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Dynamical phase transitions extend the notion of criticality to nonstationary settings and are
characterized by sudden changes in the macroscopic properties of time-evolving quantum systems.
Investigations of dynamical phase transitions combine aspects of symmetry, topology, and nonequilibrium
physics; however, progress has been hindered by the notorious difficulties of predicting the time evolution
of large, interacting quantum systems. Here, we tackle this outstanding problem by determining the critical
times of interacting many-body systems after a quench using Loschmidt cumulants. Specifically, we
investigate dynamical topological phase transitions in the interacting Kitaev chain and in the spin-1
Heisenberg chain. To this end, we map out the thermodynamic lines of complex times, where the
Loschmidt amplitude vanishes, and identify the intersections with the imaginary axis, which yield the real
critical times after a quench. For the Kitaev chain, we can accurately predict how the critical behavior is
affected by strong interactions, which gradually shift the time at which a dynamical phase transition occurs.
We also discuss the experimental perspectives of predicting the first critical time of a quantum many-body
system by measuring the energy fluctuations in the initial state, and we describe the prospects of
implementing our method on a near-term quantum computer with a limited number of qubits. Our work
demonstrates that Loschmidt cumulants are a powerful tool to unravel the far-from-equilibrium dynamics
of strongly correlated many-body systems, and our approach can immediately be applied in higher
dimensions.
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I. INTRODUCTION

Whether or not quantum many-body systems out of
equilibrium can be understood in terms of well-defined
phases of matter is a central question in condensed matter
physics. The lack of universal principles, such as those
governing equilibrium systems [1,2], makes the problem
exceptionally hard. Still, the concepts of criticality and far-
from-equilibrium dynamics have recently been elegantly
unified through the discovery of dynamical phase transi-
tions in which a time-evolving quantum many-body system
displays sudden changes of its macroscopic properties
[3–11]. In equilibrium physics, phase transitions are

reflected by singularities in the free energy, and dynamical
phase transitions are similarly given by critical times, where
a nonequilibrium analogue of the free energy becomes
nonanalytic. Specifically, the role of the partition function
is played by the return, or Loschmidt, amplitude of the
many-body system after a quench, and its logarithm yields
the corresponding free energy.
A typical setup for observing dynamical quantum phase

transitions is depicted in Fig. 1(a): A one-dimensional
chain of interacting quantum spins is initialized in a ground
state characterized by one type of order (or the lack of it)
and subsequently made to evolve according to a
Hamiltonian whose ground state possesses a different
order. Experimentally, dynamical phase transitions have
been observed in strings of trapped ions [12,13], optical
lattices [14], and several other systems that offer a high
degree of control [15–19]. The Loschmidt amplitude is the
overlap between the initial state of the system and the state
of the system at a later time. Moreover, similarly to
equilibrium systems, dynamical phase transitions may
occur at critical times, where the Loschmidt amplitude
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vanishes, and the dynamical free energy becomes nonana-
lytic in the thermodynamic limit. As illustrated in Fig. 1(b),
these nonanalytic signatures may appear as cusps in the
dynamical free energy; however, strictly speaking, they only
occur for infinitely large systems. For finite-size systems,
they are typically smeared out, and often for spin chains, at
least L ≃ 50–100 spins are required in order to identify and
determine the critical times of a dynamical phase transition.
Since the Hilbert space dimension grows exponentially with
the chain length, the outstanding bottleneck for theoretical
investigations of dynamical phase transitions is the need to
predict the far-from-equilibrium dynamics of large quantum
systems. Numerically, the task is computationally costly, or
even intractable, and generally it requires advanced system-
specific techniques that do not easily generalize to other
systems or spatial dimensions [4,5,10,20–33]. For this
reason, little is still known about dynamical phase transitions
and the general applicability of concepts like universality and
scaling. In fact, our current understanding comes, to a large
extent, from a few exactly solvablemodels [3–11,26,34–43].
Important questions concern the relationship between critical
times and dynamical changes in local observables or the
entanglement spectrum (or other dynamical measures),
which often exhibit similar but not strictly related timescales.
However, case-by-case investigations have revealed that

dynamical phase transitions are often accompanied by
interesting dynamics with comparable timescales, and one
could view them as indicators of nontrivial dynamics in other
many-body properties.
Here, we pave the way for systematic investigations of

dynamical phase transitions in correlated systems using
Loschmidt cumulants, which allow us to accurately predict
the critical times of a quantum many-body system using
remarkably small system sizes, on the order of L ≃ 10–20.
Using modest computational power, we determine the
critical times of the interacting Kitaev chain and the
spin-1 Heisenberg chain after a quench and find, for
instance, that a dynamical phase transition in the Kitaev
chain gets suppressed with increasing interaction strength.
The Loschmidt cumulants allow us to determine the
complex zeros of the Loschmidt amplitude as illustrated
in Fig. 1(c). We can thereby map out the thermodynamic
lines of zeros and identify the crossing points with the
imaginary axis, corresponding to the real critical times,
where a dynamical phase transition occurs. This approach
makes it possible to predict the critical dynamics of a wide
range of strongly interacting quantum many-body systems
and is applicable also in higher dimensions. In two
dimensions, the zeros can make up lines or surfaces in
the complex plane, and our method can be used to
determine all of these zeros as well as their density.
Moreover, as we will show, our method provides exciting
perspectives for future experiments on dynamical phase
transitions. Specifically, our method makes it possible to
predict the first critical time of a quantum many-body
system after a quench by measuring the fluctuations of the
energy in the initial state. In addition, because of the
favorable scaling properties of our method, it is conceivable
that it can be implemented on a near-term quantum
computer with a limited number of qubits.
We now proceed as follows. In Sec. II, we develop our

method for determining the zeros of the Loschmidt echo
and their crossing points with the imaginary axis in the
thermodynamic limit, which yield the critical times of a
quantum many-body system after a quench. In Sec. III, we
consider dynamical phase transitions in the Kitaev chain
after a quench, and we show how we can determine the
critical times from remarkably small chain lengths even
with strong interactions. Section IV is devoted to the spin-1
Heisenberg chain and includes several quenches, for
instance, from the Haldane phase to the Néel phase. In
Sec. V, we discuss the experimental perspectives for future
realizations of our method. Finally, in Sec. VI, we state our
conclusions and provide an outlook on possible avenues for
further developments.

II. FROM LOSCHMIDT CUMULANTS TO
LOSCHMIDT ZEROS

The fundamental object that describes dynamical phase
transitions is the Loschmidt amplitude,

(a)

(b) (c)

FIG. 1. Dynamical phase transitions. (a) A sudden quench of
the system parameters causes a dynamical phase transition in a
quantum spin chain with L sites. (b) In the thermodynamic limit,
such phase transitions give rise to singularities in the rate function
at the critical times, tc;1; tc;2… [see Eqs. (1) and (2) for definitions];
however, in finite-size systems, they are smeared out. (c) The
singularities in the rate function are associated with the zeros
(circles) of the Loschmidt amplitude in the complex-time plane. In
the thermodynamic limit, they form continuous lines, and the real
critical times are given by the crossing points with the imaginary
axis. We determine the zeros of the Loschmidt amplitude from the
Loschmidt cumulants evaluated at the basepoint τ.
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ZðitÞ ¼ hΨ0je−itĤjΨ0i; ð1Þ

where jΨ0i is the initial state of the many-body system at
time t ¼ 0, the postquench Hamiltonian Ĥ governs the time
evolution for times t > 0, and we set ℏ ¼ 1 from now on.
The Loschmidt amplitude resembles the partition function
of a thermal system with Hamiltonian Ĥ; however, the
inverse temperature is replaced by the imaginary time
τ ¼ it, and an average is taken with respect to the initial
state jΨ0i. In equilibrium settings, a thermal phase tran-
sition occurs, if a system is cooled below its critical
temperature, and it abruptly changes from a disordered
to an ordered phase. Similarly, dynamical phase transitions
occur at critical times, when a quenched system suddenly
changes from one phase to another with fundamentally
different properties. Such transitions are manifested in the
rate function

λðtÞ ¼ −
1

L
ln jZðitÞj2; ð2Þ

which is the nonequilibrium analogue of the free energy
density. In some cases, dynamical phase transitions occur,
if a system is quenched across an underlying equilibrium
phase transition; however, generally, there is no simple
relation between dynamical and equilibrium phase tran-
sitions. In Fig. 1(a), the system size, denoted by L, is the
total number of spins along the chain. In the thermody-
namic limit of infinitely large systems, dynamical phase
transitions give rise to singularities in the rate function, for
example, a cusp, as shown in Fig. 1(b). However, this
nonanalytic behavior typically becomes apparent for very
large systems, and it is hard to pinpoint for smaller systems.
For this reason, dynamical phase transitions are difficult to
capture in computations and simulations, where the
numerical costs grow rapidly with system size.
Here, we build on recent progress in Lee-Yang theories

of thermal phase transitions [44–47] and use Loschmidt
cumulants to predict dynamical phase transitions in
strongly correlated many-body systems using remarkably
small system sizes. The Lee-Yang formalism of classical
equilibrium phase transitions considers the zeros of the
partition function in the complex plane of the external
control parameters [48–51]. In a similar spirit, we treat the
Loschmidt amplitude as a function of the complex-valued
variable τ. The Loschmidt amplitude of a finite system is an
entire function, which can be factorized as [52]

ZðτÞ ¼ eατ
Y
k

ð1 − τ=τkÞ; ð3Þ

where α is a constant, and τk are the complex zeros of the
Loschmidt amplitude. For a thermal system, the values of
the inverse temperature for which the partition function
vanishes are known as Fisher zeros [53]. We refer to the

zeros of the Loschmidt amplitude as Loschmidt zeros. For a
finite system, the zeros are isolated points in the complex
plane. However, they grow denser as the system size is
increased, and in the thermodynamic limit, they coalesce to
form continuous lines and regions. Their intersections with
the imaginary τ axis determine the real critical times at
which the rate function becomes nonanalytic and dynami-
cal phase transitions occur [11]. As such, this phenom-
enology resembles the classical Lee-Yang theory of thermal
phase transitions [48–51].
The central task is thus to determine the Loschmidt

zeros. To this end, we define the Loschmidt moments and
cumulants of the Hamiltonian Ĥ of order n as

hĤniτ ¼ ð−1Þn ∂
n
τZðτÞ
ZðτÞ ð4Þ

and

⟪Ĥn⟫τ ¼ ð−1Þn∂nτ lnZðτÞ; ð5Þ

where τ is the basepoint, at which the moments and
cumulants are evaluated. For τ ¼ 0, the Loschmidt moments
reduce to themoments of the Hamiltonian with respect to the
initial state as hĤni0 ¼ hΨ0jĤnjΨ0i. At finite times, the
Loschmidtmoments are hĤniτ¼hΨ0jĤnjΨðτÞi=hΨ0jΨðτÞi,
where jΨðτÞi ¼ e−τĤjΨ0i is the time-evolved state. The
cumulants can be obtained from the moments using the
standard recursive formula

⟪Ĥn⟫τ ¼ hĤniτ −
Xn−1
m¼1

�
n − 1
m − 1

�
⟪Ĥm⟫τhĤn−miτ: ð6Þ

For our purposes, it is now convenient to define the
normalized Loschmidt cumulants κnðτÞ as

κnðτÞ ¼
ð−1Þn−1
ðn − 1Þ!⟪Ĥ

n⟫τ ¼
X
k

1
ðτk − τÞn ; n > 1; ð7Þ

having used Eq. (3) to express them in terms of the zeros.
This expression shows that the Loschmidt cumulants are
dominated by the zeros that are closest to the (complex)
basepoint τ, while the contributions from other zeros
rapidly fall off with their inverse distance from the base-
point to the power of the cumulant order n. The main idea is
now to extract them closest zeros from 2m high Loschmidt
cumulants, which we can calculate. For m ¼ 2, this can be
done by adapting the method from Refs. [44–47]. However,
for arbitrary m, we use the general approach presented in
Appendixes A and B. For the systems that we consider in
the following, we extract the m ¼ 7 zeros closest to the
movable basepoint using Loschmidt cumulants of order
n ¼ 9 to n ¼ 22.
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It should be emphasized that our approach hardly makes
any assumptions about the quantum many-body system at
hand or the method used for obtaining the cumulants. As
outlined in Appendix C, we use a Krylov subspace method
[54,55] to perform the complex time evolution and evaluate
the Loschmidt moments and cumulants, which we then use
for extracting the Loschmidt zeros. All results presented
below have been obtained on a standard laptop, and the
method can readily be adapted to a variety of interacting
quantum many-body systems, also in higher dimensions.

III. INTERACTING KITAEV CHAIN

We first consider the spin-1/2 XYZ chain or, equiva-
lently, the interacting Kitaev chain. The noninteracting
limit maps to the XY model, which was solved exactly in
the pioneering work of Ref. [3]. Here, we use Loschmidt
cumulants to predict a dynamical quantum phase transition
in the strongly interacting regime. The Hamiltonian of the
spin-1/2 XYZ chain with a Zeeman field reads

Ĥ ¼
XL
α;j¼1

JαŜ
α
j Ŝ

α
jþ1 − h

XL
j¼1

Ŝzj; ð8Þ

where Ŝαj are the spin-1=2 operators for the α ¼ x, y, z
component of the spin on site j of the chain of length L, the
exchange couplings are denoted by Jα, and h is the Zeeman
field. We use twisted boundary conditions,

ŜxLþ1 ¼ cosðΦÞŜx1 þ sinðΦÞŜy1;
ŜyLþ1 ¼ − sinðΦÞŜx1 þ cosðΦÞŜy1; ð9Þ

and ŜzLþ1 ¼ Ŝz1, whereΦ is the twist angle. In the fermionic
representation, obtained by a Jordan-Wigner transforma-
tion [56], the model maps to the interacting Kitaev chain of
spinless fermions with operators ĉj and ĉ†j ,

Ĥ¼−
1

2

XL−1
j¼1

ðJĉ†j ĉjþ1þΔĉ†j ĉ
†
jþ1þH:c:ÞþV

XL−1
j¼1

�
n̂j−

1

2

��
n̂jþ1−

1

2

�
−μ

XL
j¼1

ĉ†j ĉjþ
sΦP̂
2

ðJĉ†Lĉ1þΔĉ†Lĉ
†
1þH:c:Þ; ð10Þ

where the twist angle now enters in the last term through the
parameter sΦ, which is þ1, if the twist angle is Φ ¼ 0, and
−1, ifΦ ¼ π. These are the only two values of the twist angle
used here. The parameters of the two Hamiltonians are
related as J ¼ −ðJx þ JyÞ=2, Δ ¼ ðJy − JxÞ=2, μ ¼ −h,
and V ¼ Jz. Moreover, the number operator on site j is
n̂j ¼ ĉ†j ĉj, while P̂ ¼ expðiπPj n̂jÞ is the parity operator.
The Kitaev chain describes a one-dimensional super-

conductor with a p-wave pairing term that is proportional
to Δ, supporting two distinct topological phases. The two
values of the twist angle, Φ ¼ 0; π, physically correspond
to a magnetic flux equal to zero or half a flux quantum
threaded through the ring-shaped chain. These are the only
distinct flux values that are consistent with superconducting
flux quantization. It is useful to vary the boundary con-
ditions since, in the noninteracting case (V ¼ 0), which
corresponds to the exactly solvable spin-1/2 XY model, the
Loschmidt zeros can be labeled by the quasimomentum
km ¼ ð2πm −ΦÞ=L, with m ¼ 0;…; L − 1 [3]. Thus, by
using the two different values of Φ, we can sample the
thermodynamic lines of zeros twice as densely for a given
system size. It turns out that even in the interacting case
(V ≠ 0), it is useful to vary the boundary conditions for the
same reason.
We are now ready to investigate dynamical quantum

phase transitions in the interacting Kitaev chain. To this
end, we take, for the initial state jΨ0i, the ground state of

the Hamiltonian (10) with jμ=Jj > 1, which corresponds to
the topologically trivial phase, and we perform a quench
into the topological regime with jμ=Jj < 1 for later times,
t > 0. As shown in Fig. 2, from the Loschmidt cumulants,
we can find the complex zeros of the Loschmidt amplitude,
even with attractive (V < 0) or repulsive (V > 0) inter-
actions, for which an analytic solution is not available. In
the left column, we first consider the noninteracting case,
where the thermodynamic lines of zeros can be determined
analytically [3]. In panels (a) and (b), we show the zeros
found from the Loschmidt cumulants as the basepoint τ is
moved along the paths denoted by A and B, respectively,
while panel (c) shows the combined results. Remarkably,
the Loschmidt cumulants allow us to map out the thermo-
dynamic lines of zeros using chains of rather short lengths,
L ¼ 7–20, and thereby identify the crossing points with the
imaginary axis, corresponding to the real critical times,
where a dynamical phase transition occurs. The comparison
between the exact and the approximate zeros obtained from
the Loschmidt cumulants provides an important estimate of
the accuracy. In the worst cases, the accuracy is an order of
magnitude better than the size of the markers in Fig. 2 (see
Appendix B). We note that our choice of the paths in Fig. 2
was guided by our knowledge of the zeros in the non-
interacting case. However, more generally, without any
specific knowledge of a system, one may choose paths that
scan the complex plane, in particular, along the imaginary
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time axis and its immediate vicinity (since those zeros
determine whether and when the system exhibits a dynami-
cal phase transition).
Having benchmarked our approach in the noninteracting

case, we move on to the strongly interacting regime. In the
second column of Fig. 2, we show the Loschmidt zeros for
repulsive interactions, which tend to shift the critical
crossing point with the imaginary axis to earlier times.
A more dramatic effect is observed in the third and fourth

columns, where we gradually increase the attractive inter-
actions. In this case, the dynamical phase transition
happens at later times, and eventually, for sufficiently
strong interactions, the thermodynamic lines of zeros no
longer crosses the imaginary axis, implying the absence of
a dynamical phase transition.
While in the noninteracting limit the small systems

reproduce the thermodynamic lines essentially exactly,
interactions give rise to finite-size effects when two

(a)

(b)

(c) (f) (i) (l)

(e) (h) (k)

(d) (g) (j)

FIG. 2. Interacting Kitaev chain. We quench the chemical potential from the trivial phase μ ¼ −1.4 to the topological phase μ ¼ −0.2
for t > 0with fixedΔ ¼ 0.3 (all parameters and the inverse time τ−1 are expressed in units of J ¼ 1). (a)–(c) Complex zeros for different
system sizes (L ¼ 7–20) and boundary conditions (Φ ¼ 0; π) in the noninteracting case, compared with the exact thermodynamic lines
of zeros. Only the zeros within a finite range from the basepoint can be accurately obtained from the Loschmidt cumulants. This fact is
illustrated by moving the basepoint τ along two different paths [paths A and B in panels (a) and (b)]. Panel (c) combines the results from
panels (a) and (b). (d)–(f) Loschmidt zeros and critical times obtained with repulsive interactions (V > 0) along the two paths. The lines
of zeros for V ¼ 0 (dashed line) are shown for comparison. The critical time tc, shown in each panel as a red cross, is obtained as the
intersection between the imaginary axis and the line drawn from the zero τ− with the smallest negative real part (in absolute value) to the
zero τþ with the smallest positive real part. The error on the critical time is estimated as Δtc ¼ maxðjtc − Imτ−j; jtc − ImτþjÞ. (g)–(l)
Evolution of zeros and critical times with increasing attractive interactions (V < 0). For very strong interactions [V ¼ −1, panel (l)], the
zeros do not cross the imaginary axis, signaling the absence of a dynamical quantum phase transition. As discussed in Appendix B, the
numerical error in the zeros is of the order of 10−3.
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different lines come close. Despite that, sufficiently isolated
lines and segments, such as the ones that determine the
dynamical phase transitions in Fig. 2, remain scale invari-
ant. We stress that these results are obtained for very small
chains of lengths from L ¼ 10 to L ¼ 20, which, while
remarkable, is in line with similar observations for the Lee-
Yang zeros in classical equilibrium systems [44–47]. In
particular, for strongly interacting systems, the use of such
system sizes makes the approach very attractive from a
computational point of view, since direct calculations of the
Loschmidt amplitude typically require system sizes that are
an order of magnitude larger, in generic cases with an
exponential increase in the computational cost.

IV. SPIN-1 HEISENBERG CHAIN

The Kitaev chain from above possesses an exactly
solvable limit, which provides an important benchmark
for the use of the Loschmidt cumulants. However, generi-
cally, exact solutions are not available, which makes the
usefulness of the Loschmidt cumulants further evident. For
this reason, we now consider the spin-1 Heisenberg chain,
which harbors rich phase diagrams both with symmetry-
broken phases and a topological phase, the Haldane phase
[57]. The spin-1 Heisenberg chain is defined by the
Hamiltonian

Ĥ ¼
XL
j¼1

½JðŜxj Ŝxjþ1 þ Ŝyj Ŝ
y
jþ1Þ þ JzŜ

z
jŜ

z
jþ1�

þD
XL
j¼1

ðŜzjÞ2 þ B
XL
j¼1

ðŜj · Ŝjþ1Þ2; ð11Þ

where Ŝi are spin-1 operators; the exchange couplings
between neighboring spins are denoted by J and Jz, while
D and B characterize the single-spin uniaxial anisotropy
and the biquadratic exchange coupling, respectively. The
first line defines the spin-1 XXZ model, while for J ¼
Jz ¼ 3B and D ¼ 0, one obtains the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model, whose ground state is known
explicitly [58], despite the fact that the Hamiltonian (11) is
not exactly solvable. Again, we employ twisted boundary
conditions as defined in Eq. (9) for five different values of
the phase, Φ ¼ 0; π=4; π=2; 3π=4; π. We consider two
kinds of quenches in which different parameters in the
Hamiltonian (11) are abruptly changed at t ¼ 0.
In the first quench, we initialize the system in the AKLT

ground state, which is a representative of the topological
Haldane phase, and we evolve it with the Hamiltonian (11)
using the parameters B¼0, J ¼ Jz > 0, andD=J ¼ 2, 3, 4.
The ground states of the postquench Hamiltonians are
within the topologically trivial large-D phase. The same
quenches have been explored in Ref. [27] for system sizes

up to L ¼ 120 using matrix product states, providing us
with an important benchmark.
Figure 3 shows the Loschmidt zeros for finite system

sizes extracted from the Loschmidt cumulants for the first
quench. We use twisted boundary conditions to gauge
finite-size effects as the position of the Loschmidt zeros is
expected to become insensitive to the phase Φ for very
large systems. By contrast, for the relatively small system
sizes used in Fig. 3, finite-size effects are pronounced, in
particular, in panel (a), which shows the zeros for the
D=J ¼ 2 quench. This value is the closest to the critical one
Dc=J ≃ 1 (with J ¼ Jz and B ¼ 0) separating the Haldane
phase from the large-D phase [57], providing a plausible
reason for the enhanced finite-size effects. Importantly, as
discussed in Appendix D, the oscillatory pattern of zeros
for different system sizes and twist angles is highly regular,
which enables us to filter out the finite-size effects. In this
prescription, a thermodynamic line of zeros is approxi-
mated by the smooth line of zeros emerging at the twist
angle Φ ¼ π=2.
The critical times of the transition, obtained from the

crossings of the thermodynamic lines of zeros with the
imaginary axis [see panels (a1), (b1), (b2), (c1), and (c2) in
Fig. 3], are in excellent agreement with the critical times
obtained directly from the Loschmidt amplitude that was
calculated using state-of-the-art computations in Ref. [27].
However, in contrast to Ref. [27], which considers nearly
an order of magnitude larger systems, our results are
obtained from chain lengths up to L ¼ 16. This comparison
provides an illustration of the power of our method in
treating strongly correlated many-body systems.
While the exact correspondence between dynamical phase

transitions and the equilibrium phase transitions of the
respective model remains unknown [11], dynamical phase
transitions are often observed when the ground states of the
initial and final Hamiltonians belong to different equilibrium
phases. To explore this general scenario in the case of
transitions between a topological phase and a symmetry-
broken phase in a strongly correlated system, we solve, for
the first time, quenches between the topological Haldane
phase and the symmetry-broken Néel phase [57]. In Fig. 4,
we depict the Loschmidt zeros for the initial state with D ¼
B ¼ 0 and quenching Jz from Jz=J ¼ 1=2 to the final values
Jz=J ¼ 1, 2, 3, 4. The equilibrium quantum phase transition
occurs at the critical value Jz;c ≃ 1.2J [57]. Indeed, our
results confirm that no dynamical phase transition is
observed when Jz=J ¼ 1 since all the Loschmidt zeros have
a negative real part as shown in panel (a) of Fig. 4. By
contrast, for the other final values of Jz, which would put the
equilibrium system in the antiferromagnetic Néel phase,
dynamical phase transitions are observed. As in the first
quench, finite-size effects are suppressed for quenches,
where the final state resides deeper in the gapped phase.
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As we see in Figs. 4(e1)–4(e3), the Loschmidt zeros for
different system sizes and boundary conditions have a
structure similar to the one observed in the Haldane-to-
large-D quench. The same prescription as above irons out the

finite-size oscillations and results in a smooth approximation
of the thermodynamic lines of zeros. The critical times can
then be accurately read off from the data obtained for chain
lengths of L ≤ 16, as in the case of the first quench.

(a)

(a1) (b2)

(b1) (c1)

(c2)

(b) (c)

FIG. 3. Heisenberg chain. We quench the system from the Haldane phase to the large-D phase. The initial state is the ground state of
the model (11) with J ¼ Jz ¼ 3B andD ¼ 0 (the AKLT state [58]). For the postquench Hamiltonian, we set B ¼ 0, whileD can take the
values 2, 3, or 4. Here, J ¼ Jz ¼ 1 is the unit of energy and inverse time. (a) Loschmidt zeros for D ¼ 2. Panel (a1) is a magnified view
of the area within the black rectangle in panel (a). From panels (a) and (a1), one can clearly see how the position of a Loschmidt zero for
fixed L depends on the twist angleΦ, which is a finite-size effect. It is also useful to consider a fixed twist angle and vary the system size
as in the case of the zeros connected by the dash-dotted line in panel (a1) (Φ ¼ 0, L ¼ 13, 14, 15, 16). The finite-size dependence is
suppressed for the zeros corresponding to the twist angle Φ ¼ π=2, defining the effective thermodynamic line of zeros (solid line, see
Appendix D). The critical time, determined by the crossing of the effective line with the imaginary axis, is in excellent agreement with
the result of Ref. [27] (red bar) obtained using matrix product states (MPS). (b,c) Same as in panel (a) but with D ¼ 3, 4. Finite-size
effects are suppressed with increasing D. In panels (b1), (b2), (c1), and (c2), the crossings of the effective thermodynamic lines of zeros
with the imaginary axis are shown and compared again with the critical times obtained in Ref. [27].
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V. EXPERIMENTAL PERSPECTIVES

In the previous sections, we focused on using the
Loschmidt cumulants for predicting dynamical phase tran-
sitions based on numerical calculations. However, aswe now
discuss, our approach also provides perspectives for future
experiments. We show that it is possible to predict the first
critical time of a quantum many-body system by measuring
the fluctuations of the energy in the initial state. We also
discuss the prospects of implementing our method on a near-
term quantum computer with a small number of qubits.
The Loschmidt moments are generally complex-valued,

and it is not obvious how they can be measured. However,
at the initial time, τ ¼ 0, the Loschmidt moments simplify
to the moments of the postquench Hamiltonian with respect

to the initial state as hĤni0 ¼ hΨ0jĤnjΨ0i. Thus, by repeat-
edly preparing the system in the state jΨ0i andmeasuring the
energy given by the postquench Hamiltonian Ĥ, one can
construct the distribution of the energy and extract the
corresponding moments and cumulants. From the cumu-
lants, it is then possible to extract the closest Loschmidt
zeros, as demonstrated in Fig. 5, following a quench in a
Heisenberg chain of lengthsL ¼ 5;…; 9. From these results,
wepredict the critical time to be around tc ≃ 0.42 as indicated
by a red cross. This perspective is fascinating: By measuring
the initial energy fluctuations, it is possible to predict the later
time at which a dynamical phase transition will occur.
The idea behind such an experiment does not depend in

detail on the actual physical implementation, and from a

(a)

(e1)

(e2)

(e3)

(b)

(e)

(f)
(g)

(f)

(g)

(c) (d)

FIG. 4. Quench from the Haldane phase to the Néel phase. The initial state is the ground state of the model (11) with Jz=J ¼ 1=2 and
D ¼ B ¼ 0. The quench is performed by changing the parameter Jz to the values Jz ¼ 1, 2, 3, 4 (in units of J). (a) Loschmidt zeros for
the quench to Jz ¼ 1, which is not sufficiently large to reach the Néel phase. In this case, the zeros do not cross the imaginary axis, and
no dynamical phase transition occurs. (b)–(d) Similar to panel (a), but with Jz ¼ 2, 3, 4. In this case, several dynamical phase transitions
occur as shown, for example, in panels (e1)–(e3), (f), and (g). The critical times are shown as red crosses and are estimated as done in
Fig. 3 using the zeros for Φ ¼ π=2 only (see Appendix D for details).
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practical point of view, different platforms may provide
certain advantages. We expect, for example, that an experi-
ment could be realized with atoms in optical lattices [59] or
with spin chains on surfaces [60], systems that both offer a
high degree of control and flexibility. As illustrated in
Fig. 5, it will be necessary to measure the high cumulants of
the energy fluctuations. For large systems, accurate mea-
surements of high cumulants are challenging since the
central-limit theorem dictates that distributions tend to be
Gaussian with nearly vanishing high cumulants. However,
for the small systems that we consider, the situation is
different, and several quantum transport experiments have
measured cumulants of up to order 20 [61,62] and used
them for determining the zeros of generating functions
[63,64], which are similar to the Loschmidt amplitude.
Thus, an experimental determination of Loschmidt zeros
for small interacting quantum systems appears feasible with
current technology.

Our method may also be implemented on small near-
term quantum computers, which are now becoming avail-
able. Such quantum computers allow for the specific
tailoring of any desired Hamiltonian and for time-evolving
an initial state both in real and imaginary time [65,66].
Thus, it will be possible to evaluate a time-evolved state of
the form jΨðτÞi ¼ e−τĤjΨ0i and subsequently calculate the
Loschmidt moments hĤniτ ¼ hΨ0jĤnjΨðτÞi=hΨ0jΨðτÞi
and the corresponding cumulants from which the
Loschmidt zeros are obtained. Again, the favorable scaling
properties of our method become important, as they make it
possible to predict the critical times of a quantum many-
body system with only 10 to 20 constituents. Such sizes can
soon be simulated on quantum computers with a limited
number of qubits.

VI. CONCLUSIONS

We have demonstrated that Loschmidt cumulants are a
powerful tool to unravel dynamical phase transitions in
strongly interacting quantum many-body systems after a
quench, making it possible to accurately predict the critical
times of a quantum many-body system using remarkably
small system sizes. Using modest computational power, we
have explored dynamical phase transitions in the Kitaev
chain and the spin-1 Heisenberg chain with a specific focus
on the role of strong interactions. As we have shown, our
approach circumvents the existing bottleneck of computing
the full nonequilibrium dynamics of large quantum many-
body systems, and instead, we track the zeros of the
Loschmidt amplitude in the complex plane of time
in a spirit similar to the classical Lee-Yang theory of
equilibrium phase transitions. As such, our approach paves
the way for systematic investigations of the far-from-
equilibrium properties of interacting quantum many-body
systems, and we foresee many exciting perspectives ahead.
In particular, our method can immediately be applied to
dynamical phase transitions in dimensions higher than one,
and the ease of implementing it may be critical for
comprehensive investigations of the finite-size scaling
close to a dynamical phase transition. We have also shown
that our approach paves the way for exciting experimental
developments by making it possible to predict the first
critical time of a quantum many-body system in the
thermodynamic limit by measuring the initial energy
fluctuations in a much smaller system. In addition, because
of the favorable scaling of our method, it seems feasible
that it can be implemented on a near-term quantum
computer with a limited number of qubits. In a broader
perspective, the advances presented here may not only be
useful for understanding the dynamical nonequilibrium
properties of large quantum systems. They may also be
helpful in designing novel quantum materials with specific,
desired properties.

FIG. 5. Determination of the critical time from the initial energy
fluctuations. Loschmidt zeros for the Heisenberg chain (11) are
obtained from the energy fluctuations in the ground state of the
model for J ¼ Jz ¼ 3B andD ¼ 0 at the initial time τ ¼ 0, while
the energy is determined by the postquench Hamiltonian with
B ¼ 0 and D ¼ 4. Here, J ¼ Jz ¼ 1 is the unit of energy and
inverse time. The zeros correspond to chains of lengths
L ¼ 5;…; 9, and in the upper (lower) panel, we have extracted
the zeros using energy cumulants of orders n ¼ 4;…; 14
(n ¼ 8;…; 19). Importantly, the zeros converge to their exact
positions with increasing cumulant orders as can be seen by
comparing the panels. The gray line corresponds to the zeros in
panel (c1) of Fig. 3, and the estimate of the critical time is
indicated with a red cross.
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APPENDIX A: DETERMINATION OF
LOSCHMIDT ZEROS

Here, we present the basic idea of the method used to
extract the Loschmidt zeros from the Loschmidt cumulants.
More details on the specific procedure employed to obtain
the results shown in Figs. 2–4 are provided in Appendix B,
where we, for instance, explain how we estimate the error
that affects the approximate zeros extracted with our
method.
In Eqs. (3) and (7), repeated zeros are allowed such that

every distinct zero appears in the series (7) as many times as
its multiplicity. In the following, it is convenient to use a
different labeling of the Loschmidt amplitude zeros in
which the index k runs over the distinct zeros (τk ≠ τk0 for
k ≠ k0), and also to denote by dk the multiplicity of the kth
zero. Using this convention, Eq. (7) becomes

κnðτÞ ¼
X∞
k¼0

dk
ðτk − τÞn ≃

Xm−1

k¼0

dkλnk: ðA1Þ

On the right-hand side, we have introduced λk ¼ 1=ðτk − τÞ
and truncated the sum to the m zeros closest to the
basepoint. This is a good approximation for large n since
the contribution of each zero to the normalized cumulant
κnðτÞ is suppressed by its inverse distance to the basepoint
raised to the power of the cumulant order.
We now determine the zeros of the Loschmidt amplitude

based on the fact that, if Eq. (A1) were exact, the
normalized cumulants would satisfy a homogeneous linear
difference equation of degree m of the form

κn ¼ a1κn−1 þ a2κn−2 þ � � � þ am ðA2Þ

for some coefficients al. Indeed, the general solution of
Eq. (A2) is given by the right-hand side of Eq. (A1), where
λk are the roots of the characteristic equation associated
with Eq. (A2) [see Eq. (A4) below], and dk can be arbitrary
coefficients due to linearity. This observation is crucial for
inverting Eq. (A1) and extracting the zeros from the
cumulants, as we explain below. We note that Eqs. (A1)
and (A2) are exact only if the Loschmidt amplitude ZðτÞ is
a polynomial withm distinct zeros. In this case, the method
provides exactly all the zeros of ZðτÞ, independently of the
cumulant orders used. In the general case, where ZðτÞ is an
entire function, the method provides approximate zeros τðnÞk
that depend on the cumulant orders and converge to the
exact zeros for n → ∞. Associated with the approximate
zeros, the method also provides a sequence of approximate

multiplicities dðnÞk for each k, which converges to the exact
multiplicity dk.
The first step of the method is to compute the coefficients

al¼1;…;m in Eq. (A2). This process can be done by solving a
linear system ofm equations, which requires the knowledge
of 2m consecutive cumulants (κl, with n −m ≤ l ≤
nþm − 1) and takes the form

0
BBBBBBBB@

κn−1 κn−2 … κn−mþ1 κn−m

κn κn−1 … κn−mþ2 κn−mþ1

..

. ..
. . .

. ..
. ..

.

κnþm−3 κnþm−4 … κn−1 κn−2

κnþm−2 κnþm−3 … κn κn−1

1
CCCCCCCCA

0
BBBBBBBB@

aðnÞ1

aðnÞ2

..

.

aðnÞm−1

aðnÞm

1
CCCCCCCCA

¼

0
BBBBBBBB@

κn

κnþ1

..

.

κnþm−2

κnþm−1

1
CCCCCCCCA
: ðA3Þ

The square matrix on the left-hand side is a Toeplitz matrix. With the notation aðnÞl , we emphasize that the coefficients of the
linear difference equation obtained from Eq. (A3) depend on the cumulant orders used, since Eqs. (A1) and (A2) are
approximations, in general.
The second step is to solve the characteristic equation associated with the linear difference equation (A2),

λm − aðnÞ1 λm−1 − aðnÞ2 λm−2 − � � � − aðnÞm−1λ − aðnÞm ¼ 0; ðA4Þ
which is a polynomial equation in λ. This step provides them characteristic roots λðnÞk¼0;…;m−1 of the difference equation (A2).

Then, the approximate zeros are obtained from the relation τðnÞk ¼ τ þ 1=λðnÞk . In Eq. (A3), we have suppressed the
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dependence of the cumulants κnðτÞ on the basepoint τ at which they are calculated [see Eqs. (7) and (A1)]. However, we

emphasize that the approximate zeros τðnÞk depend, in general, not only on the cumulant orders used in Eq. (A3) but also on
the basepoint τ. As an example, by explicitly solving Eqs. (A3) and (A4) in the case m ¼ 2, one obtains

ðτðnÞ0 − τÞ þ ðτðnÞ1 − τÞ ¼ κnκn−1 − κn−2κnþ1

κ2n − κnþ1κn−1
;

ðτðnÞ0 − τÞðτðnÞ1 − τÞ ¼ κ2n−1 − κnκn−2
κ2n − κnþ1κn−1

; ðA5Þ

where τðnÞ0 and τðnÞ1 are two sequences that converge for n → ∞ to the two closest zeros τ0 and τ1 (≠ τ�0, in general).
The third and final step is the calculation of the coefficients dðnÞk by solving the following linear system of equations,

0
BBBBBBBB@

1 1 … 1 1

λ0 λ1 … λm−2 λm−1

..

. ..
. . .

. ..
. ..

.

λm−2
0 λm−2

1 … λm−2
m−2 λm−2

m−1

λm−1
0 λm−1

1 … λm−1
m−2 λm−1

m−1

1
CCCCCCCCA

0
BBBBBBBB@

dðnÞ0 λn0

dðnÞ1 λn1

..

.

dðnÞm−2λ
n
m−2

dðnÞm−1λ
n
m−1

1
CCCCCCCCA

¼

0
BBBBBBBB@

κn

κnþ1

..

.

κnþm−2

κnþm−1

1
CCCCCCCCA
; ðA6Þ

where we have dropped the superscript from λðnÞk in the
above equation to ease the notation. The matrix on the left-
hand side is a Vandermonde matrix, which is invertible, if

all the λðnÞk are distinct. Again, we emphasize that the

approximate multiplicities dðnÞk depend on the chosen
cumulant orders and on the basepoint; moreover, they
are not exactly integers, in general, since Eqs. (A1) and
(A2) are approximations. The remarkable property of the

coefficients dðnÞk obtained from Eq. (A6) is that they

converge to the respective multiplicities dðnÞk → dk for

n → ∞, together with the approximate zeros τðnÞk → τk.
We use this fact to select the approximate zeros that are the
best approximations of the exact zeros when the basepoint
is varied, as discussed in Appendix B.

APPENDIX B: EXTRACTING LOSCHMIDT
ZEROS—NUMERICAL CONVERGENCE AND

ERROR ESTIMATES

In order to obtain accurate approximations of the exact
zeros, one can increase the cumulant order [the parameter n
in Eq. (A3)] to observe the convergence of the approximate

zeros τðnÞk . However, we use a different procedure in our
work, which is almost automatic and has proven particu-
larly effective for investigations of dynamical quantum
phase transitions. The idea is based on the fact that the
approximate multiplicities obtained from Eq. (A6) con-

verge to the exact multiplicities dðnÞk → dk concomitantly

with the approximate zeros τðnÞn → τk. Indeed, in the case
where the exact zeros τk and their multiplicities dk are

known in advance (for instance, the Kitaev chain with

V ¼ 0), we have observed that the distance jτðnÞk − τkj is
approximately linearly proportional to jdðnÞk − dkj. This fact
is extremely useful as it allows us to automatically select the

τðnÞk that are good approximations of the exact zeros. This
selection process is done by retaining only the pairs

ðτðnÞk ; dðnÞk Þ for which jdðnÞk − lj < r, where r is a fixed
threshold and l is a chosen integer. This condition appears

to be necessary but not sufficient to guarantee that τðnÞk is a
good approximation of τk. Indeed, the approximate zero of a

pair ðτðnÞk ; dðnÞk Þ may not be a good approximation of any

exact zero even if the condition jdðnÞk − lj < r is satisfied for
some integer l. However, this kind of false positive is, in
practice, quite rare for small enough r and can be easily
detected and discarded by applying the method at different
basepoints, as explained below. The variant of the method in
the case of a pair of conjugate zeros (τ0 ¼ τ�1, m ¼ 2) was
applied earlier to study critical phenomena in classical
equilibrium problems [44–47], and here, we have extended
the method to an arbitrary number of zeros, which are not
necessarily pairwise conjugate. These advancements are
crucial and have allowed us to apply the cumulant method
to the study of dynamical quantumphase transitions. The use

of the coefficients dðnÞk for selecting the best approximate
zeros is also a new technique, which makes the method very
practical and efficient for the prediction of dynamical
quantum phase transitions and is used for the first time in
this work.
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The results shown in Figs. 2–4 have been obtained by
evolving the initial state along the imaginary axis in the
complex τ plane [path A in Fig. 2(a)]. In the case of the
Kitaev chain, we also perform the time evolution along path
B [see Fig. 2(b)], a straight path starting at τ ¼ 0 and
ending at τ ¼ −4þ 6i. In this way, we can map out zeros in
different regions of the complex plane. The intermediate
values of τ along the evolution path are the basepoints at
which the cumulants are computed. We use a fine grid in
which adjacent basepoints are at a distance δτ ¼ 0.001. For
each basepoint τ, we apply Eqs. (A3), (A4), and (A6) using
cumulants κnðτÞ from n ¼ 9 to n ¼ 22, and we obtain m ¼
7 distinct approximate zeros τðjÞk¼0;…;6 and corresponding

coefficients dðjÞk¼0.;…;6. Here, we change the notation

slightly: The superscript in the pair ðτðjÞk ; dðjÞk Þ labels the
distinct basepoints here because the cumulant orders used
in the method are kept fixed in this case and only the
basepoint is varied along the path.
As explained above, we select only the pairs ðτðjÞk ; dðjÞk Þ

for which jdðjÞk − 1j < r ¼ 0.01. We have not found zeros
with multiplicity l > 1 in the systems considered in our
work. After this selection step, one can visually verify that
the approximate zeros tend to agglomerate in well-sepa-
rated clusters. In the case where the Loschmidt amplitude
can be computed analytically and the exact zeros are known
[the Kitaev chain with V ¼ 0 [3], Figs. 2(a)–(c)], one can
also see that each cluster corresponds to one of the exact
zeros. We use the standard k-means++ clustering algorithm
[67] to classify the approximate zeros in distinct clusters.
This algorithm requires that we manually introduce the
number of clusters, which can be estimated by visual
inspection. Each cluster obtained in this way typically

consists of hundreds or thousands of pairs ðτðjÞk ; dðjÞk Þ.
Clusters with less than ten pairs are discarded to eliminate
any false positives.
Finally, within each cluster, we select the pair ðτðjÞk ; dðjÞk Þ

for which jdðjÞk − 1j takes its smallest value. The approxi-

mate zero τðjÞk of this pair gives the best estimate of the
location of one zero. Indeed, we have observed, in exactly
solvable cases, that the same pair also minimizes the

distance jτðjÞk − τkj from the closest exact zero. Notice that
one can generally resolve more thanm zeros in a single run
of time evolution by using the above procedure since
different zeros are resolved for different basepoints.
The standard deviation s of the real and imaginary parts

of the approximate zeros within each cluster provides a
rough estimate of the error, i.e., the distance from the exact
zero. Typically, we obtain s ≈ 10−3 using the procedure
presented above. By comparison with the exact solution,
we have verified that this is a reasonable estimate or even an
overestimation in most cases. Another way to estimate the
error is to compare the zeros obtained by evolving along
different paths as in Figs. 2(a)–2(c). Often the same exact

zero can be resolved by using both paths, and thus one
obtains two different estimates of its location, whose
distance is an estimate of the error. The error estimate
obtained in this way turns out to be essentially the same as
the one obtained from the cluster standard deviation. An
error of order 10−3 is not visible on the scale of Figs. 2–4
since it is an order of magnitude smaller than the size of the
markers. Therefore, the fact that in the interacting case the
zeros seem not to be organized in well-defined lines [in
contrast to the noninteracting case in Figs. 2(a)–(c)] has to
be entirely attributed to finite-size effects and not to the
approximate nature of the zeros obtained with our method.

APPENDIX C: KRYLOV SUBSPACE METHOD

The evolution along a straight path in the complex τ
plane is performed by using the standard Krylov subspace
method [54,55]. A time step δτ in the evolution is
performed by first computing an orthonormal basis B ¼
fjv0i ¼ jΨðτÞi; jv1i;…; jvNvec

ig of the Krylov subspace,

KNvec
¼ SpanfĤnjΨðτÞijn ¼ 0;…; Nvecg: ðC1Þ

We use the QR decomposition to compute the orthonormal
basis ofKNvec

to ensure that there is no loss of orthogonality
as in the standard Lanczos algorithm [55]. Then, the
approximate time-evolved state is obtained as

jΨðτ þ δτÞi ≃ e−δτĤeff jΨðτÞi; ðC2Þ

where Ĥeff is the effective Hamiltonian, which is an operator
that acts on the Krylov subspace and whose matrix elements
are given by hvijĤjvji with jvii ∈ B. It is represented by a
square matrix of dimension Nvec þ 1 whose exponential is
easy to evaluate since we take Nvec ¼ 8 in our case. As
suggested in Sec. 5 of Ref. [55], the effective Hamiltonian is
forcibly set to be a tridiagonal matrix to improve stability.
In order to estimate the accuracy of Eq. (C2), we perform

the time evolution on two Krylov subspacesKN0
vec
andKN00

vec

with N0
vec þ 1 ¼ N00

vec ≤ Nvec and compute the distance
between the approximate evolved statesd ¼ kjΨ0ðτ þ δτÞi−
jΨ00ðτ þ δτÞik2. Ifd < 10−10, the state jΨ00ðτ þ δτÞi is stored
and used to evaluate the moments of the Loschmidt ampli-
tude according to hĤniτþδτ ¼ hΨ0jĤnjΨ00ðτ þ δτÞi. On the
other hand, if for a given δτ the condition is not satisfied even
for N00

vec ¼ Nvec, the Krylov subspace KNvec
in Eq. (C1) is

recomputed using, as the seed state, the last stored vector
jΨ00ðτ þ δτÞi. Thewhole process is repeated up to the desired
final τ.
An important advantage of the Krylov time evolution

algorithm described above is that intermediate values of τ
along the evolution path are easily accessible at a negligible
computational cost. We take advantage of this fact to
compute the cumulants on a fine grid of basepoints along
the evolution path. The computationally expensive part of
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the method is the calculation of the Krylov subspace (C1).
In order to compute the moments and the cumulants, a
larger Krylov subspace (Nvec ¼ 22 in our case) has to be
calculated only at τ ¼ 0. This is a small numerical overhead
since the Krylov subspace has to be recalculated many
times during the evolution. With the specific parameters
given above, we find, by comparison with exactly solvable
cases, that the cumulants are computed with a relative
precision of 10−9, which is sufficient for our purposes.

APPENDIX D: TWISTED BOUNDARY
CONDITIONS

The twisted boundary conditions that we employ are
known as a tool to filter out finite-size effects. For example,
twisted boundary conditions have been employed to
analyze energy-level crossings related to quantum phase
transitions in spin-1 systems [68]. Here, we discuss how
these boundary conditions can also help to gauge finite-size
effects in the Loschmidt zeros. For the Haldane chain,
Eq. (11), the spectrum exhibits a 1=L dependence on the
boundary conditions [68]. Thus, the Loschmidt zeros,
determined by the spectrum of the Hamiltonian, are
independent of the boundary conditions for sufficiently
large system sizes, which is a reasonable assumption for
most naturally occurring systems. However, one may, in
principle, envision situations that deviate from this generic
behavior, and one may even construct specific examples
that do [69]. On the other hand, in finite systems, the many-
body energies EiðΦÞ depend on the twist angle Φ, in
particular, the highly excited states. The Loschmidt zeros
inherit this property—a single zero, say τk, gives rise to a
multiplet of zeros τkðΦÞ corresponding to different values
of Φ as seen in Fig. 3 [in particular, see panel (a1)] and in
Fig. 4. Fortunately, we observe a regular pattern, which can
be employed as a diagnostic tool. Specifically, all EiðΦÞ are
even functions of Φ, having their extreme values at Φ ¼ 0
or Φ ¼ π. As seen in Fig. 3(a1), the boundary points of the
multiplets of zeros exactly correspond to Φ ¼ 0 or Φ ¼ π.
In the thermodynamic limit, these multiplets converge to a
single point, τk, for all angles Φ.
A natural question is how one can obtain the best

approximation for the thermodynamic line of zeros. It is
reasonable to expect that the line is situated between the
extreme zeros at the twist anglesΦ ¼ 0 and π. The curve of
zeros corresponding to a general value of Φ exhibits size-
dependent oscillations around the mean value as seen in
Fig. 3(a1) by the zigzag line corresponding to Φ ¼ 0.
However, these finite-size oscillations are suppressed for
zeros corresponding to the twist angle Φ ¼ π=2, which
form a smooth curve. This observation suggests that the
twist angle Φ ¼ π=2 is special and that it is the best
approximation for the thermodynamic line of zeros. This
prescription is independently supported by the remarkable
agreement between the critical times that we obtain and the
results of Ref. [27], which are also indicated in Fig. 3. A

similar pattern is observed for the quench from the Haldane
to the Néel phase in Fig. 4, providing further support for
approximating the thermodynamic lines of zeros using the
zeros corresponding to the boundary condition Φ ¼ π=2.
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