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The spin-1=2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin
system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a
spin-liquid ground state when only nearest-neighbor antiferromagnetic interactions are present. Here, we
contest this hypothesis with an extensive numerical investigation using both exact diagonalization and
complementary variational techniques. Specifically, we employ a resonating-valence-bond-like, many-
variable, Monte Carlo ansatz and convolutional neural network quantum states for (variational) calculations
with up to 4 × 43 and 4 × 33 spins, respectively. We demonstrate that these techniques yield consistent
results, allowing for reliable extrapolations to the thermodynamic limit. We consider the ðλ; j2=j1Þ
parameter space, with j2, j1 being nearest and next-to-nearest neighbor interactions and λ the XXZ
interaction anisotropy. Our main results are (1) the determination of the phase transition between the
putative spin-liquid phase and the neighboring magnetically ordered phase and (2) a careful characteri-
zation of the ground state in terms of symmetry-breaking tendencies. We find clear indications of a dimer
order with spontaneously broken inversion and rotational symmetry, calling the scenario of a featureless
quantum spin liquid into question. Our work showcases how many-variable variational techniques can be
used to make progress in answering challenging questions about three-dimensional frustrated quantum
magnets.
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I. INTRODUCTION

Featureless ground states of interacting quantum spins
with exotic properties and emergent excitations are highly
sought after. Identifying such quantum spin liquids (QSL)
is particularly challenging in three-dimensional (3D) sys-
tems due to fast scaling of the Hilbert space with linear
system size. A key ingredient that favors liquid over
ordered phases is geometrical frustration, with the pyro-
chlore lattice a prominent frustrated 3D lattice. On the
pyrochlore lattice, even the (classical) antiferromagnetic
spin-1=2 Ising model has a ground-state manifold with an

extensive degeneracy, governed by the “two-in, two-out”
spin-ice rule, instead of magnetic order [1–4]. Upon
inclusion of a small exchange term, excitations with
fractionalized “magnetic” charges and gauge photons
emerge, the hallmarks of a Uð1Þ QSL [5–10].
At the same time, the nature of the ground state away from

perturbative limits around the Ising point on the pyrochlore
lattice is subject to long-standing debates. A prominent
example is the ground state of the SUð2Þ Heisenberg
nearest-neighbor antiferromagnet: Perturbative or mean-
field treatments suggest the ground state to be dimerized
[11–20] or to possess chiral magnetic order [21]. Alter-
natively, the aforementioned Uð1Þ QSL phase might
continue from the small exchange interaction region to the
SUð2Þ-symmetric point without a phase transition
[8,10,22–24]. Resolving this debate is a challenging theo-
retical problem with direct relevance to real compounds,
such as rare earth molybdenum oxynitride pyrochlores
R2Mo2O5N2, which are expected to admit an antiferromag-
netic isotropic spin-1=2 Heisenberg model description [25].
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Remarkably, the recently synthesized Lu2Mo2O5N2 exper-
imentally shows neither a sign of magnetic order nor of spin
freezing [26,27].
A QSL phase, if present, is expected to be close in

parameter space to several symmetry-breaking ordered
phases [28–32]. These ordered phases can be induced by
includingnext-to-nearest neighbor couplings [22,28] or large
transverse exchange interactions, with the latter stabilizing
spin-nematic order [8,9,23,24]. This suggests a close com-
petition between nearly degenerate QSL and ordered phases.
As for any 3D frustrated quantum magnet, reliable

numerical methods, crucial to resolving such a competition
of nearly degenerate states in the spin-1=2 Heisenberg
pyrochlore model, are scarce. Perturbative approaches lead
to disagreeing conclusions [11–20], while fermionic mean-
field approaches [33] and the functional renormalization
group (FRG) method [22] lack control parameters to
improve results systematically. Unbiased methods are
either limited to small clusters, like exact diagonalization
(ED) [23,34]; only reach temperatures of order T ∼ J=6,
like diagrammatic Monte Carlo [10]; or are limited to
nonfrustrated exchange terms, like quantum Monte Carlo
methods [35,36]. Finally, density matrix renormalization
group (DMRG) calculations are plagued by the cut dimen-
sionality in 3D systems [37], even though significant
advances have been demonstrated [38]. Further numerical
approaches are thus needed to settle the ground-state
question in the spin-1=2 Heisenberg model on the pyro-
chlore lattice.
In this work, we assess whether the spin-1=2 pyrochlore

quantum antiferromagnet hosts a QSL or a symmetry-
broken ground state [38] in the vicinity of the SUð2Þ-
symmetric point and further identify the adjacent phases.
For this we use state-of-the-art variational Monte Carlo
(VMC) methods. We use two complementary and highly
flexible ansatz wave functions, thus controlling the inherent
parametrical bias. On the one hand, we use the many-
variable variational Monte Carlo (mVMC) method inspired
by the resonating-valence-bond (RVB) wave function [39],
and recently adopted for two-dimensional frustrated mod-
els [40]. The second ansatz uses neural network quantum
states (NQS) [41], which have proven to be a powerful
addition to the numerical toolbox for many-body quantum
systems [40,42]. Finally, ED calculations (we employ a
novel package SpinED [43]) are used to benchmark both
approaches and guide our analysis.
Our methodology allows us to obtain reliable wave

functions on clusters as large as 256 ¼ 4 × 43 sites and
perform extrapolations to the thermodynamic limit, which
is notoriously hard for a 3D frustrated system. Figure 1
summarizes our main results in the form of (a) the phase
diagram and (b) our energy extrapolation to the thermo-
dynamic limit. In the putative QSL phase, we observe
clear signatures suggestive of spontaneous breaking of
both inversion and rotation symmetry. Furthermore, we

extrapolate the phase transition of this nonmagnetic sym-
metry broken phase with the adjacent magnetic phase upon
addition of next-nearest neighbor coupling j2. We find the
phase transition at 7 times smaller j2=j1 as compared to
previous FRG results [22], which expands the magnetically
ordered phase significantly.
The rest of this paper is organized as follows: In Sec. II, we

introduce the model and our methodology. In Sec. III, we
discuss our results, startingwith a validationof themethodby
combining results from ED with the two variational
approaches and a characterization of the magnetically
ordered phase. This is followed by a thorough analysis of
the symmetry-breaking signatures in the nonmagnetic phase.
Finally, Sec. IV concludes with a discussion.

II. MODEL AND METHODOLOGY

A. Model and system geometry

We consider the interacting spin Hamiltonian

Ĥðλ; j1; j2Þ ¼ j1
X
hi;ji

ĥλði; jÞ þ j2
X
⟪i;j⟫

ĥλði; jÞ; ð1Þ

ĥλði; jÞ ¼
λ

2
ðŜþi Ŝ−j þ Ŝþj Ŝ

−
i Þ þ Ŝzi Ŝ

z
j; ð2Þ

where h…i denotes summation over nearest neighbors,
⟪…⟫ over next-to-nearest neighbors on the pyrochlore
lattice, and the local quantization axis of spin points
towards the center of a tetrahedron. In this work, we are
mainly interested in determining the ðλ; j2=j1Þ phase
diagram. Two limiting cases of the phase diagram are
readily identified. On the one hand, the point ðλ ¼
0; j2=j1 ¼ 0Þ corresponds to the classical Ising model,
which hosts the spin-ice ground-state manifold. On the
other hand, λ ¼ 1 corresponds to the SUð2Þ symmetric
Heisenberg model. Fragments of this phase diagram, which
is schematically depicted in Fig. 1(a), were previously
studied. The classical Ising model orders magnetically
upon inclusion of a small j2=j1 term [22,29–32]. The
so-called k ¼ 0 magnetic order does not break translation
symmetry, while the magnetic moments within each of
the four sublattices are ordered ferromagnetically, such that
the total magnetization within each tetrahedron vanishes.
On the j2=j1 ¼ 0 axis, perturbation theory in λ > 0 reveals
the Uð1Þπ QSL phase [6,44,45].
In order to better clarify the symmetries of the problem,

we start by discussing the geometry of the pyrochlore
lattice. The inset in Fig. 1(a) shows the pyrochlore crystal
structure. The pyrochlore lattice Λ is the union of four
sublattices Λα, α ¼ 0, 1, 2, 3, which, in Cartesian coor-
dinates, are spanned by the unit vectors e1 ¼ ð1; 1; 0ÞT ,
e2 ¼ ð0; 1; 1ÞT , e3 ¼ ð1; 0; 1ÞT ,
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Λα ¼
�X3

β¼1

nβeβ þ eα=2

����nβ ¼ 0; 1;…; Lβ − 1

�
: ð3Þ

Here, e0 ¼ ð0; 0; 0ÞT and L1, L2, L3 are the number of unit
cells in the three respective directions that span the lattice.
In each unit cell, the resulting four sites form a tetrahedron.

Note that each site of this lattice is shared between exactly
two tetrahedra. In what follows, we refer to “up-tetrahedra”
and “down-tetrahedra” as indicated in blue and orange,
respectively, in Fig. 1(a). The total number of sites is
denoted by Ω throughout the paper.
We consider pyrochlore clusters with periodic boundary

conditions. Their number of bonds is 12 times the number of
unit cells.We associatewith one unit cell the four lattice sites
labeled 0, 1, 2, 3 in Fig. 1(a) as well as the 12 bonds
comprising the up- and down-tetrahedra that have their
corners labeled. The space group of the pyrochlore lattice
is Fd3̄m with a point group isomorphic to Oh. In the
following, to study symmetry-breaking tendencies, we
mainly focus on equilateral pyrochlore clusters (L1 ¼
L2 ¼ L3), which have a point group D3d. It is generated
by C3 rotations around the “easy axis” ð1; 1; 1ÞT , which
cyclically exchange the sites (1 → 2 → 3 → 1Þ [see
Fig. 1(a)], inversion symmetry r → −r, which also
exchanges down- and up-tetrahedra, and a mirror symmetry,
which reflects the cluster with respect to the plane passing
throughbond23 and themiddle of bond01 [46]. Importantly,
such equilateral clusters avoid geometric bias for the sym-
metries studied in our calculations.

B. Many-variable wave function

The mVMC method has proven successful in studies of
strongly correlated phases [47,48], including the QSL and
valence bond solid (VBS) in the j1-j2 Heisenberg model on
the square lattice [40,49]. Here, we use the highly opti-
mized realization of mVMC from Refs. [39,50]. At the
heart of the mVMC method is a mapping of spin operators
to fermionic bilinears,

Ŝai →
1

2

X
α;β¼↑;↓

ĉ†i;ασ
a
αβĉi;β; ð4Þ

where i labels a lattice site, a ¼ x, y, z, and σx, σy, σz are
the three Pauli matrices.
The RVB-like pairing state has the form

jϕpairi ¼ P∞
G exp

�X
i;j

fi;jĉ
†
i;↑ĉ

†
j↓

�
j0i; ð5Þ

where single occupation is ensured by the P∞
G single-

occupation Gutzwiller projector. Note that the P∞
G -pro-

jected fermionic Hilbert space can be mapped to the
original Hilbert space of spin operators. The wave-function
value hσjϕpairi of a specific spin configuration jσi is
evaluated using the Slater determinant of the matrix with
elements fi;j. Here, σ represents a string of �1, which, for
each lattice site, stands for the respective spin eigenstate in
the Sz basis. The parameters fi;j are optimized using the
stochastic reconfiguration optimization technique [51],
which can also be seen as a way of performing stochastic

FIG. 1. (a) Pyrochlore Heisenberg λ − j2=j1 phase diagram.
The nonmagnetic phase (green) in the vicinity of (1,0) is
separated by a phase transition (yellow) from the magnetically
ordered k ¼ 0 phase (red). The Uð1Þπ QSL phase is shown in
gray. Further indicated are the symmetry-breaking properties of
the respective phases with respect to inversion (Î) and rotation (R̂)
symmetry. The ED phase boundary was obtained for a 4 × 23

system. Blue data points with error bars show our infinite-volume
phase-boundary extrapolations at λ ¼ 0.8 and 1.0. Note that our
data do not allow us to reliably draw conclusions about the shape
of the phase boundary in the region λ ≪ 1. The shape of the
yellow region, shown in Fig. 1(a) at λ ≲ 0.8, is a guide to the eye
consistent with perturbative results for small λ. The inset in the
upper left shows the pyrochlore structure with sublattice indices.
(b) Best variational energies obtained within this work using
mVMC on equilateral (EC) and nonequilateral (NEC) clusters at
λ ¼ 1, j2=j1 ¼ 0. The dashed line represents the infinite-volume
extrapolation. For comparison, the figure also shows the DMRG
result of Ref. [38] without bond-dimension extrapolation. The
error bars atΩ−1 ¼ 0 represent the infinite-volume extrapolations
obtained within this work and DMRG bond-dimension extrapo-
lation of Ref. [38] (see main text for details).
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imaginary-time dynamics in the variational manifold
[41,52].

C. Neural network quantum states

To support the physical conclusions obtained within one
parametrical ansatz, we complement our study with a
completely different variational wave function, namely,
NQS. Recently, NQS have been applied to obtain a
successful parametrization of the Heisenberg-model wave
function [41], which ignited the development of NQS as a
broadly applicable variational method [40,53–63]. Another
example of a recent application of NQS are 2D frustrated
magnets [42,53]. In this work, we employ the compre-
hensive NetKet NQS implementation [64].
The general idea of the NQS method is to use the spin

configuration σ as input for a neural network Ψ, interpret-
ing the result ΨðσÞ as the (not-normalized) wave-function
component, corresponding to the basis vector σ. To cope
with the large system size and possible overfitting [53], we
employ the convolutional neural network architecture
(CNN) with real parameters and an elaborate alternating
training technique (see the Appendix A for details). This
choice of architecture allows for better optimization and
avoids certain instabilities [65]. We also benchmark it
against the restricted Boltzmann machine (RBM) network,
comprising one fully connected dense layer, which is the
classic NQS architecture [41,56]. The details of the NQS
architectures and the variational parameter training can be
found in Appendix A.

D. Symmetry-projected wave functions

To obtain highly accurate variational wave functions and
energies, we employ quantum-number projections; i.e., we
impose the ansatz state to transform in a chosen irreducible
representation of the symmetry group.
Any point-group symmetry Ĝ is projected by applying it

until the symmetry orbit is exhausted,

jΨξi ¼ P̂jΨi ¼
X
n

ξnĜnjΨi; ð6Þ

where ξ is the desired projection quantum number and jΨξi
the symmetrized state.
Similarly, within mVMC, the projection onto the total

spin S is performed by superposing the SUð2Þ-rotated wave
functions [50]. At λ ≠ 1, when only Uzð1Þ spin rotation
symmetry is present, the symmetry is enforced by only
working in the space of total-zero magnetization,
M̂zjψi ¼ 0. In the NQS method, the spin-parity projector
is applied:

Ψ�ðσÞ ¼ ΨðσÞ � Ψð−σÞ; ð7Þ

where Ψð�σÞ is the wave function evaluated at spin
configurations σ and the spin configuration flipped along
the z axis, −σ. Such a projector selects wave functions of
either even or odd total spin.
For the mVMC ansatz, momentum and point-group-

symmetry projection can partially be performed by directly
constraining the variational parameters fi;j. Otherwise,
taking all Ω2 parameters fi;j to be independent and
symmetrizing the wave function at the end leads to a
prohibitively large number of terms in the projector. In
addition to computational cost, this makes the optimization
procedure prone to false minima convergence. As a com-
promise, for clusters larger than 48 sites, we impose
translational symmetry on the variational parameters fi;j
and project the other symmetries using Eq. (6). Similarly,
within the NQS method, the CNN architecture automati-
cally imposes translational symmetry on the network
parameters, while other projections are done using
Eq. (6). To avoid the possible false minima convergence,
in both methods we employ long Monte Carlo samples and
try dozens of random initial approximations to select the
best energy (see Appendix A).

E. Symmetry-breaking susceptibilities

One of the most direct characterizations of an ordered
phase is through its symmetry-breaking pattern. Consider an
operator Ô ¼ Ω−1P

i ôi, with ôi acting locally, which
measures symmetry breaking. In other words, the operator
transforms nontrivially under the actions of the symmetry
group. In a finite volume, data indicate that the pyrochlore
ground state belongs to a trivial representation of all
symmetries (point-group and spin), which forbids direct
observation of the hÔi ≠ 0 condensate. Instead, one mea-
sures the (equal-time) susceptibility χÔ ¼ hÔ†Ôi, which
vanishes or survives in the thermodynamic limit if the phase
has a symmetric or symmetry-broken ground state, respec-
tively. Note that a nonvanishing susceptibility can only arise
because of the establishment of long-range order.
To probe the SUð2Þ-symmetry breaking through long-

range magnetic order, we calculate χM̂k
, introducing the

k–dependent operator

M̂k ¼ 1

Ω

X
i

Ŝzi e
ikri ; ð8Þ

where ri is the physical position of site i and k takes values
in the extended Brillouin zone (BZ). Since the Hamiltonian
is SUð2Þ symmetric, we restrict ourselves to the z-spin
component only.
To probe the point-group symmetry-breaking tendency

in the absence of magnetic order, we construct dimer-type
operators
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Ôðξ;ωÞ ¼ 1

3Ω

X
hi;ji

qi;jðξ;ωÞŜi · Ŝj; ð9Þ

where

qi;jðξ;ωÞ ¼

8>>>>><
>>>>>:

ωl−1 ri − rj ¼ þel=2

ξωl−1 ri − rj ¼ −el=2

ωl ri − rj ¼ þel=2 − el−1=2

ξωl ri − rj ¼ −el=2þ el−1=2

ð10Þ

with l ¼ 1, 2, 3. Here, ξ ∈ f�1g and ω ∈
f1; exp ð�2πi=3Þg are the eigenvalues of inversion and
rotation, respectively. Condensation of Ô with nontrivial ξ
or ω signals symmetry breaking. Note that the C3 rotation
does not mix the bond groups fð0; iÞ; 1 ≤ i ≤ 3g and
fðj; iÞ; 1 ≤ i; j ≤ 3g, so the specific eigenvalue of C3 does
not fix the relative phase between these groups. The phases
given in Eq. (10) are equal on opposite bonds within a
tetrahedron, which is suggested by the dimer-dimer corre-
lation pattern obtained within ED. Practically, such a choice
improves the signal-to-noise ratio in Monte Carlo mea-
surements of the susceptibility.
Similarly, in Eq. (9), we define ÔðζÞ with

qi;jðζÞ ¼

8>>>>><
>>>>>:

ð1þ ζÞ=2 ri − rj ¼ �ðe2 − e3Þ
ð1þ ζÞ=2 ri − rj ¼ �ðe0 − e1Þ
1 ri − rj ¼ �ðe0 − elÞ
ζ ri − rj ¼ �ðe1 − elÞ;

ð11Þ

where l ¼ 2, 3, to probe spontaneous breaking of the
mirror symmetry. Here, ζ ∈ f�1g is the mirror eigenvalue.

III. RESULTS

We present our results in the following order: First, we
demonstrate that the variational energies we obtain com-
pare favorably to the previous studies; we then show finite-
size extrapolations based on computations with system
sizes beyond those available in the literature. We show that
our variational wave functions correctly capture the mag-
netic order in the k ¼ 0 phase and the absence of magnetic
order at the nearest-neighbor Heisenberg point. Second, we
present our finite-size extrapolation of the transition point
between the two phases along the j2=j1 axis for λ ¼ 1.
Third, we discuss the results of order-parameter and
susceptibility calculations, elucidating the symmetry-
breaking characteristics of both phases.

A. Accuracy of wave functions

The accuracy of the wave functions we obtained can be
compared with recent DMRG data on clusters up to 4 × 33

[38] at the most frustrated λ ¼ 1, j2=j1 ¼ 0 point. In

Fig. 1(b) we show the best energy values obtained within
DMRG and within our work. The mVMC error bars arise
from statistical uncertainty, and the error bar at Ω−1 ¼ 0 is
estimated as the 1=2 absolute difference between the value
obtained on the largest 4 × 43 cluster and the extrapolation
result [38]. The energies are listed in Table II of
Appendix H. On all clusters for which DMRG data are
available, our variational energies agree with or are lower
than the ones obtained by DMRG. [66] Our result
−0.477ð3Þ for the infinite-volume extrapolation is in
agreement with the extrapolation from the DMRG calcu-
lations, −0.488ð12Þ, and improves upon the previous
variational Gutzwiller-projected mean field result [67].
This independent benchmark with DMRG confirms the
ability of the variational Monte Carlo method to express the
frustrated ground state even in the large volume.
Frustrated systems typically host many competing

phases in a small energy window [40]; thus a favorable
comparison of energies is not always a guarantee of
accuracy for a given variational ground state. However,
we have further verified that physical observables obtained
within the two variational parametrizations—mVMC and
NQS—are also in striking agreement. To this end, we have
studied the physical observables along the phase transition
between the putative QSL phase at j2=j1 ¼ 0 and the
magnetically ordered k ¼ 0 phase at large j2=j1 (details
about the k ¼ 0 phase can be found in Appendix C).
The ground-state energy behavior along the phase

transition qualitatively agrees across all of our approaches.
Figure 2(a) shows the ground-state energies at λ ¼ 1 as a
function of j2=j1 obtained within ED and both variational
methods on the equilateral clusters. The energy maximum
signals the phase transition between the frustrated and the
magnetic k ¼ 0 phases. Note that a maximum is present for
all approaches and clusters but forms a more pronounced
kink with larger cluster size, indicating a phase transition of
first order.
The NQS CNN results look slightly off in the frustrated

phase. However, at L ¼ 2, the CNN energy falls between
the first and second excited states, [68] while overlap with
the ground state is jhψEDjψNQSij ¼ 0.86, which suggests
that observables computed with jψNQSi will be dominated
by the system ground state.
Further support that the wave functions are consistent

and physically correct can be obtained by comparison of
magnetic susceptibilities towards SUð2Þ spin-rotation sym-
metry breaking. In Figs. 3(a) and 3(b), we show the
magnetic susceptibility χM̂k

plotted along the high-
symmetry line in the 3D extended Brillouin zone. Both
variational methods not only agree with ED and among
themselves but also clearly distinguish between the non-
magnetic phase in Fig. 3(a) and the magnetically ordered
k ¼ 0 phase in Fig. 3(b), in accordance with the features
described in Appendix C, such as peaks at k ¼ X; L and
the ratio between their heights.
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B. Magnetic phase boundary

Based on these consistent results, we are able to
determine the shape of the phase boundary in the

ðj2=j1; λÞ plane and extrapolate its location to the thermo-
dynamic limit.As the position of the phase boundary,we take
the maximum j2=j1 such that the susceptibility on the whole
XW line is higher than the peak’s half maximum (see Fig. 3).
[69] Applying this criterion to the ED data for L ¼ 2 yields
the phase diagram shown in Fig. 1(a). Within ED, the phase
transition is located at j2=j1 ∼ 0.06 on the SUð2Þ-symmetric
axis. Further, in the interval 0.09 ≤ j2=j1 ≤ 0.12, there is a
level crossing of excitations belonging to S ¼ 1 and S ¼ 0
spin sectors, indicating a transition to a magnetic phase
[40,70,71]. With decreasing λ, the nonmagnetic phase width
decreases within ED and vanishes at the classical spin-ice
point, meaning that even an infinitesimal positive j2=j1 term
breaks the spin-ice degeneracy and establishes magnetic
order. The ED phase boundary is well described by a
ðj2=j1Þ� ¼ 0.06λ2 fit, shown as a dashed line in Fig. 1(a).
The full width at half maximum (FWHM) analysis details,
the raw ED phase diagram, and level spectroscopy can be
found in Appendix D.
A complementary, direct signature of the phase transition

comes from the nonmonotonous behavior (“kink”) of the
energy as a function of j2=j1, shown in Fig. 2(a). In the
L ¼ 2 ED-accessible case, the energy maximum is located
at j2=j1 ∼ 0.06, which coincides with the FWHM analysis.
Larger clusters with L ¼ 3 and L ¼ 4 show similar
behavior. To systematically obtain the kink position at
large clusters, we perform a procedure comprised of
(1) obtaining the best wave function at metastable points
belonging to the frustrated (j2=j1 ¼ 0.0) or the ordered
(j2=j1 ¼ 0.2) phases, (2) adiabatically varying j2=j1,
adjusting the wave function, and lastly, (3) locating the
energy level crossing as an indication for the phase
transition. An example of this hysteresis optimization is
shown in the right panel of Fig. 2(b). As the right panel
shows, the energy level crossing is accompanied by an
abrupt change in the ground-state magnetic susceptibility.
We find that the hysteresis optimization also significantly
improves variational energies at the intermediate j2=j1
interactions. For more details, see Appendix B.

FIG. 2. Phase transition at the SUð2Þ-symmetric point and its
extrapolation to the thermodynamic limit. (a) Ground-state
energy on 4 × L3 clusters obtained within the various methods.
(b) Left panel: magnetic susceptibility at k ¼ X as a function of
j2=j1 within the hysteresis optimization performed at the 4 × 44

cluster within mVMC. Right panel: energy-level crossing ob-
tained using the hysteresis optimization. (c) Position of the phase
boundary ðj2=j1Þ� for EC or NEC as a function of inverse cluster
size. The ED point corresponds to the position of the energy
maximum. The dashed line is the linear fit over mVMCEC points.
The error bar at Ω−1 ¼ 0 is conservatively estimated as the
difference between extrapolation and the measured transition
point at the 4 × 44 cluster within mVMC.

FIG. 3. Spin-spin susceptibility χM̂k
evaluated for the SUð2Þ-symmetric model (λ ¼ 1) for (a) the frustrated phase with j2=j1 ¼ 0 and

(b) the k ¼ 0 magnetic phase with j2=j1 ¼ 0.25. The legend shows the methods and the size of the equilateral clusters used.
(c) Extended Brillouin zone of the pyrochlore lattice with the high-symmetry points labeled.
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Using the hysteresis optimization, we perform the phase-
boundary infinite-volume extrapolation at λ ¼ 1 and
λ ¼ 0.8. We consider the geometries 4 × 23, 4 × 22 × 4,
4 × 22 × 6, 4 × 2 × 42, 4 × 2 × 4 × 6, 4 × 43, and 4 × 33

with 32, 64, 96, 128, 196, 256, and 108 sites, respectively,
but perform the extrapolation using equilateral clusters of
the shape 4 × L3 only. The transition points for all methods
and geometries are shown in Fig. 2(c). Strikingly, the
extrapolated range of the nonmagnetic phase at λ ¼ 1

shrinks further as compared to the 4 × 23 system, and
the resulting critical value ðj2=j1Þ� ¼ 0.0295ð30Þ is an
order of magnitude smaller than the result obtained from
FRG, ðj2=j1Þ� ¼ 0.22ð3Þ [22]. Note also that the phase-
transition locations at the 4 × 33 cluster roughly agreewithin
the two variational approaches, suggesting that the conclu-
sions are not subject to strong variational bias. We use the
difference between themVMCdata infinite-volume extrapo-
lation and the result obtained on the largest 4 × 43 cluster as
the estimate of extrapolation uncertainty, which is shown as
an error bar in Figs. 1(a) and 2(c) at Ω−1 ¼ 0. Similarly, the
λ ¼ 0.8 point extrapolates to ðj2=j1Þ� ¼ 0.0180ð35Þ. The
extrapolation results at λ ¼ 0.8 and λ ¼ 1 are shown with
error bars in Fig. 1(a).
Taken together, our results strongly suggest that the

phase boundary in the thermodynamic limit is located at
substantially smaller j2=j1 than the one extracted from L ¼
2 ED and FRG, but it remains at finite j2=j1 in the region
λ≲ 1. Since the initial ED phase boundary was well
described by the parabolic fit, in Fig. 1(a) we also include
the phase-boundary uncertainty region as bounded by the
two parabolic curves in the thermodynamic limit as a guide
to the eye. [72] We also point out that because of the
shrinking width of the nonmagnetic phase and its decreas-
ing energy gain (as compared to the ordered k ¼ 0 phase),
[73] variational approaches employed in this study con-
verge to the ordered regime at λ ≤ 0.6 upon performing the
hysteresis technique on the j2=j1 ¼ 0 axis. Thus, we infer
the nonmagnetic region shape at λ < 0.6 only from the ED
data presented in Appendix D.

C. Symmetry breaking in the nonmagnetic phase

We characterize the nonmagnetic phase through its
symmetry-breaking tendencies and contrast it with the
behavior in the magnetic phase. We begin with the study
of magnetic correlations and the spin gap, i.e., the energy
difference between the lowest states in the S ¼ 0 and S ¼ 1
sectors. A vanishing spin gap allows for spontaneous spin-
rotation symmetry breaking, characteristic of spin-nematic
or magnetic phases. Numerous studies have already
assessed the magnitude of the spin gap at λ¼1, j2=j1¼0
[12,14,23,34,38]. However, as seen in Table II of
Appendix H, no definite conclusion can be made since
the results are sensitive to the specific cluster geometry
[34]. Here, we obtain the spin gap on all available clusters

but, most importantly, on three equilateral clusters 4 × L3,
which retain the pyrochlore point-group symmetries under
consideration. We thus believe that our data provide the
most reliable spin-gap extrapolation to date. As is seen
from Fig. 4(a), spin-gap extrapolations dramatically differ
in the magnetic and the nonmagnetic phases, represented
by parameter choices j2=j1 ¼ 0.2 and j2=j1 ¼ 0, respec-
tively. The gap extrapolates to zero and to a finite value
ΔS=j1 ¼ 0.40ð4Þ in the magnetic and nonmagnetic phases,
respectively. The latter agrees with the recent DMRG result
0.36(3) [38].
A vanishing spin gap allows us to establish an SUð2Þ-

breaking order parameter. We substantiate this via an ex-
trapolation of the magnetic susceptibility χM̂X

¼hM̂†
XM̂Xi

shown in Fig. 5(a). Since the phase-transition point j2=j1 is
size dependent, at intermediate j2=j1 no such extrapolation is
possible for the system sizes available to us, and we show
only j2=j1, which fall into one phase for all lattice volumes.
For j2=j1 ≤ 0.025, χM̂X

extrapolates to zero, showing the
absence of long-range magnetic correlations with this wave
vector. Here, we employ theΩ−1 extrapolation as we expect
spin-spin correlations to decay exponentiallywith distance in
the nonmagnetic phase [74]. Note that scaling Ω−r with
r < 1 in the nonmagnetic phase (e.g., due to a large
correlation length) could only strengthen the conclusion of

FIG. 4. Spin- or space-group spectroscopy at the SUð2Þ-
symmetric point. (a) Triplet gap as a function of inverse linear
system size L. Data points labeled ED0.0, NQS0.0 [difference
between even and odd spin sectors projected using Eq. (7)], and
mVMC0.0 represent the spin gap at j2=j1 ¼ 0.0 obtained within
ED, NQS, and mVMC, respectively, while mVMC0.2 shows the
vanishing spin gap at j2=j1 ¼ 0.2. Dashed lines on the right
represent values obtained at nonequilateral clusters within
mVMC at j2=j1 ¼ 0.0. The error bar at L−1 ¼ 0 represents
1=4 of the difference between extrapolation and the value
obtained on the largest possible cluster. The data can be found
in Table II of Appendix H. (b,c) Point-group symmetry gaps as a
function of the inverse linear system size L−1 obtained within
mVMC. Data points labeled Δ0.0

R , Δ0.0
I show the rotation and

inversion gaps as j2=j1 ¼ 0.0, while Δ0.2
R , Δ0.2

I stand for the
j2=j1 ¼ 0.2 point.
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vanishing magnetic order. On the other hand, correlations at
j2=j1 ≥ 0.12 extrapolate to finitevalues. To show that,weuse
the Ω−2=3 scaling arising from gapless Goldstone mode
contributions to long-range spin-spin correlation in 3D
[75]. The finite extrapolation values imply that the magnetic
operator M̂X will acquire a finite expectation value,
hM̂Xi ≠ 0, in the thermodynamic limit in the ordered
k ¼ 0 phase, while the expectation value vanishes in the
nonmagnetic phase.
Similarly tomagnetic order and the corresponding SUð2Þ-

symmetry breaking, we study the point-group symmetry
breaking,whichmaybe associatedwith dimer-type order, for
instance [76].We compute the energy difference between the
ground state and the lowest state in sectors with a different
inversion and rotation eigenvalue. Only the equilateral
clusters with 4 × L3 obey rotation symmetry. In Fig. 4(b),
we show these gaps in the two phases at j2=j1 ¼ 0.0, 0.2
plotted against the inverse linear system size L−1 [40,70,71].
The inversion-symmetry gap extrapolates to a finite

value in the k ¼ 0 phase, which is in agreement with
the fixed-point wave function for this phase since the
inversion operator does not mix the pyrochlore sublattices
(see Appendix E for a detailed description of magnetic
phase and frustrated phase fixed-point wave functions). In
contrast, the inversion-symmetry gap vanishes in the non-
magnetic phase, opening the prospect of spontaneous
inversion symmetry breaking.
The rotation-symmetry gap between the ground state

(eigenvalue 1) and the lowest rotational doublet (eigenval-
ues e�2πi=3) is found to be very small on the 4 × 23 cluster
in both phases and falls below the error bar of our
calculations in larger volumes, allowing for a spontaneous
breaking of the rotation symmetry. In the k ¼ 0 phase, this

is in accordance with the sublattice order, which sponta-
neously breaks rotational symmetry. However, the rotation
gap closing in the nonmagnetic phase is a novel result.
To further support these results, we compute the sus-

ceptibilities χ Î and χR̂ to condensation of the operators

Î ¼ Ôð−1; 1Þ;
R̂ ¼ Ôðþ1; e2πi=3Þ; ð12Þ

corresponding to the inversion pseudoscalar and rotation E
irreducible representation operators, where Ôðξ;ωÞ is
defined in Eq. (9). In Figs. 5(b) and 5(c), we show the
corresponding susceptibilities for both phases, corroborat-
ing the gap analysis. In the nonmagnetic phase, the infinite-
volume extrapolations of χ Î and χR̂ are nonvanishing and,
notably, χR̂ is an order of magnitude larger than χ Î , which
agrees with the relative gap magnitudes (see Appendix D).
Likewise, in the k ¼ 0 phase, only χR̂ extrapolates to a
nonzero value. For extrapolation, we employ the Ω−1

scaling based on our expectation that, if the dimerized
phase indeed stabilizes, it breaks no continuous symmetry
and has no gapless modes that would lead to nonexpo-
nential long-range dimer-dimer correlation saturation (see
Fig. 14 in Ref. [77]), as with spin-spin correlations. If, on
the contrary, no dimer order is truly established, dimer-
dimer correlations decay algebraically and may cause
scaling other than Ω−1. Luckily, such a change will lead
to a scaling of the form Ω−r, with r < 1, which increases
the slope against the one presented in the plots and thus
further solidifies the conclusion. Real-space-resolved
dimer-dimer correlations supporting this scenario are
shown in Appendix G. We emphasize that if, despite this

FIG. 5. Susceptibilities towards SUð2Þ, rotation, and inversion symmetry breaking at the λ ¼ 1 point. (a) Magnetic order susceptibility
at the k ¼ X point extrapolated to infinite volume using Ω−1 scaling in the nonmagnetic phase (j2=j1 ¼ 0.0, 0.025) and Ω−2=3 in the
ordered phase (j2=j1 ¼ 0.125, 0.2). (b) Inversion-symmetry-breaking susceptibility χ Î as a function of inverse volume obtained within
the NQS and mVMC methods. The dashed lines show linear infinite-volume extrapolation at j2=j1 ¼ 0 and j2=j1 ¼ 0.2. The inset
shows the susceptibility dependence as a function of j2=j1 obtained on a 4 × 23 cluster. (c) Rotation-symmetry-breaking susceptibility
χR̂ as a function of inverse volume obtained within the NQS and mVMC methods. The dashed lines show linear infinite-volume
extrapolations at j2=j1 ¼ 0 and 0.2. The inset shows the susceptibility dependence as a function of j2=j1 obtained on a 4 × 23 cluster.
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argument, the scaling dramatically differs from Ω−1, e.g.,
L−1, this would not allow us to draw a conclusion about
rotation susceptibility extrapolation in the nonmagnetic
phase shown in Fig. 5(c). The insets of Figs. 5(b) and 5(c)
show χ Î and χR̂ obtained within ED. They show trends
consistent with the larger-volume results.
A summary of operator expectation values based on these

results is shown in the frames in Fig. 1(a). Specifically, the
rotation operator acquires a nonzero expectationvalue hR̂i ≠
0 in both phases, while the inversion operator is nonzero
hÎi ≠ 0 only in the nonmagnetic phase.

D. General dimerization pattern analysis

Having observed nonvanishing susceptibilities towards
the establishment of rotation and inversion breaking dime-
rization patterns in the nonmagnetic phase, we classify and
measure (within ED/mVMC) all symmetry-allowed dimer
observables and compare them to those of analytically
known model wave functions.
All the 12 × Lx × Ly × Lz bonds of the pyrochlore

lattice can be labeled with the unit cell index and an index
within the unit cell. We use the following convention: We
choose each site of the 0 sublattice as the origin of a unit
cell, where up- and down-tetrahedra meet, and assign the
12 bonds making up these two tetrahedra to the unit
cell with the origin at site 0, as shown in Fig. 1(a).
Given a quantum state, we then compute the dimeriza-
tion tensor χDij;μν ¼ hD̂μ

i D̂
ν
ji − hD̂μ

i ihD̂ν
ji with the indices

0 ≤ i; j < Lx × Ly × Lz ¼ Ω=4 running over unit cells in
the lattice and 0 ≤ μ; ν < 12 enumerating bonds within unit
cells. The eigenvectors that correspond to the largest
eigenvalues of χD represent the dominant correlation
patterns developed within the state of interest.
The ground state obtained within the 4 × 23 ED study

belongs to the k ¼ 0 momentum sector and the trivial
irreducible representation of the point-group symmetry,
while on larger symmetric clusters 4 × 33 and 4 × 43, this
property is enforced by the procedure described in Sec. II D.
Thus, χDij;μν shares the space-group symmetries of the lattice
(or finite cluster), and all its eigenstates transform according
to an irreducible representation thereof. For all of our
numerically obtained variational wave functions, the
Fourier transform of χDij;μν with respect to i, j indices has
its dominant eigenvalues in the q ¼ 0 sector. Hence, the
dominant dimer-dimer correlationpatterns are translationally
invariant, unlike, for instance, for the j2=j1 Heisenberg
model on the square lattice [40], where dimerization order
breaks translational symmetry.
Restricting our consideration to translationally invariant

(q ¼ 0) eigenvectors of χDμνðq ¼ 0Þ, we classify them by
the irreducible representations of the Oh point group acting
on the remaining 12-dimensional linear space, namely, the
A1g, A1u, Eg, Eu, T1g, and T1u representations. The details
about those representations and the action of symmetry
operations can be found in Appendix F. From the definition
given in Eq. (12), we readily associate the Î and R̂ dimer

FIG. 6. (a) Eigenvalues of the dimer-dimer correlation matrix and their irreducible representations of the point group computed at the
SUð2Þ-symmetric point and j2=j1 ¼ 0. The gray crosses correspond to all eigenstates with small eigenvalues, irrespective of their
irreducible representation, including all finite momentum sectors. The Eq≠0

g state is degenerate in the momentum sectors
ð0; π; πÞ; ðπ; 0; πÞ; ðπ; π; 0Þ. (b) Evolution of eigenvalues (×1=30) within the infinite-volume (solid lines) and the 4 × 23-site models
(dashed lines) as a function of ϑ. The colors coincide with the representation notations of panel (a). For the infinite-volume model, the
blue line (A1u) is slightly shifted for visibility as it always remains degenerate with Eu. (c) Fully dimerized jαi (left) and jβi (right) wave
functions. (d) Pseudospin wave function introduced in Ref. [15].
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operators, previously introduced in Eq. (12), with the A1u
and Eg irreducible representations, respectively.
In Fig. 6(a), we show the dominant eigenvalues of

χDμνðq ¼ 0Þ obtained from ED (4 × 23 sites) and mVMC
(4 × 33 and 4 × 43 sites) states. Notably, the Eg irreducible
representation is dominant. At the same time, we find as
subleading eigenvector Eu, which carries nontrivial quan-
tum numbers of both rotation and inversion. The appear-
ance of Eg and Eu as the irreducible representations of
the largest eigenvectors reaffirms our conclusions from
Sec. III C that both rotation and inversion symmetry are
likely broken in this phase.
Next, we want to connect the observed χDμνðq ¼ 0Þ

eigenvalue hierarchy to a specific dimerized state. To this
end, we consider the only two short-range, translationally
invariant, fully dimerized patterns shown in Fig. 6(c): two
dimerized bonds in the same tetrahedron (denoted by jαi) or
in opposite tetrahedra (jβi). In general, the state may be a
superposition of the two jψðϑÞi¼ cosðϑÞP̂jαiþ sinðϑÞP̂jβi,
which we parametrize by the angle ϑ. To obtain a state that
transforms trivially under all space-group operations, as do
our numerically obtained wave functions, we include the
projector P̂ discussed in Eq. (6).
In the infinite volume, the eigenvalues of χDμνðq ¼ 0Þ are

computed exactly for this family of model wave functions.
We repeat this analysis on the small 4 × 23 cluster where
one can store the wave function directly. In Fig. 6(b), we
show eigenvalues of χDμνðq ¼ 0Þ as a function of ϑ for the
finite and infinite volume. The eigenvalues (scaled to match
the simulation data) are shown in Fig. 6(a) for tanðϑÞ ¼ 1=2
(this choice leads to a good qualitative agreement between
models and numerical results and was chosen as the
intermediate value between 0, where degeneracy between
Eg and Eu is still present, and 1, where crossing with low-
lying eigenstates happens). We point out good agreement
in the dominant eigenvalue hierarchy and suggest
jψ( arctanð1=2Þ)i as a wave function, qualitatively repro-
ducing the numerical data. In this scenario, in the thermo-
dynamic limit, when the point group symmetry is
spontaneously broken, the wave function would be a super-
position of the dimerization patterns jαi and jβi.
In addition, we discuss the pseudospin-ferromagnet

wave function introduced, for instance, in Ref. [15].
Each isolated tetrahedron on the pyrochlore lattice has
two orthogonal singlet states, which can be treated as states
of the local pseudospin 1=2. We consider the pseudospin-
ordered wave function introduced in Ref. [15], where the
tetrahedra are grouped into four metasublattices as shown
in Fig. 6(d). We consider ferromagnetic pseudospin order in
each of the sublattices. The pseudospin of the three
sublattices (B, C, D) is obtained from the mean-field
theory and results in a short-range dimerization pattern.
The polarization of A, expressed in terms of chiral super-
spin superpositions j�i as ðjþi þ eiθj−iÞ= ffiffiffi

2
p

, is obtained

by accounting for quantum corrections and depends on the
phase θ. In Fig. 6(a), we show the eigenvalue hierarchy of
the pseudospin wave function at θ ¼ 0 after projecting it
with P̂ to the trivial symmetry sector. Notably, the eigen-
state structure is in sharp qualitative disagreement with our
numerical data, for instance, because of the appearance of
the q ≠ 0 representation of χDij;μν among the leading
contributions, which disfavors the pseudospin wave-func-
tion scenario.

IV. DISCUSSION AND CONCLUSION

The spin-1=2Heisenberg model on the pyrochlore lattice
is an iconic candidate system for realizing a 3D QSL. This
expectation is supported by the proximity of aUð1Þ QSL in
the vicinity of the Ising point and the absence of magnetic
correlations at the Heisenberg point [22–24,67]. To date, no
consensus on the existence of the QSL phase has been
reached because the 3D many-body spin problem chal-
lenges all numerical techniques available. Confirming the
QSL nature of a ground state is intrinsically harder than
establishing an ordered phase: Besides proving the absence
of long-range order, emergent fractionalized excitations
should be found [78].
We have performed a comprehensive numerical search

for spontaneous symmetry breaking in the putative QSL
phase and quantified its extent in phase space. Combining
two complementary variational approaches and exact
diagonalization, we are able to gather strong evidence
for a symmetry-broken rather than a featureless QSL nature
of the phase, based on extrapolations to the thermodynamic
limit. We characterize the phase as not magnetically
ordered, but spontaneously breaking rotation and inversion
symmetry by establishing long-range dimer order. This
contradicts the QSL realization at the Heisenberg spin-1=2
pyrochlore as discussed in Ref. [78]. Rather, the symmetry-
breaking pattern for the nonmagnetic phase is consistent
with the fixed-point dimerized wave function shown in
Fig. 6(c). Namely, simultaneous breaking of rotation and
inversion symmetries by the dimer order would also be
observed in the fully dimerized state. In support of this, we
found direct numerical evidence for dimer correlations in
the ground state.
Its strong geometrical frustration makes pyrochlore

materials promising candidates for experimental observa-
tion of nonmagnetic spin systems. For instance, spin-1
pyrochlore NaCaNi2F7 with j2=j1 ∼ −7 × 10−3 was
recently claimed to show spin-liquid-like behavior in
neutron scattering experiments down to low temperatures
[79]. However, a spin-1=2 compound with nearly SUð2Þ-
symmetric and dominantly nearest-neighbor AFM inter-
actions is yet to be identified.
We find that a moderate admixture of next-to-nearest-

neighbor interactions already establishes long-range mag-
netic order, emphasizing that only materials in a narrow
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parameter regime are expected to show nonmagnetic
ground states. Concretely, we show that the width of this
nonmagnetic phase is ðj2=j1Þ� ¼ 0.0295ð30Þ, which is
substantially smaller than predicted in a recent FRG
study [22].
The seemingly small extension of parameter range is

comparable to what is seen in other models with candidate
QSL phases as well, in particular, since it also extends to
negative j2. For instance, for the j2=j1 square Heisenberg
model, the width of a putative QSL phase was found to be
about 0.05 [40].
Because of the shrinking of the nonmagnetic phase as λ

is tuned from 1 to 0, the energy competition with the
magnetic phase becomes even tighter, and the local minima
problem prevents us from obtaining a reliable nonmagnetic
variational wave function at small λ and j2=j1 ¼ 0 for the
Uð1Þπ QSL. Severe finite-size effects existing in this
regime should also be noted: The 4 × 23 cluster hosts no
Uð1Þπ QSL state within perturbation theory on the spin-ice
manifold as the λ3-order hexagon flips are dominated by λ2

terms specific to this cluster size [7]. As a result, we were
unable to locate the transition point between the observed
symmetry-broken phase at λ ¼ 1 and the well-known
Uð1Þπ QSL phase at λ ¼ 0. This transition, if it indeed
exists, represents a crucial element of the pyrochlore puzzle
that is yet to be resolved within future studies.
In summary, using many-variable Monte Carlo methods,

we were able to refine the phase diagram of the spin-1=2
pyrochlore Heisenberg model both qualitatively and quan-
titatively, assembling strong evidence against a featureless
QSL ground state. A symmetry broken state with con-
comitant topological order is still a possibility.
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APPENDIX A: NEURAL QUANTUM STATES
METHOD AND PARAMETER TRAINING

DETAILS

The NQS method casts each spin configuration σ in the
Sz basis to a bit representation σi ∈ f−1;þ1g and uses it as
an argument of a neural network Ψ. The result ΨðσÞ is
interpreted as the (not-normalized) wave-function compo-
nent corresponding to the basis vector σ. In the case of a
feed-forward neural network, which is most commonly
applied in the NQS method, the input v0 ¼ σ undergoes a
sequence of transformations

viþ1 ¼ fðŴivi þ biÞ; ðA1Þ

where Ŵi is the weight matrix and bi is the bias vector.
Parameters ðŴi;biÞ are the variational parameters of the
NQS ansatz. The linear transformation Ŵivi þ bi is fol-
lowed by the application of nonlinearity f, which is an
essential ingredient of the procedure since otherwise only
linear functions could be encoded. In this work, we apply
the ReLU (rectified linear unit) nonlinearity [81], which is
commonly used in artificial intelligence applications.
In NQS, fixing quantum numbers of the point symmetry

group is done similarly to mVMC, using Eq. (6). Imposing
translational symmetry on the level of variational param-
eters requires construction of a manifestly translation-
invariant neural network. This “hard-coded” translational
invariance turns out to be crucial for obtaining significant
overlap with the QSL phase ground state [53], as it
effectively increases the number of Monte Carlo samples
Lx × Ly × Lz times.
Translational invariance is achieved by using convolu-

tional layers with periodic padding. Consider a spin
configuration v0l;x;y;z ¼ σl;x;y;z ≡ σl;r to be rearranged in a
4D tensor of shape ðC0 ¼ 4; Lx; Ly; LzÞ. Then, application
of one convolutional layer reads

viþ1
l;r ¼ f

�X
Δr;l0

Kll0 ðΔrÞvil0;rþΔr þ bil

�
: ðA2Þ

Here, the kernel matrix Kll0 ðΔrÞ depends only on the
relative distance Δr between elements viþ1

l;r and vil0;rþΔr,
while the bias bil depends only on the sublattice index. If
rþ Δr extends beyond the boundary, periodic boundary
conditions are applied, which makes this architecture
manifestly translation invariant. Note also that the output
vector viþ1

l;r has shape ðCiþ1; Lx; Ly; LzÞ, so the number of
channels Ciþ1 can vary while the spatial dimensions remain
untouched. The sketch of CNN architecture used in this
work is shown in Fig. 7.
As output, the network should produce wave functions

in the form ΦðσÞ ¼ ðlogA; eiϕÞ, where logA is the ampli-
tude logarithm and eiϕ is the complex phase of the
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wave-function element. In this work, we train two separate
neural networks, one of them producing the amplitude and
the other one producing the phase, which was shown to
increase precision in a number of cases [82,83]. So, the
network should output one number obeying translational
invariance. To construct one number from the hidden tensor
of shape ðC;Lx; Ly; LzÞ, we first take the mean value over
all spatial dimensions ðC;Lx; Ly; LzÞ → C and then apply a
standard dense layer that maps a C-dimensional vector to
the phase or amplitude [Eq. (A1)].
Recently, it has been shown that on moderately large

systems, the absence of “hard-coded” translational invari-
ance might lead to outstanding wave-function approxima-
tions [56]. Instead of CNN, one uses a standard, shallow,
fully connected network with just one layer inspired by the
restricted Boltzmann machine (RBM) architecture used in
early NQS studies [41]. In this way, no symmetries are
encoded in the NN parameters, but rather all symmetry
projectors, including momentum, are applied at the end. In
this work, we also employ this architecture to improve the
CNN results on the 4 × 23 and 4 × 33 systems.
Obtaining significant overlap with the QSL phase

ground state is known to be a nontrivial task within the
NQS method. The problem can be effectively reformulated
in terms of the wave-function sign structure [note that since
the Hamiltonian Eq. (2) is real, the phase of any element
can be chosen as ϕ ¼ 0; π]. In an ordered phase, the wave-
function element’s sign can be easily inferred from the spin
configuration σ, e.g., via the Marshall-Peierls sign rule
[84]. In this case, the network usually shows extreme
accuracy, even outperforming existing approaches [41,42].
However, as the system is moved away from the ordered
phase towards the QSL phase (for instance, by increasing
j2=j1 in the spin-1=2 Heisenberg model on the square
lattice), the overlap may drop to almost zero [42,53,83]. It
was shown that, in the QSL phase, the wave-function phase
structure has a much larger complexity [83], which might

be difficult to catch if the wrong training method or network
architecture is applied. In the case of 2D frustrated magnets,
it was shown that the right choice of network architecture
can increase the overlap with the ground state from 0 to 0.9
at the maximally frustrated point [53].
In the case of 3D frustrated magnets, the architecture

alone turns out not to be enough to grasp the correct QSL
ground-state properties. To deal with frustration, we intro-
duce a novel algorithm of alternating learning. It was
initially shown in Ref. [83] that one can improve the final
training result by performing training in two stages. During
the first stage, one sets amplitudes of all spin configurations
equal to log jΦðσÞj ¼ 0 and trains only phases. During the
second stage, one trains both the phase and amplitude
networks simultaneously. We extend this idea and add the
intermediate alternating phase consisting of sequence of
interchaging phases (1) and (2) with (1) being training with
phase structure frozen and (2) with amplitude structure
frozen.
Empirically, this extension can be motivated as follows.

Note that within the NQS method, the phase lives on the
complex circle, while the true ground-state phases can be
defined as purely real�1. As a result, a converged network
phase distribution usually has two major clusters at ϕ and
ϕþ π, where ϕ is an arbitrarily found, physically irrelevant
wave-function gauge phase. After full convergence, the two
phases are separated by a “potential barrier,” and the phase
of a single spin configuration cannot “tunnel” between
these minima. However, if the amplitude landscape is
totally flat, log jΦðσÞj ¼ 0, then the tunneling can happen
with a higher probability. During the first training stage, we
train only phases to find the best energy available with the
constraint log jΦðσÞj ¼ 0. After this constraint is removed,
amplitudes quickly converge, and the potential barrier
between ϕ and ϕþ π sets in. If, however, the amplitudes
are trained only for a small time, after which the phases are
trained to adjust for slightly changed amplitudes, we allow

FIG. 7. Standard translationally invariant neural network used in the paper. The spin configuration σ ¼ v0l;r is first rearranged into the
ð4; Lx; Ly; LzÞ tensor, and it then undergoes a sequence of convolutions in accordance with Eq. (A2). After the last convolution, the
tensor ðC; Lx; Ly; LzÞ is spatially averaged (in this example, C ¼ 16) and is fed to the fully connected layer, given by Eq. (A1). The
resulting number is then interpreted either as log jΨðσÞj or argΨðσÞ.
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some signs to tunnel between the two minima since the
barrier is not yet too high.

APPENDIX B: HYSTERESIS OPTIMIZATION

Ground states of neighboring phases show a pronoun-
cedly different spin-spin susceptibility behavior. In the
vicinity of the phase transition, however, the two phases
have a tight energy competition. Variational methods,
which are usually prone to ordered solutions, might get
trapped in false minima and require a large number of
random initial approximations to resolve the correct phase
near the critical point. It turns out, however, that the search
for the best variational parameters can be efficiently
replaced with so-called “hysteresis optimization.”
The first step is to optimize the wave function at two

values of j2=j1 lying deep within the adjacent phases. The
two sets of optimized wave-function variational parameters
are then used as the initial approximation for the hysteresis
procedure. Namely, starting with the wave function trained
deep within the k ¼ 0 phase, we gradually decrease j2=j1,
optimize the wave function for the new value of j2=j1, and
obtain the energy Ek¼0ðj2=j1Þ. During the evolution, we
observe the susceptibility pattern χM̂k

to verify that the
wave function still has the initial phase features. Repeating
the same procedure in the opposite direction by starting
with the QSL phase wave function, we obtain an
EQSLðj2=j1Þ that intersects Ek¼0ðj2=j1Þ at some
j2=j1 ¼ ðj2=j1Þ�, which provides us with an accurate
estimate for the phase transition position. An example of
the hysteresis optimization with mVMC for the largest
4 × 43 lattice is shown in Fig. 2(b). As the right panel shows,
adiabatically evolved energies cross at j2=j1 ∼ 0.032. At
this point, the wave function of the magnetic phase starts to
outperform the one of the nonmagnetic phase in terms of
energy. Importantly, at any j2=j1, the best energy obtained
with the hysteresis optimization is never greater than the
ones obtained with numerous trials starting from random
approximations. Thus, the procedure provides us with a
better energy, in addition to saving computational time. At
every point, we select the best available wave function and
plot the magnetic order, which abruptly establishes if j2=j1
is tuned above the phase transition point. This is consistent
with the notion of metastable wave functions defined within
magnetic and nonmagnetic phases.

APPENDIX C: PROPERTIES OF
THE MAGNETIC k = 0 PHASE

Momentum-resolved spin-spin correlation functions are
the most pronounced ordered phase fingerprints and thus
are a powerful tool to track the phase transition between
ordered and disordered phases [22,39,40,74]. In terms of
χM̂k

¼ hM†ðkÞMðkÞi, the frustrated phase and the neigh-
boring k ¼ 0 ordered phase have several distinctive fea-
tures. The k ¼ 0 phase, known also as the “sublattice

ferromagnet,” has spins within each sublattice ordered
ferromagnetically while still maintaining the zero-sum
spin-ice rule within each tetrahedron. In the case of perfect
classical ordering, there are C2

4 ¼ 6 possible ground states
satisfying this requirement. Each of these states can be
tracked by two peaks of χM̂k¼X

at a pair of inversion-relatedX
points (see Fig. 3). These states also have equally high peaks
at all L points (middle points of the large BZ faces), with the
corresponding susceptibilities ratio χM̂k¼X

=χM̂k¼L
¼ 4. In

Figs. 8(a) and 8(b), we show the correlation magnitude over
the 3D extended Brillouin zone and the kx ¼ ky cut
called ½hhl�.
The frustrated phase, as compared to the k ¼ 0 ordered

phase, lacks any long-range magnetic order, χM̂k
¼ 0,

∀ k ∈ BZ. The susceptibility multiplied by the system
volume ΩχM̂k

, however, is finite and governed by the local
spin-spin correlations. These correlations show the “dif-
fusive” behavior, i.e., distributed over the BZ boundary [see
Figs. 8(c) and 8(d)]. On the ½hhl� cut, the bow-tie pattern in
the vicinity of kz ¼ 4π (vertical axis) is an attribute of the
local spin-ice rule [22].

APPENDIX D: ED DATA: SPECTROSCOPY
AND PHASE DIAGRAM

A qualitatively correct result for the shape of the phase
diagram in terms of frustrated and magnetic phases can be
obtained with ED on a 4 × 23 cluster. Beforehand, note that
the k ¼ 0 phase, though having qualitatively similar
features on both the λ ¼ 0 and λ ¼ 1 axes, such as magnetic
susceptibility peaks at the X and L points, has different

FIG. 8. (a) Momentum-resolvedcorrelationsonthethree-dimen-
sional extended Brillouin zone obtained within ED on a 4 × 23

cluster with λ ¼ 1, j2=j1 ¼ 0.2. (b) The ½hhl� plane slice of the
extended Brillouin zone. (c,d) Same measurements at j2=j1 ¼ 0.
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peak heights. In the classical λ ¼ 0 case, even a tiny
positive j2=j1 perfectly orders the system, giving rise to
extreme χM̂k¼X

¼ 1=12. Contrarily, in the quantum λ ¼ 1

case, quantum corrections and SUð2Þ symmetry do not
allow perfect classical sublattice ferromagnetic ordering,
which significantly reduces the peak. This is illustrated in
Fig. 9(c), where we consider fixed-j2=j1 cuts of the phase
diagram. Note that, indeed, if j2=j1 > 0, the peak height
χM̂k¼X

would reach 1=12, provided λ is sufficiently small.
Note also that as λ > 1, magnetic correlations are further
reduced.
To unite these behaviors in the vicinity of the λ ¼ 0 and

λ ¼ 1 points, we consider the full width at half maximum
(FWHM) characteristic defined as

χM̂k¼XþFWHM
¼ 1=2χM̂k¼X

; ðD1Þ

where FWHM is a vector collinear to X −W. In Fig. 9(d),
we show the peak width jFWHMj=2π in the ðλ; j2=j1Þ

plane. If there is no such momentum k along the XW line to
satisfy the FWHM criterion, we put jFWHMj=2π ¼ ∞.
Exact diagonalization provides another way to pinpoint

the phase transition between magnetically ordered and
frustrated phases by locating the positions of level cross-
ings between different total spin S excitations [40]. In
Fig. 9(a), we show the energy gaps of excitations with
distinct momenta and spin. Notably, the k ¼ 0 excitation
with S ¼ 1 gradually softens, and in the region
0.09 ≤ j2=j1 ≤ 0.125, it crosses nonzero momentum exci-
tations of S ¼ 0. This region may be taken for the
spectroscopy estimation of the phase transition point,
which is in rough agreement with the FWHM analysis.
Note that softening of the S ≠ 0 mode is a signature of the
tendency to spontaneous SUð2Þ-symmetry breaking and
stabilization of the magnetic phase.
Finally, in Fig. 9(b), we show inversion and rotation gaps

as a function of j2=j1 at λ ¼ 1 within ED, which comple-
ments the susceptibility analysis in Sec. III C. Note that the
inversion gap is significantly larger than the rotation gap,
which explains why the susceptibility to rotation breaking

FIG. 9. Results obtained within the ED study of the 4 × 23 cluster: level spectroscopy and phase diagram in terms of spin correlations.
(a) Behavior of the E − EGS spectrum for various quantum numbers as a function of j2=j1 obtained within ED at λ ¼ 1. The momentum
ð0; 0; πÞ is always degenerate with ðπ; π; πÞ; thus, we never show the latter. The superscript d denotes the total degeneracy of the energy
level. (b) Gaps of rotation symmetry ΔR and inversion symmetry ΔI as functions of j2=j1 obtained within the ED at λ ¼ 1. (c) Peak
height χM̂k¼X

as a function of λ for various values of j2=j1. (d) Peak χM̂k¼X
half-width on the ðj1=j1; λÞ plane. If the peak width is

undefined, then we set it equal to infinity.
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is found to be of order of magnitude larger than the
inversion breaking susceptibility. Also, the inversion gap
decreases towards the nonmagnetic phase, which hints at a
developing tendency to inversion symmetry breaking, as
observed in Sec. III C within the susceptibility analysis.

APPENDIX E: SPONTANEOUS SYMMETRY
BREAKING FROM ED DATA

In Fig. 9(b), we show that even on the ED-accessible
4 × 23 cluster, the rotation gap between the ground-state s
orbital and first excited px=py orbitals is vanishingly small.
As shown in Sec. III C, this gap vanishes in the thermo-
dynamic limit.
To get more insight, we apply the procedure suggested in

Ref. [85]. Assuming that these three low-energy states are
“already degenerate,” we can linearly superpose them at no
energy cost. To probe the symmetry breaking, we select a
bond dimer operator D̂ij ¼ Ŝi · Ŝj, residing on the fixed

bond AB0 [see Fig. 10(c)], and study how its expectation
may change as the ground states are superposed.
Within ED, we measure the 3 × 3 pairwise expectation

value matrix

Ôαβ ¼ hψαjD̂ijjψβi; ðE1Þ

where 0 ≤ α; β ≤ 2 index the approximately degenerate
ground states and the two excited states. Eigenvalues λDij

of

Oαβ stand for the D̂ij expectation values on superpositions
where D̂ij is diagonal. We note here that the doublet gap
only becomes smaller as j2=j1 is increased to positive
values, as seen in Fig. 9(b).
In Fig. 10(a), we show λDij

eigenvalues as a function of
j2=j1. Note that a nearly degenerate pair of λDij

splits in the
limit of large j2=j1, and the intermediate eigenvalue
switches to become near degenerate with the upper eigen-
value. This dramatic rearrangement of λDij

is yet another
signature of a phase transition. To get more insight, we
describe this behavior in terms of fixed-point classical wave
functions. At large j2=j1, when the system is in the k ¼ 0
phase, the classical ground state has each sublattice ordered
ferromagnetically, maintaining the zero spin per tetrahe-
dron. In total, there are 4!=ð2!2!Þ ¼ 6 ways to construct
such a ground state. An example of such a ground state is
shown in Fig. 10(b). Since our case is not classical and the
SUð2Þ symmetry is present, we enforce the symmetry sz →
−sz by turning six such ground states into three equal-
weight superpositions symmetric under a sz → −sz spin
flip. Each state of this basis breaks rotation symmetry. The
D̂ij bond operator is diagonal in this basis, and its expect-
ation equals �1=4 if the adjacent spins are (non)collinear.
Thus, the eigenvalues are 4λDij

¼ fþ1=4;−1=4;−1=4g,
which is in striking agreement with the right side (magnetic
part) of Fig. 10(a).
In the other limit, j2=j1 → 0, where magnetic ordering is

absent, the levels picture can be well described by the
dimerized pattern breaking rotation symmetry. An example
of such a pattern is shown in Fig. 10(c). In a conventional
dimerization pattern, each spin belongs only to one dimer.
In our case, since the inversion symmetry is preserved (we
only superpose inversion-symmetric states), a ground state
must be taken as an equal-weight superposition of the
red and blue patterns, dimerizing up-tetrahedra or down-
tetrahedra, respectively, and related by the inversion sym-
metry. This pattern can be rotated, producing three distinct
ground states, each of them breaking rotational symmetry.
The dimer operator is diagonal in this basis as well, and its
eigenvalues read λDij

¼ f−3=8; 0; 0g, which is again in
qualitative and even quantitative agreement with the left
side (dimer part) of Fig. 10(a).
Note that we, by no means, claim that these tentative

magnetized and dimer states are the ground states of the
true system. For instance, the dimerized pattern has a much

FIG. 10. (a) Eigenvalues of the Oαβ operator as a function of
j2=j1 at λ ¼ 1. The “dimer” and “magnetic” labels denote the
regions where the behavior is well described with dimer and
magnetic fixed point wave functions, respectively. (b) Tetrahedron
unit cell showing one of the six classical magnetic k ¼ 0 states
ordered in each sublattice. Sublattices are shown in different
colors. (c) Tetrahedron unit cell showing one of the three
dimerization patterns. Red and blue colors represent two patterns
related by inversion symmetry.
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lower energy and only a 30% overlap with the ground state.
However, we note that the observed eigenvalue λDij

evolution picture is in acute agreement with this fixed-
point rotation-breaking wave-function treatment. We thus
conclude that, since the rotation doublet gap closes in the
thermodynamic limit, the ground state may easily form a
superposition with a strongly broken rotation symmetry,
where the word “strongly” means that the magnitude of the
symmetry-breaking operator D̂ij is in striking agreement
with the very typical magnetic and dimer symmetry-break-
ing states.

APPENDIX F: IRREDUCIBLE
REPRESENTATIONS OF DIMER ORDERS

In this Appendix, we illustrate the action of symmetry
operations on q ¼ 0 translationally invariant dimer cover-
ings and list irreducible representations in this 12-
dimensional linear space. A vector in this space represents
a complex amplitude choice on each of the f01; 02; 03; 23,
31, 12, 010; 020; 030; 2030; 3010; 1020g bonds [see Fig. 10(c)
for the definition of bond labeling]. The action of symmetry
generators on this space is given by

C3∶ f01 → 02 → 03 → 04g;
f23 → 31 → 12 → 23g;
f010 → 020 → 030 → 010g;
f2030 → 3010 → 1020 → 2030g; ðF1Þ

I∶ f01 ↔ 010g; f02 ↔ 020g; f03 ↔ 030g;
f23 ↔ 2030g; f31 ↔ 3010g; f12 ↔ 1020g; ðF2Þ

M∶ f02 ↔ 12g; f03 ↔ 31g;
f020 ↔ 1020g; f030 ↔ 3010g; ðF3Þ

where C3 is the threefold rotation with respect to the “easy
axis,” I is the inversion with respect to the 0 point, andM is
the mirror with respect to the plane passing through bond

32 and the middle of 01. Note that those symmetry
operations can map bonds from one unit cell to another.
However, since we assume translational invariance of the
dimer pattern, which makes unit cells equivalent, we
show only the intra-unit-cell index of mapping and omit
the unit-cell index. The resulting irreducible representa-
tions are listed in Table I.

APPENDIX G: DIMER CORRELATION SCALING

In order to justify the Aþ BΩ−1 scaling used in Fig. 5 to
extrapolate dimer-dimer susceptibility correlations to the
thermodynamic limit in the dimerized phase, we employ
the approach of Ref. [77] (see Fig. 14 therein) and of
Ref. [86]. Unlike magnetic order, which breaks continuous
SUð2Þ symmetry and leads to the emergence of gapless
Goldstone modes, dimer order does not break continuous
symmetry, and we expect that all excitations are gapped. As

TABLE I. Basis vectors for irreducible representations in the 12-dimensional space of translationally invariant
dimer coverings. Here, ω ¼ exp ð2πi=3Þ. The inversion eigenvalue λ ¼ þ1 corresponds to g representations, and
λ ¼ −1 corresponds to u representations. The Eg=u

� basis states span the two-dimensional representation, and the

Tg=u
a=b=c basis states span the three-dimensional representation.

Representation 01 02 03 23 31 12 01’ 02’ 03’ 2’3’ 3’1’ 1’2’

Ag=u 1 1 1 1 1 1 λ λ λ λ λ λ

Eg=u
þ 1 ω ω� 1 ω ω� λ ωλ ω�λ λ ωλ ω�λ

Eg=u
− 1 ω� ω 1 ω� ω λ ω�λ ωλ λ ω�λ ωλ

Tg=u
a 1 1 1 −1 −1 −1 λ λ λ −λ −λ −λ

Tg=u
b

1 ω ω� −1 −ω −ω� λ ωλ ω�λ −λ −ωλ −ω�λ

Tg=u
c 1 ω� ω −1 −ω� −ω λ ω�λ ωλ −λ −ω�λ −ωλ

FIG. 11. Bond-bond dimer correlations hD̂01
0 D̂α

j i-hD̂01
0 ihD̂α

j i
resolved in real space and measured on the 4 × 43 cluster within
SUð2ÞmVMC at j2=j1 ¼ 0. The distance jr0 − rjj is between the
origins of the unit cells 0 and j, and the index α runs over the 12
bonds in a unit cell as introduced in Sec. III D and in Fig. 10.
Shaded regions indicate the mean and standard deviation of the
measured correlations. The point r0 ¼ rj is omitted due to the big
difference with the other values.
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a result, dimer-dimer correlations saturate with distance
exponentially fast, hD̂iD̂ji ∼ Aþ B expð−r=ξÞ. This fast
saturation leads to the inverse-volume finite-size correction
scaling. [87] Following Ref. [77], in Fig. 11, we show
hD̂01

0 D̂α
j i–hD̂01

0 ihD̂α
j i, where α labels the 12 bonds that

belong to a unit cell as introduced in Sec. III D and in
Fig. 10, as a function of distance jr0 − rjj between the unit
cells 0 and j, measured in the nonmagnetic phase at the
4 × 43 cluster within mVMC. Notably, the correlations
quickly saturate to nonvanishing values, which are depen-
dent on α. In other words, we expect a small correlation
length ξ ≪ L, which paves the way to finite dimer order
parameter susceptibility and justifies the scaling employed
in Fig. 5.

APPENDIX H: GROUND-STATE ENERGIES
AND SPIN GAP

The energy per spin is the foremost way to assess the
quality of the variational wave function. The spin-1=2
pyrochlore ground-state energy at j2=j1 ¼ 0was previously
estimated within various approaches [13,21,24,67,88,89]. In
Table II, we summarize the ground-state energies from this
work, aswell as other references that employDMRGor exact
diagonalization. Note that the quasiplanar geometry used in
exact diagonalization of 28- and 36-spin clusters in Ref. [34]

has a significant effect on the ground-state energy, which
emphasizes strong geometric dependence of the results and
the importance of choosing clusters with the maximum
possible number of spatial symmetries.
Similarly, the nonvanishing spin gap is important for

proving the absence of magnetic order, but it is also
essential for the perturbative dimer model analysis of the
pyrochlore [14,15]. In Table II, we also show the spin gap
obtained in this work and other studies on specific clusters.
Note, again, the strong dependence of the spin gap on the
cluster geometry.
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