU0 − JÞ
X
α<α0;σ

niασniα0σ − J
X
α<α0

ðd†iα↑diα↓d†iα0↓diα0↑

þ d†iα↑d
†
iα↓diα0↑diα0↓ þ H:c:Þ − μ0

X
ασ

nασ; ð3Þ

which contains the Kanamori interaction [58] in the cubic-
harmonic basis. The first term is the intraorbital Coulomb
interaction, the second term and the third term are the inter-
orbital Coulomb interaction, and the last term contains the
spin-flip and the pair hopping interaction. Throughout our
paper, we assume the rotationally invariant condition U0 ¼
U − 2J and set J ¼ U=4. Note that, with this choice of
parameters, the bare orbital-antisymmetric spin-triplet pair-
ing interaction is repulsive, i.e., U0 − J > 0. The electron
occupancy is controlled by the chemical potential μ0.
Because of the Oð3Þ ⊗ SUð2Þ symmetry in the degener-

ate three-orbitalmodel, the orbital-antisymmetric spin-triplet
pairing channels [59–61] are related to each other by a
rotation in the orbital and the spin space. Consequently, we
focus on the pairing fluctuation in one of the orbital-
antisymmetric spin-triplet pairing channels:

ÔP ¼
X
αβ

X
σσ0

½λ6�αβ½−iσyσz�σσ0d†i;ασd†i;βσ0 : ð4Þ

Similarly, we have the following independent operators
for the charge, spin, orbital, and spin-orbital fluctuation
channels:

Ôs ¼

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

P
αβ
½λ0�αβ½σ0�σσ0d†i;ασdi;βσ0 s ¼ ch

P
αβ
½λ0�αβ½σz�σσ0d†i;ασdi;βσ0 s ¼ sp

P
αβ
½λ4�αβ½σ0�σσ0d†i;ασdi;βσ0 s ¼ orb

P
αβ
½λ4�αβ½σz�σσ0d†i;ασdi;βσ0 s ¼ so

P
αβ
½λ1�αβ½σ0�σσ0d†i;ασdi;βσ0 s ¼ orb�

P
αβ
½λ1�αβ½σz�σσ0d†i;ασdi;βσ0 s ¼ so�;

ð5Þ

where we label the fluctuation channels by s ∈
fch; sp; orb; so; orb�; so�; Pg throughout the paper. Here,
λ0 is the 3 × 3 identity matrix and λi are the Gell-Mann
matrices (see the Appendix A), while σ0 is the 2 × 2 identity
matrix and σi (i ¼ x, y, z) are the Pauli matrices.
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III. METHOD

Our fluctuation approach around the RISB normal-state
saddle point is entirely encoded in the following Lagrange
function [62] (see Appendix B):

L½jΦi;R;Λ;D;Λc;Ec;Δ�
¼Lqp½R;Λ�þLemb½D;Λc; jΦi;Ec�þLmix½D;R;Λc�; ð6Þ

where

Lqp½R;Λ� ¼ −T
N

1

2

X
k1k2ωn

Tr log½−iωn þHqp
k1k2

�eiωn0
þ
; ð7Þ

Lemb½D;Λc; jΦi; Ec� ¼
X
i

hΦijĤi;emb½Di;Λc
i �jΦii

þ Ec
i ðhΦijΦii − 1Þ; ð8Þ

Lmix½D;R;Λc�¼−
X
i

½1
2

X
ab

ð½Λi�abþ½Λc
i �abÞ½Δi�ab

þ
X
acα

ð½Di�aα½Ri�cα½Δið1−ΔiÞ�1=2ca þc:c:Þ�:

ð9Þ

Equation (7) encodes the contribution of the so-called
“quasiparticle fermionic” degrees of freedom. Specifically,
the matrix

½Hqp
k1k2

�ab ¼
1

N

X
k

½Rk1−kϵ̃kR
†
k2−k�ab þ ½Λk1−k2

�ab; ð10Þ

with the hopping term in the Nambu basis,

ϵ̃k ¼
�
ϵk 0

0 −ϵ�−k

�
; ð11Þ

characterizes the “quasiparticle Hamiltonian”:

Ĥqp ¼
X
k1;k2

½Hqp
k1k2

�abΨ†
k1a

Ψk2b; ð12Þ

whereΨ†
k¼ðf†k1↑f†k1↓…f†kM↑f

†
kM↓fk1↑fk1↓…fkM↑fkM↓Þ

is a Nambu spinor, fkaσ are the fermionic quasiparticle
modes, andM is the total number of orbitals. The matrixR
is the so-called “quasiparticle renormalization matrix,” and
Λ is a matrix of Lagrange multipliers enforcing the RISB
constraints [9,62]:

½Δi�ab ≡ hΨ†
iaΨibiT; ð13Þ

where Δi corresponds to the local quasiparticle density
matrices [14], and the symbol h…iT denotes the thermal
average of the noninteracting quasiparticle Hamiltonian
Ĥqp at temperature T.

The second term Lemb [Eq. (8)] encodes the contribution
of the slave-boson amplitudes, which we expressed here
directly in terms of the corresponding “quantum embed-
ding” states jΦii and interacting embedding Hamiltonians
[21] (see Appendix B 1):

Ĥi;emb ¼ Hi;loc½fd̂†iα; d̂iαg� þ
�X

aαb

DiaαΞ̂
†
iαΨ̂ibĪba þ H:c:

�

þ
X
abcd

1

2
Λc
iabĪbcΨ̂

†
icΨ̂idĪda; ð14Þ

where Ξ̂†
i ¼ ðd̂†i1↑d̂†i1↓…d̂†iM↑d̂

†
iM↓d̂i1↑d̂i1↓…d̂iM↑d̂iM↓Þ is

the impurity Nambu spinor and Ψ̂†
i ¼ ðf̂†i1↑f̂†i1↓…

f̂†iM↑f̂
†
iM↓f̂i1↑f̂i1↓…f̂iM↑f̂iM↓Þ is the Nambu spinor for

the bath orbitals. The matrix

Ī ¼
�
1 0

0 −1

�
ð15Þ

is the sign exchange matrix generated from the embedding
mapping (see Appendix B 1), where 1 is the 2M × 2M
identity matrix. The variable Ec

i is a Lagrange multiplier
enforcing the normalization of jΦii:

hΦijΦii≡ 1: ð16Þ

The matrix Λc
i , which describes the embedding

Hamiltonian bath potential, is a matrix of Lagrange multi-
pliers enforcing the RISB constraints:

½Δi�ab ≡ hΦijΨ̂ibΨ̂
†
iajΦii: ð17Þ

The matrix Di, which describes the hybridization between
the impurity and the bath orbitals, is a matrix of Lagrange
multipliers, enforcing the definition of the renormalization
matrix [9,14,62]

Riaα ¼
X
b

hΦijΞ̂†
iαΨ̂ibjΦii½Δið1 − ΔiÞ�−

1
2

ba: ð18Þ

The third term Lmix [Eq. (9)] contains the Lagrange
multipliers from both Lqp and Lemb.
All physical observables can be obtained from the above

variational variables at the saddle-point solution of Eq. (6).
The total energy is equal to the Lagrange function [Eq. (6)]
evaluated at the saddle point. The expectation value of
generic local operators Ôi½fdiα; d†iαg� is determined from

hÔi½fdiα; d†iαg�i≡ hΦijÔi½fd̂iα; d̂†iαg�jΦii: ð19Þ

In particular, the local (physical) single-particle density
matrix is obtained from
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ρi;αβ ≡ hΦijΞ̂†
iαΞ̂iβjΦii: ð20Þ

The quasiparticle weight is determined from the R matrix
through Zi ¼ R†

iRi.
Note that within the context of NIB-DMET, Eq. (12)

corresponds to the so-called “low-level mean-field”
Hamiltonian when setting R ¼ I, and Λ is termed the
“correlation potential.” Equation (14) corresponds to the
so-called “high-level many-body Hamiltonian” in NIB-
DMET, where the two-particle interaction on the bath
orbitals is set to zero [24].

A. Parametrization of the single-particle matrices

To enforce the symmetry conditions of the Lagrange
function, we introduce the following parametrization of the
renormalization matrixRi and the Lagrange multipliers Λi,
Δi, Di, and Λc

i [14]:

Ri ¼
X
s

ri;sh̃s; ð21Þ

Λi ¼
X
s

li;shs; ð22Þ

Δi ¼
1

2
1þ

X
s

di;sht
s; ð23Þ

Di ¼
X
s

Di;sh̃s; ð24Þ

Λc
i ¼

X
s

lci;shs; ð25Þ

where 1 is the 4M × 4M identity matrix, and hs and h̃s are
the symmetry-adapted matrix basis of the above single-
particle matrices. The structure of the matrix baseshs and h̃s
is determined from the group symmetry analysis of themodel
in the presence of the fluctuating operators [e.g., Eqs. (4) and
(5)] [14]. This parametrization allows us to classify the
fluctuations of the variational parameters (rs, ls, etc.) to a
specific symmetry channel s, associated to hs and h̃s. For
example, in the degenerate three-orbital Hubbard-Kanamori
model, thehs and h̃s (seeAppendixC 2) are associated to the
fluctuation channels s ∈ fch; sp; orb; so; orb�; so�; Pg in
Eqs. (4) and (5). In addition, for computing the susceptibility
of a given channel s, the embedding wave function jΦii has
to break the corresponding symmetry; e.g., the particle-
number conservation of jΦii has to be broken for the pairing
susceptibility calculations.
For later convenience, we introduce the following vector

of parameters:

xi ¼ ðri;ch; li;ch; di;ch; Di;ch; lci;ch;…; ri;s; li;s;

di;s; Di;s; lci;s;…; ri;P; li;P; di;P; Di;P; lci;PÞ; ð26Þ

and assume that all of its entries are real, which is sufficient
for static quantities (e.g., static susceptibilities and Landau
parameters [39,42]). Note that our assumption of real
variables is applicable for our model without spin-orbit
coupling. The generalization to spin-orbit coupled systems
can be straightforwardly obtained using the same procedure
proposed in this work, by including in the Lagrangian also
the imaginary part of R and D.

B. Saddle-point approximation

The first step of our fluctuation approach is to determine
the normal-state saddle-point solution without any order-
ing. We assume a spatially homogeneous saddle-point
solution, where xi does not depend on i.
Performing the partial derivatives of Eq. (48) with respect

to x, we arrive at the following saddle-point equations:

½Δ�ab ¼
1

N

X
k

½fTðHqp
k Þ�ba; ð27Þ

½Δð1 − ΔÞ�1=2ac Dca ¼
1

N
1

2

X
k

½ϵ̃kR†fTðHqp
k Þ�αa; ð28Þ

X
cbα

∂ds ½Δð1 − ΔÞ�1=2cb ½D�bα½R�cα þ c:c:þ 1

2
½ls þ lcs � ¼ 0;

ð29Þ

ĤembjΦi ¼ EcjΦi; ð30Þ

½F ð1Þ�ab ≡ hΦjĪbcΨ̂cΨ̂
†
dĪdajΦi − ½Δ�ab ¼ 0; ð31Þ

½F ð2Þ�αa ≡ hΦjΞ̂†
αΨ̂bĪbajΦi −Rcα½Δð1 − ΔÞ�1=2ca ¼ 0; ð32Þ

where fT is the Fermi function andH
qp
k ¼ Rϵ̃kR† þ Λ is the

saddle-point quasiparticle Hamiltonian. Equations (27)–(32)
canbe solvednumerically byutilizingquasi-Newtonmethods
[14,21]. Note that our saddle-point equations yield consistent
results compared to the formalism in Ref. [62].
It is also interesting to point out that Eqs. (27)–(32) are

equivalent to the NIB-DMET self-consistent equations
when setting the renormalization matrix to unity R ¼ I
and enforcing the so-called “quasiparticle constraint” that
we will introduce later in Sec. IV [25].
Given the saddle-point solution in the normal phase, we

want to compute the corresponding susceptibilities. This
will be accomplished using the approach described below.

C. Calculation of susceptibilities

Here, we describe the formalism for calculating the
susceptibilities in multiorbital systems within the RISB
framework. For concreteness, we focus on uniform susce-
ptibilities in this section, where xi is independent of i, and
we suppress the i index in the following derivation.
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The generalization to susceptibilities with finite momentum
transfer is described in Sec. IV.
Let us consider the RISB Lagrange function [Eq. (6)] in

the presence of a local perturbation, proportional to a
generic operator Ô:

L½ξ;x;Φ;Ec�¼Lqp½x�þLmix½x�þLemb½ξ;x;Φ;Ec�; ð33Þ

where we have modified the embedding part of the
Lagrangian to

Lemb½ξ;x;Φ; Ec� ¼
X
i

hΦðxÞjĤemb½x� − ξÔjΦðxÞi

þ Ecð1 − hΦðxÞjΦðxÞiÞ; ð34Þ

which was obtained by adding a field ξ coupled to Ô in the
embedding Hamiltonian of Eq. (14) and by expressing the
variational parameters in terms of the vector x; see Eq. (26).
To calculate the linear response of the system to the

perturbation Ô, we need to evaluate how the saddle-point
variational parameters x of Eq. (33) evolve as a function of
ξ. For this purpose, it is convenient to introduce the
following functional:

Ω½ξ;x� ¼ Lqp½x� þ Lmix½x�
þ Lemb½ξ;Φðξ;xÞ; Ecðξ;xÞ�; ð35Þ

where jΦðξ;xÞi and Ecðξ;xÞ are the ground state of Ĥemb
and its eigenvalue, respectively; see Eq. (30). Within these
definitions, the saddle-point solution of x for a given ξ,
which we call xðξÞ, is defined by

∂xΩ½ξ;x�j½ξ;xðξÞ� ¼ 0; ð36Þ

and the linear response for the operator Ô is given by the
following equation (see Appendix D for derivation):

χOO ¼ χemb
OO þ

X
μ

χemb
μO M−1

μν χ
emb
νO ; ð37Þ

where we introduced the susceptibilities:

χemb
OO ¼ ∂ξhΦðξ;xÞjÔjΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ð38Þ

χemb
μO ¼ ∂xμhΦðξ;xÞjÔjΦðξ;xÞij½ξ¼0;xðξ¼0Þ�: ð39Þ

The so-called “fluctuation matrix” is

Mμν ¼ ∂xμ∂xνΩ½ξ;x�j½ξ¼0;xðξ¼0Þ�: ð40Þ

Here, the indices μ and ν run through all the variational
variables in Eq. (26), i.e., rs, ls, ds, Ds, lcs . To keep track of
the structure of the fluctuation matrix (where different
second-order derivatives are computed through different

equations; see Appendix E), from now on we will often use
these variational variables as matrix subscripts. For exam-
ple, MDs;lcs0

corresponds to the second-order derivatives

with respect to Ds and lcs0 [see Eq. (E21)].
It is important to note that M is not invertible. This is

because the functional Ω is invariant with respect to the
gauge transformation [Eq. (H6)], so M is not unique
because of the would-be Goldstone modes. As explained in
Appendix I, this redundancy can be systematically resolved
by operating a gauge-fixing process that removes the
would-be Goldstone modes from the onset [47]. A simpler
alternative is to solve the overdetermined linear system
[Eq. (40)] by introducing the Moore-Penrose pseudoinverse
of the fluctuation matrix, which we indicate as M̄−1. In
terms of the pseudoinverse, the susceptibility can be
formally expressed as follows:

χOO ¼ χemb
OO þ

X
μν

χemb
μO M̄−1

μν χ
emb
νO : ð41Þ

Note that Eq. (41) applies for general multiorbital Hubbard
models, and the procedure for evaluating each element,
Eqs. (38)–(40), is described in Appendix E.
We now discuss the application of our formalism to the

degenerate three-orbital Hubbard-Kanamori model. For the
considered model, the fluctuation matrix M reduces to a
block-diagonal matrix, constructed by seven 5 × 5matrices
shown schematically in Fig. 1 (one for each fluctuation
channel s) because of the orthonormality of the fluctuation
basis Tr½hsh

†
s0 � ¼ δss0 . Furthermore, for a given channel s,

χemb
μO [see Eq. (39)] is nonzero only for the components
μ ¼ Ds and ls. Therefore, Eq. (41), for a given channel s,
can be further simplified to

χOsOs
¼ χemb

OsOs
þ χemb

DsOs
M̄−1

DsDs
χemb
DsOs

þ 2χemb
DsOs

M̄−1
Dslcs

χemb
lcsOs

þ χemb
lcsOs

M̄−1
lcs lcs

χemb
lcsOs

; ð42Þ

where M̄−1
DsDs

denotes the μ ¼ Ds and ν ¼ Ds components
of M̄−1

μν and similarly applies to M̄−1
Dsls

and M̄−1
lcs lcs

. We only

FIG. 1. Schematic representation of the block-diagonalized
fluctuation matrix in the charge, spin, orbital, spin-orbital, and
pairing sectors for the three-orbital degenerate Hubbard-
Kanamori model [see Eqs. (4) and (5)].
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need to evaluate the 5 × 5 fluctuation matrix and its
pseudoinversion within each s block to compute the
corresponding susceptibility. Note that the block-diagonal
structure is not directly applicable to generic systems
because of effects such as orbital differentiation or spin-
orbit coupling. In these cases, one has to compute the full
fluctuation matrix for calculating response functions.

IV. FERMI-LIQUID APPROXIMATION AND
DIAGRAMMATIC APPROACH

The Landau Fermi-liquid theory allows one to describe
the thermodynamic properties of metals in terms of an
effective noninteracting picture. Importantly, this frame-
work applies only to conserved quantities. In particular,
since the superconducting order parameter ÔP does not
commute with Eq. (1), the corresponding susceptibility is
not rigorously expressible in terms of quasiparticle param-
eters. Nevertheless, as we show below, within the RISB
framework, it is possible to derive an approximate (but
accurate) expression for the superconducting susceptibility
in terms of the quasiparticle Green’s function and inter-
action vertices. Moreover, the susceptibility can be for-
mulated in terms of the Bethe-Salpeter equation, allowing
further diagrammatic analysis for the pairing mechanism.
From the point of view of the RISB methodology, the

reason why the superconducting susceptibility cannot be
calculated in terms of quasiparticle parameters is that

Ks½Φi;Δi� ¼
X
αβ

½hs�αβðhΦijΞ†
iαΞiβjΦii − ΔiαβÞ ≠ 0 ð43Þ

for s ¼ P; i.e., the physical density matrix is, in general, not
the same as the quasiparticle density matrix.
Here, we propose to modify the spatially inhomogeneous

RISB Lagrange function [Eq. (6)] by imposing the con-
straint

Ks½Φi;Δi� ¼ 0; ð44Þ

which is accomplished by introducing additional Lagrange
multipliers ζi;s into Eq. (26) so that the x vector becomes

xi ¼ ðri;ch; li;ch; di;ch; Di;ch; lci;ch; ζi;ch;…; ri;s; li;s;

di;s; Di;s; lci;s; ζi;s;…; ri;P; li;P; di;P; Di;P; lci;P; ζi;PÞ: ð45Þ

We also introduce xq, which is the momentum conjugate
to xi.
The Lagrange function now has the following form:

L½ξ;x;Φ; Ec� ¼ Lqp½ξq;xq� þ Lmix½xi� þ Lemb½xi;Φi; Ec
i �;

ð46Þ

where

Lqp½ξq;xq� ¼ −
T
N
1

2

X
ωn

X
k1k2

Tr log½−G−1
ωn;k1;k2

½x; ξ��; ð47Þ

Lemb½xi;Φi;Ec
i �¼

X
i

hΦiðxiÞjĤemb½xi�þ
1

2

X
αβs

ζi;shs;αβ

Ξ̂†
iαΞ̂iβjΦiðxiÞiþEc

i ð1−hΦiðxiÞjΦiðxiÞiÞ;
ð48Þ

Lmix½xi� ¼ −
X
i

�
1

2

X
ab

�
Λiab þ Λc

iab þ
X
s

ζishs;ab

�
Δiab

þ
X
aαc

�
DiaαRicα½Δð1 − ΔÞ�12ica þ c:c:

��
;

ð49Þ

where we have introduced the physical Green’s function

Gωn;k1;k2
½ξ;x� ¼ R†Gqp

ωn;k1;k2
½ξ;x�R ð50Þ

and the quasiparticle Green’s function

½Gqp
ωn;k1;k2

½ξ;x��−1ab ¼ iωn − ½Hqp
k1k2

½x��ab þ ξk1−k2
½O�ab:

ð51Þ

Similar to the previous section, we also introduced a field
ξk1−k2

coupled to a generic quasiparticle operator Ô ¼P
ab Ψ

†
k1a

½O�abΨk2b into Lqp. This modification allows us
to derive momentum-dependent susceptibilities for inves-
tigating the finite momentum (commensurate or incom-
mensurate) instabilities. From now on, we refer to Eq. (44)
as the “quasiparticle constraint.”
Since utilizing the Lagrange equations (47)–(49)

amounts to solving the RISB equations (27)–(32) within
a reduced variational space, the corresponding solution is
an approximation to the original one. In principle, enforc-
ing the constraint [Eq. (44)] does not affect the results for
the conserving channels, where the fluctuating operator
commutes with the Hamiltonian, e.g., the charge and spin
channels. However, it slightly reduces the variational
freedom when the constraint is imposed on the noncon-
serving channel, e.g., the pairing channel. Nevertheless, as
we will show, it is always possible to verify a posteriori the
accuracy of the approximation by comparison to the
formalism without the constraint (see also Appendix J).
It is also interesting to point out that Eq. (44) corresponds

to the density matrix mapping constraint in DMET [24].
Therefore, the formalism presented in this section is also
applicable to the NIB-DMET by removing the rs sector of
the fluctuation basis [Eq. (45)] and settingR ¼ I [25]. This
application is discussed in Appendix N.
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A. Susceptibility: Diagrammatic expression

Here, we show how the susceptibility evaluated with the
quasiparticle constraint can be expressed in terms of the
Feynman diagram in perturbation theory.
Following the procedure in Sec. III C, we introduce the

following functional:

Ω½ξ;x� ¼ Lqp½ξq;xq� þ Lmix½xi�
þ Lemb½ΦðxiÞ; EcðxiÞ�; ð52Þ

where now Lqp depends on the field ξq. The linear response
for a generic operator is given by the following equation:

χOOðqÞ ¼
T
2N

X
kωn

d
dξq

Tr½Gωn;kþq;k½ξ;x�Ō�
����
½ξ¼0;xðξ¼0Þ�

¼ χð0ÞOOðqÞ þ
X
μν

χμOðqÞM−1
μν ðqÞχνOðqÞ; ð53Þ

where the bare susceptibilities are

χð0ÞOOðqÞ ¼ −
T
2N

X
kωn

Tr½Gωn;kþqŌGωn;kŌ�; ð54Þ

χμOðqÞ ¼
T
2N

X
kωn

∂xμ;qTr½Gωn;kþq;k½ξ;x�Ō�j½ξ¼0;xðξ¼0Þ�:

ð55Þ

Note again that μ runs through all the elements in Eq. (45),
and we use the variational parameters as subscripts. We also
introduce the saddle-point Green’s function Gωn;k ¼
R†½iωn −Hqp

k �−1R and Ō ¼ ½R�−1O½R†�−1. The fluc-
tuation matrix M now depends on momentum q and
has an additional component ζs [see Eq. (45)]. The specific
form ofM is given in Appendix E. Furthermore,M is now
an invertible matrix because the quasiparticle constraint
breaks the gauge symmetry. Note that Eq. (53) applies for
generic multiorbital Hubbard models.
We now discuss the application of our approach to the

degenerate three-orbital Hubbard-Kanamori model. As
described in the previous section, for the degenerate model
considered here, M is a block-diagonal matrix shown
schematically in Fig. 1. Also, from Eqs. (4) and (5) and
Eqs. (C7)–(C14), we have Ōs ¼ h̄s ¼ ½R�−1hs½R†�−1 for
each fluctuation channel s. Therefore, the susceptibility can
be simplified to

χOsOs
ðqÞ ¼ χð0ÞOsOs

ðqÞ þ χrsOs
ðqÞM−1

rsrsðqÞχrsOs
ðqÞ

þ 2χrsOs
ðqÞM−1

rsls
ðqÞχlsOs

ðqÞ
þ χlsOs

ðqÞM−1
lsls

ðqÞχlsOs
ðqÞ; ð56Þ

where

χrsOs
ðqÞ ¼ −

T
2N

X
kωn

Tr½Gωn;kþq½R�−1½ðh̃sϵkþqR†

þRϵkh̃†
sÞ½R†�−1Gωn;kh̄s�; ð57Þ

χlsOs
ðqÞ ¼ −

T
2N

X
kωn

Tr½Gωn;kþqh̄sGωn;kh̄s�: ð58Þ

The M−1
rsrsðqÞ denotes the μ ¼ rs and ν ¼ rs components

ofM−1
μν ðqÞ and similarly applies toM−1

rsls
ðqÞ andM−1

lsls
ðqÞ.

We only need to evaluate the 6 × 6 fluctuation matrix and
its inversion within each s block to compute the corre-
sponding susceptibility.
To make a connection to perturbation theory, we com-

pare Eq. (56) with the Bethe-Salpeter representation of the
susceptibility:

χOsOs
ðqÞ¼χð0ÞOsOs

ðqÞ−
�
−T
2N

�
2X
αβγδ

X
kk0

X
ωnωn0

½Gωn;kh̄s

×Gωn;kþq�βαΓ̃s
αβγδðk;k0;qÞ½Gωn0 ;k

0 h̄sGωn0 ;k
0þq�δγ;
ð59Þ

where Γ̃s
αβγδðk;k0;qÞ is the (reducible) interaction vertex.

To extract the Γ̃s
αβγδðk;k0;qÞ from Eq. (56), we introduce

the following three-leg vertices:

Λ̃αβrsðk;qÞ≡
1

2
½R�−1αa ½Rϵ̃kþqh̃

†
s þ h̃sϵ̃kR†�ab½R†�−1bβ ; ð60Þ

Λ̃αβls ≡
1

2
½R�−1αahs;ab½R†�−1bβ ; ð61Þ

such that the susceptibilities can be written as

χrsOs
ðqÞ ¼ −

T
N

X
kωn

Tr½Gωn;kþqΛ̃rsðk;qÞGωn;kh̄s�; ð62Þ

χlsOs
ðqÞ ¼ −

T
N

X
kωn

Tr½Gωn;kþqΛ̃lsGωn;kh̄s�: ð63Þ

Substituting Eqs. (62) and (63) into Eq. (56), we obtain the
interaction vertex [see Eq. (59)]:

Γ̃s
αβγδðk;k0;qÞ¼−4

�
Λ̃αβrsðk;qÞ Λ̃αβls

�

×

�M−1
rsrsðqÞ M−1

rsls
ðqÞ

M−1
rsls

ðqÞ M−1
lsls

ðqÞ

��Λ̃γδrsðk0;qÞ
Λ̃γδls

�
;

ð64Þ

describing the effective interaction between quasiparticles
mediated by the bosonic propagator M−1

μν in the corre-
sponding channel.
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The diagrammatic representation of Eq. (59) is shown
in Fig. 2(a), where the solid line corresponds to the
Nambu propagator, the gray circle corresponds to h̄s, and
the gray rectangle corresponds to the interaction vertex
Γ̃s
αβγδðk;k0;qÞ. The diagrammatic representation for the

interaction vertex Γ̃s
αβγδðk;k0;qÞ is shown in Fig. 2(b),

where the solid circles correspond to the three-leg vertices
Λ̃αβμ. The double wavy line corresponds toM−1

μν ðqÞ, which
can be viewed as the dressed bosonic propagator (see
Appendix F) summing the particle-hole bubbles, for
s ∈ fch; sp; orb; so; orb�; so�g, or the particle-particle bub-
bles, for s ¼ P, to the infinite order.

B. Landau Fermi-liquid parameters

We can now calculate the Landau Fermi-liquid param-
eters for the considered three-orbital degenerate model
from Eq. (64). For each channel s ∈ fch; sp; orb; so; orb�;
so�g, we have

Γsðk;k0;qÞ¼−
1

2Z2
½Zðϵkþ ϵkþqÞðϵk0 þ ϵk0þqÞM−1

rsrsðqÞ
þR0ðϵkþ ϵkþqÞM−1

rsls
ðqÞþR0ðϵk0 þ ϵk0þqÞ

×M−1
rsls

ðqÞþM−1
lsls

ðqÞ�; ð65Þ

where we applied R ¼ R0I and Z ¼ R2
0 for the degenerate

model considered here. The scattering amplitude for each
particle-hole channel s can be evaluated from

AsðqÞ ¼ NFZ2hhΓsðk;k0;qÞikF
ik0

F
; ð66Þ

where we introduce the Fermi surface average

hhΓðk;k0ÞikF
ik0

F
¼

P
kk0Γðk;k0Þδk;kF

δk0;kFP
kk0δk;kF

δk0;kF

: ð67Þ

Here, NF ≡ χð0ÞOsOs
ð0Þ is the density of state at the Fermi

level, which coincides with the bare susceptibility χð0ÞOsOs
.

The Fermi-liquid parameters Fs can be extracted from the
scattering amplitude (see Appendix G)

AsðqÞ ¼
FsðqÞ

1þ FsðqÞ
: ð68Þ

From the definition of the quasiparticle susceptibility,
Eqs. (59) and (68), we obtain the random phase approxi-
mation (RPA)-like expression for the susceptibilities

χOsOs
ðqÞ ¼ χð0ÞOsOs

ðqÞ
1þ FsðqÞ

; ð69Þ

for s ∈ fch; sp; orb; so; orb�; so�g. Note that we have
applied the Fermi-surface average over k and k0. The
divergence of the quasiparticle susceptibilities and the
scattering amplitudes can be determined from the condition
FsðqÞ ¼ −1. Although Eq. (69) has a RPA-like form, the
Fermi-liquid parameters are renormalized by the correla-
tion effect for different q, which provides a more accurate
description for strongly correlated systems.

C. Pairing interaction from the
particle-particle channel

The reducible pairing vertex in the orbital-antisymmetric
spin-triplet pairing channel s ¼ P can be computed by
projecting the particle-particle scattering vertex Γ̃P

[Eq. (64)] onto the orbital-antisymmetric spin-triplet pair-
ing basis hP (see Appendix C 2):

FIG. 2. (a) Diagrammatic representation of the susceptibility
[Eq. (59)]. The thick solid line indicates the Nambu fermionic
propagator. The gray circle corresponds to the fluctuation basis
h̄s, and the gray square corresponds to the quasiparticle inter-
action vertex Γ̃s

αβγδ. (b) Diagrammatic representation of the

quasiparticle interaction vertex Γ̃s
αβγδ [Eq. (64)]. The double

wavy line corresponds to the dressed bosonic propagator con-
taining the infinite summation of the particle-particle or the
particle-hole fermionic bubbles. The black circle denotes the
three-leg vertices Λ̃αβμ (see main text for details).

FIG. 3. (a) Pairing vertex from the local particle-particle
fluctuation [Eq. (70)]. (b) Pairing vertex from the particle-hole
fluctuations [Eq. (74)]. The bubbles are summed to the infinite
order. The solid line with arrows corresponds to the normal
fermionic propagator. The wavy line corresponds to the bare
bosonic propagator.
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Γsc
ppðk;k0;q¼ 0Þ¼ ½h†

P�αβΓ̃P
αβγδðk;k0;q¼ 0Þ½h†

P�δγ
¼−

1

2Z4
½Zðϵkþ ϵkÞðϵk0 þ ϵk0 ÞM−1

rPrPð0Þ
−R0ðϵkþ ϵkÞM−1

rPlP
ð0Þ−R0ðϵk0 þ ϵk0 Þ·

×M−1
rPlP

ð0ÞþM−1
lPlP

ð0Þ�; ð70Þ

where we applied R ¼ R0I and Z ¼ R2
0 for the degenerate

model considered here and restrict the pairing at q ¼ 0.
The diagrammatic representation for Eq. (70) is shown in
Fig. 3(a). In this scattering process, only the particle-particle
fermionic bubbles and the local multiplets fluctuation
between different particle-number sectors in M−1

μν are
involved [the fluctuation bases hP and h̃P in Eqs. (E19)–
(E26) select the fluctuation that does not conserve the particle
number].
We can now derive the RPA-like form for the quasipar-

ticle susceptibility. From Γsc
pp, we compute the reducible

pairing interaction by averaging the k and k0 over the
Fermi surface

Γsc
pp ¼ Z2hhΓsc

ppðk;k0ÞikF
ik0

F
: ð71Þ

The irreducible pairing interaction Γirr
pp can be extracted

from (see Appendix G)

Γsc
pp ¼

Γirr
pp

1þ Γirr
ppχ

ð0Þ
OPOP

: ð72Þ

From the definition of the quasiparticle susceptibility,
Eqs. (59) and (72), we obtain the RPA-like expression
for the pairing susceptibility,

χP ¼ χð0ÞOPOP

1þ Γirr
ppχ

ð0Þ
OPOP

: ð73Þ

The divergence of the pairing susceptibilities and vertex

can be determined from the condition Γirr
ppχ

ð0Þ
OPOP

¼ −1.

D. Pairing interaction from the particle-hole channel

Besides the s-wave pairing induced from the particle-
particle vertex, the particle-hole vertices can also induce the
local and the nonlocal pairing through the charge and spin-
fluctuation mechanism [63–66]. To compute the irreducible
pairing vertex for the orbital-antisymmetric spin-triplet
pairing, we again project the particle-hole vertices onto
the pairing basis hP:

Γirr
phðk;k0Þ ¼

X
s∈fch;sp;orb;
so;orb� ;so�g

½h†
P�αγΓ̃s

αβγδðk;k0Þ½h†
P�βδ

¼ 1

8
½Γchðk;k0;q¼k−k0ÞþΓspðk;k0;q¼k−k0Þ−Γorbðk;k0;q¼k−k0Þ−Γsoðk;k0;q¼k−k0Þ

−
5

3
Γorb�ðk;k0;q¼k−k0Þ−5

3
Γso� ðk;k0;q¼k−k0Þþðk0 →−k0Þ�; ð74Þ

where the charge, spin, orbital, and spin-orbital scattering
vertices Γ̃s are defined in Eq. (65). The diagrammatic
representation for Eq. (74) is shown in Fig. 3(b), where the
M−1

rsrs , M
−1
rsls

, and M−1
lsls

contain the summation of the
particle-hole bubbles to the infinite order (see Appendix F),
and we include both the direct and the exchange (crossing)
diagrams. The irreducible pairing interaction from the
particle-hole channel can be computed from

Γirr
ph ¼ Z2hhΓirr

phðk;k0ÞikF
ik0

F
; ð75Þ

where we assume an s-wave pairing to compare with the
local pairing fluctuation mechanism in the previous section.

V. RESULTS AND DISCUSSION

A. Superconducting phase diagram

In this subsection, we apply our RISB saddle-point
approximation and fluctuation approach to the degenerate

three-orbital Hubbard-Kanamori model with Hund’s cou-
pling J ¼ U=4, which serves as an effective model for
Hund’s metals. We focus on the order parameter hÔPi
computed from Eq. (19) and the pairing susceptibility χP
computed from Eq. (42).
Figure 4(a) shows the intensity plot of the spin-triplet

pairing order parameter hÔPi at T ¼ 0.0005t. The peak of
the order parameters is located at the so-called Hund’s
metal crossover, where the quasiparticle weights Z decrease
significantly, as shown in Figs. 4(c) and 4(d) for selected
fillings n ¼ 1.6, 2.0, 2.4, and 2.8. The faster the decrease in
Z, the stronger the enhancement in the pairing order
parameters hÔPi. The normal state in the superconducting
regime can be viewed as Hund’s metals, where the
quasiparticle weight is small, and the local multiplet is
populated with high spin states, favoring the local spin-
triplet pairing [16,53,67–69].
We also show the uniform pairing susceptibility χP

evaluated from the fluctuation technique in Fig. 4(b).
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The pairing susceptibility is initially positive at small
Coulomb interaction U and diverges at the critical point.
Then, the pairing susceptibility becomes negative, indicat-
ing the instability towards the s-wave spin-triplet ordering
state. The phase boundary determined from the divergence
of the pairing susceptibility is shown in Fig. 4(a), which
agrees with the onset of the mean-field order parameters
indicating the consistency of our approach. We also
compare our phase diagram with the DMFT results on a
Bethe lattice at T ¼ 0.04t rescaled to the 2D bandwidth
W ¼ 8t in Fig. 4(a). While the RISB superconducting
regime is broader than the DMFT results, the overall phase
diagram agrees qualitatively with the DMFT [53].
We now turn to the finite-temperature phase diagram for

the s-wave spin-triplet pairing state. Figure 5(a) shows the
intensity plot of the s-wave spin-triplet order parameters
hÔPi at U ¼ 8t as a function of electron filling n and
temperature T. The superconducting region has a dome-
shape structure, where the maximum Tc is located around
n ¼ 2.5. Figure 5(b) shows the uniform pairing suscep-
tibility χP computed from the fluctuation approach for
filling n ¼ 2.0, 2.4, and 2.8 as a function of temperature T.
With decreasing T, the pairing susceptibility increases and
diverges at the critical temperature Tc. The critical temper-
ature obtained from the divergence of the pairing suscep-
tibility agrees with the onset of the mean-filed order
parameters, as shown in Fig. 5(a). We also compare our
phase diagram with the DMFT results on a Bethe lattice in
Fig. 5(a) corresponding to U ¼ 6t rescaled to the 2D

bandwidth W ¼ 8t considered here [53]. Both methods
generate a dome-shape structure where the peak in RISB is
closer to half-filling.
Figure 5(c) shows the intensity plot of the s-wave spin-

triplet pairing order parameters hÔPi as a function of
Coulomb interaction U and J ¼ U=4 at filling n ¼ 2.7.
The critical temperature Tc peaks around U ¼ 6t, which is
around Hund’s metal crossover. Figure 5(d) shows the
corresponding uniform pairing susceptibility χP computed
from the fluctuation approach for U ¼ 5t; 6t, and 12t. The
pairing susceptibility diverges at Tc and becomes negative,
indicating the instability towards the s-wave spin-triplet
pairing states. The Tc obtained from the divergence of the
susceptibility again agrees with the onset of the mean-field
order parameters, as shown in Fig. 5(c). We also compare
our phase diagram with the DMFT results on a Bethe lattice
in Fig. 5(c) at n ¼ 2.0 to match with our critical Uc at
T ¼ 0.0005t. The phase diagrams obtained from both
methods are again similar, with a dome-shape structure
where the Tc peaks around Hund’s crossover.
Note that there are two main reasons for expecting

qualitative agreement (but quantitative agreement) between
our RISB results and the DMFT results of Ref. [53]. The
first reason is that RISB (equivalently, GA) is essentially a
variational approximation to DMFT, in the sense that it is
variational in the limit of infinite dimension [70], where

FIG. 4. (a) Density plot of the s-wave spin-triplet supercon-
ducting order parameter hÔPi as a function of electron filling n
and Coulomb interaction U with J ¼ U=4 at T ¼ 0.0005t. The
cyan line is the phase boundary determined from the instability in
the pairing susceptibility χP. (b) Uniform pairing susceptibility
χP for n ¼ 2.8, 2.4, 2.0, 1.6. (c) Spin-triplet superconducting
order parameters hÔPi for n ¼ 2.8, 2.4, 2.0, 1.6. (d) Quasiparticle
weight Z for n ¼ 2.8, 2.4, 2.0, 1.6.

FIG. 5. (a) Density plot of the s-wave spin-triplet supercon-
ducting order parameter hÔPi as a function of electron filling n
and temperature T at U ¼ 8 and J ¼ U=4. The cyan line is the
phase boundary determined from the instability of the pair-
ing susceptibility χP. (b) Uniform pairing susceptibility χP for
n ¼ 2.8, 2.4, 2.0. (c) Density plot of the spin-triplet super-
conducting order parameter hÔPi as a function of Coulomb
interaction U and temperature T with n ¼ 2.7 and J ¼ U=4. The
cyan line is the phase boundary determined from the instability of
the pairing susceptibility χP. (d) Uniform pairing susceptibility χP
for U ¼ 5t; 16t; 12t.
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DMFT is exact. Also, RISB can be viewed as an approxi-
mation to DMFT, from a quantum embedding perspective,
where the uncorrelated bath has the same number of
orbitals as the impurity (while the bath is infinite in
DMFT). Hence, RISB is expected to be less accurate
(but more efficient) compared to DMFT. Nevertheless,
we note that, in this work, we assume a 2D square lattice,
while a Bethe lattice was used in Ref. [53]. In fact, it is
known that different lattice structures can lead to quanti-
tative differences in the results, but the qualitative behaviors
are generally similar [71].

B. Landau parameter and pairing interaction

For studying the pairing mechanism, it is instructive to
investigate the quasiparticle interaction vertex in the spin,
charge, orbital, spin-orbital, and pairing channels. To obtain
these quantities, we applied the Fermi-liquid approximation
in Sec. IV, which reproduces the exact physical suscep-
tibility, as shown in Appendix J.
Let us first discuss the charge, spin, orbital, and spin-

orbital fluctuations, encoded in the Landau parameters Fs.
The Landau parameters Fs in each channel are shown in
Fig. 6. We found that the Landau parameters in the charge
Fch and orbital Forbðorb�Þ channels show a peak around
Hund’s crossover and diverge at the Mott transition at
n ¼ 3. The kink in Fch corresponds to the possible phase
separation instability found in the previous slave-spin study
[72]. Moreover, we found the instability towards the

ferromagnetic ordering Fsp ¼ −1 for a wide range of
electron filling. Consequently, Fsp is the dominant fluc-
tuation in the particle-hole channel. In addition, the spin-
orbital channel Fsoðso�Þ also shows a subleading instability
at n ¼ 3.
We now turn to the irreducible pairing vertex in the

particle-particle channel Γirr
pp originating purely from the

local pairing fluctuation describing the superconducting
instability. Figure 7(a) shows the behavior of the pairing
interaction Γirr

pp in the particle-particle channel as a function

of Coulomb interaction U. The condition Γirr
ppχ

ð0Þ
OP

¼ −1
indicates the divergence in the pairing susceptibility. In the
weak-coupling limit, i.e., U ≪ t, Γirr

pp follows the bare
pairing interaction U − 3J for all the electron filling n.
With increasing U, the effective interactions for different
electronic filling are renormalized to smaller values and
eventually become negative, signalizing the instability
towards the pairing states. The pairing instability deter-
mined from Γirr

pp is located around Hund’s metal crossover
as discussed in the previous subsection. On the other hand,
as shown in Fig. 7(b), the pairing instability determined
from the particle-hole scattering channel Γirr

ph takes place
at a much lower U below Hund’s metal crossover.
Consequently, the particle-hole spin-fluctuation mecha-
nism cannot explain the pairing instability around
Hund’s metal crossover. The strong attraction in Γirr

ph is,
however, related to the ferromagnetic instability, as shown
in Fig. 6(b).

FIG. 6. The Landau parameters in the (a) charge, (b) spin,
(c) orbital, (d), spin-orbital, (e) orbital*, and (f) spin-orbital*
channel defined in Eq. (5) as a function of coulomb interaction U
and J ¼ U=4 for filling n ¼ 3.0, 2.8, 2.6, 2.4, 2.2, 2.0, 1.6 and
T ¼ 0.0005t.

FIG. 7. (a) Irreducible particle-particle s-wave spin-triplet

pairing vertex Γirr
ppχ

ð0Þ
OP

as a function of Coulomb interaction U
and J ¼ U=4 for filling n ¼ 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6 and
temperature T ¼ 0.0005t. (b) Irreducible particle-hole s-wave

spin-triplet pairing vertex Γirr
phχ

ð0Þ
OP

with the same parameter
settings. The vertical dashed lines indicate the critical Uc

determined from Γirr
ppχ

P
0 ¼ −1, signalizing the divergence of

the superconducting susceptibility and the scattering amplitude.
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VI. CONCLUSIONS

On the basis of the fluctuation approach around the RISB
normal-state saddle point, we developed an efficient
method to compute general susceptibilities, the quasipar-
ticle interaction vertex, Fermi-liquid parameters, and pair-
ing interaction for the multiorbital Hubbard model. The
method has a RPA-like efficiency and a similar accuracy
compared to DMFT for correlated systems.
We applied our method to the degenerate three-orbital

Hubbard-Kanamori model to investigate the origin of the
s-wave orbital-antisymmetric spin-triplet pairing in Hund’s
metal, previously found in the DMFT studies [53]. We
showed that, in agreement with DMFT, the pairing suscep-
tibility of the s-wave spin-triplet pairing states diverges
around Hund’s metal crossover. The phase diagram is in
good qualitative agreement with DMFT. By computing the
pairing interaction by considering the particle-particle and
the particle-hole scattering channels, we identified that the
origin of the superconducting pairing around Hund’s cross-
over arises from the particle-particle channel, containing the
local electron pair fluctuation between different particle-
number sectors of the local Hilbert space. The pairing
interaction is strongly renormalized in the incoherent
Hund’s metal regime and becomes negative. On the other
hand, the particle-hole spin-fluctuation mechanism induces
an s-wave pairing instability already for a smaller value of
Coulomb interaction before entering Hund’s regime.
The local interorbital pairing mechanisms revealed in this

work can be applied to the s-wave orbital-antisymmetric

spin-triplet pairing states proposed for Sr2RuO4 [59,60,73–
75] and KFe2As2 [76,77], where the interplay between
Hund’s rule coupling and the spin-orbital coupling leads
to intriguing gap structures on the Fermi surface. Our
approach provides an efficient route for investigating the
pairingmechanism for these materials, with the combination
of density functional theory. The general formalism that we
presented is also applicable for different purposes. For
example, it could be utilized for investigating the response
functions in the correlation-induced topological materials,
e.g., the topological Kondo and topological Mott insulators
[22,78–80], and the recently proposed topological iron-based
superconductors [81,82]. In addition, the diagrammatic
approach proposed in this work may serve as a basis for
the nonlocal extensions beyond RISB, similarly to the
diagrammatic approaches beyond DMFT [83]. Finally, our
formalismcan be applied to theNIB-DMETandother similar
quantum embedding methods [84–86].
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APPENDIX A: GELL-MANN MATRICES

We use the following convention for the Gell-Mann matrices:

λ1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ4 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; λ7 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λ2 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; λ5 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; λ8 ¼ 1ffiffiffi

3
p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA;

λ3 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA; λ6 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; λ0 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; ðA1Þ

where λ1, λ2, λ3 describe the symmetric interorbital inter-
actions or pairings; λ4, λ5, λ6 describe the antisymmetric
interorbital interactions or pairings; and λ7, λ8, λ0 describe the
intraorbital interactions or pairings. This set ofmatrices is the
most general basis that parametrizes the 3 × 3 quadratic
operators in the orbital space for three-orbital models. In the

degenerate three-orbital Hubbard-Kanamori model, the
Oð3Þ symmetry implies that the order parameters corre-
sponding to the symmetric interorbital fluctuations λ1, λ2,
and λ3 are identical to each other. Similarly, the order
parameters corresponding to the antisymmetric interorbital
fluctuations λ4, λ5, and λ6 are identical to each other.
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APPENDIX B: ROTATIONALLY INVARIANT
SLAVE-BOSON NAMBU FORMALISM

In this section, we outline the basis of the RISB Nambu
formalism. We start from a generic multiorbital Hubbard
model in the Nambu notation:

Ĥ ¼ 1

2

X
k

Ξ†
kαϵ̃k;αβΞkβ þ

X
i

Ĥloc½fd†iασ; diασg�; ðB1Þ

where

ϵ̃k;αβ ¼
�
ϵk 0

0 −ϵ�−k

�
ðB2Þ

is the energy dispersion in the Nambu basis. We
also define the Nambu spinor Ξ†

k ¼ ðd†k1↑d†k1↓…
d†kM↑d

†
kM↓d−k1↑d−k1↓…d−kM↑d−kM↓Þ, where M is the

total number of orbitals. The Hloc contains the generic
local one-body and two-body interactions.
Within the RISB framework, the physical operator Ξiα is

mapped to the product of a renormalization matrix and a
quasiparticle Nambu spinor:

Ξ†
iα ¼

X
a

Riaα½Φ†
i ;Φi�Ψ†

ia; ðB3Þ

where the quasiparticle spinor is Ψ†
i ¼ ðf†i1↑f†i1↓…;

f†iM↑f
†
iM↓; fi1↑fi1↓…fiM↑fiM↓Þ, and the renormalization

matrix has the following form [62,87,88]:

Riaα½Φ†
i ;Φi� ¼

X
b

Tr½Φ†
iΞiαΦiΨ

†
ib�½Δið1 − ΔiÞ�−

1
2

ba; ðB4Þ

where

½Δi�ab ¼ Tr½Φ†
iΦiΨ

†
iaΨib� ðB5Þ

corresponds to the local quasiparticle Nambu density
matrix, and ½Φi�An is the slave-boson amplitude matrix.
We also define the matrices ½Ξiα�AB ¼ hAjΞ̂iαjBi and
½Ψiα�nm ¼ hnjΨ̂iαjmi for the fermionic operator in the
arbitrary, local many-body basis jAi and the local Fock
basis jni, respectively [9,21]. The local interactions can be
expressed in terms of the bosonic amplitudes as [9]

Ĥloc ¼
X
ABn

½Φ�Bn½Φ�†nA½Hloc�AB; ðB6Þ

where ½Hloc�AB ¼ hAjĤlocjBi.
In order to select the physical states out of the enlarged

boson and quasiparticle Hilbert space, one has to enforce
the following RISB constraints [9,62]:

Tr½ΦiΦ†
i � ¼ 1; ðB7Þ

½Δi�ab ¼ hΨ̂†
iaΨ̂ibi ¼ Tr½Φ†

iΦiΨ
†
iaΨib�: ðB8Þ

The first constraint limits the Hilbert space to the single-
boson states, while the second constraint ensures the
rotational invariance of the quasiparticle density matrix
under the gauge transformation (see Appendix H).
With the RISB representations and constraints

[Eqs. (B3)–(B8)], the RISB Lagrangian for the generic
Hubbard model [Eq. (B1)] can be expressed as

L½Φ;R;Λ;D;Λc; Ec;Δ� ¼ −T
N

1

2

X
k1k2ωn

Tr log½−iωn þHqp
k1k2

�eiωn0
þ þ

X
i

Tr

�
ΦiΦ

†
i Hloc

þ
�X

aα

½Di�aαΦ†
iΞ

†
iαΦiΨia þ H:c:

�
þ
X
ab

1

2
½Λc

i �abΦ†
iΦiΨ

†
iaΨib

�
þ Ec

i ðTr½ΦiΦ
†
i � − 1Þ

−
X
i

�X
ab

1

2
ð½Λi�ab þ ½Λc

i �abÞ½Δi�ab þ
X
caα

ð½Di�aα½Ri�cα½Δið1 − ΔiÞ�1=2ca þ c:c:Þ
�
; ðB9Þ

where the original kinetic hopping term in Eq. (B1) is
described by the quasiparticle Hamiltonian:

½Hqp
k1k2

�ab ¼
1

N

X
k

½Rk1−kϵ̃kR
†
k2−k�abþ½Λk1−k2

�ab; ðB10Þ

while the local interaction Ĥloc in Eq. (B1) is mapped to the
slave-boson representation Tr½ΦiΦ

†
i Hloc�. The Λi, Λc

i , Di,

and Ec
i are the Lagrange multipliers enforcing the RISB

constraints [Eqs. (B7) and (B8)] and the structure of the Ri
matrix [Eq. (B4)]. Note that all these single-particle
matrices contain the particle, hole, and anomalous sectors
defined as follows:

Ri ¼
�
Ri Q�

i

Qi R�
i

�
; ðB11Þ
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Λi ¼
� Λi Λ0

i

Λ0
i
† −Λ�

i

�
; ðB12Þ

Λc
i ¼

� Λc
i Λc

i
0

Λc
i
0† −Λc

i
�

�
; ðB13Þ

Di ¼
�
Di D0�

i

D0
i D�

i

�
; ðB14Þ

Δi ¼
� Δi Δ0

i

Δ0†
i ð1 − ΔiÞ

�
: ðB15Þ

The Λi, Λc
i , and Δi are Hermitian matrices, and the Ri and

Di are non-Hermitian matrices. These single-particle
matrices are parametrized by Eqs. (21)–(25) utilizing the
matrix bases hs and h̃s, whose structure (for the three-
orbital degenerate Hubbard-Kanamori model) is discussed
in Appendix C 2.
The slave-boson amplitude can be constructed from the

symmetry adaptive basis ϕip:

½Φi�An ¼
X
p

cp½ϕip�An ðB16Þ

where

Tr½ϕ†
ipϕip0 � ¼ δp;p0 p; p0 ¼ 1;…; Nϕ; ðB17Þ

and the matrix basis commutes with the symmetry oper-
ation in the group G of the given problem, i.e.,
½ϕip; RðgÞ� ¼ 0 ∀ g ∈ G. The procedure for determining
ϕip is discussed in Appendix C 1.

1. Embedding mapping

We now introduce the embedding wave function [21]

jΦii ¼
X
An

eiðπ=2ÞNnðNn−1Þ½Φi�AnUPHjAijni; ðB18Þ

where UPH is the particle-hole transformation on the bath
site and Nn is the particle number of Fock state jni.
Substituting the following identities using Eq. (B9):

Tr½ΦiΦ
†
i Hloc� ¼ hΦijĤloc½d̂†iα; d̂iα�jΦii; ðB19Þ

Tr½Φ†
iΞ

†
iαΦΨia� ¼

X
b

hΦijΞ̂†
iαΨ̂ibjΦiiĪba; ðB20Þ

Tr½Φ†
iΦiΨ

†
iaΨib� ¼

X
cd

ĪbchΦijΨ̂icΨ̂
†
idjΦiiĪda; ðB21Þ

where

Ī ¼
�
1 0

0 −1

�
; ðB22Þ

and 1 is the identity matrix, we obtain the RISB Lagrangian
in terms of jΦii in Eq. (6) in the main text.

APPENDIX C: VARIATIONAL BASIS

In this section, we describe the construction of our
variational many-body basis ϕp and the single-particle
bases hs and h̃s of our fluctuation approach to the
degenerate three-orbital Hubbard-Kanamori model.

1. Many-body basis

For the charge, spin, orbital, and spin-orbital fluctua-
tions, we construct the many-body basis in Eq. (B16) using
the symmetry-adapted basis. The procedure can be found in
Ref. [89]. On the other hand, for the pairing state, we
construct the many-body variational basis following the
procedure in Ref. [62]. First, since the Hubbard-Kanamori
interaction [Eq. (3)] can be written into

Hloc ¼ ðU − 3JÞ N̂ðN̂ − 1Þ
2

− J

�
2Ŝ2 þ 1

2
L̂2

�
þ 5

2
JN̂

ðC1Þ

with

L̂α ¼
X
βγσ

d̂†iβσ½−iϵαβγ�d̂iγσ; ðC2Þ

Ŝ ¼ 1

2

X
ασσ0

d̂†iασσσσ0 d̂iασ0 ; ðC3Þ

N̂ ¼
X
ασ

d̂†ασd̂ασ; ðC4Þ

the local Hamiltonian is diagonalized in the Γ ¼ ðN;L; SÞ
basis. The σ is a vector of Pauli matrices, and ϵαβγ is the
Levi-Civita symbol, which can be expressed in terms of
Gell-Mann matrices λ4, λ5, and λ6. Therefore, the slave-
boson amplitude can be significantly reduced to

ΦΓn¼hΓjniΦðEΓÞþ
X3
q¼1

� hnjðÔPÞqjΓiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΓjðÔ†

PÞqðÔPÞqjΓi
q ΦðEΓ;2qÞ;

þ hnjðÔ†
PÞqjΓiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΓjðÔPÞqðÔ†
PÞqjΓi

q ΦðEΓ;−2qÞ
�
; ðC5Þ

where EΓ and jΓi are the eigenvalue and the eigenstate of
Eq. (C1), respectively. Comparing Eq. (C5) to Eq. (B16),
we identify that the many-body basis for the normal-state
part is
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ϕp ¼ hΓjni;

with the corresponding slave boson cp ¼ ΦðEΓÞ, and the
pairing parts are

ϕp ¼ hnjðÔPÞqjΓiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΓjðÔ†

PÞqðÔPÞqjΓi
q

and

ϕp ¼ hnjðÔ†
PÞqjΓiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hΓjðÔPÞqðÔ†
PÞqjΓi

q

with the corresponding slave-boson amplitudes cp ¼
ΦðEΓ; 2qÞ and cp ¼ ΦðEΓ;−2qÞ, respectively. In the
end, we have the 43 bosonic amplitudes listed in Table I.

2. Single-particle basis

The single-particle bases hs and h̃s, parametrizing
Eqs. (B11)–(B15), are block matrices,

hs ¼
�

hs h0s
h0s† −h�s

�
h̃s ¼

�
hs h0s�

h0s h�s

�
; ðC6Þ

where the component hs corresponds to the normal part and
h0s corresponds to the anomalous part of the matrix. The
components for each fluctuation channel, in the degenerate
three-orbital model, are as follows:

hch ¼ λ0 ⊗ σ0; ðC7Þ

hsp ¼ λ0 ⊗ σz; ðC8Þ

horb ¼ λ4 ⊗ σ0; ðC9Þ

hso ¼ λ4 ⊗ σz; ðC10Þ

horb� ¼ λ1 ⊗ σ0; ðC11Þ

hso� ¼ λ1 ⊗ σz; ðC12Þ

hP ¼ 0 ðC13Þ

for the normal part, and

h0ch ¼ h0sp ¼ h0orb ¼ h0so ¼ h0orb� ¼ h0so� ¼ 0; ðC14Þ

h0P ¼ λ6 ⊗ ½−iσyσz� ðC15Þ

for the anomalous part, where the basis is chosen to be
normalized, i.e., Tr½hsh

†
s � ¼ 1. We see that hP describes the

pairing fluctuation, while hch, hsp, horb, hso, horb�, and hso�

describe the charge, spin, orbital, and spin-orbital fluctua-
tions, respectively.

APPENDIX D: DERIVATION OF EQ. (37)

The linear response for a generic operator is given by the
following equation:

TABLE I. Quantum numbers ðN; L; SÞ, degeneracy, eigenval-
ues, and the corresponding slave bosons ΦðEΓ; 2qÞ for each local
multiplet jΓi.
ðN;L; SÞ Degeneracy EΓ ΦΓn

(0,0,0) 1 0 ΦðE000Þ
ΦðE000; 2Þ
ΦðE000; 4Þ

ð1; 1; 1
2
Þ 6 0 ΦðE111

2
Þ

ΦðE111
2
; 2Þ

ΦðE111
2
; 4Þ

(2,2,0) 5 U − J ΦðE220Þ
ΦðE220;−2Þ
ΦðE220; 2Þ
ΦðE220; 4Þ

(2,1,1) 9 U − 3J ΦðE211Þ
ΦðE211;−2Þ
ΦðE211; 2Þ

(2,0,0) 1 U þ 2J ΦðE200Þ
ΦðE200; 2Þ
ΦðE200; 4Þ

ð3; 2; 1
2
Þ 10 3U − 6J ΦðE321

2
Þ

ΦðE321
2
;−2Þ

ΦðE321
2
; 2Þ

ð3; 1; 1
2
Þ 6 3U − 4J ΦðE311

2
Þ

ΦðE311
2
;−2Þ

ΦðE311
2
; 2Þ

ð3; 0; 3
2
Þ 4 3U − 9J ΦðE303

2
Þ

ΦðE303
2
;−2Þ

ΦðE303
2
; 2Þ

(4,2,0) 5 6U − 11J ΦðE420Þ
ΦðE420;−4Þ
ΦðE420;−2Þ
ΦðE420; 2Þ

(4,1,1) 9 6U − 13J ΦðE411Þ
ΦðE411;−4Þ
ΦðE411;−2Þ
ΦðE411; 2Þ

(4,0,0) 1 U þ 2J ΦðE400Þ
ΦðE400;−4Þ
ΦðE400;−2Þ
ΦðE400; 2Þ

ð5; 1; 1
2
Þ 6 10U − 20J ΦðE511

2
Þ

ΦðE511
2
;−4Þ

ΦðE511
2
;−2Þ

(6,0,0) 1 15U − 30J ΦðE600Þ
ΦðE600;−4Þ
ΦðE600;−2Þ
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χOO ¼ d
dξ

hΦðξ;xÞjÔjΦðξ;xÞij½ξ¼0;xðξ¼0Þ�

¼ χð0ÞOO þ
X
μ

dxμ
dξ

����
ξ¼0

χμO: ðD1Þ

Note again that μ runs through all the variational variables
in x [Eq. (26)], and we use the variational parameters as the
subscripts. To evaluate Eq. (D1), it is necessary to calculate
ðdxμ=dξÞjξ¼0, which can be determined by taking the total
derivative of Eq. (36) with respect to ξ, as follows:

X
ν

Mμν
dxν
dξ

����
ξ¼0

− χμO ¼ 0; ðD2Þ

where M is the fluctuation matrix defined in Eq. (40).
Substituting Eq. (D2) into Eq. (D1), we obtain Eq. (37) in
the main text. Since physical susceptibilities in Eq. (53) are
gauge invariant, all solutions of Eq. (D2), connected by the
gauge transformations [Eq. (H6)], are equivalent.

APPENDIX E: FLUCTUATION MATRIX

The fluctuation matrix can be separated into three parts:

MμνðqÞ ¼ Mmix
μν þMqp

μνðqÞ þMemb
μν : ðE1Þ

The first part, Mmix, which involves the partial derivatives
of the mixing term of the Lagrangian Lmix with respect to
rs, ls, ds, Ds, lcs , and ζs, is computed from the following
equations:

Mmix
rsds0

≡ ∂rs∂ds0Lmix½x�j½ξ¼0;xðξ¼0Þ� ¼ −
X
aαc

ðDaαh̃s;cα∂ds0 ½Δð1 − ΔÞ�12ca þ c:cÞ; ðE2Þ

Mmix
rsDs0

≡ ∂rs∂Ds0Lmix½x�j½ξ¼0;xðξ¼0Þ� ¼ −
X
aαc

ðh̃s;aαh̃s0;cα½Δð1 − ΔÞ�12ca þ c:cÞ; ðE3Þ

Mmix
lsds0

¼ Mmix
dslcs0

¼ Mmix
dsζs0

¼ −
1

2

X
ab

hs
ab½hs0 �tab; ðE4Þ

Mmix
dsds0

≡ ∂ds∂ds0Lmix½x�j½ξ¼0;xðξ¼0Þ� ¼ −
X
aαc

ðDaαRcα∂ds∂ds0 ½Δð1 − ΔÞ�12ca þ c:c:Þ; ðE5Þ

Mmix
dsDs0

≡ ∂ds∂Ds0Lmix½x�j½ξ¼0;xðξ¼0Þ� ¼ −
X
aαc

ðh̃s0;aαRcα∂ds ½Δð1 − ΔÞ�12ca þ c:cÞ; ðE6Þ

and the other unlisted components of Mmix are zero.
The second partMqp, which involves the partial derivatives of the quasiparticle term of the Lagrangian Lqp with respect

to rs and ls, is computed from the following equations:

Mqp
rsrs0 ðqÞ ¼ ∂rs;−q∂rs0 ;qLqp½x�j½ξ¼0;xðξ¼0Þ�

¼ 1

2N

X
k

TrfnFðHqp
k Þ½h̃sϵ̃kþqh̃

†
s0 þ h̃s0 ϵ̃k−qh̃†

s � þ T
X
ωn

Gk½R�−1½Rϵ̃kh̃†
s þ h̃sϵ̃kþqR†�½R†�−1Gkþq

· ½R�−1½Rϵ̃kþqh̃
†
s0 þ h̃s0 ϵ̃kR†�½R†�−1g; ðE7Þ

Mqp
rsls0

ðqÞ≡ ∂rs;−q∂ls0 ;qLqp½x�j½ξ¼0;xðξ¼0Þ�

¼ T
2N

X
k

TrfGk½R�−1½Rϵ̃kh̃†
s þ h̃sϵ̃kþqR†� · ½R†�−1Gkþq½R�−1hs0 ½R†�−1g; ðE8Þ

Mqp
lsls0

ðqÞ≡ ∂ls;−q∂ls0;qLqp½x�j½ξ¼0;xðξ¼0Þ�

¼ T
2N

X
k

TrfGk½R�−1hs½R†�−1 ·Gkþq½R�−1hs0 ½R†�−1g; ðE9Þ

and the other unlisted components of Mqp are zero. We also define k ¼ ðωn;kÞ and
P

k ≡P
k

P
ωn
. Note that since we

consider the degenerate three-orbital model, at the normal-state saddle point, the renormalization matrix, the local potential,
the quasiparticle energy dispersion, and the Green’s functions are all degenerate and diagonal matrices, i.e.,
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R ¼ R0

�
I 0

0 I

�
; ðE10Þ

Λ ¼ l0

�
I 0

0 −I

�
; ðE11Þ

Hqp
k ¼ Eqp

k

�
I 0

0 −I

�
; ðE12Þ

GqpðkÞ ¼
� 1

iωn−E
qp
k
I 0

0 1
−iωn−E

qp
k
I

�
; ðE13Þ

where Eqp
k ¼ R2

0ϵk þ l0 and I is the 6 × 6 identity matrix. The Matsubara summation for the fermionic Green’s function
convolutions in Mqp

rr , M
qp
rl , and Mqp

ll can be evaluated analytically from the Lindhard function. For example, the particle-
hole convolution is

T
X
ωm

1

iωm − Eqp
k

1

iωm þ iΩn − Eqp
kþq

¼ nFðEqp
k Þ − nFðEqp

kþqÞ
iΩn − Eqp

kþq þ Eqp
k

; ðE14Þ

and the particle-particle convolution is

T
X
ωm

1

iωm þ iΩn − Eqp
kþq

1

−iωm − Eqp
−k

¼ nFðEqp
kþqÞ − nFð−Eqp

−kÞ
iΩn − Eqp

kþq − Eqp
−k

: ðE15Þ

The analytical continuation to real frequency can be achieved by the replacement iΩn → ωþ i0þ.
The third part, Memb, involves the partial derivatives of the embedding term of the Lagrangian Lemb with respect to Ds,

lcs , and ζs, which can be evaluated as follows. First, we evaluate the first-order derivatives using the Hellmann-Feynman
theorem:

∂lcsLemb½ξ;x� ¼
X
abcd

1

2
hs
abhΦðξ;xÞjĪbcΨ̂cΨ̂

†
dĪdajΦðξ;xÞi; ðE16Þ

∂Ds
Lemb½ξ;x� ¼ 2

X
aαb

h̃s
aαhΦðξ;xÞjΞ̂†

αΨ̂bĪbajΦðξ;xÞi; ðE17Þ

∂ζsLemb½ξ;x� ¼
1

2

X
αβ

hs
αβhΦðξ;xÞjΞ̂†

αΞ̂βjΦðξ;xÞi: ðE18Þ

Then, we compute the second-order derivatives from the following equations:

Memb
lcs lcs0

¼ ∂lcs∂lc
s0
Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂lcs

X
abcd

1

2
hs0
abhΦðξ;xÞjĪbcΨ̂cΨ̂

†
dĪdajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE19Þ

Memb
lcsDs0

¼ ∂lcs∂Ds0Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂lcs2
X
aαb

h̃s0
aαhΦðξ;xÞjΞ̂†

αΨ̂bĪbajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE20Þ

Memb
Ds; lcs0

¼ ∂Ds
∂lc

s0
Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂Ds

1

2

X
abcd

hs0
abhΦðξ;xÞjĪbcΨ̂cΨ̂†

dĪdajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE21Þ

Memb
DsDs0

¼ ∂Ds
∂Ds0Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂Ds

2
X
aαb

h̃s0
aαhΦðξ;xÞjΞ̂†

αΨ̂bĪbajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE22Þ
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Memb
Dsζs0

¼ ∂lcs∂ζs0Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂Ds

1

2

X
αβ

hs0
αβhΦðξ;xÞjΞ̂†

αΞ̂βjΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE23Þ

Memb
ζs;lcs0

¼ ∂ζs∂lc
s0
Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂ζs

1

2

X
abcd

hs0
abhΦðξ;xÞjĪbcΨ̂cΨ̂

†
dĪdajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE24Þ

Memb
ζsDs0

¼ ∂ζs∂Ds0Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂ζs2
X
aαb

h̃s0
aαhΦðξ;xÞjΞ̂†

αΨ̂bĪbajΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE25Þ

Memb
ζsζs0

¼ ∂ζs∂ζs0Lemb½ξ;x�j½ξ¼0;xðξ¼0Þ� ¼ ∂ζs

1

2

X
αβ

hs0
αβhΦðξ;xÞjΞ̂†

αΞ̂βjΦðξ;xÞij½ξ¼0;xðξ¼0Þ�; ðE26Þ

where the other unlisted components of Memb are zero.

The above second-order derivatives and Eqs. (38) and
(39) can be evaluated using the linear response theory. We
apply a perturbation to the embedding Hamiltonian

ĤembðηÞ ¼ Ĥemb þ ηÂ; ðE27Þ

where Â ¼ P
abcd h

s
abĪbcΨ̂cΨ̂

†
dĪda,

P
aαb h̃

s
aαΞ̂†

αΨ̂bĪba, or Ô
corresponding to the perturbation in η ¼ lcs , Ds, or ξ,
respectively. We want to compute the change in the
average of hB̂iη in the limit η → 0, where B̂ ¼P

abcd h
s
abĪbcΨ̂cΨ̂

†
dĪda,

P
aαb h̃

s
aαΞ̂†

αΨ̂bĪba, or Ô. This
response function can be computed from the spectral
representation of the static susceptibility at zero temperature:

∂hB̂iη
∂η

����
η¼0

¼ χÂ B̂

¼ lim
ϵ→0þ

X
n

�h0jÂjnihnjB̂j0i
En − E0 þ iϵ

−
h0jB̂jnihnjÂj0i
E0 − En þ iϵ

�
;

ðE28Þ

whereEn is thenth excited-state energyof Ĥemb and jni is the
nth excited-state wave function of Ĥemb.
Besides the method proposed in Eqs. (E28), one can also

use the finite difference method to evaluate the partial
derivatives in Eqs. (E19)–(E26). Note that both methods
require the diagonalization of the embedding Hamiltonian
Ĥemb, which is the most time-consuming part of the linear-
response calculations. With the current state of the art, we
can easily study the f-electron materials, which contain
seven correlated orbitals, using exact-diagonalization and
machine-learning techniques [90]. For the systems with
more correlated orbitals, one may also utilize the density
matrix renormalization group or auxiliary-field quantum
Monte Carlo methods [91].

APPENDIX F: FLUCTUATION MATRIX AS A
BOSONIC PROPAGATOR

Here, we discuss how the fluctuation matrix can be
interpreted as the propagator for the fluctuations of the
bosonic variables xi. Let us expand the Lagrangian,
Eq. (46), to the second order in

δxt
i ¼ ðδrch; δlch; δdch; δDch; δlcs; δζch;…; δrs; δls; δds;

δDs; δlcs; δζs;…; δrP; δlP; δdP; δDP; ; δlcP; δζPÞ ðF1Þ

around the normal-state saddle point:

Ls½δx;Ξ;Ξ†� ¼ T
2N

X
k

X
αβ

Ξ†
kα½GðkÞ�−1αβΞkβ

þ 1

2

X
i

δxt
i½Mmix þMemb�δxi;

þ
X
k;q

X
αβ

½ðΛ̃k;q
αβ;rs

δrs;qΞ†
kþqαΞkβ

þ H:c:Þ þ Λ̃αβ;lsδls;qΞ
†
kþqαΞkβ�

þ
X
k;k0;q

X
αβ

γ̃k; k
0;q

αβ;rsrs0
δrs;qδrs0;−qΞ†

kαΞk0β;

ðF2Þ

where Λ̃αβμ are the three-leg vertices defined in Eqs. (60)
and (61) and GðkÞ is the Nambu propagator. We also
introduce the four-leg vertex:

γ̃k;k
0;q

αβrsrs0
¼ 1

2
½R−1ðh̃sϵ̃kþqh̃

†
s0 þ h̃s0 ϵ̃k0−qh̃

†
sÞðR†Þ−1�αβ: ðF3Þ

We immediately see that the q independent part of the
fluctuation matrix,

Mmix þMemb ≡D−1
0 ; ðF4Þ
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can be viewed, in the Gaussian fluctuation sense [38], as the
inverse of the bare bosonic propagator D−1

0 . It is important
to note that D0 describes the local multiplet fluctuations
because it contains the embedding susceptibilities shown in
Eqs. (E19)–(E26). We see that, for the pairing channel s ¼
P in Eqs. (E19)–(E26), the multiplet fluctuation selects
the basis hP that increases and removes electron pairs from
the saddle-point wave function. Therefore, it describes the
local fluctuation with pair excitations. On the other hand,
for channel s ∈ fch; sp; orb; so; orb�; so�g, the particle
number is conserved. Consequently, they describe the
corresponding local charge, orbital, and spin fluctuations.
We now discuss the role of MqpðqÞ. By integrating out

the fermionic field Ξkα in Eq. (F2) to the one-loop order, we
find that the self-energy correction is related to the
fluctuation matrix through πðqÞ≡ −MqpðqÞ. Therefore,
we can write the total fluctuation matrix in terms of the
Dyson equation:

MðqÞ≡D−1ðqÞ ¼ D−1
0 − πðqÞ: ðF5Þ

The total fluctuation matrix corresponds to the dressed
bosonic propagator with the self-energy correction summing
the fermionic bubbles to the infinite order. From Eq. (E7)–
(E9), we see that Mqp contains only the particle-particle
bubbles for the pairing channel s ¼ P and the particle-hole
bubbles for the other channels s ∈ fch; sp; orb; so; orb�;
so�g. Figure 8 shows the diagrammatic representation of
the Dyson equation for the particle-hole and the particle-
particle channels.

APPENDIX G: RANDOM PHASE
APPROXIMATION FOR THE
INTERACTION VERTEX

In this section, we derive the random phase approxima-
tion for the interaction vertex at q ¼ 0. Therefore, we

suppress the q dependent of Γ̃, λ̃, D, and π in the following
derivation. The interaction vertex has the following form
[see Eqs. (64) and (F5)]:

Γ̃s
αβγδðk;k0Þ ¼ −4½Λ̃αβrsðkÞDrsrsΛ̃γδrsðk0Þ

þ 2Λ̃αβrsðkÞΛ̃γδlsðk0ÞDrsls

þ Λ̃αβlsðkÞΛ̃γδlsðk0ÞDlsls �; ðG1Þ

where Λ̃μ is the three-leg vertex and D≡M−1 is the
bosonic Green’s function defined in Eq. (F5). We want to
obtain a RPA-like form for the vertex:

Γ̃s
αβγδ ≡ hhΓ̃s

αβγδðk;k0ÞikF
ik0

F
¼ Fs

1þ Fsχ
ð0Þ
OsOs

½hs�αβ½hs�γδ;

ðG2Þ

after averaging k and k0 over the Fermi surface, where Fs is
the Landau parameter.
We know that the bosonic Green’s function has the

following Dyson form for each sector s [see Eq. (F5)]:

Ds ¼ ½½D0;s�−1 − πs�−1 ðG3Þ

¼ ½1 −D0;sπ�−1D0;s; ðG4Þ

where D0 is the bare bosonic propagator, and the self-
energy in each sector s has the form

πs ¼

0
BBBBBBBBB@

πrsrs πrsls 0 0 0 0

πrsls πlsls 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA
: ðG5Þ

The divergence of D can be determined from

Det½1 −D0;sπ� ¼ 1 −D0;lslsπlsls − 2D0;rslsπrsls

−D0;rsrsπrsrs þ ðD0;rslsπrslsÞ2
−D0;lslsD0;rsrsπ

2
rsls

− ðD0;rslsÞ2πlslsπrsrs
þD0;lslsD0;rsrsπlslsπrsrs ¼ 0: ðG6Þ

The interaction vertex can be expressed in terms of D0, Λ̃,
and π as

FIG. 8. Diagrammatic representation of the Dyson equation in
Eq. (F5). The double wavy line and the wavy line denote the
dressed bosonic propagator D and the bare bosonic propagator
D0. The solid line denotes the Nambu propagator G. The circle
denotes the three-leg vertices Λ̃.
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Γ̃s
αβγδðk;k0Þ ¼ −

4

Det½1 −D0;sπ�
½Λ̃αβrsðkÞΛ̃γδrsðk0ÞðD0;rsrs þ ðD0;rslsÞ2πlsls −D0;lslsD0;rsrsπlslsÞ

þ 2Λ̃αβrsðkÞΛ̃γδlsðk0ÞðD0;rsls − ðD0;rslsÞ2πrsls þD0;lslsD0;rsrsπrslsÞ þ Λ̃αβlsðkÞΛ̃γδlsðk0Þ
× ðD0;lsls þ ðD0;rslsÞ2πrsrs −D0;lslsD0;rsrsπrsrsÞ�: ðG7Þ

We can make a further approximation that

πrsrs0 ¼
−T
2N

X
k

trfGk½R�−1½Rϵkh̃†
s þ h̃sϵkR†�½R†�−1Gk½R�−1½Rϵkh̃†

s0 þ h̃s0ϵkR†�½R†�−1gjξ¼0

≈ 4hΛ̃ri2χð0ÞOsOs
; ðG8Þ

πrsls0 ¼
−T
2N

X
k

trfGk½R�−1½Rϵkh̃†
s þ h̃sϵkR†�½R†�−1Gk½R�−1hs0 ½R†�−1gjξ¼0

≈ 4hΛ̃rihΛ̃liχð0ÞOsOs
; ðG9Þ

πlsls0 ¼
−T
2N

X
k

trfGk½R�−1hs½R†�−1Gk½R�−1hs0 ½R†�−1gjξ¼0

¼ 4hΛ̃2
l iχð0ÞOsOs

; ðG10Þ

where we average the vertex over the Fermi surface:

hΛ̃rsi ¼
R2
0

2
h2ϵkikF

; ðG11Þ

hΛ̃lsi ¼
1

2
: ðG12Þ

We see that, after averaging all the vertices Λ̃ and self-
energy π in Eq. (G7) over the Fermi surface, there are
further cancellations in the denominator and the numerator
of Γ̃s in Eq. (G7). Recasting Eq. (G7) in the form of
Eq. (G2), we identify that the irreducible interaction
(Landau parameter) Fs in Eq. (G2) for each channel s is

Fs ¼ −4hΛ̃rsi2D0;rsrs − 8D0;rslshΛ̃rsi − 4D0;lsls : ðG13Þ

APPENDIX H: GAUGE INVARIANCE

The RISB Lagrangian is invariant under the following
gauge transformation [14,62]:

Φ → ΦUðθÞ; Δ → utðθÞΔ½u†�tðθÞ; ðH1Þ

R → u†ðθÞR; Λ → u†ðθÞΛuðθÞ; ðH2Þ

D → utðθÞD; Λc → u†ðθÞΛcuðθÞ; ðH3Þ

where

uðθÞ ¼ ei
P

s
θsTs;ab ; ðH4Þ

UðθÞ ¼ ei
P

s
θsTs;abΨ

†
aΨb : ðH5Þ

Note that Ts are the generators for the gauge group, and θs
are the Lie parameters. The specific form of Ts corre-
sponding to our variational setup is shown in Appendix I.
We also define the corresponding gauge transformation

for x [see Eq. (26)]:

x → Gθ½x�; ðH6Þ

where the operator Gθ transforms each element in Eq. (26)
according to Eqs. (H1)–(H3).

APPENDIX I: GAUGE-FIXING PROCEDURE

In this section, we describe the gauge-fixing procedure
for the fluctuation matrix M. We define a gauge trans-
formation [see Eq. (H6)]:

x0 ¼ Gθ½xðξÞ� ¼ x½ξ; θðξÞ�; ðI1Þ

where each component of x transforms as

rs ¼ Tr½h̃†
su†ðθÞR�; ls ¼ Tr½h†

su†ðθÞΛuðθÞ�; ðI2Þ

Ds ¼ Tr½h̃†
sutðθÞD�; lc ¼ Tr½h†

su†ðθÞΛcuðθÞ�; ðI3Þ
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ds ¼ Tr½h†
sutðθÞΔ½u†�tðθÞ�; ðI4Þ

and θð0Þ ¼ 0 at ξ ¼ 0.
Given that x is a solution of [see Eq. (D2)]

X
ν

Mμν
∂xν
∂ξ

����
ξ¼0

¼ χμ; ðI5Þ

x0 is also a solution of

X
ν

Mμν
∂x0ν
∂ξ

����
ξ¼0

¼ χμ: ðI6Þ

Note again that here μ and ν run through all the elements in
x [Eq. (26)], and we use the variational parameters as the
subscripts. Also, we have

∂x0μ
∂ξ

����
ξ¼0

¼ ∂xμ
∂ξ

����
ξ¼0

þ
X
s

∂xμ
∂θs

����
θ¼0

∂θs
∂ξ

����
ξ¼0

: ðI7Þ

Consequently, we show that

Mμν
∂xν
∂θs

����
θ¼0

∂θs
∂ξ

����
ξ¼0

¼ 0; ðI8Þ

which implies that Mμν has zero eigenvalues, and the
kernels are defined as

Ks;μ ≔
�∂xμ
∂θs

����
θ¼0

	
ðI9Þ

such that

MμνKs;ν ¼ 0 ∀ Ks ∈ K: ðI10Þ

We can fix the gauge by projecting the matrices onto the
vector space vi;μ perpendicular to K, where vi;μ can be
constructed from the Gram-Schmidt process. The reduced
fluctuation matrix and the embedding susceptibilities
become

M̄ij ¼ vi;μMμνvj;ν; ðI11Þ

χ̄iO ¼ vi;μχμO: ðI12Þ

Consequently, we have the physical susceptibility

χOO ¼ χð0ÞOO þ χ̄iOM̄−1
ij χ̄jO: ðI13Þ

Now, the M̄−1
ij does not contain zero modes, and the matrix

inversion is well defined.
For the model considered in this work, where we

restricted the variational variables x to real numbers
[Eqs. (21)–(25)], the Uð1Þ gauge degrees of freedom in

the charge, spin, orbital, and spin-orbital channels are
fixed. However, we are left with 1 gauge degree of freedom
relating to the Nambu pseudospin rotation generator:

T ¼ τ1 ⊗ λ6 ⊗ ðiσyσzÞ; ðI14Þ
where τi is the Pauli matrix corresponding to the Nambu
pseudospin. From the definition of the gauge transforma-
tion [Eqs. (H1)–(H3)], we derive the kernel K:

∂rs
∂θ

����
θ¼0

¼ −iTr½ðh̃sÞ†TR� ¼ r0
2

ffiffiffi
3

p δs;P; ðI15Þ

∂ls
∂θ

����
θ¼0

¼ −iTr½ðhsÞ†½T;Λ�� ¼ −
l0ffiffiffi
3

p δs;P; ðI16Þ

∂ds
∂θ

����
θ¼0

¼ iTr½ðhsÞ†½Tt;Δ�� ¼ −
d0ffiffiffi
3

p δs;P; ðI17Þ

∂Ds

∂θj
����
θ¼0

¼ iTr½ðh̃sÞ†TtD� ¼ D0

2
ffiffiffi
3

p δs;P; ðI18Þ

∂lcs
∂θ

����
θ¼0

¼ −iTr½ðhsÞ†½T;Λc�� ¼ −
lc0ffiffiffi
3

p δs;P; ðI19Þ

where the K vector is only nonzero in the pairing channel.
We can then construct the vector space vi;μ using the Gram-
Schmidt process and compute the susceptibilities through
Eqs. (I11)–(I13).

APPENDIX J: VALIDITY OF THE
FERMI-LIQUID APPROXIMATION

In this section, we show the pairing susceptibility
χP computed from the equation without enforcing the

FIG. 9. Comparison of the pairing susceptibilities χP computed
from Eq. (42) (solid line, without “quasiparticle constraint”) and
Eq. (56) (filled circles, with “quasiparticle constraint”) for
(a) T ¼ 0.0005 and n ¼ 2.99, 2.8, 2.4, 2.0, 1.6 as a function
of U and J ¼ U=4, and (b) n ¼ 2.0 and U ¼ 6, 8, 10, 12 as a
function of T and J ¼ U=4.
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quasiparticle constraint [Eq. (42)] and the equation with the
quasiparticle constraint [Eq. (56)] in Fig. 9. The χP

obtained from the two approaches are identical for all
the parameter regime, indicating the validity of the Fermi-
liquid approximation described in Sec. IV.

APPENDIX K: BARE PAIRING INTERACTION IN
THE PARTICLE-HOLE CHANNEL

We also compute the bare pairing interaction in the
particle-hole channel defined as follows:

Γbare
ph ¼ 1

4

�
FchþFsp−Forb−Fso−

5

3
Forb� −

5

3
Fso�

�
: ðK1Þ

In this case, the summation of the fermionic particle-hole
bubbles in Fig. 3(b) is ignored, and only the bare interaction
(Landau parameters Fs at q ¼ 0) is considered. Figure 10
shows the bare pairing interaction in the particle-hole
channel. We find that the bare pairing interaction only
becomes negative (signalizing the pairing instability) for
filling n < 2.3.

APPENDIX L: CONSISTENCY CHECK FOR
SUSCEPTIBILITY

We perform the consistency check for the pairing suscep-
tibility between the one computed from the RISB fluctuation
approach and the one computed from RISB mean-field
theory with a small pairing field ζ. The definition of the
pairing susceptibility in the RISB self-consistent mean-field
theory is χP ¼ ð∂hOPi=∂ζÞjζ→0. The results from the two
approaches are shown in Fig. 11(a) as a function of Coulomb
interactionU forT ¼ 0.0005t and fillingn ¼ 2.0 and (b) as a
function of temperatureT forU ¼ 8t and fillingn ¼ 2.0.We
confirm that the χPðq ¼ 0;ω ¼ 0Þ computed from the

fluctuation approach (red line) agrees excellently with the
χP computed from themean-field theory with a small pairing
field ζ ¼ 10−5t (blue dots). The agreement between the two
approaches indicates the consistency of our fluctuation
approach within the RISB framework.

APPENDIX M: TOTAL ENERGY AND WEAK- TO
STRONG-COUPLING CROSSOVER

We now discuss the total energy of the s-wave spin-triplet
pairing state. Figures 12(a) and 12(b) show the kinetic energy
gain ΔEk ¼ EN

k − Esc
k , the potential energy gain ΔEpot ¼

EN
pot − Esc

pot, and the total energy gain ΔEtot ¼ EN
tot − Esc

tot for

FIG. 10. Bare pairing interaction in the particle-hole channel
Γbare
ph [Eq. (K1)] as a function of Coulomb interaction U and J ¼

U=4 for filling n ¼ 2.8, 2.6, 2.4, 2.2, 2.0, 1.8, 1.6 at temperature
T ¼ 0.0005t.

FIG. 11. Comparison of the uniform pairing susceptibility
χPðq ¼ 0;ω ¼ 0Þ evaluated from the fluctuation approach with
the pairing susceptibility evaluated from the mean-field solution
χP ¼ ðdhOPi=dζÞ with small pairing field ζ ¼ 10−5 for (a) tem-
perature T ¼ 0.0005t and filling n ¼ 2.0 and (b) Coulomb
interaction U ¼ 8t and filling n ¼ 2.0. We fix Hund’s coupling
interaction at J ¼ U=4.

FIG. 12. Kinetic energy ΔEk, potential energy ΔEpot, and total
energy gain ΔEtot for the superconducting paring state (a) as a
function of electron filling n atU ¼ 8t and T ¼ 10−4t and (b) as a
function of Coulomb interaction U and J ¼ U=4 at n ¼ 2.7 and
T ¼ 10−4t.
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forming the s-wave spin-triplet pairing state, where the
superscriptsN and sc correspond to the energy in the normal
state and the superconducting state, respectively. The total
energy in both Figs. 12(a) and 12(b) shows a typical weak-
coupling to strong-coupling crossover behavior [71,92,93],
where the energy gain is dominated by the potential energy in
the weak-coupling limit and by the kinetic energy in the
strong-coupling limit. Interestingly, we find that this cross-
over is located around Hund’s metal crossover where the
quasiparticle weight drops rapidly and the superconducting
order parameter shows a pronounced peak.

APPENDIX N: APPLICATION TO DENSITY
MATRIX EMBEDDING THEORY

In this section, we outline the equations for computing
the susceptibility in the “noninteracting bath”DMET (NIB-
DMET) formalism. Since the NIB-DMET self-consistent
equations can be reproduced from the RISB Lagrangian by
enforcing R ¼ I and an additional constraint in Eq. (44),
the formalism in Sec. IV can be directly applied to NIB-
DMET by removing the rs sector of the fluctuation basis in
Eq. (45), i.e., no fluctuation in R. Hence, the NIB-DMET
fluctuation basis becomes

xq ¼ ðlch;q; dch;q; Dch;q; lcch;q; ζch;q;…; ls;q; ds;q; Ds;q;

lcs;q; ζs;q;…; lP;q; dP;q; DP;q; lcP;q; ζP;qÞ; ðN1Þ

where, different from RISB [Eq. (45)], the variable rs is
absent. Following the same derivation as in Sec. IV, the NI-
DMET susceptibility of an arbitrary operator Ô has the
following form:

χOOðqÞ ¼ χð0ÞOOðqÞ þ
X
μν

χμOðqÞM−1
μν ðqÞχνOðqÞ; ðN2Þ

where the fluctuation matrixM is given in Appendix E and
we have to enforce R ¼ I in each element. We have also
introduced the following susceptibilities:

χð0ÞOOðqÞ ¼ −
T
2N

X
ωnk

Tr½Gωn;kþqOGωn;kO�; ðN3Þ

χμOðqÞ¼
T
2N

X
ωn;k

∂xμ;qTr½Gωn;kþq;k½ξ;x�O�j½ξ¼0;xðξ¼0Þ�; ðN4Þ

where O is the single-particle matrix representation of a
generic operator. The Green’s function has the following
form:

½Gωn;k1;k2
½x; ξ��−1 ¼ iωn − ½Hqp

k1k2
�ab þ ξk1−k2

½O�ab; ðN5Þ

and Gωn;k is the Green’s function evaluated at ξ ¼ 0. We
also introduce the quasiparticle Hamiltonian (low-level
mean-field Hamiltonian):

½Hqp
k1k2

�ab ≡ ½ϵ̃k1
�abδk1;k2

þ ½Λk1−k2
�ab; ðN6Þ

where Λ corresponds to the correlation potential in
NIB-DMET.
For the degenerate model considered in this work, the

susceptibility can be written as

χOsOs
ðqÞ ¼ χð0ÞOsOs

ðqÞ þ χlsOs
ðqÞM−1

lsls
ðqÞχlsOs

ðqÞ; ðN7Þ

where

χlsOs
ðqÞ ¼ −

T
2N

X
ωnk

Tr½Gωn;kþqhsGωn;khs� ¼ χð0ÞOsOs
ðqÞ:

ðN8Þ

Here, M−1
lsls

ðqÞ denotes the μ ¼ ls and ν ¼ ls components
of M−1

μν ðqÞ, and Gωn;k ¼ ½iωn − ϵ̃k − Λ�−1 is the saddle-
point Green’s function.
Finally, we comment on the advantages and the dis-

advantages of RISB and NIB-DMET. One advantage of
RISB with respect to NIB-DMET is the presence of the
renormalization matrix R. It allows the description of the
Mott transition within the single-site approach [94], while
in the standard NIB-DMET, one has to use at least a two-
site cluster to capture the Mott transition [24]. On the other
hand, the additional determination of R in RISB may
require more self-consistency iterations with respect to
NI-DMET, leading to more diagonalization of the embed-
ding Hamiltonian Ĥemb. Nevertheless, the performance and
accuracy of the two methods are similar [26]. Note that our
approach does not apply to the “interacting bath” con-
struction of DMET (IB-DMET), which produces more
accurate results than the NIB-DMET [24,85,95]. The
extension of our approach to IB-DMETwill be an interest-
ing future topic.
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LEE, LANATÀ, KIM, and KOTLIAR PHYS. REV. X 11, 041040 (2021)

041040-24

https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/PhysRevB.72.205124
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevB.76.155102
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevB.76.193104
https://doi.org/10.1002/pssb.201147052
https://doi.org/10.1002/pssb.201147052
https://doi.org/10.1103/PhysRevB.97.125154
https://doi.org/10.1103/PhysRevB.97.125154
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1103/PhysRevLett.118.126401
https://doi.org/10.1038/s41524-019-0169-0
https://doi.org/10.1103/PhysRevLett.107.256401
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevLett.112.177001
https://doi.org/10.1103/PhysRevB.98.085121
https://doi.org/10.1103/PhysRevB.98.085121
https://doi.org/10.1103/PhysRevB.100.245139
https://doi.org/10.1103/PhysRevLett.111.196801
https://doi.org/10.1103/PhysRevX.5.011008
https://doi.org/10.1103/PhysRevLett.110.096401
https://doi.org/10.1103/PhysRevLett.110.096401
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.96.235139
https://doi.org/10.1103/PhysRevB.99.115129
https://doi.org/10.1103/PhysRevB.101.075131
https://doi.org/10.1103/PhysRevB.92.081108
https://doi.org/10.1103/PhysRevLett.105.076401
https://doi.org/10.1063/1.5012766
https://doi.org/10.1021/acs.jctc.0c01221
https://doi.org/10.1021/acs.jctc.0c01221
https://doi.org/10.1103/PhysRevB.103.085131
https://doi.org/10.1103/PhysRevB.103.085131
https://doi.org/10.1103/PhysRevB.96.195126
https://doi.org/10.1103/PhysRevB.96.195126
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1088/0022-3719/16/17/014
https://doi.org/10.1103/PhysRevLett.65.1379
https://doi.org/10.1103/PhysRevB.44.2403
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1007/BF01357181
https://doi.org/10.1103/PhysRevB.52.13707


[41] R. Raimondi and C. Castellani, Lower and Upper Hubbard
Bands: A Slave-Boson Treatment, Phys. Rev. B 48, 11453
(1993).

[42] W. Zimmermann, R. Frésard, and P. Wölfle, Spin and
Charge Structure Factor of the Two-Dimensional Hubbard
Model, Phys. Rev. B 56, 10097 (1997).

[43] V. H. Dao and R. Frésard, Collective Modes in the Para-
magnetic Phase of the Hubbard Model, Phys. Rev. B 95,
165127 (2017).

[44] D. Riegler, M. Klett, T. Neupert, R. Thomale, and P. Wölfle,
Slave-Boson Analysis of the Two-Dimensional Hubbard
Model, Phys. Rev. B 101, 235137 (2020).

[45] G. Seibold and J. Lorenzana, Time-Dependent Gutzwiller
Approximation for the Hubbard Model, Phys. Rev. Lett. 86,
2605 (2001).

[46] G. Seibold, F. Becca, P. Rubin, and J. Lorenzana, Time-
Dependent Gutzwiller Theory of Magnetic Excitations in the
Hubbard Model, Phys. Rev. B 69, 155113 (2004).

[47] M. Fabrizio, Quantum Fluctuations Beyond the Gutzwiller
Approximation, Phys. Rev. B 95, 075156 (2017).

[48] G. Seibold, F. Becca, and J. Lorenzana, Theory of Antibound
States in Partially Filled Narrow Band Systems, Phys. Rev.
Lett. 100, 016405 (2008).

[49] G. Seibold, F. Becca, and J. Lorenzana, Time-Dependent
Gutzwiller Theory of Pairing Fluctuations in the Hubbard
Model, Phys. Rev. B 78, 045114 (2008).

[50] E. von Oelsen, G. Seibold, and J. Büemann, Time-Depen-
dent Gutzwiller Theory for Multi-band Hubbard Models,
New J. Phys. 13, 113031 (2011).

[51] E. v. Oelsen, G. Seibold, and J. Bünemann, Time-Dependent
Gutzwiller Theory for Multiband Hubbard Models, Phys.
Rev. Lett. 107, 076402 (2011).

[52] P. Werner, E. Gull, M. Troyer, and A. J. Millis, Spin
Freezing Transition and Non-Fermi-Liquid Self-Energy in
a Three-Orbital Model, Phys. Rev. Lett. 101, 166405
(2008).

[53] S. Hoshino and P. Werner, Superconductivity from Emerg-
ing Magnetic Moments, Phys. Rev. Lett. 115, 247001
(2015).

[54] M. Zegrodnik, J. Spałek, and J. Bünemann, Coexistence of
Spin-Triplet Superconductivity with Magnetism within a
Single Mechanism for Orbitally Degenerate Correlated
Electrons: Statistically Consistent Gutzwiller Approxima-
tion, New J. Phys. 15, 073050 (2013).

[55] M. Zegrodnik, J. Bünemann, and J. Spałek, Even-Parity
Spin-Triplet Pairing by Purely Repulsive Interactions for
Orbitally Degenerate Correlated Fermions, New J. Phys.
16, 033001 (2014).

[56] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti,
Strongly Correlated Superconductivity, Science 296, 2364
(2002).

[57] M. Capone, M. Fabrizio, and E. Tosatti, Direct Transition
between a Singlet Mott Insulator and a Superconductor,
Phys. Rev. Lett. 86, 5361 (2001).

[58] J. Kanamori, Electron Correlation and Ferromagnetism of
Transition Metals, Prog. Theor. Phys. 30, 275 (1963).

[59] A. K. C. Cheung and D. F. Agterberg, Superconductivity in
the Presence of Spin-Orbit Interactions Stabilized by Hund
Coupling, Phys. Rev. B 99, 024516 (2019).

[60] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A.
Ramires, and D. F. Agterberg, Stabilizing Even-Parity
Chiral Superconductivity in Sr2RuO4, Phys. Rev. Research
2, 032023(R) (2020).
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