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We consider the distribution of secret keys, both in a bipartite and a multipartite (conference) setting, via
a quantum network and establish a framework to obtain bounds on the achievable rates. We show that any
multipartite private state—the output of a protocol distilling secret key among the trusted parties—has to be
genuinely multipartite entangled. In order to describe general network settings, we introduce a multiplex
quantum channel, which links an arbitrary number of parties where each party can take the role of sender
only, receiver only, or both sender and receiver. We define asymptotic and nonasymptotic local quantum
operations and classical communication-assisted secret-key-agreement (SKA) capacities for multiplex
quantum channels and provide strong and weak converse bounds. The structure of the protocols we
consider, manifested by an adaptive strategy of secret-key and entanglement [Greenberger—Horne—
Zeilinger (GHZ) state] distillation over an arbitrary multiplex quantum channel, is generic. As a result, our
approach also allows us to study the performance of quantum key repeaters and measurement-device-
independent quantum key distribution (MDI-QKD) setups. For teleportation-covariant multiplex quantum
channels, we get upper bounds on the SKA capacities in terms of the entanglement measures of their Choi
states. We also obtain bounds on the rates at which secret key and GHZ states can be distilled from a finite
number of copies of an arbitrary multipartite quantum state. We are able to determine the capacities for

MDI-QKD setups and rates of GHZ-state distillation for some cases of interest.

DOI: 10.1103/PhysRevX.11.041016

I. INTRODUCTION

Quantum communication over a network is a pertinent
issue from both fundamental and application aspects [1-7].
With technological advancement [8—11], and concerns for
privacy [7,12], there is a need for determining protocols and
criteria for secret communication among multiple trusted
parties in a network. Quantum key distribution (QKD)
provides unconditional security for generating secure,
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random bits among trusted parties against a quantum
eavesdropper, i.e., an eavesdropper that is only limited
by the laws of quantum mechanics. Secret key agreement
(SKA) among multiple allies is called conference key
agreement [13,14]. Conference key agreement can be
achieved if all parties involved share a Greenberger—
Horne—Zeilinger (GHZ) state [15]. As in the case of
bipartite QKD, however, there exists a larger class of
states, known as multipartite private states [14], which
can provide conference keys by means of local measure-
ments by the parties.

Given the global efforts towards a so-called quantum
internet [3,16,17], as well as quantum key distribution over
long distances [18,19], it is thus pertinent to establish
security criteria and benchmarks on key distribution and
entanglement generation capabilities over a quantum net-
work. A quantum network is a complex structure as it
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inherits various setups of different quantum channels with
particular alignment due to local environmental conditions.
One of the biggest obstacles in building this structure is the
attenuation of the signal, which cannot be amplified by
cloning or broadcasting because of its inherent quantum
nature. The signal decays exponentially with distance over an
optical fiber [20], and also, the interaction with the environ-
ment makes it difficult to preserve entanglement for a long
time [10]. Hence, even obtaining a metropolitan-scale
quantum network remains a challenge. To overcome these
problems, there is a global effort in building technology of
quantum repeaters [11,21-23] that could act as relay stations
for long-distance quantum communication [7,19].

Some of the first protocols to be performed once a
quantum network is available will likely be bipartite as well
as multipartite secret key agreement. Securing the network
is a necessity for these QKD protocols to be free of
loopholes. A number of spectacular attacks on implemen-
tations are based on inaccuracy (inefficiency) of detectors
of polarized light [24-26]. Based on the idea of entangle-
ment swapping, a novel protocol known as measurement-
device-independent QKD (MDI-QKD) [27,28] was intro-
duced, which does not require the honest parties to detect
an incoming quantum signal, thus avoiding the problem of
detector inefficiencies. This idea has drawn enormous
theoretical and experimental attention over the last few
years in terms of analyzing achievable key rates for such a
scheme with various noise models and performing experi-
ments with current technologies [29-39].

Given the broad interest in implementing such technol-
ogies, understanding the fundamental limitations on the key
rates achievable in scenarios such as quantum networks and
quantum repeaters, as well as setups for MDI-QKD, is an
important task. Seminal papers [40,41] on upper bounds on
secret key distillation from states, along with results from
Refs. [42-46], have led to notable recent progress in the
aforementioned direction, for two parties over point-to-
point channels assisted by local quantum operations and
classical communication (LOCC) [47-50]. Building upon
these works, further progress has been made in restricted
network settings, e.g., between two parties over bidirec-
tional [51-53], broadcast [54-56], multiple access, and
interference quantum channels [54], as well as quantum
repeaters [50,57] and networks consisting of point-to-point
[58-60] or broadcast channels [61].

In this work, we aim to provide a unifying framework to
derive upper bounds on the key rates, both in bipartite and
conference settings, achievable in a broad range of different
scenarios, including but not limited to broadcast, multiple
access, interference channels, repeaters, some MDI-QKD
setups, and more general network scenarios. For that
purpose, we introduce a multiplex quantum channel, i.e.,
a multipartite quantum process that connects parties, each
playing one of three possible roles—both sender and
receiver, only sender, or only receiver. A multiplex
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FIG. 1. Pictorial illustration of the universal nature of a

multiplex quantum channel from which all other network quan-
tum channels arise, where red and green arrows show inputs and
outputs to channels, respectively; see Sec. III B for definitions.

quantum channel is the most general form of a memoryless
multipartite quantum channel in a communication network
setting. All other network quantum channels can be seen as
a special case of this channel (see Fig. 1 for certain common
examples). Even the physical setups of MDI-QKD and key
repeaters can be described as special cases of multiplex
quantum channels (see Fig. 2). In general, the input and
output systems on which such a channel acts can be discrete

I,
Charlie

A A
e =
i ® Multiple access X
Bob ﬂ PtoP Q channel q
B | B

quantum-classical
Zp €

Broadcast

q classical -classical
channel

Physical setup of Measurement-Device-Independent QKD

FIG. 2. Graphical depiction of a quantum-to-classical multiplex
channel A\ Mg’l—»ZA z, 8 a bidirectional channel, which is a
composition of three elementary multiplex channels. We show
a pair of point-to-point channels from Alice to Charlie, and from
Bob to Charlie composed of a multiple access quantum-to-
classical channel (quantum instrument) performed by Charlie,
followed by a broadcast classical channel back to Alice and Bob.
The green arrows with red boundaries are the outputs of one
multiplex channel, which are, at the same time, inputs to the other

channel, hence the coloring.
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FIG. 3. Example of an LOCC-assisted secret-key-agreement
protocol among six parties—Alice 1, Alice 2, Bob 1, Bob 2,
Charlie 1, and Charlie 2—using the multiplex channel N three
times. Inputs into A/ are depicted in red, outputs in green, and
reference systems in black. Alice 1 and 2 enter systems into and
receive systems from A, Bob 1 and 2 only enter systems, and
Charlie 1 and 2 only receive systems. In the end, the six parties
obtain a six-partite conference key.

(finite-dimensional) or continuous variable (infinite-
dimensional) quantum systems.

Next, we introduce secret-key-distribution protocols over
multiplex quantum channels with LOCC assistance between
users, as shown in Fig. 3, which provides a unifying
framework to evaluate performances of various seemingly
different QKD protocols. In particular, we describe a general
paradigm of QKD protocols where a fixed number of trusted
allies are connected over a multiplex quantum channel A/ In
these protocols, the allies are allowed to perform LOCC
between each use of A to generate, in the end, a key that is
secure against any eavesdropper that satisfies the laws of
quantum mechanics. This so-called quantum eavesdropper
can have access to all environment parts, including the
isometric extension to channel /.

Our main technical result consists of a metaconverse
bound on the one-shot conference key agreement capacity
of a multiplex quantum channel, from which we can obtain
a number of weak as well as strong converse bounds for the
many uses of the multiplex quantum channel, including
adaptive and nonadaptive strategies. As our results work in
the nonasymptotic setting of a finite number of channel
uses, we believe them to be of wide practical interest.

In particular, as an important observation, we show that
key repeater protocols, as well as commonly used setups for
MDI-QKD, are special cases of LOCC-assisted secret key
agreement via a multiplex quantum channel. Whereas
bounds on the key rates in such scenarios can also be
obtained from a number of earlier results—e.g., from
Refs. [50,58,60]—our framework allows for a higher level
of specificity in the setups, e.g., by taking into consid-
eration the lack of quantum memory or a particular kind of
noisy measurement that is performed in the relay station.
Thus, our framework allows us to obtain tighter bounds

than those in Refs. [50,58,60] and even to compute
MDI-QKD capacities of certain photon-based practical
prototypes that use the so-called dual-rail encoding scheme.
This approach provides important tools for benchmarking
the performance of such experimentally relevant protocols.

When considering conference key agreement, the pivotal
observation we arrive at is that multipartite quantum states
with directly accessible secret bits, also called (multipartite)
private states [14,62], are genuinely multipartite entangled.
This fact also allows us to derive nonasymptotic upper
bounds on the secret key distillation from a finite number of
copies of a multipartite quantum state.

Our work showcases the topology-dependent and yet
universal nature of entanglement measures based on sand-
wiched Rényi relative entropies [63,64], of which relative
entropy is a special case. These entanglement measures
provide upper bounds on the secret key rate over an arbitrary
multiplex quantum channel, which was first shown for
bipartite states in Ref. [40]. The entanglement measures
are topology dependent because the upper bound’s argument
depends (only) on the partition of quantum systems held by
trusted allies based on their roles in the network channel. The
results are based on the observation that multipartite private
states are necessarily genuinely multipartite entangled.

The structure of this paper is as follows. We begin with a
brief overview of the main results and briefly mention some
important prior results along the direction of our work in
Sec. II, respectively. We introduce notations and review
basic definitions and relevant prior results in Sec. III. In
Sec. IV, we introduce and discuss the properties of
entanglement measures for the multiplex quantum channel.
We show that genuine multipartite entanglement is a
necessary criterion for secrecy. In Sec. V, we introduce
LOCC-assisted secret-key-agreement protocols over an
arbitrary multiplex quantum channel. We derive upper
bounds on the maximum achievable rate for conference
key agreement over finite uses of multiplex quantum
channels. In Sec. VI, we leverage our bounds to provide
nontrivial upper bounds on other quantum key distribution
schemes such as measurement-device-independent quan-
tum key distribution and quantum key repeaters. In
Sec. VII, we derive lower bounds on the secret-key-
agreement capacity over an arbitrary multiplex quantum
channel. In Sec. VIII, we derive upper bounds on the
number of secret key bits that can be distilled via LOCC
among trusted parties sharing a finite number of copies of
multipartite quantum states. We provide concluding
remarks and open questions in Sec. IX.

II. SUMMARY OF THE MAIN RESULTS

In the following, we provide a brief overview of our main
results. Regarding technique, our focus is on multipartite
private states, which are the most general class of states that
provide the quantum conference key directly (i.e., without
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distillation) by local measurements. Such states are of the
form [14]

o = U (@37 @ o) (U™)", (1)

where K = K 1, ..., Ky denotes the so-called key part—i.e.,
the systems that the N parties involved have to measure in

order to obtain conference—and S = § 1»---» Sy denotes the
so-called shield systems, which the parties have to keep
secure from the eavesdropper. Also, ®SHZ is an N-partite
GHZ state, w is some density operator, and U™ is a
specifically constructed bipartite unitary operation known
as twisting.

We show that states of this form are necessarily genu-
inely multipartite entangled (GME); i.e., they cannot be
expressed as a convex sum of product states no matter with
respect to which partition the states are products.
To show this, we define a multipartite privacy test, i.e.,
a dichotomic measurement {II,1—TII’} such that any
e-approximate multipartite private state p with fidelity
F(p,y) > 1 —¢€ passes the test with success probability
Tr[[T’p] > 1 — €. We then show that any biseparable state &
cannot pass the privacy test with probability larger than
1/K, where log K is the number of conference key bits
obtainable by measuring (the key part of) y. Namely, we
show that Tr[[T"6] < 1/K for all biseparable o.

As ameans of distributing bipartite or multipartite private
states among the users, e.g., in a future quantum version of
the internet [3,17], we introduce multiplex quantum chan-
nels that connect a number of parties that have one of three
possible roles—that of only sender, only receiver, or both
sender and receiver. We denote senders as Bob 1,..., Bob &,
and their inputs as By, ..., By; receivers as Charlie 1,...,
Charlie m, and their inputs as Cy, ..., C,,; and parties that are
both senders and receivers as Alice 1,..., Alice n, with
respective inputs A’, ..., A}, and outputs A, ..., A,.. See also
Fig. 1. To describe such channels, we use the notation
N FBoit where, for sake of brevity, we have introduced
A= Ay, ..., A, etc. Furthermore, :A: denotes the partition
Aj:...tA, and A:B: standsforA;:...:A,:B;:...:By,etc.

By interleaving the uses of a multiplex quantum channel
with LOCC among the parties, we provide a general
framework to describe a number of different quantum
protocols. The idea is to construct a multiplex quantum
channel in such a way that its use, interleaved by LOCC,
simulates the protocol. For example, in a MDI-QKD setup,
where Alice 1 and Alice 2 send states to the central
measurement unit using respective channels N2, we can
define a (bipartite) multiplex quantum channel of the form

'MDI — 1 2
A’]AQ—LAIAZ = Bx_)A]AZOMAIIIAg_)XON 11_)A/]/ ®N /2_)A/°/

(2)

Here, Myurar_.x is the quantum channel performing the
central measurement, and Bx_4 4, is a classical broadcast
channel sending the result back to Alice 1 and Alice 2. Other
examples include multipartite MDI-QKD and secret-key-
agreement protocols over quantum network laced with key
repeaters [50,57].

Generalizing results for point-to-point [48-50] and
bidirectional [51-53] channels, we derive divergence-based
measures for the entangling abilities of multiplex quantum
channels and show that they provide upper bounds on their
secret-key-agreement capacities. The measures we intro-
duce are of the following form:

E (V)= sup

reFS(:LA’:Ia?:)

E,(:LA:R:C:) . (3)

where r = E or r = GE (E and GE denote entanglement
and genuine entanglement, respectively) and FS denotes
the set of fully separable states (see Secs. [IVA and IV B).

Here, Ij,l_é denote ancillary systems that are kept by the
respective parties. For any partition :X:, we have defined
E, as the divergence from the convex set Sy of fully
separable or the convex set Sgg of biseparable states,
measured by some divergence D:

E (:X:),:=

P

inf  D(p|lo). (4)
€S, (:X:)

Our main results are the following upper bounds on
secret-key-agreement capacities of a multiplex quantum
channel, i.e., on the maximum rates at which multipartite
private states can be obtained by using the channel as well
as some free operations. In the one-shot case of a multiplex
quantum channel with classical preprocessing and post-
processing (cppp), we have the following weak converse
result: For any fixed ¢ € (0, 1), the achievable region of
cppp-assisted secret key agreement over a multiplex chan-
nel NV satisfies

Pl N < E5 (N, (5)

where Ej ¢ (N) is the e-hypothesis-testing relative entropy
of genuine multipartite entanglement of the multiplex
channel A/, which is based on the e-hypothesis-testing
divergence [65]. In the case of many channel uses,
interleaved by LOCC, we can also show the following
strong converse bound:

ProccN) £ Epax g(N), (6)

where E,, (N) is the max-relative entropy of entangle-
ment of the multiplex channel A/, which is based on the
max-relative entropy [46]. In the case of finite-dimensional
Hilbert spaces, we can also get a strong converse result in
terms of the regularized relative entropy,
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Procc(N) S ERp(N). (7)

If NV is teleportation-simulable [48,66]—i.e., it can be
simulated by a resource state and an LOCC operation—the
bounds on Pyocc(N) reduce to the relative entropy of
entanglement of the resource state. Our upper bounds on
the secret-key-agreement capacities are also upper bounds
on the multipartite quantum capacities, where our goal is to
distill GHZ states.

Our technique allows us to compute upper bounds on the
rates achievable in MDI-QKD scenarios. For instance, we
consider a dual-rail scheme based on single photons [67] to
determine bounds on the MDI-QKD rates for two users. In
this case, the channels between the users and the relay
station are describable by erasure channels &£;. We obtain
the MDI-QKD capacity

pLOCC(N%A?ég) = 4Nz, (8)

where 7;’s are the parameters of the erasure channels
connecting users to the relay station and ¢ is the probability
of success of the Bell measurement at the relay station (see
Sec. VID for a precise model of the MDI-QKD setup).
Dependence on #; allows us to consider the rate-distance
trade-off. We also determine upper bounds on the maxi-
mum rates for the MDI-QKD setups, where the quantum
channels from the users to the relay station are depolarizing
and dephasing channels.

We also provide lower bounds on the secret-key-agree-
ment rates of multiplex quantum channels that can be
achieved by cppp. Our protocols are based on Devetak-
Winter (DW) [68] and generalize the lower bound for
multipartite states presented in Ref. [14], as well as the
bound for point-to-point quantum channels presented in
Ref. [69] to multiplex quantum channels. Our first lower
bound is a direct extension of the result for states given in
Ref. [14]. The idea is to choose a so-called distributing
party that performs the (directed) DW protocol with all
remaining parties. The achievable rate is then the worst-
case DW rate achievable between the distributing party and
any other party. Furthermore, we maximize over all choices
for the distributing party. Our second protocol is a variation,
where we have a directed chain of parties in which each
party performs the DW protocol with the next party in the
chain. The obtainable rate is given by the “weakest link,”
i.e., the lowest DW rate, in the chain, and we maximize
over all possible permutations of the parties in the chain.

In the case of a bidirectional network, i.e., a network in
which all nodes are connected with their neighbors by a
product of point-to-point channels in opposite directions,
we provide a tighter bound based on spanning trees. The
idea is to find the lowest DW rate in a spanning tree among
any pair of the parties and maximize this quantity among all
spanning trees. We provide an example where this protocol
achieves a higher rate than the previous ones and show that

the lower bound can be computed with polynomial
complexity.

Finally, we show that the techniques developed in
previous sections can also be applied to upper bound the
rates at which the conference key can be distilled from
multipartite quantum states. In particular, we provide an
upper bound on the one-shot distillable conference key in
terms of the hypothesis-testing relative entropy with respect
to biseparable states. Our bound reads

K5 () < E; e (p). 9)

Using a particular construction of biseparable states, we
provide bounds on this quantity for a number of examples,
such as (multiple copies of) GHZ and W states, as well as
dephased or depolarized GHZ and W states. We also
provide an upper bound on the asymptotic distillable
conference key, which is given by the regularized relative
entropy with respect to biseparable states,

Kp(p) < E°G°E<P)’ (10)

which is a generalization of the bipartite bound given
in Ref. [62].

A. Relation to prior works

We briefly sketch some of the major developments that
provide upper bounds on the key distillation capacities
from states or via an LOCC-assisted secret-key-agreement
protocol over a quantum channel. We then compare our
bounds on the SKA capacities with those mentioned in
prior works.

Conditions and bounds on the distillable key of bipartite
states were provided in Refs. [40,41,62]. The former is in
terms of the relative entropy of entanglement [43,44], and
the latter is in terms of the squashed entanglement [70]
(cf. Refs. [71,72]). These results were generalized to the
conference key in Refs. [14,73], respectively.

For an LOCC-assisted secret-key-agreement protocol
over a point-to-point channel, Ref. [47] provides a weak
converse bound in terms of the squashed entanglement,
which is generalized to the distribution of bipartite and
multipartite private states via broadcast channels in
Ref. [55]. In the case of tele-covariant channels (see
Sec. V), Ref. [48] provides a weak converse bound
and Ref. [49] a strong converse bound in terms of the
relative entropy of entanglement. This bound has been
generalized to the distribution of multiple pairs of bipartite
private states via broadcast channels [54,56], as well as
multiple-access and interference channels [54].

For arbitrary point-to-point channels, a strong converse
bound in terms of the max-relative entropy of entanglement
[46] is provided in Ref. [50]. Recently, another strong
converse bound in terms of the regularized relative entropy
was provided in Ref. [74]. For bidirectional channels,
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strong converse bounds in terms of the max-relative
entropy of entanglement, which reduce to the relative
entropy of entanglement for tele-covariant channels, have
been provided in Refs. [51-53].

In the case where the bipartite key is distributed between
two parties using a quantum key repeater, bounds have
been provided in Ref. [50] when quantum communication
takes place over a point-to-point channel. Bounds on rates,
at which bipartite and multipartite keys for networks of
point-to-point or broadcast channels can be obtained, have
been provided in Refs. [58-60,75,76] and [61], respec-
tively. Also, bounds on the rates obtainable in key repeaters
that are in terms of entanglement measures of the input
states have been obtained in Refs. [57,77].

In an LOCC-assisted conference key agreement proto-
col, the use of a multiplex quantum channel is interleaved
with LOCC among trusted parties. For this scenario, we
derive strong converse bounds in terms of the max-relative
entropy entanglement for arbitrary multiplex channels. In
the case of finite channel dimensions, we also derive
bounds in terms of the regularized relative entropy of
entanglement. In the case of tele-covariant channels, we
obtain bounds in terms of the relative entropy of entangle-
ment. In general, our bounds are not comparable with the
squashed entanglement bounds provided in Refs. [47,55].
We are able to retain the results of Refs. [48-50,74] when
multiplex channels are assumed to be point-to-point chan-
nels. Our bounds in terms of the max-relative entropy are a
direct generalization of the bounds on bidirectional chan-
nels presented in Refs. [51-53]; thus, we retain those
results. By using the recent results in Ref. [74], we further
provide bounds in terms of the regularized relative entropy
of entanglement, which can provide an improvement.

Concerning quantum key repeaters as well as setups of
MDI-QKD, upper bounds on the achievable key rates can
be obtained from results bounding key rates achievable in
quantum networks, e.g., the one presented in Ref. [60] and
subsequently used in Ref. [78] or the ones presented in
Refs. [50,58]. However, we note that by designing the right
kind of multiplex channel, we can make more specific
assumptions on the operations performed at the relay
stations and thus obtain tighter bounds. For example, we
could design a multiplex channel for a protocol that does
not use a quantum memory at the relay station or that
performs a particular imperfect measurement at the relay
station. The bounds given in Refs. [50,58,60], on the other
hand, would bound the key rates of a repeater or MDI-QKD
setup by finding the weakest link between the nodes, i.e.,
only taking into consideration limitations arising from
imperfect point-to-point channels linking Alice and Bob
with the central relay station, while assuming unlimited
quantum memory at the nodes as well as the possibility to
perform perfect measurements, resulting in looser
bounds. Hence, the bounds given in Refs. [50,58,60]
basically reduce to the minimum of the capacities of the

two point-to-point channels, whereas our bounds represent
the limitation arising from both imperfect channels and
imperfect node operations, which is an important factor
when benchmarking experimental implementations.

As for conference key distillation from multipartite
states, we provide tighter bounds than those presented in
Ref. [14]. As a GHZ state is a special case of a multipartite
private state, our bounds can also be applied to the
distillation of GHZ states from any pure or mixed multi-
partite entangled state, both in the asymptotic and finite
copies regimes. There are a number of results concerned
with computing and bounding rates of multipartite entan-
glement transformation, including those in Refs. [79-87].
As an example, we consider the nonasymptotic distillation
of a tripartite conference key from noisy and noiseless W
states and compare our results with Ref. [80].

III. PRELIMINARIES

In this section, we introduce notations and review basic
concepts and standard definitions to be used frequently in
later sections.

A. Notations and definitions

We consider quantum systems associated with separable
Hilbert spaces. We study both discrete and continuous
variable quantum systems; therefore, the associated
Hilbert spaces can be finite or infinite dimensional. For a
composite quantum system AB in a state p,p, the reduced
state Trg[p,p] of system A is denoted as py. We denote the

identity operator as 1. Let Al = {AL}oens A=1{Au}uess
B={By},ep, C={Cclrec K={K}}, denote sets
(compositions) of quantum systems, where A, 3, C are finite

sets of symbols such that |A| + |B| + |C| = M for some
natural number M > 2. We consider M trusted allies

{Xi}) = {Adtaea U {Bo}pes U{Cclecc:  Also, LA
denotes the set {L,A,},c 4, Where L, is a reference system

of A, held by A, and the same follows for I@ PC, and SK.
A quantum state p; denotes a joint state of a system formed

by compositionofall A,. We use : A: todenote partition with
respect to each system in the set A as they are held by separate

entities, and the same follows for : LA:RB:. Each separate
element in a set is held by a separate party, in general. For

example, let us consider A = {A,,A,,A;} for | A| = 3; then,

A also depicts the composite system A;A,Az, and ‘A
denotes the partition A;:A,:A; between each subsystem

A, of A. In a conference key agreement protocol, each pair
K;, S; of key and shield systems belongs to the respective
trusted party X; fully secure from Eve, while all
Al,A,, By, C., K;,S; are physically inaccessible to Eve.

Let CDGHZ denote an M-partite GHZ state and CILV an

Emstem—Podolsky—Rosen (EPR) state [88], also called a
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maximally entangled state, where maximal entanglement is
between L and A. It should be noted that (IDZI‘/K = QD
aceA

La‘Aa’
where
| d-1
@PL\AH = EZ |i,i)(j. J LA, (11)
i.j=0
for an orthonormal basis {|i)};, where d=
min{|L,|, |A,|}. (Without loss of generality, one may

assume an EPR state of an even-dimensional qudit system
to be a tensor product of EPR states of qubit systems.)

A quantum channel Mp_ . is a completely positive,
trace-preserving map that acts on trace-class operators
defined on the Hilbert space Hp and uniquely maps them
to trace-class operators defined on the Hilbert space H.
For a channel M,_ 5 with A and B as input and output
systems, its Choi state J;7% is equal to M(®],).

A measurement channel M, _ 4y is a quantum instru-
ment whose action is expressed as

MA’—»AX(') = ng/_,A<‘) ® |x> (x X (12)

where each £* is a completely positive, trace-nonincreasing
map such that M is a quantum channel and X is a classical
register that stores measurement outcomes. A classical
register (system) X can be represented with a set of
orthogonal quantum states {|x){x|y},cy defined on the
Hilbert space Hy.

An LOCC channel L; -

Y orer(®yey Ei';_}Bv), where A’ = {A}}, and B = {B,},
are sets of inputs and outputs, respectively, and {E'}, is a
set of completely positive, trace-nonincreasing maps for
each y such that £ is a quantum channel (cf. Ref. [§9]). A
LOCC channel does not increase the value of entanglement
monotones and is deemed as a free operation in the
resource theory of entanglement [14,62,89].

A quantity is called a generalized divergence [90,91] if it
satisfies the following monotonicity (data-processing)
inequality for all density operators p and ¢ and quantum
channels N:

can be written as

D(pllo) = D(N (p)[|N (a)). (13)
Examples include the quantum relative entropy [92]

D(pll0) = Trlploga(p - o). (14)

for supp(p) C supp(oc)—otherwise it is co—as well as the
sandwiched Rényi relative entropy [63,64], which is
denoted as D,(p||¢) and defined for states p, ¢, and V a €
(0,1) U (1, ) as

Dilplle) s= L log;Tr] (1= 24pa1=0/20) (15)
but it is set to oo for @ € (1, o) if supp(p) Z supp(o). In
the limit & — 1, the sandwiched Rényi relative entropy
converges to the quantum relative entropy; in the limit
a — o0, it converges to the max-relative entropy [64],
which is defined as [46,93]

Dy (pllo) = inf{2 € Rip < 2o}, (16)

and if supp(p) Z supp(c), then D, (p||lo) = 0. Another
generalized divergence is the e-hypothesis-testing diver-
gence [65,94], defined as

Di(pllo) = ~log, _inf_{Tr[Ac}:Tr[Ap] 2 1~ e},

(17)

for € € [0, 1] and density operators p, 6. For a more detailed
description and other examples of the generalized diver-
gences like the trace distance ||p — ||, and negative of
fidelity —F(p, o) and their properties, see the Appendix A.

B. Multiplex quantum channels

We now formally define a general form of network
channel that encompasses all other known multiplex
quantum channels possible in communication or informa-
tion processing settings [see Fig. 1(a) and Appendix B]. To
the best of our knowledge, there is not such a general form
of network channel in the literature of quantum commu-
nication and computation.

Definition 1: Consider the multipartite quantum chan-
nel Ng, 5_ic» Where each pair Aj,A, is held by a
respective party A, and each B,, C. are held by parties
B,, C., respectively. While A, is both the sender and
receiver to the channel, B, is only a sender, and C.. is only a
receiver to the channel. Such a quantum channel is referred
to as the multiplex quantum channel. Any two different
systems need not be of the same size, in general. The sets
A, B, or C can be empty in such a way that there is at least
one input to the channel and one output from the channel.

Definition 1 includes all scenarios depicted in Fig. 1 (see
Appendix B). For example, for a point-to-point channel
from Bob to Charlie the set A = ¢ and the sets 3 and C are
singleton sets.

Also, any physical box with quantum or classical inputs
and quantum or classical outputs is a type of multiplex
quantum channel. We may not have an exact description of
what is going on inside the box except that the undergoing
process is physical, i.e., described by quantum mechanics.
Physical computational devices like a physical black box
(oracle) and quantum circuit [95] are also examples of
multiplex quantum channels.
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C. Conference key and private states

There are two usual approaches to studying secret key
distillation. A direct approach is to consider purifications of
states where the purifying system is accessible to Eve and
all allied parties are allowed to perform local operations and
public communication (LOPC). In this approach, we have
Eve and M allied parties. Another approach is to consider
the private states defined below, where all allied parties
perform LOCC. We need not consider Eve explicitly in the
paradigm of private states, and it is assumed that purifi-
cations of states are accessible to Eve. Both approaches are
known to be equivalent [40]. We discuss the equivalence of
these two approaches in more detail in Sec. V.

We now review the properties of conference key states
discussed in Ref. [14]. Conference key states are a
multipartite generalization of the secret key shared between
two parties.

Definition 2: A conference key state y% , with |K;| = K
forall i € [M]:=1,...,M, is defined as

Dk, ® Dk, ® -+ @ D, (r%,)
1
=) k) (Kl ® k) {klx, ® - ® [K) (K|, ® o
kel
(18)

where o is a state of the system E, which is accessible to
an eavesdropper Eve, D(:) = > o [k)(k|()|k) (k| is a
projective measurement channel, and {[k)x };ec forms

an orthonormal basis for each i € [M].
A conference key state y%E has log, K secret bits (key)

that are readily accessible.
A state pg is called an e-approximate conference key
state, for e € [0, 1], if there exists a conference key state y%E

such that [14]
F(roppre) 2 1 -, (19)

Definition 3: A state Yar with |K;| = K forall i € [M],
is called a (M-partite) private state if and only if

— JTtW GHZ . tw T
r = UL @I @ogUn),  (20)

where U?]é =) o |E><I:|E ® Ué is called a twisting

unitary operator for some unitary operator U’é and w is

some density operator [14].
It should be noted that Ysn has at least log, K secret (key)

bits (see Ref. [62] for a discussion of when the private state
has exactly log, K bits). Similar to a conference key state, a
state p . is called an e-approximate private state for ¢ €

[0, 1] if there exists a private state Ysp such that [14]

Flro.pg)21-e. (21)

Any state extension (including purification) Ying of such
a private state (20) necessarily has the following form [14]:

=W . - tw T
Yo = U (@ @05 )(U% ). (22)
where wg, is a state extension of the density operator ws.

It follows from Theorem IV.1 of Ref. [14] that
F(y;;(E,p;(E) >1—¢ implies F(ys?,pﬁ() >1—¢, and
the converse is also true; i.e., F (ys?, ps?) > 1 — ¢ implies

Frgprre) 2 1-¢
It is known that all perfect private states have nonlocal
correlations [96].

IV. ENTANGLEMENT AND PRIVACY TEST

This section introduces frameworks for the resource
theories of multipartite entanglement for the multipartite
quantum channels (see Refs. [51,53,97,98] for the dis-
cussion on bipartite channels).

A. Multipartite entanglement

Here, we provide a short overview of the relevant
definitions. For a detailed review of the topic, see
Ref. [99]. A pure n-partite state that can be written as a
tensor product ) ® |yr) & ... ® |w,,) is called m-sepa-
rable. If m < n, there are partitions of the set of all the parties
into two, with respect to which the state is entangled. If
n = m, the pure state is said to be fully separable. If there is
no bipartition with respect to which the pure state is a
product state, it is called genuinely n-partite entangled.

An arbitrary n-partite state is m-separable if it can be
written as the following convex composition:

Prnsep = D_Px(O W) (Wi @ wd) (Wi ® ... & w) (W

xeX

’

(23)

where py(x) is a probability distribution. The m-separable
states form a convex set. Note, however, that the sub-
systems with respect to which the elements of the decom-
position have to be products can differ.

A mixed n-partite state is considered GME if any
decomposition into pure states contains at least one
genuinely n-partite entangled pure state; i.e., the state is
not biseparable. Let a free set F(:A:) denote the set of all
fully separable and biseparable states of system Afor F =
FS and F = BS, respectively. Both the sets FS and BS are
convex. We note that while FS is preserved under an LOCC
operation and tensor product, BS is preserved under LOCC

but not under the tensor product, i.e., p(i) IS BS(:A(X) 2)
AW
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but p @ p?® need not

BRI
BS(:AMWAR):). We refer to biseparable quantum states
whose biseparability is preserved under tensor products,

for x € [2] belong to

ie., p@. € BS(:AW:)  and
A

BS(:AM...A(:) for all n € N, as tensor-stable bisepar-

able states.

B. Entanglement measures

It is pertinent to quantify the resourcefulness of states and
channels. The bounds on the capacities that we obtain are in
terms of these quantifiers. It is desirable for entanglement
quantifiers to be non-negative, to attain their minimum for the
free states (and separable channels, respectively), and to be
monotone under the action of LOCC.

Definition 4: The generalized divergence of entangle-
ment Eg or GME Egg of an arbitrary state p; is defined
as [100]

E,(:A%), = inf D(p;lle;), (24)
oeF(:A:)

when F =FS or F =BS for r =E or r = GE, respec-
tively, where D(p||o) denotes the generalized divergence.

The following definition of the entanglement measure of
a multiplex channel generalizes the notion of entangling
power of bipartite quantum channels [101] (see also
Refs. [51,53,102]).

Definition 5: The entangling power of a multiplex
channel N/ T ioic With respect to entanglement measure
E, [Eq. (24)] is defined as the maximum possible gain in
the entanglement E, when a quantum state is acted upon by

the given channel N,

E7(N)
::sup[E,(:LT4:I?:P_C):)N(/,)—E,(:LA’:IHB:?’:)/)], (25)
P

where optimization is over all possible input states
Praksp

Another way to quantify the entanglement measure of a
multiplex channel is the following (see Ref. [53] for the
bidirectional channel).

Definition 6: The generalized divergence of entangle-
ment Eg(N) or GME Egg(N) of a multiplex channel

A'B=AC 18

E, (N):= sup  E,(:LA:R:C:)yy

pEFS(:LA":RB:)

(26)

p)

for r =E or r = GE, respectively, where E,(:Z:)p is
defined in Eq. (24) and GME stands for genuinely
multipartite entanglement.

Forr = E, theentanglement measurein Eq. (24)iscalled &-
hypothesis-testing relative entropy of entanglement Ej, .,
max-relative entropy of entanglement E,,, r, sandwiched
Renyi relative entropy of entanglement Ea,E, or relative
entropy of entanglement £ when the generalized divergence
is the e-hypothesis-testing relative entropy, max-relative
entropy, sandwiched Rényi relative entropy, or relative
entropy, respectively. For r = GE, the entanglement measure
in Eq. (24) is called e-hypothesis-testing relative entropy of
GME Ej, g, max-relative entropy of GME E g, sand-

wiched Renyi relative entropy of GME Ea,GE, or relative
entropy of GME when the generalized divergence Egg, is the
e-hypothesis-testing relative entropy, max-relative entropy,
sandwiched Rényi relative entropy, or relative entropy,
respectively. We follow the same procedure for the nomen-
clature of entanglement measures of channels.

We note that the sets FS, BS are convex. Using the data-
processed triangle inequality [50] and the argument from
the proof of Proposition 2 in Ref. [51], we arrive at the
following lemma.

Lemma 1: The entangling power of a multiplex channel
N Tioic With respect to the max-relative entropy of
entanglement E,,, p is equal to the max-relative entropy
of entanglement of the channel N/,

Egmx.E(N) = Emax,E(N)' (27)
Using a recent result on relative entropies [103], we can

also obtain a result for the relative entropy of entanglement.
Let us first define the regularized relative entropy of

entanglement of a multiplex channel A Foic as
E%O(N) = Aei]?OfCCDoo(N‘XI *_)XEHA*,E_LKE,), (28)

where D®(N|| M) := lim,_,,(1/n)D(N®"||M®") and

DN|M):= max DN iz za(@)lM 5 z6(¢))- (29)

.
LA"RBP

where L~A’, R~B and P~C. We now show the
following relation between the regularized relative entropy
of entanglement and the relative entropy of entanglement.

Lemma 2: For finite-dimensional Hilbert spaces, the
entangling power of a multiplex channel N ;, Foie With
respect to the relative entropy of entanglement Ef is less
than or equal to the regularized relative entropy of
entanglement of the channel N,

EL(N) < ER(N). (30)

Proof—Let p— — _ be a state and let o' €
. _, _LA'RBP

FS(:LA":RB:P:). Let Ay <= be an LOCC channel.

Then, the following inequality holds:
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Ep(:LA:R:PC:)
< Y — L ‘
< D(NaiieliggMiaac )| OD

Applying the chain rule from Ref. [103], we find that

§D< — — _|lo'— _
LA'RBP" [A'RBP

Since the above holds for arbitrary, fully separable states

and arbitrary LOCC channels A ;, Foics We arrive

o _

LA'RBP
at

finishing the proof. u
Remark 1: It suffices to optimize Ej, (N), Ej 55(N),
Emax,E(N)’ EE,E(N)’ and Emax.GE (N) of a multiplex

channel N states; i.e., p€E

FS(:LA’:RB:) is a pure state in Eq. (26) for
Ej tN). EjeWN). EnaxgWN). Egg(N). Epax (V)
This reduction follows from the quasiconvexity of the max-
relative entropy [93] and e-hypothesis-testing relative
entropy [104], as well as the convexity of the relative
entropy of entanglement [44]. Namely, the maximum of a
(quasi)convex function over a convex set will be attained on
a boundary point. The boundary points of the set of fully
separable density matrices are given by the fully separable
pure states.

over all pure input

C. Multipartite privacy test
A y-privacy test corresponding to Y is defined as the

dichotomic measurement [49] {IT_,1—1I"_}, where
SK SK

7 = UYW, (@ @ 1) (UM™)T.
SK SK( & ® T5)( SK>
Using the properties of fidelity and form of the test
measurement, we arrive at the following proposition.
Proposition 1: If a state p— is & approximate to

SK
— —y—=)>1- =
Yo ie, F (pSK,ySK) 1 — ¢, “then P, Passes the

y-privacy test with success probability 1 — e ie.,

7 —
Tr [Hﬁp;] >1—e (33)

= (@O Tl (U™ ) p UM 09 (34)

= F((I)GHZ Tr~[(UtW) ﬂSKUtKl KuSi.s))  (35)

GHZ tw tw
> F(O2™ ® wg (U ) pSKUSK) (36)
tw GHGHZ _(TTtW
(USK<I> Q w (U ) ,p?]{) (37)

= F(y;K,p;K) >1-e (38)
||
We employ proof arguments similar to the bipartite case
of Eq. (281) in Ref. [62] to arrive at the following theorem,
which implies that all private states are necessarily GME
states. This is a strict generalization of Eq. (281) in
Ref. [62], as a direct generalization would be the same
statement for fully separable states instead of biseparable
states (cf. Ref. [14]). See Appendix C for the proof._,
Theorem 1: A biseparable state o € BS(:SK:)

can never pass any y-privacy test with probability greater
than 1/K, i.e.,

<L (39)

Tr[”_o—
K

sk SK

V. CONFERENCE KEY AGREEMENT PROTOCOL

In this section, we give a formal description of a secret-
key-agreement protocol for multiple trusted parties, i.e., a
conference key agreement protocol.

We consider an LOCC-assisted secret-key-agreement
protocol among M trusted allies {X;}¥, over a multiplex
quantum channel N Boids where each pair A}, A, is held
by trusted party A, and each B,, C,. is held by trusted
parties B, C,, respectively. The environment part E of an

isometric extension U/l{ BLicE of the channel N is

accessible to Eve, along with all classical information
communicated among X; while performing LOCC. All
other quantum systems that are locally available to X; are
said to be secure from Eve; i.e., even if local operations
during LOCC are noisy, purifying quantum systems are still
within labs of trusted allies, which are off limits for Eve.
This assumption is justifiable because X;’s can always
abandon performing local operations that would leak
information to Eve. In an LOCC-assisted protocol, the
uses of the multiplex channel AV are interleaved with LOCC
channels.
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In the first round, all X; perform LOCC L' to generate a
—_—
state p, € FS(:LWAW :RWBML:p)) Al A, and B,

input respective systems to multiplex channel
N . _ andlett :=N(p) be the output state after
AW )

the first use A/! of the multiplex channel. In the second
round, an LOCC £? is performed on 7;, and then, the
second use N2 of the multiplex channel is employed on
p> = L%(z)). In the third round, an LOCC £? is performed
on 7, :=MN?(p,), and then, the third use N3 of the
multiplex channel is employed on p; = L3(1,).
Successively, we continue this procedure for n rounds,
where an £ acts on the output state of the previous round,
after which the multiplex channel is performed on the
resultant state. Finally, after the nth round, an LOCC £"+!
is performed as a decoding channel, which generates the
final state s

It can be concluded from the equivalence between
private states and CK states that any protocol of the above
form can be purified, i.e., by considering isometric exten-
sions of all channels (LOCC and ) (the proof arguments
are the same as for the purified protocol for LOCC-assisted
secret key agreement [51]). At the end of the purified
protocol, Eve possesses all the environment systems E”"
from isometric extension UV of each use of the multiplex
channel V" along with coherent copies Y"*! of the classical
data exchanged among trusted parties X; during perfor-
mances of n+ 1 LOCC channels, whereas each trusted
party X; possesses the key system K; and the shield system
S;, which consist of all local reference systems, after the
action of the decoder. The state at the end of the protocol is
a pure state w—_ with F(y—~,w—)>1—¢. Such a
SKY"™En SK’ 7 SK
protocol is called an (n, K, ¢) LOCC-assisted secret-key-
agreement protocol. The rate P of a given (n, K, €) protocol
is equal to the number of conference (secret) bits generated
per channel use:

1
P :=—log, K. (40)
n

A rate P is achievable if for ¢ € (0,1),5 > 0, and
sufficiently large n, there exists an (n,2""=%) ¢) LOCC-
assisted secret-key-agreement protocol. The LOCC-
assisted secret-key-agreement capacity Pjocc(N) of a
multiplex quantum channel AV is defined as the supremum
of all achievable rates.

A rate P is called a strong converse rate for LOCC-
assisted secret key agreement if forall e € [0,1),5 > 0, and
sufficiently large n, there does not exist an (n, 2"F+9) )
LOCC-assisted secret-key-agreement protocol. The strong
converse LOCC-assisted secret-key-agreement capacity

P occ(N) is defined as the infimum of all strong converse
rates.

The following inequality is a direct consequence of the
definitions:

Procc(N) < Proce(N). (41)

We can also consider the whole development discussed
above for conference key agreement assisted only by cppp
communication; i.e., all parties are allowed only two LOCC
channels, one for encoding and the other for decoding. A
(n,K,e) cppp-assisted secret-key-agreement protocol
over N\ is the same as a (1, K, &) LOCC-assisted secret-
key-agreement protocol over channel N'®", and for n = 1,
both protocols are the same. The cppp-assisted secret-key-

agreement capacity Pcppp of the channel A\ is always less

than or equal to Py occ,

pcppp(-/\/) < ﬁLOCC(-/\/)' (42)
Let It’é\{,pp(n, €) be the maximum rate such that (n,2"", ¢)
cppp-assisted secret key agreement is achievable for any
given NV.

Remark 2: It should be noted that the maximum rate at
which secret keys can be distilled using the LOCC- or
cppp-assisted protocol over a multiplex channel NV is never
less than the maximum rate at which the GHZ state can be
distilled using the LOCC- or cppp-assisted protocol over a
given channel N, respectively. This statement holds
because the GHZ state is a special private state from which
secret bits are readily accessible to trusted allies.

Remark 3: Different physical constraints can be
invoked in communication protocols to define constrained
protocols and associated capacities. For instance, we can
invoke energy constraints on input states and detectors to

get energy-constrained protocols and respective capacities
(cf. Refs. [105,106]).

A. Privacy from a single use of a multiplex channel

Let Pé\épp(n, ¢) denote the maximum rate P such that the
(n, K, €) conference key agreement protocol is achievable
for any A using cppp. The following bound holds for the
one-shot secret-key-agreement rate of a multiplex quantum
channel N (see Appendix D 1 for the proof).

Theorem 2: For any fixed e € (0, 1), the achievable
region of cppp-assisted secret key agreement over a single
use of the multiplex channel NV ;,» - satisfies
Pﬁ‘\gpp(l’ £) < Ej, g (N). (43)

where
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E,geWN) = sup inf DN (y)lle)

1//€FS(:LA’:R4é:)GGBS(:L‘A:R:C:)

(44)

is the e-hypothesis-testing relative entropy of genuine
entanglement of the multiplex channel N. It suffices to

optimize over pure input states y € FS(:LA’:RB:).
We can conclude from the above theorem that

N 1
Pé\[gpp(n’ 8) < ;EZ,GE(N‘&n)’ (45)

which leads to the following corollaries.

Corollary 1: A weak converse bound on the cppp-
assisted secret-key-agreement capacity of a multiplex
channel N is given by

PopppN) = . ei(rgl) ligigf f’é\gpp(n, €) (46)
< EZN). (47)

Corollary 2: Consider a class of multiplex channels
N iBic such that for all pure input states
w € FS(LA':RB:P), the output states N (y) are tensor-
stable biseparable states with respect to the partition

_— — —

LA:RB:PC. The cppp-assisted secret-key-agreement
capacities for such a class of multiplex channels are zero.

B. Strong converse bounds on LOCC-assisted private
capacity of multiplex channel

We now derive converse and strong converse bounds on
an LOCC-assisted secret-key-agreement protocol over a
multiplex channel \.

For an LOCC-assisted secret-key-agreement protocol,
by employing Theorem 1 and generalizing the proof
arguments of Theorem 2 in Ref. [51] (see also
Ref. [50]) to the multiplex scenario, we get the following
converse bound (proof in Appendix D 2).

Theorem 3: For a fixed n, K € N,e € (0, 1), the fol-
lowing bound holds for an (n, K, €) protocol for LOCC-

assisted secret key agreement over a multiplex N\ -, ol

1 1 1
—log, K < Epu e(N) + —log2< > (48)
n ’ n 1—¢

where the max-relative entropy of entanglement E,, (N)
of the multiplex channel N is

Emax,E (N>

= sup inf
WeFS(:I;{/:ﬁ{:)aeFS(:LA:R:C:)

Dinx (N (y)]|0)

and it suffices to optimize over pure states y.
Remark 4: The bound in Eq. (48) can also be rewritten
as

1 — & < 271(P~Enue(N)) | (49)

where we have P = (1/n)log,K. Thus, if the secret-key-
agreement rate P is strictly greater than the max-relative
entropy of entanglement E, . z(N) of the (multiplex)
channel N, then the fidelity of the distillation (1 — &)
decays exponentially fast to zero in the number of chan-
nel uses.

An immediate corollary of the above remark is the
following strong converse statement.

Corollary 3: The strong converse LOCC-assisted
secret-key-agreement capacity of a multiplex channel N
is bounded from above by its max-relative entropy of
entanglement:

pLOCC('/\/) < Emax.E(N)' (50)

We also have another upper bound on the private
capacity of a multiplex channel A T ioic With finite-
dimensional input and output systems in terms of the
regularized relative entropy instead of the max-relative
entropy (proof in Appendix D 3).

Theorem 4: For finite Hilbert space dimensions, the
asymptotic LOCC-assisted secret-key-agreement capacity
of a multiplex channel N ;5 - is bounded by its
regularized relative entropy of entanglement:

Procc(N) < ER(N). (51)

C. Teleportation-simulable and tele-covariant
multiplex channels

For a class of multipartite quantum channels obeying
certain symmetries, such as teleportation-simulability [66],
the LOCC assistance does not enhance secret-key-agree-
ment capacity, and the original protocol can be reduced to a
cppp-assisted secret-key-agreement protocol. This obser-
vation for secret communication between two parties over
the point-to-point teleportation-simulable channel was first
made in Ref. [48].

Definition 7: A multipartite quantum channel N ;, =~ -
is teleportation simulable with the associated resource state
eﬁxfeé’ where R, ~ B, for all b € B and L, ~ A/, for all

a € A, if for all input states pj, » the following identity
holds:
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for some LOCC channel 7 with
.55 . 2 . > =
:A'LA:BR:C: and output partition :A:C:.
Covariant channels.—For eacha € Aand b € B, let G,
and G, be finite groups of respective sizes G, and G, with
respective unitary representations g, — Uy (g,) and g, —

input partition

Ug, (gp) for all group elements g, and g,. Let Wﬁa and Wac
be unitary representations for all a € A and ¢ € C, where
9= {949} a - A multiplex quantum channel N 5,z < - is
covariant with respect to these representations if the
following relation holds for all input states p ;, z and group

elements g, € G, and g, € G, for all a € A and b € B:

Nipoic(®uUy & QU )(p;5)

acA Aa beB
WNigielrip)).  (53)

= (gwga ®W9

where we have used the notation U(-):= U(-)U' for
unitaries U.

Definition 24: A quantum channel N Boid is called
tele-covariant if it is covariant with respect to groups
{G.}aen and {G, } < that have representations as unitary

one-designs;i.e., foralla € Aand b € Bas well as states p A
and pp,, itholds that (1/G,) 3, c¢. U% (pa,) = 1/]A,] and

(1/Gy) Xy, Ul (02,) = 1/|By . respectively.

The following observation follows from the definition of
tele-covariant channels.

Remark 5: Tele-covariance of a channel is with respect
to the groups and their unitary representations on the input
and output Hilbert spaces of the channel. If associated
unitary representations for the tele-covariant channels !
and N? are, respectively, the same on the output Hilbert
spaces of \'! that are also the input Hilbert spaces for A2,
then the composition channel A" = N2oAN! is also tele-
covariant.

A quantum channel obtained by the tensor product
(superoperation “®,” which physically means parallel uses)
of tele-covariant channels is also a tele-covariant channel.

The following theorem generalizes the developments in
Refs. [51,107-109] (see Appendix D 4 for the proof):

Theorem 5: If a multipartite channel -, Boic is tele-
covariant, then it is teleportation-simulable with resource

state (52) as its Choi state, i.e., 0— .. =N (PL. _ ).
LARC LRIA'B

Following the approach in Refs. [48,62], we obtain the
following theorem:

Theorem 6: The LOCC-assisted secret-key-agreement
capacity of a multiplex quantum channel -, 57> Which
is teleportation-simulable with resource state 67A§6, is

upper bounded as

-

Procc(N) < EG(:LAR:C1),, (54)
where Em(:A:)p is the regularized relative entropy of
entanglement of state p5.

For the proof, see Appendix D4. Using the above
theorem, we immediately get the following.

Corollary 4: For a multiplex quantum channel
N J oAt which is teleportation-simulable with a
tensor-stable biseparable resource state, it holds that
Procc(V) = 0.

Let us note that unlike in Refs. [48,62], which deals with
the bipartite relative entropy of entanglement, we do not
trivially get a nonregularized bound, which is due to the
fact that the definition of biseparability is not tensor stable.
If we consider the relative entropy of entanglement with
respect to fully separable states, however, we can employ
the proof argument of Theorem 4 in Ref. [51] and arrive at
the following theorem:

Theorem 7: For a fixed n,K € N,e € (0,1), the
following bound holds for an (n,M,e) protocol for
LOCC-assisted secret key agreement over a multiplex
teleportation-simulable quantum channel N ; with

'B—AC
the associated resource state efARé’ Va>1,

—

1 - - o a 1
—logoK <E, p(:LA:R:C: I .
LlogK < wk( >9+n(a— 0 08> (1 _8>

(55)

For the proof, see Appendix D4. Setting a=
1 + (1/4/n) and letting n — oo, we obtain the following:
Corollary 5: The LOCC-assisted secret-key-agreement
capacity of a multiplex channel N - Foige Which is
teleportation-simulable with the resource state QEARE" is

upper bounded as
ProccN) < Ex(:LA:R:C:),. (56)

where E(:A:) , is the relative entropy of entanglement of
state p3; this bound is also a strong converse bound.

VI. APPLICATION TO OTHER PROTOCOLS

In this section, we exploit the general nature of an
LOCC-assisted secret-key-agreement protocol over a
multiplex quantum channel. We derive upper bounds on
the rates for two-party and conference key distribution for a
number of seemingly different protocols that are of wide
interest. Such seemingly different quantum key distribution
and conference key agreement protocols can be shown to
be special types of LOCC-assisted secret-key-agreement
protocol over some particular multiplex quantum channels.
In particular, we identify protocols like measurement-
device-independent quantum key distribution, both in the
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bipartite [27,28] and conference setting [30,110,111], as
well as for quantum key repeaters, i.e., generalized quan-
tum repeaters with the goal of distributing private states
[50,57,77] to be special types of LOCC-assisted secret-key-
agreement protocol over some particular multiplex quan-
tum channels. We are able to derive upper bounds on the
rates achieved in these protocols by exploiting our results in
the previous section. Furthermore, as EPR or GHZ states
are special cases of bipartite or multipartite private states,
respectively, the same holds for LOCC-assisted quantum
communication protocols, where the goal is to distill EPR
or GHZ states. By providing a unified approach to such a
diverse class of private communication setup, we contribute
to a better understanding of limitations on respective
protocols. These limitations provide benchmarks on exper-
imental realizations of private communication protocols.

A. Measurement-device-independent QKD

Measurement-device-independent (MDI) QKD is a form
of QKD, where the honest parties, Alice and Bob, trust their
state preparation but do not trust the detectors [27,28]. In a
typical setup of MDI-QKD, such as the ones described in
Refs. [27,28], Alice and Bob locally prepare states that they
send to a relay station, which might be in the hands of Eve,
using channels N}, _, and N'3,_ .. At the relay station, a
joint measurement of the systems AB is performed, e.g.,
in the Bell basis, the results of which are classical values
that are then communicated to Alice and Bob. Alice and
Bob use the relay many times and perform classical
postprocessing.

A way to incorporate such protocols in our scenario is to
identify Alice and Bob as two trusted parties and include
the measurement performed by the relay, as well as
channels N2, into a bipartite quantum-classical (qc)
channel

MDI — 1 2
AB—Z,7;5 "= BX_)ZAZBOMAB_’XON ia ® N g (57)

where M, p_,, is the quantum instrument (channel) per-
forming a POVM {A*}, and writing the output x into a
classical register X and Bx_z, , a classical broadcast
channel sending input x to Z, and Zp. Registers Z, and
Zp are received by Alice and Bob, respectively. The
channel MR, is a multiplex channel that is a
composition of multiplex channels (see Fig. 2).
Application of Theorem 3 for arbitrary systems and
Theorem 4 for finite-dimensional systems (as well as the
results of Ref. [51-53]) then provides bounds on the
achievable key rate in terms of E,,, z(N %g}_’ZAZB) and
EQ (N %gll—)ZAZB), respectively, which can be seen as
measures of the entangling capabilities of the measurement
{A*},.. The multiplex quantum channel NYR!_,  is tele-
covariant if A'|, as well as M are tele-covariant, and the

bound reduces to the relative entropy of entanglement of

the Choi state of NYR!_ .

B. Measurement-device-independent
conference key agreement

The concept of MDI-QKD has also been generalized to
the multipartite setting [30,110,111]. We assume a setup of
MDI conference agreement, where a number of trusted
parties A, for i € [n], locally prepare states that they send

: 1 n
to a central relay via channels N/ ay o N aoa At the

relay, a joint measurement is performed on AA,...A,, the
result of which is broadcast back to the trusted parties. It is
straightforward to generalize Eq. (57) to the multipartite
case and apply Theorems 3 and 4 (or Theorem 5 for tele-
covariant channels) to obtain bounds on the conference
key rates.

C. Quantum key repeater

Let us now consider the quantum key repeater. In its
simplest setup, there are three parties: Alice, Bob, and
Charlie. Alice and Bob are trusted parties who wish to
establish a cryptographic key, whereas Charlie is assumed
to be cooperative but is not trusted. One could think of
Charlie as a telecom provider. There are two quantum

channels, N4~ from Alice to Charlie and N5~ from
Bob to Charlie. Alice and Bob are not connected by a
quantum channel and are assumed not to have any pre-
shared entanglement. Instead, Alice and Bob locally
prepare quantum states, e.g., two singlets CD:{RA and

<I>§RB, and both send a subsystem to Charlie, using the

respective channels. This is then followed by an entangle-
ment swapping operation [112], where Charlie performs a
joint measurement on the C,Cp subsystem and communi-
cates the result to Bob, who then performs a unitary on his
reference system Rp, which should create entanglement
that can be used for a cryptographic key, between Alice and
Bob. The key has to be secure even in the case where
Charlie’s information falls into the hands of Eve.

If the channels A"f ~* and A3~ are too noisy, it might
be necessary to use them multiple times and perform an
entanglement purification or error-correction protocol
before applying the swapping operation. Whereas early
quantum repeater protocols [21,22] make use of entangle-
ment purification protocols that require two-way classical
communication, between Alice and Charlie and between
Charlie and Bob, it is also possible to use error correction
that only requires one-way classical communication. Such
protocols are known as second- and third-generation
repeater protocols (see Ref. [23] and references therein).

By using a large enough number of repeater stations, the
key can, in principle, be distributed across arbitrarily long
distances. A way to extend a basic three-party repeater
protocol to arbitrarily long repeater chains is known as
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nested purification [22]. More advanced schemes using
error correction and one-way communication have also
been developed [23].

As in Refs. [50,57,77], we want to find upper bounds on
the rates at which the key can be distributed. Depending on
the repeater protocol, there are different ways in which we
can describe a quantum key repeater as a multipartite
channel and use our results to obtain such bounds. We now
describe how a repeater can be described by a bipartite
channel. For an alternative way to describe a repeater, we
refer to Appendix E.

In order to describe a repeater as a bipartite channel, we
consider two trusted parties, Alice and Bob, and a bipartite
quantum-to-classical (qc) channel that takes two quantum
(and possibly also classical) inputs from Alice and Bob and
returns two classical outputs to Alice and Bob, respectively.
Such an operation could include the channels from Alice to
Charlie and from Bob to Charlie, the measurement per-
formed by Bob, as well as classical communication of the
measurement result from Charlie to Alice and Bob. It could
also include an error-correction protocol that uses the
channels from Alice to Charlie and from Bob to Charlie
multiple times and makes use of one-way classical com-
munication from Alice to Charlie and from Bob to Charlie.
It is then followed by Charlie’s measurement and classical
communication to Alice and Bob. Alice and Bob are then
allowed to perform LOCC among them but not including
Charlie. In the case without error correction, we can define

repeater A—C, B—C
Nobosy = Mc,cpoxyoNT QN3 75, (58)

where M, ¢, xy describes the measurement and sending
of classical messages X and Y to Alice and Bob, respec-
tively. If we add one-way error correction, we get a bipartite
channel of the form

epeater . o X' Ak C, Y'B*—Cy
N = MCACB—»(Y"Sl ® &, . (59)

ABEX'Y XY
where S/fch*‘ includes k instances of the channel A7~
the transmission of the classical data X’ obtained by Alice’s
part of the one-way error-correction protocol to Charlie, as
well as Charlie’s part of the error-correction protocol
(Alice’s part of the one-way error-correction protocol is

included in the LOCC). Note that £) %~ is defined in the
same way.

By recursively combining the bipartite channels A/TePeder,
it is possible to derive a bipartite channel /repeater chain
between Alice and Bob that includes a repeater chain with
an arbitrary amount of repeater stations.

Using the results of Refs. [51-53], or Theorem 4,
we can obtain upper bounds for key repeater protocols
that only involve one-way classical communication from
Charlie to Alice and Bob, as considered in Refs. [57,77].
The bounds are given by min{E,,, j(//repeater (chain)y

E (Nrepeater (chain)} "By Remark 5, if N}, as well as M
are tele-covariant, so is A/repeater (chain) Hepce, by Theorem
5, the bound reduces to the relative entropy of entanglement
of the Choi state of N/repeater (chain) Niote that, whereas the
bounds in Refs. [57,77] only depend on the initial states
shared by Alice and Charlie as well as Bob and Charlie, the
formulation in terms of a bipartite channel can provide
bounds that also depend on the measurement performed by
Charlie, as well as operations performed during error
correction. The new bounds take into account imperfect
measurements and error correction, which provide an
additional limitation on the obtainable rate in practical
implementations. Our bounds can at least be shown to be
comparable with the results of Refs. [57,77] under certain
situations of practical interest. For example, our bound is

certainly better when N~ and N5~ are identity
channels, allowing Alice and Charlie as well as Bob and
Charlie to share maximally entangled states, whereas
Charlie’s measurement is noisy.

D. Limitations on some practical prototypes

In this section, we explore fundamental limitations on
some practical prototypes for MDI-QKD protocols
between two trusted parties. We first begin by considering
photon-based prototypes for which a detailed discussion of
the quantum system and transmission noise model can be
found in Ref. [67]. In Appendix F, we consider MDI-QKD
prototypes with qubit systems and transmission noise
models depicted by dephasing or depolarizing channels.

We begin by considering a dual-rail scheme based on
single photons to encode the qubits [113]. The dual-rail
encoding of a qubit in two orthogonal optical modes can be
represented in the computational basis of the qubit
system, where only one of the two modes is occupied by
a single photon and another mode is vacuum. When these
optical modes are two polarization modes—horizontal and
vertical—of the light, then we express eigenstates in the
computational basis as |H) and |V) for horizontal and
vertical polarization. It is also possible to consider fre-
quency-offset modes instead of polarization modes for
dual-rail encodings. We assume a noise model for the
transmission of a photon through the optical fiber to be a
pure-loss bosonic channel with transmissivity 7. The inputs
to the optical fiber are restricted to a single-photon sub-
space that is spanned by |H) and |V). The action of this
pure-loss channel on a qubit encoded with our dual-rail
scheme is identical to an erasure channel [114] £ with
erasure parameter 1 — 5 and erasure state |e), where |e) is
the vacuum state, i.e., zero photon in both modes. We note
that an erasure channel is tele-covariant.

Two trusted parties A;, i € [2], use the above-mentioned
polarization-based dual-rail photons to transmit their qubit
systems to Charlie at the measurement-relay station,
through the optical fibers with respective transmissivities
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FIG. 4. Pictorial illustration of our photon-based MDI-QKD
between two parties using the dual-rail encoding scheme.

n; (see Fig. 4 for MDI-QKD). We make a simplistic noise
model assumption on the measurement channel M _ , by

Charlie: It can perform perfect qubit Bell measurement for
bipartite MDI-QKD, respectively, with probability g,
whereas with probability 1 — g for the failed measurement,
we assume the relay station signals | L) (L |y to the users. In
addition, we can safely assume classical communication

X->Z among all parties to be clean (noiseless) as they do
not require any quantum resource. Finally, for simplicity,
we assume that error-correcting local operations for all
parties can be made perfectly.

To calculate the upper bound on the MDI-QKD
capacity, it suffices to consider the relative entropy of
entanglement of the Choi state of the associated multiplex

channel AMPLE aq it is tele-covariant. Notice that the

A—=Z
action of the erasure channel &, ¢, on D; € {|H)(H|, ,

[H)(Va, [V)(H]a,. [V){V]s,} is given as

Ea—c, (D) = niDi + (1 = n;)Tr[D;]|e)(e]c,.  (60)

2
Then, the Choi state J%a of ®5 A—C; 18
i=1

2 1.
5o =® (mf + (1=m) L @le)elg ). (o)

i=1

For the bipartite MDI-QKD,

4
MC1C2—>X(.) = qur[q)(j)(')q)(j)]|j><j|x
+ (1 =q@)Tr[] @ |[L)(Lly,  (62)

where {<I>(le)c2 }j_y is the Bell measurement, which is a

projective measurement. Here, {q)g,)cz}?:l represents the
set of maximally entangled states {®", ®~, ¥ ¥~} for
two-qubit systems and |L)1|j). We note that the Bell
measurement is tele-covariant. Upon action of the

1 T T T T
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2
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FIG. 5. Rate-distance trade-off comparison between our bound

(64) (blue, red, yellow, and purple lines) and the RB bound (green
line) for the MDI-QKD protocol for our photon-based prototype.

£
measurement channel Mc¢ ¢,x on the state J; ; ¢ ¢,

[Eq. (61)], the output state is essentially of the form (see
Ref. [67])

1 N T
qul’?zzjzl‘b(le)L2®|J><J|X+(1—Q’11’lz) 1 ® L) (L.

(63)

which implies that the relative entropy of entanglement of
the Choi state of N’ Efllzlz’i 2,2, 18 @111 Employing Theorem
7, the bipartite MDI-QKD capacity for the given MDI-
QKD prototype with erasure channels is

ProceWV MDI’{Ei}’z:') = MmNz, (64)

as gnn, bits is an achievable rate for the given setup (see
Refs. [48,49,105] for the private capacities of &4 _c).
Notice that g1, is a strong converse bound.

For bipartite MDI-QKD (see Fig. 4), using the results
of Ref. [48,105], we get upper bound (RB) on the
bipartite. MDI-QKD capacity as min{zn;,7,} (e.g., see
Refs. [50,60]). This bound is always looser than our strong
converse upper bound g#;#, bits, for all practical purposes.
In Fig. 5, we plot the rate-distance trade-off (secret key
capacity versus distance L in km) for our bound in Eq. (64)
when n=2,n; =5, = exp(—aL), and @ = (1/22 km) and
compare it with the upper bound (RB) #; (since #; = #,).

We note that, whereas there now exist variants of MDI-
QKD schemes or setups that can achieve the repeaterless
bound, e.g., Refs. [31,32,34], the dual-rail protocols we
consider here, while being suboptimal, may be easier to
implement practically. In particular, implementation of a
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twin-field protocol requires long-distance phase stabiliza-
tion, which can be challenging [115]. We showcase here the
ability to get nontrivial upper bounds for a specific,
suboptimal implementation of QKD schemes. These non-
trivial upper bounds are derived from a universal frame-
work, which illustrates the usefulness of the framework we
have proposed.

VII. LOWER BOUNDS ON PRIVACY

In this section, we derive lower bounds on the secret-
key-agreement rate of a multiplex channel achievable by
means of cppp, in the sense of Ref. [68]. This is a
generalization of the lower bound presented in Ref. [14]
from multipartite states to multiplex channels, as well as a
generalization of the lower bounds on one-to-one channels
presented in Ref. [69] to the multiplex case.

The DW protocol [68], which is considered with
bipartite states, only uses one-way communication from
Alice to Bob. In Ref. [69], which is concerned with one-to-
one channels, direct and reverse scenarios are considered.
The former corresponds to the case where the quantum
channel and the classical communication are oriented in the
same direction. The latter corresponds to the case where
the two are oriented in opposite directions. In Ref. [14], the
DW protocol is generalized to multipartite states by
selecting one distributing party, which performs the DW
protocol with all remaining parties simultaneously.

We now generalize this result to the setting of multiplex
channels. We begin with a fully separable pure state

— . —
¢" € FS(:A"L:B"R:P:). Here, the notation X" means
we consider n copies of all subsystems Xi,...,Xy.
Application of n copies of the isometric extension of the
multiplex channel N ey results in a pure state
w"__, __, . Let us now choose one party, X;,
:A"L:R:C"P:Er

i €{l,..., M}, as the distributing party. Party X; performs
aPOVM Q = {Q,} with a corresponding random variable
X = {x, p(x)} on her subsystem, resulting in a classical-
quantum-...-quantum (cq) state

=D p)x)(xly ® 0", (65)

where o* is the post-measurement state of the remaining
parties and Eve. Party X; then processes X using classical
channels X — Yand Y - Z, where Y = {y,¢(y)} and Z =
{z,r(z)} are classical random variables. Here, Y is kept by
party X; (to be used for the key), and Z is broadcast to all
other trusted parties (and Eve). Upon receiving Z, the
other parties then perform their respective POVMs, with the
goal of estimating the key variable Y. Thus, as shown in
Ref. [68], every trusted party X ;, where i ;éj e{l,...M},

obtains a common key with X at a rate r, 71 of

ril = —(I(Y X; |Z) I(Y:E”|Z)d,cq), (66)
where, in a slight abuse of notation, we use X; as a
placeholder for A7Lj, R;, or C'}P;, depending if X is in
{A.},» {Byp},s O {CC}C, respectively. The second and
third cases correspond to the reverse and direct scenarios in
Ref. [69], respectively, whereas

= r(@ly)a(ylo)p(

Xyz

x)|xyz) (xyz| ® 0", (67)

Equation (66) has to be maximized over all free input states

—_— — >

¢" € FS(:A"L:B"R:P:), POVMs Q, as well as classical
channels X — Y and Y — Z. As discussed in Ref. [14], a
conference key among all trusted parties can be obtained at
the worst-case rate between any pair (X;, X ;). We also have
the freedom to choose the distributing party. Putting it all
together, we can achieve the following rate of the
conference key:

PN > maxmln lim max 7, (68)
PPpP j n—00 ¢".QPOVM
X->Y.Y-Z

—_— s >
with ¢" € FS(:A™L:B"R:P:). Note that in the case of a
single-sender—single-receiver channel N:B — C, this
reduces to the maximum of the direct and reverse key
rates presented in Ref. [69].

Next, we propose an alternative generalization of the DW
protocol to the case of multipartite states and multiplex
channels. The rough idea is that, instead of performing the
DW protocol simultaneously with all other parties after her
measurement, the distributing party performs a one-way
protocol with a second party, who then performs a one-way
protocol with a third party, and the iteration continues. In
particular, the random variables obtained in all previous
measurements can be passed on in every classical commu-
nication step, so a party can adapt her measurement depend-
ing on all previous measurements instead of the first
measurement as in the protocol described in Ref. [14].

We now describe the protocol in detail: As before,
we begin with a fully separable pure state

P" € FS(:A’”L:W:?’:) and apply n copies of the iso-

metric extension of the multiplex channel N — .,
A'B—AC

resulting in a pure state 1// o7
A'L:k:C"P:pr
Now, assume that we are given some permutation
o:{l,...M} - {o(1),...,6(M)}, which determines the
order in which the parties participate in the protocol. Party
X (1) begins by performing a POVM QW on her share of ",
i.e.,on subsystemAgng(l),R 1y, orC’ o(1) P 1)» depending
on which kind of party X, is. This results in a
random variable X! = {p,(x,),x;}. The corresponding
classical-quantum-...-quantum (cq) state is
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old =3 pi() ) (i lyo ® @ (69)

X

Party X,y then classical ~ channels
X - y() -z keeping the random variable Y(!) and
sending Z(V to party X,(2)- The corresponding cq state is

then given by

performs

~ (1 X
‘U(cq): Z ri(zilyD g ilx) pi(x) [xizn) (x| @ @™,

X112

(70)

where @™ is the state of the remaining parties and Eve. Next,
party X, performs a POVM Q%) on her share of w",
which provides the random variable X?). Party X,(2) then
performs classical channels Z(NVX?) — Y®?) - z(2) keeps
Y@ for herself, and sends Z?) to the next party X,(3), who
applies the same procedure. The protocol is repeated until
party X, receives Z(M=1), followed by her POVM and

postprocessing. The cq after k € {1, ..., M} measurements
and postprocessing steps is given by

~ (k) ~
Weq = § :pX1Y1Z|~-xkyka

X1 .--X,
vk
2]---2k

XXy Y12y XYk Zi) (X V120 - X YrZi| @ @i,

(71)
where we have defined, recursively,
Prvyizroconze = (20 @ Vil xezi—1) Pr(xi)
X ﬁxlylzl~~xk—1yk—lzk—l ° (72)

Parties X, () and X, ;1) can establish a key rate of [68]

1
polk)=olktl) — ;(I(Y(k) :Xa(k+l)|Z(k))a~)(C’;)

—1(y® :E”|Z(k>)(b5_ﬁ>). (73)

We can again maximize over all free input states,
POVMs, as well as classical channels and consider the
worst-case rate between any pair (X, X;). Furthermore, we
have the freedom to choose the order of the parties. Putting
it all together, we can achieve the following rate of the
conference key:

Pé\gpp > max min lim
oeperm k

k) —o(k+1
max potk)vo(k+l)

n—o0 gn o(l) ok povm
x(Doy() S z(1)

x(2)z(1) HA_}_/A(Z) -z(2),

x(K) z(k=1) Sy (k) L, 7(k)

(74)

—_— s -
with ¢" € FS(:A"L:B"R:P:).

A. Lower bound for bidirectional network
via spanning tree

In this section, we observe that one can tighten the lower
bounds presented in the previous section for a particular
multiplex channel called the bidirectional network (BN). In
the BN, each of the nodes is connected with its neighbors
by product bidirectional channels, which are specific
bidirectional channels that is a tensor product of two
point-to-point channels directed in opposite ways from
each other.

We first observe that BN is a particular case of a
multiplex channel (call it A). Indeed, in this case, all
the parties are of type A; i.e., they can read and write. The
rule is that each party represented in the network as a vertex
v has deg(v) of neighbors (see Ref. [116] for an introduc-
tion to graph theory). Each party is assumed to write to her
neighbors and also receive from these neighbors some
quantum data. We now present a tighter bound on the
private capacity of A based on the above exemplary graph.

To be more specific, the BN can be represented by a
weighted, directed multigraph G = (E, V) in which each
edge e;; = (v;,v;) € E represents a product bidirectional
channel A;; = A;; ® A;j,; with weight W:E — R, such
that W(e;;) = W(e;;) = P(Ai~;) = P(A;-;) (this edge
can be represented by two directed edges: one from wv;
to v; and the other vice versa; hence, the structure is
directed multigraph). Each product bidirectional channel
has in both directions the same private capacity (that,
however, may differ for different channels). By convention,
we consider edges with index i > j only. The number of
nodes in the network is denoted as |V| := n and the number
of edges as |E| == m.

U1 U3 Uy
Vg Us
(b)
c 0
4] U2 U3 V4

FIG. 6. (a) Exemplary graph. Red edges correspond to private
capacity 1 and blue to private capacity 2. The first strategy for
obtaining the conference key uses a vertex connected to all others
and reaches the suboptimal rate min{w(e;;): (v, vs), (v1,vs),
(v1,v4), (v1,3), (v, v3)} = 1. The same happens for any path,
which inevitably has to pass through some red edge. The solution
is a tree, which is a spanning tree of this graph, and it contains no
red edge (b). Traversing the edges of this tree is equivalent to the
breadth-first search.
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As a motivation for the next consideration, for such
multiplex channels, the bounds given in inequalities (68)
and (74) above are not tight. We exemplify this on the graph
presented in Fig. 6(a). Namely, we assume that each red
edge of the graph G depicted there represents a (bidirec-
tional) channel with private capacity 1, while each blue
edge is with capacity equal to 2. We do not depict all other
edges (connections) as they have zero private capacity by
assumption. We now make two observations: (i) The
approach of inequality (68) would yield overall secret
key agreement at rate 1, as the only node connected to all
others in G (v;) contains (in fact, more than one) red edge.
(ii) We observe, by direct inspection, that every path
connecting all vertices also contains at least one red edge.

|

Pé\gpp > max min lim
TCG 1eVy,/eN[r] n—>o

x (N Z(01) Sy (N[or)) L 2Ny D)y
xN2lv1]) z(NI ) Ly N2 lor]) o (z(N2[v1]))

ANV [0y Ny loy]

where 1 </ < nis an index that counts how many times the
breadth-first search needs to be invoked in order to traverse
all the edges of the spanning tree 7. For ease of notation, T
is meant to be a rooted, without loss of generality, at vertex
v;. By N[v], we mean the proper neighborhood of the node
v (i.e., the set of all vertices that are connected by a single
edge with »). In a rooted tree, every vertex is reachable
from the root vertex by a path. By N;[v], we mean the set
of vertices reachable from vertex v, by a path of length i.
Owing to this notation, N[v;] = N[v,], while all vertices
achievable from v»; by traversing two edges belong to
N,[v,] and so on.

The first inner maximization needs to be understood
inductively. The first step is obvious: We begin with an
arbitrary vertex v; € V. The party X, who is at node v,
performs a POVM Q;, which produces a random variable
X(1)_ She processes this variable further to obtain ¥(*1) and
sends a communication in the form of a variable Z(""). The
latter variable is broadcast to all the next neighbors of vy,
i.e., N[v1]\{v}. Furthermore, if at step m — 1 the form of
operations and communication between the nodes has
concise notation X5nZSn-t — ySn — ZSu|,.. ., then the
next level of nesting, i.e.,

has to be understood as a short notation of the following
postprocessing at a number of nodes from the set N[S,,] =
{s1,...,s,} with r = |N[S,,]|:

On the other hand, there is a set of vertices [depicted
with edges in Fig. 6(b)] that forms the so-called spanning
tree T:=(Vy, Er) CG of the graph G. The spanning
tree is an acyclic connected subgraph of G, and the word
“spanning” refers to the fact that all the vertices of the graph
G belong to V. It is easy to see that starting from
any vertex of this tree, by the breadth-first search algorithm,
one can visit all its edges, and one can obtain the conference
key at rate 2 (see Ref. [117] for an introduction to
algorithms).

As a generalization of this idea, one easily comes up with
the following lower bound, which is the main result of this
section:

max ro()=e(t) (75)

¢”‘Q(1) ,,,,, Q(\VTUPOVM

xSy S z(en),
ldeg>2

ldeg>2+

. X (i) zNlsilnp(si) 5y (si) 5 7(si)
Y senis, s deg(s;) =2

lx(si)ZN[:i]ﬂP(Ji)_,y(x,')

’

Y seN(s,] - deg(s;) =

where p(s;) denotes the parent vertex of the vertex s;, that
is, the unique vertex belonging to the neighborhood that is
the closest to the root »; in terms of traversed edges.

The above description means that if some vertex of the
tree is of degree equal to 1, it has no further children in the
tree to pass useful information contained in the Z-type
variable, while all vertices with larger degree than 1 need to
broadcast appropriate data to their further neighbors in
the tree.

We exemplify the lower bound given in inequality (75)
with the broadcast network depicted on Fig. 6. Let us first
focus on involved sets of vertices in the process of the
breadth-first search over the tree 7. The set of vertices of
the spanning tree T reads {v, ..., vg}. As the root vertex,
we choose vy. Next, Ni[v(] = {2}, Na[v] = {03, v6} and
N3[vi] = {vg4, vs}. In this case, the presented lower bound
reads

D . : o(t)—o(t)
Pé\épp > max min lim ( max T .

TCG 1eVy /eN[r] n—o 4 o) o6)povm
x(01) Sy(0) S z(01)
x(12) 2(01) L y(12) L 7(v2) |
x(13) z(v2) L y(v3) 5(v3)
x(v6) z(v2) L y(vg)
x(v5) z(v3) L y(vs)
x(v4) 7(3) L y(v4)

(77)

In Appendix G, we briefly comment on the complexity
of finding a subgraph, which allows us to realize the
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conference key agreement with the capacity indicated by
the inequality (75).

VIII. KEY DISTILLATION FROM STATES

In this section, we concentrate on the subject of the
distillation of secret keys from quantum states. An (n, K, €)
LOCC conference key distillation begins with M parties A;
for i € [M] sharing n copies of the M-partite quantum state

P5. to which they apply an LOCC channel Ew _.. The
—SK
resulting output state satisfies the following condition:

FL—s

= 0P z-e (0

The one-shot secret-key-distillation rate from a single copy

of a multipartite quantum state Kl(jl-ﬁ)

follows (cf. Sec. V).

Theorem 8: For any fixed € € (0, 1), the achievable
region of secret key agreement from a single copy of an
arbitrary multipartite quantum state p; satisfies

is upper bounded as

Le e A
Ky (p) < Ejge(:A2),, (79)
where
Ejge(tAt), = inf_ Dj(pllo) (80)
c€BS(:A:)

is the e-hypothesis-testing relative entropy of genuine
entanglement of multipartite state p5.
Proof.—The proof argument is the same as that of

Theorem 2, so we omit the proof here. [

In the asymptotic limit, the rate KI()" ) satisfies

1 n,e
inflimsupr](D‘ )(p‘g’”) = Kp(p), (81)

0 ph0 N

which follows directly from the definition of the secret key
rate Kp [14].

Using the same argument as in the proof of Theorem 6 in
Sec. V C, we can also get the following asymptotic bound,
which is generalized in Theorem 9 of Ref. [62]:

Proposition 2: For an m-partite state pz, it holds
that

KD(/)A) < EOGOE(P,K)- (82)

In general, to share the conference key, it is necessary
for the honest parties to distill genuine multipartite
entanglement.

Corollary 6: For a tensor-stable biseparable state pj, it
holds that K (p;) = 0.

The above Corollary of Theorem 8 is precisely due to the
infimum over biseparable states. However, already in the

tripartite setting, there are two nonequivalent families of
three-partite genuinely entangled states, that is, ®§H%-type
and @ﬁ-type states [79,85,118—121]. Both families of states
contain states that are maximally entangled; however, they
cannot be transformed with LOCC one into another at unit
rate [81,84,86,87,122,123]. As the perfect @17 state plays
a role of the honest (or perfect) implementation of
conference quantum key agreement protocols, the distilla-
tion of ®§HZ states from @) states has been intensively
studied [80—-84,86]. In particular, recalling Example 11 of
Ref. [80], it is known that one cannot transform a single CD}”
state into a @M state even in a probabilistic manner.
However, according to Theorem 2 of Ref. [80], the calcu-
lated asymptotic rate for conversion from @Y to ®$HZ due to
certain protocols is approximately 0.643 (per copy), which
constitutes a lower bound for the general case. Another
complementary lower bound has been provided in Ref. [86].

Surprisingly, in the one-shot regime, distillation of ®§H2
states from (ID;N states, and therefore of the secret key, is still
possible. To accomplish this task, it is sufficient to consider
the initial state as being made up of two copies of the ®Y
state. Then, using results in Ref. [81], it follows that we can
obtain two @3 states in two distinct bipartite systems with a
probability that is arbitrarily close to %; having this in
mind, one can obtain @1 by employing ancilla and the
entanglement swapping protocol [112]. In this way, we
calculate a lower bound on the distillation of ®$H states
from two copies of the @} state in a one-shot regime (one
O~ state with probability £ from two @Y states). This
lower bound can be compared with the upper bound in
Theorem 8 given above.

Nevertheless, distillation of ®§HZ states is only an example
of a key distillation technique [13,14,84,86,124—127]. A
more general conference key agreement scenario of our
interest incorporates distillation of twisted @1 states (see
Definition 3) [14,61,119,128,129]. In that case, an approach
for upper bounding conference key rates that is different than
the estimation of @} to ®$HZ conversion rates is required.
This approach corresponds to a possible gap between rates of
®SHZ (that can be distilled) and secret key distillation. Since
the ®HZ state is an instance of a private state, an upper bound
on the conference key rate is also an upper bound on the
distillation rate from any state. For plotting our numerical
results, we concentrate on secret key distillation from n copies
of the @)} state in order to compare with other limitations
discussed in this section.

The upper bound in Theorem 8 has optimization over all
possible biseparable states. Computation of the exact value
of the bound given in Eq. (79) need not be feasible in
general. As we take the infimum in Eq. (80), we can obtain
non-trivial upper bounds on the upper bound given in
Eq. (79) by considering optimization over suitable subsets
of biseparable states. We make an educated guess for the
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form of biseparable state to yield a non-trivial upper bound.
We remark here that the set of biseparable states is not
closed under a tensor product, so we have to find different
states for any tensor power n of @) or ®GHZ states. We
devise two families of biseparable states, 74" and 7y,
adjusted to both number of copies, n, and number of
parties, M,

g I e
il =3 2[5 (o) . e
n 1 .
ﬂv{lM = M E (81,,»(|0> <0| ® ‘bﬁ_l))@", (84)

i=1

where the operator S;; swaps the qubit of the first party

with the qubit of the ith party. The choice of 7}y, and 73"

states is motivated by keeping the correlation between
M — 1 parties most similar to those in ®HZ or @)} states
while keeping one party explicitly separated. Additionally,
it and 7" states, by definition, are symmetric with
respect to permutation of parties because of permutations
Wlth S 1,i-

We would like to point out that the n{,{,s presented here is
closer to the ®Y state in the Hilbert-Schmidt norm than the
state (let us call it T) in Ref. [130], even though the state
constructed there was supposed to be the biseparable state
closest to @Y in the Hilbert-Schmidt norm. This result is
due to different definitions of biseparability; the state in
Ref. [130] is a tensor product with respect to one of the
cuts, whereas we make use of the convexity of the set of
biseparable states. Indeed, our states are biseparable by
construction (see Sec. IVA).

The upper bound on the asymptotic secret key rate can be
compared with the lower bound on asymptotic ®$HZ states
from <1>§V state distillation [80] in the following way. First,
we notice that if two parties unite, then the M — 1-partite
key is no less than the initial M-partite key because the set
of operations of the M-partite LOCC protocol is a strict
subset of the set of operations for the case in which two
parties, i and j, are in the same laboratory. We have the
following Proposition:

Proposition 3: For any M-partite state pjy, the asymp-
totic secret-key-agreement rate satisfies the following
inequality:

mI?XKD(p[M+1]k) <Kplpm) £ n}anKD(P[M—l]ij)v (85)

where [M]=][1,...M] and [M—1];=][1,...,i—1,
(i,j),i+1,....j—1,j+1,...,M] indicate a state Pim-1]
in which subsystems i and j are merged. Analogously,
M+1],=I1,....,k= 1,k ,ky,k+1,...,M+1] indicates the

state in which subsystem k is split into systems k; and k.

Proof.—It is enough to notice that the class of LOCC
protocols involved in the definition of K (pjy) is strictly
contained in the class of protocols involved in the definition
of Kp(pm- 1],-,-)' Indeed, the merged parties can still

simulate any operation from the former class; however,
together, they can perform many more operations, includ-
ing global quantum operations on all merged subsystems
together. Since K is defined as the supremum of the key
rate over such protocols, the upper bound follows. For the
lower bound, it is enough to notice that by splitting
subsystem(s) of p, we restrict the class of operations that
can be used to distill the key. L]

We immediately observe that Proposition 3 provides a
whole family of nonequivalent upper bounds. To see this,
one can consider a state that is not invariant under
permutations. What is more, one can continue merging
as long as there is still two or more subsystems left.

Corollary 7: For any M-partite state py; defined on the
Hilbert space H, the asymptotic secret-key-agreement rate
satisfies the following inequality:

maxKp(pi)) < Kp(ppn) < minKp(py),  (86)

where the state p;; is obtained from the state
Py by splitting its subsystems so that L > log dim(H).
Analogously, the state p(yj is obtained via any merging of
subsystems of pyy), such that p|y) has at least two subsystems.

Hence, in the particular case of the @' state, we can also
skip minimization with respect to i, j since the state is
symmetric. Using properties of entanglement measures

[131-133], we have

Kp(®Y) < Kp(®@y,,) < EX(®)) (87)
1 .
— b, (3) ~0.9183 bit, (88)

where h,(x) is the binary entropy function.

The asymptotic key rate and bounds on it are usually
noninteger real numbers. In the one-shot regime, express-
ing these quantities in a similar manner, instead of integers
obtained with floor or ceiling functions, is no less mean-
ingful because the amount of secret key and the value of
bounds are functions of privacy test parameter &, which can
vary, yielding, in general, different values of these quan-
tities. Therefore, dependence of the scenario on the privacy
parameter ¢ is interesting on its own. See Appendix H and
Ref. [134].

Remark 6: It is natural that the analogies of Proposition
3 and Corollary 7 hold for the multiplex quantum channel
N. The upper bound on the M-partite multiplex quantum
channel takes the form of the M — l-partite multiplex
channel, where the new party’s type is determined accord-
ing to the following rule: If the two parties are of the same
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type (say, B), then the new type is the same (B in that case).
If the types are different, then the new type always becomes
A because, e.g., when B and C are merged, they have the
ability to both read and write.

IX. DISCUSSION

We have provided universal limits on the rates at which
one can distribute the conference key over a quantum
network described by a multiplex quantum channel. We
have shown that multipartite private states are necessarily
genuine multipartite entangled. As a consequence, it is not
possible to distill multipartite private states from tensor-
stable biseparable states. We have obtained an upper bound
on the single-shot, classical preprocessing and postprocess-
ing assisted secret-key-agreement capacity. The bound is in
terms of the hypothesis-testing divergence with respect to
biseparable states of the output state of the multiplex
channel, maximized over all fully separable input states.
We have further provided strong-converse bounds on the
LOCC-assisted private capacity of multiplex channels that
are in terms of the max-relative entropy of entanglement as
well as the regularized relative entropy of entanglement. In
the case of tele-covariant multiplex channels, we have also
obtained bounds in terms of the relative entropy of entan-
glement of the resource state. We have shown the versatility
of our bounds by applying it to several communication
scenarios, including measurement-device-independent QKD
and conference key agreement as well as quantum key
repeaters. In addition to our upper bounds, we have also
provided lower bounds on asymptotic conference key rates,
which are asymptotically achievable in Devetak-Winter-like
protocols. We also derived an upper bound on the secret key
that can be distilled from finite copies of multipartite states
via LOCC, and we showed some numerical examples. The
task of distillation of ®§1Z from @} was extensively studied
in the literature [81,122,123]. Here, we initiate the study on
the distillation of the key rather than ®§H# distillation from
the <I>§V state. This is the rate of the distillation of “twisted”
®$HZ being private states—a class to which ®§HZ belongs.
It would be interesting to find if the distillation of the key
from ®Y is just equivalent to the distillation of ®§HZ (see
recent result on this topic [127]).

Distillation of the secret key allows trusted parties to
access private random bits. Our lower bound on an asymp-
totic LOCC-assisted secret-key-agreement capacity over a
multiplex channel also provides an asymptotic achievable
rate of private random bits for trusted parties over a multiplex
channel with classical preprocessing and postprocessing.

Our work also provides frameworks for the resource
theories of multipartite entanglement for quantum multi-
partite channels (analogous to bipartite channels as dis-
cussed in Refs. [51,53,97,98]). In this context, it is natural
to extend the results of Ref. [135], where the so-called
layered QKD is considered, to the noisy case of multipartite
private states. It would be interesting to systematically

consider other frameworks in the resource theory of
multipartite entanglement. An important future direction
for application purposes is to identify new information
processing tasks and determine bounds on the rate regions
of classical and quantum communication protocols over a
multiplex channel (e.g., see Refs. [53,136-142]).
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APPENDIX A: GENERALIZED DIVERGENCES
AND THEIR PROPERTIES

Any generalized divergence D(-||-) satisfies the follow-
ing two properties for an isometry U and a state 7 [63]:

D(pllo) = D(UpUT|[UU"). (A1)

D(pllo) =D(p ® 7llo @ 7). (A2)

The sandwiched Rényi relative entropy obeys the fol-
lowing “monotonicity in «” inequality [64]:
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Dy(pllo) <Dy(pllo) if a<p. fora.pe(0,1)u(1,00).
(A3)

The following inequality states that the sandwiched Rényi
relative entropy D, (p||c) between states p, & is a particular
generalized divergence for certain values of a [143,144].
For a quantum channel N,

Dy(pllo) 2 Do(N(p)|N (o)),
(A4)

In the limit @ — 1, the sandwiched Rényi relative
entropy D,(p||c) between quantum states p, ¢ converges
to the quantum relative entropy [63,64]:

limD,(plle) = D(pl|o), (AS)

and the quantum relative entropy [92] between states is

D(pllo) = Trlploga(p ) (A6)
for supp(p) C supp(c) and otherwise it is oo.

In the limit a — 1/2, the sandwiched Rényi relative
entropy D,(p|lc) converges to —log, F(p,o), where
F(p, o) is the fidelity between p, ¢ defined as

Fier 1]y Vo]

The following inequality relates D% (p||o) to Dy (p||o) for
density operators p, o, a € (1,0) and ¢ € (0,1) (see
Refs. [145-147] and Lemma 5 in Ref. [148]):

(A7)

- a 1
Difolle) < Dulpllo) + “ e (11 ). (A9
The following inequality also holds [94]:
1
Di(pllo) < 7 (D(pllo) +hafe)).  (A9)

where 1, (€) == —elog, e — (1 — €) log,(1 — ¢) is the binary
entropy function.

In a specific case, e-hypothesis-testing relative entropy
can be calculated exactly.

Lemma 3: If p is a pure state and it is one of the
eigenvectors of o, i.e., there exists decomposition
o =pop+ 3 piris with 3 pi=1 0<p <1,
Po # 0and states y;- orthogonal to p, then for any € € [0, 1],

D5 (plle) = ~ log, Tr{Q]. (A10)

with Q = (1 — €)p.

YV aell/2,1)u (], o).

APPENDIX B: MULTIPLEX QUANTUM
CHANNELS

All network channels that are possible in a communi-
cation setting are special cases of multiplex quantum
channels NV ;,» - (see Fig. 1):

(1) Point-to-point quantum channel: This is a quantum
channel of the form A/ ,—c, Withasingle senderand a
single receiver. When a multiplex quantum channel
has the form NV ¢ then A = @and |B] = 1 = |C|.
Thisis arguably the simplest form of acommunication
(network) channel as it involves only two parties with
one party sending input to the channel and the other
receiving the output from the channel.

(2) Bidirectional quantum channel: This is a multiplex
quantum channel of the form A ALAL AL A, with two

parties who are both senders and receivers, i.e.,
|A| =2 and B = @ = C (cf. Refs. [53,101]).

(3) Quantum interference channel: This is a bipartite
quantum channel of the form N'p 5, _.¢ ¢, With two
senders and two receivers (cf. Ref. [149]). We may
also call 3¢ With an equal number of senders
and receivers, as the quantum interference channel.

(4) Broadcast quantum channel: This is a multipartite
quantum channel of the form A B,—~C with a single

sender and multiple receivers (cf. Refs. [150,151]). We
may also call N 5_¢ as a broadcast channel if the
number of senders is less than the number of receivers.
(5) Multiple access quantum channel: This is a multi-
partite quantum channel of the form N Boc, with

multiple senders and a single receiver (cf. Ref. [152]).
We may also call A/ 7 as amultiple access channel
if the number of senders is more than the number of
receivers.
(6) Physical box: Any physical box with quantum or
classical inputs and quantum or classical outputs.
(7) Network quantum channels of types N v_ic and
A B-A
If inputs and outputs to a multiplex channel are classical
systems and underlying processes are governed by classical
physics, then the channel is called a classical multiplex
channel (see Ref. [137] for examples of such network
channels). If inputs and outputs to the channel are quantum
and classical systems, respectively, then the channel is called
a quantum-to-classical channel. If inputs and outputs to the
channel are classical and quantum systems, respectively,
then the channel is called a classical to a quantum channel.

APPENDIX C: PRIVACY TEST

Recall the definition of the twisting operation

K-1
U = fiv.wipg) i i g @ UE™(C1)
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and a privacy test as

defined Hs,x, = ®Hsk, and Hgx, = @ Hy g, Let us
iel jeJ

JK e aGHZ L\ tw also define m := |I| and n := |J| and note that M = m + n.
HFS - U%S‘((Df( ® HS)U,ZQ (C2) We can expand
-3 KZl kB @ UL UE (3 - y
K 4= Us @)s,x, = Z @, i), @ |bi i)s,» (C4)
i1y =0
where we have defined the notation M := j...i. We now
Mtimes
provide the proof of Theorem 1: . -
Proof of Theorem 1.—We begin by showing the bound sy, = Z Wjp..jyliv--n) i, @ 1)i...p.)s, (C5)
for pure biseparable states |(p>,?s For such a state, there 777
exists a bipartition of the parties, defined by nonempty Kl
index sets I € {1,....M} and J = {1, ..., M}\I, such that ~ Here &, ;, € C such that 35770, o &, [° =1 and
the state is a product with respect to that bipartition.  @;,.;, €C such that fl__,l,,]n olaj, ;| L.
Namely, |(,0)IZ9 = |@)s,x, ® |@)s,x,» where we have  Furthermore, it holds that
|
K S yet
Tr [Hst(p/?s = [( k\ )M ® U U )601(,5, ® (pK,S,:| (Ce)
i k=0
| k=1
- - MY g ~ = = M
= 3 i (@10 @) TV i) B, ® 1) (Biols, U (©7)
i.k=0
| k=1
S L ACHECRNAS (c8)
i,k=0

where we have defined the state

")

We note that Eq. (C8) is a probability; in particular, it is real
and non-negative. Hence, it holds that

ICi)s = 5, ® |<2’i">s, (C9)

| K=l
X apmap (@ )" ()" (CellS3) (C10)
1k=0
| K=l
~| % X arae@er @y @le)|  ©)
ik=0
-
EZ @ | |ae | [(CelIEa], (C12)
i k=0

where in the first inequality, we have used the subadditivity
and multiplicity of the absolute value of complex numbers.
We note that for all i, k in the sum, |({||¢;)| < 1. Let us
define p; = |@|* and note that p; > 0 and > K71 p, < 1.
Let us also define g; = |@|> and note that ¢; > 0 and

K1 qi < 1. Hence, there exist respective probability
distributions {p;} and {§;} over {0, ..., K — 1} such that
p; < p;and g; < g;foralli =0, ..., K — 1. We then obtain

K—
EZ || an| |ten || || (Sl 3) | (C13)
i k=0
1 K-1 1 K-1 2
<2 2 VPidiPdx = { szi:| (C14)
1,k=0 i=0
K-1 2 1
<— ha.| <—, Cl15
_K[; plq,] <z (C15)

where we have used the fact that the classical fidelity
between two probability distributions is upper bounded by
1. This establishes the theorem for pure biseparable states
with respect to arbitrary bipartitions. Noting that every

mixed biseparable state o~ € BS(:KS:) can be expressed

as a convex sum of pure biseparable states finishes the
proof. [
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APPENDIX D: UPPER BOUNDS ON THE CKA
RATES OF MULTIPLEX CHANNELS

1. Proof of Theorem 2

Proof.-—Let us consider any cppp-assisted protocol that
achieves a rate Isé\épp = P. Let p'V) € FS( :LA’:Ii’_BE:Ig:) be
a fully separable state generated by the first use of LOCC
among all spatially separated allies. Let

D= NEY ). (D1)

LARPC
We note that 7() is a separable state with respect to

bipartition LA R C :P. The action of the decoder channel
D:=L% _ _ on0 yields the state

LARPC—SK
=, (1) D2
= (7222 (D2)
By assumption, we have that

for some (M-partite) private state y, which implies that
there exists a projector II”_. corresponding to a y-privacy
SK

test such that (see Proposition 1)

i w—] > 1 —e. (D4)
Sk SK
From Theorem 1,
1 .
Tr[[l" o] <—=27", (D5)

sk sk~ K

for any ¢’ € BS(:S—Ié:).

— L, —
Let us suppose a state 6— . — € BS(:LA:R:PC:) of
LARPC . .
the form 6— . — =o6— .. ® 63, where 6— __ is arbi-
LARPC  LARC LARC

—_—)eBS(:SK:).
LARPC

Thus, the privacy test is feasible for D5 (w||s), and we
find that

trary. It holds that o := L (o

PSDZ(G’;KHG;K) (D6)
<Dl llo ez (b7)
< sw DWW o) (D8)

wEFS(LA':RB: P)
= sw DWWl g (D9)

weFS(LA': RB)

The second inequality follows from the data-processing
inequality. The third inequality follows from the quasicon-
vexity of Dj. The equality follows from Eq. (A2) and a
suitable choice of o5 that always exists because, for any
pure state y € FS(LA’ ‘RB : P), the output state N (y) is

separable with respect to the bipartition LA RC:P.
Since inequality (D9) also holds for an arbitrary

o€ BS(:ﬁ:ﬁ:é:), we can conclude that

P < Efgs(N). (D10)

2. Proof of Theorem 3

Proof—The following inequality holds for an (n, K, ¢)
LOCC-assisted secret-key-agreement protocol over a
multiplex channel N:

Flo—,y—)>1-¢. (D11)

SK™ " SK

For any o € FS(:SK:), we have the following bound
due to inequality (D11) and Theorem 1:

Employing inequality (A8) in the limit @ — 400, we obtain

1
< Dplangllog) +1ows ({1, ). (D14)

—

The above inequality holds for arbitrary ¢ € FS(:SK:);
therefore,

— 1
logZKSEmaX.E(:SK:)w+10g2<1 —g>’ (DIS)

where E . z(:SK:), is the max-relative entropy of
entanglement of the state O

The max-relative entropy of entanglement E,, g of a
state is monotonically nonincreasing under the action of
LOCC channels, and it is zero for states that are fully
separable. Using these facts, we get that
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EmaxAE(:S :)w
_ s

< Epax e (:LMWAW R0 - p ) 1) (D16)

T!Z

_— s —

= Emax.E( . L(n)A(”) :R(”) :P(’l) C(n) )

/Ty

—_

— Ennax E( :L“)A(l)’ :R<1)B(1) :P(l) )

P

(D17)

—_— =

= Emax,E( L(")A(”) :R(n) :P(") C(n) :)
+ |:Z Emax.E( L< )
i=2
- Z Eax E(
i=2
—

- Emax.E(:L(I)A(l)/:R(l)B“) IP(I) :)

< Z [Emax.E( L( )A
i=1

Y EYE TN ST

_ Ernax,E( ;L(i)A(i) :

Tn

AW ROBO: P

_ s ——
LOAW :ROBW: i)

. (D18)

(D19)

—_—

The first equality follows because Ep,y p(:L(MAD)':

_ —
RUBW:PM:) =0. The second inequality follows
because K, g is monotone under LOCC channels and
pi = Li(z;_;) for all i € {2,3,...,n}. The final inequality
follows from Lemma 1.

From inequalities (D15) and (D20), we conclude that

1
logy K < nEu g(N) + log, (1 ) (D21)
— &

3. Proof of Theorem 4

Proof—For an (n,K,e) LOCC-assisted secret-key-
agreement protocol over a multiplex channel N, such that
F (a)S?, ys?) > 1 — ¢, due to inequality (D11) and Theorem

1, it holds for any o € FS(:SK:): that

Using the fact that [94]
D¢ < ! D h D23
i §(||0S7<)—§ (w§<||0'§<)+ (e)|, (D23)

where £ is the binary entropy function, and that the bound
(D22) holds for arbitrary 6 € FS(:SK:), we obtain

log, K < 1#_6 (Ep(:SK:), +h(e)].  (D24)

As the relative entropy of entanglement of a state is mono-
tonically nonincreasing under the action of LOCC channels
and vanishes for states that are fully separable, we can repeat
the argument in inequalities (D16)—(D20) and obtain

Ep(:SK?), < nEL(N) < nEg(N).  (D25)
where the second inequality follows from Lemma 2. Taking
the limits € — 0 and n — oo, we obtain

Procc(N) < ER(N), (D26)
showing the converse. As for the strong converse, we follow
the argument used in Ref. [49]: From inequalities (D22) and
(A8), we obtain

w

log, K < EaE(g() +L110g2<
a_

1 ie) (D27)

where a € (1,00) and E,z(:SK:), is the sandwiched
Rényi relative entropy of entanglement of the state D

Rewriting inequality (D27), we obtain

logr K P
aa]("énz 1 aE( N ) )

Assuming that the rate log,K/n exceeds ER(N),
by inequality (D25), it will be larger than

(1/n)Eg(:SK:),. Hence, there exists an a > 1, such that

e>1-2 (D28)

(log,K/n) — (1/n)E,z(:SK:), >0, and the error
increases to 1 exponentially. [
4. Proof of Theorem 5

Let N i B_ic be a multipartite quantum channel that is

tele-covariant with respect to groups {G, } ,e 4 and {G, } 5
as defined in Sec. V C. By definition, for all a € A and
b € B, we have

by 1,

g[[ + a a
Z Al (DA”L m ® m 5 (D29)

_Zu

b‘}b

/ = D30
|B'| |Rb| (D30)
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respectively, where A, ~ L, B), ~ R, and ®* denotes an
EPR state. Note that in order for each {U%; } and {U7 } to

be one-designs, it is necessary that |A”|> < G, and |B’b|2 <
G, [153].

that {E%, }, and {E} B R, },, are valid POVMs for all a €

Aand b € B.

The simulation of the channel N\ - A Baid via teleportation
beglns with a state pg g

and a shared resource

For every a € A and every b € B, we can now define =N - (q)fq N ﬁ) The desired outcome is for
{E%, }, and {EJ .} . with respective elements Onine AB-ACY LRI

AaLa? 9a ByR, 19> the receivers to receive the state A (p o 5) and for the

defined as protocol to work independently of the input state p g, 5

. |AL|? - J The first step is for senders A, and B, to locally perform

Ef, = G, Ugir @y, (UA”> ’ (D31) the measurement { @), AE%, ® ®b€BE%b, Rb}" and then

a™a b g

B.P send the outcomes g to the receivers. Based on the outcomes

O = 1By Ugb cI)Jr (U%b, ), (D32) g, the receivers A, and C,. then perform W¢ and W¢ ,

b a c

’ Gy ’ respectively. The following analysis demonstrates that this

where A!, = A and B, =~ B}, It follows from the fact that protocol works by simplifying the form of the postmeasure-

t state:
|AL|*> < G, and |B,|> < G}, as well as Egs. (D29) and (D30) et state

9b . .
(gGabl;l[ng>TrA7iBj> (® //L“ ® %EBZRh) (PAB/ ® 9LAF€6’>:|
_ 112 2 o 9a @+ Ya T b A+ 9+ . .
fry <EA|AG| lgg|Bb| >TrA”LB’R{ [? UA//®A// UA// ® ®U q) UB;) j| <pAB’ ® HLAI_éé)} (D33)
— 112 2 =+ . Ga gp ¥ ( Ja )
(glAal bl;gBhl ) (@] liﬁ(@w ®®uy, ) @O QUL @ QU )IO) e (D34)
— 112 2 + . 9a b G " o i o
_ <g|Aa| ,QJB” ) s BULE®UE ) o (@UY ® BUY ) @0, 07) o o (D3S)
_ /12 2 . Ga . Ga % *_>ﬁ N
= (TDAPTImR )0 o (B © @A) s (B01 © BUR)| 0535 )5 O3
The first three equalities follow by substitution and some rewriting. The fourth equality follows from the fact that
d y g quality
(@lyaMy = (@lyaM; (D37)

for any operator M, where * denotes the complex conjugate, taken with respect to the basis in which |®),/, is defined.
Continuing, we have that
(B )

.| TT[] ) Vv (o ) oss
171;1[3 ' A B-AC\ LRIA B (D38)

bGE‘BbDTrLR{ A’B—>AC<(®U%’1H®,§gUngb)Tpg/ (®Ug“ ®®U ) “ﬁé)] (D39)

QUi @ QU

beB

Eq. (D36) = <a€A

<a€A

H(®ur e ®ui

aeA beB

IN;gq;e«;?;U"i ® ®U ) (®U"“ ®;§SU )) (D40)
(gwg %Wg ) A B—»AC( )(®Wg %WJ ) (D41)

The first equality follows because |A|(®|44 (T4 @ Mpp)|®)4s = Tra{M p} for any operator M ,p. The second equality
follows by applying the conjugate transpose of Eq. (D37). The final equality follows from the covariance property of the
channel.
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Thus,

X WJ ® ®Wg upon receiving g via a classical channel
aceA

from the senders, then the output of the protocol is
N D ioi 6(/’ o E)’ so this protocol simulates the action of
the multipartite channel A/ on the state p. [

if the receivers finally perform the unitaries

5. Proof of Theorem 6
Before proving Theorem 6, we need the following
lemma, which generalizes Lemma 7 in Ref. [62]: _ |
Lemma 4: Let 7 = {UtWTp—KU’W:pS? € BS(:SK:)}
be the set of twisted biseparable states. Then, for any
oG € T, it holds that

D(@RHGE) > 10gK. (D42)

Proof—leto— €T, ie., 6— = U" p— U™ for some
SK SK SK

twisting unitary U™ and biseparable Pp Here, U™ defines

aprivacy test I, = U™ (®¢ ® 15)U™". By Theorem 6, it
SK

then holds that

1
= Tr[HﬁpH] <—.

Tr[®z0%
SK SK K

R4 (D43)

By the concavity of the logarithm, it then holds that

D(®g|lop) = =S(®g) — Tr[@y logoz] (D44)
> —log Tr[®30 ] (D45)
> logK, (D46)

finishing the proof. L]

Now, we can follow Ref. [48] to prove Theorem 6:

Proof of Theorem 6.—Let e > 0 and n € N. We begin by
noting that in the case of teleportation-simulable
multiplex channels, LOCC assistance does not enhance
secret-key-agreement capacity, and the original protocol
can be reduced to a cppp-assisted secret-key-agreement
protocol [48]. Namely, in every round 1 <i<n, it

holds that
i:ﬁi i :ﬁi N i—
pi=L' ;) =L Awhwgo—nﬁA04>c<1%p 1)
(D47)
=T . ,
( A/(i—l)LAB(i—l)R?_)A(i—l)C(i—l)( LARC®'0’ 1)
(D43)

where L' and 7 are LOCC. As the initial state p is
assumed to be fully separable, we find that the final state

O = Pa of an adaptive LOCC CKA protocol, involving

n uses of the teleportation-simulable multiplex channel
N 7 5.5 ¢ can be expressed as

=L (9®nq )’

w— . (D49)
SK L'A" R" C" _SK' LARC

where £ is an LOCC operation with respect to the
. . 7 T . .

partition :L"A": R":C":. By assumption, it holds

that ||a)§( —YaHl <e¢ for some m-partite private

state . = U™ (@ ® 73)U™T, where m is the number

—_— —— ——
of parties. Let 6—— ————» € BS(:L"A": R" : C" ).

L"A" R" C"

Following the proof of Theorem 9 in Ref. [62],
we obtain
D(6®"__||5
(= 2118)
> D(w—||L(5 D50
(@@ a) (D50)
——D(Umﬁw lﬂWHUMWEQF——a ——)U™) (D51)
LnAH Rn C}’l
> 1nfTD(Tp{Umﬁw U™]||oz) (D52)
c—€
SK
> infTD(q>1?||51?) —4melog K — h(e) (D53)
c—€E
SK
> (1 —4me)logK — h(e), (D54)

where, in the last two inequalities, we have used the
asymptotic continuity of the relative entropy and
Lemma 4, respectively. Letting n — oo and ¢ — 0, we
finish the proof. m

6. Proof of Theorem 7

As in the proof of Theorem 6, we have

a)—»:L—>—>—> — gaﬂ)ﬁ (DSS)
SK L"A" R* C" -sk" LARC

where £ is an LOCC operation with respect to the partition
—_— —— — .

:L"A": R" : C" :. Now, following the proof of Theorem 2,

we have that

for some private state y; hence, there exists a projector

IT". corresponding to a y-privacy test such that (see
SK

Proposition 1)

Tr[T_ @

= SK]>1—8

(D57)

On the other hand, from Theorem 1, we have
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1
T .o—] <—, (D58)
sk SK° T K
for any aeFS( SK:). Let us suppose a state
__E€FS(:LA:R:C:), and let us define o =
LARC SK
®

E—)—»—) _,(Gﬁﬁﬁ), which is in FS(SK)
L"A"™ R™ C" -SK~ LARC
Hence, for all o > 1, it holds that

log, K < Dt (wg{Has}> (D59)
<Dt (9®” P ) (D60)
LARCI" LARC
1
a(9®” 4‘ %" H) +Llog2 —_— (D61)
LARCIl LARC/ a—1 1-¢
o , a 1
= nDa (eaEC’ LARC) +—_ 1 10g2 <—1 —g) .

(D62)

The first inequality holds for any 6 € FS(SK). The second
inequality follows from the data-processing inequality. The
third inequality follows from Eq. (A8). The equality is due
to the additivity of D, [64]. As the above holds for any

6. _€FS(:LA:R:C:), we obtain Theorem 7.

LARC

APPENDIX E: REPEATER
AS A MULTIPARTITE CHANNEL

In order to provide bounds for more repeater protocols
that involve two-way communication between Alice and
Charlie or between Bob and Charlie before Charlie’s
measurement, we have to slightly generalize our results
in Sec. V. Namely, in addition to trusted parties
{X; M, ={A,}, U {B,}, U{C.},, we can add a number
of cooperative but untrusted parties {X;}¥, :=
{Aa}acq U {Bsci)ts U {Coc )z Let us denote the quan-
tum systems hold by respective untrusted parties as
A’&,Za,A&,BE,Ri,, C:, P; and redefine

>

= {A;}aeA U {A/a}aeAvA = {Au}aeA U {Aa}ae}t’

L:= {L }aeA U {Z'}Zze}l’
B:={B}}ye5 U {Bb}beB’ = {Ry}pes U {R} }ep
C:= {Cc}cec U {Cé}ﬁe@P = {Pc}ceB U {Pé}aei”

while keeping the old definitions for K and S. We then
assume that we have a multiplex channel A -, and

A B=AC
LOCC operations £, for i = 1, ...,n, among trusted and

untrusted parties. However, we assume that as part of the
last round of LOCC, £"*!, all subsystems belonging to
untrusted parties are traced out, resulting in a state 0

among the trusted parties only. It is now easy to show that
the proofs of Theorems 3 and 4 also go through in this
slightly generalized scenario. Namely, tracing out parties in
a fully separable state results in a fully separable state on
the remaining parties, and by the monotonicity of the
generalized divergences, inequalities (D16) and (D25) also
hold if we trace out the untrusted parties in order to obtain
. Note that the same does not hold true in the case of
Theorem 2, where we have the distance to the set of
biseparable states, which is not preserved under the
trace-out.

Returning to the quantum key repeater, we can now
identify Alice and Bob as two trusted parties and Charlie as
an untrusted party and define a multiplex channel as the
tensor product of the two channels from Alice to Charlie
and Bob to Charlie, namely, N5 == N @ N3_,.
with C := C,Cp. We include the local state preparation by
Alice and Bob; the LOCC performed by Alice, Charlie, and
Bob during key distillation protocols; and Bob’s entangle-
ment-swapping measurement and subsequent classical
communication into the LOCC operations that interleave
the uses of N, Crucially, the final LOCC operation
has to include the trace-out of Charlie’s system, as he is an
untrusted party. Application of the generalized versions of
Theorem 3 or Theorem 4 then provides us with an
upper bound on the achievable key rate in terms of
min{Epa e(N e )s ER (N5pE) ). As has been shown
in Ref. [74], there are examples of channels acting on finite-
dimensional systems where the regularized relative entropy
of entanglement is strictly less than max-relative entropy of
entanglement, in which case, Theorem 4 provides tighter
bounds than the ones provided in Ref. [50]. For tele-
covariant channels, we can invoke Remark 5 and Theorem
5 to obtain bounds in terms of the relative entropy of
entanglement.

Let us now consider repeater chains with more than a
single repeater station. We assume a protocol where each
channel has to be used the same number of times to get the
desired fidelity. We consider Alice and Bob as trusted
parties and the repeater stations Ci,...,C; as coopera-

tive but untrusted parties. Defining a multiplex
epeater chain
channel A2 CmaCy...CiB Ac, ®Nc’ 0, ®...®

N 1, . ® /\/ 171, and including entanglement purifica-

t10n and swapplng operations of all nesting levels into the
LOCC operations, we then apply Theorem 3 or Theorem 4
to bound the achievable key rate between Alice and Bob by
min { Emax,E ( \/repeater chain) , E%o ( \/repeater chain)}' If involved
channels are tele-covariant, then we obtain bounds in terms
of the relative entropy of entanglement.
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APPENDIX F: LIMITATIONS ON SOME
MDI-QKD PROTOTYPES

Following the discussion in Sec. VID, let us now
consider MDI-QKD settings with the noise model for
transmission of qubit systems from both A, and A,, to
Charlie through qubit channels given by either the depola-
rizing channel Dﬁxﬁq or the dephasing channel D} _ -

1-2
Dix,,qc,, (Pa,) = hipc, + lﬂc,-, (F1)
D —c,(pa) = Aspe, + (1 =2)Zpc, 2", (F2)
where
1
—3SAus<l 0<A<L (F3)

7 is a Pauli-Z operator, and p is an arbitrary input state.
Like the MDI-QKD setup with erasure channels discussed
earlier, we assume that Charlie can perform a perfect Bell
measurement M _ , with probability ¢ and failure prob-
ability 1 —¢g. We notice that the multiplex channels

N %/IE %D[,./\/' %/IEED‘ for these MDI-QKD prototypes are also
tele-covariant, which implies that the MDI-QKD capacities
for respective MDI-QKD settings, i.e., with depolarizing
channels and dephasing channels, are upper bounded
as (see following subsections for proofs and plots
(Figs. 7 and 8) for some values of g:

(1) MDI-QKD with depolarizing channels D' [Eq. (F2)],

where —% <A<,

e

——g=0.4

o
©
T

°
©
T

Bound on capacity
© o o o o o
N w e 6] (o] ~
T T T T T T

o
=
T

o

FIG.7. Upper bounds [Eq. (F4)] on the secret key capacities for
the MDI-QKD protocol with depolarizing channels for different
values of parameters g and 4;, in comparison to the RB
bound [48].

| q=04 [
091 =05 1
| g=0.9 I
0.8 1 |
| —q=1.0 |
0.7+ \\ RB "’ 4
£ 1 |
061 | I
Q \ |
8 \ /
205¢F | /'
700 /
c04 N \\ /.
@ [\
0.3
0.2
0.1
0 ‘
0.4
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S
FIG. 8. Upper bounds [Eq. (F5)] on the secret key capacities for

the MDI-QKD protocol with dephasing channels for different
values of parameters ¢ and A, in comparison to the RB
bound [48].

- ' 1
P occ(NMPLDY) < ¢ [1 —hy G 2+ Z)] (F4)

for \/Lg < A; £ 1, and 0 otherwise.

(2) MDI-QKD with dephasing channels D° [Eq. (F1)],
where 0 < A, < 1,

P LOCC (N MDI'DS)

q(1 = (5 p-(4,)) for 2, > 3
<<0 for {1 <, <2
q(1 =hy(3p-(1 = 4)) for 4, <7,
(F5)

where p_(x) = 4x* = 3x + 1.

1. MDI-QKD via depolarizing channels

In this section, we show a bound on MDI-QKD (or,
equivalently, on a particular type of quantum repeater). In the
latter setup, there are three stations: A, B, and an intermediate
one C = C,Cp. We consider the links AC4 and CyB to be
depolarizing channels D*, both with the same parameter 4,
[see Eq. (F2)]. We also consider that the Bell measurement,
followed by communication of the results to both the parties,
happens only with probability g. With probability (1 — g),
the state of C is just traced out. We call the multiplex channel
for a given MDI-QKD setup composed of depolarizing
channels D' with Bell measurement, which happens with
probability ¢ in total, a g-depolarizing-MDIQKD channel.
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The upper bound that we derive below quantitatively
demonstrates that the operation of distillation of entangle-
ment along the links does not commute with the operation of
entanglement swapping. Indeed, even for ¢ = 1, if one does
the Bell measurement first, the output key is zero for
A < (1/4/3).

We are interested in the Choi-Jamiolkowski state of the
g-depolarizing-MDIQKD channel, which we obtain from
the Choi states (up to local unitary as the input state is
¥Y~) of the two depolarizing channels. The latter
two states read 4,¥~ + (1 —/11) The Choi state pGj
reads

M4 e
PaE = iT (15 ® 100)(00]; 1, +¥up ® [L1)(11]; 4,

+ @55 ® [22) <22|1A13 + ‘DXB ® ‘33><33|1A15]
® |00) <OO|,/ 7,

1
+(1-4)q AB® Z|” (iil;,1, ® [00)(00|, 1,

(- >"AB®|¢><L|,, ® [1)(11],,. (F6)

Let us examine this case. First, with probability (1 — g),
the parties are left with the initial state on AB, which is 1,
and the “flag” |11><11|1;13 reporting error in the Bell
measurement. With probability ¢, they obtain a flag
|00) (00| 1,,» Which informs us that the Bell measurement
was successful. They also receive the classical result of the
Bell measurement: {|ii)(iil; ; }7_,. Only with probability
/1% does this measurement result in the output of
the appropriate Bell state on AB. With probability
(1=2)=0 =24+ 401 =2)+(1—=24)% we have
one of three possibilities with respective probabilities:
(i) teleportation of 1., /2 from C, to A with probability
A(1 = 4;), (i) teleportation of 1¢, /2 from Cp to B with
probability (1 —4;)4;, and (iii) a Bell measurement on
systems C4Cp of the state (T4¢,/4) ® (1¢,5/4) followed
by communication of the outcomes [with probability
(1 =2;,)%]. As one can check by inspection, all three
operations result in the state % on system AB.

The relative entropy of pQ reads

Er(pip) < CIER(P%\OO) + (1 - CI)ER(:OZLI[;\II) (F7)

= qEg (Pf\lgwo)’ (F8)

where P%m = (1ap/4) @ [ L){L];,;, ® |11><11|1;1;3 and
Pﬁlg\oo is such that (1 —q)papj11 + gpagjoo = pap- We

have used the convexity of the relative entropy and the

fact that it is zero for a maximally mixed state. We then
observe that

E (/’%t\oo

<<ZA i (wilas + (1 —A%)%)

® i), ® 000y, ). (P9

where |y;) (y;| are the Bell states. Next, we use the fact that
for each i, the state A7|y;)(w;ilap + (1 —47)1 is a Bell
diagonal state. A Bell diagonal state of the form
>_j Pjlw;)(w;| has Eg equal to 1 — h(pyyy ), Where pia, =
max; p; is the maximal of the weights of the Bell state
ly;)(w;| in the mixture, or O if pp, <3 In our case,
Pmax = 47 + (1 = A7) /4. Thus, via convexity and Eq. (F8),
we obtain that

Exto) < a1 -ms (3 LAY | (o)

for 7 + (1 — 47)/4 > 1/2, and 0 otherwise. The condition
A7+ (1=27)/4 > 1/2 on J is equivalent to 4, > (1//3).
This implies that for ¢ =1, the bound is zero for
e 3.1/ V/3)], for which the depolarizing channel is
nonzero, and hence, its private capacity is nonzero as well.
We interpret this as the noncommutativity of the indepen-
dent and identically distributed (i.i.d.) Bell measurement
and entanglement distillation. Indeed, for this range of 4,,
given access to an isotropic state p(4;), one can distill
Ep(p(4))) = (1 = hy(4;)) of entanglement, and hence, the
quantum capacity Q(D') =1-hy(4;) (or zero for
A; < 1/3). On the other hand, this amount of key becomes
inaccessible when the Bell measurement is done first.

2. MDI-QKD via dephasing channels

In this section, we consider two dephasing channels
[Eq. (F1)] between Alice and Charlie and Bob and
Charlie. We again observe that the operation of distil-
lation and i.i.d. entanglement swapping via the Bell
measurement do not commute. Altering them leads to
different amounts of key in the output. We use the fact
that MDI-QKD via the dephasing channel is teleportation
covariant.

Note that the Choi-Jamiolkowski state (up to local unitary
operations as the input state is ¥™) of the dephasing channel
equals A,¥~ + (1 —A)¥P" = (24, — DY~ + (2 = 24,)pas
with p., =1(|01)(01]| + |[10)(10]). Hence, the Choi-
Jamiolkowski state of the dephasing-MDIQKD channel
reads

041016-31



DAS, BAUML, WINCZEWSKI, and HORODECKI

PHYS. REV. X 11, 041016 (2021)

3
P = (24, —1)2q¥55 ® Z lii)(iil;,;, ® |OO><OO|1;1;;
i=0
+ (2 - 213)(2/15 - l)qp?lB
I
® ZZ |”><”|IAIE ® |00><OO|1;1'B
i—0
Tag o I
+(2- 2/15)61% ® —Z |i0)(iil;, 7, ® 00)(00[7, .

4 i=0

1
+(1 —Q)% ® | L) (L], ® 11)(11] . (F11)

given that Alice has performed the control-Pauli operations
on her systems A/ . We can safely assume that this decoding
has been done because the local unitary operation does not
change the relative entropy of entanglement. The first case is
a straightforward result of correct entanglement swapping.
Regarding the next term, with probability (2 —24,)x
(24, — 1), a subsystem C, of the state p.; gets correctly
teleported to A, and hence, finally, p?,B is shared by Alice and
Bob. However, with probability (2 —24,) = (2 — 24,)*+

|

Er(p00) = Er (ms PP +

where we have neglected systems [,/ and I, due to
subadditivity of E; and the fact that it is zero for both the
states Y 3 |ii) (iil;,;, and [00) (00| 1, The resulting state is
Bell diagonal [note that pAF =1 (|¥=)(P~| + |¥7) (¥T)1;
it is thus sufficient to find the largest weight of a Bell state to
compute its relative entropy. Bell diagonal states are sepa-
rable if the largest weight is less than or equal to half, i.e.,
when none of the Bell states (®, ®~, ¥+, ¥~) has weight
greater than 1/2.

For the case 4, > 3, the state [¥~)(¥~| is in the mixed
state pyp o With probability (22— 1)2+(2=24,) (22, 1)+
(2-24,)/4=2(422 =32, +1).

Thus, keeping the structure of the Choi state of the
dephasing channel in mind, we arrive at the following bound:

q(1 = hy(3p_(%)) for A, > 3
Er(pS8) << 0 for 1<, <3
q(1 = hy(zp-(1=14,)) for A <7,
(F15)

where p_(x) == 4x* — 3x + 1.

(2 —244)(24, — 1), the resulting state is maximally mixed
because, with probability (2 — 24,)?, the state on system C is
traced out; hence, a product of subsystems of p‘le is an
output. On the other hand, with probability (2 —24,)x
(24, — 1), subsystem Cp of the state p.; is teleported to
Bob; however, Bob does not do the decoding. It is then
straightforward to check that {31 (6% ® 1,267 @ 1,,
with 6, being Pauli operators, is the maximally mixed state of
two qubits.
The relative entropy of pQ reads

Er(pis) < 4ER(PRp00) + (1 — ) ER(pip,,)  (F12)
- qER(pzlg‘o())y (F13)

where Pfﬁgtm = (1ap/4) ® [L){(L];,, ® |11><11|1;§1;; and
P00 18 such that (1 — g)pap|i1 + gpagioo = pap- We have
again used the convexity of the relative entropy and the fact
that it is zero for a maximally mixed state. We then

observe that

(F14)

(2= 24,) (2~ )i + (2 msﬂ%),

[
APPENDIX G: COMPLEXITY OF FINDING
LOWER BOUNDS OF THE SKA RATE FOR THE
BIDIRECTIONAL NETWORK

Here, we briefly comment on the complexity of finding a
subgraph, which allows us to realize the conference key
agreement with the capacity indicated by the inequality
(75). As we show, the complexity is a polynomial of low
degree O(n?). In what follows, a minimum spanning tree is
a tree with a minimal sum of the weights of its edges. A
minimum bottleneck spanning tree is the one in which the
edge with the highest weight has the lowest possible value
for the considered graph.

The algorithm of finding the maximal of the minimal
edges over all spanning trees of the graph is as follows.

(1) Find the maximal weight of the edges of G (denoted
as M).

(2) Find the minimum spanning tree Tgr in the graph
G' = (Vg, Eg), which is the same as G but with the
weights of the edges changed from w(e) to
M —w(e), where M = max,cg, w(e').

(3) Find the minimal weight of the edges in 7, denoted
Win- Return M — wi,.

The correctness of this algorithm follows from the fact that
every minimum spanning tree is a minimal bottleneck
spanning tree. Finding the highest weight of the edges of
this tree that is as low as possible is the opposite task from
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ours. Indeed, we aim at finding trees with the lowest
weight over its edges to be as high as possible, which is
why we search for the minimal spanning tree in the graph
with converted edges to M = max, g, w(e') — w(e). Next,
we use the fact that minycgmax,ep, [M —w(e)] =
M — maxyc min,ep, w(e), so M —wyy, is the solution.
The overall time complexity of this algorithm is
O(m + nlogn). Indeed, the first step takes O(m) time.
The next two take O(m + nlogn), where finding the
minimum spanning tree is via Prim’s algorithm based on
the data structure called the Fibonacci heap [117]. The final
step takes O(nlogn), which is the time for sorting the
weights of edges (e.g., by the QuickSort algorithm). Taking
into account that m scales pessimistically as n?, we obtain
O(n?) as the worst-case complexity.

To summarize, the value of the lower bound can be found
efficiently on a classical computer, given that all the
capacities describing the bidirectional network are known
and represented in the form of a graph.

APPENDIX H: KEY DISTILLATION FROM
STATES—PLOTS

To calculate our upper bounds, we utilize the technique
of semidefinite programming (SDP) with MATLAB (version)
library “SDPT3 4.0” [154], see Ref. [134]. We calculate
upper bounds for several cases, incorporating both ®$H#
states and d)ﬁ states. First, we vary the number of copies of
the state that enter the protocol; second, we make calcu-
lations for multipartite states with the number of parties
exceeding three. Finally, we extend our consideration to
states subjected to dephasing or depolarizing noises char-
acterized in Eq. (H1) (each qubit is subjected to noise
separately). We investigate the effect of noise in the case of
a different number of copies and different number of
parties:

Proisy — D®M(p)a (Hl)
for D given by
Dgeph (a)) =g+ (1 - Q)szgz’ (HZ)
J 1
Ddepol(w) =qo+ (1 - Q) 5 ’ <H3)

where o, is the Pauli Z matrix and ¢ is the noise parameter.

We present the plots for the upper bound on the key rate
distilled from both ®$HZ and @}, states and tensor powers
of them. The plots are a function of the & parameter
controlling the fidelity of the target state p; with respect
to a private state.

We compare the performance of our upper bound and
choice of biseparable states for a tripartite single copy state
in Figs. 9 and 10. In the control plot in Fig. 9, for the

1.2 —
1+
il — Noiseless
Depolarized q=0.95
Dephased q=0.95
0.6
04Ff
02r
0 0.002 0.004 0.006 0.008 0.01

€

FIG. 9. Plot of e-hypothesis-testing upper bound on conference
key rate for a single copy of the ®$HZ state, for noiseless,
dephased, and depolarized cases.

noiseless ®GHZ state, the upper bound, as expected,
exhibits the value to be just above 1 for the chosen range
of &, which indicates that the e-hypothesis-testing upper
bound is not too loose. For the single copy tripartite ®)y
state, the value of the upper bound in Fig. 10 for e & 0 is
below 0.6, which is below the value of the rate of the
optimal LOCC asymptotic protocol, approximately
0.643 per copy [80]. In the case of two copies of bipartite
@)Y in Fig. 11, we obtain an upper bound that for & ~ 0 has
a value of around 1.18, which is significantly above the %
achieved by the protocol described earlier in this Appendix,
and 1.286, which is an asymptotic limit for the state being
two copies of the @ﬁ state (Theorem 2 in Ref. [80]). Both
of these results are in agreement with the fact that single-
copy and two-copy one-shot protocols constitute a very

05

04} — Noiseless
Depolarized q=0.95
Dephased q=0.95

0.3

0.2

0.1}

0 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01

€

FIG. 10. Plot of e-hypothesis-testing upper bound on the
conference key rate for a single copy of the @Y state, for
noiseless, dephased, and depolarized cases.
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FIG. 11. Plot of e-hypothesis-testing upper bound on the
conference key rate for two copies of the <I>§V state, for noiseless,
dephased, and depolarized cases.

limited class of protocols compared to those available for
calculating the asymptotic limit. For two copies of the @}
state, the large gap between our upper bound for the
conference key rate and the rate of the ®§HZ state
distillation protocol makes us think that, indeed, the former
is larger than the latter. However, a formal proof is still
missing. Moreover, we notice that the optimal protocol @}
to ®§HZ conversion has to incorporate at least three copies
of the @) state because our e-hypothesis-testing upper
bound is smaller than the asymptotic limit for ®$HZ
distillation.
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