
Work, Entropy Production, and Thermodynamics of Information under
Protocol Constraints

Artemy Kolchinsky * and David H. Wolpert †

Santa Fe Institute, Santa Fe, New Mexico 87501, USA

(Received 21 November 2020; revised 6 July 2021; accepted 9 August 2021; published 3 November 2021)

In many real-world situations, there are constraints on the ways in which a physical system can be
manipulated. We investigate the entropy production (EP) and extractable work involved in bringing a
system from some initial distribution p to some final distribution p0, given that the set of master equations
available to the driving protocol obeys some constraints. We first derive general bounds on EP and
extractable work, as well as a decomposition of the nonequilibrium free energy into an “accessible free
energy” (which can be extracted as work, given a set of constraints) and an “inaccessible free energy”
(which must be dissipated as EP). In a similar vein, we consider the thermodynamics of information in the
presence of constraints and decompose the information acquired in a measurement into “accessible” and
“inaccessible” components. This decomposition allows us to consider the thermodynamic efficiency of
different measurements of the same system, given a set of constraints. We use our framework to analyze
protocols subject to symmetry, modularity, and coarse-grained constraints and consider various examples
including the Szilard box, the 2D Ising model, and a multiparticle flashing ratchet.
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I. INTRODUCTION

A. Background

One of the foundational issues in thermodynamics is
quantifying how much work is required to transform a
system between two thermodynamic states. Recent results
in statistical physics derive general bounds on work which
hold even for transformations between nonequilibrium
states [1,2]. In particular, suppose one wishes to transform
a system with initial distribution p and energy function E to
some final distribution p0 and energy function E0. For an
isothermal process, during which the system remains in
contact with a single heat bath at inverse temperature β, the
work extracted during this transformation obeys

Wðp → p0Þ ≤ FEðpÞ − FE0 ðp0Þ; ð1Þ

where FEðpÞ ≔ hEip − SðpÞ=β is the (nonequilibrium) free
energy of distribution p given energy function E [1–3]. This
inequality comes from the second law of thermodynamics,

which states that entropy production (EP), the total increase
of the entropy of the system and all coupled reservoirs, is
non-negative. For an isothermal process that carries out the
transformation p → p0, EP is given by

Σðp→p0Þ¼β½FEðpÞ−FE0 ðp0Þ−Wðp→p0Þ�≥0: ð2Þ

Equation (1) follows from Eq. (2) by a simple
rearrangement.
To extract work from a system, one must manipulate

the system by applying a driving protocol. There are many
different driving protocols that can be used to transform
some initial distribution p to some final distribution
p0, which generally incur different amounts of EP and
work. Achieving the fundamental bounds set by the second
law, such as Eq. (1), typically requires idealized protocols,
which make use of arbitrary energy functions, infinite
timescales, etc. In many real-world scenarios, however,
there are strong practical constraints on how one can
manipulate a system, and such idealized protocols are
unavailable.
The goal of this paper is to derive stronger bounds on EP

and work involved in carrying out the transformation
p → p0, given constraints on the set of master equations
available to the driving protocol. Ultimately, such stronger
bounds on EP and work can provide new insights into
various real-world thermodynamic processes and work-
harvesting devices, ranging from biological organisms to
artificial engines. They can also cast new light on some
well-studied scenarios in statistical physics.

*artemyk@gmail.com
†Also at Complexity Science Hub, Vienna; Arizona State

University, Tempe, Arizona, USA; http://davidwolpert.weebly
.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 041024 (2021)

2160-3308=21=11(4)=041024(39) 041024-1 Published by the American Physical Society

https://orcid.org/0000-0002-3518-9208
https://orcid.org/0000-0003-3105-2869
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.041024&domain=pdf&date_stamp=2021-11-03
https://doi.org/10.1103/PhysRevX.11.041024
https://doi.org/10.1103/PhysRevX.11.041024
https://doi.org/10.1103/PhysRevX.11.041024
https://doi.org/10.1103/PhysRevX.11.041024
http://davidwolpert.weebly.com
http://davidwolpert.weebly.com
http://davidwolpert.weebly.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


For example, consider a two-dimensional Szilard box
connected to a heat bath [4], which contains a single
Brownian particle and a vertical partition, and suppose that
the driving protocols can manipulate the horizontal position
of this partition. Imagine that the particle is initially located
in the left half of the box. How much work can be extracted
by transforming this initial distribution to a uniform final
distribution, assuming the system begins and ends with a
uniform energy function? A simple application of Eq. (1)
shows that the extractable work is upper bounded by
ðln 2Þ=β. This bound can be achieved by quickly moving
the vertical partition to the middle of the box and then slowly
expanding it rightward. Now imagine an alternative scenario,
in which the particle is initially located in the top half of the
box. By Eq. (1), the work that can be extracted by bringing
this initial distribution to a uniform final distribution is again
upper bounded by ðln 2Þ=β. Intuitively, however, it seems
that this bound should not be achievable, given the con-
strained set of available protocols (i.e., one can manipulate
the system only by moving the vertical partition left and
right). Our results make this intuition rigorous for the two-
dimensional Szilard box, as well as various other systems
that can be manipulated only by a constrained set of driving
protocols.
This phenomenon also occurs when the starting and

ending distributions can depend on the outcome of a
measurement of the system. This kind of setup, which was
first used to analyze the thermodynamics of information in
various kinds of Maxwellian demons, is sometimes called
“feedback control” in the literature [2,14]. Imagine that
the state of some system X is first measured using some
observation channel (i.e., a conditional distribution)
qðmjxÞ, producing measurement outcome m with proba-
bility pðmÞ ¼ P

x pðxÞqðmjxÞ. The system then under-
goes a driving protocol which can depend on m. For
simplicity, we assume that the system’s energy function
begins as E and ends as E0 for all measurement outcomes.
Let pXjm and p0

X0jm indicate the system’s initial and final
conditional distributions, respectively, given measurement
outcome m, and let pðxÞ ¼ P

m pðmÞpXjmðxjmÞ and
p0ðx0Þ ¼ P

m pðmÞp0
X0jmðx0jmÞ indicate the system’s initial

and final marginal distributions, respectively [for simplic-
ity, we often use notation like p instead of pðxÞ below].
We can then take expectations of both sides of Eq. (1)
across measurement outcomes, thereby bounding the
average extractable work as [15]

hWi ≤
X
m

pðmÞ½FEðpXjmÞ − FE0 ðp0
X0jmÞ�: ð3Þ

By adding and subtracting ½SðpÞ − Sðp0Þ�=β on the right-
hand side, we can further rewrite Eq. (3) in terms of the
drop of the free energy in the marginal distribution, plus
the loss of information between the measurement and the
system over the course of the protocol:

hWi ≤ FEðpÞ − FE0 ðp0Þ þ ½IðX;MÞ − IðX0;MÞ�=β; ð4Þ

where IðX;MÞ and IðX0;MÞ indicate the mutual informa-
tion under the conditional distributions pXjm and p0

X0jm,
respectively. Comparing Eqs. (1) and (4), the bound on
average extractable work increases with the drop of
mutual information. Equation (4) is a classic result from
the “thermodynamics of information” [2,14], which
shows that information about the state of a system can
be used to increase the work extracted from this system.
Just like Eq. (1), the bound in Eq. (4) is typically saturated

by idealized protocols, which have access to arbitrary energy
functions, infinite timescales, etc. As mentioned above, in
the real world, there are typically constraints on the available
protocols, in which case the bound of Eq. (4) may not be
achievable. For example, consider again the Szilard box
shown in Fig. 1. Imagine measuring a bit of information
about the location of the particle and then using this
information to extract work from the system while driving
it back to a uniform equilibrium distribution. In this case,
IðX;MÞ ¼ ln 2 and IðX0;MÞ ¼ 0; therefore, if the system
starts and ends with the uniform energy function, Eq. (4)
states that hWi ≤ ðln 2Þ=β. Intuitively, however, it seems that
measuring the particle’s horizontal position should be useful
for extracting work from the system, while measuring the
particle’s vertical position should not be useful. The general
bound of Eq. (4) does not distinguish between these two
kinds of measurement. In fact, this bound depends only on
the overall amount of information acquired by the meas-
urement [as quantified by IðX;MÞ] and is completely
insensitive to the content of that information [i.e., the
particular pattern of correlations quantified by IðX;MÞ].

B. Summary of results and road map

In this paper, we derive bounds on extractable work and
EPwhich arise when carrying out the transformation p → p0
under constraints on the driving protocol. We consider a

FIG. 1. A two-dimensional Szilard box with a single Brownian
particle, where a vertical partition (blue) can be positioned at
different horizontal locations in the box. We demonstrate that
only information about the particle’s horizontal position, not its
vertical position, can be used to extract work from the system.
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system coupled to a single heat bath which undergoes a
driving protocol over some time interval t ∈ ½0; 1� (where the
units of time are arbitrary). A driving protocol is represented
as a continuous-time master equation LðtÞ, whereLðtÞ refers
to the (infinitesimal) generator at time t. For example, a
driving protocol could be a trajectory of time-dependent
discrete-state rate matrices or a trajectory of time-dependent
Fokker-Planck operators for a continuous-state system.
We say that a driving protocol is constrained if there is

some restricted set of generators Λ such that LðtÞ ∈ Λ at all
times t ∈ ½0; 1�. As discussed below, the particular choice
of Λ depends on the specific constraints being considered.
For example, Λ might represent a set of generators that are
invariant under some particular symmetry group (e.g.,
representing the dynamics of a set of indistinguishable
particles or a spin system on a lattice with symmetries).
Our analysis proceeds at three different “levels”

of generality, which we summarize in the following
subsections.

1. Level 1: General mathematical framework

In the first level of analysis, presented in Secs. III and IV,
we provide a general mathematical framework for deriving
bounds on EP and work for constrained driving protocols.
To develop our framework, given some set of allowed

generators Λ, we consider an associated operator ϕ over
distributions which satisfies two conditions: It obeys the
so-called Pythagorean identity from information geom-
etry, and it commutes with the dynamics generated by
elements of Λ [Eqs. (14) and (16) below]. In Sec. III, we
show that, for any distribution p, the distribution ϕðpÞ
contains only that part of the free energy in p which may
be turned into work by a constrained driving protocol.
Formally, we decompose the nonequilibrium free energy
of distribution p and energy function E as

FEðpÞ ¼ FE½ϕðpÞ� þD½pkϕðpÞ�=β; ð5Þ

where Dð·k·Þ indicates the Kullback-Leibler divergence.
Then, for any constrained driving protocol that carries out
the transformation p → p0, the extractable work is
bounded as

Wðp → p0Þ ≤ FE½ϕðpÞ� − FE0 ½ϕðp0Þ�: ð6Þ

We also demonstrate that EP can be lower bounded by the
contraction of the Kullback-Leibler (KL) divergence
between p and ϕðpÞ over the course of the protocol:

Σðp → p0Þ ≥ D½pkϕðpÞ� −D½p0kϕðp0Þ�: ð7Þ

Given these bounds, it can be seen that Eq. (5) decom-
poses the nonequilibrium free energy FEðpÞ into two
terms: an accessible free energy FE½ϕðpÞ�, whose decrease
over the course of the protocol may be extractable as work,

and an inaccessible free energy D½pkϕðpÞ�=β, whose
decrease over the course of the protocol cannot be turned
into work and must be dissipated as EP. The accessible free
energy is always less than the overall free energy,
FE½ϕðpÞ� ≤ FEðpÞ, which follows from Eq. (5) and the
non-negativity of KL divergence. We also show that the
right-hand side of Eq. (7) is non-negative:

D½pkϕðpÞ� −D½p0kϕðp0Þ� ≥ 0; ð8Þ

which implies that our bounds on EP and work [Eqs. (6)
and (7), respectively] are stronger than the general bounds
provided by the second law [Σ ≥ 0 and Eq. (1)]. Note that
Eq. (8) also implies an irreversibility condition on the
dynamics: For any two distributions p and p0, a con-
strained driving protocol can carry out either the trans-
formation p → p0 or the transformation p0 → p but not
both—unless D½pkϕðpÞ� ¼ D½p0kϕðp0Þ�.
In Sec. IV, we show that the general framework sum-

marized above has important implications for thermody-
namics of information. We consider the type of feedback-
control setup discussed above: An observation apparatus
first makes a measurement m of the system, and then the
system undergoes a driving protocol (which can depend on
m) that carries out the transformation pXjm → p0

X0jm.
Suppose that the driving protocols corresponding to all
m obey bounds like Eq. (6) for the same operator ϕ. This
operator then gives rise to the “mapped” initial and final
conditional distributions ϕðpXjmÞ and ϕðp0

X0jmÞ, respec-

tively. We can then bound average extractable work for
feedback control under constraints as

hWi ≤ FEðpÞ − FE0 ðp0Þ þ ½IϕaccðX;MÞ − IϕaccðX0;MÞ�=β;

where the accessible information component of the initial
mutual information IðX;MÞ is defined as

IϕaccðX;MÞ ¼ IðX;MÞ −D½pXjMkϕðpXjMÞ�; ð9Þ

and similarly for IϕaccðX0;MÞ. This bound is a refinement of
Eq. (4) in the presence of protocol constraints, which shows
that the amount of extractable work depends on the
accessible information IϕaccðX;MÞ rather than the actual
mutual information IðX;MÞ. Loosely speaking, the acces-
sible information reflects the “alignment” between the
choice of measured observable and the way the system
can be manipulated, given some protocol constraints. Thus,
in the presence of constraints, the thermodynamic value of
information depends on not only the amount of measured
information, but also the content of that information
[16,17]. (See also Ref. [18] for a popular discussion of
some related issues.)
It is important to note that, at this general level of

analysis, we do not describe how to construct the operator

WORK, ENTROPY PRODUCTION, AND THERMODYNAMICS OF … PHYS. REV. X 11, 041024 (2021)

041024-3



ϕ, as this construction typically depends on the structure of
the set Λ. However, as described in the following sub-
section, we do provide explicit expressions for ϕ for three
broad classes of protocol constraints, which we term
symmetry, modularity, and coarse-grained constraints.

2. Level 2: Symmetry, modularity, and coarse-
grainedconstraints

At the second level of our analysis, we apply the general
framework described above to derive bounds on EP and
work for three broad classes of protocol constraints.

(i) Section V considers symmetry constraints, when the
available generators possess some symmetry group.
Examples of systems with symmetry constraints
include the Szilard box in Fig. 1, spin systems on
lattices, and gases of indistinguishable particles. The
operator ϕ corresponding to symmetry constraints,
defined in Eq. (42), maps distributions to their
“symmetrized” versions (which are invariant under
the action of the symmetry group).

(ii) Secton VI considers modularity constraints, when
the available generators cause different (though
possibly overlapping) subsystems of a multivariate
system to evolve independently of each other.
Examples of systems with modularity constraints
include digital circuits [19], ideal gases, and multi-
particle Maxwellian demons. The operator ϕ corre-
sponding to modularity constraints, defined in
Eq. (64), maps distributions to their “uncorrelated”
versions, without statistical dependencies between
independent subsystems.

(iii) Section VII considers coarse-grained constraints,
when the available generators exhibit closed coarse-
grained dynamics which obey some constraints (e.g.,
coarse-grained symmetry or modularity constraints).
An example is provided by the Szilard box in Fig. 1:
The particle’s vertical position (the coarse-grained
macrostate) evolves in a way that does not depend
on the horizontal position, and the macrostate equi-
librium distribution cannot be controlled by moving
the partition. Given a protocol that obeys coarse-
grained constraints, we show that the EP can be lower
bounded in terms of a “coarse-grained EP” [Eqs. (87)–
(89)] and that this coarse-grained EP can itself be
lower bounded by a coarse-grained version of Eq. (7).

In addition, we also discuss how tighter bounds on work
and EP can be derived by combining different kinds of
constraints (e.g., when a system obeys two different
symmetry groups or when it obeys both symmetry and
modularity constraints).

3. Level 3: Concrete examples

At the third (and most concrete) level, we illustrate our
results for symmetry, modularity, and coarse-grained con-
straints on several example systems.

(i) In Sec. VA, we use symmetry constraints to derive
thermodynamic bounds for the Szilard box in Fig. 1,
which possesses vertical reflection symmetry.

(ii) In Sec. V B, we use symmetry constraints to derive
thermodynamic bounds for the Ising model on a 2D
lattice, which possesses translational symmetry.

(iii) In Sec. VI A, we use modularity constraints to derive
thermodynamic bounds for the Szilard box in Fig. 1,
which are different from the bounds derived in
Sec. VA. We also demonstrate that stronger results
can be derived by combining bounds arising from
symmetry and modularity constraints.

(iv) In Secs. VI B and VI C, we use modularity constraints
to derive bounds on work extraction for two multi-
particle feedback-control protocols that have been
proposed in the literature: a multiparticle Szilard box
[20] and a collective flashing ratchet [21].

(v) In Sec. VII A, we use coarse-grained constraints to
derive thermodynamic bounds for a version of the
Szilard box in Fig. 1 in the presence of gravity. We
also demonstrate that stronger results can be derived
by combining bounds arising from coarse-grained
and modularity constraints.

4. Literature review and discussion

After presenting the results summarized above, in
Sec. VIII we discuss related prior literature. We also
compare and contrast our results, such as the decomposi-
tion of nonequilibrium free energy in Eq. (5), to some
relevant work in quantum thermodynamics [22,23]. We
conclude with a brief discussion in Sec. IX, which also
touches upon how our approach generalizes beyond the
assumption of a single heat bath. Proofs and derivations are
in the Appendixes.

II. PRELIMINARIES

We consider a physical system with state space X, which
can be either discrete or continuous (X ¼ Rn). The term
“probability distribution” refers to a probability mass
function over X in the discrete case and to a probability
density function over X in the continuous case. We
interchangeably use notation like pðxÞ and px (as is clear
from context) to indicate the probability of state x. We use
P to refer to the set of all probability distributions over X.
The system evolves in a stochastic manner during a

driving protocol over time t ∈ ½0; 1�. We write pðtÞ to
indicate the distribution at time t corresponding to some
initial distribution pð0Þ ¼ p, and pð1Þ ¼ p0 to indicate the
distribution at the end of the protocol. For a discrete-state
system, the distribution at time t evolves according to the
time-dependent master equation

∂tpxðtÞ ¼
X
x0
½Lxx0 ðtÞpx0 ðtÞ − Lx0xðtÞpxðtÞ�; ð10Þ
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where Lx0xðtÞ is the transition rate from state x to state x0.
We assume that the system is coupled to a heat bath at
inverse temperature β, and so each LðtÞ obeys local
detailed balance (see Sec. IX for a generalization of this
assumption). Formally, this assumption means that

πLðtÞx0 Lxx0 ðtÞ ¼ πLðtÞx Lx0xðtÞ for all x, x0, and t, where πLðtÞ

is the stationary distribution of rate matrix LðtÞ, which we
assume is unique (though this latter assumption can be
relaxed [24]).
The rate of entropy production (EP rate) incurred at time

t can be written as [Eq. (33) in Ref. [25] ]

_Σ½pðtÞ; LðtÞ� ¼ −
X
x

∂tpxðtÞ ln
pxðtÞ
πLðtÞx

≥ 0; ð11Þ

where ∂tpxðtÞ is defined in Eq. (10). Note that the right side
of Eq. (11) is sometimes called the “nonadiabatic EP rate”
in stochastic thermodynamics, and it is equal to the overall
EP rate for a system coupled to a single bath and obeying
detailed balance [25]. The total EP incurred by a time-
extended protocol over t ∈ ½0; 1� that carries out the trans-
formation p → p0 is given by the integral of the EP rate:

Σðp → p0Þ ¼
Z

1

0

_Σ½pðtÞ; LðtÞ�dt: ð12Þ

The work extracted during a protocol can be calculated by
using Eqs. (2) and (12), once the initial and final non-
equilibrium free energies FEðpÞ and FE0 ðp0Þ are specified.
To define these free energies, we assume that there is some
fixed pair of energy functions E and E0, which specify the
Boltzmann equilibrium distributions of Lð0Þ and Lð1Þ,
respectively.
For a continuous-state system evolving under a continu-

ous master equation [26,27], the sums in Eqs. (10) and (11)
should be replaced by integrals [see Eq. (31) in Ref. [28] ].
A prototypical example of a continuous master equation,
which we use below, is a Fokker-Planck equation [26,29]:

∂tpðx; tÞ ¼ −∇ · ½Aðx; tÞpðx; tÞ − Dðx; tÞ∇pðx; tÞ�; ð13Þ

where A and D are drift and diffusion terms.
We often write dynamical equations like Eqs. (10) and

(13) using the notation ∂tpðtÞ ¼ LðtÞpðtÞ, where LðtÞ is a
bounded linear operator that is called the (infinitesimal)
generator of the dynamics at time t. Note that, for a
continuous-state system in phase space, it may be that the
system is isolated from the bath for some t ∈ ½0; 1�, in
which case ∂tpðtÞ ¼ LðtÞpðtÞ should be understood in
terms of the Liouville equation (for example, if a system
is first isolated and evolves in a Hamiltonian manner and
is then brought in contact with a bath at inverse temper-
ature β and allowed to equilibrate).

III. GENERAL FRAMEWORK

We begin by presenting our general mathematical
framework. The application of this framework to concrete
situations is described in later sections.
A driving protocol fLðtÞ∶t ∈ ½0; 1�g is said to be con-

strained if there is some restricted set of generators Λ such
that LðtÞ ∈ Λ at all t. For a given set of allowed generators
Λ, we consider an associated operator ϕ∶P → P which
satisfies two conditions. The first condition states that

DðpkqÞ ¼ D½pkϕðpÞ� þD½ϕðpÞkq� ð14Þ

for all p ∈ P and q ∈ img ϕ with DðpkqÞ < ∞ [where
img ϕ ¼ fϕðpÞ∶p ∈ Pg is the image of the operator ϕ].
Equation (14) is sometimes called the Pythagorean identity
of KL divergence in information geometry [30]. Any ϕ that
obeys Eq. (14) can be written in terms of the following
projection [31]:

ϕðpÞ ¼ argmin
q∈img ϕ

DðpkqÞ; ð15Þ

which shows that D½pkϕðpÞ� is the minimal information-
theoretic distance from p to the set of distributions imgϕ.
The second condition is that ϕ obeys the following

commutativity relation for all L ∈ Λ:

eτLϕðpÞ ¼ ϕðeτLpÞ ∀ τ ≥ 0; p ∈ P: ð16Þ

In other words, given any initial distribution p, the same
final distribution is reached regardless of whether p first
relaxes under L for time τ and then undergoes ϕ or instead
first undergoes ϕ and then relaxes under L for time τ.
Note that the Pythagorean identity in Eq. (14) concerns

only the operator ϕ, while the commutativity relation in
Eq. (16) concerns the relationship between ϕ and the
generators in Λ [and, therefore, all of the generators
LðtÞ in the driving protocol, since LðtÞ ∈ Λ at all t by
assumption]. Beyond these two conditions, the operator ϕ
can be arbitrary and may be linear or nonlinear. In the
following sections of this paper, we show how to choose ϕ
for various types of constrained protocols.
Importantly, any ϕ that satisfies the two conditions above

maps any distribution p to a corresponding “accessible”
distribution ϕðpÞ, which controls the amount of work that
can be extracted from p by a constrained driving protocol.
To prove this result, we first show that for any L ∈ Λ that
obeys Eq. (16), the equilibrium distribution πL satisfies
(Lemma 1 in Appendix A)

πL ∈ img ϕ: ð17Þ

We also derive the following mathematical result, central to
much of what follows: If ϕ obeys Eqs. (14) and (16) for
some generator L, then the EP rate incurred by any
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distribution p under L can be written as the sum of two
non-negative terms—the EP rate incurred by ϕðpÞ under L
and the instantaneous contraction of the KL divergence
between p and ϕðpÞ.
Theorem 1.—If ϕ obeys Eqs. (14) and (16) for some

generator L, then, for all p ∈ P,

_Σðp;LÞ ¼ _Σ½ϕðpÞ; L� − d
dt

DfpðtÞkϕ½pðtÞ�g;

and −ðd=dtÞDfpðtÞkϕ½pðtÞ�g ≥ 0, where ∂tpðtÞ ¼ Lp.
We sketch the proof of this theorem in terms of a

discrete-time relaxation over interval τ, as shown in Fig. 2
(see Appendix A for details). Consider some distribution
p that relaxes for time τ under the generator L, thereby
reaching the distribution eτLp (solid gray line). The EP
incurred by this relaxation is given by the contraction
of KL divergence to the equilibrium distribution
π: Σðp → eτLpÞ ¼ DðpkπÞ −DðeτLpkπÞ (contraction of
purple lines) [25,28]. Given Eq. (17), we can apply the
Pythagorean identity [Eq. (14)] to both DðpkπÞ and
DðeτLpkπÞ, which lets us rewrite Σðp → eτLpÞ as the
sum of two terms: D½pkϕðpÞ� −D½eτLpkϕðeτLpÞ� (green
lines) and D½ϕðpÞkπ� −D½ϕðeτLpÞkπ� (red lines).
Applying the commutativity relation [Eq. (16)] shows
that the first term is non-negative by the data-processing
inequality and that the second term is equal to
Σ½ϕðpÞ → eτLϕðpÞ�, the EP incurred by letting ϕðpÞ relax
freely under L. The continuous-time statement found in
Theorem 1 follows by taking the appropriate τ → 0 limit,
while noting that the EP rate [Eq. (11)] can be rewritten in
terms of the limit limτ→0ð1=τÞ½DðpkπÞ −DðeτLpkπÞ�.
Now suppose that Eq. (16) holds, so that the assumptions

of Theorem 1 are satisfied during the entire protocol. In that

case, as we show in Lemma 3 in Appendix A, any
constrained protocol that carries out the transformation
p → p0 must also transform the initial distribution ϕðpÞ to
the final distribution ϕðp0Þ. We can then, in essence,
integrate Theorem 1 over time and derive the following
result about total EP.
Theorem 2.—If ϕ obeys Eqs. (14) and (16) for all L ∈ Λ,

then, for any constrained protocol that transforms p → p0,

Σðp→p0Þ¼Σ½ϕðpÞ→ϕðp0Þ�þfD½pkϕðpÞ�−D½p0kϕðp0Þ�g

and D½pkϕðpÞ� −D½p0kϕðp0Þ� ≥ 0.
We use Theorem 2 to derive several useful bounds on EP

and work. First, since Σ½ϕðpÞ → ϕðp0Þ� ≥ 0 by the non-
negativity of EP, the contraction of KL divergence between
p and ϕðpÞ bounds the EP incurred by a constrained
driving protocol that carries out the transformation p → p0:

Σðp → p0Þ ≥ D½pkϕðpÞ� −D½p0kϕðp0Þ� ≥ 0; ð18Þ

which appeared as Eq. (7) in the introduction. Furthermore,
D½pkϕðpÞ� −D½p0kϕðp0Þ� ≥ 0 immediately implies that

Σðp → p0Þ ≥ Σ½ϕðpÞ → ϕðp0Þ�: ð19Þ

We can also derive the decomposition of free energy and
the bound on extractable work, which appeared as Eqs. (5)
and (6) in the introduction. Consider some transformation
p → p0, and write the initial nonequilibrium free energy as

FEðpÞ ¼ FEðπÞ þDðpkπÞ=β; ð20Þ

where π ∝ e−βE is the Boltzmann distribution for the initial
energy function E and FEðπÞ is the equilibrium free energy
[3]. Using Eq. (17) and the Pythagorean identity [Eq. (14)],
we decompose the nonequilibrium free energy into a sum
of the accessible free energy and the inaccessible free
energy:

FEðpÞ ¼ FEðπÞ þ fD½pkϕðpÞ� þD½ϕðpÞkπ�g=β
¼ FE½ϕðpÞ� þD½pkϕðpÞ�=β: ð21Þ

Using a similar derivation, we can write the nonequilibrium
free energy at the end of the protocol as

FE0 ðp0Þ ¼ FE0 ½ϕðp0Þ� þD½p0kϕðp0Þ�=β: ð22Þ

Subtracting Eq. (22) from Eq. (21) shows that the drop in
the nonequilibrium free energy during p → p0 is given by

FEðpÞ−FE0 ðp0Þ¼FE½ϕðpÞ�−FE0 ½ϕðp0Þ�
þfD½pkϕðpÞ�−D½p0kϕðp0Þ�g=β: ð23Þ

FIG. 2. Visual explanation of Theorem 1: Distribution p freely
relaxes under L for time τ (solid gray line). The EP incurred
during this relaxation (contraction of purple lines) can be
decomposed into the contraction of the KL divergence between
p and ϕðpÞ (contraction of green lines) plus the EP incurred
during the free relaxation of ϕðpÞ (contraction of the red lines).
The free relaxation of ϕðpÞ under L is represented by the dotted
gray line.

ARTEMY KOLCHINSKY and DAVID H. WOLPERT PHYS. REV. X 11, 041024 (2021)

041024-6



Combining this result with Theorem 2 and Eq. (2), and then
rearranging, shows that the work involved in carrying out
p → p0 is equal to the work involved in carrying out the
“accessible” transformation ϕðpÞ → ϕðp0Þ:

Wðp → p0Þ ¼ W½ϕðpÞ → ϕðp0Þ�: ð24Þ

Finally, by combining with Eq. (1), we arrive at an upper
bound on work that can be extracted by a constrained
protocol:

Wðp → p0Þ ≤ FE½ϕðpÞ� − FE0 ½ϕðp0Þ�; ð25Þ

which is tighter than the bound given by the second
law [Eq. (1)].
The bounds in Eqs. (18) and (25), as well as the

decomposition of free energy in Eq. (21), are the main
theoretical results arising from our general framework.
Figure 3 provides a schematic way of understanding these
results. Theorem 2 states that, for a constrained protocol
that carries out the map p → p0, the EP incurred during the
system’s actual trajectory (solid gray line) is given by the
EP that would incurred by a “projected trajectory” that
carries out the transformation ϕðpÞ → ϕðp0Þ (dashed gray
line), plus the drop in the KL divergence from the system’s
distribution to the set img ϕ over the course of the protocol
(contraction of green lines). Since the EP of the projected
trajectory must be non-negative, the drop in the distance
from the system’s distribution to img ϕ serves as a lower
bound on EP, as in Eq. (18). In addition, Theorem 2 states
that this decrease in the KL divergence must be positive,
meaning that the system’s distribution must get closer to
imgϕ over the course of the protocol.
Following Fig. 3, it can be helpful to think of the

trajectory p → p0 as composed of three segments: (i) from
p down to ϕðpÞ, (ii) from ϕðpÞ to ϕðp0Þ while staying

within imgϕ, and (iii) from ϕðp0Þ up to p0 (note that this
decomposition is useful for accounting purposes but does
not generally reflect the actual trajectory the system takes in
going from p to p0). The first and third segments contribute
(positively and negatively, respectively) only to EP, while
the projected second segment ϕðpÞ → ϕðp0Þ contributes
both to EP and to work. Thus, the work involved in p → p0
is determined entirely by the work involved in the second
segment, as stated in Eq. (24).
Note also the formal similarity between our decom-

position of the drop in free energy [Eq. (23)] and the
decompositions of EP in Theorem 2. Indeed, like Theorem
2, the result Eq. (23) can be illustrated with Fig. 3: During
the transformation p → p0 (solid gray line), the drop in
free energy is given by the drop in free energy incurred by
the transformation ϕðpÞ → ϕðp0Þ (dotted gray line), plus
the contraction of the KL divergence from the system’s
distribution to the set img ϕ (green lines).
In general, our bounds on EP and work are not always

achievable. Suppose, however, that the final distribution p0
is in equilibrium, so p0 ¼ ϕðp0Þ by Eq. (17). Equation (18)
then gives

Σðp → p0Þ ≥ D½pkϕðpÞ�: ð26Þ

This bound is achievable if the generators in Λ have a
continuous curve of equilibrium distributions from ϕðpÞ
to p0 ¼ ϕðp0Þ. Imagine a protocol in which the initial
distribution p first relaxes to the equilibrium distribution
ϕðpÞ and then undergoes quasistatic driving from ϕðpÞ to
ϕðp0Þwhile remaining in equilibrium throughout [in terms
of Fig. 3, the system first relaxes along the green arrow
connecting p to ϕðpÞ and then follows the dashed line to
ϕðp0Þ quasistatically]. The relaxation step incurs
D½pkϕðpÞ� of EP, while the quasistatic step incurs a
vanishing amount of EP, so the bound in Eq. (26) is
achieved.

A. Choice of the ϕ operator

In general, the operator ϕ associated with a given set of
generators Λ is not unique. For instance, for any driving
protocol, the identity map ϕðpÞ ¼ p always satisfies
Eqs. (14) and (16). Choosing ϕ to be the identity map,
however, reduces the results in Theorem 2 to trivial
identities and the lower bound on EP in Eq. (18) to 0.
At a high level, those ϕ which have smaller img ϕ

generally give tighter bounds on EP (since, given
Eq. (15), a smaller image leads to larger values of
D½pkϕðpÞ�). To illustrate this phenomenon, consider the
extreme case where all L ∈ Λ have the same equilibrium
distribution π, so that any constrained driving protocol must
be a free relaxation toward π. Then, the operator ϕðpÞ ¼ π
for all p (so img ϕ is a singleton) satisfies Eqs. (14) and (16)
and, when plugged into Eq. (18), gives the following bound
on EP:

FIG. 3. Illustration of Theorem 2. Given an appropriate
operator ϕ, Σðp → p0Þ (the EP incurred during some desired
transformation p → p0; solid gray line) is equal to Σ½ϕðpÞ →
ϕðp0Þ� [the EP incurred by that protocol when transforming
ϕðpÞ → ϕðp0Þ; dashed gray line] plus the contraction of the KL
divergence D½pkϕðpÞ� −D½p0kϕðp0Þ� (contraction of green
lines). This contraction of KL divergence is a non-negative lower
bound on Σðp → p0Þ, as in Eq. (18).
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Σðp → p0Þ ≥ DðpkπÞ −Dðp0kπÞ: ð27Þ

In fact, the right-hand side is an exact expression for the EP
incurred by the free relaxation, meaning that it is the tightest
possible bound. If, however, the generators L ∈ Λ have
different equilibrium distributions, then the operator ϕðpÞ ¼
π (for whatever π) generally violates the commutativity
relation in Eq. (16), and bounds like Eq. (27) no longer hold.
In the following sections, we show how to use our results

to derive thermodynamic bounds for Λ that obey some kind
of symmetry group, modular decomposition, or coarse-
graining structure. In more general (and possibly unstruc-
tured) cases, it is an open question of whether a nontrivial
operator ϕ exists and, if so, how to identify it. We explore
related issues in a companion paper [32], where we use
numerical optimization techniques to derive bounds on EP
similar to Eq. (18).
Importantly, when there are multiple different operators

that all satisfy the Pythagorean identity and the commu-
tativity relation for the available generators Λ, one can
derive tighter bounds on EP and work by applying our
decompositions in an “iterative” manner. For instance,
imagine that there are two different operators ϕ1 and ϕ2

that satisfy Esq. (14) and (16) (for example, these might
represent operators arising from symmetry constraints and
modularity constraints, respectively, as described below).
Applying Theorem 2 iteratively leads to “stacked” bounds
on EP analogous to Eq. (18):

Σðp→p0Þ≥(D½pkϕ1ðpÞ�þDfϕ1ðpÞkϕ2½ϕ1ðpÞ�g)
−(D½p0kϕ1ðp0Þ�þDfϕ1ðp0Þkϕ2½ϕ1ðp0Þ�g)≥0:

ð28Þ

Similarly, applying Eq. (24) iteratively leads to stacked
bounds on extractable work analogous to Eq. (25):

Wðp → p0Þ ≤ FEfϕ2½ϕ1ðpÞ�g − FE0 fϕ2½ϕ1ðp0Þ�g ð29Þ

Such stacked bounds are generally tighter than the bounds
provided by either ϕ1 or ϕ2 alone. [Note that one can also
reverse the order of operations and consider the composi-
tion ϕ1½ϕ2ðpÞ� rather than ϕ2½ϕ1ðpÞ� in Eqs. (28) and (29),
which, in general, leads to different bounds.]

B. Fluctuating entropy production

As we show in detail in Appendix A 2, our results
also have implications for stochastic fluctuations of
trajectory-level EP, as considered in stochastic thermo-
dynamics [33].
Consider any constrained driving protocol over t ∈

½0; 1� with an associated operator ϕ. Let x indicate some
stochastically sampled trajectory of the system visited
during the driving protocol, and let σpðxÞ indicate
the fluctuating EP incurred by trajectory x when initial

states are sampled from the initial distribution p. In
Appendix A 2, we consider the difference between this
fluctuating EP and the fluctuating EP incurred by the same
trajectory when initial states are sampled from the acces-
sible initial distribution ϕðpÞ:

mpðxÞ ≔ σpðxÞ − σϕðpÞðxÞ: ð30Þ

By combining Theorem 2 with recent results in stochas-
tic thermodynamics [34,35], we show that the expectation
of mpðxÞ is equal to the difference of expected EPs,
hmpðxÞi ¼ Σðp → p0Þ − Σ½ϕðpÞ → ϕðp0Þ�, where h·i indi-
cates expectation over trajectories sampled from initial
distribution p. We also show that mpðxÞ obeys a detailed
fluctuation theorem, which implies a trajectory-level
version of Eq. (19): The probability that the fluctuating
EP under initial distribution p is ξ less than the fluctuation
EP under the accessible initial distribution ϕðpÞ is expo-
nentially small (i.e., it is less than e−ξ). We leave further
exploration of the connection between our framework and
stochastic thermodynamics for future work.

IV. THERMODYNAMICS OF INFORMATION
UNDER PROTOCOL CONSTRAINTS

The framework introduced in the previous section has
implications for the thermodynamics of information
under constraints. Consider the type of feedback-control
setup described in the introduction: First, an observation
apparatus M measures some system observable, and then
the system undergoes a driving protocol that depends on
the measurement outcome m. Let LðmÞðtÞ indicate the
driving protocol conditioned on m, and let pXjm and p0

X0jm
indicate the distributions over system states at the
beginning and end, respectively, of the corresponding
driving protocol. As standard in the literature [2], for
simplicity we assume that all protocols start and end with
the same energy functions E and E0, that the measurement
apparatus M and the system X are energetically
decoupled during the protocols, and that M does not
change state.
Given the above assumptions, it is straightforward to show

that the EP incurred by the joint “supersystem”X ×M obeys

ΣXM ¼
X
m

pðmÞΣm; ð31Þ

where Σm is the EP incurred by protocol LðmÞðtÞ in carrying
out the transformation pXjm → p0

X0jm. Similarly, by taking
expectations of Eq. (2) and rearranging [see the derivation of
Eq. (4)], the average extracted work under feedback control
can be written as

hWi ¼ ΔF þ ½IðX;MÞ − IðX0;MÞ� −
X
m

pðmÞΣm; ð32Þ
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where for notational convenience we use ΔF ¼ FEðpÞ −
FE0 ðp0Þ to indicate the drop of marginal free energy. Thus,
any lower bounds on Σm [the EP values incurred by the
individual protocols LðmÞðtÞ] can be translated into bounds
on the overall EP and average extractable work for a
feedback-control setup.
For example, suppose that there is some single set of

constraints that applies to all of the driving protocols, in that
there is some set of generators Λ such that LðmÞðtÞ ∈ Λ for
all t and m, as well as an operator ϕ that obeys the
Pythagorean identity [Eq. (14)] and the commutativity
relation [Eq. (16)] for all L ∈ Λ. In that case, the frame-
work described in Sec. III leads to bounds on each Σm term.
In particular, using Eqs. (18) and (31) gives the bound

ΣXM ≥ D½pXjMkϕðpXjMÞ� −D½p0
X0jMkϕðp0

X0jMÞ� ≥ 0; ð33Þ

where we define the conditional KL divergence D½pXjM
kϕðpXjMÞ� ¼

P
m pðmÞD½pXjmkϕðpXjmÞ�, and similarly for

D½p0
X0jMkϕðp0

X0jMÞ�. Plugging into Eq. (32) gives the follow-
ing bound on average extractable work:

hWi ≤ ΔF þ ½IϕaccðX;MÞ − IϕaccðX0;MÞ�=β; ð34Þ

where IϕaccðX;MÞ is given by

IϕaccðX;MÞ ¼ IðX;MÞ −D½pXjMkϕðpXjMÞ�; ð35Þ

and similarly for IϕaccðX0;MÞ.
We refer to IϕaccðX;MÞ as the accessible information in

measurement M, since any decrease in accessible infor-
mation can contribute to work extraction [Eq. (34)]. We
refer to the conditional KL divergence D½pXjMkϕðpXjMÞ�
as the inaccessible information, since any decrease in
inaccessible information must be dissipated as EP and not
extracted as work [Eq. (33)]. The inaccessible information
is non-negative by properties of KL divergence, so
IϕaccðX;MÞ ≤ IðX;MÞ. In addition, whenever p ∈ img ϕ
[e.g., when p is an equilibrium distribution, by Eq. (17)],
the accessible information can be rewritten in a simpler
form as

IϕaccðX;MÞ ¼ D½ϕðpXjMÞkp�; ð36Þ

as follows from Eq. (35) by writing IðX;MÞ ¼ DðpXjMkpÞ
and applying the Pythagorean theorem [Eq. (14)].
In general, measurements of different observables on the

same system give rise to different amounts of accessible and
inaccessible information. At a high level, one should choose
measurements that maximize the accessible information
IϕaccðX;MÞ, or alternatively the “efficiency” quantified as
bits of accessible information per bit of measured informa-

tion, IϕaccðX;MÞ=IðX;MÞ ≤ 1. Optimal measurements

satisfy IϕaccðX;MÞ ¼ IðX;MÞ, which happens when the
conditional distributions over system states pXjm are invari-
ant under the action of ϕ [i.e., when ϕðpXjmÞ ¼ pXjm for
each m].
Note that similar results can also be derived using other

kinds of bounds on Σm [e.g., when the individual protocols
obey a combination of constraints, so that Eq. (28) holds].

V. SYMMETRY CONSTRAINTS

We now use the general framework introduced above to
derive bounds on EP under symmetry constraints.
Consider a compact group G that has a measurable action

over X, such that each g ∈ G is a bijection X → X [36]. For
continuous X, we assume that each g ∈ G is a rigid
transformation. For notational convenience, for each g ∈
G we define the composition operator Φg, so that, for any
function f∶X → R,

ΦgðfÞðxÞ ¼ f½gðxÞ�: ð37Þ

We say that a set of generators Λ obeys symmetry
constraints (with respect to the action of group G) if the
following commutativity relation holds for all L ∈ Λ:

ΦgL ¼ LΦg ∀ g ∈ G: ð38Þ

In other words, Λ obey symmetry constraints when, for
each L ∈ Λ and g ∈ G, it does not matter whether one first
applies the generator L and then the bijection g over the
state space or first applies the bijection g over the state
space and then the generator L. In more concrete terms, for
a (continuous or discrete) master equation L, Eq. (38) holds
if the transition rates are invariant under the action of G:

Lxx0 ¼ LgðxÞgðx0Þ ∀ x; x0 ∈ X; g ∈ G: ð39Þ

We can also derive simple sufficient conditions for
potential-driven Fokker-Planck equations of the type

Lp ¼ ∇ · ð∇ELÞpþ β−1Δp; ð40Þ

where EL is the energy function of generator L. Then,
Eq. (38) holds if all available energy functions are invariant
under the action of G:

ELðxÞ ¼ EL½gðxÞ� ∀ x ∈ X; g ∈ G; L ∈ Λ: ð41Þ

[Equation (38) is derived from Eqs. (39) and (41) in
Appendix B.]
We now define a linear operator ϕG which satisfies the

Pythagorean identity and the commutativity relation
[Eqs. (14) and (16)] for symmetry constraints. Let ϕG
map each p ∈ P to its average under the action of G:
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ϕGðpÞðxÞ ≔
Z
G
p½gðxÞ�dμðgÞ; ð42Þ

where μ is the uniform (normalized Haar) measure over G
[37]. For a finite group, the integral in Eq. (42) should be
replaced by a summation. Following the terminology in
quantum physics, we sometimes refer to ϕG as a twirling
operator [23,39]. Intuitively, ϕGðpÞ symmetrizes p,
removing all information in p concerning the state of
the system along the “coordinates” specified by the
symmetry constraints.
In Appendix B, we show that ϕG obeys the Pythagorean

identity and, as long as Eq. (38) holds, the commutativity
relation of Eq. (16). Thus, any protocol that carries out the
transformation p → p0 while obeying symmetry con-
straints with respect to G permits the decomposition of
EP found in Theorem 2, with ϕ ¼ ϕG, and satisfies all the
bounds on work and EP that follow from that result.
In particular, using Eq. (21), we can decompose the free

energy FEðpÞ of any distribution p into the accessible free
energy FE½ϕGðpÞ�, which is the free energy in the twirled
(and, therefore, symmetric) version of p, and the inacces-
sible free energyD½pkϕGðpÞ�=β. Note thatD½pkϕGðpÞ� is a
non-negative measure of the asymmetry in distribution p
with respect to the symmetry group G, which vanishes
when p is invariant under ϕG. Thus, for any protocol that
obeys symmetry constraints, the first inequality in Eq. (18)
states that any “drop in asymmetry” must be dissipated as
EP and not turned into work. The second inequality in
Eq. (18) states that the asymmetry in the system’s distri-
bution can only decrease during the protocol. (Some of the
above results for symmetry constraints have been previ-
ously uncovered in quantum thermodynamics [22,23]; see
Sec. VIII.)
We finish by discussing thermodynamics of information

under symmetry constraints. In general, the results derived
in Sec. IV apply to the twirling operator ϕG as a special
case. We can also exploit special properties of ϕG to further
simplify the expression of the inaccessible information
term in Eqs. (33) and (35). Suppose that distribution p is
invariant under ϕG, so p ¼ ϕGðpÞ (e.g., if p is an equilib-
rium distribution). As shown in Appendix B 4, we can then
rewrite the inaccessible information term as

D½pXjMkϕGðpXjMÞ� ¼
�
ln

qðmjxÞR
G q½mjgðxÞ�dμðgÞ

�
; ð43Þ

where qðmjxÞ is the measurement channel and h·i indi-
cates expectation under the joint distribution pðx;mÞ ¼
pðxÞqðxjmÞ. Equation (43) conveniently expresses the
inaccessible information in terms of the asymmetry of the
measurement channel relative to the action of G [the right
side of Eq. (43) vanishes when qðmjxÞ is invariant under
that action], which we exploit in some of our exam-
ples below.

A. Example: Szilard box with symmetry constraints

We demonstrate our results on symmetry constraints
using the Szilard box shown in Fig. 1. We assume that the
box is coupled to a single heat bath at inverse temperature
β ¼ 1 and that the particle inside the box has overdamped
Fokker-Planck dynamics, so that all generators have the
form of Eq. (40). The system’s state is represented by a
horizontal and a vertical coordinate, x ¼ ðx1; x2Þ ∈ R2.
Suppose that all energy functions have the form

Eλðx1; x2Þ ¼ Vpðx1 − λÞ þ Vwðjx1jÞ þ Vwðjx2jÞ; ð44Þ

where λ ∈ R is a controllable parameter that determines the
location of the vertical partition, Vp is the partition’s
repulsion potential, and Vw is the repulsion potential of
the box walls:

VwðaÞ ¼
�
0 if a ≤ 1;

∞ otherwise;
ð45Þ

meaning that the box extends over ðx1; x2Þ ∈ ½−1; 1�2 [40].
Assume that Vpðx1 − λÞ ¼ 0 for some value of λ and all
x1 ∈ ½−1; 1� (i.e., the partition can be removed by setting λ
outside the box). For such λ, let E∅ indicate the corre-
sponding energy function, and note that it obeys
E∅ðx1; x2Þ ¼ 0 within the box (and infinity elsewhere),
corresponding to a uniform equilibrium distribution
uðx1; x2Þ ¼ 1½−1;1�2ðx1; x2Þ=4 (where 1 is the indicator
function). This Szilard box is shown schematically
in Fig. 4.
The energy functions in Eq. (44) obey the vertical

reflection symmetry Eðx1; x2Þ ¼ Eðx1;−x2Þ, correspond-
ing to the two-element symmetric group S2 whose action is
generated by gðx1; x2Þ ¼ ðx1;−x2Þ. The corresponding
twirling of p is the uniform mixture of p and its reflection:

ϕGðpÞðx1; x2Þ ¼ ½pðx1; x2Þ þ pðx1;−x2Þ�=2: ð46Þ

We can use our results to derive bounds on the work that
can be extracted from this Szilard box. Intuitively, the set of
allowed generators L—that is, Fokker-Planck operators
with energy functions as in Eq. (44), corresponding to
different horizontal locations of the vertical partition—all

(− 1,1) (1,1)

(− 1, − 1) (1, − 1)
x1

x2

λ

FIG. 4. A Szilard box with energy functions as in Eq. (44).
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obey vertical reflection symmetry. Thus, the dynamics
generated by those Fokker-Planck operators commute with
ϕG, the twirling operator defined in Eq. (46). Using
Eq. (25), we can bound the work extracted during any
transformation p → p0 in terms of the decrease of the
accessible free energy FE½ϕGðpÞ� − FE0 ½ϕGðp0Þ�.
In more detail, consider some driving protocol which

starts and ends with the partition removed. At intermediate
times, the driving protocol manipulates the location of the
partition so as to bring the system from some initial
distribution p to a final equilibrium distribution p0 ¼ u
while extracting work. The second law gives bounds on EP,
Σðp → p0Þ ≥ 0, and work:

Wðp → uÞ ≤ FE∅ðpÞ − FE∅ðuÞ ¼ DðpkuÞ; ð47Þ

which follows from Eqs. (1) and (20). However, this bound
can be too optimistic due to the protocol constraints. Given
Eq. (18), as well as the fact that the final distribution obeys
ϕGðuÞ ¼ u, we know that Σðp → p0Þ ≥ D½pkϕGðpÞ�.
Similarly, Eq. (25) gives a tighter bound on extractable
work:

Wðp → uÞ ≤ FE∅ ½ϕGðpÞ� − FE∅ðuÞ ¼ D½ϕGðpÞku�; ð48Þ

where the second equality follows from Eq. (20).
It is easy to use these results to resolve the question raised

in the introduction: can one show that work can be extracted
only from a measurement of whether the particle is in the left
or right half of the box rather than a measurement of whether
the particle is in the top or bottom half of the box? Suppose
that the particle’s initial distribution p is uniform across the
left or right half of the box. Such a distribution p is invariant
under vertical reflection, so p ¼ ϕGðpÞ and Eq. (48) gives
Wðp → uÞ ≤ DðpkuÞ ¼ ln 2, the same as the bound set by
the second law [Eq. (47)]. This bound can be achieved by
quickly moving the partition to the middle of the box and
then slowly moving it rightward. Conversely, suppose that,
under the initial distribution p, the particle is uniformly
distributed across the top or bottom half of the box. The
twirling of such a distribution is a uniform distribution over
the box, ϕGðpÞ ¼ u. In this case, Eq. (48) gives
Wðp → uÞ ≤ 0, meaning that no work can be extracted.
We now demonstrate the power of our approach by

analyzing extractable work given a more complex family of
initial distributions (while using the same energy functions
as above). Suppose that the initial distribution is concen-
trated within half the box, as determined by a separating
line that is rotated by an arbitrary angle θ ∈ ½−π; π�
[see Fig. 5(a)]. This initial distribution can be written
formally as

pθðx1; x2Þ ¼
1½−1;1�2ðx1; x2Þ

2
Θðx2 sin θ − x1 cos θÞ; ð49Þ

where Θ is the Heaviside function. For instance, pθ for
θ ¼ 0 corresponds to the particle being in the left half of the
box, while pθ for θ ¼ π=2 corresponds to the particle being
in the top half of the box.
Because we are considering the same set of generators as

above, we can bound the extractable work in a given pθ

using the same twirling operator as defined above in
Eq. (46). [For a sample pθ, the twirling ϕGðpθÞ is illustrated
in Fig. 5(b).] Using Eq. (48), the extractable work obeys
Wðpθ → uÞ ≤ D½ϕGðpθÞku�. Moreover, as we show in
Appendix B 5, this KL divergence can be written in closed
form as

D½ϕGðpθÞku� ¼ ln 2 ·

8>><
>>:

1
2

���� tan
�
θ − π

2

����� jθj ∈
�

π
4
; 3π
4

�
;

1 − 1
2
j tan θj otherwise:

ð50Þ

This result is plotted as a function of θ in Fig. 6.
We can also analyze the thermodynamics of informa-

tion for different measurements of the Szilard box.
Imagine that, starting from a uniform equilibrium distri-
bution, one measures which side of the box contains the
particle, as determined by a separating line at some
arbitrary angle θ ∈ ½−π; π�. For this measurement, the
conditional distribution over system states pXjm is equal to
pθ half the time [as in Fig. 5(a)] and equal to pθþπ the
other half the time. Then, for both measurement out-
comes, one manipulates the vertical partition so as to drive
the particle back to the equilibrium distribution p0 ¼ u

(a) (b)

θ

FIG. 5. (a) A nonequilibrium distribution pθ that is “rotated” by
an arbitrary angle θ [Eq. (49)]. (b) The distribution in (a) under
the action of the vertical reflection twirling operator ϕGðpθÞ.

FIG. 6. Szilard box with symmetry constraints: the bound on
extractable work as a function of θ [Eq. (50)].
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while extracting work. For simplicity, we assume that the
initial and final energy functions are the same.
The general bound on average extractable work for

feedback control [Eq. (4)] gives

hWi ≤ IðX;MÞ ¼ ln 2; ð51Þ

where we use that p ¼ p0 and IðX0;MÞ ¼ 0. Our results
provide a tighter bound, showing that the average extract-
able work is bounded by the accessible information in the
measurement:

hWi ≤ IϕaccðX;MÞ ¼ D½ϕGðpθÞku� þD½ϕGðpθþπÞku�
2

;

ð52Þ

where we use Eqs. (34) and (36). It can be verified from
Eq. (50) that D½ϕGðpθÞku� ¼ D½ϕGðpθþπÞku�. Thus, the
accessible information for a given θ is simply equal to
D½ϕGðpθÞku�, the right side of Eq. (50), and shown in
Fig. 6. As expected, the accessible information achieves a
maximum of ln 2 at θ ¼ 0 (or θ ¼ �π), which corresponds
to a measurement of whether the particle is on the left or
right side of the box. The accessible information falls
nonlinearly (but continuously) to a minimum of 0 at
θ ¼ �π=2, which corresponds to a measurement of
whether the particle is on the top or bottom of the box.
In the example above, the accessible information quan-

tifies in a very literal way the alignment between the choice
of measurement and the way the system can be manipu-
lated. More generally, this example illustrates how our
bounds on EP and work depend on the interplay between
the operator ϕ, the initial and final distributions p and p0,
and (for feedback-control protocols) the choice of meas-
urementM. This interplay can give rise to highly nontrivial
thermodynamic bounds, such as in Eq. (50) and Fig. 6, even
for very simple operators ϕ, such as in Eq. (46).
Finally, we note that our analysis above assumes only

that the energy functions are vertically symmetric, which
includes many energy functions that do not have the form
of the vertical partition defined in Eq. (44). Furthermore,
while the bounds on work and EP which we derive here are
achievable by some vertically symmetric energy functions,
they are not necessarily achievable by manipulating the
location of a vertical partition. For instance, achieving the
extractable work bound for a given θ [Eq. (50)] generally
requires that the corresponding twirled distribution ϕGðpÞ,
such as the one shown in Fig. 5(b), is an equilibrium
distribution for some available energy function.
We analyze the same system using a different set of

constraints in Secs. VI A and VII A below. (Also see
Ref. [42] for a different recent analysis of the thermody-
namics of the Szilard box with rotated measurements,
though from the point of view of partial observability rather
than protocol constraints.)

B. Example: Feedback control on the Ising model

Our bounds on symmetry constraints can be useful for
various multiparticle systems with symmetries, such as
gases of indistinguishable particles and spin systems with
symmetries. As a demonstration, we now analyze the
thermodynamics of feedback control on an Ising model.
The reader may also be interested in B 6, where we analyze
a simpler (and more pedagogical) example of a discrete-
state system with symmetry constraints.
Consider a 2D Ising model on a square lattice on a torus,

containing a total of N2 ¼ N × N spins. The state of the
lattice is indicated as x≡ ðx1;…; xN2Þ, where xi ∈ f−1; 1g
is the state of the spin at location i. We assume that the
energy functions have the following form:

EðxÞ ¼ −J
X

ði;jÞ∈N
xixj −H

X
i

xi; ð53Þ

where N is the set of all nearest neighbors on the lattice, J
is the coupling strength, and H is the external mag-
netic field.
Energy functions like these are invariant under the

symmetry group G corresponding to horizontal and vertical
translations of the lattice (for simplicity, we ignore other
symmetries of the lattice, such as reflections and rotations).
The action of this group is given by a set of N2 bijections
ga;b∶X → X for a; b ∈ f0;…; N − 1g, where ga;bðxÞ trans-
lates the lattice state x to the right by a spins and upward by
b spins (with periodic boundary conditions). We assume
that the system evolves according to Glauber dynamics
[43], or some other dynamics that respects the translational
symmetry of the 2D lattice, such that Eq. (39) is satisfied.
Given these assumption, we can derive thermodynamic

bounds for the 2D Ising model in terms of the following
twirling operator:

ϕGðpÞðxÞ ¼ N−2
XN−1

a¼0

XN−1

b¼0

ga;bðxÞ: ð54Þ

We use this twirling operator to analyze the thermodynamics
of the following feedback-control setup on the Ising model,
also shown in Fig. 7. The lattice is initially in equilibrium p at
some temperature β and J ¼ 1, H ¼ 0 (no external field).
The state of the spin at location 1 is then measured under
the measurement channel qðmjxÞ ¼ δmðx1Þ, where δ is the
Kronecker delta. Since there is no initial external field, the
two outcomes m ∈ f−1; 1g have equal probability and
IðX;MÞ ¼ ln 2. The measured outcome is then used to
select a driving protocol, which extracts work from the
system by manipulating the control parameters J and H. At
the end of the protocol corresponding to each outcome, the
system is brought back to the original equilibrium (so
p0
X0jm ¼ p for all m). For simplicity, we assume that the

initial and final energy functions are the same.
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Under this setup, one can verify that IϕG
accðX0;MÞ ¼ 0 and

FEðpÞ ¼ FE0 ðp0Þ, so Eq. (34) bounds average extractable

work as hWi ≤ IϕG
accðX;MÞ=β, where IϕG

accðX;MÞ is the
accessible information from Eq. (35). Using Eqs. (35)
and (43), we can write this accessible information as

IϕG
accðX;MÞ ¼ ln 2 −

�
ln

qðmjxÞ
N−2P

a;bq½mjga;bðxÞ�
�
; ð55Þ

where h·i indicates expectation over the joint distribution
pðxÞqðmjxÞ, where pðxÞ is the initial equilibrium distri-
bution at inverse temperature β and J ¼ 1, H ¼ 0. We
emphasize that the accessible information depends on β
(though we leave this dependence implicit in the notation).
In general, one can estimate the accessible information in

Eq. (55) using various numerical techniques (e.g., by
sampling from the initial equilibrium distribution using
Monte Carlo methods). It is also possible to use Onsager’s
well-known solution of the 2D Ising model to calculate the
accessible information in closed form. In particular, in
Appendix B 7, we show that in the thermodynamic limit
N → ∞,

IϕG
accðX;MÞ ¼

8><
>:

0 for β ≤ βc;

ln 2 − h2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðsinh 2βÞ−48

p
2

�
for β > βc;

ð56Þ

where h2ðxÞ ¼ −x ln x − ð1 − xÞ lnð1 − xÞ is the binary
entropy function and βc ¼ lnð1þ ffiffiffi

2
p Þ=2 ≈ 0.44 is the

critical inverse temperature of the 2D Ising model. This
result is verified in Fig. 7, where we compare Eq. (56) with
a Monte Carlo estimate of Eq. (55) on a 100 × 100 lattice. It
can be seen that, in the high-temperature (low-β) regime,

the accessible information vanishes. In the low-temperature
(high-β) regime, the amount of accessible information
increases, approaching ln 2 as β → ∞.
We also plot the bound on average extractable work,

hWi ≤ IϕG
accðX;MÞ=β, in the inset in Fig. 7. This bound is the

ratio of two terms: the accessible information IϕG
accðX;MÞ and

the inverse temperature β, both of which are increasing in β.
In fact, it can be seen from Fig. 7 that the bound on
extractable work peaks at a finite value of β, the optimal
inverse temperature for work extraction. Using Eq. (56) and
numerical techniques, we find this optimal value to be
β ≈ 0.547, leading to the bound hWi ≤ 1.06 joules.
This result shows that the amount of accessible infor-

mation provided by a given measurement can depend on
the structure of correlations in the system and, therefore,
vary dramatically as the system undergoes a phase tran-
sition. At a high level, any driving protocol that is restricted
to energy functions like Eq. (53) can extract work only
from “global” (i.e., translationally invariant) information. If
the measurement acquires such information (e.g., if it
directly measures the spatially averaged magnetization),
then, in principle, all of the acquired information may be
extractable as work. Measurement of the state of a single
spin, however, generally provides only local information.
The temperature dependence observed in Eq. (56) and
Fig. 7 arises from the presence of long-range order in the
magnetic regime (β > βc). In this regime, the state of each
spin is highly correlated with the magnetization of the
entire lattice, so local and global information are equiv-
alent. In the high-temperature regime (β < βc), the state of
a single spin is not correlated with any kind of global
information, and so most of the measured information is
inaccessible.
For a different kind of analysis of the thermodynamics of

a 1D Ising model under constraints, see Ref. [44].

VI. MODULARITY CONSTRAINTS

Many systems of interest exhibit modular organization,
meaning that their degrees of freedom can be grouped into
decoupled subsystems. Examples of modular systems
include computational devices such as digital circuits
[19,45,46], regulatory networks in biology [47], and brain
networks [48].
We use our framework to derive bounds on work and EP

for modular systems. We begin by introducing some
terminology and notation. Consider a system whose
degrees of freedom are indexed by the set V, such that
the overall state space can be written as X ¼ ×v∈VXv,
where Xv is the state space of degree of freedom v. We use
the term subsystem to refer to any subset of the degrees of
freedom, A ⊆ V. We use XA to indicate the random variable
representing the state of subsystem A and xA to indicate an
actual state of A. Given some distribution p over the entire
system, we use pA to indicate a marginal distribution over

Work 
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FIG. 7. Thermodynamics of information on a 2D Ising model.
Left: A measurementM is made of the state of a single spin (green)
and then used to drive the system while extracting work (blue).

Right: The accessible information IϕG
accðX;MÞ increases with

inverse temperature after the critical value βc ≈ 0.44 [gray circles
from Monte Carlo simulations, black line from closed-form
expression in Eq. (56)]. The inset shows the bound on extractable

work, IϕG
accðX;MÞ=β, which peaks at β ≈ 0.547 (red cross).
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subsystem A and ½Lp�A to indicate the derivative of the
marginal distribution of subsystem A under the generator L.
We use the term modular decomposition to refer to a set

of subsystems C, such that each v ∈ V belongs to at least
one subsystem A ∈ C. Note that some of the degrees of
freedom v ∈ V can belong to more than one subsystem in
C. We use

OðCÞ ¼ ⋃
A;B∈C∶A≠B

ðA ∩ BÞ ð57Þ

to indicate those degrees of freedom that belong to more
than one subsystem in C, which we refer to as the overlap.
We often write O instead of OðCÞ for notational simplicity.
We say that the available driving protocols obey mod-

ularity constraints (with respect to the modular decom-
position C) if each generator L ∈ Λ can be written as a sum
of generators of the different subsystems in C:

L ¼
X
A∈C

LðAÞ; ð58Þ

and each LðAÞ obeys two properties: The dynamics over the
marginal distribution pA are closed under LðAÞ (i.e., depend
only on the marginal distribution over A):

pA ¼ qA ⇒ ½LðAÞp�A ¼ ½LðAÞq�A ∀ p; q ∈ P; ð59Þ

and the distribution over other subsystems besides A does
not change under LðAÞ:

½LðAÞp�B ¼ 0 ∀ p ∈ P; B ∈ CnfAg: ð60Þ

In other words, we require that each subsystem evolves
independently and does not affect the other subsystems.
The role of the degrees of freedom in the overlap is

somewhat subtle. It can be verified that Eq. (60) implies that
the degrees of freedom in the overlap cannot change state
when evolving under L. Importantly, however, the overlap
may influence the dynamics of those degrees of freedom that
can change state. For example, consider an inclusivemodel of
a feedback-control setup: There are two nested subsystems,
C ¼ fA;Bg with B ⊆ A, and the degrees of freedom in O ¼
B (the controller) cannot change state but can influence the
evolution ofAnB. More elaborate feedback-control setups, in
which the same controller can control multiple subsystems,
can be modeled using decompositions with multiple non-
nested subsystems. Other examples of modular decomposi-
tions with overlap include circuits [19], spin systems where
some spins are pinned by local magnetic fields, and many-
particle systems where some particles have no mobility.
We can also provide more concrete conditions when

Eqs. (59) and (60) hold for discrete-state master equations
and Fokker-Planck equations. For discrete-state master
equations, it can be verified by inspection that Eqs. (59)
and (60) hold when all L ∈ Λ can be written in the form

Lx0x ¼
X
A∈C

RðAÞ
x0A;xA

δxVnAðx0VnAÞ; ð61Þ

where δ is the Kronecker delta and RðAÞ is some rate matrix
over subsystem A that does not allow the degrees of freedom

in the overlap to change state (RðAÞ
x0A;xA

¼ 0 if xA∩O ≠ x0A∩O).
For Fokker-Planck equations, for simplicity, consider

overdamped dynamics of the form

Lp ¼
X
v∈V

γLv∂xv ½ð∂xvELÞpþ β−1∂xvp�; ð62Þ

where γLv is the mobility coefficient along dimension
v and EL is the potential energy function associated
with generator L. Such equations can represent poten-
tial-driven Brownian particles coupled to a heat bath,
where the different mobility coefficients represent differ-
ent particle masses or sizes [49]. Now imagine that, for all
L ∈ Λ, the energy functions are additive over the sub-
systems and that the degrees of freedom in the overlap
have no mobility:

ELðxÞ ¼
X
A∈C

EðAÞ
L ðxAÞ; γLv ¼ 0 ∀ v ∈ O: ð63Þ

In that case, Eq. (62) can be rewritten in the form of Eq. (58),

withLðAÞp ¼ P
v∈AnO γLv∂xv ½ð∂xvE

ðAÞ
L ÞpA þ β−1∂xvpA�, and

satisfies Eqs. (59) and (60).
We now define the following nonlinear operator ϕC:

ϕCðpÞ ¼ pO

Y
A∈C

pAnOjA∩O: ð64Þ

This operator preserves the statistical correlations within
each subsystem A ∈ C, as well as within the overlap O,
while destroying all other statistical correlations. As a
simple example, if all the subsystems in C are nonoverlap-
ping, then ϕCðpÞ has the product form ϕCðpÞ ¼

Q
A∈C pA.

In Appendix C, we show that ϕC obeys the Pythagorean
identity [Eq. (14)]. We also show that, if some generator
LðtÞ obeys Eqs. (59) and (60), then eτLðtÞ commutes with
ϕC, so Eq. (16) holds.
As a result, for any protocol that carries out the trans-

formation p → p0 while obeying modularity constraints,
the decompositions and bounds for EP and work derived in
Sec. III are satisfied for ϕ ¼ ϕC. In particular, using
Eq. (21), we can decompose the free energy FEðpÞ of
any distribution p into the accessible free energy FE½ϕCðpÞ�
and the inaccessible free energy D½pkϕCðpÞ�=β. Note that
D½pkϕCðpÞ� is a non-negative measure of the amount of
statistical correlations between the subsystems of C under
distribution p, which vanishes when each subsystem is
conditionally independent given the overlap O. Thus, for a
protocol that obeys modularity constraints, Eq. (18) states
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that the drop in those statistical correlations is a lower
bound on EP, and that the amount of statistical correlation
between the subsystems of C cannot increase over the
course of the protocol. (There is a fair amount of closely
related prior work; see Sec. VIII.)
A particularly simple application of our bounds occurs

when C contains two (possibly overlapping) subsystems,
C ¼ fA;Bg. In that case, the bounds in Eq. (18) can be
rewritten in terms of the drop of a conditional mutual
information between the two subsystems:

Σðp→p0Þ≥ IðXA;XBjXA∩BÞ−IðX0
A;X

0
BjX0

A∩BÞ≥0: ð65Þ

If the subsystems do not overlap, this expression can be
further rewritten as the drop of the regular mutual infor-
mation:

Σðp → p0Þ ≥ IðXA;XBÞ − IðX0
A;X

0
BÞ ≥ 0: ð66Þ

More generally, if C contains an arbitrary number of
nonoverlapping subsystems, the EP can be bound as

Σðp → p0Þ ≥ IðpÞ − Iðp0Þ ≥ 0; ð67Þ

where IðpÞ ¼ ½PA∈C SðpAÞ� − SðpÞ is the multi-informa-
tion in distribution p with respect to partition C [50].
We finish by discussing thermodynamics of information

under modularity constraints. In general, the results derived
in Sec. IVapply to modularity constraints as a special case.
However, we can also exploit special properties of the
operator ϕC to further simplify the expression of accessible
information. Suppose that the distribution p is invariant
under ϕC, so p ¼ ϕCðpÞ [e.g., if p is an equilibrium
distribution; see Eq. (17)]. Using Eq. (64), we can then
rewrite Eq. (36) as

IϕC
accðX;MÞ ¼ IðXO;MÞ þ

X
A∈C

IðXA;MjXA∩OÞ: ð68Þ

Thus, the accessible information in measurement M is the
information that M provides about the overlap, plus the
conditional mutual information between each subsystem and
M given the relevant part of the overlap. This result means
that only information about individual subsystems—not
about intersubsystem correlations—can be turned into work.
If there is no overlap, Eq. (68) can be further simplified as

IϕC
accðX;MÞ ¼

X
A∈C

IðXA;MÞ: ð69Þ

We use these expressions in some of our examples below.

A. Example: Szilard box with modularity constraints

We illustrate our results for modularity constraints on a
Szilard box. In doing so, we demonstrate two important

concepts: first, how the same set of generators Λ can be
analyzed under different constraints, resulting in different
bounds on work and EP (compare this section to Sec. VA);
second, how bounds arising from multiple constraints can
be stacked on top of each in an iterative manner, as in
Eq. (28) (we combine bounds from modularity and
symmetry constraints).
We consider the same setup as in Sec. VA: There is a

single overdamped particle in a box coupled to a bath at
inverse temperature β ¼ 1, which evolves under potential
energy functions as in Eq. (44). This system is driven from
some initial distribution p to a final uniform equilibrium
distribution p0 ¼ u while extracting work.
Note that the energy functions in Eq. (44) have no

interaction terms between x1 (the horizontal position of the
particle) and x2 (the vertical position of the particle). That
means that the allowed driving protocols obey modularity
constraints for a decomposition of the system into two
subsystems, C ¼ ffX1g; fX2gg, since Eq. (63) is satisfied
for the decomposition. This result allows us to analyze EP
and work using an operator ϕC which maps each joint
distribution over X1 × X2 into a product distribution:

ϕCðpÞðx1; x2Þ ¼ pðx1Þpðx2Þ: ð70Þ

In particular, using the same derivation as in Eq. (48), we
can bound the extractable work in terms of the accessible
free energy in p:

Wðp → uÞ ≤ D½ϕCðpÞku�: ð71Þ

As discussed in Sec. VA, this system also obeys
symmetry constraints, corresponding to the vertical reflec-
tion twirling operator ϕG defined in Eq. (46). We can use
Eq. (29) to bound the extractable work using a combination
of ϕC and ϕG:

Wðp → uÞ ≤ DfϕC½ϕGðpÞ�kug; ð72Þ

Wðp → uÞ ≤ DfϕG½ϕCðpÞ�kug: ð73Þ

For concreteness, imagine that the initial distribution
p is concentrated within half the box, as determined
by a separating line rotated by some arbitrary angle
θ ∈ ½−π; π�, so p ¼ pθ from Eq. (49) [see Fig. 5(a) for
an illustration].
We consider the extractable work bound in Eq. (71) for

the initial distribution pθ. For a given pθ, the corresponding
decorrelated initial distribution ϕCðpθÞ is illustrated in
Fig. 8(a). Then, the accessible free energy in Eq. (71)
can be expressed in closed form as (see Appendix C 3)

D½ϕCðpθÞku�¼ ln4−
1

2
(minfj tanθj; jtanðπ=2−θÞjg

þf½maxfjtanθj; j tanðπ=2−θÞjg�); ð74Þ
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where for notational convenience we define

fðxÞ ¼ 1 −
1þ x2

2x
ln
xþ 1

x − 1
− ln

x2 − 1

4x2
: ð75Þ

Equation (74) is plotted in Fig. 9 in green. Note that this
function peaks at both θ ∈ f−π; 0; πg (i.e., when the
particle is in the left or right half of the box) as well as
θ ∈ f−π=2; π=2g (i.e., when the particle is in the top or
bottom half of the box)—precisely those θ for which pθ has
no correlations between the horizontal and vertical position
of the particle.
Next, we consider the extractable work bound in Eq. (72)

for the initial distribution pθ. It can be verified that
ϕG½ϕCðpθÞ�ðx1; x2Þ ¼ pθðx1Þuðx2Þ, which is illustrated in
Fig. 8(a). The right-hand side of Eq. (72) can again be
expressed in closed form as (see Appendix C 3)

DfϕG½ϕCðpθÞ�kug ¼ ln2−
1

2

8><
>:
fðj tanθjÞ if jθj∈

�
π

4
;
3π

4

�
;

j tanθj otherwise

ð76Þ

with f defined as in Eq. (75). This result is shown in Fig. 9
in orange. Note also that ϕG½ϕCðpθÞ� ¼ ϕC½ϕGðpθÞ� for all
pθ, so the bounds in Eqs. (72) and (73) are equivalent.
For comparison, we also plot the extractable work bound

derived using symmetry constraints [Eq. (50)] (Fig. 9 in
blue). It is clear that the bound derived by exploiting a
combination of modularity and symmetry constraints (in
orange) is strictly tighter than the bounds derived by using
either only modularity (green) or only symmetry con-
straints (blue) individually.
One can also use the bounds derived in this section to

analyze the accessible information in a measurement of the
Szilard box. Imagine that, starting from a uniform equi-
librium distribution, one measures which side of the box
contains the particle, as determined by a separating line at
some arbitrary angle θ ∈ ½−π; π�. For this measurement, the
conditional distribution over system states pXjm is equal to
pθ half the time and equal to pθþπ the other half the time.
One can then derive bounds on accessible information such

as Eq. (52), while using the bounds derived in this section
[Eqs. (71)–(73)].

B. Example: Generalized Szilard box

Our results on modularity constraints can be useful for
analyzing the thermodynamics of multiparticle systems. As
an example, consider the “generalized Szilard box” feed-
back-control scenario analyzed in Ref. [20]. Here, a box
containing an ideal gas ofN particles, which are indexed by
v ∈ V, begins in uniform equilibrium with a heat bath at
inverse temperature β. Several partitions are inserted into
the box, separating the box into separate volumes, and a
measurement M is made of the number of particles in each
volume (see the illustration in Fig. 10). The box is then
separated from the bath, and, depending on the outcome of
the measurement, the partitions are moved so as to equalize
the pressure within each volume while extracting work. To
make the process repeatable, suppose that at the end of the
protocol, the partitions are removed and the box is again
equilibrated with the bath (note that this last step does not
contribute to extracted work).
The ideal gas assumption means that the particles do not

interact, so by Eqs. (59) and (60) the protocol obeys
modularity constraints with respect to a decomposition
in which each particle is a separate subsystem. The
corresponding operator ϕC is given by

ϕCðpÞðxÞ ¼
YN
v¼1

pðxvÞ: ð77Þ

Given Eq. (34), the average extractable work for the
above feedback-control scenario is bounded by hWi ≤
IϕC
accðX;MÞ=β, which can also be written in terms of the
information provided by the measurement M about each
individual particle:

hWi ≤
XN
v¼1

IðXv;MÞ=β; ð78Þ

as follows from Eq. (69). In fact, by symmetry of the initial
distribution, the measurement provides the same information

(a) (b)

FIG. 8. (a) Given a “rotated” distribution pθ, as shown above in
Fig. 5(a), the decorrelated distribution ϕCðpθÞ, as in Eq. (70).
(b) The decorrelated and twirled distribution ϕG½ϕCðpθÞ�. FIG. 9. Bounds on extractable work as a function of θ, as

derived from only modularity constraints [in green, Eq. (74)], a
combination of modularityþ symmetry constraints [in orange,
Eq. (76)], and only symmetry constraints [in blue, Eq. (50)].
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about each particle, IðXv;MÞ ¼ IðX1;MÞ for all v, so we
can further rewrite Eq. (78) as hWi ≤ N · IðX1;MÞ=β.
This result shows that Eq. (78), which is reported as one

of the main results of Ref. [20] [Eq. (5)], follows immedi-
ately from our framework. Moreover, our derivation holds
under a broader set of conditions than those considered in
Ref. [20], since it does not rely on any of the details of setup
(such as the type of partitions, the particular work extrac-
tion protocol, or even the assumption that the particles are
identical).

C. Example: Collective flashing ratchet

As a final example of modularity constraints, we con-
sider the “collective flashing ratchet,” a classic model in the
literature on the thermodynamics of information [21,52].
This system involves N overdamped particles evolving
under an additive potential

EðxÞ ¼ λ
XN
v¼1

VðxvÞ; ð79Þ

where V is a single-particle potential and λ ∈ f0; 1g is a
control parameter that can be used to turn the potential on
and off. The single-particle potential V is chosen as an
asymmetrical sawtooth “ratchet” pattern, shown in Fig. 11,
where α ∈ ½0; 1=2� parameterizes the degree of asymmetry.
By manipulating λ over time, possibly in a way that

depends on measurements of the system, the particles can
be driven so as to have a net directional flux or to do work
against the externally applied force [53]. For instance, in a
feedback-control setup, λ is determined by the outcome of
some measurementM. The most common strategy involves
turning the ratchet potential on when the net force on the
particles is positive and turning it off otherwise, according
to the following measurement channel [21]:

qðmjxÞ ¼ δmfΘ½
X
v

V 0ðxvÞ�g; ð80Þ

where Θ is the Heaviside function. Note that this system
has been experimentally realized [54].
Suppose that starting from some initial distribution p, the

measurement in Eq. (80) is performed. As is common in the
literature [21], we assume that under p the particles are
identically and independently distributed and that each

particle is in the increasing part of the potential
[V 0ðxvÞ ≥ 0] with probability α (see Fig. 11). The meas-
urement outcome is then used to drive the system back to
distribution p while extracting work by manipulating the
system’s energy function, all while coupled to a heat bath at
inverse temperature β. We assume that the driving protocols
start and end on the same energy function and that only
additive potentials (without interaction terms) are applied to
the system during the driving [this assumption allows for
potentials such as Eq. (79), as well as many others].
The driving protocols obey Eq. (63) for a decomposition

where each particle is its own subsystem, corresponding to
the same type of ϕC as in Eq. (77), ϕCðpÞðxÞ ¼

Q
v∈V pðxvÞ.

As in Sec. VI A, we can use Eq. (34) to bound average
extractable work as hWi ≤ IϕC

accðX;MÞ=β. Using Eq. (69),

IϕC
accðX;MÞ ¼

XN
v¼1

IðXv;MÞ ¼ N · IðX1;MÞ; ð81Þ

where we use that the measurement provides the same
information about each particle, IðXv;MÞ ¼ IðX1;MÞ for
all v (as follows from a symmetry argument).
In Appendix C 4, we show that IϕC

accðX;MÞ can be
computed in closed form. Values of IϕC

accðX;MÞ for different
values of N (the number of particles) and α (the asymmetry
parameter) are plotted in Fig. 12 (left). Note that the
accessible information shows a nonmonotonic behavior
in the number of particles for α ≠ 0.5. This behavior occurs
because, for a highly asymmetric potential, the total amount
of acquired information grows with N: IðX;MÞ grows from
a minimum value of h2ðαÞ for N ¼ 1 to a maximum value
of ln 2 as N → ∞. Given this observation, we also calculate
the “efficiency” of the measurements in terms of the ratio
IϕC
accðX;MÞ=IðX;MÞ. This calculation is shown in Fig. 12
(right) for various values of N and α. Interestingly, lower
values of α (higher values of asymmetry) have higher
efficiency values.
In the N → ∞ limit, accessible information and effi-

ciency converge to a single value, irrespective of α. In
Appendix C 4, we show that the accessible information
IϕC
accðX;MÞ converges to 1=π ≈ 0.32 nats, while the effi-
ciency IϕC

accðX;MÞ=IðX;MÞ converges to 1=ðπ ln 2Þ ≈ 0.46
(dotted lines in Fig. 12).

FIG. 10. A generalized Szilard box with multiple particles [20].

α 1 − α
x

1

V

FIG. 11. The sawtooth potential of the flashing ratchet, from
Ref. [21].
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For a different (and complementary) theoretical analysis
of extracted work in a feedback-controlled flashing ratchet,
see Ref. [53].

VII. COARSE-GRAINED CONSTRAINTS

In our final results section, we consider bounds on EP
and work that arise from coarse-grained constraints.
We begin by introducing some notation and prelimi-

naries. Let ξ∶X → Z be some coarse graining of the
microscopic state space X, where Z is a set of macro-
states. For any distribution p over X, we use pZðzÞ ¼R
δξðxÞðzÞpðxÞdx to indicate the corresponding distribu-

tion over the macrostates Z, pXjZðxjzÞ ¼ pðxÞ=pZðzÞ to
indicate the conditional probability distribution of micro-
states within macrostates, and PZ ≔ fpZ∶p ∈ Pg to
indicate the set of all coarse-grained distributions.
Finally, for any generator L and distribution p, we use
½Lp�Z to indicate the resulting instantaneous dynamics of
the coarse-grained distribution pZ.
To derive our bounds, we suppose that the dynamics over

the coarse-grained distributions are closed; i.e., for all
L ∈ Λ,

pZ ¼ qZ ⇒ ½Lp�Z ¼ ½Lq�Z ∀ p; q ∈ P: ð82Þ

Given this assumption, the evolution of the coarse-grained
distribution pZ can be represented by a coarse-grained
generator, which we write as ∂tpZ ¼ L̂pZ (discussed in
detail below).
We can specify more concrete conditions that guarantee

that (82) holds for a given generator L (see Appendix D for
details). For a discrete-state rate matrix L, it is satisfied
when X

x∶ξðxÞ¼z

Lxx0 ¼ L̂z;ξðx0Þ ∀ x0; z ≠ ξðx0Þ; ð83Þ

where L̂z;z0 is some coarse-grained transition rate from
macrostate z0 to macrostate z. Equation (83) states that, for

each microstate x0, the total rate of transitions from x0 to
microstates located in another macrostate z ≠ ξðx0Þ
depends only on the macrostate ξðx0Þ, not on x0 directly.
This condition has been sometimes called “lumpability” in
the literature [55].
For a continuous-state master equation, Eq. (82) is

satisfied when a continuous-state version of Eq. (83) (with
sums replaced by integrals) holds. Moreover, for certain
Fokker-Planck equation and linear coarse-graining func-
tions, Eq. (83) can be replaced by a simple coarse-graining
condition on the energy functions. Suppose each L ∈ Λ is a
Fokker-Planck operator like

Lp ¼ ∇ · ð∇ELÞpþ β−1Δp ð84Þ

and that ξ is a linear function: ξðxÞ ¼ Wx (whereW is some
full-rank m × n matrix, m ≤ n). Without loss of generality,
we assume that W is scaled so that WWT ¼ I [56]. In
addition, suppose that each energy function satisfies

W∇ELðxÞ ¼ −F̂½ξðxÞ� ∀ x ð85Þ

for some arbitrary macrostate drift function F̂∶Z → R.
Then, the coarse-grained generator L̂ itself will have a
Fokker-Planck form (see Ref. [57] and Appendix D):

L̂pZ ¼ −∇ · F̂pZ þ β−1ΔpZ: ð86Þ

The right side of Eq. (86) depends only on pZ and not the
full microstate distribution p, so Eq. (82) is satisfied.
Importantly, if Eq. (82) holds, the EP rate at time t can be

bounded as (see Appendix D)

_Σ½pðtÞ; LðtÞ� ≥ −
X
z

∂tpZðz; tÞ ln
pZðz; tÞ
πLðtÞZ ðzÞ

≥ 0; ð87Þ

where ∂tpZðtÞ ¼ L̂pZðtÞ and πLðtÞZ is the coarse-grained
version of πLðtÞ, the stationary distribution of LðtÞ. The
right-hand side of Eq. (87) is the coarse-grained version of
Eq. (11), which arises from the macrostate distribution pZ
being out of equilibrium. We then define the total “coarse-
grained EP” over the course of the protocol as the time
integral of the middle term in Eq. (87):

Σ̂ðpZ → p0
ZÞ ¼

Z
1

0

−
X
z

∂tpZðz; tÞ ln
pZðz; tÞ
πLðtÞZ ðzÞ

dt: ð88Þ

Given (87), the coarse-grained EP serves as a non-negative
lower bound on the total EP:

Σðp → p0Þ ≥ Σ̂ðpZ → p0
ZÞ ≥ 0: ð89Þ

Note that Ref. [58] previously derived a coarse-grained EP
rate for discrete-state master equations, which differs from
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FIG. 12. Left: accessible information IϕC
accðX;MÞ for the

collective flashing ratchet, as a function of N (number of
particles) and α (asymmetry). Right: the efficiency of the
measurements, IϕC

accðX;MÞ=IðX;MÞ.
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the one that appears on the right-hand side in Eq. (87);
however, Eq. (87) can be seen as the “nonadiabatic
component” of the coarse-grained EP rate from Ref. [58]
and is a lower bound on it [25].
We say that the available driving protocols obey coarse-

grained constraints if the generators L ∈ Λ exhibit closed
dynamics over Z [Eq. (82)] and there is some operator
ϕ̂∶PZ → PZ that obeys the Pythagorean identity [Eq. (14)]
and the commutativity relation [Eq. (16)] with respect to all
L̂. For example, this coarse-grained operator ϕ̂ might
reflect the presence of symmetry or modularity constraints
on the coarse-grained dynamics.
We can then use Eq. (89) and the framework developed

in Sec. III to derive bounds on work and EP. In particular,
Eq. (18) implies the following bound on coarse-grained EP:
Σ̂ðpZ → p0

ZÞ ≥ D½pZkϕ̂ðpZÞ� −D½p0
Zkϕ̂ðp0

ZÞ� ≥ 0. Using
Eq. (89), we can then bound overall EP as

Σðp → p0Þ ≥ D½pZkϕ̂ðpZÞ� −D½p0
Zkϕ̂ðp0

ZÞ� ≥ 0: ð90Þ

Using Eq. (2), we can also bound extractable work as

Wðp→p0Þ≤FEðpÞ−FE0 ðp0Þ
−fD½pZkϕ̂ðpZÞ�−D½p0

Zkϕ̂ðp0
ZÞ�g=β: ð91Þ

Equations (90) and (91) can also be used to derive bounds
on average work extraction in feedback-control protocols,
using the strategy described in Sec. IV.
If ϕ̂ represents coarse-grained symmetry or modularity

constraints, then Eq. (90) implies that any asymmetry or
intersubsystem correlation in the macrostate distribution
can only be dissipated away, not turned into work. Another
simple application occurs when all L ∈ Λ have the same
coarse-grained equilibrium distribution; i.e., there is some
πZ such that L̂πZ ¼ 0 for all L. In this case, ϕ̂ðpÞ ¼ πZ
satisfies Eqs. (14) and (16) at the coarse-grained level
[compare to the derivation of Eq. (27) above]. Applying
Eq. (90) then gives

Σðp → p0Þ ≥ DðpZkπZÞ −Dðp0
ZkπZÞ ≥ 0; ð92Þ

as well as a corresponding extractable work bound, as in
Eq. (91). This result shows that, if the coarse-grained
equilibrium distribution πZ cannot change, then any
deviation between the actual coarse-grained distribution
pZ and πZ must be dissipated as EP, not turned into work.

A. Example: Szilard box

We demonstrate our results on coarse-grained constraints
using the Szilard box. We consider a similar setup as in
Secs. VA and VI A, where there is a single overdamped
particle in a box coupled to a bath at inverse temperature
β ¼ 1. However, we now assume that there is a vertical
gravitational force, as illustrated in Fig. 13. Formally, this

assumption means that the available potential energy
functions have the form

Eλðx1;x2Þ¼Vpðx1−λÞþVwðjx1jÞþVwðjx2jÞþκx2; ð93Þ

where κ is a fixed constant that determines the strength of
gravity. Unlike Eq. (44), this energy function in Eq. (93) no
longer obeys the reflection symmetry ðx1; x2Þ ↦ ðx1;−x2Þ.
The microstate of the particle is represented by the

horizontal and vertical position x ¼ ðx1; x2Þ. We consider a
coarse graining in which the macrostate is the vertical
coordinate of the particle Z ¼ X2, corresponding to the
coarse-graining function ξðx1; x2Þ ¼ Wx ¼ x2 with
W ¼ ½0 1�. It is easy to check that the potential energy
functions in Eq. (93) satisfy

W∇EλðxÞ ¼ ∂x2 ½Vwðjx2jÞ þ κx2�; ð94Þ

which obeys Eq. (85) and, therefore, guarantees that
the coarse-grained dynamics are closed. In fact, the
coarse-grained generators have the Fokker-Planck form
of Eq. (86) with the coarse-grained drift function
F̂ðx2Þ ¼ −∂x2 ½Vwðjx2jÞ þ κx2�, which leads to the follow-
ing Boltzmann stationary distribution:

πX2
ðx2Þ ∝ e−β½Vwðjx2jÞþκx2�

¼ 1½−1;1�ðx2Þe−βκx2 ; ð95Þ

where in the second line we used the form of Vwð·Þ from
Eq. (45). Since the coarse-grained equilibrium distribu-
tion is the same for all energy functions having the form
Eq. (93), we can use the EP bound in Eq. (92).
Suppose that the system starts from some initial

distribution p and is then driven to a final equilibrium
distribution p0 while extracting work. We assume that the
partition is removed at the beginning and end of the protocol,
corresponding to the energy function E∅ðx1; x2Þ ¼
Vwðjx1jÞ þ Vwðjx2jÞ þ κx2, with the Boltzmann distribution

π∅ðx1; x2Þ ∝ 1½−1;1�2ðx1; x2Þe−βκx2 : ð96Þ
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FIG. 13. A two-dimensional Szilard box with a Brownian
particle, in the presence of gravity.

WORK, ENTROPY PRODUCTION, AND THERMODYNAMICS OF … PHYS. REV. X 11, 041024 (2021)

041024-19



We also assume that the final distribution is in equilibrium,
so p0 ¼ π∅. Then, the extractable work involved in this
transformation can be expressed as

Wðp → π∅Þ ¼ FE∅ðpÞ − FE∅ðπ∅Þ − Σðp → π∅Þ
¼ Dðpkπ∅Þ − Σðp → π∅Þ; ð97Þ

where we use Eqs. (2) and (5). We can then upper bound
extractable work by combining Eq. (97) with various lower
bounds on Σðp → π∅Þ.
For instance, the second law states that Σðp → π∅Þ ≥ 0,

so

Wðp → π∅Þ ≤ Dðpkπ∅Þ: ð98Þ

We can also derive a stronger bound by exploiting coarse-
graining constraints. For the coarse graining discussed above,
Eq. (92) implies that Σðp → π∅Þ ≥ DðpX2

kπX2
Þ, which

gives the bound

Wðp → π∅Þ ≤ Dðpkπ∅Þ −DðpX2
kπX2

Þ
¼ DðpX1jX2

kπ∅X1jX2
Þ; ð99Þ

where we've used the chain rule of KL divergence.
We can also bound EP and work using other kinds of

constraints. For instance, the energy functions in Eq. (93)
have no interaction terms between x1 and x2 and, there-
fore, obey modularity constraints for the decomposition
C ¼ ffX1g; fX2gg (see the analysis in Sec. VI A). We can
then bound EP and work using the operator ϕC, as defined
above in Eq. (70). In particular, using Theorem 2, we have
that

Σ½p → π∅� ¼ D½pkϕCðpÞ� þ Σ½ϕCðpÞ → π∅�
≥ D½pkϕCðpÞ�; ð100Þ

which implies the extractable work bound

Wðp → π∅Þ ≤ Dðpkπ∅Þ −D½pkϕCðpÞ�
¼ D½ϕCðpÞkπ∅�: ð101Þ

Finally,wecanalsocombinemodularity andcoarse-grained
constraints. The coarse-grained constraints imply that
Σ½ϕCðpÞ → π∅� ≥ D½ϕCðpÞX2

kπX2
� by Eq. (92). Plugging

into Eq. (100) gives the bound

Σ½p → π∅� ≥ D½pkϕCðpÞ� þD½ϕCðpÞX2
kπX2

�; ð102Þ

resulting in the extractable work bound

W½p → π∅� ≤ D½ϕCðpÞX1jX2
kπ∅X1jX2

�; ð103Þ

which follows from combining Eqs. (97) and (102), and then
using the Pythagorean theorem and the chain rule for KL
divergence.
We now illustrate these bounds using a concrete set of

initial distributions. Imagine that the initial distribution p is
the equilibrium distribution π∅ restricted to half the box, as
determined by a rotated separating line at some angle
θ ∈ ½−π; π�:

pθðx1; x2Þ ¼
1

2
π∅ðx1; x2ÞΘðx2 sin θ − x1 cos θÞ: ð104Þ

[Compare to Eq. (49), for the Szilard box without gravity.]
For these initial distributions and gravity parameter κ ¼ 1,
we plot the four extractable work bounds derived above
[Eqs. (98), (99), (101), and (103)], as a function of θ in
Fig. 14 (values are calculated numerically). Note that,
unlike the results presented in Figs. 6 and 9, the plots are no
longer symmetric under the transformation θ ↦ −θ. This
result arises because gravity breaks the vertical reflection
symmetry, so the nonequilibrium free energy of a distri-
bution concentrated on the top half of the box (θ ¼ π=2) is
greater than the nonequilibrium free energy of a distribu-
tion concentrated on the bottom half of the box
(θ ¼ −π=2). It can also be seen that work bounds derived
from coarse-grained constraints [Eq. (99) (orange)] can be
either weaker or stronger than the work bounds derived
from modularity constraints [Eq. (101) (green)], depending
on the value of θ. For all θ, however, the work bound
derived by combining both constraints [Eq. (103) (red)] is
stronger than the work bound derived from either constraint
individually.

VIII. RELEVANT LITERATURE

In previous work on the general topic of thermody-
namic bounds under constraints, Wilming, Gallego, and
Eisert [59] consider how extractable work depends on
constraints on the Hamiltonian, given a quantum system
coupled to a finite-sized heat bath. That paper derives an
upper bound on the work that could be extracted by

FIG. 14. Szilard box with gravity: bounds on extractable work
as a function of θ, as derived from the second law [in blue,
Eq. (98)], coarse-grained constraints [in orange, Eq. (99)],
modularity constraints [in green, Eq. (101)], and a combination
of modularity+coarse-grained constraints [in red, Eq. (103)].
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carrying out a physical process which consists of sequen-
ces of (i) unitary transformations of the system and bath
and (ii) total relaxations of the system to some equilibrium
Gibbs state (see also a similar setup for closed systems in
Ref. [60]). Building on Ref. [59], Ref. [44] analyzes the
efficiency of a heat engine coupled to two baths and
subject to “local control” constraints (i.e., a many-particle
system where local Hamiltonians can be changed but the
interaction Hamiltonians cannot). In contrast to these
works, we consider a classical system coupled to idealized
reservoir(s). We then derive bounds on EP and work for a
much broader set of protocols.
At a high level, our approach complements previous

research on the relationship between EP, extractable work,
and different aspects of the driving protocol, such as
temporal duration [61–67], stochasticity of control param-
eters [68], nonidealized work reservoirs [69], cyclic pro-
tocols [67,70], the presence of additional conservation laws
[71], and the design of “optimal protocols” [72–74].
There is also previous work related to our analysis of

thermodynamics of information under constraints in
Sec. IV. Reference [75] recently analyzed the thermody-
namics of feedback control under a somewhat different
formulation of constraints [76]. In this work, we analyze
the thermodynamics of information for a broader set of
constraints. It is not immediately clear how the framework
in Ref. [75] compares to ours, or whether it could be
applied to the examples considered in this paper, although
such a comparison is an interesting direction for
future work.
Some of our results concerning work extraction under

modularity constraints in Sec. VI have appeared in prior
literature. Equation (66) is derived in Ref. [46] for the special
case of an isothermal processes with two nonoverlapping
subsystems, where one of the subsystems is held fixed. For
the more general case of an arbitrary discrete-state system
coupled to one or more reservoirs which have rate matrices
as in Eq. (61), Eq. (66) was also previously derived in
Refs. [19,77], while Eq. (67) was previously derived in
Refs. [19,77,78]. Decompositions with overlap were pre-
viously considered in Refs. [79,80]. In addition, Example 1
in Ref. [81] can be used to derive the first inequality Eq. (65)
for discrete-state systems [82].
Those papers also derive some results that are more

general than the ones derived here, in that they apply even
if the overlap changes state. Our paper goes beyond this
previous work, though, to include continuous-state sys-
tems and to derive inequalities such as D½pkϕCðpÞ�−
D½p0kϕCðp0Þ� ≥ 0, albeit for the more restricted scenario
where the overlap does not change state.
Some of our results concerning work extraction under

symmetry constraints, presented in Sec. V, appear in
previous work on quantum thermodynamics. For a finite-
state quantum system coupled to a work reservoir and heat
bath, Vaccaro et al. [23] investigate how much work can be

extracted by bringing some initial quantum state ρ to a
maximally mixed state, with a uniform initial and final
Hamiltonian, using discrete-time operations that commute
with the action of some symmetry group G. It is shown that
the work that can be extracted from ρ under such trans-
formations is equal to the work that can be extracted from the
(quantum) twirling ϕGðρÞ, analogous to Eq. (24) for sym-
metry constraints. This research also derives an operational
measure of asymmetry that is the quantum equivalent of
D½pkϕGðpÞ� and shows that asymmetry can only decrease
under operations that commute with G. Janzing [22] extends
Ref. [23] to consider arbitrary Hamiltonians, in the process
deriving analogs of our decomposition of free energy
[Eq. (21)] for the special case of the twirling operator ϕG.
A similar decomposition of free energy into coherent and
incoherent components has recently appeared in
Refs. [83,84] (which is a special case of the result in
Ref. [22], since a decohering map is a twirling operator
[85]). Finally, the idea of probability distributions that are
invariant under symmetry groups, as well as a version of the
twirling operator ϕG, is a topic of research in probability and
statistics; for details, see Chap. 3 in Ref. [38].
While our approach is restricted to classical systems, in

some respects our results for symmetry constraints are
more general than this earlier work, since they hold for
arbitrary (discrete and/or uncountably infinite) state spaces
and for systems coupled to more than one reservoir (see
Sec. IX). Moreover, for Fokker-Planck dynamics, we
derive simple conditions for symmetry constraints stated
in terms of the energy functions, which makes these results
applicable to a large set of problems in stochastic thermo-
dynamics and biophysics.
More fundamentally, one of the ways in which we go

beyond previous literature on symmetry and modularity
constraints is by providing a unified mathematical frame-
work that applies to a broad set of constraints, including
symmetry, modularity, and coarse-grained constraints (as
well as their combinations) as special cases. A key idea in
our framework is that the information-geometric
Pythagorean identity [Eq. (14)] is the essential property
that allows an operator ϕ to uncover the thermodynami-
cally accessible part of any distribution p (assuming also
that ϕ commutes with the dynamics). The Pythagorean
identity is satisfied by many ϕ, including both linear
operators such as twirling operators ϕG and nonlinear
operators such as modular decomposition operators ϕC.
We believe this idea can be extended to the quantum
domain, though we leave this extension for future work.
Finally, our approach is also related to “resource theories,”

which are an active area of research in various areas of
quantum physics [86], including quantum thermodynamics
[59,87–91]. A resource theory quantifies a physical resource
in an operational way, in terms of what transformations are
possible when the resource is available. Most resource
theories are based on a common set of formal elements,
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such as a resource quantifier (a real-valued function that
measures the amount of a resource), a set of free states
(statistical states that lack the resource), and free operations
(transformations between statistical states that do not
increase the amount of resource). In fact, some previous
work on symmetry constraints in quantum thermodynamics
[22,23] can be seen as part of a broader literature on the
resource theory of asymmetry [92–94].
Our approach has similar operational motivations as

resource theories; for example, we define accessible free
energy in an operational way, as a quantity that governs
extractable work under protocol constraints. Moreover,
many elements of our framework are analogous to elements
of the resource theory framework: The set of allowed
generators (which we call Λ) plays the role of the free
operations, the image of the operator ϕ plays the role of the
set of free states, and the KL divergence D½pkϕðpÞ� serves
as the resource quantifier. In addition, the commutativity
relation Eq. (16) (see Sec. III) has recently appeared in
work on so-called resource-destroying maps [95].
However, unlike most resource theories, our focus is on
the thermodynamics of classical systems modeled as driven
continuous-time open systems. Further exploration of the
connection between our approach and resource theories is
left for future work.

IX. DISCUSSION

In this paper, we analyzed the EP and work incurred by
a driving protocol that carries out some transformation
p → p0 while subject to constraints on the set of available
generators. We constructed a general framework that
allowed us derive several decompositions and bounds
on EP and extractable work and demonstrated that this
framework has implications for the thermodynamics of
feedback control under constraints. Finally, we used our
framework to analyze three broad classes of protocol
constraints: reflecting symmetry, modularity, and coarse
graining.
Note that our bounds on EP and extractable work, such

as Eqs. (18) and (25), are expressed in terms of state
functions; i.e., they depend only on the initial and final
distributions p and p0 and not on the path that the system
takes in going from p to p0. In general, it may be possible
to derive other bounds on work and EP that are not written
in this form, which may be tighter. Nonetheless, bounds
written in terms of state functions have some important
advantages. In particular, they allow one to quantify the
inherent “thermodynamic value” (in terms of EP and
work) of a distribution p relative to a set of available
generators, irrespective of what protocol brought the
system there or what future protocols that system may
undergo (as long as those protocols obey the relevant
constraints).
For simplicity, our results were derived for isothermal

protocols, where the system is coupled to a single heat

bath at a constant inverse temperature β and obeys local
detailed balance (LDB). Nonetheless, many of our results
continue to hold for more general protocols, in which the
system is coupled to any number of thermodynamic
reservoirs and/or violates LDB. For a general protocol,
our EP rate in Eq. (11) refers to the so-called non-
adiabatic EP rate [25,28,96], which is a non-negative
quantity that reflects the contribution to EP that is due to
the system being out of the stationary distribution. In the
general case, our decompositions in Secs. III and III, as
well as EP lower bounds in Eqs. (18) and (33), apply to
nonadiabatic EP rather than overall EP. Importantly, the
nonadiabatic EP rate is a lower bound on the overall EP
rate whenever the stationary distribution of L is sym-
metric under conjugation of odd-parity variables [96],
which holds in most cases of interest such as discrete-
state master equations (which typically have no odd
variables), overdamped dynamics (which have no odd
variables), and many types of underdamped dynamics. In
such cases, Eqs. (18) and (33) provide lower bounds not
only on the nonadiabatic EP, but also on the overall EP,
regardless of the number of coupled reservoirs or LDB.
However, the relationship between work and EP in
Eq. (2), as well as our bounds on work which make
use of this relationship such as Eqs. (24) and (25), hold
only for isothermal protocols. Note that our EP bound for
closed coarse-grained dynamics [Eq. (87)] concerns the
overall EP rate, not the nonadiabatic EP rate, even for
nonisothermal protocols (see Appendix D 2 for details).
There are several possible directions for future research.
First, it remains an open question of whether our

framework can also be used to analyze other classes of
constraints, beyond the three classes (symmetry, modular-
ity, and coarse graining) considered in this paper.
Second, our results point to a novel connection between

entropy production, which plays a central role in non-
equilibrium thermodynamics, and the Pythagorean iden-
tity in Eq. (14), which plays a central role in information
geometry. This connection contributes to the growing
number of existing results that demonstrate formal rela-
tionships between information geometry and nonequili-
brium thermodynamics [97–102]. One direction for future
work would be to extend the framework developed in this
work for classical to quantum systems. In this extension,
one would derive bounds on quantum work and EP by
considering a quantum operator ϕ over density matrices
which obeys quantum analogs of the Pythagorean identity
in Eq. (14) (see p. 44 in Ref. [103]) and the commutativity
relation in Eq. (16).
Finally, our results may also lead to some new treatments

of foundational questions in thermodynamics. In stochastic
thermodynamics, probability distributions over system
states are usually interpreted in a “subjective” sense, in
that the distribution p assigned to a system typically
reflects what one knows about the system (for this reason,
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this distribution changes once a measurement is made of
the system’s state [2]). At the same time, our results show
that, for constrained driving protocols, one can often assign
a different distribution to the system, ϕðpÞ, which reflects
what one can control about the system. This assignment
also leads to the difference between the overall nonequili-
brium free energy, defined in terms of the distribution p,
and the accessible free energy, defined in terms of the
distribution ϕðpÞ. Note that thermodynamic entropy is
often understood in an operational way, e.g., in terms of
constrained macroscopic control, as has been previously
discussed by Jaynes [104] and others. An interesting
direction for future work would explore whether the
distinction between the distributions p and ϕðpÞ maps
onto the distinction between (microscopic) statistical
mechanical entropy and (macroscopic) thermodynamic
entropy. In particular, one might ask whether this mapping
can resolve some classic paradoxes concerning the relation-
ship between statistical mechanical and thermodynamic
entropy, such as the Gibbs paradox [104] (mixing of
indistinguishable particles increases statistical mechanical
entropy but not thermodynamic entropy) and Loschmidt’s
paradox (for an isolated Hamiltonian system, statistical
mechanical entropy remains constant while the thermody-
namic entropy can increase). This direction could also be
related to a recent axiomatic treatment of thermodynamic
entropy which has been developed within the framework of
quantum resource theory [105].
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APPENDIX A: DERIVATIONS FOR SECS. III
AND IV

1. Proofs of Secs. III and III

We first prove a few helpful lemmas.
Lemma 1.—If L obeys eLϕðpÞ ¼ ϕðeLpÞ for all p ∈ P,

then L has a stationary distribution π ∈ img ϕ.
Proof.—Let q be some stationary distribution of L. Then,

eLϕðqÞ ¼ ϕðeLqÞ ¼ ϕðqÞ: ðA1Þ

Thus, ϕðqÞ ∈ img ϕ is stationary under L. ▪
Lemma 2.—If eτLϕðpÞ ¼ ϕðeτLpÞ for all p ∈ P and

τ ≥ 0, then, for any r; s ∈ P,

−
d
dt

DfrðtÞkϕ½sðtÞ�g ≥ 0;

where ∂tr ¼ Lr and ∂ts ¼ Ls.
Proof.—Expand the derivative as

−
d
dt

DfrðtÞkϕ½sðtÞ�g

¼ lim
τ→0

1

τ
fD½rkϕðsÞ� −D½eτLrkϕðeτLsÞ�g

¼ lim
τ→0

1

τ
fD½rkϕðsÞ� −D½eτLrkeτLϕðsÞ�g ≥ 0;

where we first use the commutativity relation and then use
the data-processing inequality for KL divergence [106]. ▪
Lemma 3.—Consider a protocol fLðtÞ∶t ∈ ½0; 1�g and an

operator ϕ that obeys Eqs. (14) and (16). Then

ϕ½pðtÞ� ¼ ϕðpÞðtÞ;

where pðtÞ is the distribution at time t given initial
distribution p and ϕðpÞðtÞ is the distribution at time t
given initial distribution ϕðpÞ.
Proof.—Using Lemma 2 with r ¼ ϕðpÞðtÞ and s ¼ pðtÞ,

d
dt

DfϕðpÞðtÞkϕ½pðtÞ�g ≤ 0: ðA2Þ

Note that

Df½ϕðpÞ�ð0Þkϕ½pð0Þ�g ¼ D½ϕðpÞkϕðpÞ� ¼ 0

and that DfϕðpÞðtÞkϕ½pðtÞ�g ≥ 0 for all t by non-
negativity of KL divergence. Combined with Eq. (A2),
this result implies DfϕðpÞðtÞkϕ½pðtÞ�g ¼ 0 for all t, and,
therefore, ϕðpÞðtÞ ¼ ϕ½pðtÞ� (see Theorem 8.6.1 in
Ref. [107]). ▪
We are now ready to prove Theorems 1 and 2. Note

that, in the proof of Theorem 1, we make the assumption
that there is some stationary distribution πL of L such that
DðpkπLÞ < ∞, and similarly, in Theorem 2, we make the
assumption that D½pðtÞkπLðtÞ� < ∞ at all t ∈ ½0; 1�. These
are weak and physically realistic assumptions, which
essentially mean that we restrict our attention to distri-
butions with finite nonequilibrium free energy
[see Eq. (20)].
In addition, in these proofs, we use that the EP rate

incurred by distribution p under the generator L with
stationary distribution π can be written as

_Σðp;LÞ ¼ lim
τ→0

1

τ
½DðpkπÞ −DðeτLpkπÞ�: ðA3Þ

This expression can be derived from Eq. (11), by noting
that the KL divergence can be written as
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DðpkπÞ ¼ −SðpÞ − Ep½ln π�; ðA4Þ

where Ep indicates expectation under the distribution p,
and then using that

−
X
x

∂tpxðtÞ lnpx ¼ lim
τ→0

1

τ
½SðeτLpÞ − SðpÞ�; ðA5Þ

X
x

∂tpxðtÞ ln πx ¼ lim
τ→0

1

τ
fEeτLp½ln π� − Ep½ln π�g; ðA6Þ

where ∂tpxðtÞ is defined as in Eq. (10). (As usual,
summations should be replaced by integrals for continu-
ous-state systems.)
Proof of Theorem 1.—Consider a generator L with a

stationary distribution π and some distribution p ∈ P such
that DðpkπÞ < ∞. By Lemma 1, ϕðπÞ ∈ img ϕ is also a
stationary distribution of L. If L has a unique stationary
distribution, then π ¼ ϕðπÞ and so π ∈ img ϕ; otherwise,
as long as D½pkϕðπÞ� < ∞ (see Ref. [24]), we can assume
that ϕðπÞ ¼ π in Eq. (A3). Then, assuming that π ∈ img ϕ,
we rewrite the term in the brackets in Eq. (A3) as

D½pkϕðpÞ� þD½ϕðpÞkπ�
−D½eτLpkϕðeτLpÞ� −D½ϕðeτLpÞkπ�

¼ D½pkϕðpÞ� −D½eτLpkϕðeτLpÞ�
þD½ϕðpÞkπ� −D½ϕðeτLpÞkπ�

¼ D½pkϕðpÞ� −D½eτLpkϕðeτLpÞ�
þD½ϕðpÞkπ� −D½eτLϕðpÞkπ�;

where we use the Pythagorean identity of Eq. (14),
rearranged, and then use the commutativity relation of
Eq. (16). Plugging into Eq. (A3) gives

_Σðp;LÞ ¼ lim
τ→0

1

τ
fD½pkϕðpÞ� −D½eτLpkϕðeτLpÞ�g

þ lim
τ→0

1

τ
fD½ϕðpÞkπ� −D½eτLϕðpÞkπ�g

¼ −
d
dt

DfpðtÞkϕ½pðtÞ�g þ _Σ½ϕðpÞ; L�:

The non-negativity of −ðd=dtÞDfpðtÞkϕ½pðtÞ�g follows by
taking r ¼ s ¼ p in Lemma 2. ▪
Proof of Theorem 2.—Using Eq. (12) and Theorem 1,

write

Σðp → p0Þ ¼
Z

1

0

_Σ½pðtÞ; LðtÞ�dt

¼ −
Z

1

0

d
dt

DfpðtÞkϕ½pðtÞ�gdt

þ
Z

1

0

_Σfϕ½pðtÞ�; LðtÞgdt:

Both integrals have a simple expression. First, by the
fundamental theorem of calculus,

−
Z

1

0

d
dt

DfpðtÞkϕ½pðtÞ�gdt ¼ D½pkϕðpÞ� −D½p0kϕðp0Þ�:

This expression is non-negative, since −ðd=dtÞDfpðtÞk
ϕ½pðtÞ�g ≥ 0 by Lemma 2. Second, using Lemma 3,Z

1

0

_Σfϕ½pðtÞ�; LðtÞgdt ¼
Z

1

0

_Σ½ϕðpÞðtÞ; LðtÞ�dt

¼ Σ½ϕðpÞ → ϕðp0Þ�:

▪

2. Trajectory-level version of Eq. (19)

Stochastic thermodynamics shows that thermodynamic
properties of physical processes (such as heat, work, and
EP) can be defined as stochastically fluctuating quantities
at the level of individual trajectories. We first briefly review
the basic concepts of stochastic thermodynamics (for more
details, the reader should consult Refs. [33,108–110]).
Let x ¼ ðx;…; x0Þ indicate a continuous-time trajectory

of system states x over time interval t ∈ ½0; 1�, where x and
x0 indicate the initial and final system states, respectively,
and let PðxjxÞ indicate the conditional probability of
observing trajectory x given initial state x. For a given
initial distribution pðxÞ, the probability of observing
trajectory x is then given by pðxÞ ¼ pðxÞPðxjxÞ, and
the corresponding final distribution is given by
p0ðx0Þ ¼ R

Pðx0jxÞpðxÞdx. In addition, let P̃ðx̃jx0Þ indicate
the conditional probability of observing the time-reversed
and trajectory x̃ ¼ ðx0;…; xÞ given the final state x0 under
a “time-reversed” driving protocol [33].
Trajectory-level EP is then defined in terms of the

asymmetry between forward and reversed trajectory
probabilities:

σpðxÞ ¼ lnpðxÞ − lnp0ðx0Þ þ ln
PðxjxÞ
P̃ðx̃jx0Þ ; ðA7Þ

which is sometimes referred to as a “detailed fluctuation
theorem.” (The above expression should be slightly modi-
fied in the presence of odd-parity variables such as
momentum, though in a way which does not change our
derivations; see Ref. [111].) The expectation of trajectory-
level EP across all trajectories is equal to the standard
expression for integrated EP as used in the main text:

hσpðxÞi ¼ Σðp → p0Þ; ðA8Þ

where h·i refers to expectations under the trajectory dis-
tribution pðxÞ. Furthermore, by a simple manipulation, the
detailed fluctuation theorem in Eq. (A7) leads to the
following integral fluctuation theorem for EP:
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he−σpi ¼
Z
pðxÞ>0

pðxÞPðxjxÞp
0ðx0ÞP̃ðx̃jx0Þ
pðxÞPðxjxÞ Dx

¼
Z
pðxÞ>0

p0ðx0ÞP̃ðx̃jx0ÞDx ¼ γ; ðA9Þ

where
R
·Dx is the path integral. In this result, γ ∈ ð0; 1�

reflects the absolute irreversibility of the process under
initial distribution p [112]. When p has full support,
γ ¼ 1, giving the standard integral fluctuation theo-
rem he−σpi ¼ 1.
Now consider the extra trajectory-level EP incurred by

some trajectory x on initial distribution p, additional to the
trajectory-level EP incurred by the same trajectory on initial
distribution ϕðpÞ:

mðxÞ ≔ σpðxÞ − σϕðpÞðxÞ ðA10Þ

¼ ln
pðxÞ

ϕðpÞðxÞ − ln
p0ðx0Þ

ϕðpÞ0ðx0Þ ðA11Þ

¼ ln
pðxÞ

ϕðpÞðxÞ − ln
p0ðx0Þ

ϕðp0Þðx0Þ ðA12Þ

where in Eq. (A11) we use that the last term in Eq. (A7)
cancels (as it does not depend on the initial or final
distributions) and in Eq. (A10) we use that ϕðpÞ0 ¼
ϕðp0Þ by Lemma 3. Equation (A10) appears in the main
text as Eq. (30). It is easy to verify that mðxÞ agrees in
expectation with the contraction of KL divergence between
p and ϕðpÞ:

hmi ¼ D½pkϕðpÞ� −D½p0kϕðp0Þ�; ðA13Þ

where, as before, h·i refers to expectations under the
trajectory distribution pðxÞ. Given Theorem 2, Eq. (A13)
implies that the expectation mðxÞ is also equal to the extra
total EP incurred by initial distribution p rather than the
accessible distribution ϕðpÞ:

hmi ¼ Σðp → p0Þ − Σ½ϕðpÞ → ϕðp0Þ�: ðA14Þ

In Ref. [34], it is shown that mðxÞ obeys a fluctuation
theorem (see also Ref. [35]). We rederive the relevant
results here. First, a simple rearrangement of Eq. (A11)
gives the following detailed fluctuation theorem:

mðxÞ ≔ ln
pðxÞ
p0ðx0Þ þ ln

PðxjxÞ
Qðx̃jx0Þ ; ðA15Þ

where the conditional distribution Qðx̃jx0Þ is given by

Qðx̃jx0Þ ≔ PðxjxÞϕðpÞðxÞ
ϕðpÞ0ðx0Þ :

In words, Qðx̃jx0Þ is the Bayesian posterior probability of
the trajectory x given final state x0, when the process begins
on initial distribution ϕðpÞ. A similar derivation as in
Eq. (A9) shows that m obeys an integral fluctuation
theorem:

he−mi ¼
Z
pðxÞ>0

p0ðx0ÞQðx̃jx0ÞDx ¼ χ: ðA16Þ

Here, χ ∈ ð0; 1� indicates the absolute irreversibility of the
process on initial distribution p relative to initial distribu-
tion ϕðpÞ. χ is equal to 1 when p and ϕðpÞ have the same
support, which then leads to a standard integral fluctuation
theorem he−mi ¼ 1.
Importantly, Eq. (A16) implies that the probability that

the trajectory-level EP on initial distribution p is ξ less than
the trajectory-level EP on initial distribution ϕðpÞ is
exponentially suppressed:

P½σp < σϕðpÞ − ξ� ¼ðaÞP½m < −ξ� ≤
ðbÞ

χe−ξ ≤
ðcÞ

e−ξ: ðA17Þ

Here, (a) uses the definition of mðxÞ, and (b) uses a
standard derivation in stochastic thermodynamics (see
Ref. [113] or the appendix in Ref. [34]), while (c) uses
that χ ∈ ð0; 1�.

APPENDIX B: SYMMETRY CONSTRAINTS

1. ϕG obeys the Pythagorean identity [Eq. (14)]

In the following derivations, all integrals should be
understood in the Lebesgue sense. For discrete state
systems, integrals over X can be replaced by summations.
The state space X is assumed to be Borel measurable.

Similarly, we assume that the action of the group G [i.e., the
function G × X → X∶ðg; xÞ ↦ gðxÞ] is Borel measurable.
Note that these assumptions imply that, for any probability
distribution p ∈ P, the function ðg; xÞ ↦ p½gðxÞ� is meas-
urable, since it is the composition of two Borel measurable
functions: ðg; xÞ ↦ gðxÞ and x ↦ pðxÞ.
We begin with a few intermediate results.
Lemma 4.—For any p ∈ P, g ∈ G, and x ∈ X,

ϕGðpÞðxÞ ¼ ϕGðpÞ½gðxÞ�:

Proof.—Using the definition of ϕG in Eq. (42), write

ϕGðpÞ½gðxÞ� ¼
Z
G
pfg0½gðxÞ�gdμðg0Þ

¼
Z
G
p½g0ðxÞ�dμðg0Þ ¼ ϕGðpÞðxÞ;

where we perform a change of variables x ↦ g−1ðxÞ and use
the invariance properties G and the Haar measure μ. ▪
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Lemma 5.—For any p ∈ P, measurable set Ω ⊆ X, and
function f∶X → R,

Z
Ω
pðxÞfðxÞ ¼

Z
Ω
ϕGðpÞðxÞfðxÞdx ðB1Þ

if the following three conditions hold: (i) gðΩÞ ¼ Ω for all
g ∈ G, (ii) fðxÞ ¼ f½gðxÞ� for all x ∈ X and g ∈ G, and
(iii) either j RΩ pðxÞfðxÞdxj < ∞ or f is measurable and
non-negative.
Proof.—To begin, write the left-hand side of

Eq. (B1) as

Z
Ω
pðxÞfðxÞdx ¼

Z
G

	Z
Ω
pðxÞfðxÞdx



dμðgÞ

¼
Z
G

	Z
g−1ðΩÞ

p½gðxÞ�f½gðxÞ�dx


dμðgÞ

¼
Z
G

	Z
Ω
p½gðxÞ�fðxÞdx



dμðgÞ: ðB2Þ

In the second line, we substitute x ↦ gðxÞ within each
inner integral while using that each g is a rigid trans-
formation (so the absolute value of its Jacobian is 1). In
the last line, we use conditions (i) and (ii).
We now show that we can exchange the order

of integrals in Eq. (B2) using condition (iii) and
Tonelli’s theorem. First, if f is measurable and non-
negative, then the function x ↦ p½gðxÞ�fðxÞ is non-
negative and measurable (since it is a product of two
non-negative measurable functions), so the integrals
can be exchanged by Theorem 3.7.7 in Ref. [114].
Alternatively, assume that j RΩ pðxÞfðxÞdxj < ∞, which
means that the function x ↦ pðxÞfðxÞ is integrable.
Then,

∞ >
Z
Ω
pðxÞjfðxÞjdx

¼
Z
G

	Z
Ω
pðxÞjfðxÞjdx



dμðgÞ ðB3Þ

¼
Z
G

	Z
g−1ðΩÞ

p½gðxÞ�jf½gðxÞ�jdx


dμðgÞ

¼
Z
G

	Z
Ω
p½gðxÞ�jfðxÞjdx



dμðgÞ; ðB4Þ

where the first line follows from definition of Lebesgue
integrability, while the rest follows from the same steps
as Eq. (B2). Given Eq. (B4), the function ðg; xÞ ↦
p½gðxÞ�fðxÞ must be integrable, which again allows us
to exchange the order of the integrals in Eq. (B2) (see
Theorem 3.7.8 in Ref. [114]).

We then derive our result by rewriting Eq. (B2) as

Z
Ω
pðxÞfðxÞdx ¼

Z
Ω

	Z
G
p½gðxÞ�fðxÞdμðgÞ



dx

¼
Z
Ω
ϕGðpÞðxÞfðxÞdx;

where we use the definition of ϕG. ▪
Finally, we prove that ϕG obeys the Pythagorean

identity.
Proposition 1.—For any p; q ∈ P such that D½pkϕG

ðqÞ� < ∞,

D½pkϕGðqÞ� ¼ D½pkϕGðpÞ� þD½ϕGðpÞkϕGðqÞ�: ðB5Þ

Proof.—For any p ∈ P, we indicate the support set as
supp p ¼ fx ∈ X∶pðxÞ > 0g. We first prove that

suppp ⊆ suppϕGðpÞ ⊆ suppϕGðqÞ: ðB6Þ

By the definition of ϕG in Eq. (42), if ϕGðpÞðxÞ > 0 for
some x ∈ X, then p½gðxÞ� > 0 for that x and some g ∈ G.
In addition, the assumption that D½pkϕGðqÞ� < ∞ implies
that suppp ⊆ supp ϕGðqÞ [107] (except for a set of
measure 0, which we can safely ignore). Combining
these facts implies that, if ϕGðpÞðxÞ > 0 for some x, then
ϕGðqÞ½gðxÞ� > 0 for that x—and, therefore, also
ϕGðqÞðxÞ > 0, since ϕGðqÞ is invariant under G (Lemma
4). This result proves that supp ϕGðpÞ ⊆ supp ϕGðqÞ.
Finally, by Lemmas 4 and 5,

Z
supp ϕGðpÞ

pðxÞdx ¼
Z
supp ϕGðpÞ

ϕGðpÞðxÞdx ¼ 1;

which implies that suppp ⊆ suppϕGðpÞ (up to a set of
measure 0).
Next, write the KL divergence on the left-hand side of

Eq. (B5) as [see Eq. (8.58) in Ref. [107]

D½pkϕGðqÞ�

¼
Z
suppp

pðxÞ ln pðxÞ
ϕGðqÞðxÞ

dx

¼D½pkϕGðpÞ�þ
Z
suppp

pðxÞ lnϕGðpÞðxÞ
ϕGðqÞðxÞ

dx

¼D½pkϕGðpÞ�þ
Z
suppϕGðpÞ

pðxÞlnϕGðpÞðxÞ
ϕGðqÞðxÞ

dx; ðB7Þ

where the last line uses Eq. (B6) [in particular, that
suppp ⊆ supp ϕGðpÞ and pðxÞ ln½ϕGðpÞðxÞ=ϕGðqÞðxÞ� ¼ 0

for x ∈ supp ϕGðpÞnsuppp].
The integral in Eq. (B7) is bounded from above by

D½pkϕGðqÞ� < ∞, since D½pkϕGðpÞ� ≥ 0. We also show

ARTEMY KOLCHINSKY and DAVID H. WOLPERT PHYS. REV. X 11, 041024 (2021)

041024-26



that this integral is bounded from below. Note that ϕGðpÞðxÞ
and ϕGðqÞðxÞ are both non-negative measurable functions,
which follows from the fact that x ↦ p½gðxÞ� and x ↦
p½gðxÞ� are non-negative measurable functions, the defini-
tion of ϕG, and Tonelli’s theorem (Theorem 3.7.7 in
Ref. [114]). Thus, the function x ↦ ½ϕGðqÞðxÞ=ϕGðpÞðxÞ�
is also non-negative and measurable, letting us bound the
integral in the following way:

Z
suppϕGðpÞ

pðxÞ lnϕGðpÞðxÞ
ϕGðqÞðxÞ

dx

≥ − ln

	Z
suppϕGðpÞ

pðxÞ ϕGðqÞðxÞ
ϕGðpÞðxÞ

dx




¼ − ln

	Z
supp ϕGðpÞ

ϕGðpÞðxÞ
ϕGðqÞðxÞ
ϕGðpÞðxÞ

dx




¼ − ln

	Z
supp ϕGðpÞ

ϕGðqÞðxÞdx


≥ − ln 1 ¼ 0:

where in the second line we use Jensen’s inequality, while in
the third line we apply Lemma 5. Finally, we use Lemma 5 to
rewrite the integral in Eq. (B7) as

Z
suppϕGðpÞ

pðxÞ lnϕGðpÞðxÞ
ϕGðqÞðxÞ

dx

¼
Z
suppϕGðpÞ

ϕGðpÞðxÞ ln
ϕGðpÞðxÞ
ϕGðqÞðxÞ

dx ¼ D½ϕGðpÞkϕGðqÞ�:

▪

2. ϕG obeys the commutativity relation [Eq. (16)]

It is easy to verify that Φg is a linear operator. It then
follows that, if Φg commutes with the linear operator L, as
in Eq. (38), then it also commutes with the exponential
eτL ¼ P

kð1=k!ÞτkLk. We then have

eτLϕGðpÞ ¼ eτL
Z

ΦgpdμðgÞ

¼
Z

eτLΦgpdμðgÞ

¼
Z

ΦgeτLpdμðgÞ

¼ ϕGðeτLpÞ;

where in the second line we exchange the bounded operator
eτL and the (Bochner) integral and in the third line we use
that Φg and eτL commute.

3. Derivation of Eq. (38) from Eqs. (39) and (41)

Consider some f∶x → R and a continuous-state master
equation L such that

½Lf�ðxÞ ¼
Z

½Lxx0fðx0Þ − Lx0xfðxÞ�dx0: ðB8Þ

[The derivation for discrete-state master equations, as in
Eq. (10), is the same, but with integrals replaced with
summations.] Then,

½ΦgLf�ðxÞ ¼ ½Lf�½gðxÞ�

¼
Z

fLgðxÞx0fðx0Þ − Lx0gðxÞf½gðxÞ�gdx0 ðB9Þ

¼
Z

fLgðxÞgðx0Þf½gðx0Þ� − Lgðx0ÞgðxÞf½gðxÞ�gdx0 ðB10Þ

¼
Z

fLxx0f½gðx0Þ� − Lx0xf½gðxÞ�gdx0 ðB11Þ

¼
Z

fLxx0 ½Φgf�ðyÞ − Lx0x½Φgf�ðxÞgdx0 ðB12Þ

¼ ½LΦgf�ðxÞ; ðB13Þ

which implies ΦgL ¼ LΦg [Eq. (38)]. Here, we use the
definition of Φg in the first line and Eq. (B8) in (B9). In
Eq. (B10), we use thevariable substitution x0 ↦ gðx0Þ, along
with the fact that g is volume preserving. In Eq. (B11), we
use Eq. (39).
Next, we show that Eq. (41) is sufficient for Eq. (38) to

hold, assuming that all g ∈ G are rigid transformations and
the L ∈ Λ refer to Fokker-Planck equations of the form
Eq. (40). First, given some (sufficiently smooth) function
f∶X → R, write Eq. (40) as

∂tf ¼ Lf ¼ ∇ · ½ð∇EÞf� þ β−1Δf: ðB14Þ

For any g ∈ G, write the diffusion term in Eq. (B14) as

Δf ¼ ΔðΦgf∘g−1Þ ¼ ΔðΦgfÞ∘g−1; ðB15Þ

where we use the identity f ¼ Φg−1Φgf ¼ Φgf∘g−1 and
that the Laplace operator commutes with rigid transforma-
tions. Now consider the drift term in Eq. (B14). Using the
product rule,

∇ · ½ð∇EÞf� ¼ ð∇fÞTð∇EÞ þ fΔE: ðB16Þ

We can rewrite the second term above as

fΔE ¼ ðΦgf∘g−1ÞΔE
¼ ðΦgf∘g−1ÞΔðE∘g−1Þ
¼ ðΦgf∘g−1Þ½ðΔEÞ∘g−1�
¼ ½ðΦgfÞðΔEÞ�∘g−1; ðB17Þ
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where we use f ¼ Φgf∘g−1, the invariance of E under G
[Eq. (41)], and in the third line that the Laplace operator
commutes with rigid transformations. Now consider the
first term on the right-hand side of Eq. (B16):

ð∇fÞTð∇EÞ ¼ ½∇ðΦgf∘g−1ÞT∇ðE∘g−1Þ�
¼ fJT ½∇ðΦgfÞ∘g−1�gTfJT ½ð∇EÞ∘g−1�g
¼ ½∇ðΦgfÞ∘g−1�TJJT ½ð∇EÞ∘g−1�
¼ ½∇ðΦgfÞ∘g−1�T ½ð∇EÞ∘g−1�
¼ ½∇ðΦgfÞTð∇EÞ�∘g−1; ðB18Þ

where J indicates the Jacobian of g−1. In the first line, we
again use the identity f ¼ Φgf∘g−1 and the invariance of E
under G, in the second line we use the chain rule, and in the
fourth line we use that JJT ¼ I for rigid transformations.
Plugging Eqs. (B17) and (B18) back into Eq. (B16) and
rearranging gives

∇ · ½ð∇EÞf� ¼ ∇ · ½ð∇EÞðΦgfÞ�∘g−1: ðB19Þ
Combined with Eqs. (B15) and (B14), this expression
implies that Lf ¼ ðLΦgfÞ∘g−1 or, in other words, that

ΦgLf ¼ LΦgf:

4. Derivation of Eq. (43)

First, write the inaccessible information term in
Eq. (35) as

D½pXjMkϕGðpXjMÞ�
¼
X
m

pðmÞD½pXjmkϕGðpXjmÞ�

¼
X
m

pðm;xÞ ln pðxjmÞR
p½gðxÞjm�μg

¼
X
m

pðm;xÞ ln pðxÞqðmjxÞ=pðmÞR
p½gðxÞ�q½mjgðxÞ�=pgðmÞμðgÞ ; ðB20Þ

where we define pðmÞ ¼ P
x pðxÞqðmjxÞ and pgðmÞ ¼P

x p½gðxÞ�qðmjxÞ and use the definition of ϕG in Eq. (42).
[Here, we assume for simplicity that both X and M are
discrete valued; otherwise, the summations in Eq. (B20)
should be replaced with integrals.]
Recall that we assume that p is invariant under

G, so ϕGðpÞ ¼ p. By Lemma 4, pðxÞ ¼ p½gðxÞ� for all x
and g ∈ G, which, in turn, implies that pðmÞ ¼ pgðmÞ.
Plugging into Eq. (B20) then gives

D½pXjMkϕGðpXjMÞ� ¼
X
m

pðm; xÞ ln qðmjxÞR
q½mjgðxÞ�μðgÞ ;

which appears in the main text as Eq. (43).

5. Example: Szilard box, derivation of Eq. (50)

We derive Eq. (50) using a simple geometric argument.
Consider the twirling of pθ, as shown in Fig. 5(b). From

the definition of ϕG and Eq. (49), it is easy to see the
following.
(1) The dark gray areas in Fig. 5(b) [where both

pθðx1; x2Þ ¼ 1=2 and pθðx1;−x2Þ ¼ 1=2] have
probability density ϕGðpθÞðx1; x2Þ ¼ 1=2.

(2) The light gray areas in Fig. 5(b) [where either
pθðx1; x2Þ ¼ 1=2 or pθðx1;−x2Þ ¼ 1=2, but not
both] have probability density ϕGðpθÞðx1; x2Þ ¼
1=4 ¼ uðx1; x4Þ.

(3) The white areas in Fig. 5(b) [where pθðx1; x2Þ ¼ 0
and pθðx1;−x2Þ ¼ 0] have probability density
ϕGðpθÞðx1; x2Þ ¼ 0.

Given these facts,

D½ϕGðpθÞku� ¼ ln 2 · Pθ; ðB21Þ

where Pθ is the probability assigned by p to the dark
gray areas [i.e., those ðx1; x2Þ where pθðx1; x2Þ ¼ 1=2 ¼
pθðx1;−x2Þ ¼ 1=2].
To calculate the value of Pθ, it suffices to consider two

separate cases:
(1) jθj ∈ ½−π; π�n½ðπ=4Þ; ð3π=4Þ�;
(2) jθj ∈ ½ðπ=4Þ; ð3π=4Þ�,

which are shown visually in Fig. 15. Using this figure and a
bit of trigonometry, it can be shown that Pθ ¼ 1 − 1

2
j tan θj

in the first case and Pθ ¼ 1
2
j tanðθ − π=2Þj in the second

case. Combining these results with Eq. (B21) gives Eq. (50).

6. Example: Symmetry constraints on a
discrete-state master equation

Here, we demonstrate our results on symmetry con-
straints using a simple finite-state system. The system
contains n states, x ¼ f0;…; n − 1g. We consider a group
generated by circular shifts, representing m-fold circular
symmetry:

gðxÞ ¼ xþ n=m mod n: ðB22Þ

Assume that the driving protocol obeys the following
symmetry group at all t ∈ ½0; 1�:

2 tan

2
ta
n(
−
/2
)

FIG. 15. The twirling ϕCðpθÞ for two cases. Left:
jθj ∈ ½ðπ=4Þ; ð3π=4Þ�. Right: ϕCðpθÞ for jθj ∈ ½−π; π�n½ðπ=4Þ;
ð3π=4Þ�.
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Lx0xðtÞ ¼ Lgðx0ÞgðxÞðtÞ: ðB23Þ

An example of such a master equation would be a unicyclic
network, where the n states are arranged in a ring and
transitions between nearest-neighbor states obey Eq. (B23).
Such unicyclic networks are often used to model biochemi-
cal oscillators and similar biological systems [115]. This
kind of system is illustrated in Fig. 16, with n ¼ 12
and m ¼ 4.
Imagine that this system starts from the initial

distribution pðxÞ ∝ x, so the probability grows linearly
from 0 (for x ¼ 0) to maximal (for x ¼ n). For the 12-state
system with fourfold symmetry, this initial distribution is
given by

pðxÞ ¼ xP
11
x0¼0

x0
¼ x

66

and is shown on the left-hand side in Fig. 16. How
much work can be extracted by bringing this initial
distribution to some other distribution p0, while using
rate matrices of the form Eq. (B23)? This distribution is
bounded by the drop of the accessible free energy, via
Eq. (25):

Wðp → p0Þ ≤ FE½ϕGðpÞ� − FE0 ½ϕGðp0Þ�: ðB24Þ

Using the example system with 12 states and fourfold
symmetry, the twirled distribution ϕGðpÞ is given by

ϕGðpÞðxÞ

¼ xþðxþ3mod 12Þþðxþ6mod 12Þþðxþ9mod 12Þ
4×66

:

For example, for the distribution pðxÞ ¼ x=66,

ϕGðpÞð0Þ ¼ ð0þ 3þ 6þ 9Þ=ð4 × 66Þ ≈ 0.068;

ϕGðpÞð1Þ ¼ ð1þ 4þ 7þ 10Þ=ð4 × 66Þ ≈ 0.083;

ϕGðpÞð2Þ ¼ ð2þ 5þ 8þ 11Þ=ð4 × 66Þ ≈ 0.098;

ϕGðpÞð3Þ ¼ ð3þ 6þ 9þ 0Þ=ð4 × 66Þ ≈ 0.068;

� � � :

This twirled distribution is shown in the right panel
in Fig. 16.

7. Example: 2D Ising model, derivation of Eq. (56)

We begin by recalling the expression for accessible
information in our feedback-control protocol over the 2D
Ising model, which appears as Eq. (55) in the main text:

IϕG
accðX;MÞ ¼ ln 2 −

�
ln

qðmjxÞ
N−2P

a;bq½mjga;bðxÞ�
�
: ðB25Þ

Using qðmjxÞ ¼ δmðx1Þ, the expectation term in Eq. (B25)
can be rewritten as

−
X
x

pðxÞ
X

m∈f−1;1g
δmðx1Þ ln

	
N−2

X
a;b

δm½ga;bðxÞ1�


: ðB26Þ

Let zðxÞ ¼ ð1þP
i xi=N

2Þ=2 indicate the magnetization
of lattice state x, normalized to lie between 0 and 1. Note
that, for any lattice state x, the frequency that spin 1 is in
state 1 averaged across all translations is equal to the
magnetization of x:

N−2
X
a;b

δ1½ga;bðxÞ1� ¼ zðxÞ:

In addition, by symmetry, the probability that spin 1 is in
state 1 averaged across all states that have magnetization z
is equal to z: X

x

pðxjzÞδ1ðx1Þ ¼ z:

Using these results and δ−1ðxÞ ¼ 1 − δ1ðxÞ, we can rewrite
the expression in Eq. (B26) as

−
X
x

pðxÞfδ1ðx1Þ ln zðxÞ þ ½1 − δ1ðx1Þ� ln½1 − zðxÞ�g

¼
X
z

pðzÞ½−z ln z − ð1 − zÞ lnð1 − zÞ�≡ hh2ðzÞi; ðB27Þ

where pðz0Þ ¼ P
x pðxÞδz0 ½zðxÞ� is the probability that the

system has magnetization z0 and h2 is the binary entropy
function.
We now consider the N → ∞ limit and use Onsager’s

expression for the spontaneous magnetization for
the 2D Ising model [116]. When β is below the critical

FIG. 16. A unicyclic master equation over 12 states with
fourfold symmetry, as in Eq. (B23). Left: an initial distribution
pðxÞ ∝ x, which does not respect the fourfold symmetry. Right:
the twirling ϕGðpÞ, which is invariant to the symmetry. (Colors
indicate relative probability assigned to each of the 12 states.) The
extractable work depends on the accessible free energy in p,
which is given by FE½ϕGðpÞ�.
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inverse temperature, βc ¼ lnð1þ ffiffiffi
2

p Þ=2 ≈ 0.44, the mag-
netization distribution pðzÞ concentrates at z ¼ 1=2, so
Eq. (B27) approaches h2ð1=2Þ ¼ ln 2. When β > βc,
the magnetization distribution concentrates on a uniform
mixture of two delta functions at z ¼ fðβÞ and z ¼
1 − fðβÞ, where fðβÞ ¼ ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðsinh 2βÞ−48

p
�=2. In this

case, Eq. (B27) approaches fh2½fðβÞ�þh2½1−fðβÞ�g=2¼
h2½fðβÞ�. Combining these results with Eq. (B25)

implies that IϕG
accðX;MÞ ¼ 0 for β ≤ βc and IϕG

accðX;MÞ ¼
ln 2 − h2½fðβÞ� for β > βc, which appears as Eq. (56) in the
main text.

APPENDIX C: MODULARITY CONSTRAINTS

1. ϕC obeys the Pythagorean identity [Eq. (14)]

We show that ϕC obeys the Pythagorean identity:

D½pkϕCðqÞ� ¼ D½pkϕCðpÞ� þD½ϕCðpÞkϕCðqÞ� ðC1Þ

for all p; q ∈ P such that D½pkϕGðqÞ� < ∞. For any
p; r ∈ P,

Ep½lnϕCðrÞ�¼Ep½lnrO�þ
X
A∈C

Ep½lnrAnOjA∩O�

¼EϕCðpÞ½lnrO�þ
X
A∈C

EϕCðpÞ½lnrAnOjA∩O� ðC2Þ

¼ EϕCðpÞ½lnϕCðrÞ�; ðC3Þ

where aO and aAnOjA∩O indicate marginal and conditional
distributions, respectively. In Eq. (C2), we use that p and
ϕCðpÞ have the same marginals over all subsystems all A ∈
C as well as the overlap O [this result can be verified from
the definition of ϕC, Eq. (64)]. Then,

D½pkϕCðqÞ� ¼ D½pkϕCðpÞ� þ Ep½lnϕCðpÞ − lnϕCðqÞ�
¼ D½pkϕCðpÞ� þ EϕCðpÞ½lnϕCðpÞ − lnϕCðqÞ�
¼ D½pkϕCðpÞ� þD½ϕCðpÞkϕCðqÞ�;

where the second line follows by applying Eq. (C3) twice,
first taking r ¼ p and then taking r ¼ q.

2. ϕC commutes with eτL

We show that if, for some generator L, Eqs. (59) and (60)
hold for all A ∈ C, then ϕC and eτL obey the commutativity
relation of Eq. (16). We assume that all LðAÞ in Eq. (60) are
bounded linear operators.
Before deriving our result, we introduce some helpful

notation.
(1) δxðx0Þ indicates the delta function distribution

over X centered at x (the Dirac delta for continuous
X and the Kronecker delta for discrete X). For any

subsystem S ⊆ V, δxsðx0SÞ indicates the delta func-
tion distribution over XS centered at xS.

(2) TðAÞ
τ ðx0jxÞ ¼ ½eτLðAÞ

δx�ðx0Þ indicates the conditional
distribution over X, given that the system starts on
state x and then evolves under LðAÞ for time τ.

(3) For any A ∈ C,

A ≔ Anð ⋃
B∈CnfAg

BÞ ¼ AnOðCÞ

indicates the set of degrees of freedom that belong
exclusively to A ∈ C (and no other subsystems), and

Ac ≔ VnA ¼ ⋃
B∈CnfAg

B

indicates the complement of A, which is the set of
degrees of freedom that fall into at least one of the
other subsystem besides A.

To derive the commutativity relation, we proceed in three
steps, which are described in detail in the subsections
below. In the first step, we show that, for all τ ≥ 0 and

A ∈ C, the conditional distribution TðAÞ
τ ðx0jxÞ can be written

in the following product form:

TðAÞ
τ ðx0jxÞ ¼ TðAÞ

τ ðx0AjxAÞδxAc ðx0AcÞ: ðC4Þ

In the second step, we show that Eq. (C4) implies the
following commutativity relation for any p ∈ P and each
A ∈ C:

eτL
ðAÞ
ϕCðpÞ ¼ ϕCðeτLðAÞ

pÞ: ðC5Þ

In the third step, we show that the generators corresponding
to all subsystems commute:

LðAÞLðBÞ ¼ LðBÞLðAÞ ∀ A;B ∈ C: ðC6Þ

We then combine these three results to show that ϕC and
eτL commute. Write

eτLϕCðpÞ ¼ e
P

A∈C
τLðAÞ

ϕCðpÞ ¼
Y
A∈C

eτL
ðAÞ
ϕCðpÞ;

where we use Eqs. (58) and (C6) to expand the operator
exponential. Then, using Eq. (C5), write

Y
A∈C

eτL
ðAÞ
ϕCðpÞ ¼ ϕC

�Y
A∈C

eτL
ðAÞ
p

�
¼ ϕCðeτLpÞ:

Combining these two results implies that eτLϕCðpÞ ¼
ϕCðeτLpÞ for all p ∈ P and τ ≥ 0, as in Eq. (16).
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a. Derivation of Eq. (C4)

To derive Eq. (C4), consider the conditional distribution
over A given initial state x, as induced by LðAÞ:

TðAÞ
τ ðx0AjxÞ ¼ ½eτLðAÞ

δx�Aðx0AÞ

¼ ½δx�Aðx0AÞ þ
X
k≥1

τk

k!
½LðAÞkδx�Aðx0AÞ

¼ δxAðx0AÞ þ
X
k≥1

τk

k!
½LðAÞkδx�Aðx0AÞ; ðC7Þ

where in the second line we expand the operator expo-
nential as eτL

ðAÞ ¼ P
k τ

kLðAÞk=k!. Note that A ⊆ A, so
½LðAÞδx�A is a function of ½LðAÞδx�A, which, in turn, is a
function of xA by Eq. (59). Similarly, δxAðx0AÞ depends on
only xA, not x. This result means the right-hand side of
Eq. (C7) depends on only xA, which we indicate by

TðAÞ
τ ðx0AjxÞ ¼ TðAÞ

τ ðx0AjxAÞ: ðC8Þ

Now consider the conditional distribution over any other
subsystem B ≠ A given initial state x, as induced by LðAÞ:

TðAÞ
τ ðx0BjxÞ ¼ δxBðx0BÞ þ

X
k≥1

τk

k!
½LðAÞkδx�Bðx0BÞ

¼ δxBðx0BÞ; ðC9Þ

where we use that ½LðAÞδx�B ¼ 0 by Eq. (60).
Now, it is straightforward to show that if some

distribution p over XV has delta function marginals
pB ¼ δxB for all B ≠ A, then pmust have following product
form:

pðx0Þ ¼ pAðx0AÞδxAc ðx0AcÞ; ðC10Þ

where we use that Ac ¼ ⋃B∈CnfAgB. Equation (C4) follows

by taking pðx0Þ ¼ TðAÞ
τ ðx0jxÞ in Eq. (C10), while

using Eq. (C8).

b. Derivation of Eq. (C5)

Consider any τ ≥ 0 and A ∈ C. Using Eq. (59) and the
identity eτL

ðAÞ ¼ P
k τ

kLðAÞk=k!, one can show that, when-
ever two distributions p; q ∈ P obey pA ¼ qA, it must be
that ½eτLðAÞ

p�A ¼ ½eτLðAÞ
q�A. Since pA ¼ ½ϕCðpÞ�A [see the

definition of ϕC in Eq. (64)],

½eτLðAÞ
p�A ¼ ½eτLðAÞ

ϕðpÞ�A: ðC11Þ

In addition, given Eq. (C9), we have ½eτLðAÞ
p�Ac ¼ pAc .

Given that B ⊆ Ac for each B ≠ A, we have

½eτLðAÞ
p�B ¼ pB ¼ ϕðpÞB ¼ ½eτLðAÞ

ϕðpÞ�B: ðC12Þ

Similarly, OðCÞ ⊆ Ac and, therefore,

½eτLðAÞ
p�OðCÞ ¼ ½eτLðAÞ

ϕðpÞ�OðCÞ: ðC13Þ

Now, observe that the distribution ϕCðpÞ does not
depend on the full distribution p but only on the marginal
distributions pOðCÞ and fpAgA∈C. By Eqs. (C11)–(C13),
these marginals are the same for eτL

ðAÞ
p and eτL

ðAÞ
ϕCðpÞ,

which means that

ϕCðeτLðAÞ
pÞ ¼ ϕC½eτLðAÞ

ϕCðpÞ�: ðC14Þ

Next, using Eq. (C4) and some simple (but rather
tedious) algebra, it can be shown that

eτL
ðAÞ
ϕCðpÞ ¼ p0

AnOjA∩OpO

Y
B≠A

pBnOjB∩O; ðC15Þ

where

p0
AnOjA∩Oðx0AnOjx0A∩OÞ

¼
Z

TðAÞ
τ ðx0AjxA; xA∩O0ÞpðxAjx0A∩OÞdxA ðC16Þ

and we use the conditional distribution TðAÞ
τ ðx0AjxA; xA∩OÞ

from Eq. (C8). The right-hand side of Eq. (C15) has the
form of the right-hand side of Eq. (64), so it is invariant
under ϕC:

ϕC½eτLðAÞ
ϕCðpÞ� ¼ eτL

ðAÞ
ϕCðpÞ: ðC17Þ

Equation (C5) follows by combining Eqs. (C14)
and (C17).

c. Derivation of Eq. (C6)

Using Eq. (C4) and some algebra, one can verify that, for
all τ ≥ 0 and A; B ∈ C,

Z
TðAÞ
τ ðx00jx0ÞTðBÞ

τ ðx0jxÞdx0 ¼
Z

TðBÞ
τ ðx00jx0ÞTðAÞ

τ ðx0jxÞdx0;

ðC18Þ

which in operator notation can be written as

eτL
ðAÞ
eτL

ðBÞ
δx ¼ eτL

ðBÞ
eτL

ðAÞ
δx: ðC19Þ

Then, for any function f ¼ R
fðxÞδxdx, write
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eτL
ðAÞ
eτL

ðBÞ
f ¼ eτL

ðAÞ
eτL

ðBÞ
Z

fðxÞδxdx

¼
Z

fðxÞeτLðAÞ
eτL

ðBÞ
δxdx

¼
Z

fðxÞeτLðBÞ
eτL

ðAÞ
δxdx

¼ eτL
ðBÞ
eτL

ðAÞ
Z

fðxÞδxdx

¼ eτL
ðBÞ
eτL

ðAÞ
f;

where we exchange the order of the bounded operators
eτL

ðAÞ
eτL

ðBÞ
and eτL

ðBÞ
eτL

ðAÞ
with the (Bochner) integralR

fðxÞδxdx and use Eq. (C19). This expression shows that

eτL
ðAÞ

and eτL
ðBÞ

commute for all τ ≥ 0, so their inverses
e−τL

ðAÞ
and e−τL

ðBÞ
must also commute. Given that eτL

ðAÞ
and

eτL
ðBÞ

commute for all τ ∈ R, LðAÞ and LðBÞ must commute
(see p. 23 in Ref. [117]).

3. Szilard box: Derivation of Eqs. (74) and (76)

We first derive Eq. (74). Using Eq. (70) and some
rearrangement, write

D½ϕCðpθÞku� ¼ ln 4 − S½pθðX1Þ� − S½pθðX2Þ�; ðC20Þ

where S½pθðX1Þ� and S½pθðX2Þ� refer to the marginal
entropies under pθ. It is easy to see that, by symmetry,

S½pθðX1Þ� ¼ S½pðπ=2Þ−θðX2Þ�: ðC21Þ

Therefore, we derive a closed-form expression for
D½ϕCðpθÞku� by finding a closed-form expression for

S½pθðX1Þ� ≔ −
Z

1

−1
pθðx1Þ lnpθðx1Þdx1: ðC22Þ

First, consider the case of θ ∈ ½−π=2; π=2�, and
define Aθ ≔ j tan θj. It can be verified from Eq. (49) that
the marginal distribution pθðx1Þ always has a piecewise
linear form. In particular, if Aθ < 1, then, for any
x1 ∈ ½−1; 1�,

pθðx1Þ ¼

8>><
>>:

1 if − 1 ≤ x1 ≤ −Aθ;
Aθ−x1
2Aθ

if − Aθ ≤ x1 ≤ Aθ;

0 if x1 > Aθ:

ðC23Þ

Otherwise, if Aθ > 1, then, for any x1 ∈ ½−1; 1�,

pθðx1Þ ¼
Aθ − x1
2Aθ

: ðC24Þ

Plugged into Eq. (C22), this expression gives

S½pθðX1Þ� ¼
8<
:

−
R
1
−1

Aθ−x1
2Aθ

ln Aθ−x1
2Aθ

dx1 if Aθ > 1;

−
R Aθ
−Aθ

Aθ−x1
2Aθ

ln Aθ−x1
2Aθ

dx1 otherwise:

Integrating these two cases separately in Mathematica, and
plugging in the definition of Aθ, gives

S½pθðX1Þ� ¼
1

2

(
fðj tan θjÞ if j tan θj > 1;

j tan θj otherwise;
ðC25Þ

where for convenience we define

fðxÞ ≔ 1 −
1þ x2

2x
ln
xþ 1

x − 1
− ln

x2 − 1

4x2
: ðC26Þ

Recall that so far we assume that θ ∈ ½−π=2; π=2�.
However, by Eq. (49), pθðx1; x2Þ ¼ p�π−θð−x1; x2Þ, which
implies that pθðx1Þ ¼ pπ−θð−x1Þ ¼ p−π−θð−x1Þ and
S½pθðX1Þ� ¼ S½pπ−θðX1Þ� ¼ S½p−π−θðX1Þ�. It can also be
verified that j tan θj ¼ j tanðπ − θÞj ¼ j tanð−π − θÞj, so, in
fact, Eq. (C25) holds for all θ ∈ ½−π; π�.
Finally, if jθj ∈ ½ðπ=4Þ; ð3π=4Þ�, then Eqs. (C25) and

(C21) imply

j tan θj > 1; S½pθðX1Þ� ¼
1

2
fðj tan θjÞ;���� tan

�
π

2
− θ

����� ≤ 1; S½pθðX2Þ� ¼
1

2

���� tan
�
π

2
− θ

�����:
Conversely, if jθj ∈ ½0; π�n½ðπ=4Þ; ð3π=4Þ�, then

j tan θj ≤ 1; S½pθðX1Þ� ¼
1

2
j tan θj;���� tan

�
π

2
− θ

����� > 1; S½pθðX2Þ� ¼
1

2
f

	���� tan
�
π

2
− θ

�����


:

Equation (74) follows by combining these results and
rearranging.
To derive Eq. (76), use ϕG½ϕCðpθÞ�ðx1; x2Þ ¼ pθðx1Þ

uðx2Þ to write

DfϕG½ϕCðpθÞ�kug ¼ ln 4 − S½pθðX1Þ� − S½uðX2Þ�
¼ ln 2 − S½pθðX1Þ�; ðC27Þ

where we use that S½uðX2Þ� ¼ ln 2. Equation (76) then
follows by combining Eqs. (C27) and (C25).
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4. Example: Feedback-controlled flashing ratchet

Here, we derive a closed-form expression for the
accessible information in the feedback-controlled collective
flashing ratchet.
For notational convenience, let a ¼ 1=α indicate the

slope of the increasing part of V in Fig. 10(b) and
b ¼ −1=ð1 − αÞ indicate the slope of the decreasing part
of V. Note that the net force

P
v V

0ðxvÞ can be seen as the
sum of N random variables, where by assumption each
V 0ðxvÞ is equal to a ¼ 1=αwith probability α and equal to
b ¼ −1=ð1 − αÞ with probability 1 − α. This result
implies that the expectation of V 0ðxvÞ is 0 and the variance
is 1=½αð1 − αÞ�.
We first compute the accessible information

IϕC
accðX;MÞ ¼ P

v IðXv;MÞ ¼ N · IðX1;MÞ. The mutual
information between M and the state of a single particle
X1 is given by

IðX1;MÞ ¼ SðMÞ − SðMjXÞ
¼ h2½pð1Þ� − αh2½pð1jaÞ�
− ð1 − αÞh2½pð1jbÞ�; ðC28Þ

where pð1Þ is the probability that the net force is positive,
pð1jaÞ is the probability that the net force is positive given
that particle X1 experiences force a, and pð1jbÞ is the
probability that the net force is positive given that particle

X1 experiences force b. We can compute pð1Þ by consid-
ering the case when k ¼ 0; 1; 2;… particles experience
force a. Assuming the particles are independent, this case is
given by

pð1Þ ¼
XN
k¼0

BN;αðkÞΘ½kaþ ðN − kÞb�; ðC29Þ

where BN;α is the binomial probability of k successes, given
N trials with success probability α. To compute pð1jaÞ,
note that, given that X1 experiences force a, M ¼ 1
whenever the other N − 1 particles experience a net force
larger than −a. The probability of this event is

pð1jaÞ ¼
XN−1

k¼0

BN−1;αðkÞΘ½kaþðN − 1− kÞbþa�: ðC30Þ

Conversely, if X1 experiences force b, then M ¼ 1 if the
other N − 1 particles experience a net force larger than −b,
which has probability

pð1jbÞ ¼
XN−1

k¼0

BN−1;αðkÞΘ½kaþðN − 1− kÞbþb�: ðC31Þ

Plugging Eqs. (C29)–(C31) into Eq. (C28) gives IðX1;MÞ.
Multiplying by N gives the accessible information:

IϕC
accðX;MÞ ¼ N · IðX1;MÞ

¼ N

	
h2

�XN
k¼0

BN;αðkÞΘ½kaþ ðN − kÞb�
�
− αh2

�XN−1

k¼0

BN−1;αðkÞΘ½kaþ ðN − 1 − kÞbþ a�
�

− ð1 − αÞh2
�XN−1

k¼0

BN−1;αðkÞΘ½kaþ ðN − 1 − kÞbþ b�
�


: ðC32Þ

This result is shown in Fig. 12(left) for different values of
N and α.
To compute the efficiency values in Fig. 12(right), we

simply divide IϕC
accðX;MÞ by IðX;MÞ, the total mutual

information between the measurement and all particles.
Since the measurement in Eq. (80) is deterministic, this
mutual information is given by the entropy of M:

IðX;MÞ ¼ SðMÞ ¼ h2½pð1Þ�; ðC33Þ
which can be computed using Eq. (C29).
We now compute the asymptotic value of accessible

information and efficiency in the N → ∞ limit. The sum of
a large number of independent random variables with mean
0 and variance 1=½αð1 − αÞ� approaches a Gaussian with
mean 0 and variance N=½αð1 − αÞ�. Thus, in the N → ∞
limit, the probability that the force is positive converges to

pð1Þ ¼ 1=2, so IðX;MÞ ¼ SðMÞ converges to ln 2. Recall
that pð1jaÞ is given by the probability that N − 1 particles
experience a net force larger than −a. In the N → ∞ limit,
this conditional probability converges to

pð1jaÞ ¼ 1 −Φα;N−1ð−aÞ ¼ Φα;N−1ðaÞ;

where Φα;N−1 is the cumulative distribution function of a
Gaussian with mean 0 and variance N=½αð1 − αÞ�. We can
similarly calculate

pð1jbÞ ¼ 1 −Φα;N−1ð−bÞ ¼ Φα;N−1ðbÞ:

Plugging into Eq. (C28) gives
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IðX1;MÞ ¼ ln 2 − αh2½Φα;N−1ðaÞ�
− ð1 − αÞh2½Φα;N−1ðbÞ�: ðC34Þ

Using a ¼ 1=α and b ¼ −1=ð1 − αÞ and some analysis
(e.g., by taking limits in Mathematica) shows that

lim
N→∞

N · IðX1;MÞ ¼ 1

π
; ðC35Þ

irrespective of α. This result is the asymptotic accessible
information, which appears as the dotted line in Fig. 12
(left). The asymptotic efficiency, which appears as the
dotted line in Fig. 12 (right), is given by 1=ðπ ln 2Þ [since
IðX;MÞ ¼ ln 2 in the N → ∞ limit].

APPENDIX D: COARSE-GRAINED
CONSTRAINTS

1. Derivation of Eq. (82) from Eqs. (83) and (85)

In general, the microstate distribution p evolves accord-
ing to some generator L, ∂tpðtÞ ¼ LpðtÞ, and the macro-
state distribution pZ evolves according to a coarse-grained
generator L̂p. In general, the coarse-grained dynamics are
not closed, meaning that L̂p can depend on the microstate
distribution p. In this section, we provide concrete con-
ditions on the generators that guarantee that the coarse-
grained dynamics are closed. In the following derivations,
for notational simplicity, we omit the dependence of pðx; tÞ
and pðz; tÞ on t.
For discrete-state master equations, the coarse-grained

dynamics are given by [58]

∂tpZðzÞ ¼ L̂ppZðzÞ
¼

X
z

½L̂p
zz0 �pZðz0Þ − L̂p

zz0pZðzÞ�; ðD1Þ

where L̂p
zz0 is the transition rate from macrostate z0 to z:

L̂p
zz0 ¼

X
x0
pðx0jz0Þ

X
x

δξðxÞðzÞLxx0 : ðD2Þ

By plugging Eq. (83) into Eq. (D2) and simplifying, one
can verify that L̂p

zz0 does not depend on the microstate
distribution p; therefore, Eq. (82) holds.
A similar approach can be used for continuous-state

master equations.
We now consider Fokker-Planck equations of

the form Eq. (84), given a linear coarse-graining
function ξðxÞ ¼ Wx. Using Proposition 2.8 in Ref. [57],
we write the evolution of the coarse-grained distribution
pZ as

∂tpZðzÞ¼∇ · ½ÂðzÞpZðzÞ�þβ−1trfHT ½D̂ðzÞpZðzÞ�g; ðD3Þ

where H is the Hessian matrix of second derivative
operators and we define

ÂðzÞ ≔
Z

½pðxjzÞW∇EðxÞ − β−1ΔξðxÞ�dx ðD4Þ

¼
Z

½pðxjzÞW∇EðxÞ�dx ðD5Þ

¼ −F̂ðzÞ; ðD6Þ

D̂ðzÞ ≔
Z

pðxjzÞWWTdx ¼ I: ðD7Þ

We use Eq. (2.29) from Ref. [57] in Eq. (D4), the
linearity of ξ in Eq. (D5), and Eq. (85) in Eq. (D6).
We use Eq. (2.30) from Ref. [57] and the assumption
that WWT ¼ I in Eq. (D7). It is easy to check that
tr½HTðIpZÞ� ¼ ΔpZ, which can be combined with
Eqs. (D6), (D7), and (D3) to give Eq. (86). Since the
right-hand side of Eq. (86) does not depend on the
microstate distribution, the coarse-grained dynamics
are closed.

2. Derivation of Eq. (87)

Our derivation below does not assume isothermal pro-
tocols, so the inequality in Eq. (87) holds both for
isothermal protocols and for protocols connected to any
number of thermodynamic reservoirs.
To derive this result for a given L, we make two

assumptions. First, as described in the main text, we
assume that the coarse-grained dynamics are closed
[Eq. (82)]. Second, we assume that the coarse-grained
stationary distribution πZ (where π is the stationary dis-
tribution of L) is invariant under conjugation of odd-parity
variables:

πZ½ξðxÞ� ¼ πZ½ξðx†Þ� ∀ x ∈ X; ðD8Þ

where x† indicate the conjugation of state x in which
all odd-parity variables (such as momentum) have
their sign flipped. For an isothermal protocol, the sta-
tionary distributions are equilibrium distributions, and
Eq. (D8) is satisfied [96]. For more general protocols,
Eq. (D8) holds if there are no odd-parity variables (e.g.,
overdamped dynamics), so x ¼ x†. It also holds if the
coarse-graining function maps each x and its conjugate to
the same macrostate, ξðxÞ ¼ ξðx†Þ, as well as some
other cases.
Now imagine a system that starts from some initial

distribution p at time t ¼ 0, and then undergoes free
relaxation under L toward a (possibly nonequilibrium)
stationary distribution π, reaching a final distribution p0 by
time t ¼ τ. Next, we use existing results in stochastic
thermodynamics [96,110] and write the EP incurred over
time interval t ∈ ½0; τ� as
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ΣðτÞ ¼ D½pðx; νÞkp̃ðx̃†; ν̃Þ� ðD9Þ

(see also Appendix A 2), where
(1) x ¼ ðx;…; x0Þ indicate a continuous-time trajectory

of system states over time interval t ∈ ½0; τ�, where x
and x0 indicate the initial and final system states,
respectively, and x̃† ¼ ðx0†;…; x†Þ is the corre-
sponding time-reversed and conjugated trajectory;

(2) ν is a sequence of reservoirs which exchange
conserved quantities with the system during
t ∈ ½0; τ�, and ν̃ is the corresponding time-reversed
sequence [25,28,110];

(3) pðx; νÞ ¼ Pðx; νjxÞpðxÞ is the probability of for-
ward trajectory ðx; νÞ given initial distribution p,
where Pðx; νjxÞ is the conditional distribution gen-
erated by the free relaxation;

(4) p̃ðx̃†; ν̃Þ ¼ Pðx̃†; ν̃jx0†Þp0ðx0Þ is the probability of
reverse trajectory ðx̃†; ν̃Þ under a free relaxation that
starts with the following distribution:

p0ðx0Þ ¼
Z

Pðx0jxÞpðxÞdx: ðD10Þ

Using the fact that EP decreases under state-space and
temporal coarse-graining [58,118], we bound Eq. (D9) as

ΣðτÞ ≥ D½pðxÞkpðx̃†Þ� ≥ D½pðz; z0Þkp̃ðz†; z0†Þ�; ðD11Þ

where z ¼ ξðxÞ, z0 ¼ ξðx0Þ, z† ¼ ξðx†Þ, and z0† ¼ ξðx0†Þ.
The final KL divergence can be decomposed as

D½pðz; z0Þkp̃ðz†; z0†Þ�
¼ ½DðpZkπZÞ −Dðp0

ZkπZÞ�

þ
Z

pðz; z0Þ ln
	
pðz; z0ÞπZðzÞp0

Zðz0Þ
p̃ðz†; z0†ÞpZðzÞπZðz0Þ



dzdz0: ðD12Þ

Using Jensen’s inequality, we lower bound the integral
term as

Z
pðz; z0Þ ln

	
pðz; z0ÞπZp0

Zðz0Þ
p̃ðz†; z0†ÞpZðzÞπZðz0Þ



dzdz0

¼ −
Z

pðz; z0Þ ln
	
p̃ðz†; z0†ÞpZðzÞπZðz0Þ
pðz; z0ÞπZðzÞp0

Zðz0Þ


dzdz0

≥ − ln

	Z
p̃ðz†; z0†ÞpZðzÞπZðz0Þ

πZðzÞp0
Zðz0Þ

dzdz0


: ðD13Þ

Note that πZðz0Þ ¼ πZðz0†Þ by Eq. (D8) and p̃Zðz0†Þ ¼
p0
Zðz0Þ by the definition of p0

Z in Eq. (D10), allowing us to
rewrite the rhs of Eq. (D13) as

− ln

�Z
pZðzÞ
πZðzÞ

	Z
p̃ðz†jz0†ÞπZðz0†Þdz0



dz

�
: ðD14Þ

The inner integral can be further rewritten asZ
p̃ðz†jz0†ÞπZðz0†Þdz0

¼
Z

Pðz†jx0†Þp̃ðx0†jz0†ÞπZðz0†Þdx0

¼ πZðz†Þ
¼ πZðzÞ;

where in the third line we use the assumption of closed
dynamics [Eq. (82)] and the stationarity of π under Pð·j·Þ
and in the fourth line we use Eq. (D8). We can then rewrite
Eq. (D14) as

− ln

	Z
πZðzÞ
πZðzÞ

πZðzÞdz


¼ 0:

Combined with Eq. (D13), this expression implies that the
integral term in Eq. (D12) is non-negative. Combining
with Eq. (D11) gives

ΣðτÞ ≥ DðpZkπZÞ −Dðp0
ZkπZÞ:

Finally, using the definition of the EP rate and the results
above,

_Σðp;LÞ ≔ lim
τ→0

1

τ
ΣðτÞ

≥ lim
τ→0

1

τ
½DðpZkπZÞ −Dðp0

ZkπZÞ�

¼ −
Z

∂tpZðtÞðzÞ ln
pZðzÞ
πZðzÞ

dz ≥ 0; ðD15Þ

where ∂tpZðtÞ ¼ L̂pZ. Equation (D15) follows from
Eqs. (A3)–(A6) above (with summations replaced by
integrals). The discrete-state form of Eq. (D15), and also
where p and L are explicitly time dependent, appears in
the main text as Eq. (87).
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p½ȳðt2Þjyðt2Þ; zðt0Þ� ¼ p½ȳðt2Þjyðt2Þ�, although this equa-
tion does not appear in that paper.

[77] D. H. Wolpert, The Stochastic Thermodynamics of Com-
putation, J. Phys. A 52, 193001 (2019).

[78] D. Wolpert, Uncertainty Relations and Fluctuation Theo-
rems for Bayes Nets, Phys. Rev. Lett. 125, 200602 (2020).

[79] D. H. Wolpert, Fluctuation Theorems for Multipartite
Processes, arXiv:2003.11144.

[80] D. H. Wolpert, Minimal Entropy Production Rate of
Interacting Systems, New J. Phys. 22, 113013 (2020).

[81] D. H. Wolpert, Strengthened Landauer Bound for
Composite Systems, arXiv:2007.10950.

[82] The reader should be aware that those papers use different
terminology from this paper. In Refs. [79,80], each degree
of freedom v ∈ V is called a “subsystem,” and the modular
decomposition C is called a “unit structure,” while each
A ∈ C is called a “unit.”

[83] M. Lostaglio, D. Jennings, and T. Rudolph, Description of
Quantum Coherence in Thermodynamic Processes Re-
quires Constraints beyond Free Energy, Nat. Commun. 6,
6383 (2015).
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