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The fluctuations in thermodynamic and transport properties in many-body systems gain importance as
the number of constituent particles is reduced. Ultracold atomic gases provide a clean setting for the study
of mesoscopic systems; however, the detection of temporal fluctuations is hindered by the typically
destructive detection, precluding repeated precise measurements on the same sample. Here, we overcome
this hindrance by utilizing the enhanced light-matter coupling in an optical cavity to perform a minimally
invasive continuous measurement and track the time evolution of the atom number in a quasi-two-
dimensional atomic gas during evaporation from a tilted trapping potential. We demonstrate sufficient
measurement precision to detect atom-number fluctuations well below the level set by Poissonian statistics.
Furthermore, we characterize the nonlinearity of the evaporation process and the inherent fluctuations of
the transport of atoms out of the trapping volume through two-time correlations of the atom number. Our
results establish coupled atom-cavity systems as a novel test bed for observing thermodynamics and
transport phenomena in mesoscopic cold atomic gases and, generally, pave the way for measuring

1,23

multitime correlation functions of ultracold quantum gases.

DOI: 10.1103/PhysRevX.11.041017

I. INTRODUCTION

Tracking out-of-equilibrium dynamical processes and
their fluctuations in mesoscopic systems is central to
thermodynamics at intermediate scales [1,2] and transport
in solid-state systems [3]. For example, current fluctuations
in mesoscopic electronic devices reveal the charge quan-
tization of elementary or emergent particles, shedding light
on the underlying microscopic physics [4,5]. Advanced
experimental control and precise measurements make
ultracold atomic gases an ideal test bed for studying
transport phenomena with solid-state analogs and beyond
[6-8]. Furthermore, the achievable system sizes, ranging
from single to millions of atoms in different setups,
naturally provide access to explore the mesoscopic domain
with ensembles of cold atoms.
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However, solid-state and ultracold-atom mesoscopic
systems differ in their fragility against measurement.
Solid-state devices are coupled to large thermal reservoirs,
which rapidly dissipate the backaction of measurement, and
are refreshed with large particle reservoirs. In contrast,
ultracold-atom systems are well isolated from thermal
environments. Technical and backaction disturbance from
measurement, such as from optical force fluctuations
caused by light scattering, is absorbed within the meso-
scopic system itself and can change the properties of the
system significantly. Thus, the measured fluctuations
within a mesoscopic cold-atom system can be strongly
altered by continuous or stroboscopic measurements per-
formed on the system. Accessing real-time information in
such systems, therefore, requires strategies to maximize the
extracted information for a given heating rate associated
with the measurement.

The enhanced atom-light interaction in high-finesse
optical cavities [9] provides a means for performing
minimally invasive, extremely sensitive measurements on
atomic gases. Demonstrations span from recording tran-
sient signals of single or few atoms passing through an
optical cavity [10,11] to measurements on static and
dynamically evolving mesoscopic trapped atomic ensem-
bles [12—17] or the probing of dynamical evolution of novel
states of matter realized in the cavity [18-20]. Cavity-
enhanced dispersive atom-number measurements have
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been proposed as a noninvasive probe for dynamical and
transport phenomena in mesoscopic samples [21-23]. The
achievable precision surpasses that of stroboscopic free-
space dispersive measurements, which have been per-
formed on macroscopic atomic gases with greater capacity
than mesoscopic gases to absorb backaction disturbance
[24-27]. Cavity-enhanced atom-number readout with sin-
gle-atom precision has been demonstrated but was accom-
panied by strong disturbance that precluded repeated
measurement on the gas [13].

In this work, we employ cavity-enhanced measurements
to continuously track the nonequilibrium process of evapo-
rative cooling [28-32] of a mesoscopic sample for long
evolution times, which allows us to probe temporal
correlations at all times under observation. Evaporative
cooling occurs in a gas of temperature 7" and atom number
N when collisions drive atoms to energies above the finite
trap depth U, whereupon these atoms escape the trap,
reducing the number of atoms remaining as well as their
temperature. The ensuing dynamics depend on dimension-
ality, atom number, and temperature of the gas, all features
also at the heart of transport phenomena studied with
destructive measurements [21]. A simple model captures
the interplay between temperature and atom number in an
evaporatively cooled atomic ensemble [30]: To evaporate
from the trap, atoms have to be collisionally transferred to
the high-energy tail of the Maxwell-Boltzmann distribu-
tion, such that the average evaporation rate N o —pe™
depends exponentially on n = U/kgT. This constraint
implies that samples with initially higher temperature
evaporate atoms more quickly than samples with lower
temperature. Moreover, due to the density-dependent ther-
malization rate of an evaporatively cooled gas [29,30] and
the presence of three-body collisions [33], the evaporation
dynamics can be expected to be nonlinear in atom number.
In the course of evaporative cooling, thermodynamic
properties of the trapped atomic gas also undergo stochastic
fluctuations. For example, a linear single-particle loss
process results in a binomial partition of the gas between
trapped and untrapped populations, with fluctuations
described by the binomial distribution. Nonlinearity asso-
ciated with few-body loss processes, and also the nonlinear
dependence of evaporative cooling on instantaneous atom
number and temperature, can be expected to modify these
fluctuations, which are particularly pronounced in meso-
scopic systems.

Here, we observe the nonequilibrium dynamics of an
ultracold quantum gas during forced evaporation in a tilted
trap potential by collecting real-time traces of the atom-
number dynamics [see Fig. 1(a)]. We utilize the enhanced
optical cross section of atoms coupled to a single mode of a
high-finesse optical cavity to perform minimally invasive
high-precision atom-number measurements. In particular,
we reveal two distinct dynamical regimes during evapora-
tion: first, a superlinear regime driven by temperature

variations early in the evaporation process and, second, a
sublinear regime when these variations are damped away.
Furthermore, we directly observe the temporal growth of
stochastic fluctuations inherent in the evaporative cooling
process itself.

II. DISPERSIVE ATOM-NUMBER READOUT

The principle of continuous dynamical dispersive atom-
number readout of our atomic cloud is illustrated in Figs. 1(b)
and 1(c). We consider a cloud of atoms that is localized at the
intensity maximum of the standing wave formed by a probe
beam coupled into the TEM,;, mode of a Fabry-Perot optical
cavity. The cavity resonance is at a frequency w, in the
absence of atoms, which are coupled to the cavity with a
single-atom vacuum Rabi coupling g on an optical transition
with frequency w,, linewidth I', and atom-cavity detuning
A,=w,—w, In the dispersive limit, where
|Acq| > V/Ng>T, the presence of N atoms causes a
frequency shift of the lightlike mode of the coupled atom-
cavity system by an amount proportional to the atom number
[12-14]:
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We detect this dispersive shift by feedback stabilizing the
frequency of the weak cavity probe to the side of fringe of the
cavity transmission, realizing a continuous quantum non-
demolition measurement of the atom number [14]. During
the measurement, the probe power in the cavity is held
constant at a level characterized by the intracavity photon
number n = P/(2hw_ ke, ), where k denotes the cavity half
linewidth, P is the power transmitted through the cavity, and
€, quantifies the photon extraction efficiency. The frequency
shift of the cavity resonance is extracted through the feedback
signal; see Figs. 1(b) and 5. We use knowledge of ¢
[12,16,34] and A, to calculate the dispersive cavity shift
due to a single atom, A, and estimate the instantaneous
“equivalent atom number” N(t) = Ay, /A [see Fig. 1(d)],
where “equivalent” reflects a slight reduction of the vacuum
Rabi coupling in our experiment (see the Appendix A) and is
implied if not stated explicitly otherwise.

We monitor the evolution of the intracavity gas during
evaporation dynamics initiated by an applied magnetic field
gradient [35]; see Fig. 1(a). In the following, we discuss
different quantities used to extract dynamics, measurement
noise, and intrinsic fluctuations from our data. Commonly
adopted measures to quantify the imprecision in the real-
time measurement for different integration times are the
Allan  deviation AN(z) = [{(N.(t;11) — N.(t;))?)/2]'/?
[12,13] or the corresponding Allan variance AN?. Here,
the trace N,(f;) is obtained by low-pass filtering the full
trace N(¢) with an integration time = and then resampling at
discrete times ¢; separated by time intervals of length z. The
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FIG. 1. Experimental setup and measurement imprecision. (a) Schematic of the tilted evaporation of atoms (red) with temperature 7" in

the trap potential (blue) with dynamically lowered depth U. Atoms with energies exceeding the trap depth are spilled. (b) The atoms
dispersively couple to the cavity, resulting in an atom-number-dependent shift Ay of the transmission line shape (blue solid traces)
compared to an empty cavity (blue dashed line). Tracking the side of fringe (marked by a red dot and line) provides a dynamical
measurement of atom number. (c) The cavity resonance is tracked using a feedback loop involving the cavity-coupled atomic cloud
(dark red), located at the intensity maximum of a probe beam in the cavity (light red). The transmitted intensity of probe light is detected
using a heterodyne receiver with local oscillator (LO) and a radio-frequency power detector (Det). This power is kept constant using a
feedback loop (PID) adjusting the frequency of probe and LO through an acousto-optic modulator (AO). The atom number is derived
from an in-loop measurement of the voltage used to adjust a voltage controlled oscillator driving the AO. (d) A single unfiltered trace of
equivalent atom number N versus time with the filter procedure indicated (gray shaded areas). (e) The Allan deviation AN is dominated
by photonic shot noise for small integration times 7 and by dynamics of the atom number for large z. A low-pass filter of the traces with
optimal integration time 7 minimizes the noise associated with both effects. The solid lines represent guides to the eye. Larger photon
number 7 [orange, n = 1.9(1); blue, n = 3.2(1); red, n = 6.0(1); green, n = 9.7(1)] results in reduced shot noise but also faster loss of
the atoms and, therefore, increased imprecision at longer integration times. The colored ticks mark the noise level set by Poissonian
statistics for our lowest measured mean atom number for each n. The light symbols show a reduced Allan deviation, where the average

dynamics is subtracted from each trace before calculating AN.

angle brackets denote the average over all i. Photon shot
noise limits the measurement precision of the dispersive
cavity shift for short integration times; see Fig. 1(e). For
integration times above approximately 1 ms, the dynamics of
the evaporation process start dominating the Allan deviation.
Choosing such a long integration time leads to a loss of
information about the dynamical system under observation.
As a consequence, the dynamics set an upper bound on the
achievable integration times and, therefore, suppression of
photonic shot noise in the measurement; see Appendix D.
Despite this result, the minimal imprecision and, therefore,
the measurement noise of our cavity-assisted detection are
well below the level set by Poissonian fluctuations of size

/N for N atoms for all measured traces and all times
presented in the following; see Fig. 1(e). The effect of
dynamics on the optimal integration time can be mitigated by
subtracting the average dynamics from each trace. The
reduced Allan deviation calculated from these subtracted
traces lacks the strong increase toward longer integration
times, such that, in this case, the optimal integration times are
typically longer; see Fig. 1(e). As described in detail below, a

generalization of this method with an adjusted time separa-
tion between the two integration intervals detects the intrinsic
stochastic fluctuations inherent in a dynamically evolving
system.

We start our experiment with an atomic cloud of about
2200 8’Rb atoms with a mean temperature of approximately
Ty = 2.6 uK. The gas is prepared in its hyperfine state
|F,mp) = |2,2) and is trapped predominantly in a single
well of a far-detuned optical lattice potential with an initial
depth Uy/kg = 31(1) K in an optical cavity [16,34,36].
The lattice provides strong confinement in the z direction
with a trapping frequency of w./2z = 91(2) kHz, putting
the gas in the quasi-two-dimensional regime Aw, > kpT.
At these parameters, we estimate the phase-space density to
be 0.3, close to the quantum degenerate regime. Crucially,
accurate positioning of the atomic cloud along the cavity
axis at the peak of the probe standing wave maximizes the
atom-cavity coupling, renders it nearly identical for all
atoms, and minimizes optomechanical backaction heating
[36,37]. The cavity length is stabilized such that its
resonance frequency is kept at a near-constant red detuning
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FIG. 2. Two-time correlations of atom numbers from real-time trajectories. (a) Traces of equivalent atom number N versus observation
time ¢, calculated from the number-dependent cavity shift, for varying intracavity photon number 7 (indicated in the upper right corner).
The bright curves represent individual runs of the experiment (approximately 150 per panel). Selected traces are shown in slightly darker
color to illustrate their stochastic character. The dark curves are the mean over all traces. The traces are filtered using their corresponding
optimal integration time; see Fig. 1(e). The vertical lines mark the two times 7, = 25 ms (f, = 275 ms) used to produce the scatter plots
shown above the time traces. They illustrate the standardized atom number N, ; measured at the earlier (later) #, versus N ; measured at
t; = 5 ms. The diagonal (dashed) line and the slope extracted from a linear ordinary least-squares fit to the data (dash-dotted line) are

indicated in all scatter plots. The corresponding measurement noise is indicated by the ellipse in the center.

A../27 ~ —42 GHz with respect to the D2 line of 8’Rb, for
which the atomic resonance linewidth is I'/27z ~ 6 MHz.
The detuning of the cavity probe from atomic resonance
together with the vacuum Rabi coupling g/2z = 13.1 MHz
leads to a maximal cavity shift |A, /27| ~ 4 kHz per atom.
The cavity probe is maintained at a constant detuning of
Ope/2m ~x/2r = 1.8 MHz from the atom-shifted cavity
resonance frequency. The frequency lock of the probe
to the cavity is realized by stabilizing the radio-frequency
power output from a heterodyne receiver monitoring the
probe transmission through the cavity; see Fig. 1(c) and
Appendix A. The large single-atom cooperativity C =
¢*/xI" = 15.9 and consequently low cavity probe powers
of afew picowatts in our experiment allow us to minimize the
probe-induced off-resonant scattering and associated heating
rate. This minimization sets the cavity-based measurement
apart from free-space methods and is key for achieving the
long measurement times at the imprecision required for
performing atom counting in a mesoscopic system; see
Appendix D.

In a first set of experiments, we track the equivalent atom
number for different intracavity photon numbers n while
slowly lowering the trap potential U/kg from 31 to approx-
imately 8 yK by ramping up a magnetic field gradient within
330 ms; see Fig. 7 and Appendix A. The resulting ensemble
of atom-number traces is shown in Fig. 2, with every
individual trace representing a new run of the experiment.
The traces taken together form a statistical ensemble that
encompasses both the variation in evaporation trajectories
with different initial atom numbers and temperatures and also

the fluctuations in atom number generated by evaporation
dynamics in individual trajectories. In order to minimize the
effect of noise, each trace is filtered with a bandwidth
corresponding to the optimal integration time 7 extracted
from the Allan deviation shown in Fig. 1(c). For clarity, we
suppress the subscript and write N(z) = N;(t) in the follow-
ing. Our measurements of N(¢) show a clear trend to lower
final atom numbers as the intracavity photon number is
increased. This trend reflects the larger measurement-
induced heating at increasing probe power, which leads to
an increase in the number of atoms ejected from the trap
during evaporation.

In general, decorrelation of two measured atom numbers
N(t;) = N, and N(t,) = N, at two points in time, indicated
by #; and t,, arises from three sources: technical noise,
measurement noise, and stochastic noise due to the evapo-
ration process itself. We extract the correlations from the
slope of the standardized atom numbers N, versus
Ny, which equals the Pearson correlation coefficient
P12 = cov(N,N,)/o,05; see Appendix C. The standard-
ized atom numbers are defined as Nyp), = (N 12)—
(N12)))/01(2), where (Ny) ((N,)) and 6, (o) are, respec-
tively, the mean and the standard deviation of the
non-standardized atom-number distribution measured at
time #; (#,). In our experiment, we observe dominant linear
correlations of around py, = 97% at all intracavity photon
numbers for two measurements closely spaced in time; see
Fig. 2, upper. The strong observed correlation indicates a
small influence of all noise sources at these early times. In
particular, it confirms that our measurement noise is small,

041017-4



TRACKING EVAPORATIVE COOLING OF A MESOSCOPIC ...

PHYS. REV. X 11, 041017 (2021)

consistent with our previous analysis of the imprecision. For
a time 7, = 275 ms, later on the evaporation trajectory, the
fluctuations accrued over the process of evaporation are
much more prominent. However, there is still some degree of
linear correlation present. The reduction of the correlation
from p;, =75.9(1)% at the smallest intracavity photon
number n = 1.9(1) to 35.0(1)% at the largest intracavity
photon number n =9.7(1) indicates a larger impact of
stochastic noise coupled into the system at a larger lost
fraction of atoms. Extracting the final temperature of the
evaporating ensemble from a time-of-flight absorption image
after our real-time measurement, we estimate the temperature
to drop to less than 1.5(1) pK for n = 1.9(1), which implies
a phase-space density increase of at least 13% but possibly
significantly more; see Fig. 6 and Appendix A.

ITII. NONLINEARITY OF EVAPORATION

The nonlinear dynamics of a system are captured already
by the evolution of statistical averages. In the following, we
outline how two-time correlations extracted from a con-
tinuous measurement of the atom number of the same cloud
enable us to uncover the nonlinear character of evaporative
cooling. To this end, we compare the remaining fraction of
atoms, p = (N,)/(N), to the slope extracted from scatter
plots such as those shown in Fig. 2, calculated as the least-
squares estimate a = pj,0,/0,. For a linear process,
defined by a constant evaporation rate per atom and, hence,
N —N, the two quantities should coincide and, hence,
a = p, whereas nonlinear effects lead to a deviation from
this expectation; see Fig. 3(a) and Appendix C. As an
example, the case N « —N® with a > 1 leads to a < p,
which we term “sublinear” to indicate a scatter slope
smaller than in the linear case.

For our evaporation sequence, we find systematic devi-
ations from a simple linear relationship; see Fig. 3(b).
Recording the difference a; = a — p versus the remaining
fraction of atoms p, we observe a pronounced superlinear
behavior with a > p, when p is calculated relative to a
small initial time #;. We interpret this superlinear behavior
as being mediated by temperature variations in our sample
distribution: Atomic gases are prepared with a low initial
atom number because of higher atom losses from an
initially high gas temperature. The high temperature
hastens evaporation, leading to a higher per-atom loss rate
and, thus, a relatively lower final atom number, leading
altogether to a > p. This picture is backed by simulations
of the evaporation process; see Fig. 8 and Appendix B.

The rapid evaporation of hotter gases also quickly
reduces their temperatures, such that over time different
realizations of the gas arrive at nearly the same final
temperature irrespective of their initial temperatures.
This interesting transient behavior is often implicitly
assumed in the literature quoting that the temperature locks
to a fixed fraction 1/n of the trap depth [29,30,32] and
ultimately originates from the competition between
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FIG. 3. Nonlinearity of the evaporation process. (a) Schematic

illustrating the nonlinearity measure. Superlinearity (sublinearity)
is equivalent to a slope a of the scatter of N, versus N; that is
larger (smaller) than the remaining fraction of atoms p. For a
linear process, a = p. (b) Subtracted slope a;, =a— p for
different initial times #; (dark to bright color, indicated in the
legend) used to quantify the nonlinearity of the evaporation
process versus remaining fraction of atoms p. The shaded region
shows the standard deviation calculated by bootstrapping for the
smallest and largest initial times.

exponential truncation and temperature-dependent thermal-
ization of atoms in the evaporation process.

At later times in the evaporation process, after the effect of
initial temperature variation is suppressed, we find slightly
sublinear behavior, where an initial excess of atoms at time ¢,
is reduced during the evolution. This behavior can be
explained by increased three-body losses toward the end
of the evaporation ramp, which reduce ensemble variations
due to their nonlinear character [33]; see Fig. 8. Interestingly,
our observations imply that evaporation first moderates
temperature variation and then, thereafter, atom-number
variation in different realizations, ultimately resulting in a
stabilizing effect for both atom number and temperature.

IV. STOCHASTIC CHARACTER OF
EVAPORATION

The mesoscopic nature of our samples together with the
continuous, high-precision measurement enables us to
characterize also the stochastic fluctuations inherent in
evaporative cooling accrued on a single trajectory. These
cannot be obtained from the average evolution of an
evaporating gas. Crucially, analysis of two-time correla-
tions allows for discriminating the effect of variation in
initial conditions from the inherent stochastic fluctuations,
which reach up to an rms value on the order of v/N in
mesoscopic samples with small N.
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FIG. 4. Mesoscopic fluctuations of the evaporation process. (a) Unexplained variance 6% versus remaining fraction of atoms p for

intracavity photon number n = 1.9(1) at initial time ¢#; = 10 ms and (b) at #; = 180 ms, with the standard deviation calculated by
bootstrapping indicated by the shaded region. The solid gray lines show the model prediction including Poissonian stochastic noise and
measurement noise; the dashed lines show the prediction without the contribution of Poissonian stochastic noise. (¢) Unexplained
variance o2 for p = 1 (t, = t; + 7, darker points) and p = 0.60(2) [t, = t; + 95(5) ms, lighter points] for different integration times 7.
For p ~ 1, the unexplained variance corresponds to twice the reduced Allan variance (solid orange line). The bright orange line denotes
the full Allan variance without subtracting the mean dynamics [see Fig. 1(e)]. The gray tick indicates the integration time z = 4 ms that
minimizes o2 and is used to produce the curves shown in (a) and (b). (d) Scaling of unexplained variance for fixed lost fraction
p = 0.60(2) with initial atom number N . The constant measurement noise is subtracted from the data for each n, to compare different n

(color coded as in Fig. 2). The gray solid line denotes the linear Poissonian expectation &2(N,) = p(1 — p)N,. The error bars denote

one standard deviation.

To access stochastic fluctuations directly, we analyze the
unexplained variance 62 = o35(1 — p?,) as the amount of
variance in atom number measured at time 7, that is not
predictable through correlation with the initial atom num-
ber at time ¢;; that is, the unexplained variance captures the
variance beyond that explained by the linear slope in an
N; — N, scatter plot; see also Figs. 2 and 3. The unex-
plained variance also generalizes the reduced Allan vari-
ance [see Fig. 1(e)] to arbitrary time separations and is
dominated by the measurement noise and additionally the
stochastic noise associated with atom loss; see Appendix C.

We observe distinctly different behavior at early times and
at late times during the evaporation process. Referenced to an
early initial time #; = 10 ms, the unexplained variance
grows rapidly; see Fig. 4(a). Compared to a simple param-
eter-free theoretical model (see Appendix C), we find that the
fluctuations are up to a factor of 3 above the fluctuations
expected for a purely uncorrelated atom loss, which is
described by a Poissonian stochastic process. Consistent
with our earlier interpretation, we ascribe these large fluc-
tuations to additional variance in the initial temperature thatis
uncorrelated with the initial atom number.

Referenced to a later initial time #; = 180 ms, when
unexplained temperature variations are suppressed, we
observe a slower growth of o2. Here, we find good
agreement with a linear, Poissonian stochastic loss process,
indicating that linear single-atom loss dominates the
fluctuations of the cooling process even in the presence
of a nonlinear three-body loss; see Fig. 4(b). For the large
remaining fraction of atoms p =1 (f, close to t;), the
unexplained variance is consistent with the sum of

measurement noise in N; and N, and, hence, coincides
with twice the reduced Allan variance; see Fig. 4(c). We
note that, in the fluctuation analysis, the mean dynamics is
subtracted, such that the optimal integration time can be
increased to 7 =4 ms without compromising time reso-
lution of our dynamical measurement; see Fig. 1(e).

In order to further corroborate the stochastic nature of the
unexplained variance above measurement noise, we inves-
tigate the unexplained variance at a fixed fraction of lost
atoms p = 0.60(2) for varying initial atom numbers Ni;
see Fig. 4(d). This strategy is motivated by quantum optics
experiments, where the variance originating from photon
(quantum) shot noise (x n) can be discriminated against
technical noise (« n?) through their scaling with the photon
number. In our experiment, we again find a strong excess in
o2 for large initial atom numbers N,. However, for smaller
initial atom numbers, the unexplained variance approaches
and traces the Poissonian expectation p(1 — p)N, for a
range of N at all n. This result contrasts with the quadratic
dependence of unexplained variance on initial atom number
expected for technical noise.

V. CONCLUSION

The minimally invasive measurement of atom-number
dynamics in our cavity-coupled atomic gas opens numerous
near- and longer-term perspectives. First, our work provides
an ideal starting point for further studies of evaporation
dynamics in low-dimensional mesoscopic quantum gases.
Specifically, our results call for a detailed study of the impact
of N-body losses on evaporation, which are expected to lead
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to enhanced atom-number fluctuations but also have a
moderating effect on ensemble variations due to the non-
linear density dependence of the evaporation rate.

Our results also indicate that feedback on the atom
number [25,38] based on the nondestructive real-time
record of an evaporating gas can prepare samples at a
fixed temperature with controllable atom numbers fluctu-
ating less than the amount set by Poissonian statistics.
Samples stabilized this way provide an ideal starting
condition to study atom-number-dependent collective phe-
nomena in optical cavities such as dynamical instabil-
ities [34].

Furthermore, the densities reached in our two-dimen-
sional system are close to the regime where corrections due
to Bose statistics and interactions in the gas become
relevant. We expect that we can reach this regime with
only slightly higher initial atom numbers, which are limited
technically in the present study. This prospect motivates
further studies focusing on how evaporation dynamics,
thermodynamics, and stochastic fluctuations are modified
by quantum statistics and atomic interactions. Approaching
the superfluid transition, our technique complements recent
studies in three-dimensional gases [26,27]. In particular, it
enables highly sensitive studies of dynamical fluctuation
growth and stochastic behavior in a two-dimensional
mesoscopic setting and at strong interactions, providing
a new window into the intriguing physics of interacting
two-dimensional Bose gases [39].

Combining our technique with locally controlled cou-
pling to the cavity [40] opens the path toward future
noninvasive two-terminal transport measurements of
strongly correlated quantum gases in optical cavities
[22], for dynamical probing of fluctuation dissipation
relations [41], or for realizing novel nondestructive local
scanning probes of cold gases [23]. Such nondestructive
probes are also directly relevant to uncovering dynamical
fluctuations characteristic of nonequilibrium universality in
transport phenomena [42] or at fluctuating interfaces [43],
which can also be studied in neutral-atom systems [44].

Finally, leveraging the recent advances in optical tweezer
technology, our detection scheme can be extended to the
single-atom level through controlled coupling to optical
cavities, realizing a versatile quantum sensor. As a direct
application, continuous nondestructive probing of single
atoms has recently been identified as a key step to enable
energy measurements in many-body systems [45], thereby
bringing experimental tests of mesoscopic quantum
thermodynamics [1] within reach.
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APPENDIX A: METHODS

1. Experimental sequence

We start our measurement by preparing a cloud of about
2200 ¥’Rb atoms with a temperature of approximately T =
2.6 uK in a cavity-supported vertical optical standing wave,
forming an optical lattice with lattice spacing a = 421 nm.
Before loading the lattice, the cloud is compressed vertically
in a tight magnetic trap created by an atom chip, such that
predominantly a single slice of the lattice is populated
[16,34,36]. We estimate the fraction of atoms in other slices
to be maximally 20%, as characterized by cavity-aided
magnetic resonance microscopy [12]. The depth of the lattice
trapis Uy/2m = h x 641(30) kHz[kg x 31(1) pK], and the
waist of the lattice beam in the cavity is wy = 26 um, leading
to axial and radial trapping frequencies of w,/27 =
91(2) kHz and w,/27x = 670(10) Hz, respectively. Given
kgTo = h x 54 kHz, these parameters put the gas in a quasi-
two-dimensional regime, where motion along the z direction
is frozen out, but atomic collisions are still described by a
three-dimensional scattering process. The cavity length and
exact wavelength of the lattice laser are chosen such that the
atomic cloud axially overlaps with the maximal probe
intensity in the cavity. The atoms emerge from the magnetic
trap purely in the |F, my) = |2,2) hyperfine state. During
probing, we apply a strong magnetic field of B, =17 G
along the cavity axis and also drive the cavity with o
circularly polarized probe light. Under these conditions, the
light-atom interactions are reduced to an effective two-level
scheme, the atomic spin polarization is preserved, and the
vacuum Rabi coupling is maximized. The atom number is
recorded using a cavity probe at a wavelength of 780 nm,
detunedby A, /27 ~ —42 GHzto the red of the D2 line. The
transmission of this probe through the cavity is recorded on a
heterodyne receiver. For heterodyne detection, we use a local
oscillator (LO) with approximately 1 mW of optical power
derived from the same laser but with its frequency offset by
10 MHz relative to the frequency of the probe. The probe
beam is intensity stabilized before entering the cavity and the
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LO before coupling into the heterodyne receiver. The photon
collection efficiency is reduced by cavity mirror losses
(e, = 0.31), finite path efficiency of the heterodyne path
(e, = 0.93), mode-matching efficiency of local oscillator
and probe beam (¢,,,, = 0.89), and quantum efficiency of the
heterodyne photodetector (¢, ~ 0.58). These effects combine
to give an overall photon detection efficiency of
€ = 0.149(10) in our heterodyne receiver.

After preparation of the cloud, forced evaporation is
induced by exponentially ramping up the current through
our atomic chip wires with a time constant of 70 ms. The
resulting inhomogeneous magnetic field is accompanied by
a magnetic field gradient increasing from zero up to
220 G/cm, strong enough to lower the trap depth dynami-
cally; see Fig. 7. During the evaporation process, an analog
side-of-fringe feedback loop is engaged to keep the probe-
cavity detuning fixed at §,./27 ~ k/27x = 1.8 MHz and,
thus, the intracavity probe intensity constant. The time zero
of our measurement is chosen 8 ms after activating the
feedback, which is enough time to avoid any effect of
transients on our real-time atom-number traces. We believe,
however, that these transients and variations caused by
loading the cloud in our cavity lattice contribute to the
initial temperature variation observed in our gas.

To realize the side-of-fringe feedback loop, part of the
heterodyne signal is split off after a radio-frequency
amplifier, sent through a bandpass filter with a 2 MHz
bandwidth, and its power is detected with a linear radio-
frequency power detector (Analog Devices, AD8361). The
detected power is kept constant by feeding back to the
frequency of probe and LO through a voltage-controlled
oscillator (VCO) driving an acousto-optic modulator (AO)
before the cavity. The required in-loop control voltage is
monitored. An equivalent VCO signal is recorded after the
sequence without the atoms present. The difference of this
reference signal and the signal with atoms, together with
the calibrated VCO characteristics, yields the atom-induced
cavity shift Ay. In order to reduce the effect of photon shot
noise, we subtract a running average of five empty cavity
traces of successive runs from each trace with atoms. The
number of averaged empty cavity traces is a compromise
between mitigating the influence of shot noise on the
reference trace and avoiding additional imprecision due to
longer-time technical drifts of the empty cavity resonance.
After untilting the trap, we perform a swept atom-number
measurement; see Fig. 5. To this end, we sweep the
frequency of the cavity probe across the resonance of
our cavity. The peak position of the recorded heterodyne
signal relative to a reference measurement on an empty
cavity taken at the end of the sequence reflects the atom-
induced cavity shift; see Fig. 5. The swept measurement is
used to benchmark the shift correction described in the next
section.

Sweeps

Evaporation
T T { F————
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0 100 200 300 390 400
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FIG. 5. Experimental sequence. Upper: heterodyne magnitude
Sher With atoms present (not present) in orange (blue). The
heterodyne magnitude signal is not recorded for times ¢, between
30 and 170 ms. Middle: Corresponding VCO frequency f.
Bottom: Current in our atomic chip wires (red). Evaporation is
induced by ramping up the current, which lowers the trap depth
dynamically (see Fig. 7), and halted at 320 ms by ramping the
current back down quickly. During evaporation (indicated by
gray shading in all panels), the heterodyne magnitude is kept
constant by a side-of-fringe lock. The atom-induced cavity shift is
extracted from an in-loop measurement of the control voltage fed
back to the VCO. At the end of an experimental run, a swept
atom-number measurement is performed, where 6, is varied by
sweeping f down and up across cavity resonance. In these sweep
measurements, the atom number is extracted from the shift of the
cavity profile visible in the heterodyne magnitude signal and is
used just for calibration purposes.

Temperature (pK)

1 . .
0 4 8 12

Intracavity photon number n

FIG. 6. Temperature after evaporation. Temperature of the gas
measured in time of flight after the final swept atom-number
measurement for different intracavity photon numbers. The gray
line is a linear fit guiding the eye.

In order to verify the cooling of our gas, we perform a
time-of-flight absorption measurement after our swept
atom-number measurement. To this end, we rapidly turn
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off the cavity lattice and let the cloud expand by 400 us.
The temperatures extracted from this time-of-flight meas-
urement are shown in Fig. 6. We consider this extracted
temperature to be an upper bound of the actual temperature
due to the long additional hold time before the measure-
ment, the additionally present swept atom-number meas-
urement, and the short expansion time of the gas limited by
our cavity geometry. We note that the temperatures
extracted from our simulation right at the end of the
evaporation ramp are approximately a factor of 2 below
these values; see Fig. 8.

2. Trap depth and shift correction

The magnetic field applied during evaporative cooling
leads to a reduction of the trap depth to below 10 uK; see
Fig. 7. We find the trap depth using the known waist size of
the lattice trap in the cavity and the applied magnetic fields
as the height of the saddle point of the combined potential
of magnetic and optical traps relative to the trap bottom,
including the small but non-negligible influence of the red-
detuned probe. With increasing applied magnetic field
gradients, the trap minimum is radially displaced from
the center of the cavity mode and, hence, away from the
maximal coupling point of the probe laser. We calculate
the displacement and the resulting reduced overlap with the
probe laser for a pointlike cloud. The maximal displace-
ment is approximately 8 um. For our probe waist of
w, =25 um, this displacement leads to a change in 7
and, hence, A; of at most 15% (see the inset in Fig. 7). We
verify that the results of this procedure for a pointlike cloud
are almost identical to the case of a thermal cloud with a
temperature of 7Ty = 2.6 uK, such that we use the former as
an approximation for the latter. We confirm the accuracy of

1.0 F—_" R
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FIG. 7. Potential depth during forced evaporation. The trap
depth of the combined potential of far off-resonant optical lattice
trap, magnetic field, and probe-induced potential as the magnetic
gradient is ramped up from zero to its maximal value. The inset
shows the correction factor required to correct g> for the shift of
the cloud relative to the maximal probe intensity. Different colors
correspond to different intracavity photon numbers, with the
color code the same as in Fig. 2.

our calculated correction factor by comparing the corrected
atom number measured at the maximal spatial displacement
with a sweep measurement after removing the magnetic
field gradient (see Fig. 5), where the atoms are located at
the position of maximal probe coupling. Because of the
strong lattice-induced confinement, the displacement of the
cloud along the vertical direction is negligible. In addition
to the sideways displacement, the applied magnetic field
rotates the overall magnetic field direction. Consequently,
the orientation of the quantization axis tilts, and the
projection of the circularly polarized light of the probe
beam changes, resulting in maximally 3% of additional
correction to the coupling strength. We estimate an asso-
ciated maximal probability of 4% per scattered photon to
result in transfer into other hyperfine ground states, with a
negligible effect on our measured atom numbers. We also
stress that the small correction of g does not affect any of
the conclusions drawn, and we account for it in the direct
quantitative comparison of our measurements with the
theoretical models presented in the following.

APPENDIX B: MODELING
EVAPORATIVE COOLING

1. Theoretical model for evaporation

We model evaporative cooling in two dimensions,
following Refs. [29,32], by the time evolution of a
truncated Maxwell-Boltzmann distribution in a harmonic
trap with time-dependent depth. The change in atom
number N for a truncation parameter # = U/kyT in the
trap is

N = —Nye™ <’7P(2’ ’7) — 3P(3’77)> . (Bl)

P(2,n)?

Here, y = n,,ov,, is related to the elastic collision rate y, =
V2y in a gas with density n, and thermal velocity
vy, = +/8kgT/wm. The incomplete Gamma functions
P(a,n) = JJ dtr*"'e™"/T'(a) take into account truncation
effects in a trap with finite depth [29]. We can rewrite
Eq. (B2) to bring out the temperature and atom-number
dependence explicitly:

N = ¢, N2T-12¢m (ﬂP(l n) —3P(3, n))_ (B2)

P(2.n)*

The constant ¢, = yOT(l)/ 2 /N, contains the initial rate y,
the initial temperature Ty, and the initial atom number N,
Notably, Eq. (B2) indicates that, at constant temperature, an
atom spilling over a potential barrier constitutes a loss
process which is nonlinear in atom number.

Evaporating atoms cause a change in the internal energy
E =2NkgT of the gas. Taking the time derivative and
solving for the change in temperature, we obtain
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— L kyT.

kpT = —
B 7ON N

(B3)

The change in energy is proportional to the atom loss rate
multiplied with the energy of a leaving atom, corrected for
truncation [29]:

P(4,n)

nP(2,1) - 3P(3, m)} . (B4)

where n = U/kpT. Plugging this result into Eq. (B3), we
obtain the change in temperature as

o [”‘ (1 +71P(2,7]13)(4E2’(3,n))] o

E:NkBT[nJr (1—

(BS)

In the last step, we include a heating rate [, caused, e.g.,
by photon recoil heating or other external heating sources.

Three-body losses affect both the atom-number dynam-
ics and the temperature dynamics of evaporative cooling.
Their atom-number dynamics have to be treated separately
from the atom-number dynamics due to evaporating atoms.
The atom loss rate due to three-body collisions is

Nip = LN

3g = —C3 \/ﬁ 3nth X T2 .
Here, L5 denotes the three-body loss coefficient [46], which
is scaled appropriately for a thermal bosonic gas [47], and ¢3
is an additional scaling coefficient. These losses do not
contribute to the cooling of the gas. Rather, they lead to
antievaporation heating [47], as the loss happens predomi-
nantly at the center of the trap, where the density is highest.
Atoms in the central region of the trap have less than average
potential energy, such that the gas effectively heats upon
thermalization. Quantitatively, antievaporation heating leads
to a change in temperature reflecting the difference in
potential energy between an average atom and an atom lost
through a three-body collision:

AN 1N331 2
T),z 2N 3)

Together with the known time-dependent trajectory of the
trap depth U(t), Egs. (B2) and (B5) can be solved to obtain
the mean atom number and temperature dynamics of
evaporative cooling. The effect of three-body loss can be
included by adding Eq. (B6) to Eq. (B2) and Eq. (B7)
to Eq. (BS).

(B6)

(B7)

2. Evaporation dynamics

The model derived in the previous section can be used to
check the influence of initial atom-number and temperature
variation on the evaporation dynamics and serves as a
benchmark of the subtracted slope presented in the main
text as a measure of nonlinear dynamics in the average

evolution. To this end, we simulate the coupled atom and
temperature dynamics for our experimental configuration.
We neglect the influence of adiabatic decompression [32],
which is expected to be small in gradient-assisted evapora-
tion [35]. In our case, the expected reduction of the trap
frequency along the direction of the gradient is approxi-
mately 15%. The heating rate per photon is extracted from
reference measurements to be I', = 7(3) uKs~!. For our
parameters, we expect scattering into free space to be a
significant heating source. The off-resonant scattering
rate T'y/n ~ 3.6 s~ leads to an expected recoil heating
rate per intracavity photon of TI'./n=2E./n~
hx27.1%kHz s7! = kg x 1.3 uK s~!, where we use the
recoil energy E, = h*k?>/2m ~ h x 3.8 kHz for ¥’Rb on the
D2 line. We attribute the discrepancy between this estimate
and the experimental value to additional technical noise
contributions from the side-of-fringe lock, which can lead to
parametric heating of the cloud.

To model variations in the initially prepared ensemble,
we calculate 200 traces with atom number N, and temper-
ature T, drawn from Gaussian distributions. The standard
deviation of the atom-number distribution is extracted from
a fit to the measured initial atom-number distribution. The
standard deviation of the temperature distribution AT, is
varied in the simulation. The elastic collision rate is
calculated for each run using the drawn atom number
and temperature assuming a quasi-two-dimensional gas.
The resulting curves of the time evolution of the atom
number for our trap ramp are shown in Fig. 8(a), for a
temperature spread of ATy = 0.6 uK and a three-body
collision scale factor c¢3 =0.2. The overall temporal
dynamics and the final atom numbers are in good agree-
ment with the data for the chosen parameters. During the
initial 100 ms of the evaporation process, the temperature
variation, reflected in variation in the ratio of trap depth to
temperature 7, is rapidly suppressed and the temperature
locks to an approximately fixed fraction of trap depth
provided the heating is small; see Fig. 8(b).

In order to support the introduction of the subtracted
slope a;, = pj»06,/0, — p as a nonlinearity measure (see the
main text and Appendix C), we study the effect of varying
temperature spread and three-body loss on a;. The resulting
dependencies are shown in Figs. 8(c) and 8(d). We observe
that, as expected and explained in the main text, an increase
in the initial temperature spread is reflected as a positive
signal in a,, which reduces to near zero and stays constant
for later initial time #;. Contrarily, the introduction of strong
three-body loss in the dynamics results in a negative a, and,
hence, sublinear behavior, as expected for an effect that
reduces the atom-number variance in time [33], even if
strong initial temperature variations are present in the
ensemble; see Fig. 8(d). Qualitatively, the simulation shows
the same features as observed in our data for three-body
losses of approximately c; = 0.05-0.2 times the value
expected according to Eq. (B6). This reduction of three-
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FIG. 8. Theoretical modeling of evaporation. (a) Simulation of atom-number dynamics during forced evaporation for the trap ramp
shown in Fig. 7. We show 200 traces with initial atom numbers N, and temperatures T, sampled from Gaussian distributions in light
color, for varying intracavity photon number n as indicated in the top right corner. The atom-number samples have a mean (N,) and a
standard deviation of 2(N,)!/2. The temperature distribution is centered about the initial temperature T, and has a standard deviation of
ATy = 0.6 uK. We include a three-body loss contribution scaled by ¢3 = 0.2. The dark line shows the measured atom-number dynamics
including shift correction. (b) Ratio of trap depth to temperature, n = U/kgT, for the same ensemble as in (a). The initially broad
distribution is rapidly narrowed down and then remains nearly constant during further evaporation. (c) Subtracted slope a; for n = 1.9
for different temperature spreads (indicated in the top right corner) in the absence of three-body loss (c; = 0). We observe the same
trends as observed in our experiment, with a fast rise for small p and a decay with increasing initial time #; (indicated in the legend). The
shaded region indicates the standard deviation extracted from a bootstrap analysis of the calculated samples. (d) Subtracted slope a, for
n = 3.2 and AT, = 0.6 uK for increasing contribution of three-body loss characterized by the scaling factor ¢3 (indicated in the top
right corner). Three-body loss leads to a negative contribution to a,, which suppresses the effect of initial temperature variation.

body losses points to an overestimate of the density of the
ensemble, for example, due to interactions in the two-
dimensional gas, which we neglect in our treatment. Our
simulations support our claim that the subtracted slope a; is
a meaningful quantity sensitive to both initial temperature
variation and three-body loss. We verify that this claim is
robust also if the thermalization and heating rates are
reduced. For stronger heating, we find experimentally
and from our simulations that evaporation assumes linear
character with a, = 0. While our simulations do reflect the
effect of variation in the initial ensemble, we stress that the
intrinsic stochastic character of evaporation is not captured.

Further studies of the interplay between stochastic fluctua-

tions and nonlinearities such as three-body loss would be of
particular interest.

APPENDIX C: EVAPORATION
NONLINEARITY AND NOISE

1. Nonlinearity measure

The minimally invasive measurement strategy involving
the cavity allows one to go beyond single-time observables
by constructing two-time correlations. The information
about the linearity of the time evolution is encoded in
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the dependence of the measured atom number N, on the
initial atom number N;. Here, we denote N, and N, as
ensembles of measured atom-number outcomes at times #;
and 1,, respectively. The standard deviations of the dis-
tributions are denoted o; and o,, respectively. Assuming a
linear relationship between N; and N,, the optimal set of
coefficients a and b of the model f(X,f) = aX + b can
be found from linear regression analysis for the variables
N, and N,. The parameters minimizing the squared
residuals are

a :Puz—?’ (C1)
b= (Ny) —a(Ny). (C2)

Here, we introduce the Pearson correlation coefficient
(C3)

calculated from the covariance of the two random variables.
When standardizing the random variables by subtracting
their mean and normalizing to the standard deviation,
Ni@)s = (N1@2) = (N1(2)))/61(2), the correlation coeffi-
cient corresponds directly to the slope of the straight line
minimizing the ordinary least squares in the scatter plot. A
decreasing correlation coefficient in this case directly
reflects the influence of measurement and stochastic noise
in the system. Scatter plots of N, ; versus N, ; are shown in
Fig. 2 in the main text. To extract the nonlinearity measure,
we consider nonstandardized variables. Here, for a strictly
linear relationship, the fraction of remaining atoms p =
(N,)/(N;) contains the full information on the dynamics.
Therefore, it should hold that a = p in this case. Any
deviation from a = p can be interpreted as a nonlinearity
and leads to increased (a > p) or decreased (a < p)
relative variation in the ensemble at time #,. On average,
a < p (a > p) implies a better (worse) predictive power of
a measurement result obtained at time #; for a measurement
performed at time #,. As an example, if the atom loss
dynamics has a character N —N% a>1, we expect
realizations with more atoms initially to lose atoms more
quickly. This initial loss leads to a value of a < p for later
times, as more atoms are lost than expected for a linear
process. Therefore, a loss process with a > 1 reduces atom-
number variation in an ensemble, which has been observed
experimentally for a cloud with three-body loss (a = 3)
[33] and is consistent with the simulations shown in
Fig. 8(d).

2. Unexplained variance

The correlation coefficient quantifies the degree of
fluctuation between two random variables which can be
explained by a linear model. For stochastic processes such

as evaporative cooling or other transport phenomena, the
fluctuations due to this randomness are also of interest.
Relating measurements of an atom number N, at time 7, to
measurements N; at time #; of the same ensemble can shed
light on this process noise, as it appears as fluctuations in
N, which are not explained by any correlation with N;. We
can quantify this “unexplained variance” by considering the
prediction for N, based on the value of N, which is

Ny e = (Na) +a(Ny = (Ny)). (C4)

This result leads to the following unexplained variance:

o2 = ((Ny — N, ,,)%) = 03 + a’o} — 2a cov(N|,N,).
(CS)

This quantity is minimized for a = p|,0,/0; [see Eq. (C1)]
and, thus,

62 = o3(1 - phy). (Cé6)
This expression shows that the correlation coefficient
captures the fraction of the total variance explained by
the linear relationship, which is subtracted from the total

variance to obtain the unexplained variance. We evaluate
the fraction of unexplained variance for our data; see Fig. 4.

3. Unexplained variance for uncorrelated atom loss

In the following, we derive an expression for o,
assuming a given constant measurement noise o,, and a
purely Poissonian ejection mechanism of atoms with
corresponding stochastic noise. Under these assumptions,
we expect the variance o, at time 7, to contain contri-
butions from measurement noise, stochastic noise, and
variation o; of N;. Concretely, we get

034 = P*(0] —0p) + o + (N)p(1=p).  (C7)
The second and third terms are measurement noise and
Poissonian stochastic noise, respectively. The first term
reflects the scaled initial ensemble variation, which is
obtained from the part of the variation ¢; which is not
originating from measurement noise. The prediction for the
correlation coefficient defined in Eq. (C3) becomes

p(ot —op)

Vv 02.th01

In the covariance in the numerator, only those parts of the
variances without the measurement noise contribute. Note
that this result is strictly true only outside the correlation
time of the measurement noise, which we assume to be
white for simplicity. For equal-time measurements, the
correlation coefficient equals unity. Using Egs. (C7)

P12,th = (CS)
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and (C8), we can get a prediction for the fraction of
variance unexplained:

Ui.th = Gg,th(l _P%z.th) (C9)
25%1 2 2 2
=p ?(al_gm)+o-m+<Nl>p(l_p)' (CIO)
1

This expression shows that the unexplained variance is
affected by the initial variance, measurement noise, and
stochastic noise. Comparing with the expression for the
variance "%,zh’ we see that the contribution from the initial
variance is suppressed for small measurement noise
02 < o2. For p — 1, the first term approaches 62, such
that the total unexplained variance in this case approaches
202,. We compare this model to our data in Fig. 4. The
measurement noise o,, is extracted from the Allan deviation
shown in Fig. 1(e), and the initial mean (N,) and standard
deviation o, are evaluated from the atom-number distribution
at time #;. The most striking discrepancy is caused by
temperature variations: Initially hidden, they are converted
to strong atom-number variations upon cutting into the
thermal distribution. These variations are not expected based
on earlier atom-number measurements alone. At later times,
the unexplained variance approaches the prediction for
uncorrelated atom loss. The good agreement between this
simple model and our data at late times indicates that
technical noise has a negligible impact on our measurements.
The convex shape proportional to p(1 — p) of the fraction of
variance unexplained is masked to a large part by the first
termin o, ;, despite the small imprecision reached by cavity-
assisted atom-number detection.

APPENDIX D: MEASUREMENT PRECISION

In the following, we show that the enhanced atom light
coupling in an optical cavity is fundamental to high-precision
atom counting. Minimally invasive measurements compro-
mise between excess heating and consecutive fluctuations
due to the measurement process and a sufficient number of
extracted photons to reduce photonic shot noise [25,48,49].
For cavity-enhanced atom counting, we aim to find an
optimal observation time as a compromise between averag-
ing down photon shot noise of the detected probe field and
probe-induced atom-number fluctuations, e.g., by recoil
heating or cavity backaction heating [12—15]. To quantify
the photonic shot noise contribution, we use the Lorentzian
cavity profile for the photon number 7 in the cavity:

KZ

n="Nmax 5 =3 -
K2 —|—5f,c

(D1)
Here, n,, denotes the on-resonance (5, = 0) intracavity

photon number, and « is the half linewidth of the cavity. The
sensitivity Ad),. for determining the cavity-probe detuning as

a function of photon noise An is obtained by taking the
derivative of Eq. (D1) with respect to 6,:

An 2. AS

Pe. D2
n K2+ 8% Sy (D2)

At the side of fringe for ,. = k, the sensitivity becomes
(An/n) = —(Ad,./x). Taking into account the detection
efficiency € of the detection chain, the number of detected
photons within a window of integration time 7 is
nge = 2knet. Note that, for a heterodyne detector, the
detection efficiency effectively reduces by a factor of 2
(e — ¢/2) if only the magnitude of the heterodyne signal is
used in the detection, as is the case in our, in this sense,
nonoptimal feedback scheme. Assuming photon-shot noise
Ange = \/Nge» We find the uncertainty

[«
AS,. = — .
pe 2net

Using the cavity shift per atom, A, we convert this result to
an atom-number uncertainty:

A A, 1 1 1
AN = 2SS, = =2 [ = [ =
g g 2ner 2C\[ Tee V et

(D4)

In the last step, we introduce the cooperativity C = g> /T for

avacuum Rabi coupling g = \/d’w,/2he,V,, on the optical
transition with frequency @, and dipole matrix element d and

for a cavity mode volume V,. The dependence of the
uncertainty on the cooperativity shows the advantage of a
cavity-assisted measurement over its free-space equivalent.
Furthermore, the fluctuations due to photonic shot noise
decrease with the number of scattered photons I'.s7. The total
number of scattered photons is also responsible for heating
the cloud via recoil heating with a rate I",, which introduces
atom-number loss and associated fluctuations in a trap with
finite depth. Assuming Poissonian fluctuations in the number
of lost atoms within an integration time z, we model the
fluctuations in atom number in a trap with depth U as

(D3)

aol” aE
AN? =N U’ T= Nreffv’r. (D5)
The proportionality constant « allows one to take into
account truncation in evaporative cooling. We can add the
fluctuations due to atom loss to the photonic shot-noise-

induced fluctuations derived in Eq. (D4) and obtain

111 aE,

AN2, = ———+ N[ . D6
tot 2CFeff€T+ eff U T ( )

Minimizing the uncertainty with respect to z, we get
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/| 2 JaE,
ANtZOI,min = N NC€ U (D7)
at a corresponding integration time
1 1 U
n == —_— D8
foin =T ¢ VaNCe\ Era (D8)

We want to minimize both the minimal fluctuations as well as
the corresponding integration time. Short integration times
correspond to the maximal dynamic range for measuring
atom-number dynamics. We see that both quantities benefit
from a cavity with high cooperativity. Also, the dependence
on collective cooperativity NC shows that precise cavity-
enhanced atom counting is easier to achieve at larger atom
numbers. Interestingly, the minimal atom-number impreci-
sion does not depend on the effective scattering rate ['.¢;. We
observe that the minimal atom-number imprecision has no
fundamental limit, as the ratio E,./U can be reduced by
increasing the trap depth, which reduces the loss. If temper-
ature is a relevant parameter in the probed dynamics, a further
interesting quantity to take into account is the temperature
increase of the gas during the integration time. From the
increase in internal energy and assuming equipartition in a
two-dimensional harmonically trapped gas, it is given as

2l E Ty
kBATmin — eff2r7mm (Dg)
1 UE
= 1/ L D10
2NCeV «a ( )

Taking the product of temperature added and minimal atom-
number uncertainty, the experiment-specific quantities U and
a drop out, and we are left with

kB A Tmin AN tzot.min o 1
E, N ~ NCe’

This relation implies that, for a given minimal integration
time, the energy deposited in the system bounds the atom-
number imprecision and vice versa. The exact value for the
minimal integration time and, thus, the time resolution of the
measurement can be chosen by changing the effective
scattering rate, i.e., the atom-cavity detuning A, in our case.
Our observed dependence of the imprecision quantified
by the Allan deviation with integration time 7 is shown in
Fig. 1(e), where we find a decrease of the imprecision with
increasing integration time for small 7 < 1 ms and then an
increase for larger z. We note, however, that there the increase
in imprecision is dominated by the dynamically changing
mean atom number, which leads to a scaling of the Allan
variance with 72. Directly comparing the two cases requires
subtracting the known time dynamics of the mean atom
number, keeping only the stochastic contribution (x 7)
discussed here. While these two effects can always be

(D11)

separated in postprocessing even for an unknown dynamical
process by subtracting the mean of all traces, this separation is
generally not possible, e.g., for applying feedback to a system
with unknown atom-number dynamics.
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