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Transport is one of the most important physical processes in all energy and length scales. Ideal gases and
hydrodynamics are, respectively, two opposite limits of transport. Here, we present an unexpected
mathematical connection between these two limits; that is, there exist situations that the solution to a class
of interacting hydrodynamic equations with certain initial conditions can be exactly constructed from
the dynamics of noninteracting ideal gases. We analytically provide three such examples. The first two
examples focus on scale-invariant systems, which generalize fermionization to the hydrodynamics of
strongly interacting systems, and determine specific initial conditions for perfect density oscillations in a
harmonic trap. The third example recovers the dark soliton solution in a one-dimensional Bose condensate.
The results can explain a recent puzzling experimental observation in ultracold atomic gases by the Paris
group and make further predictions for future experiments. We envision that extensive examples of such an
ideal-gas approach to hydrodynamics can be found by systematical numerical search, which can find broad
applications in different problems in various subfields of physics.
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I. INTRODUCTION

Studying transport of matter is an important subject in
almost all subfields of physics, ranging from structure
formation in astrophysics on cosmological scales [1] to
collective motions of electrons in solid-state materials on
microscopic scales [2], from quark-gluon plasma as the
highest-temperature quantum matters created in colliders
[3] to ultracold atomic gases realized at the lowest temper-
ature in laboratories [4]. It is well known that, for these
transport phenomena in different systems, there are two
opposite limits known as the hydrodynamic regime and the
collisionless regime.
The distinction between these two regimes crucially

depends on the relaxation time τr of the system [5]. If the
relaxation time τr is much shorter than the typical dynami-
cal timescale τd, the transport is said to be in the hydro-
dynamic regime. In this regime, the system can retain local
equilibrium during the dynamical process and, therefore, is
well described by its local density distribution nðr; tÞ and

local velocity distribution vðr; tÞ governed by a set of
hydrodynamic equations. In the opposite limit, when τr is
much longer than τd, the system is said to be in the
collisionless regime. In this regime, the system cannot reach
local equilibrium during the dynamical process, and, there-
fore, descriptions of the system have to involve the Wigner
function fðr;p; tÞ, which describes how the momentum
distribution at position r follows time evolution. Ideal gas is
one such examplewhose dynamics is described by fðr;p; tÞ.
Once fðr;p; tÞ is known, the time dependence of nðr; tÞ and
vðr; tÞ can be deduced from the Wigner function. It is well-
accepted conventional wisdom that the physics is drastically
different between these two regimes.
In this work, we report a result that is sharply in contrast

to the conventional wisdom. We find that the solutions to a
class of hydrodynamic equations with certain initial con-
ditions can be directly constructed from the solutions to the
dynamics of ideal gases. The main finding is that, for
certain initial conditions, when the one-particle Liouville
equation for ideal gases is formally recast into the form of
hydrodynamic equation, the “formal pressure tensor”
depends only on local density nðr; tÞ and does possess
the physical meaning as the real pressure of another
interacting system. This unexpected connection between
these two opposite limits of transport is schematically
illustrated in Fig. 1.
Below, we first state rigorously the content of the ideal-

gas approach to hydrodynamics and then discuss various
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physical realizations of such an approach, as summarized
in Table I. The first two examples focus on scale-
invariant systems. The first example can be viewed as
a generalization of the fermionization in a strongly
interacting one-dimension system [6,7] to the hydro-
dynamics level. The second example finds out a geo-
metric description of the specific initial conditions in two
and three dimensions, under which the real space density
distribution undergoes perfect breathing oscillation in a
harmonic trap. This provides a physical explanation for a
puzzling experimental discovery in ultracold atomic gases
reported by the Paris group [8]. In this experiment, a
unique perfect oscillation of density distribution, called a
breather, is observed for equilateral triangular initial
density distribution but not for other polygonal initial
densities [8]. This phenomenon is also confirmed by
numerical simulation of the Gross-Pitaevskii equation
[8,9], but it still lacks a physical understanding why
the equilateral triangular shape is special, which is now
answered by our geometric condition. Finally, the third
example recovers the well-known dark soliton solution in
one-dimensional superfluids [10,11], indicating that the
connections can be found in a more broad context
beyond scale-invariant systems.

II. THE FORMALISM

We start with the Boltzmann equation in D dimension:

∂tf þ 1

m
p · ∇rf − ð∇rUÞ · ∇pf ¼ I½f�; ð1Þ

where m is the particle mass, UðrÞ is an external potential,
and I½f� represents the collision term. By solving Eq. (1),
we can obtain the Wigner function fðr;p; tÞ, with which
we can construct the density and velocity distributions as

nðr; tÞ ¼
Z

dDpfðr;p; tÞ; ð2Þ

vðr; tÞ ¼ hpi
mnðr; tÞ ¼

1

mnðr; tÞ
Z

dDppfðr;p; tÞ: ð3Þ

Here, we introduce h…i as the local density of a quantity
that is averaged under the Wigner function:

hOðpÞi≡
Z

dDp
ð2πÞD OðpÞfðr;p; tÞ; ð4Þ

where OðpÞ is a function of momentum. We can formally
introduce a tensor Pαβ as

Pαβ ¼
1

m

�
hpαpβi −

1

n
hpαihpβi

�
; ð5Þ

where the subindices α; β ¼ 1; 2;…; D stand for the αth or
βth component of the corresponding vector. If tensor Pαβ is
proportional to the identity matrix, i.e., Pαβ ¼ Pδαβ, then it
can be shown that the density and velocity fields con-
structed by Eqs. (2) and (3) satisfy the following two
equations [12,13]:

∂tnþ ∇ · ðnvÞ ¼ 0; ð6Þ

mð∂tv þ v · ∇vÞ þ∇U þ 1

n
∇P ¼ 0; ð7Þ

which are essentially the particle number and the momen-
tum conservation, respectively. (See the Appendix A for
the derivation.)

FIG. 1. Ideal-gas approach hydrodynamics. The one-particle
Liouville equation for ideal gases and the hydrodynamic equa-
tions for interacting systems, respectively, work for two opposite
limits. Here, we show, unexpectedly, that the solution to certain
one-particle Liouville equation of ideal gases can be used to
construct the solution to a set of hydrodynamic equations if a
generalized local-equilibrium condition [Eq. (8)] can be satisfied.

TABLE I. Summary of examples of physical realizations of the ideal-gas approach to hydrodynamics discussed
in this paper. As illustrated by the table, these examples include different systems in different dimensions, and the
diverse phenomena in these interacting systems can all be obtained by solutions of the Liouville equation. In the
pressure column, P½n� denotes how the pressure depends on the density n, and g is the interaction parameter for
different systems.

Dimensionality Pressure Phenomenon

Example I 1D PðnÞ ¼ ðg=mÞn3 Generalized fermionization
Example II 2D/3D PðnÞ ¼ ðg=mÞn2=ðg=mÞn5=3 2D/3D perfect breather
Example III 1D P½n� ¼ 1

2
gn2 − ðn=4mÞ∂2

x logðnÞ Dark soliton

ZHE-YU SHI, CHAO GAO, and HUI ZHAI PHYS. REV. X 11, 041031 (2021)

041031-2



Generally, Pαβ defined by Eq. (5) is a function of r and
t [13]. However, in order for Eq. (7) to represent the Euler
equation in hydrodynamics, it is crucial that Pαβ possesses
the meaning of local pressure, usually being a functional of
nðr; tÞ not only for all spatial points but also at all time,
that is,

Pαβ ¼ P½n�δαβ: ð8Þ

The standard approach usually assumes that the relaxation
time τr is short enough such that the Wigner function
fðr;p; tÞ is not far away from local equilibrium, and,
therefore, it ensures Eq. (8) being the equilibrium pressure
of the system.
In the following, we present a quite different situation to

satisfy Eq. (8) without this local-equilibrium assumption.
The resulting Pαβ can still acquire the meaning of the
equilibrium pressure but of another different system. In this
sense, we call Eq. (8) a generalized local-equilibrium
(GLE) condition. We show that the GLE condition can be
satisfied by a noninteracting ideal gas, where the relaxation
time is infinity. When I½f� in Eq. (1) vanishes for a non-
interacting ideal gas, Eq. (1) is nothing but the one-particle
Liouville equation (denoted as the Liouville equation in this
paper below). It is worth emphasizing that, in these cases, the
Liouville equation and the hydrodynamic equations describe
two drastically different systems. The Liouville equation
describes the dynamics of an ideal gas whose solution can be
obtained exactly, and the hydrodynamic equations describe
an interacting system that retains local equilibrium.However,
once the Wigner function of the ideal gas satisfies the GLE
condition, the solution of the corresponding hydrodynamic
equations can then be obtained exactly from the dynamics of
ideal gases, which is now called the ideal-gas approach to
hydrodynamics.
We note that there is a physical intuition why the

Boltzmann equation can be related to dissipationless
hydrodynamic equations. According to H theorem, the
Boltzmann equation breaks the time-reversal symmetry,
and the system entropy keeps increasing over time when
the collision integral I½f� is finite. However, the dissipa-
tionless hydrodynamics always respects the time-reversal
symmetry. Thus, these two equations are compatible only
in two cases, that are (i) when the interaction is strong
enough to ensure local equilibrium and (ii) when the system
is noninteracting and the collision term is absent. The
standard textbook approach considers the first case, and
here we employ the second one.
As we discuss in the introduction, the Liouville equation

lies on the opposite limit to the hydrodynamic equations;
thus, a natural concern is whether the GLE condition can be
satisfied by an ideal gas without local equilibrium and
whether the resulting pressure function describes an actual
physical system. Below, we present a number of examples,
which provide positive answers to resolve these concerns.

These examples are summarized in Table I. As one can see,
these examples reveal intriguing phenomena related to
experimental observations.

III. EXAMPLE I

In the first example, we consider ideal gas in a one-
dimensional harmonic trap UðxÞ ¼ mω2x2=2, and we
consider an initial Wigner function given by (ℏ ¼ 1)

f0ðx; pÞ ¼
n0ðxÞ
2kF

ΘðkF − jpjÞ; ð9Þ

with n0ðxÞ ¼ ρ0ΘðL=2 − jxjÞ. Here, ΘðxÞ stands for a unit
step function, and kF, L, and ρ0 > 0 are free parameters.
This initial Wigner function represents a uniform distribu-
tion inside the dashed rectangle in the ðx; pÞ phase space
as plotted in Fig. 2(a), and the density n0ðxÞ is uniformly

(a)

(b)

FIG. 2. Example I. (a) Schematic plot of the initial Wigner
function, which is uniformly distributed inside the dashed
rectangle, and the Wigner function at a finite time, which is
uniformly distributed inside the solid rectangle. These two
rectangles are related by a rotation with angle ωt. The red line
and k� are used in Appendix B for calculating momentum
distribution at a given location x. (b) Density profiles nðx; tÞ at
t ¼ 0; T=8; T=4; T=2 obtained by numerically solving the gen-
eralized Gross-Pitaevskii equations (blue solid lines) and the
exact solution constructed from the ideal-gas dynamics (red
dashed lines).
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distributed inside interval ½−L=2; L=2�. It is worth men-
tioning that the present choice of n0ðxÞ is just for
simplicity; one can replace it with any convex function
with ∂2

xn0ðxÞ ≤ 0 and the following results still hold (see
Appendix B for details).
In the presence of a harmonic trap, the solution to the

Liouville equation is given by fðx; p; tÞ ¼ f0½xðtÞ; pðtÞ�,
with

xðtÞ ¼ x cosðωtÞ − p
mω

sinðωtÞ; ð10Þ

pðtÞ ¼ p cosðωtÞ þmωx sinðωtÞ: ð11Þ

As illustrated in Fig. 2(a), this corresponds to a rotation of
the Wigner function by angle ωt in the phase space ðx; pÞ.
At finite time t, the Wigner function is then a uniform
distribution inside the solid rectangle. It can be shown
that this solution satisfies the GLE condition and gives
rise to a pressure term PðnÞ ¼ gn3=m, with g ¼ k2F=ð3ρ20Þ.
(See Appendix B for the derivation.)
When the interaction energy of a quantum system scales

in the same way as its kinetic energy, it leads to a scale-
invariant quantum system whose equilibrium pressure at
zero temperature takes a universal form:

PðnÞ ¼ g
m
nðDþ2Þ=D: ð12Þ

Thus, forD ¼ 1, PðnÞ ¼ gn3=m is the equilibrium pressure
for a scale-invariant system [6,7,14,15]. This means that the
hydrodynamic solution for a trapped one-dimensional
scale-invariant system can be constructed by the Wigner
function of free particles. Note that the initial Wigner
function [Eq. (9)] resembles the momentum distribution of
a one-dimensional Fermi sea. Thus, this result is reminis-
cent of the celebrated fermionization for the strongly
interacting Tonk-Girardeau gas [6,7], although this one
is on the hydrodynamic equation level and the other is on
the microscopic many-body wave-function level.
We further confirm this result by showing the nice

agreement between the exact solution constructed by the
Wigner function and the numerical solution of a general-
ized Gross-Pitaevskii equation in Fig. 2(b). The details
of the numerical solution are discussed in Appendix D.
We note that the density distribution shows a perfect
periodical behavior with a period T=2 with T ¼ 2π=ω.
This is because, for the free evolution of particles in a
harmonic trap, one always has nðx; tþ T=2Þ ¼ nð−x; tÞ.
Together with the inversion symmetry, it naturally gives
nðx; tþ T=2Þ ¼ nðx; tÞ. Here, we also note that the small
discrepancy between the ideal-gas result and the numerical
result is due to the so-called quantum pressure term, which
exists in the generalized Gross-Pitaevskii equation but not
in the hydrodynamics.

IV. EXAMPLE II

The discussion of the first example can be generalized to
higher dimensions. In two dimensions, we start with an
initial Wigner function f0ðr;pÞ given by

f0ðr;pÞ ¼
4ρ0ffiffiffi
3

p
k2F

ΔLðrÞ∇kFðpÞ: ð13Þ

Here, we use a simplified notation ΔLðrÞ to represent a
generalized two-dimensional Θ function, i.e., ΔLðrÞ ¼ 1
if r sits inside an equilateral triangle with side length L
and centered at the origin, and ΔLðrÞ ¼ 0 otherwise.
∇kFðpÞ is similar, which is unity when p sits inside
an inverted equilateral triangle with side length kF and
centered at the origin. This Wigner function gives rise to
an initial density distribution that is uniform inside a
triangle, i.e.,

n0ðrÞ ¼ ρ0ΔLðrÞ: ð14Þ

The solution to the Liouville equation also follows free
evolution in a harmonic trap, which is given by

fðr;p; tÞ ¼ f0½rðtÞ;pðtÞ�; ð15Þ

with rðtÞ ¼ r cosωt − ðp=mωÞ sinωt and pðtÞ ¼
p cosωtþmωr sinωt. With f0 given by Eq. (13), we
can write

fðr;p; tÞ ¼ 4ρ0ffiffiffi
3

p
k2F

ΔL½rðtÞ� · ∇kF ½pðtÞ�

¼ 4ρ0ffiffiffi
3

p
k2F

∇mωL= sinωtðp −mωr cotωtÞ

×∇kF= cosωtðpþmωr tanωtÞ

¼ 4ρ0ffiffiffi
3

p
k2F

∇ksðp − p0Þ; ð16Þ

where we assume t ∈ ð0; T=4Þ such that both sinωt and
cosωt are positive.
Crucially, the last equality in Eq. (16) follows the fact

that the overlapped area of two homothetic equilateral
triangles is still an equilateral triangle, whose center and
side length are denoted by p0 and ks, respectively. Both p0

and ks are functions of r and t. In fact, it can be shown that,
independent of their sizes and relative positions, the overlap
area of two homothetic equilateral triangles is always of the
same shape, up to a scaling and translation. As shown in
Fig. 3(a), this geometric property is unique for triangles and
does not hold for other polygons in two dimensions [16];
for instance, the overlapped area of two squares or two
hexagons is not a square or hexagon, which, in general,
depends on the relative positions and sizes of these two. As
a result of this unique geometric property, we see that the
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Wigner functions at different positions and time, up to
scaling and translation, always follow the same distribu-
tion, i.e.,

fðr;p; tÞ ¼ u½λðp − p0Þ�; ð17Þ

with uðpÞ ¼ ð4ρ0=
ffiffiffi
3

p
k2FÞ∇kF and λ ¼ kF=ks.

In Appendix C, we prove that, if up to a scaling and
a translation, the Wigner function fðr;p; tÞ at different
position and time is a universal function uðpÞ, i.e., it
satisfies Eq. (17), where both the scaling factor λ and the
momentum center p0 can be functions of r and t, and,
moreover, if the second moment of uðpÞ, with respect to its
center of mass, is proportional to an identity matrix, then
fðr;p; tÞ satisfies the GLE condition and it results in a
pressure term as given by Eq. (12) for scale-invariant
systems. We note that, in two dimensions, only the equi-
lateral triangle has an isotropic second moment, even
though all triangles share the geometric property that the
intersection of two homothetic copies is homothetic to
itself.
Thus, following the dynamics of the ideal gas, we can

obtain the exact solution to the hydrodynamic equations
of a two-dimensional scale-invariant system within t ∈
ð0; T=4Þ, if the initial density is uniformly distributed inside
an equilateral triangle. To determine the dynamics beyond
T=4, we note that the exact solution of Eq. (16) shows that,
at T=4, the density is uniformly distributed inside an
inverted equilateral triangle, and the velocity field is zero
everywhere. Thus, another similar Wigner function can be
constructed for solving hydrodynamic equations in the time
interval t ∈ ðT=4; T=2Þ. Considering free evolution in a
harmonic trap, the motion during t ∈ ðT=4; T=2Þ can be
viewed as an inverted process for t ∈ ð0; T=4Þ. In fact, it is
not difficult to show nðr; T=4þ tÞ ¼ nðr; T=4 − tÞ as a
result of the time-reversal symmetry. Hence, the density
and velocity distributions recover their initial distributions
at t ¼ T=2. Repeating this construction, we thus find a
periodical solution to the hydrodynamic equations with a
period of T=2.
In Fig. 3(b), we again show nice agreements between

the exact solution constructed from the ideal-gas dynamics
and the numerical solution to the two-dimensional Gross-
Pitaevskii equations. We also show that, for other initial
polygonal geometries such as a square and a hexagon,
numerical simulations do not find the periodical oscillation
of the density distribution, consistent with the fact that
Wigner functions evolving from other initial polygonal
states do not satisfy the GLE condition. This result explains
a recent experiment in a two-dimensional scale-invariant
Bose condensate by the Paris group, where a unique per-
fect oscillation of density distribution, called a breather,
is observed for equilateral triangular initial density distri-
bution but not for other polygonal initial densities [8,17].

This phenomenon is also confirmed by numerical simu-
lation of the Gross-Pitaevskii equation [8,9].
These discussions can be straightforwardly generalized

to three dimensions. In this case, we should first search for
three-dimensional geometric objects that satisfy the same
geometric property, i.e., the intersection of two homo-
thetic objects is the same homothetic object. As shown in
Fig. 4(a), the only possible geometric object is a tetrahe-
dron. Following the same construction, we can then start
with an initial Wigner function similar to Eq. (13), with
the equilateral triangle replaced by a standard tetrahedron,
as shown in Fig. 4(b). Similar to the derivation above, one
can show that, in the presence of a harmonic trap, the time
evolution of the Wigner function automatically obeys
Eq. (17), and the resulting uðpÞ has an isotropic second
moment, which ensures that fðr;p; tÞ satisfies the GLE
and leads to a pressure of the three-dimensional scale-
invariant system, such as the unitary Fermi gas [18].
Hence, the hydrodynamics of this three-dimensional
scale-invariant system can also be exactly constructed
from a Wigner function. This construction predicts that, at
t ¼ T=4, the density distribution is an inverted tetrahe-
dron, which oscillates back to the initial tetrahedron at
t ¼ T=2. This prediction is confirmed by numerically

(a)

(b)

FIG. 3. Example II in 2D. (a) Schematic plots showing the
unique property of triangles. The overlapped area of two
homothetic equilateral triangles, as enclosed by the red triangle,
is always another equilateral triangle, despite the sizes and
relative position of these two. This geometric property does
not hold for other shapes such as two homothetic squares or
hexagons. (b) Dynamics of density distributions with initial
density uniformly distributed inside an equilateral triangle,
obtained by exact construction from the ideal-gas dynamics
(top row) or by numerically solving the Gross-Pitaevskii equa-
tions (middle row), and the same dynamics with initial density
uniformly distributed inside a square (lower row).
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solving the (generalized) Gross-Pitaevskii equation, as
shown in Fig. 4(c).

V. EXAMPLE III

The above two examples focus on scale-invariant sys-
tems. Here, we consider another example beyond systems
with scale invariance. We consider a one-dimensional
uniform system with UðrÞ ¼ 0 and a specific initial con-
dition for the Liouville equation as

f0ðx; pÞ ¼ n0½N m2c2=2ðpÞ − wðxÞδðp −muÞ�; ð18Þ
with

wðxÞ ¼ sin2 γ
cosh2ðx sin γ=lÞ : ð19Þ

Here, N m2c2=2ðpÞ is an arbitrary normalized distribution
with zero mean and variance m2c2=2. n0, u, and c > 0 are
all free parameters, and we take cos γ ¼ u=c and l ¼ 1=mc.

For uniform systems, the solution to the Liouville
equation is then given by fðx; p; tÞ ¼ f0ðx − pt=m; pÞ,
which leads to

fðx; p; tÞ ¼ n0½N m2c2=2ðpÞ − wðx − utÞδðp −muÞ�: ð20Þ

With fðx; p; tÞ given by Eq. (20), straightforward calcu-
lations show that the GLE condition is satisfied, and the
corresponding pressure functional is given by

P½n� ¼ 1

2
gn2 −

n
4m

∂2
x log n; ð21Þ

with g ¼ mc2=n0. (See Appendix E for the derivation.) This
specific pressure term corresponds to the one-dimensional
superfluid hydrodynamic equations, which are ensured by
long-range phase coherence and are equivalent to the one-
dimensional Gross-Pitaevskii equation [4,19]

i
∂ψ
∂t ¼ −

1

2m
∂2
xψ þ gjψ j2ψ ; ð22Þ

with ψ ¼ ffiffiffi
n

p
eiφ and v ¼ ∂xφ=m. Thus, the initial density

and velocity distributions correspond to a wave function
ψðxÞ with a 2γ phase difference between x ¼ þ∞ and
x ¼ −∞ and a density dip at x ¼ 0. Moreover, the density
distribution at finite t can be obtained straightforwardly from
Eq. (20) as

nðx; tÞ ¼ n0fcos2 γ þ sin2 γ tanh2½ðx − utÞ sin γ=l�g: ð23Þ

It is, thus, clear that Eq. (23) is nothing but the well-known
dark soliton solution of the one-dimensional Gross-
Pitaevskii equation [10,11]. Hence, we arrive at an alter-
native picture for the dark soliton that can be mapped to
dynamics of ideal gas, and the free evolution of noninter-
acting particles naturally explains why the density profile of
a dark soliton can maintain its shape during its propagation.

VI. OUTLOOK

In summary, this work establishes a surprising connec-
tion between the dynamics of free particles and the
hydrodynamic equations of interacting systems. The key
ingredient is that a generalized local-equilibrium condi-
tion can be satisfied by free evolution without physically
reaching local equilibrium. A properly chosen initial con-
dition for the free evolution plays a crucial role. Several
examples are presented in this work, in which we analyti-
cally verify that the free particle dynamics can satisfy
the GLE condition. For scale-invariant systems, we present
a geometric condition for determining the specific con-
dition, which also explains the recent puzzling experi-
mental observations by the Paris group. We also show
the dark-soliton example in one-dimensional superfluid,
which means that our approach can be applied to general

(a)

(c)

(b)

FIG. 4. Example II in 3D. (a) Schematic plots of the Wigner
function uniformly distributed inside the intersection of two
homothetic tetrahedra, and the intersection area, as enclosed by
the red boundaries, is still a tetrahedron. (b) The initial density
distribution. (c) Dynamics of the density distributions at t ¼
T=16; T=8; T=4; T=2 obtained by numerically solving the gen-
eralized Gross-Pitaevskii equation with a scale-invariant pressure
term in three dimensions.

ZHE-YU SHI, CHAO GAO, and HUI ZHAI PHYS. REV. X 11, 041031 (2021)

041031-6



situations beyond scale-invariant systems. Regarding the
generality of our approach, it contains the following two
different aspects.
The first aspect is from the Liouville equation to the

hydrodynamic equations. This can be studied by perform-
ing a systematic numerical search on the Liouville equation
with various initial conditions, and then it is straightforward
to verify whether the resulting tensor Pαβ is a functional of
density. If so, then the tensor Pαβ can be interpreted as a
pressure, and one can further ask whether there is a physical
correspondence of this pressure term. It is conceivable that
extensive numbers of cases can be found satisfying the
GLE condition, and the corresponding hydrodynamic
equations can, therefore, be solved exactly.
The other aspect is from the hydrodynamic equations to

the Liouville equation, which is a more intriguing and
difficult inverse problem, that is to say, given hydrody-
namic equations with a fixed pressure term, whether we
can find out a proper initial condition for the Liouville
equation, which satisfies the GLE condition and yields
precisely the same pressure. Our intuition based on con-
structing examples reported here is that this can be achieved
for a large class of hydrodynamic equations. The reason is
because, in hydrodynamic equations, the density and
velocity field depend only on position r, whereas in the
Liouville equation, the Wigner function f depends on both
r and p. There are multiple choices of fðr;p; tÞ that can
yield a given nðr; tÞ and vðr; tÞ, and it is conceivable that at
least one such choice can satisfy the Liouville equation.
Carefully designed numerical algorithms, perhaps with
the help of machine learning, are needed to verify this
conjecture. If this conjecture is correct, this can greatly
simplify solving complex hydrodynamic equations and
help to understand their behaviors. This potential develop-
ments can find broad applications in different branches
of physics.
Finally, we note that a recent work establishes the

relation between our solution of triangle breather and
the Damski-Chandrasekhar shock wave [20]. Although
this solution is exact to the hydrodynamic equation, we
also note the difference between the hydrodynamic equa-
tion and the Gross-Pitaevskii equation. The latter is used in
the numerical simulation and describes the real experi-
ment. The quantum pressure term exists in the Gross-
Pitaevskii equation but not in the hydrodynamic equation.
It remains an open question that the initial evolution
governed by the Gross-Pitaevskii equation chooses the
Damski-Chandrasekhar shockwave to regularize the initial
singularity [20].
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APPENDIX A: DERIVING HYDRODYNAMIC
EQUATIONS

In the following, we show that the density and velocity
distributions given by Eqs. (2) and (3) satisfy both the
continuity equation (6) and the Euler equation (7) under the
GLE condition.
Note that the underlying collisions between microscopic

particles conserve both the particle number and the center-
of-mass momentum; therefore, it can be shown that the
collision integral I½f� in the rhs of the quantum Boltzmann
equation must satisfy [12,13]

Z
dDpI½f� ¼ 0;

Z
dDpI½f�p ¼ 0: ðA1Þ

As a result, we can integrate the Boltzmann equation by
momentum p and obtain

Z
dDp∂tfðr;p; tÞ þ

1

m
∇r · hpi ¼ 0: ðA2Þ

Together with the definitions in Eqs. (2) and (3), it
immediately leads to the continuity equation (6). To verify
the Euler equation, we can multiply the Boltzmann equa-
tion by p and integrate over both sides, which leads to

m∂tvα þmvβ∂βvα þ ∂αU þ 1

n
∂βPαβ ¼ 0; ðA3Þ

with Pαβ defined by Eq. (5). When the GLE condition
Eq. (5) is satisfied, i.e., when Pαβ ¼ P½n�δαβ, Eq. (A3) is
then equivalent to the hydrodynamic Euler equation (7)
with pressure P½n�.

APPENDIX B: VERIFY THE GLE CONDITION
FOR EXAMPLE I

As discussed in the main text and illustrated in
Fig. 2(a), the time evolution of the Wigner function
fðx; p; tÞ corresponds to a rotation in the phase space
ðx; pÞ. Calculating the local momentum distribution
fðx; p; tÞ at a given position x is then equivalent to
calculating the intersection between the vertical line and
the solid rectangle shown in Fig. 2(a). Assuming that
the line intersects the rectangle at kþ and k−, fðx; p; tÞ is
then a uniform distribution between these two points, i.e.,

fðx; p; tÞ ¼ ρ0
2kF

Θðkþ − pÞΘðp − k−Þ: ðB1Þ
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Straightforward calculation shows that

n ¼ ρ0
kþ − k−
2kF

; hpi ¼ n
kþ þ k−

2
; ðB2Þ

and the GLE condition is fulfilled because

hp2i − 1

n
hpi2 ¼ ρ0ðkþ − k−Þ3

24kF
¼ k2F

3ρ20
n3 ¼ gn3; ðB3Þ

where we use the fact that the second moment of a uniform
distribution on the interval ½k−; kþ� is nðkþ − k−Þ3=12.
We note that the crucial point of the above proof is

that the intersection between the red vertical line and the
support of fðx; p; tÞ is a singly connected interval ½k−; kþ�,
such that the local momentum distribution at all x and t is a
(shifted) Fermi distribution. This property remains true if
we replace the rectangular support with other convex
shapes in the phase space. For a system with a concave
initial density distribution, i.e., ∂2

xn0 ≤ 0, we can write f0
in a form similar to Eq. (9):

f0ðx; pÞ ¼
n0ðxÞ
2kFðxÞ

Θ½kFðxÞ − jpj�; ðB4Þ

and here the key point is that a spatial-dependent Fermi
momentum kFðxÞ ¼

ffiffiffiffiffi
3g

p
n0ðxÞ is used to replace the

constant kF in Eq. (9). It is clear that f0ðx; pÞ is represented
by a convex shape defined by n0ðxÞ in the phase space.
Thus, the previous derivation remains the same, and the
GLE condition fulfills automatically.

APPENDIX C: VERIFY THE GLE CONDITION
FOR EXAMPLE II

Verifying the GLE condition in example II follows
directly from the following proposition.
Proposition.—If, up to a scaling and a translation, the

Wigner function fðr;p; tÞ at different position and time is a
universal function uðpÞ, i.e.,

fðr;p; tÞ ¼ u½λðp − p0Þ�; ðC1Þ

where both the scaling factor λ and the momentum center
p0 can be functions of r and t, and if the second moment of
uðpÞ, with respect to its center of mass, is proportional to an
identity matrix, then fðr;p; tÞ satisfies the GLE condition,
and it results in a pressure term as given by Eq. (12) for
scale-invariant systems.
To prove the proposition, we first assume the second

moment of uðpÞ is given by u2δαβ, that is,

hpαpβiu −
1

u0
hpαiuhpβiu ¼ u2δαβ; ðC2Þ

where h…iu stands for momentum average over uðpÞ and
u0 ¼

R
dDpuðpÞ is the zeroth moment of uðpÞ. Both u0 and

u2 are constants. Then, both the density n and the second
moment of fðr;p; tÞ can be calculated via a scaling
transformation as

n ¼
Z

dDpu½λðp − p0Þ� ¼ λ−Du0; ðC3Þ

hpαpβi −
1

n
hpαihpβi ¼ λ−ðDþ2Þu2δαβ ¼ gnðDþ2Þ=Dδαβ;

ðC4Þ

with g ¼ u2=u
ðDþ2Þ=D
0 a dimensionless constant indepen-

dent of position r or time t. This completes the proof of this
proposition.
The proposition indicates that the Wigner functions

for cases satisfying the geometric condition discussed in
example II also satisfy the GLE condition, because, in these
cases, the Wigner functions can be expressed as Eq. (17).
Moreover, this proposition requires that the second moment
of uðpÞ is proportional to an identity matrix. In two
dimensions, even though all the triangles share the geometric
property that the intersection of two homothetic copies is
homothetic to itself, only the equilateral triangle can result in
a function uðpÞ that has an isotropic second moment. As a
result, the only possible triangular breather mode is the
equilateral one. In this case, uðpÞ ¼ ð4ρ0=

ffiffiffi
3

p
k2FÞ∇ks , which

gives u0 ¼ ρ0k2s=k2F and u2 ¼ 1
24
ρ0k4s=k2F, and, therefore, we

have g ¼ k2F=ð24ρ0Þ. For the same reason, the only possible
tetrahedral breather mode in three dimensions is the standard
tetrahedral breather. In this case, uðpÞ is a uniform distri-
bution inside a standard tetrahedron with side length kF,
which gives u0 ¼ ρ0k3s=k3F and u2 ¼ 1

40
ρ0k5s=k3F, and, there-

fore, we have g ¼ k2F=ð40ρ2=30 Þ.

APPENDIX D: DETAILS FOR THE NUMERICAL
SIMULATIONS

The numerical results presented in Figs. 2–4 are based on
simulations of a (generalized) Gross-Pitaevskii equation,
which reads

i∂tψ ¼ −
∇2

2m
þ UðrÞψ þDþ 2

2
gjψ j4=Dψ ; ðD1Þ

whereD is the spatial dimension. The power 4=D in the last
term keeps the equation scale invariant, and it naturally
reduces to a Gross-Pitaevskii equation in dimensionD ¼ 2.
We always normalize ψ by

R
dDrjψ j2 ¼ N with N the total

particle number.
Writing ψ ¼ ffiffiffi

n
p

eiφ and v ¼ ∇φ=m, Eq. (D1) can be
recast into Eqs. (6) and (7) with the pressure term defined by

1

n
∇P ¼ ∇

�ðDþ 2Þg
2m

n2=D −
1

2m
ffiffiffi
n

p ∇2
ffiffiffi
n

p �
: ðD2Þ
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We note that this pressure term is exactly the scale-invariant
pressure given byEq. (12), provided that the second quantum
pressure term in the bracket can be ignored. In practice, we
always choose a large g parameter [g ¼ 1

3
× 105 for Fig. 2,

g ¼ 0.8 × 103 for Fig. 3 (middle row), g ¼ 0.4 × 103 for
Fig. 3 (last row), and g ¼ 3.6 × 103 for Fig. 4] to reduce the
effect from the quantum pressure term. The initial states are
taken to be the ground states of Eq. (D1) in the corresponding
box traps, which can be efficiently calculated via the
imaginary-time evolution of Eq. (D1). The side length L
of these boxes are L ¼ 10aho for Fig. 2, L ¼ 25.8aho for
Fig. 3 (middle row), L ¼ 11.9aho for Fig. 3 (last row), and
L ¼ 28.2aho for Fig. 4 with aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmωÞ−1

p
being the

harmonic length. After determining the initial state, Eq. (D1)
is then solved numerically via a split-step method on
orthogonal grids. We note that the initial state chosen in
this way is smooth at the boundary, but the solution obtained
from our ideal-gas dynamics has discontinuity at the boun-
dary at t → 0. Thus, the quantum pressure always plays a
certain role at the very beginning of the time evolution [20],
which causes the visible difference between our numerical
results and the ideal-gas solutions shown in Figs. 2 and 3.

APPENDIX E: VERIFY THE GLE CONDITION
FOR EXAMPLE III

With theWigner function in Eq. (20), we can calculate its
first and second moments directly as

hpi ¼ −n0mwðx − utÞc cos γ; ðE1Þ

hp2i ¼ n0m2c2
�
1

2
− wðx − utÞcos2γ

�
: ðE2Þ

Then, a straightforward calculation yields

hp2i − 1

n
hpi2 ¼ mP½n�; ðE3Þ

with

P½n� ¼ 1

2
gn2 −

n
4m

∂2
x log n; ðE4Þ

where g ¼ mc2=n0. This shows that the Wigner function in
Eq. (20) idealizes a hydrodynamic system with the pressure
term given by P½n�. Moreover, it is straightforward to check
that

1

n
∂xP½n� ¼ ∂x

�
gn −

1

2m
ffiffiffi
n

p ∂2
x

ffiffiffi
n

p �
; ðE5Þ

where the rhs is the familiar pressure term obtained from
the real part of the one-dimensional Gross-Pitaevskii
equation (22) by writing ψ ¼ ffiffiffi

n
p

eiφ.
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