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The stochastic motion of Brownian particles out of equilibrium yields rich thermodynamic landscapes
studied on a great variety of systems through many different research fields. Here, we study within the field
of stochastic thermodynamics the dynamics and energetics of an overdamped Brownian chiral nanoparticle
diffusing in a symmetric bistable optical potential formed in the standing wave of two counterpropagating
Gaussian beams. Control on the polarizations of each beam creates chiral optical environments by
endowing the standing wave with optical chiral densities or optical chiral fluxes without modifying the
initial bistability. These chiral densities and fluxes are associated, respectively, with reactive or dissipative
chiral optical forces exerted on the diffusing chiral nanoparticle. This optomechanical chiral coupling leads
to a modification of the thermal activation process in ways that depend on the nanoparticle enantiomer and
on the enantiomorphism of the optical field. Reactive chiral forces contribute to a global enantiospecific
change of the Helmholtz free energy, but preserving the symmetry of the bistable potential. Dissipative
chiral forces correspond to a nonequilibrium steady state where the barrier-crossing rates become
asymmetric while leaving unaffected the initial potential. This symmetry breaking is associated with heat
transferred to the thermal bath that can be evaluated. The symmetry breaking yields chiral deracemization
schemes that can be explicitly calculated and simulated. Our results reveal how chiral degrees of freedom
of both the nanoparticle and the optical field transform into true thermodynamic control parameters.
The resulting optomechanical model gives way to new opportunities in the context of chiral sensing at the
single-nanoparticle level and to original strategies for chiral discrimination at the nanoscale using the
observables associated with the thermodynamics at play, such as escape rates or probability density
functions.
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I. INTRODUCTION

When a chiral system is immersed within a chiral
environment, specific interactions can be induced that
combine the chirality of both the system and the environ-
ment. This is known as chiral coupling and leads to a great
variety of manifestations and effects. For instance, the
trajectories of spins in magnetic fields are determined by a
chiral coupling exploited in Stern-Gerlach interferometry
[1]. Also, chiral coupling is at play in unidirectional

molecular motions induced inside ratchet potentials, in
so-called molecular machine configurations [2,3].
Chiral coupling naturally depends on the chirality of the

system, a property known as enantiodependence, which is
central to the field of analytical chemistry. There, the notion
of asymmetric chemical evolution within chiral environ-
ments permeates vast literature covering a wide range of
topics [4–6]. Chiral-liquid-crystals nuclear magnetic reso-
nance (NMR) and chiral chromatography both exploit the
fact that in chiral solvents, solute-solvent interactions are
enantiodependent. In NMR, these interactions lead to
differential orientations of molecular enantiomers with
respect to the magnetic field. As a consequence, NMR
parameters, such as residual chemical shift anisotropy, as
well as residual dipolar or quadrupolar coupling, are
enantiomerically dependent, achieving high-resolution chi-
ral discrimination capacities [7–9]. In chiral chromatogra-
phy too, the chirality of the stationary phase (the chiral
selector) is crucial for forming, through noncovalent
interactions between the enantiomers and the chiral selec-
tor, diastereoisomer complexes that have different free
energies depending on the enantiomer. Differences in free
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energies lead to driving forces for retention in the column
that become enantiodependent [10,11].
Chiral coupling can also yield enantioselective effects.

Among many possible early anticipated—notably by
Le Bel and Van’t Hoff in the 19th century—Kagan et al.
have reported that an asymmetric synthesis can be triggered
when irradiating the reactants with circularly polarized light
[12]. In this asymmetric chemistry, circularly polarized light
acts as a reactive in the synthesis to lead to enantiomeric
excess in the product formation [13,14]. Forming enantio-
merically pure phases while starting from mixtures contain-
ing even quantities of left- vs right-handed chiral molecules,
i.e., so-called racemates, is a process known as deracemiza-
tion of paramount importance in chemistry and for the phar-
maceutical industry. Deracemization processes also torment
the search for the origin of homochirality [15–18]. They can
result from spontaneous mirror symmetry-breaking effects
when an initial stochastic selection of one enantiomer
followed by an amplification or autocatalytic process can
lead to the full predominance of only one chirality, being
dextro for sugars or levo for amino acids [19,20]. They can
also result from some systematic coupling mechanisms that
can lead to the asymmetry observed in biochemistry [21].
Such coupling mechanisms can rely on fundamental asym-
metries, such as the violation of parity [22,23] or can rely on
the role of the environment (be it electromagnetic, chemical,
geological, astronomical, and so forth) whose chirality
determines the direction of the splitting in free energies [24].
In all these examples, the thermodynamics involved in

the variety of deracemization processes (by crystallization,
chemistry, light, etc.) is not easy to resolve, and the precise
role played by the chiral coupling engaged in each process
is not easy to uncover. In this work, we address head-on the
thermodynamic question by looking at one particular type
of chiral coupling induced when a chiral scattering object is
immersed within a chiral electromagnetic field. This chiral
coupling manifests itself by the emergence of chiral optical
forces that have been recently discovered [25–28]. Because
they intertwine the chiral content of the electromagnetic
field with the chiral response of the object, the new forces
are enantioselective and have led to promising all-optical
chiral sorting strategies [29–35]. These strategies have
obviously a strong applicative potential at the nanoscale
when targeting molecular chiral resolution by optomechan-
ical means [36].
At these scales, thermal fluctuations impose a stochastic

description of the action of the chiral forces on the chiral
nano-object behaving as a Brownian system. Capable of
knowing exactly the force fields at play, the purpose of our
work is to determine the thermodynamic consequences of
the asymmetric evolution of our Brownian system under
the influence of the optomechanical chiral coupling. As we
show, the methods of stochastic thermodynamics [37–40]
are remarkably appropriate for shaping a comprehensive
view on the thermodynamics of this optomechanical chiral

coupling and for deriving important results related to chiral
asymmetric evolutions.
To do so, we build the three-dimensional (3D) chiral

optomechanical model schematized in Fig. 1. By giving the
optical environment—that shapes the trapping potential—
enantiomorphic features fixed independently from the
enantiomeric form of the Brownian object, we demonstrate
how the chirality of both the object and the environment
determines the coupling and, in turn, fixes the stochastic
energetics of the Brownian dynamics performed within an
intrinsically chiral 3D free-energy landscape. We set our
model in the (archetypical) Kramers framework for its
capacity to describe thermodynamic processes (thermal
activation of a barrier crossing) at the heart of diffusion
models of chemical reactions [41,42]. The so-called
Kramers problem is therefore immediately connected with
the field of chiral chemistry where a great variety of chiral
molecular systems do exhibit thermally activated bistability
[43,44]. The bistable potential is indeed, and even before
Kramers, central to the first historical explanation of the
stability of chiral molecules in the so-called Hund’s para-
dox [45]. Room-temperature fast interconversions of enan-
tiomers through conformational barriers are usually
modeled as dynamical processes that lead, in the majority
of cases, to racemic solutions. In this context, bistability
provides a conceptual framework for describing such
interconversions. But as we demonstrate, it also allows
us to investigate the influence of the chiral coupling on the

FIG. 1. Schematics of the proposed optomechanical model.
Two counterpropagating �k Gaussian beams focused on a
common waist by two objectives create a bistable potential
free-energy surface. A diffusing chiral nanoparticle optically
trapped in this potential in the dipolar regime is thermally
activated and crosses, in both z ≶ 0 directions, the barrier
separating the two potential wells. Depending on the settings
of the polarization vectors e� of the beams, optical chiral density
KðrÞ and/or chiral fluxΦðrÞ can be induced in the standing wave
between the objectives. When this happens, a chiral coupling
involves the chirality of the nanoparticle via the chiral polar-
izability χ and the chirality of the field via KðrÞ andΦðrÞ, which
are, respectively, a time-even pseudoscalar and pseudovector, i.e.,
truly chiral quantities [46]. The chiral coupling generates chiral
optical forces that act on the nanoparticle and bias the diffusing
motion of the nanoparticle within the bistable potential. These
forces therefore endow the thermally activated barrier crossing
with an enantiospecific, chiral discriminative, thermodynamics.
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thermodynamics of the barrier crossing manifested in
modifications of the interconversion rates that favor one
enantiomer with respect to the other.
With this model and through the methods of stochastic

thermodynamics, we are able to describe explicitly the
thermodynamic consequences of the chiral coupling. We
show how the energetics and the barrier crossings depend
not only on the enantiomeric form of the chiral particle but
on the enantiomorphism of the chiral optical environment
too. We describe the emergence of an enantiospecific
thermodynamics where the chiral coupling transforms
chiral (internal) degrees of freedom of the Brownian system
and of the light field into true thermodynamic control
parameters. This transformation constitutes a central out-
come of our work.
We also show how different thermodynamic landscapes

are set by the different (reactive vs dissipative) natures of the
chiral optical environment that can be selected through a
careful engineering of the optical environment. This engi-
neering, in particular, leads us to measure the actual
thermodynamic cost of a deracemization process induced
within our framework. Echoing Pasteur’s views of “asym-
metric forces” capable of lifting the enantiomeric free-energy
degeneracy [47], our approach provides a concrete frame-
work for investigating further fundamental issues related to
chiral selection and their thermodynamic consequences. It
also provides the right settings to envision future experiments
nurtured by theory in an exchange that has fertilized to date
this newly born field of chiral optomechanics.

II. SUMMARY OF OUR FRAMEWORK

From a dynamical viewpoint, the coupling between a
chiral dipole and a chiral electromagnetic field (for in-
stance, a circularly polarized light field) leads to specific
types of optical forces, chiral in nature, that are exerted on
the chiral dipole, as already discussed in Ref. [25]. Their
general structure, in particular, their reactive (conservative)
and dissipative (nonconservative) nature, central to this
work, is reviewed in Sec. III of the manuscript. We explain
the coupling mechanism through which new chiral optical
forces emerge as Pasteurian forces from the “immersion” of
the chiral dipole within a chiral electromagnetic environ-
ment. For the reasons exposed in the Introduction, we set
this optical chiral coupling in a specific dual-beam optical
configuration designed in such a way as to form a bistable
optical trapping potential capable of implementing a
Brownian thermal activation process. The dual-beam con-
figuration and the associated double-well potential energy
with its barrier height profile are detailed in Sec. IV.
Our concept of tailored chiral optical environments is

presented in Sec. V where we show that, keeping the
electromagnetic energy density fixed, a fine polarization
control enables us to induce chiral densities and fluxes
within the dual-beam interfering pattern in ratios fully
controllable by the polarization parameters. The key feature

here is the possibility to choose these polarization settings
without modifying at all the bistable structure of the achiral
potential. As we show below, this possibility stems from the
fact that the bistability and the chiral optical densities and
fluxes are determined by different parts of the electromag-
netic energy density and can thus be fixed independently
from each other.
In this section, different types of chiral optical environ-

ments are generated depending on the selection of either
pseudo-scalar chiral densities or pseudo-vector chiral
fluxes. Through the chiral-coupling mechanism, the nature
of the environment then leads to the induction of specific
chiral optical forces: conservative for chiral optical den-
sities, or nonconservative for chiral optical fluxes. In other
words, conservative and/or nonconservative chiral forces
can be selected simply by tuning the relative helicities of
both beams. These one-to-one relations explain why we
speak of reactive or dissipative chiral optical environments.
As one important piece of our work, we emphasize that in
the conservative case, the chiral coupling defines a pseudo-
scalar potential with a truly chiral nature following Barron’s
classification [46].
Section VI builds the stochastic model of a Brownian

chiral nanoparticle optically trapped within a bistable
potential energy in order to evaluate the thermodynamics
consequences of the chiral coupling in both reactive
(Sec. VI A) and dissipative (Sec. VI B) cases. This section
presents a Fokker-Planck description involving the prob-
ability current along the optical axis that we use in order to
calculate escape rates from both sides of the potential
barrier.
In the stochastic thermodynamic framework of the

Kramers problem [41,48], we calculate in Sec. VI A the
modification of the escape rates induced by immersing
the chiral nanoparticle inside a reactive chiral environment.
Induced chiral forces being conservative contribute to a
global change of the Helmholtz free-energy landscape
yielding new potential energy surfaces that depend both
on the dipole enantiomer and the optical field enantio-
morph. These new potential energy surfaces remain sym-
metric, with a preserved degeneracy in the barrier-crossing
rates. In contrast, when the chiral coupling is set to be
dissipative in Sec. VI B, the chiral optical forces exerted on
the chiral dipole are nonconservative, and the mechanical
energy is transferred by the chiral optical field to the dipole
that is dissipated as heat into the thermal bath. In this
nonequilibrium steady-state configuration, the probability
density function associated with the barrier-crossing dif-
fusion is modified but not by a change in the Helmholtz free
energy as in the reactive case. More precisely, the non-
conservative chiral forces break the symmetry of the
probability density function while leaving the potential
unaffected. This symmetry breaking is one important result
of the work since it corresponds exactly to a chiral
separation process. It is accompanied by the creation of
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heat, thus entropy, that can be interpreted as the thermo-
dynamic cost for assigning enantiomers to specific wells of
the bistable optical potential, in analogy with the so-called
entropy penalty of deracemization with respect to racemi-
zation [49,50].
The relevance of theKramers framework for extracting the

thermodynamics significance of our chiral optomechanical
model is confirmed in Sec. VII by three-dimensional
stochastic simulations of an overdamped Langevin equation.
The Langevin approach gives access to the individual
Brownian trajectory for the diffusion of a chiral nanosphere
inside the bistable optical trap in the presence of either
reactive or/and dissipative chiral optical forces. We then
simulate the diffusive motions of a large number of chiral
nanospheres to build a statistical ensemble that greatly helps
in visualizing the mechanical action of the chiral optical
environment when calculating the probability density
functions associated with the ensemble of trajectories.
Consolidating our model approach based on escape rates,
the simulations highlight the chiral thermodynamic dera-
cemization scheme enabled by the dissipative chiral coupling
as a possible chiral resolution strategy.
The results are complemented in Sec. VIII with statistics

performed on the barrier-crossing events at the level of
single trajectories. These statistics lead to precise determi-
nations of the average residency times in each of the
bistable local wells. They actually point to the possibility to
measure the chiral optical forces biasing the thermody-
namics of the barrier crossing by recording only residency
times. Exchanging thereby force measurements into time
measurements paves the way to shortcut force calibration
procedures and as such, to a new strategy interesting to
develop in the context of weak chiral force measurements.
In particular, obtaining the average residency times in both
the reactive and dissipative chiral-coupling schemes yields
an absolute measurement of both real and imaginary parts
of the chiral polarizability of a single nanoparticle.

III. A REMINDER ON OPTOMECHANICAL
CHIRAL COUPLING: ACHIRAL AND CHIRAL

OPTICAL FORCES

We review here the general expression of the time-
averaged optical force FðrÞ exerted by a harmonic electro-
magnetic complex field ½EðrÞe−iωt;HðrÞe−iωt� on a chiral
nanoparticle modeled by a chiral dipole—not to be con-
fused with a mere anisotropic dipole—characterized by
electric p and magnetic m dipolar moments coupled to the
incident electric and magnetic fields through complex
electric α, magnetic β, and mixed electric magnetic χ
polarizabilities as [25,51]

�
p

m

�
¼

� αεf iχ ffiffiffiffiffiffiffiffiffi
εfμf

p

−iχ
ffiffiffiffiffiffiffiffiffiffiffiffi
εf=μf

p
β

��
E

H

�
; ð1Þ

where εf, μf are the permittivity and permeability of the
fluid enclosed in the optical trapping cell (deionized water).
As now well known, the time-averaged optical force

FðrÞ splits into (standard) achiral and (new) chiral con-
tributions. We defer to the Appendix A the full expression
for FðrÞ and neglect here and below all magnetic force
contributions. This allows us to write

FðrÞ ¼ Re

�
αf0ðrÞ þ

χ

ω
ffiffiffiffiffiffiffiffiffi
εfμf

p h0ðrÞ
�

¼ FαðrÞ þ FχðrÞ; ð2Þ

where FαðrÞ is the standard achiral optical force contribu-
tion that involves only α, and FχðrÞ is the new chiral optical
force contribution that depends on the mixed electric
magnetic χ polarizability. Both achiral and chiral force
contributions can be separated into reactive and dissipative
components [25,52] engaging, respectively, the real and
imaginary parts (i) of the ðα; χÞ polarizabilities and (ii) of
the vector fields ðf0;h0Þ that take simple forms with

Re½f0ðrÞ� ¼ ∇WEðrÞ; ð3Þ

Im½f0ðrÞ� ¼ −ωεfμfΠ0ðrÞ; ð4Þ

Re½h0ðrÞ� ¼ ∇KðrÞ; ð5Þ

Im½h0ðrÞ� ¼ −2ωεfμf½ΦðrÞ −∇ ×ΠðrÞ=2�: ð6Þ

The achiral contribution therefore is determined by
WEðrÞ ¼ εfEðrÞ ·E�ðrÞ=4 the time-averaged (electric)
energy density and Π0ðrÞ the orbital part of the full
Poynting vector ΠðrÞ ¼ Re½EðrÞ ×H�ðrÞ�=2 showing
how the reactive achiral force component can be interpreted
as a gradient force and the dissipative one as a radiation
pressure, as already discussed in Refs. [53,54]. For the chiral
contribution, the chiral density KðrÞ ¼ ωεfμfIm½EðrÞ·
H�ðrÞ�=2 and the chiral fluxΦðrÞ¼−ωIm½εfEðrÞ×E�ðrÞþ
μfHðrÞ×H�ðrÞ�=4 measure the chirality of the electromag-
netic field. Here, we stress thatKðrÞ andΦðrÞ are time-even
parity-odd quantities, therefore truly chiral according to
Barron’s definition [46].
These remarkable expressions reveal new types of optical

forces, chiral in nature, that are induced when a chiral system
is immersed within an electromagnetic field that contains
either nonzero electromagnetic chiral density or chiral flux.
These chiral optical forces can therefore be viewed as the
dynamicmanifestation of a chiral coupling between light and
matter. They intertwine the chirality of the matter with the
chirality of the electromagnetic field and are enantioselec-
tive, explaining why they generated a strong interest since
their predictions. Dipolar, they also do not depend on any
specific energy-level structure of the chiral system involved.
However, essentially because χ ≪ α, chiral optical forces
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remain small compared to achiral optical forces. This issue
has driven many proposals for exploiting the potential of
these chiral optical forces in chiral discriminatory schemes
despite the fact that they correspond to relatively weak
signals [25,27,29,30,32–35,55].
The chiral light-matter coupling leads to simple rela-

tions. From the light part, chiral electromagnetic fields form
a pair of enantiomorph optical environments when revers-
ing the signs of KðrÞ;ΦðrÞ without changing the energy
density. From the matter part, chiral dipoles form a pair of
enantiomers with opposite signs for the real and imaginary
parts of χ. We decide here to call a “right-handed” dipole
one with Re½χ� > 0; Im½χ� < 0 and a “left-handed” dipole
with Re½χ� < 0; Im½χ� > 0. In the model presented below,
we fix a ratio χ=α ¼ 5% calculated from the Clausius-
Mossotti polarizabilities α and χ in the quasistatic limit; see
Appendix B for details.

IV. BISTABLE POTENTIAL ENERGY IN AN
OPTICAL TRAP

The expressions of the optical forces being reminded, we
now explain how the achiral force contribution can induce a
bistable dynamics within the optical trap. To do so, i.e., to
form a double-well trapping potential, we use a trapping
configuration involving two counterpropagating Gaussian
beams focused on a common waist already implemented in
the context of optical force spectroscopy [56–58]. In the
paraxial approximation [59] and using harmonic-time-
dependent complex fields, the Gaussian beams propagating
either with a þkz or −kz phase along the z-optical axis
(k ¼ ffiffiffiffiffi

εf
p

ω=c) can be evaluated at any position r ¼ qρ̂þ
zẑ in the cylindrical coordinate system as

E�ðrÞ ¼ E�ðrÞe�ikze�; ð7Þ

H�ðrÞ ¼
1

Zf
E�ðrÞe�ikzð�ẑ × e�Þ; ð8Þ

where e� are the (unit) polarization vectors associated with
each field in each direction of propagation and Zf ¼ffiffiffiffiffiffiffiffiffiffiffiffi
μf=εf

p
the optical impedance of the fluid. With beam

waists w0 and Rayleigh ranges zR identical for both beams,
we have

E�ðrÞ ¼ E0

w0

wðzÞ e
�iϕðq;zÞe−½q2=w2ðzÞ�; ð9Þ

where we note ϕðrÞ ¼ kq2=2RðzÞ − ξðzÞ the Gaussian
phase that accounts for the finite radius of curvature
RðzÞ ¼ z½1þ ðzR=zÞ2� of the beam and the Gouy phase
ξðzÞ ¼ arctan½z=zR�, and wðzÞ ¼ w0½1þ ðz=zRÞ2�1=2 the
beam radius measured along the optical axis from both
sides of the waist. We define the polarization vectors by

eþ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − hþ
p

el þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hþ

p
er
�
=

ffiffiffiffi
2;

p

e− ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − h−
p

eiðδ−δθÞel þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h−

p
eiðδþδθÞer

�
=

ffiffiffi
2

p

in the basis of left and right circular polarization vectors el
and er, with hþ and h− corresponding to the helicity of both
beams ranging from 1 for a right-handed circular polari-
zation to −1 for a left-handed circular polarization. The
phase delay between both beams is δ, and δθ is the angle
between the semimajor axes of the polarization of both
beams, as described in Fig. 2. The field superpositions
ESWðrÞ ¼ EþðrÞ þ E−ðrÞ and HSWðrÞ form a standing
wave. A crucial consequence for the forces is the zero
Poynting vector inside the standing wave because
ESWðrÞ ×H�

SWðrÞ is purely imaginary.
Before inducing any chiral coupling, let us look at

the dynamical landscape within the optical trap when
solely involving the achiral reactive force field FαðrÞ ¼
Re½α�∇WEðrÞ. This force is conservative, and the corre-
sponding potential energy inside the optical trap UoptðrÞ ¼
−Re½α�WEðrÞ is determined by the time-averaged electric
energy density WEðrÞ ¼ εfESWðrÞ ·E�

SWðrÞ=4 inside the
standing wave.
The notations

h1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − hþ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − h−
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h−

p �
=2;

h2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − hþ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − h−
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h−

p �
=2;

φðrÞ ¼ δþ 2k
�
zþ q2

2RðzÞ
�
− 2ξðzÞ

FIG. 2. The polarization vectors e� for each of the two
counterpropagating Gaussian beams are represented for plane-
wave electric fields. In blue, a beam with eþ and k > 0 and in red,
with e− and k < 0. The schematics illustrates the effects of the
phase δ and the polarization main axis angle δθ on beams linearly
polarized with h� ¼ 0. The insets show the polarization ellipses
for different values of h�. The effect of the δθ parameter is seen
when the beams are not circularly polarized.
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allow us to express in a simple way the separation of the
energy density WEðrÞ between a trapping energy density
WtrapðrÞ independent of polarization and an interference
energy density WinterðrÞ according to

WEðrÞ ¼ WtrapðrÞ þWinterðrÞ; ð10Þ

WtrapðrÞ ¼
E2
0w

2
0εf

2w2ðzÞ e
− 2q2

w2ðzÞ; ð11Þ

WinterðrÞ ¼ WtrapðrÞ½h2 cos δθ cosφðrÞ
þ h1 sin δθ sinφðrÞ�: ð12Þ

There is clearly a vast ðh1; h2; δ; δθÞ parameter space
available for the design of the potential energy landscape,
as we discuss in detail in Appendix A. In order to set the
double-well trapping potential, we start with linear polar-
izations hþ ¼ h− ¼ 0 giving h1 ¼ 0, h2 ¼ 1. The bist-
ability profile can then be shaped by controlling the
strength of the interferences superimposed to the trapping
potential. This is done by adjusting δθ to a value that leaves
only one interference falling inside the trapping envelop
strong enough to cause a force inversion around the waist;
see Appendix C for a detailed description of the landscape.
This parameter being fixed, we force with δ the potential
energy UoptðrÞ to be symmetric with respect to the waist
position with a constructive interference at z ¼ 0. Finally,
the barrier height is adjusted via the two beam (even)
intensities. These controls lead to the bistable optical
potential inside the trap displayed in Figs. 3(a) and 3(b)
for the corresponding z-axial force field, with the corre-
sponding values given in the figure caption.

V. BISTABILITY IN CHIRAL OPTICAL
ENVIRONMENTS

The explicit expressions of the electromagnetic chiral
density and chiral flux associated with the dual-beam
configuration described above

KðrÞ ¼ −ðhþ − h−Þ × ω
ffiffiffiffiffiffiffiffiffi
εfμf

p
WtrapðrÞ; ð13Þ

ΦðrÞ ¼ −ðhþ þ h−Þ × ωWtrapðrÞẑ ð14Þ

immediately reveal that setting linear hþ ¼ h− ¼ 0 polar-
izations for both beams deprives the interference pattern
from any chirality. But elliptically polarized beams endow
the optical environment with chirality. This leads to the
dynamical consequences that we now discuss.
The first key feature of our model is the possibility to

choose hþ; h− values that select KðrÞ or ΦðrÞ (or both)
while preserving exactly the bistable structure of the achiral
potential energy defined in Sec. IV above. This is clearly
seen in Figs. 3(a) and 3(b). With such polarization choices,
the double-well landscape of the trap therefore becomes
optically chiral. According to Eq. (2), as soon as a chiral
dipole is immersed in this chiral optical environment, the
chiral coupling will induce chiral forces that add to the
bistable dynamic which is, for its part, driven by the achiral
force fields only.
The second important feature is the ability to select by

polarization the reactive and/or dissipative nature of the
chiral environment and thereby induce on the chiral dipole
reactive (i.e., conservative) and dissipative (i.e., noncon-
servative) forces

FIG. 3. (a) Bistable optical potential energy UoptðrÞ ¼
−Re½α�WEðrÞ displaying the two local minima at zA and zC
separated by the barrier at zB. The electric dipolar polarizability α
associated with an achiral (χ ¼ 0) gold (Au) nanosphere of radius
R ¼ 20 nm is calculated using Au tabulated optical data mea-
sured at an illumination wavelength of 785 nm and the Clausius-
Mossotti relations of Appendix B with κAu ≡ 0 in this case.
(b) Corresponding optical achiral force field Fα ¼ Re½α�∇WEðrÞ
drawn in the waist region. This double-well profile in UoptðrÞ is
generated with the polarization settings hþ ¼ h− ¼ 0; δθ ¼
0.9989 × π=2; δ ¼ −π. Superimposed in (a) and (b) is the achiral
potential energy recalculated with the polarization settings that
lead to reactive and dissipative chiral environments. These
settings are hþ ¼ 0.05¼−h−;δθ¼ 0.8990×π=2;δ¼−π for the
reactive case and hþ ¼ 0.0017 ¼ h−; δθ ¼ π=2; δ ¼ π=2 for the
dissipative one. As seen, these polarization settings do not modify
the achiral potential energy surface inside the optical trap. The
distance between the two local wells located at zA < 0 and zC > 0
from both sides of the waist barrier positioned at zB ¼ 0 is noted
Δl in the main text.
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Freac
χ ðrÞ ¼ Re½χ� 1

ω
ffiffiffiffiffiffiffiffiffi
εfμf

p ∇KðrÞ; ð15Þ

Fdiss
χ ðrÞ ¼ Im½χ�2 ffiffiffiffiffiffiffiffiffi

εfμf
p ΦðrÞ ð16Þ

that are each associated with one unique chiral quantity.
The evolution of the reactive vs dissipative nature of the
chiral environment in the ðhþ; h−Þ helicity space is dis-
played in Fig. 4 where it is clear that the two distinct
reactive ½KðrÞ ≠ 0;ΦðrÞ ¼ 0� vs dissipative ½KðrÞ ¼ 0;
ΦðrÞ ≠ 0� chiral optical environments can be selected
using hþ ¼ −h− vs hþ ¼ h−. We stress that this selection
is performed on a sole polarization control, without
changing the intensity of the two beams. This polariza-
tion-based tailoring of the chiral optical environment yields
the important thermodynamics consequences at the heart of
our work.
The possibility to induce nonconservative chiral optical

forces within a dissipative chiral optical environment
clearly distinguishes our work from previously studied
chiral-coupling configurations such as spins in magnetic
fields and ratchet dynamics in molecular motor systems.
This difference is due to the fact that in the latter systems,
all forces derive from a potential, while in our dissipative
chiral-coupling case, the nonconservative nature of the
force forbids the definition of such a potential [60].
Importantly, the appropriate choices of polarizations

that induce chirality without perturbing the achiral bista-
ble potential energy set above in Sec. IV must balance two
potentially competing constraints. First, they must comply
with the necessity to keep the achiral potential energy
unmodified that, as we discuss above, demands us to
decrease the amplitude of the interferences sufficiently so
that the optical potential takes a double-well profile at the
minimum of WtrapðrÞ. Then, because chiral optical forces

are weak signals, polarization settings have to allow for an
optimal ratio between chiral and interferential axial forces,
the latter corresponding to FinterðrÞ ¼ Re½α�∇WinterðrÞ.
The ratio associated with chiral reactive and dissipative
forces is plotted in Figs. 5(a) and 5(b), respectively, in the
ðhþ; δθÞ parameter plane, considering that δ is tuned to
shape an achiral potential energy surface symmetrical
with respect to the plane z ¼ 0. For the reactive coupling
that involves KðrÞ, the optimal choice would be to set
hþ ¼ −h− ¼ �1 with δθ ¼ π=2. However, in this case, no
interference is expected, therefore losing the double-well
structure. This demands a slight move away from δθ ¼
π=2 while reducing the helicity of the two beams. In
contrast, the dissipative coupling involves ΦðrÞ where
hþ ¼ h− maximizes interferential forces associated with
very deep wells in the potential energy. Our choice here is
rather to set δθ ¼ π=2 with a reduced helicity in both
beams. These constraints lead to the polarization choices
detailed in the caption of Fig. 3 that yield force ratios
strong enough for our purposes while preserving the
double-well profile of WEðrÞ.

FIG. 4. Surface plot of the evolution of the reactive vs
dissipative nature of the chiral optical environment in the helicity
plane ðhþ; h−Þ of the two counterpropagating beams. In agree-
ment with Eqs. (13) and (14), c ¼ jhþ − h−j=2 × ðcR − cAÞþ
jhþ þ h−j=2 × ðcD − cAÞ þ cA, where c, cR, cD, and cA are,
respectively, the displayed, blue (for reactive), red (for dissipa-
tive), and white (for achiral) colors.

FIG. 5. (a) Surface plot in the ðhþ; δθÞ plane of
log ½maxðFreac

χ Þ=maxðFinterÞ� evaluated on the optical axis in a
purely dissipative chiral force configuration. (b) Surface plot in
the ðhþ; δθÞ plane of maxðFdiss

χ Þ=maxðFinterÞ evaluated on the
optical axis in a purely dissipative chiral force configuration. In
both reactive and dissipative couplings, δθ and hþ are chosen in
order to maximize the ratio of chiral vs interferential forces while
keeping the interferential forces sufficiently weak as to ensure the
double-well structure described in Fig. 3. For these calculations,
the intensities in the two beams, the wavelength, and the nano-
sphere dipolar polarizability are the same as in Fig. 3. We set the
chiral polarizability χ=α ¼ 5% as we discuss in Appendix B.

CHIRAL THERMODYNAMICS IN TAILORED CHIRAL OPTICAL … PHYS. REV. X 11, 041022 (2021)

041022-7



VI. THERMODYNAMIC CONSEQUENCES
OF THE REACTIVE AND DISSIPATIVE

CHIRAL COUPLINGS

We now include temperature T and describe the evolu-
tion of the dipole inside the bistable potential. In the
absence of chiral contributions ½KðrÞ ¼ 0;ΦðrÞ ¼ 0�, the
evolution is driven only by decoupled achiral reactive axial
FαðrÞ · ẑ and radial FαðrÞ · ρ̂ forces inside the optical trap.
This situation corresponds to a Kramers problem with the
possibility given to the dipole to escape local trapping sites
by thermal activation and diffusion over the separating
barrier of the double-well potential energy landscape drawn
in Fig. 3. The classical overdamped Fokker-Planck model
for this metastable dynamics is reviewed in Appendix D,
with the escape rates κA→C from well A to well C and κC→A
from well C to well A given by the well-known formulas

κA→C ≃
ab

kBTγπ
e−½Uoptð0;zBÞ−Uoptð0;zAÞ=kBT�;

κC→A ≃
bc

kBTγπ
e−½Uoptð0;zBÞ−Uoptð0;zCÞ=kBT�

where kB is the Boltzmann constant and γ the Stokes drag
coefficient. These formulas involve the local a, c minima
and barrier b curvatures together with the barrier heights
ΔUAB

opt¼Uoptð0;zBÞ−Uoptð0;zAÞ and ΔUCB
opt¼Uoptð0;zCÞ−

Uoptð0;zBÞ, both evaluated along the optical axis at q ¼ 0.
In the following subsections, we evaluate the thermody-

namic consequences of the chiral coupling by looking at
how the escape rates are modified due to the presence of the
reactive and dissipative chiral optical forces in the Fokker-
Planck equation. In our model, we look only at the force
contributions along the optical axis. This is natural due to the
axisymmetry of the system. The relevant dynamics is thus
described through axial force components only and close to
the optical axis. It is, however, important to keep inmind that
the conservative and nonconservative nature of the forces is
a known input of the problem fromEqs. (15) and (16). This is
important when modeling the case of dissipative coupling
below. We show that fully three-dimensional stochastic
simulations presented in Sec. VII validate our model that
focuses on the predominant axial thermodynamics.

A. Steady state in the reactive chiral coupling

Here, we select the polarizations hþ ¼ h− in the two
beams in order to induce a purely reactive chiral coupling
and to study its impact on the thermodynamics of the
thermal activation process inside the bistable optical trap. In
this case, the reactive chiral optical force derives from the
gradient of the chirality density and is thus conservative. It
therefore contributes to the optical energy potential as a
chiral potential

Uχðq; zÞ ¼ −Re½χ�Kðq; zÞ=ω ffiffiffiffiffiffiffiffiffi
εfμf

p
: ð17Þ

We stress that this contribution built on the pseudo-scalar
Kðq; zÞ corresponding to the chiral density of the electro-
magnetic field is a potential intrinsically truly chiral. This is
a surprising feature that must be well appreciated. The
potential is not chiral by virtue of the chirality of the dipole:
Its enantiomorphism stems from the chirality of the
electromagnetic field only.
This chiral potential Uχðq; zÞ then adds to the dynamics

described by the steady-state Fokker-Planck equation
according to (forward direction)

j̃þz ðqÞ ¼ −
1

γ
∂zUpotðq; zÞp̃þðq; zÞ

−D∂zp̃þðq; zÞ ð18Þ
defining Upotðq; zÞ ¼ Uoptðq; zÞ þ Uχðq; zÞ. The equation
connects the probability density p̃þ to the probability
current j̃þz both modified by the chiral potential from the
probability density pþ and the probability current jþz of the
bare Kramers problem (see Appendix D). In this model, we
involve only the probability current along the optical axis
j̃þz ðqÞ. This projective approach gives us an efficient way to
analytically interpret the thermodynamic impact of the
chiral potential through well-identified contributions. We
describe below a full modeling of the system resorting to
numerical solutions of 3D Langevin equations under chiral
coupling. Anticipating with what we show below, these 3D
numerical simulations fully justify our projective approach,
thereby confirming that the z-axial component of the
probability current dominates the global dynamics and
therefore the thermodynamics.
Just like j̃þz ðqÞ is modified by Uχðq; zÞ, the nonequili-

brium probability density is modified with respect to the
bare Kramers problem into p̃þ and yields escape rates that
evolve accordingly with

κ̃A→C ≃ κA→C × e−½Uχð0;zBÞ−Uχð0;zAÞ=kBT�; ð19Þ

κ̃C→A ≃ κC→A × e−½Uχð0;zBÞ−Uχð0;zCÞ=kBT�; ð20Þ

where we verify that the local curvatures of the optical
landscape are only weakly modified by the chiral potential
with respect to the results of Appendix D, i.e., that ã ≃ a,
b̃ ≃ b, and c̃ ≃ c. We use the same notation forUχ as we use
for Uopt above, and where we take advantage of the z parity
of the chiral density Kðq; zÞ with ∂zUχðzÞjz¼0 ¼ 0 and its q
parity giving ð∂2Uopt=∂q∂zÞðq; zÞ ∼ 0 close to the optical
axis. This parity also implies that the reactive chiral
coupling does not lift the degeneracy in free energy
between the two wells, maintaining the equilibrium con-
stant to κ̃A→C=κ̃C→A ¼ 1.
From a thermodynamics viewpoint, the rate modifica-

tions come from the work performed by the reactive chiral
force between the barrier and the wells. This conservative
work provides a contribution to the potential energy in the
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form of a Helmholtz free-energy difference ΔF χi¼Wcons
χi ¼

UχðzBÞ−UχðziÞ, with i ¼ A, C.
The second important thermodynamic consequence is

the enantioselective character of the free-energy difference
ΔF χ considering that Re½χ� has opposite signs for different
enantiomers of the chiral dipole and that Kðq; zÞ being a
pseudo-scalar changes sign for the enantiomorphs (parity
operation) of the chiral optical standing wave. Chiral
coupling therefore has the capacity to yield a new potential
energy surface that depends on both the chirality of the
dipole and of the optical field. This dual enantiomeric and
enantiomorphic dependence of Wcons

χ is the manifestation

of a truly chiral discriminating thermodynamic process,
concentrating one enantiomer toward the center and the
other toward the outside of the double well as illustrated
in Fig. 6.
Figure 6(a) indeed displays the initial optical potential

energy and the changes induced on it by the chiral density
KðrÞ through the chiral coupling. As seen in Fig. 6(a), the
contribution of the chiral potential proportional to WtrapðrÞ
with a sign determined by the enantiomeric form of the
dipole, either enhances the trapping component ofWEðrÞ for
right-handed eniantomers (Re½χ� > 0) or favors its interfe-
rential componentWinterðrÞ for left-handed ones (Re½χ� < 0).
In the steady-state regime that implies the detailed

balance, we also plot in Fig. 6(b) the probability density
function (PDF) evaluated on the optical axis at q ¼ 0,
which is simply given by

preac
χ ð0; zÞ ¼ Ce−½Uoptð0;zÞþUχð0;zÞ=kBT�; ð21Þ

withUoptð0;zÞ¼−Re½α�WEð0;zÞ,Uχð0;zÞ¼−Re½χ�Kð0;zÞ=
ω

ffiffiffiffiffiffiffiffiffi
εfμf

p , and C a normalization factor evaluated such
that

Rþ∞
−∞ dzpreac

χ ð0; zÞ ¼ 1.

B. Steady state in the dissipative chiral coupling

If we change the polarizations to hþ ¼ −h−, the standing
wave now carries a chiral flux with no chiral density. As a
consequence, a dissipative chiral force is exerted on the
diffusing chiral dipole. As we explain below, this mere
change of polarization that switches the chiral optical
environment from reactive to dissipative leads to a totally
different thermodynamics.
Because the dissipative chiral force is nonconservative

with∇ × Fdiss
χ ðq; zÞ ≠ 0, it is not possible to derive it from a

chiral potential, as it is the case for the reactive chiral
coupling. But despite the nonconservative nature of the
chiral force, we solve the steady-state Fokker-Planck
equation with the modified probability density p̂þðq; zÞ
and the probability current ĵþz ðqÞ along the optical axis

ĵþz ðqÞ ¼ −
1

γ
½∂zUoptðq; zÞ − Fdiss

χ ðq; zÞ · z�p̂þðq; zÞ

−D∂zp̂þðq; zÞ: ð22Þ

The equation is solved analytically by making use of the
fact that under the paraxial approximation, the z depend-
ence of the chiral fluxΦðq; zÞ is very slow over the distance
Δz ∼ Δl separating the two local minima. The projected
chiral dissipative force Fdiss

χ ðq; zÞ ¼ ẑ · Fdiss
χ ðq; zÞ is thus

such that

ΔFdiss
χ ðq;ΔzÞ ¼ ∂2

zFdiss
χ ðq; 0ÞΔz2 ≪ Fdiss

χ ðq; 0Þ ð23Þ

given that the symmetry of the force field imposes
∂zFdiss

χ ðq; 0Þ ¼ 0. This is well seen in Fig. 7(a), where

FIG. 6. (a) With hþ ¼ h− and the polarization settings of the
two beams detailed in Fig. 3, the chiral coupling is reactive,
leading to conservative chiral optical forces exerted on the chiral
dipolar nanosphere (χ=α ¼ 5%) diffusing within the bistable
optical trap. Because these forces derive from a chiral potential
Uχðq; zÞ, they combine with the achiral electromagnetic
potential to form the potential energy surface Upotðq; zÞ. The
resulting potentials at q ¼ 0 are plotted for the two opposite
enantiomers: the right-handed (Re½χ� > 0 in red) and the left-
handed one (Re½χ� < 0 in blue). The same is plotted in black for
an achiral environment. The same differences would be induced
for one fixed choice of enantiomer but using two opposite
enantiomorphs for the reactive chiral optical field. (b) The
corresponding normalized PDFs are evaluated from our one-
dimensional model (lines) and three-dimensional simulations
(symbols) as detailed in Appendix E. Although the achiral and
chiral PDFs appear only slightly different, their enantioselec-
tive character is manifest, revealing a chiral discriminating
thermodynamics.
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overΔz ≈ 100 nm, jFdiss
χ ð0;ΔzÞ−Fdiss

χ ð0;0Þj=jFdiss
χ ð0;0Þj¼

Δz2=z2R≈3.4×10−3.
This slow-varying evolution of Fdiss

χ ðq; zÞ throughout the
bistable region makes it possible to approximate the

dissipative force by its Taylor expansion around
ðq; z ¼ 0Þ in z. Given the parity of the force, only pair
orders are present, and coefficients evolve in 1=ðz2nR Þ where
n is the expansion order in z. Choosing an arbitrary
expansion order, we can tune the precision of the approxi-
mation of the chiral force field over a given volume inside
the trap. This expansion can then be integrated as a pseudo-
potential udissχ ðq; zÞ, while keeping in mind that this is only
locally possible. As stressed above, no chiral potential can
be derived from the dissipative chiral force, which is strictly
nonconservative with ∇ × Fdiss

χ ðq; zÞ ≠ 0.
Our approximation therefore neglects the fact that the

pseudo-potential defined is dependent on qwhile there is no
associated radial force. In an effective way, we use a pseudo-
one-dimensional model with a radial q parameter, exploiting
the fact that in one dimension, all forces can be derived froma
potential. For the sake of simplicity, we use a second-order
development for our model for defining Fdiss

χ ðq; zÞ ¼
−∂zudissχ ðq; zÞ. This pseudo-potential approach helps us
solve the steady-state Fokker-Planck equation (22) using
the same steepest-descent approach and the q parity of
Φðq; zÞ. We can then evaluate analytically the probability
density function under dissipative chiral coupling plotted in
Fig. 7(b); see below.
Under such an approximation, the Fokker-Planck equa-

tion (22) is directly integrated, leading to escape rates
modified by the external chiral dissipative force field as

κ̂A→C ≃ κA→C × eþ½Fdiss
χ ð0;0ÞðzB−zAÞ=kBT�; ð24Þ

κ̂C→A ≃ κC→A × eþ½Fdiss
χ ð0;0ÞðzB−zCÞ=kBT�; ð25Þ

with â ≃ a, b̂ ≃ b, and ĉ ≃ c as we verify here too. The fact
that the q dependence has disappeared from the rate
expressions is the result of our first-order approximation.
As a consequence, these expressions look as if they could
have been derived within a chiral conservative force field.
But it is crucial to appreciate that we already know from
Eq. (16), that the chiral force here is nonconservative. This
prior knowledge is fundamental in that it completely
modifies the thermodynamics that must be associated with
Eqs. (24) and (25) with respect to the conservative case.
Here indeed, the chiral electromagnetic fields continu-

ously transfer, through dissipation, mechanical energy to
the chiral dipole immersed in this dissipative chiral envi-
ronment. For this reason, our system behaves as a non-
equilibrium steady-state system where the chirality of the
probe becomes a thermodynamic parameter. The thermo-
dynamic consequence of the emergence of a dissipative
chiral optical force is a bias put on the probability
distribution function of positions from both sides of the
waist. In this dissipative coupling, the PDF is evaluated in
the stationary regime on the optical axis using a

FIG. 7. (a) A dissipative chiral coupling is induced by the chiral
nanosphere (χ=α ¼ 5%) for hþ ¼ −h− in the two beams and the
polarization settings detailed in Fig. 3. The angle formed between
the polarization axes of the beams and their helicities are fixed so
as to lead to the generation of a chiral flux Φðq; zÞ—and zero
chiral density—with the same achiral optical potential energy
densityUoptðq; zÞ as for an achiral environment [in black, same as
in Fig. 3(a)] again calculated at q ¼ 0. Our chiral dipole now
couples to the chiral optical environment through Im½χ� with
chiral dissipative forces Fdiss

χ ðq; zÞ that are opposed for opposite
signs in Im½χ�—the same sign inversion appears if, instead of
changing dipole enantiomers, one changes electromagnetic field
enantiomorphs. Note that in the paraxial approximation of the
model with Δl ≪ zR, we have ΔFdiss

χ ðq; zÞ ≪ Fdiss
χ ðq; zÞ; see the

main text. Here, we plot the profile of a second-order develop-
ment of Fdiss

χ ðq; zÞ (black line) with the associated scale on the
right-hand side of the graph. Because the dissipative chiral force
is nonconservative, it does not contribute to the potential free-
energy surface as it is the case for the reactive chiral coupling.
(b) The influence of the chiral dissipative force is seen on the
modified steady-state probability density function of the chiral
dipole in the bistable trap, shifted in the direction of the force for
both our one-dimensional model (lines) and three-dimensional
simulations (symbols); see details in Appendix E. This modified
PDF reveals the strong chiral discriminating action of Fdiss

χ ð0; zÞ
with respect to the two local maxima at zA and zC. We give in the
main text the thermodynamics interpretation of this result.
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nonequilibrium potential pdiss
χ ð0; zÞ ¼ C exp ½−φð0; zÞ�

where we have, within the pseudo-potential udissχ ð0; zÞ
approach, φð0; zÞ ¼ ½Uoptð0; zÞ þ udissχ ð0; zÞ�=kBT and the
normalization C−1 ¼ Rþ∞

−∞ dz exp ½−φð0; zÞ� [37,38]. It is
plotted in Fig. 7(b).
As already emphasized, the chiral coupling intertwines

the chirality of the dipole with the chirality of the field,
while leaving untouched the achiral bistable potential. For
this reason, the bias depends on both the enantiomeric form
of the dipole via Im½χ� and the enantiomorphic form of the
field through the chiral flux Φðq; zÞ. But contrasting the
reactive case, the dissipative chiral action cannot be framed
into a chiral contribution to the potential energy landscape.
In such a framework, the nonconservative chiral force
contributes to the thermodynamics as a dissipative work
Fdiss
χ ðq; zÞδz ¼ δWdiss

χ and not as a free-energy change [61].
This fundamental difference in the thermodynamics
between the reactive and the dissipative chiral couplings
has important consequences as we now see.
The fact that the dissipative chiral force breaks the

symmetry of the escape rates according to

κ̂A→C

κ̂C→A
¼ eþ½Fdiss

χ ð0;0ÞðzC−zAÞ=kBT� ð26Þ

constitutes the main result of our analysis. It explicitly
shows how dissipative chiral coupling lifts the degeneracy
in the escape rates of the initial system. This result has a
profound thermodynamical significance by showing how
dissipative chiral coupling acts as a chiral source of heat,
with a quantity

ΔQχ ¼ Fdiss
χ ð0; 0ÞΔl ð27Þ

transferred to the surrounding fluid in the trap that can be
precisely evaluated from well to well with Δl ¼ zC − zA.
Equations (24) and (25) show the dissipative work asso-
ciated with each barrier crossing �Fdiss

χ ð0; 0ÞΔl=2 (we
note here Δl=2 ¼ zB − zA > 0). Then, the symmetry
breaking of the escape rates shown in Eq. (26) stems from
the total dissipative work evaluated from one well to the
other. This global dissipative work is associated with a
quantity that corresponds to the quantity of heat (27)
transferred to the bath. The consequence is observed in
Fig. 7(b) in the difference in the probability density
function between the two wells. The asymmetry of the
PDF ensures that this heat ΔQχ is, on average, not fully
recovered by the particle.
It is important to stress that in our dipolar framework,

this heat cannot come from a transfer from a “laser-heated”
particle to the fluid, but only from the damping through
friction of the stochastic motion of the chiral dipole
performed under the continuous action of the external
dissipative chiral force field. It is also important to note that

in our model, the heat associated with q ≠ 0 contributions
is not accounted for. These off-axis contributions, however,
play a negligible role in the modifications of probability
density functions and escape rates. This is seen by looking
the excellent agreement between our model in Fig. 7(b) and
full 3D simulations that obviously incorporate all q ≠ 0
contributions. This agreement confirms that it is possible to
evaluate the transfer of heat along the optical axis, as done
in our model Eq. (27).
The heat transfer can be described as an associated entropy

productionΔSχ ¼ ΔQχ=T during the diffusion of the dipole
from onewell to the other. This production of entropy is only
related to the dissipative chiral dynamics that assigns
enantiomers to specific wells of the bistable potential.
Through Brownian diffusion performed within this dissipa-
tive optical landscape, the chiral coupling leads to spatially
separating the enantiomers. This is exactly a deracemization
process, and this production of entropy can be associated
with the thermodynamic cost of assigning one enantiomer to
one specific well of the bistable potential. As such, it is the
exact analog to the “entropy penalty” expected for any
molecular deracemization process, as we mention in Sec. II.
Finally, we want to stress that the agreement seen in

Fig. 7(b) for the PDF profiles between the 3D stochastic
simulations and our model confirms the validity of locally
deriving the dissipative chiral force field from a pseudo-
potential. It demonstrates also that our model captures
correctly the heat (and thus, the produced entropy) trans-
ferred during the diffusion of the dipole from one well to
the other along the optical axis. But one should keep in
mind that our pseudo-potential approach is locally acces-
sible looking only at the on-axis probability current. In
contrast, our full 3D simulations do not rely on this approach
and are handling rigorously the nonconservative property of
the dissipative chiral force field. This therefore implies that in
the 3D description of our system below, the influence of the
dissipative chiral force field cannot be described as deriving
from a tilted potential that breaks the symmetry between the
twowells. We also note that the nonconservative chiral force
field has no azimuthal components. Azimuthal components
solely stem from the achiral contribution and therefore do not
influence the impact of the chiral coupling on the thermo-
dynamics of the barrier crossing.

VII. STOCHASTIC SIMULATIONS:
TRAJECTORIES AND PROBABILITY DENSITY

FUNCTIONS

Once the model is exposed and analytically solved, it is
important to validate the results shown in Figs. 6 and 7 by
simulating the three-dimensional instantaneous motion rðtÞ
of the chiral dipole inside the optical trap when the
polarizations are set to induce chiral optical environments.
Such 3D simulations will also lead us a step further by
revealing the different patterns that chiral separation

CHIRAL THERMODYNAMICS IN TAILORED CHIRAL OPTICAL … PHYS. REV. X 11, 041022 (2021)

041022-11



mechanisms can spatially yield within reactive or dissipa-
tive environments.
To do so, we solve the overdamped Langevin equation

γdtr ¼ −∇UoptðrÞ þ FχðrÞ þ FthðtÞ ð28Þ

in the achiral bistable optical potential UoptðrÞ with FthðtÞ
the thermal random force of zero mean that satisfies the
fluctuation-dissipation theorem. We include in this
Langevin equation the three-dimensional chiral force fields
FχðrÞ (axial and radial) whose expressions are reminded in
Sec. III. In Fig. 3(a), the electromagnetic field intensity is
adjusted so that the bistable barrier separating the two local
potential minima is set to a height of one kBT.
The simulations are performed in achiral ½FχðrÞ ¼ 0�,

chiral reactive ½FχðrÞ ¼ Freac
χ ðrÞ�, and chiral dissipative

½FχðrÞ ¼ Fdiss
χ ðrÞ� configurations using the same polariza-

tion settings as those involved in Fig. 3. Again, the chirality
of the trapped nanosphere is set to χ=α ¼ 5%. Simulations
are run for a racemic mixture of chiral dipoles corresponding
to 104 trajectories per enantiomer in parallel, starting from an
initial distribution of positions determined from the three-
dimensional stationary probability density distributions
evaluated by our model for 5 × 104 time steps. Simulation
algorithms and methods are detailed in Appendix E.
Within all the available states that lie below the level set by

the temperature and the simulation time, these results
perfectly reveal how the Brownian motion probes the chiral
optical environment, where the chiral coupling modifies the
diffusion driven by thermal fluctuations within the bistable
potential. The spatial distributions of positions numerically
calculated and shown in Fig. 8 clearly reveal this bias. In the
achiral case of Fig. 8(a), the distribution does not depend on
the enantiomerwhile both reactive [Fig. 8(b)] and dissipative
[Fig. 8(c)] cases are enantiodependent. With the chosen
optical enantiomorph, we see in the reactive case that an
optically trapped right-handed enantiomer with Re½χ� > 0 is
more concentrated toward the trapping maximum than it is
for the opposite Re½χ� < 0 enantiomer. In the dissipative
coupling, the enantiomers are clearly spatially separated.
These signatures seen on trajectories complement Sec. VI B
in the demonstration and characterization of a genuine
optomechanical deracemization process.
For each of the three simulations, we build the corre-

sponding PDF and compare them in Figs. 6(b) and 7(b)
with the simulated PDFs to the model axial PDFs,
respectively, preac

χ ð0; zÞ and pdiss
χ ð0; zÞ. The excellent agree-

ment validates in the specific case of dissipative chiral
coupling, the pseudo-potential approach of our model. It
also validates for all cases that one can use the correspond-
ing stationary PDF of the model for initializing the
simulations, as we discuss in Appendix E.

FIG. 8. Time-dependent positions of R ¼ 20 nm Au nano-
spheres in a racemic mixture of 100 left-handed (in blue) and
right-handed (in red) enantiomers simulated for 50 000 time steps
of 95.4 ps for a total of 4.77 μs. These trajectories are randomly
picked among the 104 trajectories used to form the simulated PDF
displayed in Figs. 6(b) and 7(b). We vary the chiral nature of the
optical environment going through (a) an achiral optical envi-
ronment, (b) a reactive chiral optical environment, and (c) a
dissipative chiral optical environment. We can see that in the
achiral case, the distribution is totally independent from the
enantiomeric form of the nanoparticle, as expected. In the reactive
case, in contrast, the chiral nanoparticles are either more con-
centrated toward the center of the optical trap for the family of
right-handed enantiomers (Re½χ� > 0) or moved away to external
regions for the left-handed enantiomers (Re½χ� < 0). In the
dissipative case, the chiral coupling is capable of inducing a
deracemization process by progressively localizing enantiomers
to different wells in strict relation with their enantiomeric
Im½χ� ≶ 0 forms. For each of the different types of couplings,
the contour plots shown on the axis planes correspond to the
predictions of the poptðq; zÞ; preac

χ ðq; zÞ; pdiss
χ ðq; zÞ PDFs given by

our one-dimensional model. As well seen, our model successfully
reproduces both the axial and radial distributions.
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VIII. STOCHASTIC SIMULATIONS: WELL
RESIDENCY TIMES STATISTICS

We now look at single long diffusive trajectories of one
chiral nanosphere within the optical trap, thermally acti-
vated from one local well to the other. The unique capacity,
presented just above, of our 3D simulations for visualiza-
tion is complemented here by a dynamic analysis per-
formed on the escape rates. Simulating the fluctuation
spectra of the escape rates will provide a striking charac-
terization of the chiral deracemization process from the
stochastic point of view.
For such a study, it is important to have good statistics on

barrier-crossing events, and we therefore choose to use here
a number of trajectories reduced in comparison with the

ensemble simulations of Sec. VII but allowing us to
calculate over longer times—over 2.9 ms corresponding
to 3 × 106 points with a time step dt ¼ 0.95 ns.
Figure 9(a) shows a time trace zðtÞ of one such long

diffusing trajectory in the achiral bistable potential defined
in Sec. IV. The time trace clearly reveals the stochastic
motion of the trapped nanoparticle that “jumps” from one
well to the other (ca. 40 jumps for a 2.9-ms trajectory).
Such jumps are described by a Poisson statistics where the
residency time τi in each well i ¼ A, C follows an
exponential law PðτiÞ ¼ expð−τi=hτiiÞ=hτii, where hτii
is the mean residency time in well A or C [62]. As we
explain in Appendix F, the evaluation of such distributions
demands a careful identification of the jumps, accounting
for the possible recrossing events present in all thermally

FIG. 9. (a) One trajectory simulated over 2.9 ms with time steps of 0.95 ns corresponding to the diffusion of an optically trapped
nanosphere in the achiral bistable optical potential energy landscape displayed in Fig. 3(b). Jumps are identified using a hysteresis of
σ ¼ 10 nm. The trapped periods are highlighted for well A in blue and C in red. The first and last events are excluded as we explain in
Appendix F. (b) Cumulated statistics (over 4096 trajectories) of the residency time in both wells A (z < 0, in blue) and C (z > 0, in red)
for the symmetric bistable potential. For times larger than the relaxation time of the well, the statistics follow a Poisson distribution, as
expected from Kramers theory. The average residency time in one well corresponds to the inverse of the linear slope of the distribution
associated with that well, plotted in a linear-log scale. (c) One trajectory simulated within a chiral reactive environment for a left-handed
chiral nanosphere (Re½χ� < 0). As can be seen, the nanosphere spends an equivalent time in both wells, but its jumps frequency is slowed
down compared to the achiral case. As seen in (d), the same phenomenon appears with the same degeneracy but with an acceleration for
a right-handed nanosphere. (e) One trajectory, this time simulated within a chiral dissipative environment for a left-handed chiral
nanosphere (Im½χ� > 0). As can be seen, the chiral nanosphere does not spend an even time between the two wells, in stark contrast with
both the achiral bistable case and the chiral reactive coupling case. The breaking of symmetry when the dissipative chiral coupling is
switched on is reflected in the splitted exponential laws associated with the two wells calculated in (f).
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activated barrier-crossing diffusive systems. Figure 9(b)
shows that the symmetry of the achiral bistable potential
leads to identical exponential laws for the residency times
inside each well A and C.
A time trace zðtÞ simulated in the case of a reactive chiral

coupling is displayed in Fig. 9(c). The degeneracy in
residency times preserved in the reactive chiral coupling
is clearly observed in Fig. 9(d), with a difference in the
residency times corresponding to the differences in the well
depths shown in Fig. 6. The discriminative action of the
chiral reactive coupling is measured here on the exponent
differences between the two enantiomer families.
In contrast, in the case of dissipative chiral coupling, we

already know from Sec. VI B that the degeneracy between
the two wells is broken. This is perfectly seen on the time
trace of the diffusion dynamics of the chiral nanosphere
displayed in Fig. 9(e) and more clearly on the probability
distributions of the residency times in Fig. 9(f). The observed
tendency to spend more time in well A than in well C for a
left-handed enantiomer (Im½χ� > 0) is in agreement with the
probability density functions plotted in Fig. 7(b). This
symmetry breaking is responsible for the deracemization
process observed in Fig. 8(c) abovewhen dealingwith a pure
racemic mixture composed of a large even number of
optically trapped left- and right-handed enantiomers. In this
dissipative case, we measure from the exponential laws a
ratio between the residency times hτdissC i=hτdissA i ¼ 0.36.
This measured ratio can be directly compared to the

model with hτdissC i=hτdissA i ¼ κ̂A→C=κ̂C→A. The ratio is evalu-
ated using Eq. (26), reaching κ̂A→C=κ̂C→Ajmodel ¼ 0.29,
which clearly departs from the simulated result. This
disagreement suggests that the role of the force-field
contributions cannot simply be limited to quadratic approx-
imations taken at the wells’ minima, as it is done in the
steepest-descent approach of our one-dimensional model.
Accounting for higher-order terms, i.e., the anharmonicity
of the wells around the barrier, is required for quantitative
comparisons.
This is confirmed if we now look at three-dimensional

PDFs. This ratio indeed can also be related to the populations
inside each well according to hτdissC i=hτdissA i ¼ n̂−CĴ

þ
z =n̂

þ
A Ĵ

−
z

and therefore can be directly evaluated within the detailed
balance Ĵþz ¼ Ĵ−z usingprobability currents. In this approach,
we extend the expression of the detailed balance stationary
PDF given in Sec. VI B to three dimensions with
pdiss
χ ðq; zÞ ¼ C exp ½−φðq; zÞ�, with φðq; zÞ ¼ ½Uoptðq; zÞþ

udissχ ðq; zÞ�=kBT. The population in onewell is then evaluated
by an integration of the PDF restricted over the well, and
therefore,

n̂−C
n̂þA

¼
R
∞
0 dq2πq

R
∞
0 dzpdiss

χ ðq; zÞR∞
0 dq2πq

R
0
−∞ dzpdiss

χ ðq; zÞ ¼ 0.36:

The perfect agreement with the simulations confirms the
(expected) quantitative importance of accounting for the

anharmonic curvature of the potential generated by the
interfering Gaussian beams.
The important scope of these results is to show that it is

possible to detect and measure the presence of chiral optical
forces by looking at the average of the residency times of
each of the wells rather than at the forces themselves.
Considering that these residency times are exponentially
sensitive to either the chiral free energy (in the case of
reactive chiral coupling) or the chiral heat (in the case of
dissipative chiral coupling), one expects such an approach
to yield a high resolution in detection of chiral optical
forces and in the resolution of the chiral discriminative
thermodynamics at play when the chiral coupling is
switched on.
In particular, the escape rates κ ¼ 1=hτi corresponding to

each of the three optical landscapes can be extracted from the
measurements of the average residency times using the
Poisson statistics. Since we show that our pseudo-potential
approach allows us to predict very precisely the distribution
of positions and since the optical landscapes can each be set
very precisely, it thus becomes possible to perform an
absolute determination of (i) Re½χ� by measuring hτachirali=
hτreacA;Ci [see Eqs. (19) and (20)] and of (ii) Im½χ� bymeasuring
hτachirali=hτdissA;Ci [see Eqs. (24) and (25)]. This determination
is done at the single-nanoparticle level, and as such draws
promising detection capacities in the context of artificial
chiral matter engineering at the nanoscale [63–66].

IX. CONCLUSION

We study, in the framework of the Fokker-Planck
equation, the stochastic motion of an overdamped
Brownian chiral probe optically trapped, diffusing in a
bistable potential energy landscape formed in the standing
wave of two counterpropagating Gaussian beams. We
analyze in this framework the modifications of the escape
rates when a chiral coupling is induced between the probe
and the optical field. We summarize the main results.

(i) The chiral coupling mediated by optical forces can
be switched on inside the optical trap simply by
selecting the polarizations of the counterpropagating
beams forming the initial, achiral, bistable potential,
while keeping the energy densities fixed.

(ii) Chiral coupling (of reactive and/or dissipative
nature) leads to modifications of the thermodynam-
ics of the thermal activation of the barrier that are
enantiospecific and dependent on the enantiomor-
phic configurations of the chiral optical envi-
ronment.

(iii) More precisely, reactive coupling takes the form of
conservative chiral optical forces and thus contrib-
utes as an additional free-energy term to the potential
energy of the bistable trap. The modifications of the
free-energy landscape either strengthen the trapping
potential or decreases the barrier height of the
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chirally dressed potential. These modifications can
be swapped by changing the enantiomer within a
fixed chirality of the optical environment or the
optical enantiomorph for a chosen nanoparticle
enantiomer.

(iv) The dissipative coupling yields nonconservative
chiral forces that modify the thermal activation
thermodynamics. In this nonequilibrium steady state
of the system, the dissipation of heat to the thermal
bath is responsible for lifting the degeneracy of the
probability density function between the two local
minima of the bistable potential. This breaking
of the initial mirror symmetry of the bistable trap
takes the form of an enantiospecific contribution to
the thermodynamics.

(v) The contribution of both types of coupling to the
global thermodynamics is also observed at the level
of stochastic simulations of the Langevin equation
for trajectory ensembles in the presence of external
chiral forces. The simulations clearly show, in
particular, the chiral discriminatory nature of the
dissipative coupling that constitutes an explicit
example of a deracemization process analyzed from
the thermodynamics viewpoint.

(vi) At the level of Langevin dynamics of single diffus-
ing trajectories thermally activated over the barrier
separating the two wells, the same results are
reached by measuring the Poisson statistics of the
residency times for each local minima of the bistable
potential without and with chiral coupling. Meas-
uring a difference in the average residency times in
the case of the dissipative chiral coupling demon-
strates from the single-trajectory viewpoint the
optomechanical deracemization process.

(vii) Approaching the problem from the residency time
point of view shows how one can probe the thermo-
dynamics of the system from time measurement
sequences only, rather than from more demanding
force measurements, and how one can obtain an
absolutemeasurement of both the real and imaginary
parts of the chiral polarizability of a single nano-
particle by extracting from the Poisson statistics the
average residency times in the achiral, chiral reactive,
and chiral dissipative coupling schemes.

Overall, our results illustrate how the chiral coupling
transforms chiral degrees of freedom into true thermody-
namic control parameters. They open a rich playground to
further explore chiral light-matter interactions. The capac-
ity of our model to solve the stochastic chiral bistable
problem convinces us that the optical forces and residency
times approaches can offer new and relevant insights into
the thermodynamics of chiral systems immersed within
chiral environments. Considering the ubiquity of such
bistable landscapes in the realm of chirality, our model
and our methods have a heuristic value that unfolds at the
crossroad of chemistry and physics. In particular, at the

quantum level, further extending our results to chiral
quantum optics [67,68] will give the possibility to study
how chirality can impact quantum stochastic thermo-
dynamics [69,70]. This opens up new perspectives yet to
be explored.
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APPENDIX A: THE DUAL-BEAM
OPTICAL TRAP: OPTICAL LANDSCAPES AND

OPTICAL FORCES

We extend here the simplified discussions of Secs. III
and IV in order to include magnetic force components and
thus present the complete chiral force model in the dipolar
regime [25]. We remind that our configuration consists of
counterpropagating Gaussian beams identical in terms of
intensity and spatial profile. In the paraxial approximation,
this implies the cancellation of the Poynting vector ΠðrÞ,
both its orbital and spin components. From a force view-
point, this implies the absence of any radiation pressure
force field.
The polarization vectors e� associated with each beam

can be described in a generic way with

eþ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hþ

p
el þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hþ

p
erÞ=

ffiffiffi
2

p

for the beam propagating along the z > 0 direction and

e− ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h−

p
eiðδ−δθÞel þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h−

p
eiðδþδθÞerÞ=

ffiffiffi
2

p

for the counterpropagating beam (z < 0 direction). In order
to understand the role of the different polarization setting
parameters, we stress that hþ controls the helicity of the
z > 0 beam with eþ varying from el when hþ ¼ −1 to
ðel þ erÞ=

ffiffiffi
2

p
(i.e., linear state of polarization) when

hþ ¼ 0, and to er when hþ ¼ þ1. The main polarization
axis of the beam remains arbitrarily fixed and constitutes a
degree of freedom for the axisymmetric system. The phase
at time t ¼ 0 is fixed as well, the system being invariant by
translation of the initial time. For the counterpropagating
beam, e− on the other hand, varies from eiðδ−δθÞel when
h− ¼ −1 to eiδðe−iδθel þ eiδθerÞ=

ffiffiffi
2

p
when h− ¼ 0, and to

eiðδþδθÞer when h− ¼ þ1. As can be seen, the effect of the
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parameter δ is, in all cases, a global phase shift. It thus
controls the relative phase between the counterpropagating
beams. The δθ parameter rotates the polarization axis, as
can be most clearly seen by decomposing the circular
polarization vectors in the linear polarization basis. These
two parameters δ and δθ are expressed in radians, either as a
phase angle or as a physical angle between the main axes.
Extending Sec. IV to the magnetic case, we define the

electric WEðrÞ ¼ εfESW ·E�
SW=4 and magnetic WHðrÞ ¼

μfHSW ·H�
SW=4 components of the time-averaged energy

density which can be expressed in terms of the trapping
energy density WtrapðrÞ and an interference energy density
WinterðrÞ as

WEðrÞ ¼ WtrapðrÞ þWinterðrÞ; ðA1Þ

WHðrÞ ¼ WtrapðrÞ −WinterðrÞ; ðA2Þ

where we have

WtrapðrÞ ¼
E2
0w

2
0εf

2w2ðzÞ e
− 2q2

w2ðzÞ; ðA3Þ

WinterðrÞ ¼ WtrapðrÞ½h2 cos δθ cosφðrÞ
þ h1 sin δθ sinφðrÞ�: ðA4Þ

We also define the electric and magnetic ellipticities
ΦEðrÞ ¼ iωεfESW × E�

SW=4 and ΦHðrÞ ¼ iωμfHSW ×
H�

SW=4 that can be summed to obtain the chiral flux
introduced Sec. V, ΦðrÞ ¼ ΦEðrÞ þΦHðrÞ [25,32].
These vectorial ellipticities decompose into average
ΦtrapðrÞ and interference ΦinterðrÞ flux components. This
time, however, both components depend on the polarization
of the beams according to

ΦEðrÞ ¼ ΦtrapðrÞ þΦinterðrÞ; ðA5Þ

ΦHðrÞ ¼ ΦtrapðrÞ −ΦinterðrÞ; ðA6Þ

ΦðrÞ ¼ 2ΦtrapðrÞ; ðA7Þ

with

ΦtrapðrÞ ¼ −ω
hþ þ h−

2
WtrapðrÞz; ðA8Þ

ΦinterðrÞ ¼ ωWtrapðrÞ½h1 cos δθ cosφðrÞ
þ h2 sin δθ sinφðrÞ�z: ðA9Þ

Finally, we remind of the expression for the chiral
density KðrÞ ¼ ωεfμfIm½ESW ·H�

SW�=2, which corre-
sponds to a simple trapping pattern modulated by the
relative chirality of the beams

KðrÞ ¼ −ðhþ − h−Þ × ω
ffiffiffiffiffiffiffiffiffi
εfμf

p
WtrapðrÞ: ðA10Þ

These fluxes and potentials allow us to fully define the
electric, magnetic, and chiral forces

Freac
E ðrÞ ¼ Re½α�∇WEðrÞ;

Freac
H ðrÞ ¼ Re½β�∇WHðrÞ;

Freac
χ ðrÞ ¼ Re½χ� ∇KðrÞ

ω
ffiffiffiffiffiffiffiffiffi
εfμf

p ;

Fdiss
E ðrÞ ¼ Im½α�

�
ωεfμfΠðrÞ −∇ ×ΦEðrÞ

ω

�
;

Fdiss
H ðrÞ ¼ Im½β�

�
ωεfμfΠðrÞ −∇ ×ΦHðrÞ

ω

�
;

Fdiss
χ ðrÞ ¼ ffiffiffiffiffiffiffiffiffi

εfμf
p

Im½χ�(2ΦðrÞ −∇ ×ΠðrÞ) ðA11Þ

that connect the real and imaginary parts of the electric
magnetic polarizabilities α, β, and χ to the electric, magnetic,
and chiral densities and fluxes of the electromagnetic field,
respectively.
In our configuration, the electric and magnetic dissipative

forces are purely azimuthal, thus playing no role in the
probability distributions of the double well. For our on-
optical axis model, we can thus ignore them in the Fokker-
Planck analysis where the only dissipative force that must
be accounted for is the chiral dissipative force. Of course,
these azimuthal components are accounted for in the three-
dimensional simulations of the vectorial Langevin equation.

APPENDIX B: DIPOLAR CHIRAL
NANOPARTICLE MODEL

Here, we follow Ref. [32] in order to calculate the dipolar
ðp;mÞ response of a chiral nanosphere that can be
expressed in terms of the incident electric and magnetic
fields E and H:

�
p

m

�
¼

� αεf iχ ffiffiffiffiffiffiffiffiffi
εfμf

p

−iχ
ffiffiffiffiffiffiffiffiffiffiffiffi
εf=μf

p
β

��
E

H

�
: ðB1Þ

In the quasistatic limit for a sphere of radius R, the electric,
magnetic, and chiral susceptibilities α, β, and χ are given as

α ¼ 4πR3
ðϵm − ϵfÞðμm þ 2μfÞ − κ2m
ðϵm þ 2ϵfÞðμm þ 2μfÞ − κ2m

; ðB2Þ

β ¼ 4πR3
ðϵm þ 2ϵfÞðμm − μfÞ − κ2m
ðϵm þ 2ϵfÞðμm þ 2μfÞ − κ2m

; ðB3Þ

χ ¼ 12πR3
κm

ðϵm þ 2ϵfÞðμm þ 2μfÞ − κ2m
; ðB4Þ

where ϵm and μm are the complex permittivity and
permeability of the material (in our case, gold), ϵf and
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μf are those of the fluid (assuming that both are purely
real), and κm is the complex “chiral parameter” of the
nanosphere [32].
In practice, for a nonspherical chiral particle of arbitrary

geometry, it is reasonable to assume that these equations will
still apply with an effective electromagnetic radius R and a
chiral parameter that depends on the geometry of the particle.
Exact equations can, however, always be calculated knowing
the shape of the particle. Experimentally, a determination of
the complex chiral parameter can be obtained by measuring
for the chiral nanoparticle the optical rotatory dispersion for
Re½κm� and the circular dichroism for Im½κm�.
From the chiral optical force perspectives, the polar-

izability χ is the relevant parameter, more precisely, the
ratio ξ ¼ χ=α that we fix at a 5% value throughout the
paper. The Clausius-Mossotti relations (B4) then lead to a
relation that allows us to determine κm from the chosen
value for ξ:

κ2m þ 3κm=ξ − ðϵm − ϵfÞðμm þ 2μfÞ ¼ 0: ðB5Þ

Among the four possible solution values for κm, we use
the two opposite ones that have the smallest modulus. This
choice is made in order to ensure that the transition from the
achiral χ ¼ 0 case to the chiral χ ≠ 0 case has practically no
impact on the α and β values. In such a case, the trapping
potential profile described in Sec. IV in the achiral case
remains unchanged when the chiral coupling is induced in
Secs. VI A and VI B with χ ≠ 0 and nonzero chiral density
and/or flux.

APPENDIX C: ACHIRAL FORCE-FIELD
LANDSCAPE

Here we describe the general polarization parameter
space in which the achiral electric force-field landscape
develops, as illustrated in Fig. 10. By choosing the hþ, h−,
and δθ parameters, we can tune the relative amplitude of the
interference Re½α�∇Winter (blue line of the insets) and
average trapping forces Re½α�∇Wtrap (black line of the
insets of Fig. 10), while the δ parameters introduces a phase
change in the interference forces. In Fig. 10, as well as in

FIG. 10. General ðhþ; h−; δ; δθÞ polarization parameter space describing the achiral electric force-field landscape whose equations are
detailed in Appendix A in terms of the ratio between the minimum and the maximum amplitude of the interference forces. All insets
display forces along the optical axis from both sides of the waist over a length of 20 μm. Note that the force amplitudes of the insets vary
from configuration to configuration.

CHIRAL THERMODYNAMICS IN TAILORED CHIRAL OPTICAL … PHYS. REV. X 11, 041022 (2021)

041022-17



the rest of the paper, we systematically choose δ so that the
interference potential is maximum at the center of the trap
(z ¼ 0). The surface represents the ratio between the
maximum and the minimum amplitude of the interference
forces when varying h− against the choice of hþ and δθ.
The insets displayed in the figure showcase a few

archetypical configurations. For a given choice of hþ
and δθ, we present the choices of h− where the amplitude
of the interference forces are, respectively, minimum and
maximum. These two configurations are set with two
opposite values of h− that are specified in the insets.
The oscillations of the interference force in blue appear as a
blue surface due to the high frequency of the oscillations
with respect to the extension chosen for the optical axis.
The red lines in the insets are the envelope of the total force.
If we vary δθ along the hþ ¼ 0 line (in blue on the surface),
the intensity of the interferences is varied but does not
change depending on h−. The achiral landscape used in the
main text is a more extreme case of the inset outlined in red
on the right. It is shown in detail in Fig. 11 below. The other
red outlined inset is a reactive configuration—as the
maximum of interference is obtained for opposite values
of h�–close to the one chosen in the main text.

The dissipative configuration is an intermediate case
where δθ ≠ 90° allows for a purely dissipative interference
force landscape. Along the red line on the surface, we vary
δθ from 0° to 90°, allowing for such intermediate cases to
appear. Finally, in the configurations where δθ ¼ 90° or
hþ ¼ 1, we ensure that the minimum of interferences is
always 0 while for δθ ¼ 0°, we ensure that the maximum of
interference is the global maximum. For other intermediate
values of δθ, the choice of hþ can tune the minimum of
interferences, ensuring that they are present, as seen, for
example, following the red line.

APPENDIX D: FOKKER-PLANCK MODEL FOR
THERMAL ACTIVATION OF A BARRIER
CROSSING: BISTABLE EQUILIBRIUM

We describe here the thermodynamic evolution of a
dipole inside a bistable potential at temperature T, basing
our description within the classical framework proposed by
Kramers [41]. Within this framework and without chiral
contributions ½KðrÞ ¼ 0;ΦðrÞ ¼ 0�, we describe the evo-
lution of the dipole inside the bistable potential as being
driven only by decoupled achiral reactive axial FαðrÞ · ẑ and
radial FαðrÞ · ρ̂ forces inside the optical trap. This situation
corresponds to a Kramers problem with the possibility given
to the dipole to escape local trapping sites by thermal
activation and diffusion over the separating barrier of the
double-well potential energy landscape drawn in Fig. 3 in the
main text. We model this metastable dynamics with an
overdamped Fokker-Planck equation [48]

∂tpðr; tÞ ¼ −∇ · jðr; tÞ ðD1Þ

connecting the probability densitypðr; tÞ to find the dipole at
r at time t to the probability current

jðr; tÞ ¼ −
1

γ
∇UoptðrÞpðr; tÞ −D∇pðr; tÞ; ðD2Þ

with γ the Stokes drag coefficient, kB the Boltzmann
constant, and D¼kBT=γ the free Brownian diffusion coef-
ficient. For an optical trap immobilizing an Au nanosphere
of radius R ¼ 20 nm in pure water at room temperature
(γ ¼ 2πηR with a viscosity η ¼ 0.88 × 10−3 Kg=m=s), the
overdamped regime is well reached with a momentum
relaxation time given by the nanoparticle-over-friction ratio
of m=γ ∼ 10−7 s.
In the model developed in the main text, we study only

the component jzðr; tÞ of the probability current along the
optical z axis in the steady-state regime with Uopt time
independent. In this regime, ∂tpðr; tÞ ¼ 0 implies that

1

q
∂q(qjρðr; tÞ)þ ∂zjzðr; tÞ ¼ 0: ðD3Þ

We now further neglect the transverse variations of the
beam with respect to the axial ones, i.e., ∂qðqjρÞ=q ≪ ∂zjz,

FIG. 11. Enlargement of the electric force landscape in the
achiral case, keeping in mind that the magnetic force is practically
zero. This landscape is modified by the chiral forces when the
helicity parameters h� are nonzero. As in Fig. 10, the black line
represents the force deriving from the trapping potential
−Re½α�∇Wtrapðz; qÞ. This force carries the contribution of the
interference potential −Re½α�∇Winterðz; qÞ due to the interplay
between the two counterpropagating beams. The total reactive
electric force generated by these two components is represented
by the blue line. Finally, the red line is the envelope of the electric
forces. In the main text, we consider the nanospheres trapped at
the center of the well at z ¼ 0, with Fig. 3(b) displaying the force
landscape evaluated between the dotted black lines. There is
locally a double well caused by the oscillation due to the
interference force around z ¼ 0. In this configuration, we have
only two wells, due to the fact that the interference forces are not
strong enough to generate other trapping locations, as can be seen
by the fact that they do not cross 0 except at the center, and this
despite their varying intensity.
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so that the z component of the probability current around
the waist is modeled as a constant jzðqÞ in the z variable.
This makes it easy to evaluate the crossing rates for the
dipole over the barrier (positioned at zB ¼ 0) in the forward
þ and backward −z directions. In the forward z direction,
the rate to be computed corresponds to crossing events
from the z < 0 initially populated well (well A, minimum at
zA) toward the z > 0 unoccupied one (well C, minimum at
zC). This initial population corresponds to the stationary
nonequilibrium probability density pþðq; zÞ inside well A
that creates a current jþz ðqÞ ¼ jðqÞ · ẑ flowing in the þz
direction according to

jþz ðqÞ ¼ −
1

γ
∂zUoptðq; zÞpþðq; zÞ

−D∂zpþðq; zÞ: ðD4Þ

Following a standard method [71], the nonequilibrium
probability density pþðq; zÞ can be determined between
one point z0 within well A and a distant point above the
barrier for which pþðq; zþ > zBÞ ¼ 0 as

pþðq; z0Þ ¼ γjþz ðqÞe
−Uoptðq;z0Þ

kBT

Z
zþ

z0
due

Uoptðq;uÞ
kBT ; ðD5Þ

together with the corresponding population density

nþA ¼
Z þ∞

0

dq2πq
Z

zB

−∞
dz0pþðq; z0Þ: ðD6Þ

This population is then evaluated with a Gaussian
steepest-descent approximation, expanding the optical
potential around the barrier maximum at zB and the local
minimum at zA:

Uoptðq; z ∼ zBÞ ≃Uoptðq; zBÞ − b2ðqÞðz − zBÞ2; ðD7Þ

Uoptðq; z ∼ zAÞ ≃Uoptðq; zAÞ þ a2ðqÞðz − zAÞ2; ðD8Þ

with 2b2ðqÞ ¼ j∂2Uoptðq; zÞ=∂z2jzB and 2a2ðqÞ ¼
j∂2Uoptðq; zÞ=∂z2jzA , and extending the lower and upper
limits of integration to �∞. We thus obtain

nþA ≃
Z þ∞

0

dq2πq
kBTγπjþz ðqÞ
aðqÞbðqÞ e½Uoptðq;zBÞ−Uoptðq;zAÞ=kBT�:

ðD9Þ

Because of the axial symmetry of the optical landscape,
it is clear that the optical potential is an even function of q.
Therefore, in close vicinity to the optical axis, one can
always assume that ð∂2Uopt=∂q∂zÞðq; zÞ ∼ 0. This
assumption has two consequences: (i) that aðqÞ ∼ a and
bðqÞ ∼ b are independent of q, and (ii) that Uoptðq; zBÞ −
Uoptðq; zAÞ ≃Uoptð0; zBÞ − Uoptð0; zAÞ by expanding the

potential energy around zA and zB. Therefore, under this
hypothesis,

nþA ≃
kBTγπ
ab

e½Uoptð0;zBÞ−Uoptð0;zAÞ=kBT�
Z þ∞

0

dq2πqjþz ðqÞ:

ðD10Þ

The assumption leads us to interpret
Rþ∞
0 dq2πqjþz ðqÞ ¼

Jþz as the total probability current in the positive direction.
The escape rate κA→C from well A to well C then simply
writes as

κA→C ¼ Jþz
nþA

≃
ab

kBTγπ
e−½Uoptð0;zBÞ−Uoptð0;zAÞ=kBT�; ðD11Þ

which corresponds to the well-known result obtained by
Kramers withΔUAB

opt ¼ Uoptð0; zBÞ −Uoptð0; zAÞ the optical
barrier height measured along the optical axis at q¼ 0
[41,48].
The escape rate κC→A from well C to well A is calculated

from the probability current j−z ðqÞ ¼ j−ðqÞ · ð−zÞ flowing
in the opposite direction of jþz ðqÞ and solution of

j−z ðqÞ ¼ þ 1

γ
∂zUoptðq; zÞp−ðq; zÞ

þD∂zp−ðq; zÞ: ðD12Þ

Following the same steps, but this time integrating over
well C, one evaluates the escape rate from well C at zC over
the barrier at zB as

κC→A ¼ J−z
n−C

≃
bc

kBTγπ
e−½Uoptð0;zBÞ−Uoptð0;zCÞ=kBT�: ðD13Þ

For a symmetric optical potential with Uoptð0; zAÞ ¼
Uoptð0; zCÞ and a ¼ c, one obviously obtains nþA ¼ n−C and
therefore from the detailed balance κA→C ¼ κC→A. We can
take this equality and the absence of any other force besides
the trapping force forming the optical bistable potential
energy as the definition of the equilibrium state of our
system.

APPENDIX E: SIMULATIONS: ALGORITHMS
AND METHODS

The Langevin dynamics of an overdamped Brownian
object at position r immersed in a force field F and a fluid
Stokes drag coefficient γ and diffusion coefficient D is
given by the equation

dr ¼ 1

γ
Fdtþ

ffiffiffiffiffiffiffi
2D

p
dWt; ðE1Þ

where dWt is the Brownian increment at time t.
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To simulate the Langevin dynamics of a dipolar chiral
particle in an axisymmetrical force field as done in Secs. VII
and VIII, we use the Euler-Maruyama scheme [72]

ρn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n

q
;

xnþ1 ¼ xn þ
dt
γ

xnFρðρn; znÞ − ynFθðρn; znÞ
ρn

þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

p
× ηxðnÞ; ðE2Þ

ynþ1 ¼ yn þ
dt
γ

ynFρðρn; znÞ þ xnFθðρn; znÞ
ρn

þ
ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

p
× ηyðnÞ; ðE3Þ

znþ1 ¼ zn þ
dt
γ
Fzðρn; znÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2Ddt

p
× ηzðnÞ; ðE4Þ

where during the time increment dt, the Brownian incre-
ment on each axis is randomly chosen in the distribution
ηx=y=z ¼

ffiffiffiffiffi
dt

p
N ð0; 1Þ. The simulation time-step parameter

dt is chosen such that max½Fi

ffiffiffiffiffi
dt

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p � ≤ 1 for all
cylindrical components i ¼ ρ, θ, z of the optical force F
(achiral and chiral).
In an effort to further reduce the calculation time and

thus allow for better statistics to be used, we use the result
of our one-dimensional model and draw the initial positions
from the predicted stationary PDF in order to avoid the
equilibration time. To do that, we use a multidimensional
inverse-transform sampling method.
In a standard one-dimensional inverse-transform sam-

pling, knowing the distribution’s PDF pðXÞ, we calculate
the monotonic cumulative distribution function (CDF)
FðXÞ. It can then be proved that if we draw a random
number U following a uniform distribution, F−1ðUÞ will
follow the distribution pðXÞ. In order to adapt this method
to our multidimensional case, we first note that the problem
being fully axisymmetrical, the azimuth θ can simply be
chosen as a uniformly distributed random number. The two
remaining parameters are then the axis and radius coor-
dinates z and q.
As in the one-dimensional method, we calculate the

PDF pðq; zÞ obtained using our pseudo-potential model
described in Sec. VI B as pðq; zÞ ¼ C exp ½−φðq; zÞ�,
with φðq; zÞ ¼ ½Uoptðq; zÞ þ udissχ ðq; zÞ�=kBT and C ¼Rþ∞
0

Rþ∞
−∞ exp ½−φðq; zÞ�dz2πqdq. Its CDF Fðz; qÞ is

defined by

Fðz; qÞ ¼
Z

z

−∞

Z
q

0

pðq0; z0Þ2πq0dq0dz0: ðE5Þ

Since pðq; zÞ has a complicated expression that cannot be
easily inverted or integrated, we calculate Fðz; qÞ numeri-
cally over a large enough domain ½−zM; zM� for z and

½0; qM� for q and numerically perform the necessary
inversions. We can then consider FzðzÞ ¼ Fðz;þ∞Þ and
apply the inverse-transform sampling method using FzðzÞ
to pick a random number zc following the distribution
pzðzÞ ¼

Rþ∞
0 pðq; zÞ2πqdq. In this context, it means that

picking a random number ηz in the uniform distribution on

½0; 1½, we can find zc ¼ Fð−1Þ
z ðηzÞ. Finally, we define

Fqjz¼zcðqÞ ¼ Fðzc; qÞ=Fðzc;þ∞Þ and use again the
inverse-transform sampling method to pick up a random
number qc in the distribution pqjz¼zcðqÞ ¼ pðq; z ¼ zcÞ.
To do that, we again pick up a random number ηq uniformly

distributed in ½0; 1½ and apply qc ¼ Fqjð−1Þz¼zcðηqÞ. The pair
ðqc; zcÞ of generated numbers thus follows the distribu-
tion pðq; zÞ.
Repeating this method for each trajectory, we generate

the initial distribution for our simulation using the sta-
tionary predictions from our one-dimensional model PDF.
If this distribution were not the stationary distribution, it
would relax toward it in the course the simulation, leading
to significant time spent in stabilizing the distribution rather
than generating usable data. The one-dimensional model
induces only errors small enough that the possible relax-
ation of the PDF parameters is dominated by their intrinsic
thermal fluctuation. By generating a large number of
steady-state trajectories, we can however check that using
this distribution, the statistical parameters do not change in
a measurable way over the simulated time. Therefore, all
the generated time steps can be used for the data analysis of
the properties of our simulated system in its steady state.

APPENDIX F: RESIDENCE TIME PROBABILITY
DENSITY FUNCTIONS

Section VIII analyzes the distribution of the residency
times in both wellsA andC of the optical potential energy as
a function of the presence and nature of the chiral coupling.
These residence times are calculated using 4096 trajectories
long of 3 000 000 steps. We describe in this section how the
residency times are identified.
A diffusing trajectory in the bistable potential is char-

acterized by different jumplike events. For some, the
particle moves quickly from one well to the other. For
many others, however, the particles diffuse around the top
of the unstable barrier or barely cross it and return back to
their initial wells, so-called recrossing events.
Following Ref. [73], we choose to use a hysteresis

criterion to filter out such recrossing events. To do this,
we exploit the repulsive character of the barrier whose
strength is given by a steepest-descent approach similar to
the one developed in Sec. VI as −ð∂2φeff=∂z2Þ, where
φeff ¼ Uopt þ Ureac

χ þ udissχ is evaluated on the optical axis
ðq ¼ 0; zÞ including the chiral reactive potential Ureac

χ

and/or dissipative pseudo-potential udissχ depending on
the chiral-coupling cases.
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This trapping strength leads to a standard deviation de-
limiting an exclusion zone of σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−kBT=ð∂2φeff=∂z2Þ

p
¼

10 nm.We use this standard deviation to define the hysteresis
of the bistability: The particle enters or leaves well A when it
crosses the z ¼ −σ andenters or leaveswellCwhen it crosses
z ¼ σ. But in addition, a jump is counted only when the
oppositewell is reached. In other words, a particle that would
make an excursion in the vicinity of the barrier zB and
eventually going back to its initial well will not be counted as
having left its well. Such sequences are excluded from the
record, as seen in black on Fig. 9 in the main text.
Having defined the crossing events, as shown in Figs. 9(a)

and 9(c), we measure the time interval τ that a particle has
stayed in one well before jumping to the other. Because it is
impossible to determine this time interval at the beginning
and end of the trajectory, the corresponding events are
excluded from the analysis.
We then calculate the PDF of the occupation times of

both wells. The results are shown in Figs. 9(b) and 9(d).
According to Kramers theory, this PDF should follow an
exponential law. However, we clearly observe deviations
from such a law at short times, where the position of the
particle remains correlated. The correlation time being
tcorr ¼ 2πγ=j∂2φeff=∂z2jð0;zA=CÞ, we therefore exclude from
our analysis all traces recorded for times smaller that tcorr.
This being done, we finally perform a weighted fit of the
distribution to take into account the fact that the smaller the
probability, the lower the signal-over-noise ratio. This fit
yields precise values for the slopes of the exponential law
plotted in a logarithmic plot as represented in Figs. 9(b)
and 9(d). From the Poissonian exponential law, these slopes
correspond to the average residence times.
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