
Exact Long-Range Dielectric Screening and Interatomic Force Constants
in Quasi-Two-Dimensional Crystals

Miquel Royo 1,* and Massimiliano Stengel1,2,†
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We develop a fundamental theory of the long-range electrostatic interactions in two-dimensional crystals
by performing a rigorous study of the nonanalyticities of the Coulomb kernel. We find that the dielectric
functions are best represented by 2 × 2 matrices, with nonuniform macroscopic potentials that are two-
component hyperbolic functions of the out-of-plane coordinate z. We demonstrate our arguments by
deriving the long-range interatomic forces in the adiabatic regime, where we identify a formerly overlooked
dipolar coupling involving the out-of-plane components of the dynamical charges. The resulting formula is
exact up to an arbitrary multipolar order, which we illustrate in practice via the explicit inclusion of
dynamical quadrupoles. By performing numerical tests on monolayer BN, SnS2, and BaTiO3 membranes,
we show that our method allows for a drastic improvement in the description of the long-range electrostatic
interactions, with comparable benefits to the quality of the interpolated phonon band structure.
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I. INTRODUCTION

The separation of the interatomic force constants (IFCs)
into short-range and long-range contributions has been a
mainstay of lattice dynamics theory since the early 1950s
[1]. The work of Cochran and Cowley [2] has established
the correct form of the long-range part in the generic case of
an anisotropic three-dimensional (3D) crystal, generalizing
the earlier point-charge models. The treatment, however,
remained phenomenological until the seminal work of Pick,
Cohen, and Martin [3], where an analogous formula is
derived in the context of first-principles theory, and the
acoustic sum rule is formally demonstrated. The advan-
tages of a rigorous derivation are numerous: On one hand, it
paved the way for modern first-principles lattice dynamics,
within the framework of density-functional perturbation
theory (DFPT) [4–10]; on the other hand, it set the stage
for further developments in linear-response methods,
including higher-order generalizations of the Cochran-
Cowley formula [11,12].
The interest in lattice-dynamical properties of two-

dimensional (2D) crystals has only started relatively

recently. As a consequence, in spite of the remarkable
progress of the past few years, the corresponding theoreti-
cal methods are not as mature as in the 3D case. To
understand the nature of the problem (i.e., why traditional
algorithms run into trouble in 2D), consider an insulating
2D crystal suspended in vacuum. A phonon propagating at
some in-plane wave vector, q, produces stray fields that
decay asymptotically as e−qjzj, where q ¼ jqj and z is the
out-of-plane coordinate. This means that, for a small
enough q, the macroscopic electrostatic potential pertur-
bation spreads over a region of space that is much larger
than the physical thickness of the material. Such a behavior
complicates the simulation of optical phonons in periodic
boundary conditions, as the spurious interaction between
repeated images leads to a physically incorrect description
of the long-wavelength limit unless special precautions
are taken.
To address this issue, the Coulomb cutoff technique

[13,14] is now routinely used in first-principles calculations
of phonons [15] and related linear-response properties of
suspended 2D systems. Such a treatment cures the pitfalls
of a naive supercell-based calculation and restores the
correct physics in the small-q limit by removing the
undesired cross talk between periodically repeated images.
For example, the Coulomb cutoff nicely reproduces [15]
the physically correct [16] behavior of longitudinal (LO)
optical phonons, which are degenerate in frequency with
the corresponding transverse (TO) modes right at the
Brillouin zone center and disperse linearly with q in a
vicinity of it [17,18].
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While the methods to perform the electronic-structure
calculations are under control, however, the theory of the
long-range electrostatic interactions in two-dimensional
crystals is still incomplete. Their fundamental understand-
ing is crucial for the accurate interpolation of phonon band
structures [12,15] and electron-phonon matrix elements
[19–24]; to model the interaction of individual layers with
the dielectric environment (e.g., in layered heterostructures
[25–28]) and/or experimental probes; and to compute a
number of important material properties that require a
careful treatment of the electrostatics in the long-wave-
length limit, such as flexoelectricity [11,29–32]. Similar
issues arise in the context of electron-electron interactions
[33,34], electronic excitations [35–40], and plasmonics
[33,41–44]. Only partial solutions have been reported so
far, by fitting the ab initio results to dielectric models [15],
where oftentimes a strict 2D limit is assumed [36], or with
the finite thickness of the real crystal heuristically
accounted for [15,19,35,38,45]. Systematic improvement
of these models, e.g., along the lines of Ref. [12], appears
difficult unless a fundamental first-principles theory of the
long-range interactions in quasi-2D crystals (that is, by
explicitly treating the finite physical thickness of the
material) is established.
Generalizing the approach of Ref. [3] to the two-

dimensional case, however, does not appear as an easy
task. In a quasi-2D system, the electrostatic interactions are
much more complex to understand and describe than in 3D,
due to the extreme anisotropy of the physics between the
(extended) in-plane and (microscopic) out-of-plane direc-
tions. For instance, the usual tenet of 3D electrostatics of
representing the macroscopic scalar potentials via struc-
tureless plane waves appears inappropriate to the quasi-2D
case, where the exponential decay of stray fields in vacuum
makes the problem inherently nonuniform along z. This
implies, in the language of Ref. [3], that the nonanalyticities
of the Coulomb kernel in 2D are not simply restricted to the
“head” of the inverse dielectric matrix but concern an entire
column of reciprocal-space vectors spanning the out-of-
plane direction. Thus, separating long-range from short-
range interactions is per se a highly nontrivial issue in 2D,
even at the level of the bare kernel (i.e., not considering the
additional complications related to screening).
Here, we solve the aforementioned challenges by intro-

ducing a number of key conceptual and methodological
advances. First, we establish a rigorous and general
separation between short-range and long-range electrostatic
interactions in 2D, both by studying the nonanalytic
properties of the Coulomb kernel and via a physically
more intuitive image-charge method. As a direct conse-
quence of such range separation, the macroscopic electro-
static potentials in 2D emerge as two-component
hyperbolic functions [coshðqzÞ and sinhðqzÞ] of the out-
of-plane direction z, reflecting the nonuniform nature of the
long-range electrostatic fields. Remarkably, the Dyson

equation for the screened Coulomb interaction reduces
then to a linear-algebra problem involving 2 × 2 matrices,
i.e., is only marginally more complex than the scalar
(1 × 1) inverse dielectric function that is characteristic of
the 3D case. This result allows for a natural separation of
the long-range electrostatic potentials into even and odd
components with respect to z → −z reflection and provides
a unified description of both the intralayer couplings as
well as the interaction with external sources. The applica-
tion of our formalism to the lattice-dynamical problem
recovers the results of the existing dielectric models, but
clearly goes beyond them, by (i) identifying a formerly
overlooked contribution, i.e., the interaction between
dipoles that are normal to the layer plane; (ii) generalizing
the theory to the next lowest order in q via incorporation of
the dynamical quadrupole tensor [31]; and (iii) allowing for
a more accurate description of the dielectric screening
function. Finally, we demonstrate via extensive numerical
tests on BN, SnS2, and BaTiO3 membranes that our
formalism allows for a significant and systematic improve-
ment in the existing methods for the theoretical study of
phonons in 2D materials. Such an improvement comes at
no additional cost from the computational perspective and
requires only a very minor addition to the existing codes.
This work is organized as follows. In Secs. II A and II B,

we introduce the basic concept of range separation in the
context of the 3D dielectric matrix formalism of Pick,
Cohen, and Martin (PCM) [3]. In Sec. II C, we present our
main conceptual achievement, which consists in identifying
the nonanalytic part of the Coulomb kernel in quasi-2D
systems via an intuitive image-charge construction and
writing it as a 2 × 2 small-space operator. In Sec. II D, we
discuss the physical significance of the hyperbolic basis
functions that we use to represent the long-range Coulomb
interactions. In Sec. II E, we use these results to establish an
exact formula for the long-range part of the force-constant
matrix and relate the materials-specific parameters to the
Born effective charges, macroscopic dielectric tensor, and
dynamical quadrupoles as calculated within modern DFPT
codes; the resulting Eq. (45) is another central achievement
of this work. In Sec. II F, we discuss the dependence of
many useful quantities on the range-separation parameter
and its implications for a physically sound description of
the dielectric function. The remainder of this work (Sec. III)
is dedicated to the numerical implementation and tests of
the formalism and, specifically, of its performance in the
Fourier interpolation of phonon bands.

II. THEORY

A. Range separation of the Coulomb interactions

1. Basic definitions

Within the adiabatic approximation, the screened
Coulomb interaction W links the screened potential V to
an external charge perturbation ρext as
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VðrÞ ¼
Z

d3r0Wðr; r0Þρextðr0Þ: ð1Þ

W is, in turn, defined in terms of the bare Coulomb kernel ν
and the irreducible polarizability χir:

W ¼ ð1 − νχirÞ−1ν ¼ ð1þ νχÞν ¼ ϵ−1ν; ð2Þ

where ϵ ¼ 1 − νχir is the dielectric matrix. [The unity
operator is a Dirac delta, δðr − r0Þ, in the real-space
representation; it becomes a Kronecker delta over the
reciprocal vectors in Fourier space.] χir linearly relates
the (induced) charge response of the interacting electron
system to the screened potential; within density-functional
approaches, it contains the effects of the exchange and
correlation kernel (fxc) and can be defined in terms of
the independent-particle polarizability (χ0) via a Dyson
equation:

χir ¼ χ0 þ χ0fxcχir ¼ χ0ð1 − fxcχ0Þ−1: ð3Þ

By further incorporating dielectric screening effects, we
obtain the reducible polarizability χ:

χ ¼ χirð1 − νχirÞ−1 ¼ χirð1þ νχÞ ¼ χirϵ
−1: ð4Þ

2. Range separation

The conceptual basis of our method consists in separat-
ing the bare Coulomb kernel into a short-range (SR) and a
remainder long-range (LR) part,

ν ¼ νsr þ νlr: ð5Þ

We assume that νsr decays exponentially in real space or,
equivalently, can be written as an analytic function of the
wave vector q in reciprocal space; the nonanalytic part of ν
is, therefore, contained in νlr. We can then define a screened
short-range Coulomb interaction

Wsr ¼ ð1 − νsrχirÞ−1νsr ¼ ð1þ νsrχsrÞνsr ð6Þ

and similarly an intermediate polarizability function χsr,
where the electrons interact via the exchange-correlation
and short-range part of the Coulomb kernel:

χsr ¼ χ0 þ χ0ðfxc þ νsrÞχsr
¼ χir þ χirνsrχsr ¼ χirð1 − νsrχirÞ−1: ð7Þ

The operator ϵsr ¼ 1 − νsrχir is a short-range dielectric
matrix, connecting the screened to the external potential
at the νsr þ fxc level of interaction. We next define the
screened long-range interaction as

Wlr ¼ ð1 − νlrχsrÞ−1νlr ¼ ð1þ νlrχÞνlr; ð8Þ

where ϵlr ¼ 1 − νlrχsr can be regarded as a long-range
dielectric matrix. Based on the above ingredients, one can
show (a proof is provided in the Appendix A) that the
following relationship holds:

W ¼ ϵ−1sr Wlrðϵ−1sr Þ† þWsr: ð9Þ

This is the main formal result of this section; an illustration
of the idea is provided in Fig. 1. As we shall see shortly,
Eq. (9) constitutes a generalization of the PCM approach
and recovers the latter as a special case.

3. Lattice dynamics

To see how this strategy works in the specific context
of lattice dynamics, we shall combine the above results
with the dielectric matrix formalism established in Ref. [3].
Consider a collective displacement of the sublattice κ along
α of the type

Δτlκα ¼ τqκαeiq·Rl ; ð10Þ

where l is a cell index and Rl span the real-space Bravais
lattice. PCM’s formula for the force-constant matrix at a
given point q in the Brillouin zone then reads, in our
notation, as

Φq
κα;κ0β ¼ Φ̄q

κα;κ0β − δκκ0
X
κ00

Φ̄q¼0

κα;κ00β: ð11Þ

(κ, κ0, and κ00 are basis indices; α and β are Cartesian
directions.) The matrix

Φ̄κα;κ0β ¼ hρextκα jWjρextκ0βi ð12Þ

describes the bare nuclear interaction screened by the total
dielectric function of the electrons at some wave vector q,
which we omit from now on to avoid overburdening the
notation. The operator W acts on the cell-periodic part of
the “external” charge density, represented here as bra/kets.
The latter, jρextκα i, corresponds (see Appendix A) to the point

FIG. 1. Decomposition of the screened Coulomb interaction
according to Eq. (9). The full interaction (W) between bare
external charges (ρext) is split into their mutual short-range
interaction (Wsr) plus the long-range interaction (Wlr) between
dressed charges (ρsr).
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dipoles that are induced by the nuclear displacement
pattern of Eq. (10).
The decomposition of the Coulomb kernel [Eq. (5)]

naturally leads via Eq. (9) to a similar partition of Φ̄ (and,
hence, of the force-constant matrix Φκα;κ0β):

Φ̄ ¼ Φ̄sr þ Φ̄lr; ð13Þ

where the short-range and long-range contributions are
constructed according to Fig. 1:

Φ̄sr
κα;κ0β ¼ hρextκα jWsrjρextκ0βi; ð14aÞ

Φ̄lr
κα;κ0β ¼ hρsrκαjWlrjρsrκ0βi: ð14bÞ

Here, ρsrκα is the dressed charge-density response to
an atomic displacement as calculated within the SR
electrostatics:

jρsrκαi ¼ ð1þ χsrνsrÞjρextκα i: ð15Þ

The round bracket corresponds to the transpose of ϵ−1sr , which
provides the formal connection between Eqs. (13) and (9).

4. Small-space representation

Thus far, we have not made any specific assumption
about νsr and νlr, except that they sum up to ν. For the
practical advantages of Eq. (14) to become clear, it is
necessary that νlr enjoy a separable representation on a
small set of basis functions:

νlr ¼
XN
l;m¼1

jφliν̃ðlmÞ
lr hφmj: ð16Þ

We assume that the basis functions jφli have an analytic
dependence on q and are smooth on the scale of the
interatomic spacings, consistent with their macroscopic
character. This naturally leads to a redefinition of the
material-dependent properties as “small-space” (see
Ref. [46], Chap. 7) N vectors or N × N matrices via a
projection on the basis functions, e.g.,

ρ̃sr;ðlÞκα ¼ hφljρsrκαi; χ̃ðlmÞ
sr ¼ hφljχsrjφmi: ð17Þ

(We shall use a tilde to distinguish small-space from full-
space objects henceforth.) Equation (17) then allows one to
express Φ̄lr at any wave vector q of the Brillouin zone as a
linear-algebra problem of dimension N:

Φ̄lr
κα;κ0β ¼ ρ̃sr�κα · W̃lr · ρ̃srκ0β; ð18Þ

where the long-range screened Coulomb interaction (also
an N × N operator) enjoys an analogous expression as in
the full space:

W̃lr ¼ ð1 − ν̃lrχ̃sr|fflfflfflfflffl{zfflfflfflfflffl}
ϵ̃lr

Þ−1ν̃lr; ð19Þ

and the small-space operator ϵ̃lr acquires the physical
meaning of a macroscopic dielectric matrix.
Note that the above results can be easily applied to the

range separation of the scattering potential, VκαðrÞ, of
interest in electron-phonon problems. By combining
Eq. (1), (9), and (16), we find

VκαðrÞ ¼
XN
l;m¼1

φsr
l ðrÞW̃ðlmÞ

lr ρ̃sr;ðmÞ
κα þ Vsr

καðrÞ; ð20Þ

where Vsr
καðrÞ ¼ hrjWsrjρextκα i is the SR-screened potential

in response to a phonon [Eq. (10)] and φsr
l ðrÞ ¼ hrjϵ−1sr jφli

is the dressed basis function φlðrÞ, again at the SR level of
interaction [see Eq. (21) below]. Both Vsr

κα and φsr
l are

analytic functions of q, which allows for their efficient
interpolation over the Brillouin zone; they are available
at no cost as a by-product of the linear-response calcu-
lations that are required for the calculation of the force-
constant matrix.

5. Practical issues

In the framework of DFPT, the main response functions
discussed in the above paragraphs (see Table I for a
summary) can be recast as the second-order variation of
the energy with respect to external parameters. The force-
constant matrix, for instance, involves two phonon pertur-
bations as defined in Eq. (10) [10,47]. The additional
material properties that we introduce in the above para-
graphs can be computed by defining N new perturbations
of the type

ΔVextðrÞ ¼ Vq
l φ

q
l ðrÞeiq·r; ð21Þ

TABLE I. Summary of the main response functions that we
consider in this work, together with the SCF kernel that governs
the electron-electron interactions in each case. The three central
columns refer to the charge response to a scalar potential (χ), the
charge response to a phonon (ρ), or the atomic forces induced by
a phonon (Φ). [They can all be expressed as second derivatives of
the energy with respect to scalar potential (V) and/or phonon (τ)
perturbations.] fxc is the exchange and correlation kernel; ν is the
Coulomb kernel; for the meaning of the short-range (sr) label, see
the text.

V − V V − τ τ − τ SCF kernel

Noninteracting χ0 � � �
Irreducible χir fxc
Short-range χsr ρsr Φ̄sr fxc þ νsr
Screened χ ρ Φ fxc þ ν
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where Vq
l is the perturbation parameter, of the dimension of

a potential. For the polarizability (χ̃) and charge-density
response to a phonon (ρ̃), we have, then,

ρ̃ðlÞκαðqÞ ¼ 1

Ω½d�
∂2E

∂V−q
l ∂τqκα ; χ̃ðlmÞðqÞ ¼ 1

Ω½d�
∂2E

∂V−q
l ∂Vq

m
;

ð22Þ

where Ω½d� is the d-dimensional volume of the cell.
The various “flavors” of each response function (irre-

ducible, screened, etc.) are determined by the type of self-
consistent (SCF) kernel that is used in the iterative solution
of the linear-response problem (right column in Table I).
This is particularly convenient, as it avoids the need for
explicitly solving the Dyson equations that govern dielec-
tric screening at the microscopic level. Moreover, DFPT
methods allow for a more straightforward incorporation of
pseudopotentials, which are awkward to treat in the context
of the dielectric matrix formalism [e.g., in Eqs. (12) and
(14), the first-order nuclear potential is that of a point
dipole, which implies an all-electron framework].
Crucially, both ingredients entering Φ̄lr, ρ̃srκα and χ̃sr, are

analytic functions of q, due to the assumed analyticity
of νsr. This property is key in the perspective of an efficient
and physically appealing representation of Φ̄lr, which can
be achieved in two different ways.

(i) One explicitly calculates ρ̃srκα and χ̃sr via Eq. (22),
together with Φ̄sr, on a regular mesh of q points.
These functions are then Fourier interpolated at an
arbitrary q point (this is guaranteed to converge
quickly with the mesh resolution due to their
analytic character), where Φ̄lr and subsequently Φ̄
can be reconstructed exactly via Eqs. (18) and (13).

(ii) One seeks an approximate analytical expression
(e.g., the dipole-dipole formula of Ref. [47]) for
Φ̄lr via a long-wave expansion of both ρ̃srκα and χ̃sr
(which is, again, allowed due to their analyticity) in a
vicinity of the zone center. Typically, only a few
leading terms need to be retained for an accurate
description of the long-range forces, and such
quantities are straightforward to calculate within
modern linear-response packages [9,10].

In practice, we shall prefer the second option in the context
of this work, as it requires only minor modifications to the
existing code implementations.

B. The 3D case

As a first practical demonstration of our formalism, we
now use it to rederive the classic results of PCM, valid for
3D crystals. Following PCM, we define νlr as the G ¼ 0
part of the Coulomb kernel in a vicinity of the zone center:

νlrðGþ q;G0 þ qÞ ¼ δG0δG00
4π

q2
: ð23Þ

Since the LR kernel vanishes except for a single Fourier
component, the dimension of the small space is manifestly
N ¼ 1, with structureless plane waves as basis functions:
φðrÞ ¼ 1. This means that both χ̃sr and ρ̃srκα are scalar
functions of the wave vector q. At the lowest order in q, we
have [3]

χ̃sr ¼ −q · χmac · qþ � � � ; ð24Þ

Ωρ̃srκα ¼ −iq · Zκα þ � � � ; ð25Þ

where χmac and Zκα are, respectively, the macroscopic
dielectric susceptibility and Born effective charge tensors.
(The tensorial components refer to the polarization direc-
tion; the dots stand for higher multipolar orders that are
usually neglected—a detailed discussion of their signifi-
cance can be found in Refs. [11,12].) We have then, by
using Eq. (8),

W̃lr ¼
4π

q2

�
1þ 4π

q2
q · χmac · qþ � � �

�
−1
; ð26Þ

which immediately leads, via Eq. (14b), to the established
formula [3] for the dipole-dipole interaction.
A disadvantage of the PCMmethod is that the separation

between G ¼ 0 and G ≠ 0 terms is meaningful only in a
neighborhood of the zone center and does not lend itself to
a true range separation in real space. Within our formalism,
it is easy to fix this limitation. We define the long-range
Coulomb kernel as

νlrðGþ q;G0 þ qÞ ¼ δGG0
4π

jGþ qj2 e
−jGþqj2=4Λ2

: ð27Þ

The remainder, νsr ¼ ν − νlr, is regular at all qþG and is,
therefore, short ranged for any nonzero value of Λ. This
corresponds to a range separation in real space in the
following form:

1

r
¼ erfðrΛÞ

r
þ erfcðrΛÞ

r
: ð28Þ

If Λ−1 is large enough (say, much larger than the lattice
parameter), then νlr contains only at most one nonzero
element on the diagonal, while all other components can be
discarded. This leads to a scalar long-range formula which
is very similar to PCM’s (in fact, they coincide at the
leading order in q):

W̃lr ¼
4πfðqÞ
q2

�
1þ 4πfðqÞ

q2
q · χmac · qþ � � �

�
−1

ð29Þ

but contains a Gaussian range-separation function:

fðqÞ ¼ e−q
2=4Λ2

: ð30Þ
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The latter is reminiscent of the usual Ewald summation
techniques [47]—and, indeed, the formalism that we have
developed in this section can be regarded as a more
sophisticated version of the Ewald method. It differs in
spirit from the established approach in that the range
separation is applied here a priori to the Coulomb kernel
and not a posteriori to the dipole-dipole expression of Φ̄lr

[47]. Interestingly, such an approach results in a macro-
scopic dielectric function [round bracket in Eq. (29)] that
explicitly depends on Λ via fðqÞ; we shall come back to
this point later on.
The remainder of this work focuses on how this

technique can be generalized to systems with reduced
dimensionality; in order to do this, we need to seek first
of all an appropriate definition of νlr in 2D.

C. Coulomb kernel in two dimensions

In quasi-2D crystals, it is convenient to separate the total
momentum into in-plane (Kk ¼ Gk þ q, whereGk belongs
to the reciprocal-space Bravais lattice and q is the wave
vector of the perturbation) andout-of-plane (kz) components.
Then, the Coulomb kernel in open boundary conditions can
be conveniently written as a function of the in-plane
momentum and out-of-plane real-space coordinate z:

νðKk; z − z0Þ ¼ 4π

Z
dkz
2π

eikzðz−z0Þ

K2
k þ k2z

¼ 2π
e−Kkjz−z0j

Kk
: ð31Þ

By analogy with the 3D case, onemay be tempted to identify
νlr with theGk ¼ 0 component of Eq. (31), which is clearly
nonanalytic. Doing so, however, is unfit to our purposes:
Unlike theG ¼ 0 component of the Coulomb kernel in 3D,
νðq; z − z0Þ is not a scalar but an operator that depends
nontrivially on z and z0. The practical appeal of the range-
separation method discussed in the previous section rests on
the representability of νlr in a small space, where only one (as
in the 3D case) or a few physical degrees of freedom of
macroscopic character are treated explicitly. The function
νðq; z − z0Þ clearly violates such a condition.
To overcome this obstacle and, thereby, achieve a sound

separation between short-range and long-range inter-
actions, we use the image-charge construction that is
illustrated in Fig. 2 (inset). In particular, we define the
short-range Coulomb kernel as follows:

νsrðKk; z − z0Þ ¼
X
n

ð−1ÞnνðKk; z − z0 − nLÞ: ð32Þ

This consists in replacing an external charge perturbation
(represented as a red circle with a “þ” symbol in Fig. 2)
with an infinite array of images, spaced by a distance L
along the out-of-plane direction and taken with alternating
signs. We assume that the parameter L is larger than the
physical thickness of the layer, in such a way that
neighboring images of the ground-state electronic density

have vanishing overlap. For the same reason, we restrict our
attention to the range jz − z0j < L, which is the physically
relevant regime for Coulombic interactions within the layer.
Clearly, νsr is short ranged, as the electrostatic potential

produced by the linear array of alternating point charges
vanishes exponentially for rk ≫ L, where rk is the in-plane
distance from the array. Then, the long-range interactions
must be entirely contained in νlr, which is defined via
Eq. (5) as the remainder: νlr ¼ ν − νsr. To illustrate this fact,
in the main panel in Fig. 2, we show a real-space
representation of νlr as it results from such a construction.
As expected, νlr deviates significantly from the Coulombic
potential only for rk < L, where it avoids the 1=rk
divergence of the latter and tends smoothly to a constant
value instead.
The short-range Coulomb kernel as defined in Eq. (32)

appears exotic at first sight, so the fact that it has been
available for several decades in mainstream implementa-
tions of DFPT [48,49] may come as a surprise to the reader.
In a plane-wave electronic-structure code, suspended
2D crystals are routinely calculated by means of the
supercell approach; this consists in repeating the system
periodically along the vacuum direction while setting the
distance between images to some sufficiently large value L
to avoid any unphysical cross talk. As we have anticipated
in the introduction, long-wavelength phonons are prob-
lematic to simulate within such a computational setup, as
spurious electrostatic interactions between images cannot
be avoided in the q → 0 limit, unless special precautions
(e.g., by means of the Coulomb truncation method) are
taken [50]. Such unphysical interactions, however, can be
exploited to our advantage, as they provide a straightfor-
ward first-principles implementation of Eq. (32). Indeed, a
phonon traveling in the superlattice with momentum
ðqx; qy; qz ¼ π=LÞ, i.e., located at the Brillouin-zone

FIG. 2. Real-space representation of the long-range Coulomb
kernel as defined in the text. The curves correspond to the choices
L ¼ 5 a.u. (black), L ¼ 10 a.u. (red), and L ¼ 20 a.u. (green).
The Coulomb potential 1=r is shown as a dashed curve for
comparison. The inset provides an intuitive illustration of the
decomposition of Eq. (32) as an image-charge method.
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boundary along the vacuum direction, introduces a
phase delay of 180° between neighboring images, which
reproduces the alternating signs of our image-charge
construction.
An explicit formula for νlr can be derived by carrying out

the summation of the n ≠ 0 terms in Eq. (32). Because of
our assumption of jz − z0j < L, the argument z − z0 − nL is
defined negative for n ≥ 1 and positive for n ≤ 1. After a
straightforward algebraic manipulation (see Appendix A),
we arrive then at

νlrðKk; z − z0Þ ¼ 2πfðKkÞ
Kk

cosh½Kkðz − z0Þ�; ð33Þ

where the range-separation function in the prefactor is

fðKkÞ ¼ 1 − tanh

�
KkL
2

�
: ð34Þ

fðKkÞ is monotonically decreasing and vanishes exponen-
tially for Kk ≫ 1=L: For a charge modulation of suffi-
ciently short wavelength, the images do not “see” each
other, as the stray fields decay faster than the vacuum
thickness. In such a regime, the “zone-boundary” electro-
statics coincides with the correct one, and νlr, which is
defined as the difference, vanishes. The parameter L
defines the length scale of the range separation (see the
main panel in Fig. 2) and plays a similar role as the
Gaussian width Λ in Eq. (30). Note that fðKkÞ has a linear
behavior (f ≃ 1 − KkL=2) for small Kk, which contrasts
with the quadratic behavior of its 3D counterpart; we regard
this outcome as a consequence of the reduced dimension-
ality. One can verify that Eq. (33) exactly reproduces the
nonanalytic behavior of the full kernel [Eq. (31)] at any
order in Kk.
The hyperbolic cosine diverges exponentially for large

arguments, which may raise some questions about the
numerical stability of Eq. (33); also, one may wonder how
we end up with an unbounded potential when the original
kernel of Eq. (31) is manifestly a bounded function of
jz − z0j at any nonzero q. We stress that the cosh of Eq. (33)
is really intended as a truncated hyperbolic cosine (νlr is
defined in the range jz − z0j < L), in the same spirit of the
Coulomb truncation method [13,14,19]. (Our parameter L
corresponds to half the supercell length within the latter
approach.) And, in fact, our definitions of νlr and νsr, once
represented on a plane-wave basis set, exactly sum up to the
truncated Coulomb kernel as defined by Sohier, Calandra,
and Mauri [19] (a formal proof is provided in Appendix C).
Incidentally, our derivations show that Sohier’s method can
also be understood as an image-charge construction: It
differs from νsr by only a factor of e−qL in the odd-
numbered terms of Eq. (32).
With these results in hand, we are now ready to attack the

representability issue that we have raised at the beginning

of this section. At first sight, it might seem that we have not
made much progress—Eq. (33) is still expressed as a
nontrivial function of z and z0. By using the elementary
bisection formula of the hyperbolic cosine, however, one
can equivalently write Eq. (33) as

νlrðq; z − z0Þ ¼ φðzÞ · ν̃lrðqÞ · φðz0Þ; ð35Þ

in terms of the small-space operator

ν̃lrðqÞ ¼
2πfðqÞ

q

�
1 0

0 −1

�
ð36Þ

and the two-component macroscopic potential

φðzÞ ¼ ½coshðqzÞ; sinhðqzÞ�: ð37Þ

[We assume that fðKkÞ ≃ 0 for anyGk ≠ 0, leaving us with
a simple q dependence of ν̃lr.] Equation (35) now provides
the sought-after separable representation of the long-range
Coulomb kernel. In spite of the apparent complexity of the
electrostatic problem in 2D, with the extreme anisotropy of
the physics between the in-plane and out-of-plane direc-
tions and the consequent inhomogeneity of the stray fields
[here reflected in the nonuniform nature of the basis
functions, Eq. (37)], we manage to represent the long-
range Coulomb interactions in a space whose dimension-
ality is only slightly larger than that of the trivial 3D case;
we regard this as a remarkable conceptual achievement of
this work.
The fact that the hyperbolic basis functions diverge

exponentially with z is, again, not an issue in practice, since
our main focus is on intralayer interactions, occurring
within a bounded region jz − z0j < L. In the next section,
we further corroborate their physical soundness by address-
ing the electrostatic potentials far away from the layer,
which mediate its coupling to the dielectric environment
and/or external probes.

D. Hyperbolic functions

To understand the physics that lies behind the two-
component nature of the electrostatic potentials and oper-
ators, it is useful to recall some basic properties of the
hyperbolic functions appearing in Eq. (37). The hyperbolic
cosine is manifestly an even function of z, while the sine is
odd: At the lowest order, the former reduces to an electric
field acting parallel to the plane, while the latter corre-
sponds to a perpendicular field. (To reflect this fact, we
indicate the two components of the relevant matrices
and vectors with the “k” and “⊥” symbols henceforth.)
This means that the cosh and sinh potentials mediate
electrostatic interactions between charge densities that
are, respectively, even and odd with respect to z reflection.
The emergence of a mirror-odd component marks a drastic
departure from the 3D case, where transverse electric fields

EXACT LONG-RANGE DIELECTRIC SCREENING AND … PHYS. REV. X 11, 041027 (2021)

041027-7



are forbidden by the translational periodicity of the crystal
Hamiltonian. Based on the above, we can interpret the
hyperbolic basis functions as the quasi-2D generalization
of modulated electric fields, respectively oriented in-plane
(cosh) or out-of-plane (sinh). This generalization is unique,
as there is a unique solution to the Laplace equation in all
space once the boundary condition at the z ¼ 0 plane is
fully specified. This also means that the cosh and sinh
functions constitute a complete basis for expanding an
arbitrary electrostatic potential that is produced by external
charges (i.e., located outside the volume of the layer).
As a consequence, the small-space representation of the

perturbed charge density [Eq. (17)] must be relevant to
describing not only the long-range interactions within the
layer, but also the exponentially decaying vacuum fields
outside the layer. To see this, consider an isolated 2D layer
with a screened charge perturbation of the form

ρextðrÞ ¼ eiq·rρqðzÞ; ð38Þ

where ρqðzÞ is the planar average of the cell-periodic part.
The electrostatic potential generated by ρqðzÞ can be
written as a convolution in real space with the kernel of
Eq. (31):

VqðzÞ ¼
Z

dz0νðq; z − z0Þρqðz0Þ: ð39Þ

If we consider a point that is located far enough from
the layer that the perturbed density vanishes, Eq. (39)
reduces to

VqðzÞ ¼ 2π

q

�
e−qz

R
dz0eqz0ρqðz0Þ for z ≫ 0;

eqz
R
dz0e−qz0ρqðz0Þ for z ≪ 0.

ð40Þ

After observing that e�qz ¼ coshðqzÞ � sinhðqzÞ, we
obtain, for jzj ≫ 0,

VqðzÞ ¼ 2π

q
e−qjzj½ρkðqÞ þ sgnðzÞρ⊥ðqÞ�; ð41Þ

where sgnðzÞ is the sign function and we define the two-
component charge-density perturbation by combining
Eq. (17) with Eq. (37):

ρkðqÞ ¼
Z

dzρqðzÞ coshðqzÞ; ð42aÞ

ρ⊥ðqÞ ¼
Z

dzρqðzÞ sinhðqzÞ: ð42bÞ

This shows that the stray fields in the vacuum region are
entirely specified by the small-space representation of the
screened charge density, thereby further substantiating its
physical significance.

E. Long-range interatomic forces

In order to write the LR part of the dynamical matrix
according to Eq. (14b), we define the small-space repre-
sentations of the short-range polarizability (χsr) and charge-
density response to a phonon (ρsrκα) by using Eq. (37) in
conjunction with the formalism in Sec. II A. Then, the
observation that coshðqzÞ and sinhðqzÞ=q are both analytic
functions of q naturally leads to a long-wave expansion of
χ̃sr and ρ̃sr. Regarding χ̃sr, we have

χ̃srðqÞ ¼ −
�
q · αk · q qβ · q

qβ · q q2α⊥

�
þOðq4Þ; ð43Þ

where we introduce the in-plane (αk) and out-of-plane (α⊥)
macroscopic polarizabilities of the layer and βm denotes the
off-diagonal elements that couple in-plane and out-of-plane
dipoles; their relation to the macroscopic dielectric tensor
of the supercell is described in Appendix B. Note that these
relationships are exact; i.e., they do not rely on any
assumption regarding the physical properties of the layer,
unlike the dielectric model in Ref. [19].
The charge-response functions, on the other hand, can be

conveniently expanded as

ρ̃sr;kκα ðqÞ ¼ −
iqβffiffiffi
S

p ½ẐðβÞ
κα − i

qγ
2
ðQ̂ðβγÞ

κα − δβγQ̂
ðzzÞ
κα Þ þ � � ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ZðβÞ
κα ðqÞ

e−iq·τκ ;

ð44aÞ

ρ̃sr;⊥κα ðqÞ ¼ qffiffiffi
S

p ½ẐðzÞ
κα − iqβQ̂

ðzβÞ
κα þ � � ��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z⊥
καðqÞ

e−iq·τκ ; ð44bÞ

where S is the cell surface [see Eq. (A7)], the complex
phase is a structure factor that depends on the in-plane
location of the atom κ within the cell, and we indicate as
Ẑκα and Q̂κα the dynamical dipole and quadrupole tensors,
respectively, in 2D. These generally differ from their
standard definitions in 3D (see Appendix B for details):
(i) The electrical boundary conditions are set to short circuit
in plane, and open circuit along z, consistent with the zone-
boundary electrostatics; (ii) the Cartesian moments along z
are calculated with respect to the z ¼ 0 plane, which
corresponds to the center of the 2D layer.

The way Q̂ðzzÞ
κα enters Eq. (44), which stems from the

asymptotic expansion of the hyperbolic cosine,
coshðqzÞ ≃ 1þ q2z2=2, might appear surprising at first
sight. To see its physical significance, note that, in classical
electrostatics, only the traceless part of the Cartesian
multipole tensor [51] produces long-range electrostatic
fields (see Appendix D). In two dimensions, this implies
that the diagonal elements of the quadrupolar tensor con-
tribute to the long-range forces only via their difference,
consistent with Eq. (44); we regard this outcome as a further
demonstration of the internal consistency of our theory.
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While the above formalism is entirely general, for
simplicity, we focus henceforth on 2D crystals that enjoy
a mirror plane at z ¼ 0. This assumption implies that the
off-diagonal component of the polarizability, βm, vanishes
by symmetry, and the diagonal elements of the screened

Coulomb interactions can be treated as two separate scalar
problems. By plugging the long-wave expansions of the
densities [Eq. (44)] and the dielectric functions [Eq. (43)]
into Eq. (18), we obtain the following formula for the long-
range interatomic forces:

Φ̄lr
κα;κ0βðqÞ ¼

2πfðqÞ
Sq

�ðq ·ZÞ�καðq ·ZÞκ0β
ϵ̃kðqÞ

− q2
Z⊥�

κα Z⊥
κ0β

ϵ̃⊥ðqÞ
�
e−iq·ðτκ0−τκÞ; ð45Þ

where

ϵ̃kðqÞ ¼ 1þ 2πfðqÞ
q

q · ðαk þ � � �Þ · q; ð46aÞ

ϵ̃⊥ðqÞ ¼ 1 − 2πqfðqÞðα⊥ þ � � �Þ: ð46bÞ
ϵ̃k and ϵ̃⊥ refer to the diagonal components of the small-
space dielectric matrix ϵ̃lr. At leading order in q, they
correspond, respectively, to the monopolar and dipolar
response functions that are considered in earlier works
[25,27]; the dots stand for the terms Oðq4Þ and higher in
Eq. (43). Z are the dynamical dipoles, corresponding to the
square brackets in Eq. (44), which generally depend on q
via quadrupolar and higher-order terms. Equation (45)
describes the long-range electrostatic interactions exactly
up to an arbitrary multipolar order; this is the second central
result of this work.
By truncating the expansions of Eqs. (43) and (44) to their

leading orders in q, we recover an approximate representa-
tion of the long-range force constants that can be directly
compared with earlier works on the subject. The mirror-even
(k) part in Eq. (45) is consistent with the formula proposed
by Sohier et al. [15], with the most obvious difference that
the range-separation function fðqÞ in the prefactor is
replaced by a Gaussian, gðqÞ ¼ e−q

2=4Λ, therein. Both
functions tend to unity at q ¼ 0 and may, therefore, appear
equivalent at first sight. Our fðqÞ as given by Eq. (34),
however, displays a linear (rather than quadratic) depend-
ence at small q, which is key to reproducing the nonanalytic
behavior of the long-range Coulomb kernel exactly.
Interestingly, in our formula fðqÞ also appears in the
definition of the dielectric function [Eq. (46)]; we shall
come back to this point in the following section.
The mirror-odd part (second term in the round bracket,

labeled by ⊥) in Eq. (45) is, to the best of our knowledge,
an original result of this work. (The contribution of the out-
of-plane dipoles to the long-range potentials discussed by
Ref. [24] has mirror-even quadrupolar character and,
therefore, is qualitatively different; see Appendix B for
further details.) Remarkably, the interaction between out-
of-plane dipoles enters with a negative sign, which orig-
inates from Eq. (36). To rationalize this outcome, note that
an unsupported insulating film imposes open-circuit elec-
trical boundary conditions on out-of-plane dipoles, which

implies that, at q ¼ 0, optical phonon modes experience a
full depolarizing field along z. Such physics iswell described
by the zone-boundary electrostatics that we discuss earlier.
When moving away from Γ, the spatial modulation of the
dipole moments acts as an effective Yukawa-like screening,
which progressively weakens the effects of the depolarizing
field; the physics is not dissimilar to the driving force toward
domain formation in low-dimensional ferroelectrics. As we
shall see in the results section, this implies that theZObranch
(optical modes with polarization out of plane) approaches
q ¼ 0 with a linear dispersion, similarly to LO modes but
with a negative slope. Remarkably, in the mirror-odd
component of the dielectric function [Eq. (46)], the out-
of-plane polarizability of the layer also enters with negative
sign, which implies that ϵ⊥ðqÞ is always smaller than one.
This outcomemight bear intriguing connections to the theory
of negative capacitance [52] effects in thin-film ferroelec-
trics; we regard this as a fascinating topic to explore in future
studies.

F. The range-separation parameter

As we mention earlier, an interesting outcome of our
derivations is that the small-space dielectric function ϵ̃lr
explicitly depends on the range-separation parameter via
fðqÞ. In particular, the fðqÞ prefactor suppresses the polar-
izability contribution at large momenta, and ϵ̃lrðqÞ tends to
unity for q ≫ L−1 (i.e., at length scales where the physics of
the dielectric screening is microscopic in character). This
behavior is common to both the 2D [Eq. (46)] and the 3D
[Eq. (29)] cases; i.e., it does not depend on dimensionality
but appears to be a general consequence of the formalism
developed in Sec. II A. The appearance of a fictitious
parameter (L or Λ) may appear undesirable; it is, however,
a natural manifestation of the arbitrariness in the separation
between what we regard as “macroscopic” and “local field”
effects, which is inherent to our strategy. This issue is well
known in other contexts: e.g., in the “nanosmoothing”
techniques [53,54] that are used to extract macroscopic
physical information from microscopic first-principles data
or in the popular Ewald method, which can be regarded as a
straightforward application of our formalism to a system of
classical point charges.
In the case of the mirror-odd component, the progressive

suppression of the polarizability contribution for increasing

EXACT LONG-RANGE DIELECTRIC SCREENING AND … PHYS. REV. X 11, 041027 (2021)

041027-9



q not only is a direct consequence of the above arguments,
but is also an essential ingredient for a mathematically
stable description of the long-range interactions. Indeed,
the contribution of the layer polarizability α⊥ enters with a
negative sign, which would lead to a vanishing denomi-
nator in Eq. (45) if fðqÞ were neglected (i.e., set to unity) in
Eq. (46). One can show that the stability condition is

L > 4πα⊥: ð47Þ

By recalling the definition of α⊥ [Eq. (B4)], one quickly
realizes that the above condition marks the crossover
between a positive and a negative value of ϵ−1zz , the inverse
dielectric constant of the hypothetical cell of thickness L
that we use to represent our 2D crystal. Thus, assuming a
“strict 2D limit” (e.g., following the guidelines in Ref. [36])
would be unphysical in the context of the out-of-plane
dielectric function: An infinitesimally thin layer with a
finite out-of-plane polarizability would inevitably lead to
divergencies in the screened Coulomb interaction at short
distances. In the language of Sec. II A, one can equivalently
say that the small-space operator ϵ̃lr must be an invertible
matrix for our method to be physically sensible and
mathematically stable; the above considerations show that
L must be chosen wisely for this condition to hold.
As a matter of fact, all analytic response functions that

one calculates within the SR Coulomb kernel depend on L
implicitly via the L dependence of the latter. This raises the
obvious question of whether the small-momentum expan-
sion coefficients of ρ̃sr [Eq. (44)] and/or χ̃sr [Eq. (43)] are
affected by this issue. One can show that the lowest orders
in q of either function, including all quantities that are
explicitly mentioned in Eqs. (43) and (44), are independent
of L; their respectiveL dependence kicks in at the octupolar
level for ρ̃sr and at Oðq4Þ for χ̃sr. The 2D and 3D cases are,
again, qualitatively similar in these regards: A demonstra-
tion that the quadrupolar moments are independent of
the range-separation parameter (a fictitious Thomas-Fermi
screening length is used) in 3D crystals, while octupoles are
not, can be found, respectively, in Ref. [55] and Ref. [11].
Of course, the screened counterparts of the charge-

density response and polarizability must be independent
of L, consistent with their definition in free-boundary
conditions. Interestingly, we have

ρ̃καðqÞ ¼ ϵ̃−1lr ðqÞρ̃srκαðqÞ; ð48aÞ

χ̃ðqÞ ¼ ϵ̃−1lr ðqÞχ̃srðqÞ: ð48bÞ

This means that the implicit L dependence of the SR
quantities (which originates from the modifications to the
short-range Coulomb kernel that a variation of L entails)
cancels out exactly with an analogous dependence of ϵ
when the former are divided by the latter. Such a cancella-
tion becomes only approximate when the multipolar

representations of both ρsr and ϵ are truncated, and such
a deviation can be used to gauge the overall accuracy
of the method.

III. RESULTS

We now benchmark the performance of our method
regarding the Fourier interpolation of the dynamical matrix
elements and eigenvalues (phonon bands). Our computa-
tional model consists in the three materials illustrated in
Fig. 3, i.e., in two representative 2D monolayer crystals,
BN and SnS2, and a thin membrane of BaTiO3. (The latter
consists in a tetragonal stacking of three BaO=TiO2=BaO
layers, the relaxed structure being nonpiezoelectric.) To
start with, we present the calculated physical parameters for
our materials set.

A. Calculation of the physical constants

Our calculations are performed within the local-density
approximation as implemented in ABINIT [56], by using
optimized norm-conserving Vanderbilt pseudopotentials
[57] from the PseudoDojo [58]. For all the materials
considered, we use a plane-wave cutoff of 80 hartree
and a 12 × 12 × 1 k-point grid. The length of the supercell
in the out-of-plane z direction is set to 40 bohr in all cases.
Before performing the linear-response calculations, we
optimize the atomic positions and cell parameters of the
unperturbed systems to a stringent tolerance (10−8 and 10−6

atomic units for residual stress and forces, respectively).
The linear-response quantities (dielectric tensor, dynamical
charges [47], and quadrupoles [31]) necessary to build the
LR dynamical matrix are then computed with the DFPTand
long-wave drivers of ABINIT [56] and subsequently trans-
formed to the zone-boundary electrostatics following the
recipe described in Appendix B. The results are reported in
Table II.

B. Interpolation of the dynamical matrix

We now test the performance of our method regarding
the Fourier interpolation of the phonon bands. In particular,
we benchmark the results of our interpolation method
against the exact DFPT phonon frequencies and the

FIG. 3. Atomic structure of the simulated 2D materials: BN (a),
SnS2 (b), and BaTiO3 (c).
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frequencies obtained by means of the phenomenological
2D Fourier interpolation of Sohier et al. [15] both acces-
sible via the Quantum Espresso (QE) [48,59] suite. In the
course of our tests, we detect a missing factor of 2π=a0 in
the QE subroutine (version 6.5) that builds the long-range
interactions following the guidelines in Ref. [15]. Such a
factor likely passes unnoticed in earlier works [15], as it is
close to one (in atomic bohr units) in all materials studied
therein. For a fair comparison, in the following, we present
results obtained after having fixed this issue. (Our fix will
be incorporated in future releases of the software, presum-
ably starting from v.6.8.)
To calculate the dynamical matrices, we use the

“Coulomb truncation” method [13] as implemented
[19,50] in the linear-response module of QE. For consis-
tency, we use the same computational parameters,
exchange and correlation functionals, and pseudopotentials
as in our ABINIT calculations (see Sec. III A). Prior to
performing the actual calculations, we carefully check the
compatibility between ABINIT and QE calculations by
comparing the main linear-response quantities (polarizabil-
ities and Born effective charges) that can be obtained
through both packages, obtaining essentially no differences
(within a tolerance of four significant digits).
Once the dynamical matrices are calculated on a discrete

mesh (qi) of points spanning the 2D Brillouin zone of the
crystal, we evaluate the approximate (A) long-range inter-
actions, Φ̄lr;A

κα;κ0βðqiÞ, via the truncatedEq. (45) on the same2D
mesh and use it to define an approximate short-range part as

Φsr;AðqiÞ ¼ ΦðqiÞ −Φlr;AðqiÞ: ð49Þ

[Φlr;A is obtained from Φ̄lr;A after enforcing translational
invariance via Eq. (11).] Finally, Φsr;A

κα;κ0βðqiÞ is Fourier
interpolated to obtain the short-range dynamical matrix at
an arbitrary q and, eventually, the full dynamicalmatrix once
the long-range part Φlr;A

κα;κ0βðqÞ is added back to it. Again,

Φ̄lr;A
κα;κ0βðqÞ depends only on L (the only free parameter) via

the range-separation function fðqÞ that is contained in
Eqs. (45) and (46).
To determine the optimal value of L, we estimate the

accuracy of the interpolation at a given L by requiring that
the decay of the “sr” force constants in real space be as fast
as possible. In practice, we define an indicator by summing
up the absolute values of the short-range IFCs in real space:

dðLÞ ¼
X0

κκ0l

X
αβ

jΦsr;A
κα;κ0βð0; lÞj; ð50Þ

where the prime means that self-interactions are excluded.
The minimum of dðLÞ yields then the sought-after value
of L. This entails only a minimal computational burden,
since it requires only recalculating Φ̄lr;A

κα;κ0βðqÞ several times
at different values of L. This is done at the level of the
postprocessing program (i.e., it does not imply running
additional linear-response calculations). The results for our
tested materials are shown in Fig. 4. For BN, we have also
verfied that the value of L optimized via Eq. (50) is
consistent with our conclusions based on the analysis of
the screened charge, following the guidelines of Sec. II F.

1. BN

We begin by applying our scheme to study the long-
wavelength dispersion of the optical phonons in monolayer
BN. Phonons in BN are the subject of several works in the
framework of tight-binding models [17], classical poten-
tials [18,60], or first-principles electronic-structure theory
[15,61]; therefore, this material constitutes an excellent first
benchmark for our method. Figure 5 shows the results
obtained with our Fourier interpolation formalism and
using a value of L ¼ 4.5 bohr which, as anticipated in
the previous section and confirmed by the data represented
in Fig. 4, is optimal in order to minimize the spread of

TABLE II. Cartesian components of dynamical dipole, quadrupole, and polarizability tensors (in the zone-boundary electrostatics).
Atomic units are used; only linearly independent coefficients are shown. The numbering of the atoms refers to the convention in Fig. 3.

B N Sn S(1) Ba(1) Ti O(1) O(2) O(3)

ZðxÞ
κx

2.685 −2.685 4.814 −2.407 2.946 6.603 −2.487 −2.285 −5.237

ZðzÞ
κz

0.246 −0.246 0.343 −0.171 0.482 0.947 −0.675 −0.280 −0.280

QðxyÞ
κx

4.261 0.384 3.700

QðxxÞ
κy

4.261 0.384 3.700

QðyyÞ
κy

−4.261 −0.384 −3.700

QðyzÞ
κy

−0.298 1.356 −0.972

QðxxÞ
κz

−2.932 −24.552 21.641

QðzzÞ
κz

0.231 4.605 −3.868

αk 1.882 6.629 4.461
α⊥ 0.310 0.720 0.900
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the IFCs. Compared with the bands obtained by following
the interpolation of Sohier et al. [15], our method mani-
festly improves the description of both the LO and ZO
branches, accurately reproducing the exact DFPT
frequencies.
Regarding the LO mode, we ascribe this improvement to

our more accurate treatment of the long-range 2D screening
function, while the inclusion of dynamical quadrupoles
appears to have a minor impact on the interpolated LO
frequencies. To see this, we repeat the interpolation
procedure while neglecting dynamical quadrupoles in
Φ̄lr;A (dot-dashed blue curves in Fig. 5), obtaining negli-
gible differences. For a more quantitative comparison, we
show in Fig. 5(c) the deviation from the exact LO branch as
a function of the q-mesh resolution: Our method is highly
accurate already at a coarse 4 × 4 mesh, while earlier
treatments result in a much slower convergence.
The seemingly negligible impact of the dynamical

quadrupoles in the interpolation of the LO frequencies is
surprising, so we decide to investigate this point further.
We find that the quadrupolar terms are important to
reproduce the correct interactions between modes, corre-
sponding to the off-diagonal elements of the dynamical
matrix, in the long-wavelength limit. To illustrate this point,
we project the force-constant matrix at a given wave vector
q onto the Γ-point mode eigenvectors (umκα,m being a mode
index), appropriately modulated by a position-dependent
complex phase:

Φm;nðqÞ ¼ humκαje−iq·τκΦκα;κ0βðqÞeiq·τκ0 junκ0βi: ð51Þ

In the inset of Fig. 5(a), we plot the off-diagonal element of
Φm;nðqÞ, quantifying the strength of the coupling between

the LO and TO modes, along a portion of the K-Γ
segment. As above, we compare the exact DFPT values
with the results of the Fourier interpolation, which we
perform either including or excluding the contribution of
the dynamical quadrupoles. Clearly, the quadrupoles play
a crucial role in ensuring that the long-wave limit is
accurately described. Note the qualitative error of the
dipole-dipole (DD) interpolation, which approaches Γ
quadratically instead of linearly. As a matter of fact,
the specific treatment of the dipole-dipole terms has no
effect on the coupling between these two modes. All the
models (except that including the dynamical quadru-
poles), or even a complete neglect of the long-range
interactions during the interpolation, yield exactly the
same result [see the inset in Fig. 5(a)].
Regarding the ZO branch of Figs. 5(d) and 5(e), note its

characteristic linear dispersion when approaching the Γ
point, which is reminiscent of the LO branch except for the
(negative) sign of the group velocity. This behavior, as we
mention earlier, stems from the out-of-plane dipole-dipole
interactions, which are neglected in earlier works. Indeed,
when such interactions are left untreated, as in the dashed
curves in Figs. 5(d) and 5(e), the Fourier interpolation
results in a quadratic dispersion and a discrepancy that
decays very slowly with the q-mesh resolution [Fig. 5(f)].
Our method clearly reproduces the qualitatively correct
physics in the long-wavelength limit, with an excellent
match between the interpolated and exact frequencies
already at the coarsest mesh resolution that we consider
[Fig. 5(f)]. Note that dynamical quadrupoles are irrelevant
here, since their effect on the mirror-odd part of the
electrostatics vanishes by symmetry.

2. SnS2

SnS2 has been the focus of several studies lately, in both
its bulk [62] and monolayer [63] forms. Its main interest
lies in the very low lattice thermal conductivity [64], which
is important for thermoelectric efficiency. Clearly, an
accurate representation of phonon frequencies is key to
these applications, which motivates its consideration as a
representative test case. Note that, in the case of SnS2, a
larger (compared to BN) value of L ¼ 9 bohr yields an
optimally fast decay of the IFCs (see Fig. 4) and is,
therefore, used in the interpolation.
Figure 6 shows the dispersion of the four (out of six)

optical branches that are lowest in energy. The modes of
Figs. 6(a) and 6(b) originate from the doubly degenerate Eu
mode at the Γ point, with a calculated frequency of
ωðEuÞ ¼ 210 cm−1, and correspond to the LO and TO
modes with in-plane polarization. Similarly to the BN case,
our interpolation scheme has a most visible impact on the
highest LO mode, where our improved treatment of
screening results in an excellent match with the exact
DFPT frequencies. Again, the effect of quadrupoles
appears to be unimportant for the interpolation of the
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FIG. 4. Average of short-range IFCs (absolute value excluding
self-interactions) as a function of the L parameter used to
generate the long-range dynamical matrices. For each of the
three materials studied in this work, the y-axis data are scaled by
the minimum calculated value.
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LO branch, which is very well described already at the
dipole-dipole level.
In Figs. 6(c) and 6(d), we show, on a magnified vertical

scale, the TO branch of the aforementioned Eu doublet,
together with two additional branches deriving from the
Raman-active Eg modes [ωðEgÞ ¼ 197 cm−1]. Here, con-
trary to the above examples, the inclusion of dynamical
quadrupoles is important to reproduce the correct phonon
dispersion. This can be clearly appreciated by the com-
parison with the results of the lower-order models (limited
to dipole-dipole interactions), which significantly deviate
from the exact DFPT frequencies. The latter, on the other
hand, are matched by the full electrostatic model with
excellent accuracy.
To understand the reason why the dipole-dipole model is

inaccurate for these bands, we quantify the quadrupolar
strength of each mode along the two relevant q̂ directions,

by projecting the calculated components of QðβγÞ
κα on the

corresponding Γ-point eigenvectors. Interestingly, the larg-
est discrepancies between the two electrostatic models are
observed along the branches where dynamical quadrupoles
vanish by symmetry, which might appear counterintuitive
at first sight. However, one must keep in mind that Fourier
interpolation is a global operation on the 2D Brillouin
zone. This means that residual nonanalyticities in the
“short-range” dynamical matrix affect the quality of all
interpolated branches, including those that are not directly
concerned by macroscopic electric fields. It turns out that,
similarly to the BN case, the inclusion of dynamical
quadrupoles significantly improves the description of
the off-diagonal matrix elements, which in SnS2 couple
EgðTOÞ with EuðLOÞ [Fig. 6(e)] and EgðLOÞ with EuðTOÞ
[Fig. 6(f)] when moving away from Γ. Here, the impact on
the phonon frequencies is much larger than in BN, because

1350

1400

1450

1500

1550
  (

cm
-1

) DFPT (QE)

Ref. [15]

This work

This work (DD)

810

815

820

825

830

835

00.050.10.150.2

  (
cm

-1
)

0.05 0.1 0.15 0.2 42 62 82 102 122

q points

Ref. [15]

This work

This work (DD)

LO

TO

ZO

(a) (b) (c)

(d) (e) (f)

0.02

0.04

0.06

00.050.10.150.2

|ΦTO,LO(q)| / q  (a.u.)

-5

0

5

10

  (
cm

-1
)

-2

0

2

4

  (
cm

-1
)

FIG. 5. BN. Dispersion of the LO, TO (a),(b), and ZO (d),(e) phonon branches in the long-wavelength limit along the K-Γ [(a) and (d)]
and Γ-M [(b) and (e)] segments in the 2D Brillouin zone. The curves show the results of the 2D Fourier interpolation method in Ref. [15]
as implemented in QE after having corrected the bug in the implementation (see the text) and of the method developed in this work,
either with or without (DD) dynamical quadrupoles; exact [DFPT (QE)] phonon frequencies are shown as circles. All interpolations are
performed on a grid of 8 × 8 in-plane q points. (c) and (f) show the absolute error resulting from the different interpolation methods as a
function of the q-mesh density for the LO and ZO branches, respectively. DFPT frequencies are taken as reference, and the error is
evaluated at the q point lying halfway between Γ and the first commensurate q point along the Γ-M segment. The inset in (a) shows the
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the relative closeness in energy of the interacting branches
amplifies the effect. We likewise confirm that dipole-dipole
interactions play no role in interpolating these off-diagonal
matrix elements.
Note that two additional optical branches, respectively,

of Ag and Au symmetry, are present at higher energies (not
shown); the electrostatic corrections, while present, have a
relatively lesser impact on their interpolated frequencies.

3. BaTiO3 membrane

Our motivation for studying a thin perovskite membrane
as a showcase for our method stems from the recent surge
of interest in such systems. This rapidly growing area of
research has been fueled by the experimental breakthroughs
in the preparation of unsupported oxide films via sacrificial
layers [65]. The main advantage resides in the unprec-
edented possibility of studying the impact of reduced size
on the properties of perovskite crystals and on the unprec-
edented degree of control over the mechanical boundary
conditions that a membrane geometry allows [66]. The
theoretical study of the phonon spectrum, a mainstay of the

current understanding of 3D complex oxides, provides a
unique view on the effects of dimensionality on, e.g., the
stability of the lattice against a ferroelectric distortion. We
provide a practical demonstration in the following.
Figure 7 shows the dispersion of the optical phonons

as obtained from the three different interpolation methods
that we have introduced in the previous paragraphs.
We use an optimal value of L ¼ 12.0 bohr, once again
extracted by minimizing Eq. (50) as shown in Fig. 4.
Many of the trends that we have already observed for BN
and SnS2 crystals are manifestly present: (i) The highly
dispersive LO modes are most affected by the improve-
ments brought about by our new formalism, concretely
by the enhanced treatment of screening; (ii) the ZO
branches exhibit a linear dispersion in the long-wave-
length limit, requiring explicit treatment of the out-of-
plane DD interactions for its qualitatively correct repre-
sentation; (iii) the effect of the dynamical quadrupoles is
minimal and only barely appreciable in the dispersion of
the second-highest ZO branch. Interestingly, our inter-
polation scheme results in an improved description of
selected transverse optical branches as well. We believe
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that the discrepancies produced by the existing scheme
might be a “collateral damage” of its inaccurate descrip-
tion of the LO branches: Our 2D BaTiO3 crystal appears
to be a case where the small-q dip in the dispersion of
some LO modes is particularly pronounced, possibly
affecting the corresponding TO branches as well.
The physical origin of this rather extreme behavior

resides in the ferroelectric low-energy mode of BaTiO3,
which is characterized by an abnormally large dipolar
strength Zl. (Recall that the linear dispersion coefficient of
the dynamical matrix eigenvalues close to Γ is proportional
to the square of Zl [15].) Interestingly, the minimal
thickness of the film prevents this mode from going “soft”
at any point in the 2D Brillouin zone (our centrosymmetric
structure is, therefore, at least a metastable configuration of
the crystal), pointing to a complete suppression of ferro-
electricity in the ultrathin limit. Studying the crossover
between 2D and 3D physics as a function of slab thickness
in this system will be an exciting topic for future studies. In
this perspective, we expect the virtues of our interpolation
method to become even more manifest as thickness
increases. Indeed, the near-surface dynamical quadrupoles
in our scheme grow linearly with thickness because of the
dipolar contribution in Eq. (B5) and, eventually, might
become crucially important for a qualitatively correct
interpolation.

IV. CONCLUSIONS

In summary, we have developed a rigorous analytical
description of the long-range electrostatic screening and

interatomic forces in two-dimensional crystals, within a
fundamental first-principles context. As a first application,
we have used it to develop an explicit formula, exact up to
the quadrupolar order, for the long-range part of the
interatomic force constants. Numerical tests on selected
materials demonstrate its superior accuracy in the inter-
polation of the phonon bands, at no extra cost compared to
the existing schemes.
Our formalism provides a general platform for treating

long-range electrostatics in 2D systems, with an applicabil-
ity that goes well beyond the specifics of lattice dynamics.
First, one could use Eq. (20) to reconstruct the nonanalytic
contributions to the scattering potential in electron-phonon
calculations, in a similar spirit as in Refs. [67–70]. Second,
the results of Sec. II D should allow for a natural incor-
poration of our formalism into dielectric models of layered
systems, e.g., in combination with the methods of
Refs. [25–28]. The exact 2D representation of the macro-
scopic dielectric function of an arbitrarily thick layer makes
our approach particularly appealing in this context, as it
does not require any approximation (e.g., to the monopolar
and dipolar interactions [25,27]) or limiting assumption
(e.g., about the separable character of the ground-state
wave functions [28]). In turn, our exact treatment of higher-
order multipolar couplings could facilitate the descrip-
tion and modeling of advanced electromechanical effects,
such as flexoelectricity [32]. Also, one could generalize
the calculation of the 2D polarizability functions χðqÞ to
finite frequencies and, thereby, facilitate the use of modern
many-body perturbation techniques in low-dimensional
systems [35,71]. In a materials context, our methods appear
well suited to treating emergent systems that lie at the
crossover between 2D and 3D, such as oxide membranes,
which are attracting a rapidly growing experimental inter-
est. Finally, generalizing our approach to one-dimensional
nanowires could be another exciting topic for follow-up
studies.
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APPENDIX A: SUPPORTING ANALYTICAL
DERIVATIONS

1. Proof of Eq. (9)

By using the results and definitions of Sec. II A and, in
particular, by recalling that χsrϵ−1lr ¼ χ, we find

ð1þ νsrχsr|fflfflfflfflffl{zfflfflfflfflffl}
ϵ−1sr

ÞWlrð1þ χsrνsrÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ðϵ−1sr Þ†

¼ ðϵ−1lr þ νsrχsrϵ
−1
lr Þνlrð1þ χsrνsrÞ

¼ ð1þ νlrχ þ νsrχÞνlrð1þ χsrνsrÞ
¼ ð1þ νχÞνlrð1þ χsrνsrÞ
¼ ð1þ νχÞν|fflfflfflfflfflffl{zfflfflfflfflfflffl}

W

− ð1þ νχÞνsr þ ð1þ νχÞνlrχsrνsr: ðA1Þ

We are left to show that the second and third terms on the
rhs sum up to −Wsr:

ð1þ νχÞνsr − ð1þ νχÞνlrχsrνsr ¼ ð1þ νχÞð1 − νlrχsr|fflfflfflfflffl{zfflfflfflfflffl}
ϵlr

Þνsr

¼ ϵlrνsr þ νχsrνsr

¼ νsr − νlrχsrνsr þ νχsrνsr

¼ Wsr: ðA2Þ

2. Plane-wave representation of Eq. (12)

We work with the cell-periodic part of functions and
operators at a certain wave vector q in the Brillouin zone.
We set the normalization conventions for the forward
Fourier transform in 3D as

fðGÞ ¼ 1ffiffiffiffi
Ω

p
Z
cell

d3re−iG·rfðrÞ; ðA3Þ

where f is a generic cell-periodic function (not to be
confused with the range-separation function defined in the
main text) and G belongs to the reciprocal-space Bravais
lattice of the crystal. In other words, we use a basis for our
full-space operators of the type

hrjGi ¼ 1ffiffiffiffi
Ω

p eiG·r: ðA4Þ

On such a basis, the external charge of Eq. (12) reads as

hGjρextκα i ¼ −i
Zκffiffiffiffi
Ω

p ðGþ qÞαeiG·τκ ; ðA5Þ

and the bare Coulomb kernel is

WðGþ q;G0 þ qÞ ¼ δGG0
4π

jGþ qj2 : ðA6Þ

With these definitions, our Eq. (12) coincides with Eq. (4.5)
of PCM.
In two dimensions, we use a mixed representation where

the in-plane components are treated in reciprocal space,
while the out-of-plane coordinate is treated in real space.
The Fourier transform then reads as

fðGk; zÞ ¼
1ffiffiffi
S

p
Z
cell

dxdye−iGk·rfðrÞ; ðA7Þ

where S is the cell surface.

3. Proof of Eq. (33)

By combining Eqs. (31) and (32), our definition of
νlr ¼ ν − νsr reads as

νlrðKk; z − z0Þ ¼ −
2π

Kk

X
n≠0

ð−1Þne−Kkjz−z0−nLj: ðA8Þ

Based on the assumption that jz − z0j < L, this can be
written as

νlrðKk; z − z0Þ ¼ −
2π

Kk
ðeKkjz−z0j þ e−Kkjz−z0jÞ

×
Xþ∞

n¼1

ð−1Þne−nKkL: ðA9Þ

The sum can be simplified by using the formula for the
geometric power series, converging for jxj < 1:

1

1 − x
¼ 1þ xþ x2 þ x3 þ � � � : ðA10Þ

We arrive at

νlrðKk; z − z0Þ ¼ 2π

Kk
cosh½Kkðz − z0Þ� 2e−KkL

1þ e−KkL
; ðA11Þ

which coincides with Eq. (33).

APPENDIX B: DIPOLES, QUADRUPOLES,
AND POLARIZABILITIES IN 2D

In the following, we discuss how the physical quantities
entering Eqs. (43) and (44) are related to the Born

dynamical charges (ZðαÞ
κβ ), dynamical quadrupoles (QðαγÞ

κβ ).
and macroscopic clamped-ion dielectric tensor (ϵαβ) that
are calculated via standard linear-response techniques
[31,47] in a supercell geometry. [The macroscopic dielec-
tric tensor of a 3D crystal, ϵαβ, should not be confused with
the small-space dielectric function ϵ̃lrðqÞ that we define and
use in the main text.] There are two main differences that
one needs to take into account: (i) the electrical boundary
conditions (EBCs) are not the same, since the quantities
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entering Eqs. (43) and (44) in the zone-boundary electro-

statics, while the standard implementation of ZðαÞ
κβ , Q

ðαγÞ
κβ ,

and ϵαβ assumes 3D short-circuit boundary conditions (as
obtained by removing the nonanalyticG ¼ 0 term from the
Coulomb kernel); and (ii) the multipole moments are
assumed to be taken with respect to the z ¼ 0 symmetry
plane rather than the unperturbed atomic location.
Regarding the Born charges and dielectric polarizabil-

ities, one needs to worry about only (i), since they are both
dipolar in character and, hence, origin independent. The in-
plane Born charges are unaltered by the EBCs; i.e., for
α ¼ x, y, we have

ẐðαÞ
κβ ¼ ZðαÞ

κβ : ðB1Þ

Conversely, along the out-of-plane direction, the so-called
“Callen charges” must be used, consistently with the open-
circuit EBC that the reference zone-boundary electrostatics
imposes along z:

ẐðzÞ
κβ ¼ ZðzÞ

κβ

ϵzz
: ðB2Þ

The macroscopic polarizabilities of the 2D layer can be
calculated via

αkαβ ¼
L
4π

ðϵαβ − 1Þ; ðB3Þ

α⊥ ¼ L
4π

ð1 − ϵ−1zz Þ: ðB4Þ

(The indices αβ run over the two in-plane components.)
Note that the parameters Ẑκβ, αk, and α⊥ are all indepen-
dent of the vacuum thickness (provided that the electron
density of neighboring images has negligible overlap),
as required for well-defined materials properties. The
above results are consistent with the prescriptions of
Refs. [15,19,72]: Our work puts them on firmer theoretical
grounds, by identifying them with the exact limiting
behavior of well-defined response functions.
Devising the conversion rules for the dynamical quadru-

poles is slightly more delicate, as different components mix
up in a way that is not always intuitive. Regarding the
mixed and out-of-plane components, one has

Q̂ðzαÞ
κβ ¼ QðzαÞ

κβ þ τκzZ
ðαÞ
κβ

ϵzz
; ðB5aÞ

Q̂ðzzÞ
κβ ¼ QðzzÞ

κβ þ 2τκzZ
ðzÞ
κβ

ϵzz
: ðB5bÞ

The dielectric constant at the denominator relates to the
EBC change, analogously to the above discussion of the

Born effective charges. The addition of the Born effective
charge times the z coordinate of the atom at the numerator,
on the other hand, takes care of the origin shift. Indeed, the
dynamical quadrupoles within DFPT can be written as a
second moment of the charge density induced by an atomic
displacement as [11]

QðαγÞ
κβ ¼

Z
d3rρκβðrÞðr − τκÞαðr − τκÞγ: ðB6Þ

One can then break down the z components of the round
brackets as

ðr − τκÞz ¼ z − τκz; ðB7Þ

and, after recalling that the Born charge can also be defined
as a real-space moment,

ZðαÞ
κβ ¼

Z
d3rρκβðrÞðr − τκÞα; ðB8Þ

one quickly arrives at Eq. (B5). We are left only with
working out the in-plane components, which can be readily
converted as

Q̂ðαγÞ
κβ ¼ QðαγÞ

κβ − 4πχαγQ̂
ðzzÞ
κβ ; ðB9Þ

where χαβ are the in-plane components of the macroscopic
dielectric susceptibility tensor of the supercell. It is inter-
esting to note that the enforcement of the correct electrical
boundary conditions for a suspended 2D layer already
endows the in-plane quadrupoles with a contribution

from the ðzzÞ component, Q̂ðzzÞ
κβ . Because of this, the

traceless component that appears in Eq. (44) enjoys a
particularly simple expression:

Q̂ðαγÞ
κβ − δαγQ̂

ðzzÞ
κβ ¼ QðαγÞ

κβ − ϵαγQ̂
ðzzÞ
κβ : ðB10Þ

One can show that all the components of Q̂κβ are all
independent of the vacuum thickness L, unlike those ofQκβ.

FIG. 8. Interpretation of the Coulomb truncation technique as
an image-charge method and its separation into long-range and
short-range contributions. The shaded areas refer to the region
of space where the three kernels exactly match those illustrated
in Fig. 2.
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Interestingly, a contribution of the out-of-plane dipoles
to the electron-phonon matrix elements involving the A0

1

branch of MoS2 was recently identified in Ref. [24]. The
above results nicely clarify the physical nature of the
reported mechanism: The out-of-plane dipoles contribute

to Q̂ðzzÞ
κβ via Eq. (B5) and, in turn, to the longitudinal fields

(mirror-even potentials) via Eq. (B10). (The A0
1 phonon is

mirror even and, hence, cannot couple to an out-of-plane
field.) Thus, the mechanism of Ref. [24] is understood,
within our formalism, as a quadrupolar contribution to the
in-plane fields. Note that, in addition to the aforementioned
out-of-plane dipoles, our work reveals that there are addi-
tional contributions to Eq. (B10); their study will be an
interesting topic for future work.

APPENDIX C: RELATIONSHIP TO THE
COULOMB CUTOFF TECHNIQUE

The implementation of the Coulomb cutoff technique
follows the prescriptions of Refs. [13,19,50] and consists in
writing the open-boundary Coulomb kernel as

νðKk; GnÞ ¼
4π

K2
k þG2

n
½1 − e−KkL cosðGnLÞ�; ðC1Þ

where Kk ¼ Gk þ q is an in-plane reciprocal-space vector
(Gk spans the Bravais lattice of the primitive 2D cell); Gn

form a discrete mesh along z, andL ¼ Lsc=2 is set to half the
supercell length in the out-of-plane direction. After observ-
ing thatGn ¼ ðπn=LÞ, we immediately obtain the following
expression for the macroscopic Gk ¼ 0 component:

νðq; GnÞ ¼
4π

q2 þG2
n
½1 − ð−1Þne−qL�: ðC2Þ

To link these expressions to the arguments in Sec. II C,
we rewrite the prefactor in the square brackets as follows:

½1 − ð−1Þne−qL� ¼ ½1 − ð−1Þn� þ ð−1Þnð1 − e−qLÞ: ðC3Þ

It is easy to see that the first term on the rhs corresponds to
the short-range zone-boundary electrostatics:

νsrðq; GnÞ ¼
4π

q2 þ G2
n
½1 − ð−1Þn�: ðC4Þ

Indeed, the ½1 − ð−1Þn� prefactor can be regarded as an
implementation of the image-charge method illustrated in
Fig. 2. [That this kernel is short ranged is obvious from
Eq. (C4): Even values of the out-of-plane index n are
suppressed, thus excluding the problematic n ¼ 0 term.]
This latter observation reveals that the Coulomb cutoff
technique can also be interpreted as an image-charge
method (a graphical representation is shown in Fig. 8):
It differs from νsr only in the prefactor e−qL that scales the

negative images, located at odd multiples of L from the
z ¼ 0 plane. Then, we identify the long-range part of the
kernel with the remainder:

νlrðq; GnÞ ¼ 4π
ð−1Þn
q2 þG2

n
ð1 − e−qLÞ: ðC5Þ

To verify that Eq. (C5) is consistent with the formalism
of the earlier sections, recall the following relation for the
Fourier series of the hyperbolic cosine function:

Z
π

−π
coshðaxÞ cosðnxÞdx ¼ ð−1Þn 2a sinhðaπÞ

a2 þ n2
: ðC6Þ

By changing the variable to z ¼ Lx=π and by setting
q ¼ ðaπ=LÞ, we have

Z
L

−L
coshðqzÞ cosðGnzÞdz ¼ ð−1Þn 2q sinhðqLÞ

q2 þ G2
n

: ðC7Þ

Then, observe that

sinhðqLÞ
�
1 − tanh

�
qL
2

��
¼ ð1 − e−qLÞ: ðC8Þ

By combining the above, we eventually obtain

Z
L

−L
νlrðq; zÞeiGnzdz ¼ νlrðq; GnÞ; ðC9Þ

with νlrðq; zÞ defined as in Eq. (35). The above formulas
provide, therefore, the desired representation of the short-
range and long-range Coulomb kernels in a supercell
context, together with an explicit reciprocal-space expres-
sion [Eq. (C7)] for the hyperbolic cosine potential of
Eq. (37), which can be directly implemented in a first-
principles code. (Similar formulas can be easily derived for
the mirror-odd component.)
As a simpler alternative, note that one could also extract

the small-space representation of the charge density
response and polarizability by using standard features of
the code and, thereby, avoid the implementation of new
response functions and/or Coulomb kernels altogether. For
example, one can easily calculate ρsrκαðrÞ and ρκαðrÞ by
using a zone-boundary phonon and the truncated Coulomb
kernel, respectively. Then, the projection on the hyperbolic
basis functions can be carried out numerically in a post-

processing script, yielding ρ̃sr;ðlÞκα and ρ̃ðlÞκα . Finally, one can
extract the ϵ̃lr matrix by inverting Eq. (48) and subsequently
obtain the polarizabilities χ̃ and/or χ̃sr via Eq. (8).

APPENDIX D: HYPERBOLIC FUNCTIONS
AND TRACELESS MULTIPOLES

We provide a formal demonstration of our statement in
Sec. II E, that the hyperbolic functions consistently pick the
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traceless component of the first-order charge perturbation at
any order in q. To that end, we assume without loss of
generality that the x Cartesian axis is aligned with the
propagation vector q ¼ ðq; 0; 0Þ and write the cell-periodic
part of the external charge density perturbation ρsr;qκα ðrÞ as a
lattice sum of the charge densities that are induced by a
displacement of isolated atom:

ρsr;qκα ðrÞ ¼ e−iqx
X
l

ρsrκαðr −RlκÞeiqXlκ : ðD1Þ

The small-space representation of the charge response ρ̃sr

then reads

ρ̃sr;ðlÞðqÞ ¼ 1

S

Z
cell

dxdy
Z

dze−iqðx−XlκÞφlðzÞρsrκαðr −RlκÞ

¼ 1

S

Z
d3re−iqxφlðzÞρsrκαðrÞ; ðD2Þ

where the integral in the second line is taken over all space
and the origin is set at the projection of the atom κ of the
l ¼ 0 cell on the z ¼ 0 plane, ðX0κ; Y0κ; 0Þ. [Following the
notation of the main text, φlðzÞ stands for the hyperbolic
cosine (l ¼ k) or sine (l ¼ ⊥).]
The function in the integrand can be written as follows:

e−iqxφlðzÞ ¼
eqð−ixþzÞ � eqð−ix−zÞ

2
; ðD3Þ

where the plus and minus signs refer to cosine and sine,
respectively. The expansion of the exponential in powers of
q trivially leads to

eqð−ixþzÞ ≃ 1þ qð−ixþ zÞ þ q2

2!
ð−ixþ zÞ2 þ � � � : ðD4Þ

If we write the complex number in the round brackets
in terms of its modulus r times a unitary phase eiϕ, we
arrive at

eqð−ixþzÞ ¼
X∞
n¼0

qn

n!
rneinϕ: ðD5Þ

One can easily recognize the solutions of the Laplace
equation in cylindrical coordinates, given by the nth power
of the radial coordinate r times a cylindrical harmonic of
the same order:

Fnðr;ϕÞ ¼ rneinϕ: ðD6Þ

For any n > 0, there are two (and only two) linearly
independent solutions, which we can write as

Fk;⊥
n ðr;ϕÞ ¼ Fnðr;ϕÞ � Fnðr;−ϕÞ

2
: ðD7Þ

(We take their mirror-even and mirror-odd linear combi-
nations with respect to z reflection.) Finally, we have

e−iqxφk;⊥ðzÞ ¼
X∞
n¼0

qn

n!
Fk;⊥
n ðr;ϕÞ: ðD8Þ

This shows that the cosh and sinh basis functions corre-

spond to the 2D Fourier transforms of Fk;⊥
n ; it is easy to

show that eiqxφlðzÞ are themselves solution of the Laplace
equation in two dimensions.
Based on the above, we can conclude that, at any given

order n > 0, there are two (and only two) independent
multipolar component of the bounded charge distribution
ρsrκαðrÞ that produce long-range electrostatic potentials;
these are given by the integrals

Mk;⊥
κα ðnÞ ¼ 1

S

Z
d3rFk;⊥

n ðx; zÞρsrκαðrÞ: ðD9Þ

From Eq. (D3), it is easy to work out a Cartesian
representation for the lowest orders, which we report in
Table III. This shows that the individual components of
the Cartesian multipole tensors [which are defined by

replacing Fk;⊥
n ðx; zÞ with xjzk in Eq. (D9)] are not neces-

sarily relevant for the long-range electrostatics—only their
linear combinations, taken according to the prescriptions of
Table III, are. These linear combinations result in removing
the trace of the Cartesian tensors at any given order jþ k—
this is obvious in the n ¼ 2 case, where the mirror-even
quadrupole is given by the difference of the (diagonal) x2

and z2 components. This is nicely consistent with Eq. (44).
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[16] M. De Luca, X. Cartoixà, D. I. Indolese, J. Martín-Sánchez,
K. Watanabe, T. Taniguchi, C. Schönenberger, R. Trotta, R.
Rurali, and I. Zardo, Experimental Demonstration of the
Suppression of Optical Phonon Splitting in 2D Materials by
Raman Spectroscopy, 2D Mater. 7, 035017 (2020).

[17] D. Sánchez-Portal and E. Hernández, Vibrational Proper-
ties of Single-Wall Nanotubes and Monolayers of Hexago-
nal BN, Phys. Rev. B 66, 235415 (2002).

[18] K. H. Michel and B. Verberck, Phonon Dispersions and
Piezoelectricity in Bulk and Multilayers of Hexagonal
Boron Nitride, Phys. Rev. B 83, 115328 (2011).

[19] T. Sohier, M. Calandra, and F. Mauri, Two-Dimensional
Fröhlich Interaction in Transition-Metal Dichalcogenide
Monolayers: Theoretical Modeling and First-Principles
Calculations, Phys. Rev. B 94, 085415 (2016).

[20] T. Sohier, D. Campi, N. Marzari, and M. Gibertini,Mobility
of Two-Dimensional Materials from First Principles in an
Accurate and Automated Framework, Phys. Rev. Mater. 2,
114010 (2018).
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