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We present a quasinormal-mode (QNM) theory for coupled loss and gain resonators working in the
vicinity of an exceptional point. Assuming linear media, which can be fully quantified using the complex
pole properties of the QNMs, we show how the QNMs yield a quantitatively accurate model to a full
classical dipole spontaneous-emission response in Maxwell’s equations at a variety of spatial positions and
frequencies (under linear response). We also develop an intuitive QNM coupled-mode theory, which can be
used to accurately model such systems using only the QNMs of the bare resonators, where the hybrid
QNMs of the complete system are automatically obtained. Near a lossy exceptional point, whose general
properties are broadened and corrected through use of QNM theory, we analytically show how the QNMs
yield a Lorentzian-like and a Lorentzian-squared-like response for the spontaneous-emission line shape
consistent with other works. However, using rigorous analytical and numerical solutions for microdisk
resonators, we demonstrate that the general line shapes are far richer than what has been previously
predicted. Indeed, the classical picture of spontaneous emission can take on a wide range of positive and
negative Purcell factors from the hybrid modes of the coupled loss-gain system. The negative Purcell
factors are unphysical and signal a clear breakdown of the classical dipole picture of spontaneous emission
in such media, though the concept of a negative local density of states is correct. This finding has enabled a
quantum fix to the decay of a two-level-system dipole emitter in amplifying and lossy media [Franke et al.,
Phys. Rev. Lett. 127, 013602 (2021)], and we further show and discuss the impact of this fix using the
QNMs of the microdisk resonators. We also show the rich spectral features of the Green’s function
propagators, which can be used to model various physical observables, such as photon detection.
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I. INTRODUCTION

Lossless photonic systems (such as closed resonators
with no material absorption) can be formulated as a
Hermitian eigenvalue problem, which yields real eigen-
frequencies from the source-free Helmholz equation, and
corresponding normal modes (NMs). This is also true for
periodic systems with bound modes, e.g., lossless wave-
guide modes. However, real cavity structures (resonators)
with open boundary conditions yield finite loss (or gain)
and produce complex eigenfrequencies. Thus, most optical

systems are naturally dissipative via material absorption
and/or radiation.
A common design approach to improving resonators is

to increase the photonic local density of states (LDOS) by
reducing radiation losses and the effective mode volume,
thus increasing the Purcell factor for enhanced spontaneous
emission (SE). An alternative approach to reducing loss is
through gain compensation, where a gain medium can be
introduced and controlled through stimulated emission or
parametric processes. Not necessarily related to lasing, a
gain medium can be introduced to the system and treated as
a linear amplifying medium [1,2], which must satisfy strict
criteria that are quantifiable through the complex poles of
the (photonic) Green’s function. Aided by the rapid
development of optical nanotechnologies, coupled loss
and gain structures have been under intense investigation
recently, especially after the demonstrations of parity-time
(PT) symmetry [3–10] in optical systems [11–27], which
support so-called exceptional points (EPs) [28–35] (where
two isolated eigenfrequencies and eigenmodes coalesce),
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along with many interesting and counterintuitive phenomena,
including nonreciprocal propagation (isolators) [36–40],
mode switching [41–44], efficient sensing [45,46], absorbers
[47–50], and lasing [51–54].
To have a detailed understanding of such systems, and

also for connecting to new applications in quantum optics,
it is desirable to have an accurate model of coupled loss-gain
resonators at the level of a rigorous and intuitivemode theory,
which can allow one to describe light-matter interactions at
various spatial points and frequencies. From a theoretical
perspective, temporal coupled-mode theory (CMT) has
proven to be an efficient approach to investigate coupled-
resonator systems [55,56], where only the solution from the
bare systems is required, and one assumes that the coupled
modes can be represented by a superposition of the bare
modes. However, the coupling coefficients are typically used
as heuristic parameters in that they are usually extracted from
fitting the full solution of the coupled system properties
[38,57–59], or they are mainly used to explain the basic
physics of coupling.
Another potential problem with such approaches is that

the underlying modes of the bare resonators are assumed to
be NMs (Hermitian system), and a finite decay rate to
account for real losses is added phenomenologically. This
finite decay rate already relates to a non-Hermitian prob-
lem, so it is natural to model the bare resonators also with a
non-Hermitian theory, where the correct eigenvalues and
modes would then be obtained for a more general CMT for
loss-gain systems. This is not only a more correct approach,
but it changes some of the fundamental coupling regimes
and constraints significantly, and opens up much richer
light-matter interaction regimes.
In recent years, the theory of open cavity modes has been

shown to be accurately described in terms of quasinormal
modes (QNMs) [60–72], which are open cavity modes with
complex eigenfrequencies and spatially diverging modes
(with finite loss). These open cavity modes naturally include
the effect of losses and can also be used to construct the
photon Green’s function, which describes a wide range of
light-matter interactions [64–67,71–74]. Moreover, as
shown recently, QNMs can be fully quantized and used to
show departures from the usual NMquantum-optics theories
[75–77]. Several CMTapproaches based onQNMshave also
been successfully developed [78–81] for coupled passive
resonator systems.
In this work, we first present a QNM theory for general

media containing both lossy resonators and gain resonators.
We describe a rigorous and intuitive CMT based on the
Green’s function solution for the coupled loss-gain QNMs,
where we analytically obtain the hybrid modes from only
the QNMs of the bare resonators (gain or loss). We
demonstrate the extremely high accuracy of the analytical
theory by comparing with full numerical dipole simulations
for whispering-gallery modes (WGMs) of microdisk res-
onators and show excellent agreement for various designs

and spatial positions without using any fitting parameters.
A QNM approach also allows one to justify the underlying
assumptions of a linear gain medium, which requires an
analysis of the complex poles. Without such an analysis,
composite systems may not even constitute a physically
meaningful solution with gain treated at the level of a linear
material response in Maxwell’s equations. Indeed, as far as
we are aware, this is likely the only approach to confirm
this directly (in the absence of having an analytical
expression for the medium Green’s function).
After obtaining the physically meaningful QNMs for

loss-gain resonator systems, we apply our theory to study
the unusual Purcell factors and Green’s function propa-
gators at various spatial positions for eigenfrequencies
close to an EP. For our numerical example, the coupled
loss-gain disk resonators are shown in Fig. 1(a), where one
microdisk has material loss and the other has material gain.
Such systems with balanced gain and loss form a general
optical system to investigate PT symmetry and EP physics
[38,39,46]. In our model, we choose a gain coefficient that
is slightly less than the loss coefficient, which can support
hybridized QNMs with finite loss, which is also a require-
ment for assuming linear gain media [1].
The rest of our paper is organized as follows: In Sec. II,

we introduce optical QNMs, Green’s functions in terms of
QNMs, and show how these relate to SE decay and Purcell
factors. In Sec. III, we present a detailed CMT using both
NMs and QNMs to obtain analytical insight into coupled
loss-gain resonators. We subsequently use these to explain
when an EP may form and how things change when one
uses a QNM theory. We obtain explicit expressions for the
hybrid modes using only the QNMs of the bare loss or gain
resonators. We explain the limits and failures of the usual
CMT for such systems. Section IV discusses Green’s
functions and Purcell factors at the EP and shows how a
Lorentzian-like or Lorentzian-squared-like line shape
forms [82–84]. Section V presents detailed numerical
results for coupled microdisk resonators and confirms
the excellent agreement with our analytical CMT and full
dipole solutions (namely, using a numerical solution to the
full Maxwell equations with a classical dipole source) for

FIG. 1. Schematic diagram of a coupled loss and gain resonator
system. The refractive index of the lossy (gain) resonator is
nloss (ngain), which are in a homogeneous background medium
with nB.
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various gap distances between the resonators. We then
study various Purcell factor regimes at different dipole
positions as a function of the frequency and show highly
unusual and rich spectral line shapes, including negative
Purcell factors, and discuss the essential role of the QNM
phase; again, all of these show quantitatively good agree-
ment with full dipole calculations. We stress that negative
total Purcell factors are not physical and motivate the need
for a corrected derivation of the accepted Fermi golden rule
for such media, which is described elsewhere [85]. The role
of this additional quantum fix, which can also be computed
from only the properties of the hybrid QNMs, is exempli-
fied for two selected dipole locations where the LDOS is
negative and shown to yield net positive SE rates. We also
show the Green’s function propagators, which connects to
various observables outside the resonators, which also yield
rich non-Lorentzian line shapes. We give our conclusions
in Sec. VI.
In addition to the main text, we also present several

Appendices. Appendix A discusses the numerical QNM
normalization approaches using COMSOL, where we show
three different approaches yielding the same normalized
QNMs within numerical precision. Appendix B discusses
why we need to consider only one QNM of the microdisk
resonator for the dipole locations we study, which is
constructed from a symmetric linear combination of clock-
wise and counterclockwiseWGMs. Full dipole calculations
in COMSOL are also discussed in Appendix C, which are
used to check the validity of the QNM results. To compare
with the coupled cavity systems, the results for single-loss
and single-gain cavities are shown in Appendix D, which
also confirms the extremely high accuracy of the single
QNM approximation for these resonators. Naturally, one
can also solve the coupled system with a QNM approach
directly, instead of using CMT from the bare solutions;
thus, Appendix E shows the direct QNM approach for
coupled resonators, where quantitatively good agreement
with our analytical CMT results and full dipole results are
obtained. In addition to the loss-gain cavities shown in the
main text, we also show two more loss-gain examples in
Appendix F, with different gain coefficients.

II. QUASINORMAL MODES AND
SEMICLASSICAL THEORY OF SPONTANEOUS

EMISSION AND PURCELL FACTORS

We first introduce the electric field QNMs f̃μðrÞ, which
are solutions to the Helmholtz equation

∇ × ∇ × f̃μðrÞ −
�
ω̃μ

c

�
2

ϵðr; ω̃μÞf̃μðrÞ ¼ 0; ð1Þ

where c is the vacuum speed of light, ω̃μ ¼ ωμ − iγμ is the
complex eigenfrequency of each QNM, and ϵðr; ω̃μÞ is the
dielectric function, which is, in general, complex and
dispersive, though for our numerical examples below, we

assume this is a constant complex value in the frequency
regime of interest (this is not a model restriction in general).
The open boundary conditions ensure the Silver-Müller
radiation condition [86]. It is also worth noting that this
boundary condition leads to quite different asymptotic
behavior of gain QNMs and loss QNMs due to the change
of sign for γμ. Namely, the lossy QNMs diverge in space but
converge in time, while the gain QNMs converge in space
but diverge in time. For the composite system, the hybrid
modes must converge in time, forcing the complex poles to
have loss. These subtleties are clearly missing and over-
looked in heuristic theories of coupled loss and gain
resonators but are essential to get a physically meaningful
model.
Using nL=G to represent the real parts of the refractive

index and αL=G the loss or gain coefficients, for a lossy
resonator with permittivity ϵloss ¼ n2loss ≡ ðnL þ iαLÞ2, we
assume a dominant QNM resonance ω̃L ¼ ωL − iγL, where
αL; γL > 0. Similarly, for the gain resonator
ϵgain ¼ n2gain ≡ ðnG þ iαGÞ2, we have a dominant QNM
resonance ω̃G ¼ ωG − iγG, where now αG; γG < 0. The
quality factor is defined from Qμ ¼ ωμ=ð2jγμjÞ. Since we
treat the gain amplifier in terms of a linear amplifying
medium (e.g., we neglect the saturation effects in the gain
medium), the composite system must have γ� > 0 for the
hybrid modes [1]. We refer to the gain and loss QNMs as f̃G

and f̃L, respectively, and the hybrid modes (i.e., in the
presence of coupling) as f̃�.
To connect to a general definition of the SE in an

arbitrary medium, we seek to obtain the Green’s function
defined through

∇ × ∇ ×Gðr; r0;ωÞ −
ω2

c2
ϵðr;ωÞGðr; r0;ωÞ

¼ ω2

c2
1δðr − r0Þ; ð2Þ

with corresponding radiation conditions, and 1 is the unit
tensor. The normalized QNMs can be used to define the
Green’s function for locations near (or within) the scatter-
ing geometry through [61,87]

Gðr; r0;ωÞ ¼
X
μ

AμðωÞf̃μðrÞf̃μðr0Þ; ð3Þ

with AμðωÞ ¼ ω=½2ðω̃μ − ωÞ�. Expanding the Green’s
function with the QNMs can easily be used to compute
the SE rate and the Purcell factor. We stress again that the
medium must meet the condition for linear amplifying
media, which coincides with a causal Green’s function in
the sense of linear response theory (Kramers-Kronig
relations). Here, the Green’s function must be analytic in
the upper half complex plane to fulfill the Kramers-Kronig
relations, and this can be rigorously justified by using a
QNM approach. Indeed, without such an approach, it is not
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known whether the model represents a physically mean-
ingful solution for Maxwell’s equations.
Considering a dipole emitter d ¼ d0nd at location rd, the

classical SE rate is [67]

Γðrd;ωÞ ¼
2

ℏϵ0
d · ImfGðrd; rd;ωÞg · d; ð4Þ

and the generalized Purcell factor reads [67,88]

FPðrd;ωÞ ¼ 1þ Γðrd;ωÞ
Γ0ðrd;ωÞ

; ð5Þ

where Γ0ðrd;ωÞ ¼ 2d · ImfGBðrd; rd;ωÞg · d=ðℏϵ0Þ, and
GB is the Green’s function for a homogeneous
medium (known analytically). For a 2D TM dipole,
ImfGBðrd; rd;ωÞg ¼ ω2=4c2. The factor of 1 appears natu-
rally for dipole positions outside the resonator [89].
For an arbitrary photonic cavity medium, the QNMs for

both the bare resonators (i.e., without coupling) and also for
the coupled system can be obtained from an efficient
dipole-scattering approach in complex frequency space
[68] described in more detail in Appendix A. The total
Green’s function can also be obtained numerically from the
full dipole response (i.e., without any modal approxima-
tions), which we carry out in COMSOL to check the accuracy
of the QNM expansion form. Although the hybrid QNMs
can be obtained numerically as well, it is far more insightful
to develop a coupled-mode formalism to describe the
coupling geometry.

III. COUPLED-MODE THEORY WITH AN
INTUITIVE GREEN’S FUNCTION EXPANSION

A. Wave equation and normal modes

BeforedevelopingaQNMCMTusingan intuitiveGreen’s
function approach, here we first present a NM approach and
also connect to the common literature for describing when
EPs can occur for coupled loss-gain cavity modes.
To simplify the equations and terminology, we introduce

shorthand notation, and define the wave equation

LjEi ¼ ω2ϵ̂tjEi; ð6Þ
where the fields are assumed to have a harmonic frequency
dependence e−iωt, L ¼ c2∇ × ∇×, and ϵtðrÞ is the total
dielectric constant that we assume is nondispersive. The
operator ϵ̂t is defined as hrjϵ̂tjr0i ¼ ϵtðrÞδðr − r0Þ, and
the electric field is given by a projection onto space
hrjEi ¼ Eðr;ωÞ.
To construct a Green’s function solution, we consider a

situation where we start with cavity 1, and then add cavity
2. The dielectric constant defining cavity 1 is ϵ̂1 ¼ ϵ̂B þ V̂1,
so we can also write the wave equation as

ðL − ω2ϵ̂1ÞjEi ¼ ω2V̂2jEi; ð7Þ

where V̂2 defines the dielectric constant change after
adding in cavity 2, and we define ϵB ¼ n2B as the entire
background without either cavity. Naturally, we can also
start from cavity 2 and add in cavity 1, and the end Green’s
function that includes both cavities must be the same.

B. Coupled-mode theory and lossless
exceptional points using normal modes

Although the general CMT and Green’s function deri-
vations for coupled modes are generally well known, to
make the QNM approach easier to understand and to better
highlight the differences with a QNM approach, we first
start with a NM approach. This also allows us to connect to
the common theories for deriving an EP for coupled-
resonator modes.
Exploiting the fact that L is a linear self-adjoint operator

over space, the homogeneous part of Eq. (7) defines an
orthogonal set of eigenstates on a single cavity. It follows that

Ljfki ¼ ω2
kϵ̂1jfki; ð8Þ

where ωk are the eigenfrequencies of the eigenstates fk.
These states are also complete and orthogonal [90], soX

k

ϵ̂1jfkihfkj ¼ 1;

hfijϵ̂1jfji ¼ δij; ð9Þ

and the sum includes all modes, physical and unphysical.
Note the mode sum here is over all modes attached to the
medium and resonator associated with ϵ1. A similar relation
holds for the modes of resonator 2.
Next, we can formulate a scattering problem for the field

jEi of the coupled resonator system, so that

jEi ¼ jE0i þ ĜV̂2jE0i; ð10Þ

where jE0i is the scattered field with resonator 1 only, and
Gðr; r0Þ ¼ hrjĜjr0i is the total Green’s function of the
system (including both cavities) and is defined from

ðL − ω2ϵ̂1 − ω2V̂2ÞĜ ¼ ðL − ω2ϵ̂tÞĜ ¼ ω21: ð11Þ

For a hybrid system constructed from the coupled
resonators of interest, we can expand Ĝ in terms of a
restricted set of carefully chosen basis states, which will be
the dominant modes of the individual cavity systems [90].
Thus, one obtains the (NM) Green’s function expansion

Ĝ ¼
X
α;β

Bα;βjfαihfβj; ð12Þ

where both sums extend over all states of interest. If we
obtain a solution for Bα;β, then the scattering problem is
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solved as we have the total Green’s function, including the
new poles of the coupled-resonator system.
In the absence of cavity 2, we define the cavity mode of

the bare cavity 1 (i.e., no cavity mode 2 yet), from

Ljf1i ¼ ω2
1ϵ̂1jf1i; ð13Þ

with the normalization hf1jϵ̂1jf1i ¼ 1. For simplicity, we
assume the cavity supports a single dominant mode in the
frequency region of interest, but this can easily be gener-
alized to allow for N modes per cavity. Similarly, we can
define the solution of cavity 2 from

Ljf2i ¼ ω2
2ϵ̂2jf2i; ð14Þ

with hf2jϵ̂2jf2i ¼ 1.
Subsequently, we substitute the mode expansions into

the main Green’s function Eq. (11) to obtain

X
α;β

½ω2
αhfijϵ̂αjfαi − ω2hfijϵ̂tjfαi�Bα;βhfβjϵ̂tjfji

¼ ω2hfijϵ̂tjfji; ð15Þ

where i, j refer to any basis states, and ϵ̂α can refer to
ϵ̂1 ¼ ϵ̂t − V̂2 or ϵ̂2 ¼ ϵ̂t − V̂1. Equation (15) defines a
matrix equation whose poles correspond to the new
eigenfrequencies of the composite system. To proceed,
we exploit the fact that the modes are only weakly coupled
to each other, and so

hfαjϵ̂tjfβi ¼ δαβ; ð16Þ

which can typically be easily checked numerically. Note
this approximation is not needed in general, but we have
numerically checked that nondiagonal contributions are
negligible, as is also confirmed with full numerical dipole
solutions. Otherwise, it is also easy to include these terms,
which just involves solving a more complex matrix, whose
solution can still be obtain explicitly.
The matrix defined from Eq. (15), namely, MBT ¼ T,

has the solution Bα;β ¼ ½M−1�α;β, with elements

Mα;α ¼
1

ω2
ðω2

α − ω2Þ;

Mα;β≠α ¼
1

ω2
ð−ω2

βhfαjV̂αjfβiÞ: ð17Þ

Thus, the matrix M is

M ¼ 1

ω2

�
ω2
1 − ω2 −ω2

2hf1jV̂1jf2i
−ω1

2hf2jV̂2jf1i ω2
2 − ω2

�
; ð18Þ

and we define the intermode coupling rates

καβ ¼
ωβ

2
hfαjV̂αjfβi; ð19Þ

for α; β ¼ 1; 2, and α ≠ β, so that

M ¼ 1

ω2

�
ω2
1 − ω2 −2ω2κ12

−2ω1κ21 ω2
2 − ω2

�
: ð20Þ

Matrix inversion can be solved without approximations;
however, it is appropriate to obtain an easier form
within a rotating-wave approximation. Using ω2

α − ω2≈
ðωα − ωÞ2ωα ≈ ðωα − ωÞ2ω, then

M ¼ 2

ω

�
ω1 − ω −κ12
−κ21 ω2 − ω

�
; ð21Þ

and we obtain an explicit solution for the Green’s function
expansion coefficients

Bα;β ¼
ω=2

ðω − ωþÞðω − ω−Þ
�
ω2 − ω κ12

κ21 ω1 − ω

�
; ð22Þ

where the pole frequencies are

ω� ¼ ω1 þ ω2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ12κ21 þ ðω1 − ω2Þ2

p
2

: ð23Þ

Finally, we note that for closed-cavity systems, unitarity of
a Hermitian system also requires that κ12 ¼ κ�21, and the
pole frequencies are simply

ω� ¼ ω1 þ ω2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jκ12j2 þ ðω1 − ω2Þ2

p
2

: ð24Þ

This concludes the derivation of the NMGreen’s function
with weakly coupled cavities. With regard to EPs, if we now
consider the casewith two cavity systems, onewith loss−γ0
(ω1 ¼ ω0 − iγ0) and onewith a loss-compensating gainþγ0
(ω2 ¼ ω0 þ iγ0), then one might be tempted to predict a
situation whereω� → ω0, if jκ12j ¼ �γ0. The problemwith
this argument is that the original cavity modes here do not
satisfy a Hermitian eigenvalue problem (assuming they are
open and/or contain some loss), and thus, the above coupled-
mode Green’s function solutions are not valid. Strictly, they
are only valid for real eigenfrequency cavitymodes. For very
high-Q cavities, however, the theory may be approximately
correct, but the definition of a true EP still becomes
questionable. Moreover, even for high-Qmodes, the theory
can completely fail, as we will show later.

C. Coupled-mode theory and lossy exceptional points
using quasinormal modes

Since we are interested in open cavities with loss and
gain, we now adopt a more rigorous and appropriate
resonator approach using QNMs. One form of the QNM
normalization can be defined from
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⟪f̃1jϵ̂1jf̃1⟫ →
Z

drϵ1ðrÞf̃1ðrÞf̃1ðrÞ ¼ 1; ð25Þ

where some coordinate transform is applied to regularize
the outgoing surface fields, e.g., through perfectly matched
layers [66], but such terms are not needed in the region for
CMT overlap integrals as we discuss below. One can also
define this normalization in terms of electric and magnetic
QNMs. Alternative QNM normalizations are discussed in
Appendix A, including how to normalize with dispersive
materials.
These fields are now solutions to the eigenvalue problem

with complex frequencies, and virtually all of the previous
equations apply, with some simple replacements:

(i) The eigenfrequencies become complex and formally
discrete (although the NMs are also assumed to be
discrete for resonator problems, formally they yield
continuous eigenfrequencies):

ωk → ω̃μ; ð26Þ
with ω̃μ ¼ ωμ − iγμ (γμ > 0 [γμ < 0] for a lossy
[gain] QNM).

(ii) The completeness relation (e.g., for resonator 1)
becomes

1

2

X
μ¼�1;2;…

ϵ̂1jf̃μihf̃�μj ¼ 1;

⟪f̃μjϵ̂1jf̃η⟫ ¼ δμη; ð27Þ
which is assumed to be valid for spatial regions near
or inside the scattering geometry. We note again that
a similar relation holds for the modes of resonator 2,
with a different set of QNMs.

(iii) The QNM Green’s function expansion is

Ĝ ¼
X
α;β

B̃α;βjf̃αihf̃�βj: ð28Þ

Thus, for example, the previous NM matrix
equation (15) using QNMs now becomesX
α;β

½ω̃2
α⟪f̃ijϵ̂αjf̃α⟫ − ω2⟪f̃ijϵ̂tjf̃α⟫�B̃α;β⟪f̃βjϵ̂tjf̃j⟫

¼ ω2⟪f̃ijϵ̂tjf̃j⟫: ð29Þ
(iv) For regions sufficiently far outside the scattering

geometry specifically, when expðγαsÞ becomes ap-
preciable, one can use regularized QNMs (non-
divergent), such that

Ĝ ¼
X
α;β

B̃α;βjF̃αihF̃�
βj; ð30Þ

where jF̃αi is obtained from a Dyson solution using
the original QNM [87] or using near-field to far-field
transformations [91]. For high-Q cavities, however,

using the QNMs in the perturbative cavity region is
in practice extremely accurate, as we also confirm
later. Thus, in this work, we can safely use the
QNMs for our overlap integral calculations.

Although the QNMs can be used here as an approxima-
tion for the overlap integrals, note that regularization is
required in general. Also note that regularization is also
required for solving the input-output relations with quan-
tized QNMs [75–77,91,92], and similar potential problems
also exist for QNM perturbation theories. For example,
in the case of nondispersive materials [60,93], one has
Δω̃1 ¼ −ω̃1⟪f̃1jΔϵjf̃1⟫=2, which clearly has problems if
the perturbation is added far away from the cavity region. In
contrast, a regularized form can be first worked out using
F̃1ðR;ωÞ and then ω ≈ ω1. In this way, one obtains a
convergent result, where it can also be shown that
F̃1ðrs;ωÞ≡ f̃1ðrsÞ at the surface between inside and outside
the resonator.
With these replacements, we can use the same approach

as before. Assuming again that the solution is first solved
for cavity 1, and then we add in cavity 2, we derive

B̃α;β ¼
ω=2

ðω − ω̃þÞðω − ω̃−Þ
�
ω̃2 − ω κ̃12

κ̃21 ω̃1 − ω

�
; ð31Þ

where (α; β ¼ 1; 2, α ≠ β)

κ̃αβ ¼
ω̃β

2
⟪f̃αjV̂αjf̃β⟫; ð32Þ

which notably now uses an unconjugated norm in the QNM
overlap integrals. For the QNM formalism, note κ̃12 ≠ κ̃�21
(see also Refs. [80,81]), in contrast to NM theory. In QNM
theory, these off-diagonal terms are not the complex
conjugates of each other, since the open cavity system
does not obey Hermiticity. Indeed, using a conjugated norm
with open cavities is simply ill-defined.
The full QNMGreen’s function solution [using Eqs. (31)

and (28)] can be written as follows:

Ĝ ¼
ω
2
ðω̃2 − ωÞjf̃1ihf̃�1j

ðω − ω̃þÞðω − ω̃−Þ
þ

ω
2
κ̃12jf̃1ihf̃�2j

ðω − ω̃þÞðω − ω̃−Þ

þ
ω
2
κ̃21jf̃2ihf̃�1j

ðω − ω̃þÞðω − ω̃−Þ
þ

ω
2
ðω̃1 − ωÞjf̃2ihf̃�2j

ðω − ω̃þÞðω − ω̃−Þ
; ð33Þ

with the two new QNM pole frequencies for the composite
cavity system,

ω̃� ¼ ω̃1 þ ω̃2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ̃12κ̃21 þ ðω̃1 − ω̃2Þ2

p
2

: ð34Þ

In the limit of no coupling, κ̃12 ¼ κ̃21 ¼ 0 and ω̃� → ω̃1;2,
and we recover the original Green’s function expansion for
two separated resonators.
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Finally, we briefly discuss the modified condition for
EPs. Equation (34) shows that the exceptional point occurs
when

2
ffiffiffiffiffiffiffiffiffiffiffiffi
κ̃21κ̃12

p
jEP ≡ Aþ iB ¼ �iðω̃1 − ω̃2Þ; ð35Þ

and in general one might obtain a lossy EP (at best), since
the resonators are open, and the coupled system must also
yield a finite loss for any linear amplifying medium [1]. The
influence of dissipation on EPs and CMT is often argued
heuristically. For example (defining ω̃1 ¼ ω1 − iγ1 and
ω̃2 ¼ ω2 − iγ2), Ref. [32] discusses two limits where
(i) the coupling is real, i.e., B ¼ 0, so the EP condition
would become A ¼ �2γ0, with γ1 ¼ γ0 and γ2 ¼ −γ0
(ω1 ¼ ω2 ¼ ω0), and (ii) where the coupling is purely
imaginary, i.e., A ¼ 0; then the EPs’ condition would
become B ¼ �Δ, where ω1 ¼ ω0 þ Δ and ω2 ¼ ω0

(γ1 ¼ γ2). In practice, it would be very difficult to reach
exactly this regime [Eq. (35)], though one can likely come
close and certainly find signatures of EP-like behavior.
Experimentally, in Refs. [38,39,94], the spectra below

and above EPs are observed, as well as the associated
unidirectional transmission, but an exact EP was not
demonstrated. Note, however, that these systems involve
waveguides, so the CMT theory should be modified to
connect more closely to such works. The theory in Ref. [46]
also finds nonideal EPs if one shows an enlargement of the
EP region in the complex frequency plane.
For a high-Q resonator, one can assume that an approxi-

mate EP may be obtained when Reðκ̃12Þ ¼ �γ0 (assuming
ω̃1 ¼ ω0 − iγ0 and ω̃2 ¼ ω0 þ iγ0), but in general, this
condition is an approximate one for open resonators (and
QNMs). Moreover, in the vicinity of an EP, the line shapes
associated with the QNMs are far richer than with two
coupled Lorentzian line shapes, as we demonstrate in more
detail below, even for very high-Q modes (Q ≈ 105).

D. Hybrid quasinormal modes using
the coupled-mode theory

Next, we introduce a model for obtaining the hybridized
QNMs, which can be obtained analytically in terms of the
uncoupled QNMs; this considerably simplifies the numeri-
cal solutions and helps identify the underlying physics of
how the hybridized modes are formed.
In terms of the hybridized eigenfrequencies ω̃� defined

in Eq. (34), we obtain

jf̃�i ¼ ω̃� − ω̃2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃2Þ2 þ κ̃221

p jf̃1i

þ −κ̃21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃2Þ2 þ κ̃221

p jf̃2i ð36Þ

or

jf̃�i ¼ −κ̃12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃1Þ2 þ κ̃212

p jf̃1i

þ ω̃� − ω̃1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃1Þ2 þ κ̃212

p jf̃2i: ð37Þ

Assuming κ̃ ¼ κ̃12 ≈ κ̃21, then

jf̃�i ¼ −κ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃1Þ2 þ κ̃2

p jf̃1i

þ ω̃� − ω̃1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̃� − ω̃1Þ2 þ κ̃2

p jf̃2i; ð38Þ

which applies to all inspected examples. But we are using
Eqs. (36) or (37) in Sec. V.
Subsequently, we also obtain the new Green’s function

Ĝ ¼ ωjf̃þihf̃þ�j
2ðω̃þ − ωÞ þ

ωjf̃−ihf̃−�j
2ðω̃− − ωÞ ; ð39Þ

which gives the same results as Eq. (33) (apart from at an
EP, which is discussed later, as the hybrid modes become
self-orthogonal), but now in diagonalized form.

IV. GREEN’S FUNCTIONS AND PURCELL
FACTORS AT THE EXCEPTIONAL POINT

The SE rates (and generalized Purcell factors) can be
significantly modified close to EPs [82–84,95–97], where a
squared-Lorentzian contribution has been emphasized as
well as signatures of linewidth narrowing. With higher-
order EPs, these linewidths may be reduced further [83];
e.g., a cubic Lorentzian line shape has been predicted with
third-order EPs [96].
Below, we focus on the more general second-order EPs

and first briefly comment on previous theoretical predictions
about the modified line shapes. In Ref. [84], the frequency-
dependent response of SE has the following form:

S̃ðωÞ ¼ A
ðω − ωkÞ2

−
B

ðω − ωkÞ
; ð40Þ

which is a complex Lorentzian squared and a single
Lorentzian, if very near the EP.
A similar regime was predicted and shown numerically

in Ref. [83]. The main Green’s function response was
predicted to have the following form:

GðωÞ ¼ C
ω2 − ω̃2

EP
þ D
ðω2 − ω̃2

EPÞ2
; ð41Þ

where C andD are connected with the Jordan vectors. They
also give an approximate coupled-mode theory expression
for the Green’s function expansion.
Next, we first show how our QNM Green’s function is

fully consistent with the above predictions and then show
why one can find a much richer range of complex line

QUASINORMAL MODES, LOCAL DENSITY OF STATES, AND … PHYS. REV. X 11, 041020 (2021)

041020-7



shapes, which we also demonstrate explicitly in the
numerical results section.
We define the EP resonance frequency from ω̃� ¼

ω̃EP¼ðω̃1þ ω̃2Þ=2, which occurs when Δ̃2
12≡ðω̃1−ω̃2Þ2¼

−4κ̃12κ̃21. Thus, we can write

M ¼ 2

ω

�
ω̃EP − ωþ ω̃EP − ω̃2 −κ̃12

−κ̃21 ω̃EP − ωþ ω̃EP − ω̃1

�
;

ð42Þ

which is identical to what we did already, but this form
allows us to expand the Green’s function near the EP
resonances. For example, the Ĝ1;1 term (expanded in terms
of the bare mode from resonator 1) is

Ĝ1;1 ¼
ω

2

�
ω̃EP − ω̃1

ðω − ω̃EPÞ2
−

1

ω − ω̃EP

�
jf̃1ihf̃�1j; ð43Þ

where we clearly see the separation of a Lorentzian and
a Lorentzian-squared contribution, in agreement with
Refs. [82–84].
We stress that our spectral forms are not actually

Lorentzian or Lorentzian squared because of the QNM
phase. Indeed, given the appropriate QNM phase, these
terms can contribute negatively, a feature that is already
known with coupled QNMs yielding a Fano resonance
[91,98–101]. It is also useful to compare with the response
of the single-cavity solution, which is simply

Ĝcav1 ¼
�

ω

2ðω̃1 − ωÞ
�
jf̃1ihf̃�1j; ð44Þ

which has a single Lorentzian-like feature, again modified
by the QNM phase. Thus, the Lorentzian-squared feature is
caused by the EP coupling regime.
Since ω̃EP ¼ ðω̃1 þ ω̃2Þ=2, we can also write the QNM

Green’s function solution to the coupled-resonator EP
regime as

Ĝ1;1 ¼
ω

2

�
−Δ̃12=2

ðω̃EP − ωÞ2 þ
1

ðω̃EP − ωÞ
�
jf̃1ihf̃�1j; ð45aÞ

Ĝ1;2 ¼
ω

2

�
κ̃12

ðω̃EP − ωÞ2
�
jf̃1ihf̃�2j; ð45bÞ

Ĝ2;1 ¼
ω

2

�
κ̃21

ðω̃EP − ωÞ2
�
jf̃2ihf̃�1j; ð45cÞ

Ĝ2;2 ¼
ω

2

�
Δ̃12=2

2ðω̃EP − ωÞ2 þ
1

ðω̃EP − ωÞ
�
jf̃2ihf̃�2j; ð45dÞ

with Δ̃12 ¼ ω̃1 − ω̃2. Note that any divergences from the
hybrid modes at the EP are avoided here, since we use an
expansion in terms of the bare modes and coupling
parameters from CMT.

Interestingly, we obtain this known (and highly unusual)
form without having to perform any Jordan expansion
around the EP pole [83,84,95]. Assuming the CMT is
accurate (and we show below that it can be quantitatively
accurate), this is clearly amore convenient form toworkwith.
It is also important to note that the hybrid QNMmodes, e.g.,
in Eq. (36), diverge at the EP, since the QNMs at exactly this
point are ill-defined and self-orthogonal. In practice, how-
ever, this is not a restriction, as most solutions will deviate
from precisely this point, where the two mode Green’s
function responses become identical and well defined; thus,
one can use either the bare modes (nondiagonal form) or the
hybrid mode solutions (diagonal form). This is a significant
advantage that benefits from the constructed CMT.
In the next section, we highlight muchmore general forms

of the spectral line shapes near theEP,which are fully verified
by numerically exact solutions (within numerical precision).
Our calculations also point out a fundamental problem with
defining a SE rate in media with coupled loss and gain
resonators, evenwhen the totalGreen’s function is analytic in
the upper complex half plane [1].

V. NUMERICAL RESULTS FOR COUPLED
LOSS-GAIN MICRODISK RESONATORS

We consider two coupled loss-gain microdisk resonators,
both with a disk radius of R ¼ 5 μm (cf. Fig. 2). The
refractive index of the lossy (gain) resonator is nloss ¼
2þ 10−5i (ngain ¼ 2–5 × 10−6i), unless stated otherwise.
The background medium is free space with nB ¼ 1.
The gap distance between the resonators is dgap (around
1120–1200 nm). The dipole (out-of-plane line current, a
point in 2D, shown as red dot in Fig. 2) is placed within the

FIG. 2. Schematic diagram of the considering coupled loss and
gain 2D microdisk resonator system. The radius of both reso-
nators is R ¼ 5 μm. The gap distance between the resonators is
dgap, and the dipole (emitter) is placed within the gap at several
possible positions: r1, r2, r3, r4, and r5 (see text). The origin of
the coordinate system is at the gap center.
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gap at several possible positions: rd ¼ r1, r2, r3, r4, and r5,
where l ¼ 10 nmandh ¼ ðdgap − 2lÞ=4 (r3 is at gap center).

A. Quasinormal modes for single-loss and
single-gain resonators

Before investigating the coupled-resonator regime, we
first show the QNMs for the single-loss or -gain resonators,
which are used as input for the CMT in the next subsection.
A single 2D microdisk resonator supports WGMs

[102,103], which generally can be described by three mode
numbers: radial mode number q (¼ 1; 2; 3…), azimuthal
modenumberm, and polarizationp (TMorTE).Note that for
the same q, m, and p, there are two degenerate counter-
propagatingmodes [61,104–106]:ECWðr;ϕÞ ¼ EðrÞeð−imϕÞ

with clockwise (CW) direction andECCWðr;ϕÞ¼EðrÞeðimϕÞ
with counterclockwise (CCW) direction. For a TM mode,
there is only the z component for electric fields, which share
the same eigenvalues. Linear combinations of these modes
result in degenerate standing waves [104–106], such as a
symmetric standing-wave mode Es ¼ ECW þ ECCW ∝
cos ðmϕÞ, and an antisymmetric standing-wavemodeEAS ¼
ECW − ECCW ∝ sin ðmϕÞ.
In general, the mode with q ¼ 1 andm ≫ 1 has a highQ

and strong field confinement. In this work, we focus on a
TM mode (Hx, Hy, Ez) with q ¼ 1 and m ¼ 37 (yielding a
resonant wavelength near the telecommunication band,
around 1487 nm). To compute the normalized QNMs,
we employ an efficient dipole-scattering approach to obtain
the QNMs in complex frequency space [68], where an out-
of-plane line current (a point in 2D, z polarized) is placed
10 nm away from the 2D microdisk (the dipole is at rd ¼ r1
for the single-lossy cavity and at rd ¼ r5 for the single-gain
cavity). For more details, see Appendix A 1.
Conveniently, for our TM dipole location along the x axis,

we excite only one of the two degenerate standing-wave
modes, as shown in Fig. 3(a) for the single-lossy cavity, which
has the form cosðmϕÞ if one considers ϕ ¼ 0 at the positive x
axis. The orthogonal and degenerate QNM has the form
sinðmϕÞ constructed from an asymmetric linear combination
of the clockwise andcounterclockwisemodes, thoughweneed
to consider only the symmetric QNM for our chosen dipole
locations below. More details can be found in Appendix B.
Also note that this working QNM dominates in the frequency
region of interest below, because the two closest modes are
q ¼ 4,m ¼ 25 andq ¼ 3,m ¼ 29, and theangular frequency
spacing between them and the working mode are Δω ¼
3.43 × 1012 rad=s and Δω ¼ 1.96 × 1013 rad=s, which are
much larger than the FWHM (approximately 1.252 ×
1010 rad=s for the single-lossy cavity, and approximately
6.26 × 109 rad=s for the single-gain cavity). Also note, the
free spectral range for modes with q ¼ 1 is also much larger
than these FWHM values; e.g., the angular frequency
spacing between q ¼ 1, m ¼ 36 (or q ¼ 1, m ¼ 38) with
the working mode (q ¼ 1, m ¼ 37) would be around
Δω ¼ 3.16 × 1013 rad=s. Thus, we can adopt a single

QNM approximation for the mode of interest for each
resonator, which we also verify below by performing full
dipole calculations with no mode approximations.
Numerically, the complex angular eigenfrequency for a

single-lossy resonator is found to be ω̃L ¼ ωL − iγL≡
ω0 − iγ0 ¼ 1.266666× 1015–6.260269× 109i rad=s, with
a quality factor Q ∼ 105; here, ω0 (γ0) is the real part
(opposite imaginary part) of the complex eigenfrequency.
The correspondingQNMfield distribution (real part Re½f̃Lz �),
is shown in Fig. 3(a); the imaginary part is much smaller than
the real part and thus is not shown.
To better understand the overlap integrals for use in CMT,

the QNMs at the second resonator region are also shown
(1155nmaway, i.e.,dgap ¼ 1155 nm),which ishardlyseenon
a linear scale because they are very small comparedwith fields
close to the lossy resonator. This also indicates that the lossy
QNMs show no sign of a spatial divergence in this region, and
thus they can be accurately used for input to CMT (without
regularization), which is a consequence of the high Q.
Similarly, the complex angular eigenfrequency for

the single-gain resonator is found at ω̃G ¼ ωG − iγG∼
ω0 þ i0.5γ0. The corresponding QNM field distribution
(real part Re½f̃Gz �) is shown in Fig. 3(b). In addition, the
Purcell factors at the dipole location (10 nm away from the
loss and gain resonator) using a single QNM contribution
[Eq. (5)] agree quantitatively well with full dipole results
(see Appendix D). We also highlight that the Purcell factors
(as defined in a semiclassical model) are net negative for
the single-gain cavity only (since the field is being
amplified rather than dissipated), a regime that is also
shown below for the coupled-resonator system.

B. Hybrid quasinormal modes
for coupled loss-gain resonators

We next study the hybrid QNMs formed from the two
coupled microdisk resonators, using the QNM CMT and
also using full numerical solutions to confirm the accuracy
of our semianalytical results.
Using only the QNMs from single-lossy or -gain cavities

as input, the properties for the coupled modes are obtained
analytically. First, the new angular eigenfrequencies ω̃� are
computed from Eq. (34), where the coupling coefficients
κ̃12 and κ̃21 [both complex, Eq. (32)] are related to the
overlap QNM integrals for different gap distances dgap.
Note the input variables ω̃1=2 and f̃1=2 in theory parts are
changed to ω̃L=G and f̃L=G in the numerical parts accord-
ingly. As shown in Figs. 3(e) and 3(f), the analytical
eigenfrequencies [Eq. (34)] versus full numerical solution
in COMSOL (eigenfrequency solver) show excellent agree-
ment, and at all gap separations. This quantitative level of
agreement is also obtained for the QNMs and the QNM
Green’s functions as we show in more detail below.
The complex coupling coefficients for dgap ¼ 1155 nm

(dgap ¼ 1160 nm) are κ̃12=γ0 ¼ −0.7614 − 5.745 × 10−6i
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(−0.7425 − 5.375 × 10−6i) and κ̃21=γ0 ¼ −0.7614þ
4.153 × 10−5i (−0.7425þ 4.087 × 10−6i), where the small
imaginary part is mainly due to the high quality factor of
the bare resonator, and one can find they do not satisfy
κ̃12 ¼ κ̃�21 in general, as mentioned in Sec. III C. This is also
true for balanced loss-gain systems, and these inconspicu-
ous imaginary parts would affect the condition for finding a
perfect EP, e.g., as in Ref. [46].
Note, with a direct QNM eigenfrequency solver, there

would be four new (dominant) eigenfrequencies for the

coupled-resonator system, because there are two degenerate
standing modes per resonator (see Appendix B); thus, there
are four black circles for each gap distance in Figs. 3(e)
and 3(f) but with two pairs of degenerate modes. In contrast,
with the QNM dipole technique (see Appendix A), only one
of the degenerate standing modes is used. Hence, when
combining with the analytical CMT approach, there are
only two new eigenfrequencies for the coupled-resonator
system—labeled by the red star and the green star for each
gap distance in Figs. 3(e) and 3(f).

FIG. 3. Spatial profile of the QNMs for the following cavity configurations: (a) lossy resonator only [Re½f̃Lz � (the cavity on the right is
shown for clarity and for use in the QNM CMT, but of course, it is not there for the single-resonator calculations), Eq. (A5)], (b) gain
resonator only [Re½f̃Gz �, Eq. (A5)], and (c),(d) hybrid modes with coupling [Re½f̃�z �, Eq. (36)] for a separation distance dgap ¼ 1155 nm;
this regime is close to the EP as shown in (e) and (f). (e),(f) Complex QNM eigenfrequencies of the coupled microdisk resonators from a
direct numerical eigenfrequency solver in COMSOL (numerical, black circles) and the analytical QNM CMT [Eq. (34), red stars for ω̃þ,
green stars for ω̃−], as a function of the gap separation dgap. Note that using the eigenfrequency solver, there are two bare degenerate
modes per resonator and four new eigenfrequencies for coupled resonators (four black circles for each gap distance), but with two pairs
of degenerate modes. For the dipole QNM technique, only one of the degenerate standing-wave QNMs are obtained and used for single
resonator (see text and Appendix A); thus, the analytical CMT produces two new eigenfrequencies in the presence of finite coupling
(one red star and one green star for each gap distance). The arrows show two solutions near an EP. Note that ω0 and γ0 are for the
uncoupled single-lossy resonator with nloss ¼ 2þ 10−5i (ω̃L ¼ ωL − iγL ¼ ω0 − iγ0), while for the uncoupled single-gain cavity with
ngain ¼ 2–5 × 10−6i, the resonance is around ω̃G ≈ ω0 þ i0.5γ0.
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Equation (36) gives the two new coupled QNMs f̃�

(hybridQNMs) corresponding to the two new eigenfrequen-
cies ω̃�, where the input fields f̃1 and f̃2 are now f̃L and f̃G.
The spatial profile of the coupled QNMs (real part Re½f̃�z �)
for dgap ¼ 1155 nm are shown in Figs. 3(c) and 3(d), where
the fields now extend over both resonators. Below, we
study two example gap cases close to the lossy EP, namely,
dgap ¼ 1155 nm and dgap ¼ 1160 nm indicated by the
arrows in Figs. 3(e) and 3(f).

C. Non-Lorentzian Purcell factors close to a lossy
exceptional point: Quasinormal mode Green’s function

solution versus full dipole simulations

Next, we focus on the Purcell factors close to the lossy
EPs in the coupled loss-gain resonators. Once the coupled
QNMs [Eq. (36)] are obtained from CMT (the input fields
f̃1 and f̃2 are now f̃L and f̃G), the generalized Purcell factors
are obtained analytically from Eq. (5) using the QNM
Green’s function [Eq. (39)]. As shown in Fig. 2, we
consider five potential dipole positions along the x axis
and study the Purcell factors as a function of the frequency
in each case.
For a dipole at the position rd ¼ r1 (10 nm away from

the lossy cavity), the Purcell factors are shown in Fig. 4(a)
with dgap ¼ 1155 nm, where negative Purcell factors
(black solid curve) are found in a wide range of frequen-
cies. The black solid line shows the analytical QNM
Green’s function result using only the bare resonator
parameters as input, and the red circles are presenting
full dipole solutions, where they are showing quantita-
tively good agreement over all frequencies. We stress there
are no fitting parameters in the QNM solutions. Moreover,
from our theory, the contribution from the hybrid QNMs
f̃þ and f̃− can be shown separately, as indicated by the
green and blue solid curves [Eq. (39), the first and second
term]. As a reference, we also show the Purcell factors
for a single-lossy cavity (orange dashed curve), which
is net positive and multiplied by 8 for a better gra-
phical comparison. The gain resonator clearly acts to
suppress the broadening and enhance the overall Purcell
factors.
To help explain these unusual line shapes,we can study the

contributions to the QNMGreen’s functions from the phases
for the two hybrid QNMs. Defining f̃þz ðrÞ ¼ jf̃þz ðrÞjeiϕþðrÞ

and f̃−z ðrÞ¼ jf̃−z ðrÞjeiϕ−ðrÞ, the QNM Green’s function can
be expressed as

Gzzðrd; rd;ωÞ
¼ AþðωÞf̃þz ðrdÞf̃þz ðrdÞ þ A−ðωÞf̃−z ðrdÞf̃−z ðrdÞ
¼ AþðωÞei2ϕþðrdÞjf̃þz ðrdÞj2 þ A−ðωÞei2ϕ−ðrdÞjf̃−z ðrdÞj2;

ð46Þ

where AþðωÞ ¼ ω=½2ðω̃þ − ωÞ�, A−ðωÞ ¼ ω=½2ðω̃− − ωÞ�,
with ω̃þ ¼ ωþ − iγþ and ω̃− ¼ ω− − iγ−. From this,
we extract the imaginary part for use in Purcell’s formula
[100]:

Im½Gzzðrd;rd;ωÞ�

¼
�
cos2ϕþðrdÞ þ

ωþ −ω

γþ
sin2ϕþðrdÞ

�
jf̃þz ðrdÞj2LþðωÞ

þ
�
cos2ϕ−ðrdÞ þ

ω− −ω

γ−
sin2ϕ−ðrdÞ

�
jf̃−z ðrdÞj2L−ðωÞ;

ð47Þ

where we introduce the modified Lorentzian line shape
functions,

FIG. 4. (a) Purcell factors for the coupled resonators with gap
distance dgap ¼ 1155 nm, showing the analytical CMT solutions
[(Eqs. (39) and (5)] for the hybrid QNM contributions as well as
their sum. Also shown is the full dipole simulation with no
approximations [red marker, Eq. (C1)] and the QNM contribution
from a single-lossy resonator (multiplied by a constant for
clarity). The dipole is placed at rd ¼ r1 (10 nm away from the
lossy resonator). (b) Similar to (a), but with a different dipole
position rd ¼ r5, 10 nm away from the gain resonator.
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LþðωÞ ¼ ω

2

γþ
ðωþ − ωÞ2 þ γ2þ

;

L−ðωÞ ¼ ω

2

γ−
ðω− − ωÞ2 þ γ2−

: ð48Þ

Similar expressions have been used to explain Fano resonances
formed by elastic QNMs in coupled-cavity beams [100].
For comparison, the Green’s functions for the single-

mode bare QNMs are also given as

Im½GL
zzðrd; rd;ωÞ�

¼
�
cos 2ϕLðrdÞ þ

ωL − ω

γL
sin 2ϕLðrdÞ

�
jf̃Lz ðrdÞj2LLðωÞ;

ð49Þ

Im½GG
zzðrd; rd;ωÞ�

¼
�
cos2ϕGðrdÞ þ

ωG −ω

γG
sin2ϕGðrdÞ

�
jf̃Gz ðrdÞj2LGðωÞ;

ð50Þ

with modified Lorentzian line shape functions,

LLðωÞ ¼ ω

2

γL
ðωL − ωÞ2 þ γ2L

;

LGðωÞ ¼ ω

2

γG
ðωG − ωÞ2 þ γ2G

;

for the loss and gain resonator modes, and we redefine the
QNMs as f̃Lz ðrÞ¼jf̃Lz ðrÞjeiϕLðrÞ and f̃Gz ðrÞ¼jf̃Gz ðrÞjeiϕGðrÞ.
In Fig. 4(a), as mentioned above, we show the total Purcell

factors for dgap ¼ 1155 nm, as well as the hybrid mode
contributions, and the lossy mode result on its own for
comparison. First, the single-mode case (orange dashed
curve, single-lossy resonator) shows a typical Lorentzian
peak, which can be explained by the QNM phase contribu-
tions: cos ½2ϕLðr1Þ� ¼ 1.0000 and sin ½2ϕLðr1Þ� ¼ −0.0012
(also shown in Table I). Applying these to Eq. (49) results in a
typical Lorentzian-like line shape. Note since with QNM
expansion, the imaginary part of the Green function with the
presence of the cavity satisfies ImG ∝ ω, while for
background homogeneous medium, it satisfies ImGB ∝ ω2,

then the expected line shape (with no phase influence) has a
trivial ω dependence; however, for the high-Q resonances we
consider, the simple QNM line shape is basically Lorentzian.
Next we focus on the hybrid modes (coupled-resonator

case), where now cos ½2ϕþðr1Þ� ¼ 0.1514, sin ½2ϕþðr1Þ� ¼
−0.9885, and cos ½2ϕ−ðr1Þ� ¼ 0.1939, sin ½2ϕ−ðr1Þ� ¼
0.9810 (also shown in Table I), which explain the highly
non-Lorentzian line shapes for the separate contributions
[two terms in Eq. (47), green solid curve and blue solid curve
shown in Fig. 4(a)]. Then combining the weights for each
term [from jf̃þz ðr1Þj2 and jf̃−z ðr1Þj2 as shown in Eq. (47)], we
obtain negative Purcell factors in a wide range of frequencies
[black solid curve in Fig. 4(a)].
Furthermore, these QNM phases result in position-

dependent line shapes for the Purcell factors. Thus, when
we change the dipole position from rd ¼ r1 to rd ¼ r5
(10 nm away from the gain cavity), the Purcell factor line
shapes can change significantly, as shown in Fig. 4(b)
(again for dgap ¼ 1155 nm), where the total contribution
(black solid curve) is found to be mainly net positive in a
wide range of frequency and also show excellent agreement
with the full dipole method (red circles). Once again, the
contribution from f̃þ and f̃− can be given separately, as
shown with the green and blue solid curves. In addition, the
Purcell factors for the single-gain cavity is shown as an
orange dashed curve, which is net negative (and multiplied
by 4 for a better graphical comparison).
As before, these line shapes can also be well explained

from the QNM phase terms. For a single-gain cavity, one
finds that cos ½2ϕGðr5Þ� ¼ 1.0000 and sin ½2ϕGðr5Þ� ¼
0.0005 (also shown in Table I). However, with γG < 0,
LGðωÞ shows a negative Lorentzian line shape, yielding
negative Purcell factors with the gain cavity only [orange
dashed curve in Fig. 4(b)].As for the coupled system, one can
find cos ½2ϕþðr5Þ� ¼ 0.1834, sin ½2ϕþðr5Þ� ¼ 0.9830, and
cos ½2ϕ−ðr5Þ� ¼ 0.1620, sin ½2ϕ−ðr5Þ� ¼ −0.9868 (also
shown in Table I), which explain the non-Lorentzian line
shapes for separate contribution [two terms in Eq. (47), green
solid curve and blue solid curve shown in Fig. 4(b)]. Then,
combining the weights for each term [from jf̃þz ðr5Þj2 and
jf̃−z ðr5Þj2 in Eq. (47)], the mostly positive Purcell factors are
obtained [black solid curve in Fig. 4(b)].

TABLE I. Phase contributions in the imaginary part of the QNM Green’s function, which is used to explain the line shapes of the
corresponding Purcell factors shown in Figs. 4 and 5.

rd ¼ r1 rd ¼ r5

QNM L cos ð2ϕLÞ ¼ 1.0000, sin ð2ϕLÞ ¼ −0.0012

QNM G cos ð2ϕGÞ ¼ 1.0000, sin ð2ϕGÞ ¼ 0.0005

dgap ¼ 1155 nm cos ð2ϕþÞ ¼ 0.1514, sin ð2ϕþÞ ¼ −0.9885 cos ð2ϕþÞ ¼ 0.1834, sin ð2ϕþÞ ¼ 0.9830
cos ð2ϕ−Þ ¼ 0.1939, sin ð2ϕ−Þ ¼ 0.9810 cos ð2ϕ−Þ ¼ 0.1620, sin ð2ϕ−Þ ¼ −0.9868

dgap ¼ 1160 nm cos ð2ϕþÞ ¼ −1.0000, sin ð2ϕþÞ ¼ 0.0009 cos ð2ϕþÞ ¼ 0.9999, sin ð2ϕþÞ ¼ 0.0101
cos ð2ϕ−Þ ¼ 1.0000, sin ð2ϕ−Þ ¼ −0.0011 cos ð2ϕ−Þ ¼ −0.9999, sin ð2ϕ−Þ ¼ −0.0129
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Similar to case with a gap distance dgap ¼ 1155 nm, the
Purcell factors with dgap ¼ 1160 nm for a dipole at r1 are
shown in Fig. 5(a). Their separate contributions from
QNMþ (green solid curve) and QNM− (blue solid curve)
show Lorentzian line shapes, but with different linewidth
since γþ ≠ γ− [see Fig. 3(f)] and different signs due to
cos ½2ϕþðr1Þ� ¼ −1.0000 and cos ½2ϕ−ðr1Þ� ¼ 1.0000.
Combing these contributions, the total contribution is found
to be net negative in a wide range of frequencies. When the
dipole is at r5, the Purcell factors are shown in Fig. 5(b),
where the Lorentzian line shapes for separate contributions
could also be explained by theQNMphases cos ½2ϕþðr5Þ� ¼
0.9999 and cos ½2ϕ−ðr5Þ� ¼ −0.9999. Considering their
separate contributions, the total Purcell factors are now
mostly positive. More details about the QNM phases are
shown in Table I.
These QNM phases have a significant effect on the

spectral line shapes of the Purcell factors, which can be
further seen in Fig. 6(a) (for dgap ¼ 1155 nm) and Fig. 6(b)
(for dgap ¼ 1160 nm), where the total Purcell factors are
given for five different dipole positions as shown in Fig. 2.
For better comparison, the Purcell factors at r2, r3, and r4
are multiplied by 10, 300, and 10, respectively. Note, we do

not show the full dipole results here, as they are basically
indistinguishable from the two QNM solutions, similar to
the previous comparisons.
We stress that these negative Purcell factors are un-

physical because the classical Purcell factor formulas, and
Fermi’s golden rule from purely dissipative media is no
longer working with a gain medium [85], though the LDOS
[proportional to Im½Gðrd; rd;ωÞ�] is correct, in agreement
with the classical dipole result. To clarify, there is nothing
unphysical about a negative LDOS in a medium that
contains gain, but a negative Purcell factor clearly makes
no sense as a normalized SE decay rate, since it would lead
to an increase in excited-state population without bounds.
As a consequence of these results and using a rigorous

quantum field theory, Ref. [85] discusses the breakdown of
classical emission formulas in more detail and shows that
the correct SE rates must be described fully quantum
mechanically, where the quantum Purcell factors (modified

FIG. 5. Similar to Fig. 4, but with a different gap distance
dgap ¼ 1160 nm. FIG. 6. Purcell factors at different dipole positions rd ¼ r1 ∼ r5

(shown in Fig. 2), for two different gap separations (a) dgap ¼
1155 nm, and (b) dgap ¼ 1160 nm. Full dipole simulations are
not shown for clarity, but yield the same quantitatively good fit as
in the previous graphs.
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SE decay rates) are indeed net positive. In that case, the
LDOS formula that connects to the classical Purcell factor
Fclass
P [Eq. (5) together with Eq. (47)] is corrected by a

positive gain-induced term, so that the (corrected) quantum
Purcell factor is obtained from

FQM
P ¼ Fclass

P þ 2jdj2Kgain

ℏϵ0Γ0

: ð51Þ

However, we also note that even in the case of ampli-
fying and lossy media, the LDOS [contained in Fclass

P ¼
FP, Eq. (5)] is fundamentally related to the quantum-
vacuum fluctuations of the electric field commutator
hvacj½ÊðrdÞ; Ê†ðrdÞ�jvaci, and thus still reflects an impor-
tant quantity in quantization of general electromagnetic
media. Indeed, in a purely lossy case, hvacj½ÊðrdÞ;
Ê†ðrdÞ�jvaci coincides with hvacjÊðrdÞÊ†ðrdÞjvaci, which
is related to the cavity-enhanced SE rate of a quantum
emitter at position rd.

Applying this correction to the dipole-microdisk-resonator
(z-polarized dipole) system case, the quantum-correction
factor Kgain takes the explicit form

Kgain ¼ jAþðωÞj2jf̃þz ðrdÞj2Iþgain þ jA−ðωÞj2jf̃−z ðrdÞj2I−gain
þ 2Re½AþðωÞA−�ðωÞf̃þz ðrdÞf̃−�z ðrdÞI�gain�; ð52Þ

with diagonal integral expressions

Iþð−Þ
gain ¼ jIm½ϵgain�j

Z
Again

drjfzþð−ÞðrÞj2; ð53Þ

and an overlap integral

I�gain ¼ jIm½ϵgain�j
Z
Again

drfþðrÞ · f−�ðrÞ; ð54Þ

where ϵgain ¼ n2gain is the permittivity of the gain resonator,
and Again stands for the region within it. Despite leading to a
net positive Purcell factor, this correction term also induces a
drastic increase of the classical Purcell enhancement itself, as
demonstrated in Fig. 7.

D. Green’s function propagators

This section presents exampleGreen’s function propagator
results, namely, jGðR; rd;ωÞj, which can be useful to relate
to a range of experimental observables. For example, this
function is required to model the spectrum at a point detector
located atR emitted from a dipole at rd. Unlike the (classical)
Purcell factor, it is a well-defined quantity for use in both
classical and quantum field theory, and it is used frequently in
the exploration of light-matter coupling regimes [107–109].
For example, considering an excitation dipoled, the spectrum
is SðR;ωÞ ∝ jGðR; rd;ωÞ · dj2.
A far-field detection point is first chosen at R ¼ R1 ¼

½0; 10� μm (the origin of the coordinate system is at the gap
center). The correspondingpropagators jGzzðR; rd;ωÞj (arbi-
trary units) for various dipole positions rd are shown in
Fig. 8(a) fordgap ¼ 1160 nm.For comparison, thepropagator
for a single-lossy (-gain) cavity is also shown as green (red)
dashed curve, where the dipole is placed at rd ¼ r1 (r5).
Furthermore, for the far-field detected point at R ¼ R2 ¼
½14.09; 0� μm, the propagators are shown in Fig. 8(b).
To better explain the physics of the propagator line

shape, we once more write out the two QNM expanded
Green’s function in terms of the hybrid modes,

GzzðR; rd;ωÞ
¼ AþðωÞf̃þz ðRÞf̃þz ðrdÞ þ A−ðωÞf̃−z ðRÞf̃−z ðrdÞ
¼ AþðωÞei(ϕþðRÞþϕþðrdÞ)jf̃þz ðRÞjjf̃þz ðrdÞj
þ A−ðωÞei(ϕ−ðRÞþϕ−ðrdÞ)jf̃−z ðRÞjjf̃−z ðrdÞj; ð55Þ

FIG. 7. Classical (established) Purcell factor Fclass
P ¼ FP,

[Eq. (5)] versus the quantum Purcell factor FQM
P [Eq. (51)],

which includes a gain correction that is not captured by the
classical or semiclassical theories of spontaneous emission [85].
“Classical dipole” results (red circles) are from Eq. (C1), the same
as those labeled as “Full dipole.”
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where again we can recognize non-Lorentzian features
from the QNM phase terms, now from both the dipole
position and the detector position. The detailed phases are
shown in Table II. Note that the two-space-point Green’s
function has a range of uses for describing light-matter

interactions, including the description of photon transport
[107,110,111] and can be used to model collective effects
with multiple emitters and dipoles.

VI. CONCLUSIONS

We have introduced a powerful and highly accurate
QNM approach to coupled loss-gain resonators and pre-
sented an accurate and intuitive CMT based on the photonic
Green’s function, which allows one to solve the coupled
system efficiently with just the bare QNM solutions from
the individual resonators. We also highlighted the failure of
using a NM CMT approach when defining the general
conditions for finding EPs.
For the SE response of embedded dipoles in these

systems, we performed detailed calculations for coupled
microdisk resonators. As well as finding Lorentzian-like
and Lorentzian-squared-like spectral responses at the EP as
a limiting case, consistent with other works, we showed
much richer Purcell factor line shapes near EPs for various
designs and spatial dipole positions, showing excellent
agreement with QNM CMT and full dipole calculations. In
particular, we show how the LDOS and common expres-
sion for the classical Purcell factors can also be negative in
loss-gain media, even when the hybrid modes are both
lossy (γμ > 0). This is caused by a breakdown of Fermi’s
golden rule which incorrectly assumes that the SE rate is
propositional to the (projected) LDOS [85]. In addition, we
also show how the Green’s function propagators (related to
various experimental observables, such as the emitted
spectrum) also take on rich non-Lorentzian features, which
depend on the values of the QNM phases.
Apart from providing a detailed and intuitive formalism

for understanding the classical mode properties of these
complex coupled-resonator systems, our QNM formalism
forms the basis for a rigorous quantum-optics approach in
media with gain and loss, using new approaches with
quantized QNMs [75–77], which has already lead to a
revision of the usual photonic Fermi’s golden rule for
coupled loss and gain resonators [85], one in which the
(correct) quantum-mechanical Purcell factor is always a
positive quantity.
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TABLE II. Phase contributions from the QNMs in the propa-
gator [Eq. (55)].

R ¼ R1 R ¼ R2

QNM L cos ½ϕLðRÞ þ ϕLðrdÞ� ¼ −0.6905 −0.9989
rd ¼ r1 sin ½ϕLðRÞ þ ϕLðrdÞ� ¼ 0.7234 −0.0470

QNM G cos ½ϕGðRÞ þ ϕGðrdÞ� ¼ −0.7036 0.2606
rd ¼ r5 sin ½ϕGðRÞ þ ϕGðrdÞ� ¼ 0.7106 −0.9655

dgap ¼ 1160 nm cos ½ϕþðRÞ þ ϕþðrdÞ� ¼ −0.0815 0.9760
sin ½ϕþðRÞ þ ϕþðrdÞ� ¼ −0.9967 0.2177

rd ¼ r1 cos ½ϕ−ðRÞ þ ϕ−ðrdÞ� ¼ −0.0575 −0.9784
sin ½ϕ−ðRÞ þ ϕ−ðrdÞ� ¼ 0.9983 −0.2070

FIG. 8. Green’s function propagator for the far-field detected
point is at (a) R ¼ R1 ¼ ½0; 10� μm and (b) R ¼ R2 ¼
½14.09; 0� μm (which is 3.51 μm away from the gain cavity) with
dgap ¼ 1160 nm. For QNM L (loss), the dipole is at rd ¼ r1, and
for QNMG (gain), it is at rd ¼ r5. The results for dgap ¼ 1155 nm
look similar, and we do not show them.
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APPENDIX A: QNM NORMALIZATION

There are several general numerical approaches to
obtaining normalized QNMs [72], including a dipole-
excitation technique in complex frequency [68], PML
normalization [66], finite-domain normalization with a
surface term [73,74,86], finite-difference time-domain
methods [89], Riesz-projection-based techniques [69],
and Gaussian regularization [112]. In the main text, we
use the dipole technique in complex frequency space [68],
and more details are shown in Appendix A 1. A brief
description of two alternative methods is also given in
Appendices A 2 and A 3; numerically, we find all three
approaches give the same normalized QNMs for the QNMs
used in this work (within numerical precision).

1. QNM normalization and numerically exact
Green’s function from a dipole source

As shown in the main text, with CMT and the Green’s
function theory, only the bare mode solutions (for a single-
lossy resonator or -gain resonator) are required. We employ
an efficient dipole-scattering approach to obtain the
uncoupled QNMs in complex frequency [68], where an
out-of-plane line current (a point in 2D, red dot in Fig. 2, for
a TM mode) is placed close to the lossy resonator, or the
gain resonator. We can also use this approach for the
coupled-resonator problem, which we also do to check
the accuracy of the analytical CMT for the hybrid modes
(see Appendix E).
The scattered field of this dipole at r0 is related to the 2D

Green’s function from

Escattðr;ωÞ ¼ G2Dðr; r0;ωÞ ·
d2D

ϵ0
; ðA1Þ

where the units of the scattered field Escatt, 2D Green’s
function G2D, and 2D dipole moment d2D are, respectively,
V=m, m−2, and C.
Expanding the 2D Green’s function with one QNM

(dominating in the regime of interest), then

G2Dðr; r0;ωÞ ¼ AcðωÞf̃2Dc ðrÞf̃2Dc ðr0Þ; ðA2Þ

with AcðωÞ ¼ ω=½2ðω̃c − ωÞ�, so that

Escattðr;ωÞ ¼ 1

ϵ0
AcðωÞf̃2Dc ðrÞf̃2Dc ðr0Þ · d2D: ðA3Þ

Multiplying Eq. (A3) with d2D and using r ¼ r0, then

d2D · f̃2Dc ðr0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ0d2D ·Escattðr0;ωÞ

AcðωÞ

s
: ðA4Þ

Substituting this back into Eq. (A3), we obtain the 2D
normalized QNM field as a function of space

f̃2Dc ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ0
AcðωÞd2D · Escattðr0;ωÞ

r
Escattðr;ωÞ;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ0ðω̃c − ωÞ
ωd2D · Escattðr0;ωÞ

s
Escattðr;ωÞ: ðA5Þ

The above QNM simulations are performed in the com-
mercial COMSOL software [113], where the frequency in
Eq. (A5) is set as ω ¼ ð1–10−7Þ × ω̃c [or ð1–10−6Þ × ω̃c,
ð1–10−8Þ × ω̃c, adjustedwith the quality factors], very close
to the pole frequency. The computational domain (including
PMLs) is around 804–814 μm2 (various gap distance for
microdisk resonators, where the maximum mesh element
sizes are 0.1, 40, and 75 nm at the dipole point, inside and
outside the 2D microdisks. To minimize boundary reflec-
tions,weuse15layers to formthePMLswitha total thickness
of 1.5 μm,which is found to bewell converged numerically.
In addition, once the normalized QNMs are available, the

corresponding effective mode area (with units m2), which is
a function of the position, is obtained from

Aeff
c ðr0Þ ¼

1

ϵðr0ÞRe½ðf̃2Dc ðr0ÞÞ2�
: ðA6Þ

The decay rates for 2D dipoles are as follows:

Γ2Dðr0;ωÞ ¼
2

ℏϵ0
d2D · ImfG2Dðr0; r0;ωÞg · d2D;

Γ2D
0 ðr0;ωÞ ¼

2

ℏϵ0
d2D · ImfG2D

B ðr0; r0;ωÞg · d2D; ðA7Þ

where ImfGBðr0; r0;ωÞg ¼ ω2=4c2 for a 2D TM dipole,
and the units of Γ2D are 1=ðsmÞ.
The corresponding Purcell factor is simply [67,88]

F2Dðr0;ωÞ ¼ 1þ Γ2Dðr0;ωÞ
Γ2D
0 ðr0;ωÞ

; ðA8Þ

and similar expressions are obtained for 3D systems.

2. PML normalization

The PML normalization [66,71,114–116] approach is
another alternativeway to get the normalized QNMs, which
is given via

⟪f̃μðrÞjf̃μðrÞ⟫¼ 1

2ϵ0

Z
V

�
ϵ0
∂(ωϵðr;ωÞ)

∂ω
����
ω̃μ

f̃μðrÞ · f̃μðrÞ

− μ0
∂(ωμðr;ωÞ)

∂ω
����
ω̃μ

h̃μðrÞ · h̃μðrÞ
�
dV ¼ 1;

ðA9Þ

where V is the whole numerical simulation region, which
also includes the PML region. Next, one can divide the
integral into two parts,
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⟪f̃μðrÞjf̃μðrÞ⟫ ¼ 1

2ϵ0

Z
V−VPML

�
ϵ0
∂(ωϵðr;ωÞ)

∂ω
����
ω̃μ

f̃μðrÞ · f̃μðrÞ−μ0
∂(ωμðr;ωÞ)

∂ω
����
ω̃μ

h̃μðrÞ · h̃μðrÞ
�
dV

þ 1

2ϵ0

Z
VPML

�
ϵ0
∂(ωϵPMLðr;ωÞ)

∂ω
����
ω̃μ

f̃μðrÞ · f̃μðrÞ − μ0
∂(ωμPMLðr;ωÞ)

∂ω
����
ω̃μ

h̃μðrÞ · h̃μðrÞ
�
dV ¼ 1; ðA10Þ

where the first part excludes the PML data, and the second part includes only the PML data. The term h̃μðrÞ ¼
∇ × f̃μðrÞ=iω̃μμ0 is the magnetic QNM field and VPML denotes the PML region. Outside the PML region, the fields are zero.
For a nondispersive and nonmagnetic material (not including the PML region), it becomes

⟪f̃μðrÞjf̃μðrÞ⟫ ¼ 1

2

Z
V−VPML

�
ϵðrÞf̃μðrÞ · f̃μðrÞ−

μ0
ϵ0

h̃μðrÞ · h̃μðrÞ
�
dV þ 1

2ϵ0

Z
VPML

�
ϵ0
∂(ωϵPMLðr;ωÞ)

∂ω
����
ω̃μ

f̃μðrÞ · f̃μðrÞ

− μ0
∂(ωμPMLðr;ωÞ)

∂ω
����
ω̃μ

h̃μðrÞ · h̃μðrÞ
�
dV ¼ 1; ðA11Þ

and note that extra care is needed for the PML region
[second term in Eq. (A11)], though this contribution can be
very small for certain problems and geometries. In general,
there are several kinds of transformations performed in
PMLs to minimize boundary reflections. The first one is
using special permittivity ϵPMLðr;ωÞ and permeability
μPMLðr;ωÞ values, which are not always available with
some commercial software [71]. A second approach uses a
coordinate transformation [115,116], which is what we use
here, with the built-in stretched-coordinate PML of
COMSOL, where the coordinates are transferred from real
space to the complex plane [117].
Toverify that the dipole normalization technique andPML

normalization are consistent with each other, we perform the
norm calculation [Eq. (A11)] using the QNM fields from the
dipole technique. We obtain ⟪f̃LðrÞjf̃LðrÞ⟫ ¼ 1.0004 −
0.0011i ∼ 1 for the QNM of interest from the single-
lossy WGM resonator with nloss¼2þ10−5i, and

⟪f̃GðrÞjf̃GðrÞ⟫ ¼ 0.9991þ 0.0006i ∼ 1 for the QNM of
interest from single-gain WGM resonator with ngain ¼
2–5 × 10−6i. However, note that for our chosen PML
geometry and resonator, the contribution from the PML is
practically negligible for this problem of interest (high-Q
resonance).
Although the PML contributions are obviously small

because of our high-Q resonator modes, we also check that
a normalization of approximately 1 is obtained for a very
low-Q metallic (gold) resonator similar to those studied
in Ref. [89], yielding values of ⟪f̃metalðrÞjf̃metalðrÞ⟫ ¼
1.0020þ 0.0018i ∼ 1.

3. Finite-domain normalization with a surface term

A third way to normalize QNMs is through a finite-
domain normalization with an outgoing surface term [72–
74,86]. Assuming nonmagnetic media, the normalization
takes the form [72,86]

⟪f̃μðrÞjf̃μðrÞ⟫ ¼ 1

2ϵ0

Z
V

�
ϵ0

∂(ωϵðr;ωÞ)
∂ω

����
ω̃μ

f̃μðrÞ · f̃μðrÞ − μ0h̃μðrÞ · h̃μðrÞ
�
dV

−
i

2ϵ0ω̃μ

Z
∂V
½½r∂rf̃μðrÞ�×h̃μðrÞ − f̃μðrÞ×½r∂rh̃μðrÞ�� · n̂dA ¼ 1: ðA12Þ

Alternatively, in terms of only the electric field QNMs [73,74,86],

⟪f̃μðrÞjf̃μðrÞ⟫ ¼
Z
V
σðr; ω̃μÞf̃μðrÞ · f̃μðrÞdrþ

1
2k̃2μ

Z
∂V
½f̃μðrÞ · ∂s½r∂rf̃μðrÞ� − r½∂rf̃μðrÞ� · ½∂sf̃μðrÞ��dA ¼ 1; ðA13Þ

where

σðr; ω̃μÞ ¼
1

2ω

∂½ω2ϵðr;ωÞ�
∂ω

����
ω̃μ

; ðA14Þ

QUASINORMAL MODES, LOCAL DENSITY OF STATES, AND … PHYS. REV. X 11, 041020 (2021)

041020-17



and ∂V represents the surface of the finite domain V that
surrounds all resonators, and ∂s is the derivative in
the normal direction of the surface ∂V. In this case, the
integral region V has a greater freedom of choice, but at the
cost of adding a surface integral (though for 2D, we simply
need to compute a simple surface integral and a line
integral). For a nondispersive material, the normalization
simplifies further to

⟪f̃μðrÞjf̃μðrÞ⟫ ¼
Z
V
ϵðrÞf̃μðrÞ · f̃μðrÞdr

þ 1

2k̃2μ

Z
∂V
½f̃μðrÞ · ∂s½r∂rf̃μðrÞ�

− r½∂rf̃μðrÞ� · ½∂sf̃μðrÞ��dA ¼ 1: ðA15Þ

For completeness, we also checked our normalizedQNMs
with this technique and obtain ⟪f̃LðrÞjf̃LðrÞ⟫ ¼ 1.0004 −
0.0011i ∼ 1 for the single bare QNM from the single-lossy
WGMresonatorwithnloss¼2þ10−5i, and⟪f̃GðrÞjf̃GðrÞ⟫ ¼
0.9991þ 0.0006i ∼ 1 for the single bare QNM from the
single-gain WGM resonator with ngain ¼ 2–5 × 10−6i.

Again, we note for the resonators we are working with the
contribution from the line integral is negligible; thus, we
obtain basically the same answer as the PML normalization.
As a further check, we also try the above norm with two
smaller domainswith area of 579 and497 μm2 and obtain the
same numerical results as above.

APPENDIX B: DEGENERATE QNMS FOR
MICRODISK RESONATORS

TheWGM resonator naturally supports degenerate modes
because of circular symmetry. For a specific azimuthal mode
number m, the degenerate counterpropagating modes are
[104–106]ECWðr;ϕÞ ¼ EðrÞeð−imϕÞ with CW direction and
ECCWðr;ϕÞ ¼ EðrÞeðimϕÞ with CCW direction; for a TM
mode, we have only the z component for the electric fields.
Linear combinations of these fields result in standing waves
[104–106], such as a symmetric standingmodeES ¼ ECW þ
ECCW ∝ cos ðmϕÞ and an antisymmetric standing mode
EAS ¼ ECW − ECCW ∝ sin ðmϕÞ. These standing waves
can of course also be normalized and can be expanded to
obtain the QNM Green’s function.

FIG. 9. Spatial profile of the degenerate QNMs for a single-lossy resonator. (a) QNM obtained with a general QNM approach
[Eq. (A5)] [it is the same as in Fig. 3(a)], where only one of the degenerate standing-wave modes is excited, which is with a cosðmϕÞ
dependence, considering ϕ ¼ 0 at the positive x axis. (b),(c) Normalized [Eq. (B1)] degenerate modes 1 and 2 from the eigenfrequency
solver using COMSOL, where the boundary condition is with PML. The horizontal dashed lines in (a)–(c) label the x axis with their own
coordinates. (d) The fields at the disk edge along vertical arrow direction (CCW direction) [in (a)–(c)]. (e) QNMs [Eq. (A5)], same as in
(a) but when the dipole is moved to a different position, as shown in (f).
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Using the direct eigenfrequency solver (where the boun-
dary condition is PML) in COMSOL, one can obtain a pair of
unnormalized standing-mode distributions f̃M;1=M;2

un . This is
not used generally as aQNMsolver since it is not so robust as
a nonlinear eigenvalue solver, but the results appear to be
reasonable for the high-Q modes of interest in this work.
For example, one can use PML normalization to obtain

the relevant QNM from ði ¼ 1; 2Þ

f̃M;iðrÞ ¼ f̃M;i
un ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

⟪f̃M;i
un ðrÞjf̃M;i

un ðrÞ⟫PML

q ; ðB1Þ

where⟪f̃M;i
un ðrÞjf̃M;i

un ðrÞ⟫PML takes the form of Eq. (A11). For
a single-lossy WGM resonator with refractive index
nloss ¼ 2þ 10−5i, the normalized distribution Re½f̃M;1=M;2

z �
[Eq. (B1)] is shown in Figs. 9(b) and 9(c). To better check
their differences, we show them along the edge of the
disk (equator) along the small vertical arrow direction
(CCW direction) [see Figs. 9(b) and 9(c)] in Fig. 9(d) (green
solid and orange solid curves). One can find their antinode
positions are off by π=2m (m ¼ 37) corresponding to the
difference between cosðmϕÞ and sinðmϕÞ. However, their
absolute phases are offset, since these are related to where
ϕ ¼ 0 is defined in the coordinate system (xM, yM), with the
eigenfrequency solver.
In contrast, with the dipole-excitation technique [68],

only one of the two degenerate standing-wave modes is
excited, as shown in Fig. 9(a) [which is the same as
Fig. 3(a) in the main text], where the dipole is placed at
rd ¼ r1. The field Re½f̃Lz � along the equator is also shown in
Figs. 9(d) and 9(e) (red solid curve), which is with the form
cosðmϕÞ considering ϕ ¼ 0 corresponds to the positive x
axis. Moreover, with the dipole technique, one can control
the phases accurately by setting the dipole at different
locations, as they naturally excite the same standing
wave defined from that position. For example, if the dip-
ole is placed at a position corresponding to ϕ0 ¼ π=2m
(rd ¼ r10), ϕ00 ¼ 2π=2m (rd ¼ r100), or ϕ000 ¼ 3π=2m
(rd ¼ r1000) (the distance between the dipoles and the
tangent of the disk surface remains at 10 nm) [see schematic
in Fig. 9(f)], then the same QNM is obtained with a simple
shift in phase; these are shown in Fig. 9(e) (green dashed,
black dashed, and blue dashed curves), with the phase
terms cosðmϕ−mϕ0Þ¼cosðmϕ−π=2Þ, cosðmϕ−mϕ00Þ ¼
cosðmϕ−2π=2Þ, and cosðmϕ−mϕ000Þ¼cosðmϕ−3π=2Þ
(considering ϕ ¼ 0 is defined at the positive x axis).

APPENDIX C: FULL NUMERICAL DIPOLE
SIMULATIONS

To check the validity of the Purcell factors from the
QNMs and also the CMT Green’s function solutions (for
microdisks), we compare these directly with the numerical
results from a full dipole method (namely, with no modal
approximations), which is obtained as follows:

Fnum;2D
P ðr0;ωÞ ¼

R
Lc
n̂ · Sdipole;totalðr;ωÞdLcR

Lc
n̂ · Sdipole;backgroundðr;ωÞdLc

; ðC1Þ

where Lc is a small circle (with radius 1 nm) surrounding
the point current (for the TM mode), and n̂ is a unit vector
normal to Lc pointing outward. The vector Sðr;ωÞ is the
Poynting vector at this small circle, and the subscripts
“total” and “background” represent the case with and
without the resonator, respectively.

APPENDIX D: CONFIRMING THE ACCURACY
OF THE QNMS FOR A SINGLE-LOSSY

RESONATOR OR A SINGLE-GAIN RESONATOR

In order to compare with the coupled-resonator results
and to confirm the accuracy of a single QNM approach for
the single resonators, we show the results for single-lossy

FIG. 10. Purcell factors for (a) single-lossy cavity with nloss ¼
2þ 10−5i and (b) single-gain cavity with ngain ¼ 2–5 × 10−6i
from single QNMs [Eqs. (5) or (A8)] and full numerical dipole
method [Eq. (C1)], where excellent agreement is obtained in both
cases. The dipole is located 10 nm away from the single-lossy
cavity or single-gain cavity. The Purcell factors from the single-
lossy cavity are net positive, while the Purcell factors from the
single-gain cavity are net negative.
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cavity with nloss ¼ 2þ 10−5i or single-gain cavity with
ngain ¼ 2–5 × 10−6i. Using the dipole technique described
above [Eq. (A5)], the QNMs (real parts) Re½f̃Lz � and Re½f̃Gz �
are shown in Figs. 3(a) and 3(b) separately. The dipole is
put 10 nm away from the single-lossy cavity or single-gain
cavity.

The corresponding Purcell factors are shown in Fig. 10,
which show quantitative agreement with full dipole
method. The Purcell factors from the single-lossy cavity
are net positive and those from the single-gain cavity are net
negative. Note that these results are also shown as dashed
curves in Figs. 4 and 5 in the main text but multiplied by a
constant for better comparison with the results from the
coupled system.

APPENDIX E: DIRECT QNM APPROACH FOR
COUPLED LOSS RESONATORS AND GAIN

RESONATORS

Naturally, one can also solve the coupled system with a
QNM approach directly instead of using CMT after the bare
solutions are known. InFig. 11,we show their comparison for
the specific example shown in Fig. 4(a) of the main text. For
comparison, all original curves (analytical CMT results and
full dipole results) on Fig. 4(a) remain the same. With the
dipole-excitation QNM approach (where the dipole is at
rd ¼ r1), there are two dominant modes QNMþ 0 and
QNM − 0 (the hybrid modes). Their separate contributions
to the Purcell factors are shown as a magenta dashed curve
and cyan dashed curve, and the total one is shown as a green
dotted curve. There is very good agreement with the CMT
results and the direct QNMresults (QNMþ versusQNMþ 0,
QNM− versus QNM − 0, and their total contributions), as
well as quantitatively good agreement between the direct
QNM results and the full dipole simulations (green dotted
curve and red circles).

APPENDIX F: ADDITIONAL LOSS-GAIN
RESONATOR EXAMPLES WITH DIFFERENT

GAIN COEFFICIENTS

Finally, we also show the Purcell factors for two addi-
tional loss-gain resonator examples for different amounts of
gain. The refractive index for the lossy resonator is fixed at

FIG. 11. Purcell factors from the direct QNM approach for the
coupled-resonators example shown in Fig. 4(a) of the main text.
For comparison, all original curves (analytical CMT results and
full dipole results) in Fig. 4(a) remain the same. With the direct
QNM approach (when the dipole is located at rd ¼ r1), there are
two dominant modes, QNMþ 0 and QNM − 0. Their separate
contributions to the total Purcell factors are shown as a dashed
magenta curve and a dashed cyan curve, and the total one is
shown as a green dotted curve. They show good agreement with
the CMT results and full dipole results; i.e., the contribution from
QNMþ [green solid curve, see Fig. 4(a)] and QNMþ 0 (dashed
magenta curve) agrees very well, as does the contribution from
QNM− (blue solid curve) and QNM − 0 (dashed cyan curve); the
CMT and two direct QNM totals are practically indistinguishable
(black solid curve, green dotted curve; red circles show the full
dipole results).

FIG. 12. Purcell factors for coupled loss-gain resonators with (a) ngain ¼ 2–6 × 10−6i and (b) ngain ¼ 2–7 × 10−6i, while nloss ¼
2þ 10−5i is the same as in the main text for both cases. The dipole is placed at r1. Similar to the main text results, once again very good
agreement is obtained between with the semianalytic QNM theory and the full (classical) dipole results.
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nloss ¼ 2þ 10−5i, as in the main text. When ngain ¼
2–6 × 10−6i, the Purcell factors with a gap distance dgap ¼
1145 nm (close to the lossy EP) for a dipole at r1 (10 nm
away from the lossy cavity) are shown in Fig. 12(a), which
show very good agreement with the full dipole method.
Again, we see that negative Purcell factors are obtained
over a wide frequency range. The separate contributions
from f̃þ and f̃− are also given. For better comparison, the
Purcell factors with a single-lossy cavity are shown as an
orange dashed curve (the dipole is at r1), which is net
positive and multiplied by 30 for clarity.
Similarly, the corresponding results for the case with

ngain ¼ 2–7 × 10−6i are shown in Fig. 12(b), where the gap
distance is dgap ¼ 1133 nm. Excellent agreement with full
dipole results is also obtained. The absolute values of the
negative Purcell factors increase here mainly because they
are closer to the EP and the gap distance is smaller.
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[5] G. Lévai and M. Znojil, Systematic Search for
PT -Symmetric Potentials with Real Energy Spectra,
J. Phys. A 33, 7165 (2000).

[6] C. M. Bender, M. V. Berry, and A. Mandilara, Generalized
PT symmetry and Real Spectra, J. Phys. A 35, L467 (2002).

[7] C. M. Bender, D. C. Brody, and H. F. Jones, Complex
Extension of Quantum Mechanics, Phys. Rev. Lett. 89,
270401 (2002).

[8] A. Mostafazadeh, Pseudo-Hermiticity versus PT Sym-
metry: The Necessary Condition for the Reality of the
Spectrum of a Non-Hermitian Hamiltonian, J. Math. Phys.
(N.Y.) 43, 205 (2002).

[9] C. M. Bender, D. C. Brody, and H. F. Jones, Must a
Hamiltonian Be Hermitian? Am. J. Phys. 71, 1095 (2003).

[10] C. M. Bender, Making Sense of Non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[11] R. El-Ganainy, K. G. Makris, D. N. Christodoulides,
and Z. H. Musslimani, Theory of Coupled Optical PT-
Symmetric Structures, Opt. Lett. 32, 2632 (2007).

[12] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Beam Dynamics in PT Symmetric
Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).

[13] S. Klaiman, U. Günther, and N. Moiseyev, Visualization of
Branch Points in PT -Symmetric Waveguides, Phys. Rev.
Lett. 101, 080402 (2008).

[14] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Observation of PT -Symmetry Breaking
in Complex Optical Potentials, Phys. Rev. Lett. 103,
093902 (2009).

[15] S. Longhi, Bloch Oscillations in Complex Crystals with
PT Symmetry, Phys. Rev. Lett. 103, 123601 (2009).

[16] A. Mostafazadeh, Spectral Singularities of Complex Scat-
tering Potentials and Infinite Reflection and Transmission
Coefficients at Real Energies, Phys. Rev. Lett. 102,
220402 (2009).

[17] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Observation of
Parity–Time Symmetry in Optics, Nat. Phys. 6, 192 (2010).

[18] T. Kottos, Broken Symmetry Makes Light Work, Nat. Phys.
6, 166 (2010).

[19] S. Longhi, Optical Realization of Relativistic Non-
Hermitian Quantum Mechanics, Phys. Rev. Lett. 105,
013903 (2010).

[20] H. Benisty, A. Lupu, and A. Degiron, Transverse Periodic
PT Symmetry for Modal Demultiplexing in Optical
Waveguides, Phys. Rev. A 91, 053825 (2015).

[21] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear
Waves in PT -Symmetric Systems, Rev. Mod. Phys. 88,
035002 (2016).

[22] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian
Photonics Based on Parity–Time Symmetry, Nat. Photon-
ics 11, 752 (2017).

[23] S. Longhi, Parity-Time Symmetry Meets Photonics: A New
Twist in Non-Hermitian Optics, Europhys. Lett. 120,
64001 (2017).

[24] A. Lupu, V. V. Konotop, and H. Benisty, Optimal
PT -Symmetric Switch Features Exceptional Point, Sci.
Rep. 7, 13299 (2017).

[25] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
HermitianPhysicsandPT Symmetry,Nat.Phys.14,11(2018).

[26] L. Jin, Parity-Time-Symmetric Coupled Asymmetric
Dimers, Phys. Rev. A 97, 012121 (2018).

[27] F. Morozko, A. Novitsky, and A. Karabchevsky, Modal
Purcell Factor in PT -Symmetric Waveguides, Phys. Rev.
B 102, 155303 (2020).

[28] M. V. Berry, Physics of Non-Hermitian Degeneracies,
Czech. J. Phys. 54, 1039 (2004).

[29] W. D. Heiss, Exceptional Points of Non-Hermitian Oper-
ators, J. Phys. A 37, 2455 (2004).

[30] W. D. Heiss, The Physics of Exceptional Points, J. Phys. A
45, 444016 (2012).

[31] K. Ding, G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan,
Emergence, Coalescence, and Topological Properties
of Multiple Exceptional Points and Their Experimental
Tealization, Phys. Rev. X 6, 021007 (2016).

[32] M.-A. Miri and A. Alù, Exceptional Points in Optics and
Photonics, Science 363, eaar7709 (2019).

[33] C. Chen, L. Jin, and R.-B. Liu, Sensitivity of Parameter
Estimation near the Exceptional Point of a Non-Hermitian
System, New J. Phys. 21, 083002 (2019).

[34] L. Jin, H. C. Wu, B.-B. Wei, and Z. Song, Hybrid Excep-
tional Point Created from Type-III Dirac Point, Phys. Rev.
B 101, 045130 (2020).

QUASINORMAL MODES, LOCAL DENSITY OF STATES, AND … PHYS. REV. X 11, 041020 (2021)

041020-21

https://doi.org/10.1140/epjst/e2008-00740-9
https://doi.org/10.1140/epjst/e2008-00740-9
https://doi.org/10.1103/PhysRevA.64.033812
https://doi.org/10.1103/PhysRevA.64.033812
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1063/1.532860
https://doi.org/10.1063/1.532860
https://doi.org/10.1088/0305-4470/33/40/313
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1418246
https://doi.org/10.1119/1.1574043
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.093902
https://doi.org/10.1103/PhysRevLett.103.123601
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys1612
https://doi.org/10.1038/nphys1612
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevA.91.053825
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1038/s41566-017-0031-1
https://doi.org/10.1209/0295-5075/120/64001
https://doi.org/10.1209/0295-5075/120/64001
https://doi.org/10.1038/s41598-017-13264-9
https://doi.org/10.1038/s41598-017-13264-9
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevA.97.012121
https://doi.org/10.1103/PhysRevB.102.155303
https://doi.org/10.1103/PhysRevB.102.155303
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1103/PhysRevX.6.021007
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1088/1367-2630/ab32ab
https://doi.org/10.1103/PhysRevB.101.045130
https://doi.org/10.1103/PhysRevB.101.045130


[35] H.-Z. Chen, T. Liu, H.-Y. Luan, R.-J. Liu, X.-Y. Wang,
X.-F. Zhu, Y.-B. Li, Z.-M. Gu, S.-J. Liang, H. Gao, L. Lu,
L. Ge, S. Zhang, J. Zhu, and R.-M. Ma, Revealing the
Missing Dimension at an Exceptional Point, Nat. Phys. 16,
571 (2020).

[36] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
D. N. Christodoulides, Unidirectional Invisibility Induced
by PT -Symmetric Periodic Structures, Phys. Rev. Lett.
106, 213901 (2011).

[37] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Experimental Demonstration of a Unidirectional Reflec-
tionless Parity-Time Metamaterial at Optical Frequencies,
Nat. Mater. 12, 108 (2013).

[38] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L.
Yang, Parity–Time-Symmetric Whispering-Gallery Micro-
cavities, Nat. Phys. 10, 394 (2014).

[39] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G.
Li, G. Wang, and M. Xiao, Parity–Time Symmetry and
Variable Optical Isolation in Active–Passive-Coupled
Microresonators, Nat. Photonics 8, 524 (2014).

[40] L. Jin and Z. Song, Incident Direction Independent Wave
Propagation and Unidirectional Lasing, Phys. Rev. Lett.
121, 073901 (2018).

[41] A. A. Zyablovsky, A. P. Vinogradov, A. A. Pukhov, A. V.
Dorofeenko, and A. A. Lisyansky, PT-Symmetry in Optics,
Phys. Usp. 57, 1063 (2014).

[42] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A.
Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev,
and S. Rotter, Dynamically Encircling an Exceptional
Point for Asymmetric Mode Switching, Nature (London)
537, 76 (2016).

[43] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological
Energy Transfer in an Optomechanical System with
Exceptional Points, Nature (London) 537, 80 (2016).

[44] D. Heiss, Circling Exceptional Points, Nat. Phys. 12, 823
(2016).

[45] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional Points Enhance Sensing in an Optical Micro-
cavity, Nature (London) 548, 192 (2017).

[46] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, and L.
Yang, Parity-Time-Symmetric Whispering-Gallery Mode
Nanoparticle Sensor, Photonics Res. 6, A23 (2018).

[47] S. Longhi, PT -Symmetric Laser Absorber, Phys. Rev. A
82, 031801(R) (2010).

[48] Y. D. Chong, L. Ge, and A. D. Stone, PT -Symmetry
Breaking and Laser-Absorber Modes in Optical Scattering
Systems, Phys. Rev. Lett. 106, 093902 (2011).

[49] Y. Sun, W. Tan, H.-Q. Li, J. Li, and H. Chen, Experimental
Demonstration of a Coherent Perfect Absorber with
PT Phase Transition, Phys. Rev. Lett. 112, 143903
(2014).

[50] L. Jin, P. Wang, and Z. Song, Unidirectional Perfect
Absorber, Sci. Rep. 6, 32919 (2016).

[51] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J.
Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and
S. Rotter, Reversing the Pump Dependence of a Laser at
an Exceptional Point, Nat. Commun. 5, 4034 (2014).

[52] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
Single-Mode Laser by Parity-Time Symmetry Breaking,
Science 346, 972 (2014).

[53] H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, Parity-Time–Symmetric Microring
Lasers, Science 346, 975 (2014).

[54] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer,
F. Monifi, C. M. Bender, F. Nori, and L. Yang, Loss-
Induced Suppression and Revival of Lasing, Science 346,
328 (2014).

[55] H. A. Haus and W. Huang, Coupled-Mode Theory, Proc.
IEEE 79, 1505 (1991).

[56] S. Fan, W. Suh, and J. D. Joannopoulos, Temporal
Coupled-Mode Theory for the Fano Resonance in Optical
Resonators, J. Opt. Soc. Am. A 20, 569 (2003).

[57] A. Artar, A. A. Yanik, and H. Altug, Directional Double
Fano Resonances in Plasmonic Hetero-Oligomers, Nano
Lett. 11, 3694 (2011).

[58] R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, and F.
Zhang, Active Control of EIT-like Response in a Symmetry-
Broken Metasurface with Orthogonal Electric Dipolar
Resonators, Photonics Res. 7, 955 (2019).

[59] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T.
Lepetit, Y.-H. Lo, and B. Kanté, Symmetry-Breaking-
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Conti, D. Ristic, and S. Soria, Whispering Gallery Mode
Microresonators: Fundamentals and Applications, Nuovo
Cimento 34, 435 (2011).

[103] G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U.
Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C.
Marquardt, Identifying Modes of Large Whispering-
Gallery Mode Resonators from the Spectrum and Emission
Pattern, Opt. Express 22, 30795 (2014).

[104] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O.
Benson, and V. Sandoghdar, Controlled Coupling of Coun-
terpropagating Whispering-Gallery Modes by a Single
Rayleigh Scatterer: A Classical Problem in a Quantum
Optical Light, Phys. Rev. Lett. 99, 173603 (2007).

[105] I. Teraoka and S. Arnold, Resonance Shifts of Counter-
propagating Whispering-Gallery Modes: Degenerate Per-
turbation Theory and Application to Resonator Sensors
with Axial Symmetry, J. Opt. Soc. Am. B 26, 1321 (2009).

[106] K. G. Cognée, H. M. Doeleman, P. Lalanne, and A. F.
Koenderink, Cooperative Interactions between Nano-
Antennas in a High-Q Cavity for Unidirectional Light
Sources, Light Sci. Appl. 8, 115 (2019).

[107] M. Wubs, L. G. Suttorp, and A. Lagendijk, Multiple-
Scattering Approach to Interatomic Interactions and
Superradiance in Inhomogeneous Dielectrics, Phys.
Rev. A 70, 053823 (2004).

[108] C. Van Vlack, P. T. Kristensen, and S. Hughes, Sponta-
neous Emission Spectra and Quantum Light-Matter
Interactions from a Strongly Coupled Quantum Dot
Metal-Nanoparticle System, Phys. Rev. B 85, 075303
(2012).

[109] R.-C. Ge, C. Van Vlack, P. Yao, J. F. Young, and S.
Hughes, Accessing Quantum Nanoplasmonics in a Hybrid
Quantum Dot–Metal Nanosystem: Mollow Triplet of a
Quantum Dot near a Metal Nanoparticle, Phys. Rev. B 87,
205425 (2013).

[110] P. T. Kristensen, J. Mørk, P. Lodahl, and S. Hughes,
Decay Dynamics of Radiatively Coupled Quantum Dots
in Photonic Crystal Slabs, Phys. Rev. B 83, 075305
(2011).

[111] R.-C. Ge and S. Hughes, Quantum Dynamics of Two
Quantum Dots Coupled through Localized Plasmons: An
Intuitive and Accurate Quantum Optics Approach Using
Quasinormal Modes, Phys. Rev. B 92, 205420 (2015).

[112] B. Stout, R. Colom, N. Bonod, and R. C. McPhedran,
Spectral Expansions of Open and Dispersive Optical
Systems: Gaussian Regularization and Convergence,
New J. Phys. 23, 083004 (2021).

[113] COMSOL Inc., COMSOL Multiphysics v 5.6, https://www
.comsol.com.

[114] B. Vial, F. Zolla, A. Nicolet, and M. Commandré,
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