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We consider the distribution of secret keys, both in a bipartite and a multipartite (conference) setting, via
a quantum network and establish a framework to obtain bounds on the achievable rates. We show that any
multipartite private state—the output of a protocol distilling secret key among the trusted parties—has to be
genuinely multipartite entangled. In order to describe general network settings, we introduce a multiplex
quantum channel, which links an arbitrary number of parties where each party can take the role of sender
only, receiver only, or both sender and receiver. We define asymptotic and nonasymptotic local quantum
operations and classical communication-assisted secret-key-agreement (SKA) capacities for multiplex
quantum channels and provide strong and weak converse bounds. The structure of the protocols we
consider, manifested by an adaptive strategy of secret-key and entanglement [Greenberger–Horne–
Zeilinger (GHZ) state] distillation over an arbitrary multiplex quantum channel, is generic. As a result, our
approach also allows us to study the performance of quantum key repeaters and measurement-device-
independent quantum key distribution (MDI-QKD) setups. For teleportation-covariant multiplex quantum
channels, we get upper bounds on the SKA capacities in terms of the entanglement measures of their Choi
states. We also obtain bounds on the rates at which secret key and GHZ states can be distilled from a finite
number of copies of an arbitrary multipartite quantum state. We are able to determine the capacities for
MDI-QKD setups and rates of GHZ-state distillation for some cases of interest.
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I. INTRODUCTION

Quantum communication over a network is a pertinent
issue from both fundamental and application aspects [1–7].
With technological advancement [8–11], and concerns for
privacy [7,12], there is a need for determining protocols and
criteria for secret communication among multiple trusted
parties in a network. Quantum key distribution (QKD)
provides unconditional security for generating secure,

random bits among trusted parties against a quantum
eavesdropper, i.e., an eavesdropper that is only limited
by the laws of quantum mechanics. Secret key agreement
(SKA) among multiple allies is called conference key
agreement [13,14]. Conference key agreement can be
achieved if all parties involved share a Greenberger–
Horne–Zeilinger (GHZ) state [15]. As in the case of
bipartite QKD, however, there exists a larger class of
states, known as multipartite private states [14], which
can provide conference keys by means of local measure-
ments by the parties.
Given the global efforts towards a so-called quantum

internet [3,16,17], as well as quantum key distribution over
long distances [18,19], it is thus pertinent to establish
security criteria and benchmarks on key distribution and
entanglement generation capabilities over a quantum net-
work. A quantum network is a complex structure as it
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inherits various setups of different quantum channels with
particular alignment due to local environmental conditions.
One of the biggest obstacles in building this structure is the
attenuation of the signal, which cannot be amplified by
cloning or broadcasting because of its inherent quantum
nature. The signal decays exponentiallywith distance over an
optical fiber [20], and also, the interaction with the environ-
ment makes it difficult to preserve entanglement for a long
time [10]. Hence, even obtaining a metropolitan-scale
quantum network remains a challenge. To overcome these
problems, there is a global effort in building technology of
quantum repeaters [11,21–23] that could act as relay stations
for long-distance quantum communication [7,19].
Some of the first protocols to be performed once a

quantum network is available will likely be bipartite as well
as multipartite secret key agreement. Securing the network
is a necessity for these QKD protocols to be free of
loopholes. A number of spectacular attacks on implemen-
tations are based on inaccuracy (inefficiency) of detectors
of polarized light [24–26]. Based on the idea of entangle-
ment swapping, a novel protocol known as measurement-
device-independent QKD (MDI-QKD) [27,28] was intro-
duced, which does not require the honest parties to detect
an incoming quantum signal, thus avoiding the problem of
detector inefficiencies. This idea has drawn enormous
theoretical and experimental attention over the last few
years in terms of analyzing achievable key rates for such a
scheme with various noise models and performing experi-
ments with current technologies [29–39].
Given the broad interest in implementing such technol-

ogies, understanding the fundamental limitations on the key
rates achievable in scenarios such as quantum networks and
quantum repeaters, as well as setups for MDI-QKD, is an
important task. Seminal papers [40,41] on upper bounds on
secret key distillation from states, along with results from
Refs. [42–46], have led to notable recent progress in the
aforementioned direction, for two parties over point-to-
point channels assisted by local quantum operations and
classical communication (LOCC) [47–50]. Building upon
these works, further progress has been made in restricted
network settings, e.g., between two parties over bidirec-
tional [51–53], broadcast [54–56], multiple access, and
interference quantum channels [54], as well as quantum
repeaters [50,57] and networks consisting of point-to-point
[58–60] or broadcast channels [61].
In this work, we aim to provide a unifying framework to

derive upper bounds on the key rates, both in bipartite and
conference settings, achievable in a broad range of different
scenarios, including but not limited to broadcast, multiple
access, interference channels, repeaters, some MDI-QKD
setups, and more general network scenarios. For that
purpose, we introduce a multiplex quantum channel, i.e.,
a multipartite quantum process that connects parties, each
playing one of three possible roles—both sender and
receiver, only sender, or only receiver. A multiplex

quantum channel is the most general form of a memoryless
multipartite quantum channel in a communication network
setting. All other network quantum channels can be seen as
a special case of this channel (see Fig. 1 for certain common
examples). Even the physical setups of MDI-QKD and key
repeaters can be described as special cases of multiplex
quantum channels (see Fig. 2). In general, the input and
output systems on which such a channel acts can be discrete

(a)

(b)

FIG. 1. Pictorial illustration of the universal nature of a
multiplex quantum channel from which all other network quan-
tum channels arise, where red and green arrows show inputs and
outputs to channels, respectively; see Sec. III B for definitions.

FIG. 2. Graphical depiction of a quantum-to-classical multiplex
channel NMDI

A0B0→ZAZB
as a bidirectional channel, which is a

composition of three elementary multiplex channels. We show
a pair of point-to-point channels from Alice to Charlie, and from
Bob to Charlie composed of a multiple access quantum-to-
classical channel (quantum instrument) performed by Charlie,
followed by a broadcast classical channel back to Alice and Bob.
The green arrows with red boundaries are the outputs of one
multiplex channel, which are, at the same time, inputs to the other
channel, hence the coloring.
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(finite-dimensional) or continuous variable (infinite-
dimensional) quantum systems.
Next, we introduce secret-key-distribution protocols over

multiplex quantum channelswith LOCCassistance between
users, as shown in Fig. 3, which provides a unifying
framework to evaluate performances of various seemingly
different QKDprotocols. In particular, we describe a general
paradigm of QKDprotocols where a fixed number of trusted
allies are connected over amultiplex quantum channelN . In
these protocols, the allies are allowed to perform LOCC
between each use ofN to generate, in the end, a key that is
secure against any eavesdropper that satisfies the laws of
quantum mechanics. This so-called quantum eavesdropper
can have access to all environment parts, including the
isometric extension to channel N .
Our main technical result consists of a metaconverse

bound on the one-shot conference key agreement capacity
of a multiplex quantum channel, from which we can obtain
a number of weak as well as strong converse bounds for the
many uses of the multiplex quantum channel, including
adaptive and nonadaptive strategies. As our results work in
the nonasymptotic setting of a finite number of channel
uses, we believe them to be of wide practical interest.
In particular, as an important observation, we show that

key repeater protocols, as well as commonly used setups for
MDI-QKD, are special cases of LOCC-assisted secret key
agreement via a multiplex quantum channel. Whereas
bounds on the key rates in such scenarios can also be
obtained from a number of earlier results—e.g., from
Refs. [50,58,60]—our framework allows for a higher level
of specificity in the setups, e.g., by taking into consid-
eration the lack of quantum memory or a particular kind of
noisy measurement that is performed in the relay station.
Thus, our framework allows us to obtain tighter bounds

than those in Refs. [50,58,60] and even to compute
MDI-QKD capacities of certain photon-based practical
prototypes that use the so-called dual-rail encoding scheme.
This approach provides important tools for benchmarking
the performance of such experimentally relevant protocols.
When considering conference key agreement, the pivotal

observation we arrive at is that multipartite quantum states
with directly accessible secret bits, also called (multipartite)
private states [14,62], are genuinely multipartite entangled.
This fact also allows us to derive nonasymptotic upper
bounds on the secret key distillation from a finite number of
copies of a multipartite quantum state.
Our work showcases the topology-dependent and yet

universal nature of entanglement measures based on sand-
wiched Rényi relative entropies [63,64], of which relative
entropy is a special case. These entanglement measures
provide upper bounds on the secret key rate over an arbitrary
multiplex quantum channel, which was first shown for
bipartite states in Ref. [40]. The entanglement measures
are topology dependent because the upper bound’s argument
depends (only) on the partition of quantum systems held by
trusted allies based on their roles in the network channel. The
results are based on the observation that multipartite private
states are necessarily genuinely multipartite entangled.
The structure of this paper is as follows. We begin with a

brief overview of the main results and briefly mention some
important prior results along the direction of our work in
Sec. II, respectively. We introduce notations and review
basic definitions and relevant prior results in Sec. III. In
Sec. IV, we introduce and discuss the properties of
entanglement measures for the multiplex quantum channel.
We show that genuine multipartite entanglement is a
necessary criterion for secrecy. In Sec. V, we introduce
LOCC-assisted secret-key-agreement protocols over an
arbitrary multiplex quantum channel. We derive upper
bounds on the maximum achievable rate for conference
key agreement over finite uses of multiplex quantum
channels. In Sec. VI, we leverage our bounds to provide
nontrivial upper bounds on other quantum key distribution
schemes such as measurement-device-independent quan-
tum key distribution and quantum key repeaters. In
Sec. VII, we derive lower bounds on the secret-key-
agreement capacity over an arbitrary multiplex quantum
channel. In Sec. VIII, we derive upper bounds on the
number of secret key bits that can be distilled via LOCC
among trusted parties sharing a finite number of copies of
multipartite quantum states. We provide concluding
remarks and open questions in Sec. IX.

II. SUMMARY OF THE MAIN RESULTS

In the following, we provide a brief overview of our main
results. Regarding technique, our focus is on multipartite
private states, which are the most general class of states that
provide the quantum conference key directly (i.e., without

FIG. 3. Example of an LOCC-assisted secret-key-agreement
protocol among six parties—Alice 1, Alice 2, Bob 1, Bob 2,
Charlie 1, and Charlie 2—using the multiplex channel N three
times. Inputs into N are depicted in red, outputs in green, and
reference systems in black. Alice 1 and 2 enter systems into and
receive systems from N , Bob 1 and 2 only enter systems, and
Charlie 1 and 2 only receive systems. In the end, the six parties
obtain a six-partite conference key.
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distillation) by local measurements. Such states are of the
form [14]

γ
SK
⟶ ≔ Utw

SK
⟶ðΦGHZ

K⃗
⊗ ωS⃗ÞðUtw

SK
⟶Þ†; ð1Þ

where K⃗ ¼ K1;…; KN denotes the so-called key part—i.e.,
the systems that the N parties involved have to measure in
order to obtain conference—and S⃗ ¼ S1;…; SN denotes the
so-called shield systems, which the parties have to keep
secure from the eavesdropper. Also, ΦGHZ is an N-partite
GHZ state, ω is some density operator, and Utw is a
specifically constructed bipartite unitary operation known
as twisting.
We show that states of this form are necessarily genu-

inely multipartite entangled (GME); i.e., they cannot be
expressed as a convex sum of product states no matter with
respect to which partition the states are products.
To show this, we define a multipartite privacy test, i.e.,
a dichotomic measurement fΠγ; 1 − Πγg such that any
ϵ-approximate multipartite private state ρ with fidelity
Fðρ; γÞ ≥ 1 − ϵ passes the test with success probability
Tr½Πγρ� ≥ 1 − ϵ. We then show that any biseparable state σ
cannot pass the privacy test with probability larger than
1=K, where logK is the number of conference key bits
obtainable by measuring (the key part of) γ. Namely, we
show that Tr½Πγσ� ≤ 1=K for all biseparable σ.
As a means of distributing bipartite or multipartite private

states among the users, e.g., in a future quantum version of
the internet [3,17], we introduce multiplex quantum chan-
nels that connect a number of parties that have one of three
possible roles—that of only sender, only receiver, or both
sender and receiver. We denote senders as Bob 1,..., Bob k,
and their inputs as B1;…; Bk; receivers as Charlie 1,...,
Charliem, and their inputs asC1;…; Cm; and parties that are
both senders and receivers as Alice 1,..., Alice n, with
respective inputs A0

1;…; A0
n and outputs A1;…; An. See also

Fig. 1. To describe such channels, we use the notation
N

A⃗0 B⃗→A⃗ C⃗
, where, for sake of brevity, we have introduced

A⃗ ≔ A1;…; An, etc. Furthermore, ∶A⃗∶ denotes the partition
A1∶…∶An and ∶A⃗∶B⃗∶ stands forA1∶…∶An∶B1∶…∶Bk, etc.
By interleaving the uses of a multiplex quantum channel

with LOCC among the parties, we provide a general
framework to describe a number of different quantum
protocols. The idea is to construct a multiplex quantum
channel in such a way that its use, interleaved by LOCC,
simulates the protocol. For example, in a MDI-QKD setup,
where Alice 1 and Alice 2 send states to the central
measurement unit using respective channels N 1;2, we can
define a (bipartite) multiplex quantum channel of the form

NMDI
A0
1
A0
2
→A1A2

≔ BX→A1A2
∘MA00

1
A00
2
→X∘N 1

A0
1
→A00

1
⊗ N 2

A0
2
→A00

2
:

ð2Þ

Here, MA00
1
A00
2
→X is the quantum channel performing the

central measurement, and BX→A1A2
is a classical broadcast

channel sending the result back to Alice 1 and Alice 2. Other
examples include multipartite MDI-QKD and secret-key-
agreement protocols over quantum network laced with key
repeaters [50,57].
Generalizing results for point-to-point [48–50] and

bidirectional [51–53] channels, we derive divergence-based
measures for the entangling abilities of multiplex quantum
channels and show that they provide upper bounds on their
secret-key-agreement capacities. The measures we intro-
duce are of the following form:

ErðN Þ ≔ sup
τ∈FSð∶LA0⟶

∶RB
⟶

∶Þ
Erð∶LA

⟶
∶R⃗∶C⃗∶ÞN ðτÞ; ð3Þ

where r ¼ E or r ¼ GE (E and GE denote entanglement
and genuine entanglement, respectively) and FS denotes
the set of fully separable states (see Secs. IVA and IV B).
Here, L⃗; R⃗ denote ancillary systems that are kept by the
respective parties. For any partition ∶X⃗∶, we have defined
Er as the divergence from the convex set SE of fully
separable or the convex set SGE of biseparable states,
measured by some divergence D:

Erð∶X⃗∶Þρ ≔ inf
σ∈Srð∶X⃗∶Þ

DðρkσÞ: ð4Þ

Our main results are the following upper bounds on
secret-key-agreement capacities of a multiplex quantum
channel, i.e., on the maximum rates at which multipartite
private states can be obtained by using the channel as well
as some free operations. In the one-shot case of a multiplex
quantum channel with classical preprocessing and post-
processing (cppp), we have the following weak converse
result: For any fixed ε ∈ ð0; 1Þ, the achievable region of
cppp-assisted secret key agreement over a multiplex chan-
nel N satisfies

Pð1;εÞ
cpppðN Þ ≤ Eε

h;GEðN Þ; ð5Þ

where Eε
h;GEðN Þ is the ε-hypothesis-testing relative entropy

of genuine multipartite entanglement of the multiplex
channel N , which is based on the ε-hypothesis-testing
divergence [65]. In the case of many channel uses,
interleaved by LOCC, we can also show the following
strong converse bound:

PLOCCðN Þ ≤ Emax;EðN Þ; ð6Þ

where Emax;EðN Þ is the max-relative entropy of entangle-
ment of the multiplex channel N , which is based on the
max-relative entropy [46]. In the case of finite-dimensional
Hilbert spaces, we can also get a strong converse result in
terms of the regularized relative entropy,

DAS, BÄUML, WINCZEWSKI, and HORODECKI PHYS. REV. X 11, 041016 (2021)

041016-4



PLOCCðN Þ ≤ E∞
R;EðN Þ: ð7Þ

If N is teleportation-simulable [48,66]—i.e., it can be
simulated by a resource state and an LOCC operation—the
bounds on PLOCCðN Þ reduce to the relative entropy of
entanglement of the resource state. Our upper bounds on
the secret-key-agreement capacities are also upper bounds
on the multipartite quantum capacities, where our goal is to
distill GHZ states.
Our technique allows us to compute upper bounds on the

rates achievable in MDI-QKD scenarios. For instance, we
consider a dual-rail scheme based on single photons [67] to
determine bounds on the MDI-QKD rates for two users. In
this case, the channels between the users and the relay
station are describable by erasure channels Ei. We obtain
the MDI-QKD capacity

P̃LOCCðNMDI;E
A⃗→Z⃗

Þ ¼ qη1η2; ð8Þ

where ηi’s are the parameters of the erasure channels
connecting users to the relay station and q is the probability
of success of the Bell measurement at the relay station (see
Sec. VI D for a precise model of the MDI-QKD setup).
Dependence on ηi allows us to consider the rate-distance
trade-off. We also determine upper bounds on the maxi-
mum rates for the MDI-QKD setups, where the quantum
channels from the users to the relay station are depolarizing
and dephasing channels.
We also provide lower bounds on the secret-key-agree-

ment rates of multiplex quantum channels that can be
achieved by cppp. Our protocols are based on Devetak-
Winter (DW) [68] and generalize the lower bound for
multipartite states presented in Ref. [14], as well as the
bound for point-to-point quantum channels presented in
Ref. [69] to multiplex quantum channels. Our first lower
bound is a direct extension of the result for states given in
Ref. [14]. The idea is to choose a so-called distributing
party that performs the (directed) DW protocol with all
remaining parties. The achievable rate is then the worst-
case DW rate achievable between the distributing party and
any other party. Furthermore, we maximize over all choices
for the distributing party. Our second protocol is a variation,
where we have a directed chain of parties in which each
party performs the DW protocol with the next party in the
chain. The obtainable rate is given by the “weakest link,”
i.e., the lowest DW rate, in the chain, and we maximize
over all possible permutations of the parties in the chain.
In the case of a bidirectional network, i.e., a network in

which all nodes are connected with their neighbors by a
product of point-to-point channels in opposite directions,
we provide a tighter bound based on spanning trees. The
idea is to find the lowest DW rate in a spanning tree among
any pair of the parties and maximize this quantity among all
spanning trees. We provide an example where this protocol
achieves a higher rate than the previous ones and show that

the lower bound can be computed with polynomial
complexity.
Finally, we show that the techniques developed in

previous sections can also be applied to upper bound the
rates at which the conference key can be distilled from
multipartite quantum states. In particular, we provide an
upper bound on the one-shot distillable conference key in
terms of the hypothesis-testing relative entropy with respect
to biseparable states. Our bound reads

Kð1;εÞ
D ðρÞ ≤ Eε

h;GEðρÞ: ð9Þ

Using a particular construction of biseparable states, we
provide bounds on this quantity for a number of examples,
such as (multiple copies of) GHZ and W states, as well as
dephased or depolarized GHZ and W states. We also
provide an upper bound on the asymptotic distillable
conference key, which is given by the regularized relative
entropy with respect to biseparable states,

KDðρÞ ≤ E∞
GEðρÞ; ð10Þ

which is a generalization of the bipartite bound given
in Ref. [62].

A. Relation to prior works

We briefly sketch some of the major developments that
provide upper bounds on the key distillation capacities
from states or via an LOCC-assisted secret-key-agreement
protocol over a quantum channel. We then compare our
bounds on the SKA capacities with those mentioned in
prior works.
Conditions and bounds on the distillable key of bipartite

states were provided in Refs. [40,41,62]. The former is in
terms of the relative entropy of entanglement [43,44], and
the latter is in terms of the squashed entanglement [70]
(cf. Refs. [71,72]). These results were generalized to the
conference key in Refs. [14,73], respectively.
For an LOCC-assisted secret-key-agreement protocol

over a point-to-point channel, Ref. [47] provides a weak
converse bound in terms of the squashed entanglement,
which is generalized to the distribution of bipartite and
multipartite private states via broadcast channels in
Ref. [55]. In the case of tele-covariant channels (see
Sec. V C), Ref. [48] provides a weak converse bound
and Ref. [49] a strong converse bound in terms of the
relative entropy of entanglement. This bound has been
generalized to the distribution of multiple pairs of bipartite
private states via broadcast channels [54,56], as well as
multiple-access and interference channels [54].
For arbitrary point-to-point channels, a strong converse

bound in terms of the max-relative entropy of entanglement
[46] is provided in Ref. [50]. Recently, another strong
converse bound in terms of the regularized relative entropy
was provided in Ref. [74]. For bidirectional channels,
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strong converse bounds in terms of the max-relative
entropy of entanglement, which reduce to the relative
entropy of entanglement for tele-covariant channels, have
been provided in Refs. [51–53].
In the case where the bipartite key is distributed between

two parties using a quantum key repeater, bounds have
been provided in Ref. [50] when quantum communication
takes place over a point-to-point channel. Bounds on rates,
at which bipartite and multipartite keys for networks of
point-to-point or broadcast channels can be obtained, have
been provided in Refs. [58–60,75,76] and [61], respec-
tively. Also, bounds on the rates obtainable in key repeaters
that are in terms of entanglement measures of the input
states have been obtained in Refs. [57,77].
In an LOCC-assisted conference key agreement proto-

col, the use of a multiplex quantum channel is interleaved
with LOCC among trusted parties. For this scenario, we
derive strong converse bounds in terms of the max-relative
entropy entanglement for arbitrary multiplex channels. In
the case of finite channel dimensions, we also derive
bounds in terms of the regularized relative entropy of
entanglement. In the case of tele-covariant channels, we
obtain bounds in terms of the relative entropy of entangle-
ment. In general, our bounds are not comparable with the
squashed entanglement bounds provided in Refs. [47,55].
We are able to retain the results of Refs. [48–50,74] when
multiplex channels are assumed to be point-to-point chan-
nels. Our bounds in terms of the max-relative entropy are a
direct generalization of the bounds on bidirectional chan-
nels presented in Refs. [51–53]; thus, we retain those
results. By using the recent results in Ref. [74], we further
provide bounds in terms of the regularized relative entropy
of entanglement, which can provide an improvement.
Concerning quantum key repeaters as well as setups of

MDI-QKD, upper bounds on the achievable key rates can
be obtained from results bounding key rates achievable in
quantum networks, e.g., the one presented in Ref. [60] and
subsequently used in Ref. [78] or the ones presented in
Refs. [50,58]. However, we note that by designing the right
kind of multiplex channel, we can make more specific
assumptions on the operations performed at the relay
stations and thus obtain tighter bounds. For example, we
could design a multiplex channel for a protocol that does
not use a quantum memory at the relay station or that
performs a particular imperfect measurement at the relay
station. The bounds given in Refs. [50,58,60], on the other
hand, would bound the key rates of a repeater or MDI-QKD
setup by finding the weakest link between the nodes, i.e.,
only taking into consideration limitations arising from
imperfect point-to-point channels linking Alice and Bob
with the central relay station, while assuming unlimited
quantum memory at the nodes as well as the possibility to
perform perfect measurements, resulting in looser
bounds. Hence, the bounds given in Refs. [50,58,60]
basically reduce to the minimum of the capacities of the

two point-to-point channels, whereas our bounds represent
the limitation arising from both imperfect channels and
imperfect node operations, which is an important factor
when benchmarking experimental implementations.
As for conference key distillation from multipartite

states, we provide tighter bounds than those presented in
Ref. [14]. As a GHZ state is a special case of a multipartite
private state, our bounds can also be applied to the
distillation of GHZ states from any pure or mixed multi-
partite entangled state, both in the asymptotic and finite
copies regimes. There are a number of results concerned
with computing and bounding rates of multipartite entan-
glement transformation, including those in Refs. [79–87].
As an example, we consider the nonasymptotic distillation
of a tripartite conference key from noisy and noiseless W
states and compare our results with Ref. [80].

III. PRELIMINARIES

In this section, we introduce notations and review basic
concepts and standard definitions to be used frequently in
later sections.

A. Notations and definitions

We consider quantum systems associated with separable
Hilbert spaces. We study both discrete and continuous
variable quantum systems; therefore, the associated
Hilbert spaces can be finite or infinite dimensional. For a
composite quantum system AB in a state ρAB, the reduced
state TrB½ρAB� of system A is denoted as ρA. We denote the

identity operator as 1. Let A⃗0 ≔ fA0
aga∈A, A⃗ ≔ fAaga∈A,

B⃗ ¼ fBbgb∈B, C⃗ ¼ fCcgc∈C, K⃗ ¼ fKigMi¼1 denote sets
(compositions) of quantum systems, whereA, B, C are finite
sets of symbols such that jAj þ jBj þ jCj ¼ M for some
natural number M ≥ 2. We consider M trusted allies

fXigMi¼1 ≔ fAaga∈A ∪ fBbgb∈B ∪ fCcgc∈C. Also, LA
⟶

denotes the set fLaAaga∈A, where La is a reference system

of Aa held byAa, and the same follows for RB
⟶

, PC
⟶

, and SK
⟶

.
A quantum state ρA⃗ denotes a joint state of a system formed

by composition of allAa.We use ∶A⃗∶ to denote partitionwith
respect to each system in the set A⃗ as they are held by separate

entities, and the same follows for ∶LA
⟶

∶RB
⟶

∶. Each separate
element in a set is held by a separate party, in general. For
example, let us consider A⃗ ¼ fA1; A2; A3g for jAj ¼ 3; then,
A⃗ also depicts the composite system A1A2A3, and ∶A⃗∶
denotes the partition A1∶A2∶A3 between each subsystem
Aa of A⃗. In a conference key agreement protocol, each pair
Ki, Si of key and shield systems belongs to the respective
trusted party Xi fully secure from Eve, while all
A0
a; Aa; Bb; Cc; Ki; Si are physically inaccessible to Eve.
Let ΦGHZ

K⃗
denote an M-partite GHZ state and Φþ

L⃗jA⃗ an

Einstein–Podolsky–Rosen (EPR) state [88], also called a
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maximally entangled state, where maximal entanglement is
between L⃗ and A⃗. It should be noted thatΦþ

L⃗jA⃗ ¼ ⊗
a∈A

Φþ
LajAa

,

where

Φþ
LajAa

¼ 1

d

Xd−1
i;j¼0

ji; iihj; jjLaAa
ð11Þ

for an orthonormal basis fjiigi, where d ¼
minfjLaj; jAajg. (Without loss of generality, one may
assume an EPR state of an even-dimensional qudit system
to be a tensor product of EPR states of qubit systems.)
A quantum channel MB→C is a completely positive,

trace-preserving map that acts on trace-class operators
defined on the Hilbert space HB and uniquely maps them
to trace-class operators defined on the Hilbert space HC.
For a channel MA→B with A and B as input and output
systems, its Choi state JMLB is equal to MðΦþ

LAÞ.
A measurement channel MA0→AX is a quantum instru-

ment whose action is expressed as

MA0→AXð·Þ ¼
X
x

Ex
A0→Að·Þ ⊗ jxihxjX; ð12Þ

where each Ex is a completely positive, trace-nonincreasing
map such thatM is a quantum channel and X is a classical
register that stores measurement outcomes. A classical
register (system) X can be represented with a set of
orthogonal quantum states fjxihxjXgx∈X defined on the
Hilbert space HX.
An LOCC channel L

A⃗0→B⃗
can be written asP

x∈X ð⊗y∈Y Ey;x
A0
y→By

Þ, where A⃗0 ¼ fA0
ygy and B⃗ ¼ fBygy

are sets of inputs and outputs, respectively, and fEy;xgx is a
set of completely positive, trace-nonincreasing maps for
each y such that L is a quantum channel (cf. Ref. [89]). A
LOCC channel does not increase the value of entanglement
monotones and is deemed as a free operation in the
resource theory of entanglement [14,62,89].
A quantity is called a generalized divergence [90,91] if it

satisfies the following monotonicity (data-processing)
inequality for all density operators ρ and σ and quantum
channels N :

DðρkσÞ ≥ D(N ðρÞkN ðσÞ): ð13Þ

Examples include the quantum relative entropy [92]

DðρkσÞ ≔ Tr½ρ log2ðρ − σÞ�; ð14Þ

for suppðρÞ ⊆ suppðσÞ—otherwise it is ∞—as well as the
sandwiched Rényi relative entropy [63,64], which is
denoted as D̃αðρkσÞ and defined for states ρ, σ, and ∀ α ∈
ð0; 1Þ ∪ ð1;∞Þ as

D̃αðρkσÞ ≔
1

α − 1
log2Tr½ðσð1−αÞ=2αρσð1−αÞ=2αÞα�; ð15Þ

but it is set to þ∞ for α ∈ ð1;∞Þ if suppðρÞ ⊈ suppðσÞ. In
the limit α → 1, the sandwiched Rényi relative entropy
converges to the quantum relative entropy; in the limit
α → ∞, it converges to the max-relative entropy [64],
which is defined as [46,93]

DmaxðρkσÞ ≔ inffλ ∈ R∶ρ ≤ 2λσg; ð16Þ

and if suppðρÞ ⊈ suppðσÞ, then DmaxðρkσÞ ¼ ∞. Another
generalized divergence is the ε-hypothesis-testing diver-
gence [65,94], defined as

Dε
hðρkσÞ ≔ − log2 inf

Λ∶0≤Λ≤1
fTr½Λσ�∶Tr½Λρ� ≥ 1 − εg;

ð17Þ

for ε ∈ ½0; 1� and density operators ρ, σ. For a more detailed
description and other examples of the generalized diver-
gences like the trace distance kρ − σk1 and negative of
fidelity −Fðρ; σÞ and their properties, see the Appendix A.

B. Multiplex quantum channels

We now formally define a general form of network
channel that encompasses all other known multiplex
quantum channels possible in communication or informa-
tion processing settings [see Fig. 1(a) and Appendix B]. To
the best of our knowledge, there is not such a general form
of network channel in the literature of quantum commu-
nication and computation.
Definition 1: Consider the multipartite quantum chan-

nel N
A⃗0 B⃗→A⃗ C⃗

, where each pair A0
a; Aa is held by a

respective party Aa and each Bb, Cc are held by parties
Bb, Cc, respectively. While Aa is both the sender and
receiver to the channel,Bb is only a sender, andCc is only a
receiver to the channel. Such a quantum channel is referred
to as the multiplex quantum channel. Any two different
systems need not be of the same size, in general. The sets
A, B, or C can be empty in such a way that there is at least
one input to the channel and one output from the channel.
Definition 1 includes all scenarios depicted in Fig. 1 (see

Appendix B). For example, for a point-to-point channel
from Bob to Charlie the setA ¼ ∅ and the sets B and C are
singleton sets.
Also, any physical box with quantum or classical inputs

and quantum or classical outputs is a type of multiplex
quantum channel. We may not have an exact description of
what is going on inside the box except that the undergoing
process is physical, i.e., described by quantum mechanics.
Physical computational devices like a physical black box
(oracle) and quantum circuit [95] are also examples of
multiplex quantum channels.
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C. Conference key and private states

There are two usual approaches to studying secret key
distillation. A direct approach is to consider purifications of
states where the purifying system is accessible to Eve and
all allied parties are allowed to perform local operations and
public communication (LOPC). In this approach, we have
Eve and M allied parties. Another approach is to consider
the private states defined below, where all allied parties
perform LOCC. We need not consider Eve explicitly in the
paradigm of private states, and it is assumed that purifi-
cations of states are accessible to Eve. Both approaches are
known to be equivalent [40]. We discuss the equivalence of
these two approaches in more detail in Sec. V.
We now review the properties of conference key states

discussed in Ref. [14]. Conference key states are a
multipartite generalization of the secret key shared between
two parties.
Definition 2: A conference key state γc

K⃗E
, with jKij ¼ K

for all i ∈ ½M� ≔ 1;…;M, is defined as

DK1
⊗ DK2

⊗ � � � ⊗ DKM
ðγc

K⃗E
Þ

≔
1

K

X
k∈K

jkihkjK1
⊗ jkihkjK2

⊗ � � � ⊗ jkihkjKM
⊗ σE;

ð18Þ

where σE is a state of the system E, which is accessible to
an eavesdropper Eve, Dð·Þ ¼ P

k∈K jkihkjð·Þjkihkj is a
projective measurement channel, and fjkiKi

gk∈K forms
an orthonormal basis for each i ∈ ½M�.
A conference key state γc

K⃗E
has log2K secret bits (key)

that are readily accessible.
A state ρK⃗E is called an ε-approximate conference key

state, for ε ∈ ½0; 1�, if there exists a conference key state γc
K⃗E

such that [14]

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε: ð19Þ

Definition 3: A state γ
SM
⟶ , with jKij ¼ K for all i ∈ ½M�,

is called a (M-partite) private state if and only if

γ
SK
⟶ ≔ Utw

SK
⟶ðΦGHZ

K⃗
⊗ ωS⃗ÞðUtw

SK
⟶Þ†; ð20Þ

where Utw

SK
⟶ ≔

P
k⃗∈K×M jk⃗ihk⃗jK⃗ ⊗ Uk⃗

S⃗
is called a twisting

unitary operator for some unitary operator Uk⃗
S⃗
and ω is

some density operator [14].
It should be noted that γ

SK
⟶ has at least log2K secret (key)

bits (see Ref. [62] for a discussion of when the private state
has exactly log2K bits). Similar to a conference key state, a
state ρ

SK
⟶ is called an ε-approximate private state for ε ∈

½0; 1� if there exists a private state γ
SK
⟶ such that [14]

Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε: ð21Þ

Any state extension (including purification) γ
SK
⟶

E
of such

a private state (20) necessarily has the following form [14]:

γ
SK
⟶

E
≔ Utw

SK
⟶

E
ðΦK⃗ ⊗ ωS⃗EÞðUtw

SK
⟶

E
Þ†; ð22Þ

where ωS⃗E is a state extension of the density operator ωS⃗.
It follows from Theorem IV.1 of Ref. [14] that

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε implies Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε, and

the converse is also true; i.e., Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε implies

Fðγc
K⃗E

; ρK⃗EÞ ≥ 1 − ε.
It is known that all perfect private states have nonlocal

correlations [96].

IV. ENTANGLEMENT AND PRIVACY TEST

This section introduces frameworks for the resource
theories of multipartite entanglement for the multipartite
quantum channels (see Refs. [51,53,97,98] for the dis-
cussion on bipartite channels).

A. Multipartite entanglement

Here, we provide a short overview of the relevant
definitions. For a detailed review of the topic, see
Ref. [99]. A pure n-partite state that can be written as a
tensor product jψ1i ⊗ jψ2i ⊗ … ⊗ jψmi is called m-sepa-
rable. Ifm < n, there are partitions of the set of all the parties
into two, with respect to which the state is entangled. If
n ¼ m, the pure state is said to be fully separable. If there is
no bipartition with respect to which the pure state is a
product state, it is called genuinely n-partite entangled.
An arbitrary n-partite state is m-separable if it can be

written as the following convex composition:

ρm−sep ¼
X
x∈X

pXðxÞjψx
1ihψx

1j⊗ jψx
2ihψx

2j⊗…⊗ jψx
mihψx

mj;

ð23Þ
where pXðxÞ is a probability distribution. The m-separable
states form a convex set. Note, however, that the sub-
systems with respect to which the elements of the decom-
position have to be products can differ.
A mixed n-partite state is considered GME if any

decomposition into pure states contains at least one
genuinely n-partite entangled pure state; i.e., the state is
not biseparable. Let a free set Fð∶A⃗∶Þ denote the set of all
fully separable and biseparable states of system A⃗ for F ¼
FS and F ¼ BS, respectively. Both the sets FS and BS are
convex. We note that while FS is preserved under an LOCC
operation and tensor product, BS is preserved under LOCC

but not under the tensor product, i.e., ρðxÞ
AðxÞ
⟶ ∈ BSð∶AðxÞ

⟶

∶Þ
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for x ∈ ½2� but ρð1Þ ⊗ ρð2Þ need not belong to

BSð∶Að1ÞAð2Þ����!
∶Þ. We refer to biseparable quantum states

whose biseparability is preserved under tensor products,

i.e., ρðxÞ
AðxÞ
⟶ ∈ BSð∶AðxÞ

⟶

∶Þ and ρð1Þ ⊗ … ⊗ ρðnÞ ∈

BSð∶Að1Þ…AðnÞ������!
∶Þ for all n ∈ N, as tensor-stable bisepar-

able states.

B. Entanglement measures

It is pertinent to quantify the resourcefulness of states and
channels. The bounds on the capacities that we obtain are in
terms of these quantifiers. It is desirable for entanglement
quantifiers to benon-negative, to attain theirminimumfor the
free states (and separable channels, respectively), and to be
monotone under the action of LOCC.
Definition 4: The generalized divergence of entangle-

ment EE or GME EGE of an arbitrary state ρA⃗ is defined
as [100]

Erð∶A⃗∶Þρ ≔ inf
σ∈Fð∶A⃗∶Þ

DðρA⃗kσA⃗Þ; ð24Þ

when F ¼ FS or F ¼ BS for r ¼ E or r ¼ GE, respec-
tively, where DðρkσÞ denotes the generalized divergence.
The following definition of the entanglement measure of

a multiplex channel generalizes the notion of entangling
power of bipartite quantum channels [101] (see also
Refs. [51,53,102]).
Definition 5: The entangling power of a multiplex

channel N
A⃗0 B⃗→A⃗ C⃗

with respect to entanglement measure
Er [Eq. (24)] is defined as the maximum possible gain in
the entanglementEr when a quantum state is acted upon by
the given channel N ,

Ep
r ðN Þ

≔ sup
ρ
½Erð∶LA

⟶
∶R⃗∶PC

⟶
∶ÞN ðρÞ−Erð∶LA0⟶

∶RB
⟶

∶P⃗∶Þρ�; ð25Þ

where optimization is over all possible input states
ρ
LA0⟶

RB
⟶

P⃗
.

Another way to quantify the entanglement measure of a
multiplex channel is the following (see Ref. [53] for the
bidirectional channel).
Definition 6: The generalized divergence of entangle-

ment EEðN Þ or GME EGEðN Þ of a multiplex channel
N

A⃗0 B⃗→A⃗ C⃗
is

ErðN Þ ≔ sup
ρ∈FSð∶LA0⟶

∶RB
⟶

∶Þ
Erð∶LA

⟶
∶R⃗∶C⃗∶ÞN ðρÞ; ð26Þ

for r ¼ E or r ¼ GE, respectively, where Erð∶A⃗∶Þρ is
defined in Eq. (24) and GME stands for genuinely
multipartite entanglement.

Forr ¼ E,theentanglementmeasure inEq.(24) iscalledε-
hypothesis-testing relative entropy of entanglement Eε

h;E,
max-relative entropy of entanglement Emax;E, sandwiched
Rènyi relative entropy of entanglement Ẽα;E, or relative
entropyofentanglementEEwhenthegeneralizeddivergence
is the ε-hypothesis-testing relative entropy, max-relative
entropy, sandwiched Rényi relative entropy, or relative
entropy, respectively.Forr ¼ GE, theentanglementmeasure
in Eq. (24) is called ε-hypothesis-testing relative entropy of
GME Eε

h;GE, max-relative entropy of GME Emax;GE, sand-
wiched Rènyi relative entropy of GME Ẽα;GE, or relative
entropy of GMEwhen the generalized divergenceEGE is the
ε-hypothesis-testing relative entropy, max-relative entropy,
sandwiched Rényi relative entropy, or relative entropy,
respectively. We follow the same procedure for the nomen-
clature of entanglement measures of channels.
We note that the sets FS;BS are convex. Using the data-

processed triangle inequality [50] and the argument from
the proof of Proposition 2 in Ref. [51], we arrive at the
following lemma.
Lemma 1: The entangling power of a multiplex channel

N
A⃗0 B⃗→A⃗ C⃗

with respect to the max-relative entropy of
entanglement Emax;E is equal to the max-relative entropy
of entanglement of the channel N ,

Ep
max;EðN Þ ¼ Emax;EðN Þ: ð27Þ

Using a recent result on relative entropies [103], we can
also obtain a result for the relative entropy of entanglement.
Let us first define the regularized relative entropy of
entanglement of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
as

E∞
R ðN Þ ≔ inf

Λ∈LOCC
D∞ðN

A⃗0 B⃗→A⃗ C⃗
jjΛ

A⃗0 B⃗→A⃗ C⃗
Þ; ð28Þ

where D∞ðN jjMÞ ≔ limn→∞ð1=nÞDðN⊗njjM⊗nÞ and

DðN jjMÞ≔ max
ϕ
LA0
⟶

RB
⟶

P⃗

DðN
A⃗0 B⃗→A⃗C⃗

ðϕÞjjM
A⃗0 B⃗→A⃗C⃗

ðϕÞÞ; ð29Þ

where L ≃ A0, R ≃ B and P ≃ C. We now show the
following relation between the regularized relative entropy
of entanglement and the relative entropy of entanglement.
Lemma 2: For finite-dimensional Hilbert spaces, the

entangling power of a multiplex channel N
A⃗0 B⃗→A⃗ C⃗

with
respect to the relative entropy of entanglement EE is less
than or equal to the regularized relative entropy of
entanglement of the channel N ,

Ep
EðN Þ ≤ E∞

E ðN Þ: ð30Þ

Proof.—Let ρ
LA0⟶

RB
⟶

P⃗
be a state and let σ0 ∈

FSð∶LA0⟶
∶RB
⟶

∶P⃗∶Þ. Let Λ
A⃗0 B⃗→A⃗ C⃗

be an LOCC channel.
Then, the following inequality holds:
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EEð∶LA
⟶

∶R⃗∶PC
⟶

∶ÞN ðρÞ

≤ D

�
N

A⃗0 B⃗→A⃗ C⃗
ðρ

LA0⟶
RB
⟶

P⃗
ÞkΛ

A⃗0 B⃗→A⃗ C⃗
ðσ0

LA0⟶
RB
⟶

P⃗
Þ
�
: ð31Þ

Applying the chain rule from Ref. [103], we find that

D
�
N

A⃗0 B⃗→A⃗ C⃗
ðρ

LA0⟶
RB
⟶

P⃗
ÞkΛ

A⃗0 B⃗→A⃗ C⃗
ðσ0

LA0⟶
RB
⟶

P⃗
Þ
�

≤ D
�
ρ
LA0⟶

RB
⟶

P⃗
kσ0

LA0⟶
RB
⟶

P⃗

�
þD∞ðN

A⃗0 B⃗→A⃗ C⃗
kΛ

A⃗0 B⃗→A⃗ C⃗
Þ:

Since the above holds for arbitrary, fully separable states
σ0
LA0⟶

RB
⟶

P⃗
and arbitrary LOCC channels Λ

A⃗0 B⃗→A⃗ C⃗
, we arrive

at

EEð∶LA
⟶

∶R⃗∶PC
⟶

∶ÞN ðρÞ ≤ EEð∶LA0⟶
∶RB
⟶

∶P⃗∶Þρ þ E∞
E ðN Þ;

ð32Þ

finishing the proof. ▪
Remark 1: It suffices to optimize Eε

h;EðN Þ, Eε
h;GEðN Þ,

Emax;EðN Þ, EE;EðN Þ, and Emax;GEðN Þ of a multiplex

channel N over all pure input states; i.e., ρ ∈

FSð∶LA0⟶
∶RB
⟶

∶Þ is a pure state in Eq. (26) for
Eε
h;EðN Þ; Eε

h;GEðN Þ; Emax;EðN Þ; EE;EðN Þ; Emax;GEðN Þ.
This reduction follows from the quasiconvexity of the max-
relative entropy [93] and ε-hypothesis-testing relative
entropy [104], as well as the convexity of the relative
entropy of entanglement [44]. Namely, the maximum of a
(quasi)convex function over a convex set will be attained on
a boundary point. The boundary points of the set of fully
separable density matrices are given by the fully separable
pure states.

C. Multipartite privacy test

A γ-privacy test corresponding to γ
SK
⟶ is defined as the

dichotomic measurement [49] fΠγ

SK
⟶ ; 1 − Πγ

SK
⟶g, where

Πγ

SK
⟶ ≔ Utw

SK
⟶ðΦK⃗ ⊗ 1S⃗ÞðUtw

SK
⟶Þ†.

Using the properties of fidelity and form of the test
measurement, we arrive at the following proposition.
Proposition 1: If a state ρ

SK
⟶ is ε approximate to

γ
SK
⟶ , i.e., Fðρ

SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε, then ρ

KS
⟶ passes the

γ-privacy test with success probability 1 − ε, i.e.,

Tr½Πγ

SK
⟶ρ

SK
⟶ � ≥ 1 − ε: ð33Þ

Proof.—

Tr½Πγ

SK
⟶ρ

SK
⟶ �

¼ hΦGHZjK⃗TrS⃗½ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

SK
⟶ �jΦGHZiK⃗ ð34Þ

¼ FðΦGHZ
K⃗

;TrS⃗½ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

K1…KMS1…SM
�Þ ð35Þ

≥ FðΦGHZ
K⃗

⊗ ωS⃗; ðUtw

SK
⟶Þ†ρ

SK
⟶Utw

SK
⟶Þ ð36Þ

¼ FðUtw

SK
⟶ΦGHZ

K⃗
⊗ ωS⃗ðUtw

SK
⟶Þ†; ρ

SK
⟶Þ ð37Þ

¼ Fðγ
SK
⟶ ; ρ

SK
⟶Þ ≥ 1 − ε: ð38Þ

▪
We employ proof arguments similar to the bipartite case

of Eq. (281) in Ref. [62] to arrive at the following theorem,
which implies that all private states are necessarily GME
states. This is a strict generalization of Eq. (281) in
Ref. [62], as a direct generalization would be the same
statement for fully separable states instead of biseparable
states (cf. Ref. [14]). See Appendix C for the proof.
Theorem 1: A biseparable state σ

SK
⟶ ∈ BSð∶SK⟶∶Þ

can never pass any γ-privacy test with probability greater

than 1=K, i.e.,

Tr½Πγ

SK
⟶σ

SK
⟶ � ≤ 1

K
. ð39Þ

V. CONFERENCE KEY AGREEMENT PROTOCOL

In this section, we give a formal description of a secret-
key-agreement protocol for multiple trusted parties, i.e., a
conference key agreement protocol.
We consider an LOCC-assisted secret-key-agreement

protocol among M trusted allies fXigMi¼1 over a multiplex
quantum channel N

A⃗0 B⃗→A⃗ C⃗
, where each pair A0

a; Aa is held
by trusted party Aa and each Bb, Cc is held by trusted
parties Bb, Cc, respectively. The environment part E of an
isometric extension UN

A⃗0 B⃗→A⃗ C⃗ E
of the channel N is

accessible to Eve, along with all classical information
communicated among Xi while performing LOCC. All
other quantum systems that are locally available to Xi are
said to be secure from Eve; i.e., even if local operations
during LOCC are noisy, purifying quantum systems are still
within labs of trusted allies, which are off limits for Eve.
This assumption is justifiable because Xi’s can always
abandon performing local operations that would leak
information to Eve. In an LOCC-assisted protocol, the
uses of the multiplex channelN are interleaved with LOCC
channels.
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In the first round, allXi perform LOCC L1 to generate a

state ρ1 ∈ FSð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!Þ. All Aa and Bb
input respective systems to multiplex channel
N 1

Að1Þ0
⟶

Bð1Þ
⟶

→Cð1Þ
⟶ and let τ1 ≔ N 1ðρÞ be the output state after

the first use N 1 of the multiplex channel. In the second
round, an LOCC L2 is performed on τ1, and then, the
second use N 2 of the multiplex channel is employed on
ρ2 ≔ L2ðτ1Þ. In the third round, an LOCC L3 is performed
on τ2 ≔ N 2ðρ2Þ, and then, the third use N 3 of the
multiplex channel is employed on ρ3 ≔ L3ðτ2Þ.
Successively, we continue this procedure for n rounds,
where an L acts on the output state of the previous round,
after which the multiplex channel is performed on the
resultant state. Finally, after the nth round, an LOCC Lnþ1

is performed as a decoding channel, which generates the
final state ω

SK
⟶ .

It can be concluded from the equivalence between
private states and CK states that any protocol of the above
form can be purified, i.e., by considering isometric exten-
sions of all channels (LOCC and N ) (the proof arguments
are the same as for the purified protocol for LOCC-assisted
secret key agreement [51]). At the end of the purified
protocol, Eve possesses all the environment systems En

from isometric extension UN of each use of the multiplex
channelN along with coherent copies Ynþ1 of the classical
data exchanged among trusted parties Xi during perfor-
mances of nþ 1 LOCC channels, whereas each trusted
partyXi possesses the key system Ki and the shield system
Si, which consist of all local reference systems, after the
action of the decoder. The state at the end of the protocol is
a pure state ω

SK
⟶

Ynþ1En
with Fðγ

SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε. Such a

protocol is called an ðn;K; εÞ LOCC-assisted secret-key-
agreement protocol. The rate P of a given ðn;K; εÞ protocol
is equal to the number of conference (secret) bits generated
per channel use:

P ≔
1

n
log2K: ð40Þ

A rate P is achievable if for ε ∈ ð0; 1Þ; δ > 0, and
sufficiently large n, there exists an ðn; 2nðP−δÞ; εÞ LOCC-
assisted secret-key-agreement protocol. The LOCC-
assisted secret-key-agreement capacity P̂LOCCðN Þ of a
multiplex quantum channel N is defined as the supremum
of all achievable rates.
A rate P is called a strong converse rate for LOCC-

assisted secret key agreement if for all ε ∈ ½0; 1Þ; δ > 0, and
sufficiently large n, there does not exist an ðn; 2nðPþδÞ; εÞ
LOCC-assisted secret-key-agreement protocol. The strong
converse LOCC-assisted secret-key-agreement capacity

P̃LOCCðN Þ is defined as the infimum of all strong converse
rates.
The following inequality is a direct consequence of the

definitions:

P̂LOCCðN Þ ≤ P̃LOCCðN Þ: ð41Þ

We can also consider the whole development discussed
above for conference key agreement assisted only by cppp
communication; i.e., all parties are allowed only two LOCC
channels, one for encoding and the other for decoding. A
ðn;K; εÞ cppp-assisted secret-key-agreement protocol
over N is the same as a ð1; K; εÞ LOCC-assisted secret-
key-agreement protocol over channel N⊗n, and for n ¼ 1,
both protocols are the same. The cppp-assisted secret-key-
agreement capacity P̂cppp of the channel N is always less
than or equal to P̂LOCC,

P̂cpppðN Þ ≤ P̂LOCCðN Þ: ð42Þ

Let P̂N
cpppðn; εÞ be the maximum rate such that ðn; 2nP; εÞ

cppp-assisted secret key agreement is achievable for any
given N .
Remark 2: It should be noted that the maximum rate at

which secret keys can be distilled using the LOCC- or
cppp-assisted protocol over a multiplex channelN is never
less than the maximum rate at which the GHZ state can be
distilled using the LOCC- or cppp-assisted protocol over a
given channel N , respectively. This statement holds
because the GHZ state is a special private state from which
secret bits are readily accessible to trusted allies.
Remark 3: Different physical constraints can be

invoked in communication protocols to define constrained
protocols and associated capacities. For instance, we can
invoke energy constraints on input states and detectors to
get energy-constrained protocols and respective capacities
(cf. Refs. [105,106]).

A. Privacy from a single use of a multiplex channel

Let P̂N
cpppðn; εÞ denote the maximum rate P such that the

ðn;K; εÞ conference key agreement protocol is achievable
for any N using cppp. The following bound holds for the
one-shot secret-key-agreement rate of a multiplex quantum
channel N (see Appendix D 1 for the proof).
Theorem 2: For any fixed ε ∈ ð0; 1Þ, the achievable

region of cppp-assisted secret key agreement over a single
use of the multiplex channel N

A⃗0 B⃗→A⃗ C⃗
satisfies

P̂N
cpppð1; εÞ ≤ Eε

h;GEðN Þ; ð43Þ

where
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Eε
h;GEðN Þ ≔ sup

ψ∈FSð∶LA0⟶
∶RB
⟶

∶Þ
inf

σ∈BSð∶LA⟶∶R⃗∶C⃗∶Þ
Dε

hðN ðψÞkσÞ

ð44Þ

is the ε-hypothesis-testing relative entropy of genuine
entanglement of the multiplex channel N . It suffices to

optimize over pure input states ψ ∈ FSð∶LA0⟶
∶RB
⟶

∶Þ.
We can conclude from the above theorem that

P̂N
cpppðn; εÞ ≤

1

n
Eε
h;GEðN⊗nÞ; ð45Þ

which leads to the following corollaries.
Corollary 1: A weak converse bound on the cppp-

assisted secret-key-agreement capacity of a multiplex
channel N is given by

P̂cpppðN Þ ¼ inf
ε∈ð0;1Þ

liminf
n→∞

P̂N
cpppðn; εÞ ð46Þ

≤ E∞
GEðN Þ: ð47Þ

Corollary 2: Consider a class of multiplex channels
N

A⃗0 B⃗→A⃗ C⃗
such that for all pure input states

ψ ∈ FSðLA0⟶
∶RB
⟶

∶P⃗Þ, the output states N ðψÞ are tensor-
stable biseparable states with respect to the partition

LA
⟶

∶RB
⟶

∶PC
⟶

. The cppp-assisted secret-key-agreement
capacities for such a class of multiplex channels are zero.

B. Strong converse bounds on LOCC-assisted private
capacity of multiplex channel

We now derive converse and strong converse bounds on
an LOCC-assisted secret-key-agreement protocol over a
multiplex channel N .
For an LOCC-assisted secret-key-agreement protocol,

by employing Theorem 1 and generalizing the proof
arguments of Theorem 2 in Ref. [51] (see also
Ref. [50]) to the multiplex scenario, we get the following
converse bound (proof in Appendix D 2).
Theorem 3: For a fixed n;K ∈ N; ε ∈ ð0; 1Þ, the fol-

lowing bound holds for an ðn;K; εÞ protocol for LOCC-
assisted secret key agreement over a multiplex N

A⃗0 B⃗→A⃗ C⃗
:

1

n
log2K ≤ Emax;EðN Þ þ 1

n
log2

�
1

1 − ε

�
; ð48Þ

where the max-relative entropy of entanglement Emax;EðN Þ
of the multiplex channel N is

Emax;EðN Þ
≔ sup

ψ∈FSð∶LA0⟶
∶RB
⟶

∶Þ
inf

σ∈FSð∶LA⟶∶R⃗∶C⃗∶Þ
DmaxðN ðψÞkσÞ

and it suffices to optimize over pure states ψ .
Remark 4: The bound in Eq. (48) can also be rewritten

as

1 − ε ≤ 2−n(P−Emax;EðN Þ); ð49Þ

where we have P ¼ ð1=nÞlog2K. Thus, if the secret-key-
agreement rate P is strictly greater than the max-relative
entropy of entanglement Emax;EðN Þ of the (multiplex)
channel N , then the fidelity of the distillation (1 − ε)
decays exponentially fast to zero in the number of chan-
nel uses.
An immediate corollary of the above remark is the

following strong converse statement.
Corollary 3: The strong converse LOCC-assisted

secret-key-agreement capacity of a multiplex channel N
is bounded from above by its max-relative entropy of
entanglement:

P̃LOCCðN Þ ≤ Emax;EðN Þ: ð50Þ

We also have another upper bound on the private
capacity of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
with finite-

dimensional input and output systems in terms of the
regularized relative entropy instead of the max-relative
entropy (proof in Appendix D 3).
Theorem 4: For finite Hilbert space dimensions, the

asymptotic LOCC-assisted secret-key-agreement capacity
of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
is bounded by its

regularized relative entropy of entanglement:

P̃LOCCðN Þ ≤ E∞
E ðN Þ: ð51Þ

C. Teleportation-simulable and tele-covariant
multiplex channels

For a class of multipartite quantum channels obeying
certain symmetries, such as teleportation-simulability [66],
the LOCC assistance does not enhance secret-key-agree-
ment capacity, and the original protocol can be reduced to a
cppp-assisted secret-key-agreement protocol. This obser-
vation for secret communication between two parties over
the point-to-point teleportation-simulable channel was first
made in Ref. [48].
Definition 7: Amultipartite quantum channelN

A⃗0 B⃗→A⃗ C⃗
is teleportation simulable with the associated resource state
θ
LA
⟶

R⃗ C⃗
, where Rb ≃ Bb for all b ∈ B and La ≃ A0

a for all

a ∈ A, if for all input states ρ
A⃗0 B⃗ the following identity

holds:
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N
A⃗0 B⃗→A⃗C⃗

ðρ
A⃗0 B⃗Þ¼ T

A0LA��!
BR
!

C⃗→A⃗C⃗
ðρ

A⃗0 B⃗ ⊗ θ
LA
⟶

R⃗C⃗
Þ ð52Þ

for some LOCC channel T with input partition

∶A0LA
���!

∶BR�!∶C⃗∶ and output partition ∶A⃗∶C⃗∶.
Covariant channels.—For each a ∈ A and b ∈ B, let Ga

and Gb be finite groups of respective sizes Ga and Gb with
respective unitary representations ga → UA0

a
ðgaÞ and gb →

UBb
ðgbÞ for all group elements ga and gb. LetW

g⃗
Aa

andWg⃗
Cc

be unitary representations for all a ∈ A and c ∈ C, where
g⃗ ¼ fga; gbga;b. A multiplex quantum channel N

A⃗0 B⃗→A⃗ C⃗
is

covariant with respect to these representations if the
following relation holds for all input states ρ

A⃗0 B⃗ and group
elements ga ∈ Ga and gb ∈ Gb for all a ∈ A and b ∈ B:

N
A⃗0 B⃗→A⃗ C⃗

(ð⊗
a∈A

Uga
A0
a
⊗⊗

b∈B
Ugb
Bb
Þðρ

A⃗0 B⃗Þ)

¼ ð⊗
a∈A

W g⃗
Aa

⊗⊗
c∈C

W g⃗
Cc
Þ(N

A⃗0 B⃗→A⃗ C⃗
ðρ

A⃗0 B⃗Þ); ð53Þ

where we have used the notation Uð·Þ ≔ Uð·ÞU† for
unitaries U.
Definition 24: A quantum channel N

A⃗0 B⃗→A⃗ C⃗
is called

tele-covariant if it is covariant with respect to groups
fGaga∈A and fGbgb∈B that have representations as unitary
one-designs; i.e., for alla ∈ A andb ∈ B aswell as statesρA0

a

and ρBb
, it holds that ð1=GaÞ

P
ga∈Ga

Uga
A0
a
ðρA0

a
Þ ¼ 1=jAaj and

ð1=GbÞ
P

gb∈Gb
Ugb
Bb
ðρBb

Þ ¼ 1=jBbj, respectively.
The following observation follows from the definition of

tele-covariant channels.
Remark 5: Tele-covariance of a channel is with respect

to the groups and their unitary representations on the input
and output Hilbert spaces of the channel. If associated
unitary representations for the tele-covariant channels N 1

and N 2 are, respectively, the same on the output Hilbert
spaces of N 1 that are also the input Hilbert spaces for N 2,
then the composition channel N ¼ N 2∘N 1 is also tele-
covariant.
A quantum channel obtained by the tensor product

(superoperation “⊗,”which physically means parallel uses)
of tele-covariant channels is also a tele-covariant channel.
The following theorem generalizes the developments in

Refs. [51,107–109] (see Appendix D 4 for the proof):
Theorem 5: If a multipartite channel N

A⃗0 B⃗→A⃗ C⃗
is tele-

covariant, then it is teleportation-simulable with resource
state (52) as its Choi state, i.e., θ

LA
⟶

R⃗ C⃗
¼ N ðΦþ

L⃗ R⃗ jA⃗0 B⃗
Þ.

Following the approach in Refs. [48,62], we obtain the
following theorem:
Theorem 6: The LOCC-assisted secret-key-agreement

capacity of a multiplex quantum channel N
A⃗0 B⃗→A⃗ C⃗

, which
is teleportation-simulable with resource state θ

LA
⟶

R⃗ C⃗
, is

upper bounded as

P̂LOCCðN Þ ≤ E∞
GEð∶LA

⟶
∶R⃗∶C⃗∶Þθ; ð54Þ

where E∞ð∶A⃗∶Þρ is the regularized relative entropy of
entanglement of state ρA⃗.
For the proof, see Appendix D 4. Using the above

theorem, we immediately get the following.
Corollary 4: For a multiplex quantum channel

N
A⃗0 B⃗→A⃗ C⃗

, which is teleportation-simulable with a
tensor-stable biseparable resource state, it holds that
P̂LOCCðN Þ ¼ 0.
Let us note that unlike in Refs. [48,62], which deals with

the bipartite relative entropy of entanglement, we do not
trivially get a nonregularized bound, which is due to the
fact that the definition of biseparability is not tensor stable.
If we consider the relative entropy of entanglement with
respect to fully separable states, however, we can employ
the proof argument of Theorem 4 in Ref. [51] and arrive at
the following theorem:
Theorem 7: For a fixed n;K ∈ N; ε ∈ ð0; 1Þ, the

following bound holds for an ðn;M; εÞ protocol for
LOCC-assisted secret key agreement over a multiplex
teleportation-simulable quantum channel N

A⃗0 B⃗→A⃗ C⃗
with

the associated resource state θ
LA
⟶

R⃗ C⃗
, ∀ α > 1,

1

n
log2K ≤ Ẽα;Eð∶LA

⟶
∶R⃗∶C⃗∶Þθ þ

α

nðα − 1Þ log2
�

1

1 − ε

�
:

ð55Þ

For the proof, see Appendix D 4. Setting α ¼
1þ ð1= ffiffiffi

n
p Þ and letting n → ∞, we obtain the following:

Corollary 5: The LOCC-assisted secret-key-agreement
capacity of a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
, which is

teleportation-simulable with the resource state θ
LA
⟶

R⃗ C⃗
, is

upper bounded as

P̂LOCCðN Þ ≤ EEð∶LA
⟶

∶R⃗∶C⃗∶Þθ; ð56Þ
where Eð∶A⃗∶Þρ is the relative entropy of entanglement of
state ρA⃗; this bound is also a strong converse bound.

VI. APPLICATION TO OTHER PROTOCOLS

In this section, we exploit the general nature of an
LOCC-assisted secret-key-agreement protocol over a
multiplex quantum channel. We derive upper bounds on
the rates for two-party and conference key distribution for a
number of seemingly different protocols that are of wide
interest. Such seemingly different quantum key distribution
and conference key agreement protocols can be shown to
be special types of LOCC-assisted secret-key-agreement
protocol over some particular multiplex quantum channels.
In particular, we identify protocols like measurement-
device-independent quantum key distribution, both in the
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bipartite [27,28] and conference setting [30,110,111], as
well as for quantum key repeaters, i.e., generalized quan-
tum repeaters with the goal of distributing private states
[50,57,77] to be special types of LOCC-assisted secret-key-
agreement protocol over some particular multiplex quan-
tum channels. We are able to derive upper bounds on the
rates achieved in these protocols by exploiting our results in
the previous section. Furthermore, as EPR or GHZ states
are special cases of bipartite or multipartite private states,
respectively, the same holds for LOCC-assisted quantum
communication protocols, where the goal is to distill EPR
or GHZ states. By providing a unified approach to such a
diverse class of private communication setup, we contribute
to a better understanding of limitations on respective
protocols. These limitations provide benchmarks on exper-
imental realizations of private communication protocols.

A. Measurement-device-independent QKD

Measurement-device-independent (MDI) QKD is a form
of QKD, where the honest parties, Alice and Bob, trust their
state preparation but do not trust the detectors [27,28]. In a
typical setup of MDI-QKD, such as the ones described in
Refs. [27,28], Alice and Bob locally prepare states that they
send to a relay station, which might be in the hands of Eve,
using channels N 1

A0→A and N 2
B0→B. At the relay station, a

joint measurement of the systems AB is performed, e.g.,
in the Bell basis, the results of which are classical values
that are then communicated to Alice and Bob. Alice and
Bob use the relay many times and perform classical
postprocessing.
Away to incorporate such protocols in our scenario is to

identify Alice and Bob as two trusted parties and include
the measurement performed by the relay, as well as
channels N 1;2, into a bipartite quantum-classical (qc)
channel

NMDI
A0B0→ZAZB

≔ BX→ZAZB
∘MAB→X∘N 1

A0→A ⊗ N 2
B0→B; ð57Þ

where MAB→x is the quantum instrument (channel) per-
forming a POVM fΛxgx and writing the output x into a
classical register X and BX→ZAZB

a classical broadcast
channel sending input x to ZA and ZB. Registers ZA and
ZB are received by Alice and Bob, respectively. The
channel NMDI

A0B0→ZAZB
is a multiplex channel that is a

composition of multiplex channels (see Fig. 2).
Application of Theorem 3 for arbitrary systems and

Theorem 4 for finite-dimensional systems (as well as the
results of Ref. [51–53]) then provides bounds on the
achievable key rate in terms of Emax;EðNMDI

A0B0→ZAZB
Þ and

E∞
E ðNMDI

A0B0→ZAZB
Þ, respectively, which can be seen as

measures of the entangling capabilities of the measurement
fΛxgx. The multiplex quantum channel NMDI

A0B0→ZAZB
is tele-

covariant if N 1;2 as well as M are tele-covariant, and the

bound reduces to the relative entropy of entanglement of
the Choi state of NMDI

A0B0→ZAZB
.

B. Measurement-device-independent
conference key agreement

The concept of MDI-QKD has also been generalized to
the multipartite setting [30,110,111]. We assume a setup of
MDI conference agreement, where a number of trusted
parties Ai, for i ∈ ½n�, locally prepare states that they send
to a central relay via channels N 1

A0
1
→A1

;…;N n
A0
n→An

. At the

relay, a joint measurement is performed on A1A2…An, the
result of which is broadcast back to the trusted parties. It is
straightforward to generalize Eq. (57) to the multipartite
case and apply Theorems 3 and 4 (or Theorem 5 for tele-
covariant channels) to obtain bounds on the conference
key rates.

C. Quantum key repeater

Let us now consider the quantum key repeater. In its
simplest setup, there are three parties: Alice, Bob, and
Charlie. Alice and Bob are trusted parties who wish to
establish a cryptographic key, whereas Charlie is assumed
to be cooperative but is not trusted. One could think of
Charlie as a telecom provider. There are two quantum
channels, N A→CA

1 from Alice to Charlie and N B→CB
2 from

Bob to Charlie. Alice and Bob are not connected by a
quantum channel and are assumed not to have any pre-
shared entanglement. Instead, Alice and Bob locally
prepare quantum states, e.g., two singlets Φþ

ARA
and

Φþ
BRB

, and both send a subsystem to Charlie, using the
respective channels. This is then followed by an entangle-
ment swapping operation [112], where Charlie performs a
joint measurement on the CACB subsystem and communi-
cates the result to Bob, who then performs a unitary on his
reference system RB, which should create entanglement
that can be used for a cryptographic key, between Alice and
Bob. The key has to be secure even in the case where
Charlie’s information falls into the hands of Eve.
If the channelsN A→CA

1 andN B→CB
2 are too noisy, it might

be necessary to use them multiple times and perform an
entanglement purification or error-correction protocol
before applying the swapping operation. Whereas early
quantum repeater protocols [21,22] make use of entangle-
ment purification protocols that require two-way classical
communication, between Alice and Charlie and between
Charlie and Bob, it is also possible to use error correction
that only requires one-way classical communication. Such
protocols are known as second- and third-generation
repeater protocols (see Ref. [23] and references therein).
By using a large enough number of repeater stations, the

key can, in principle, be distributed across arbitrarily long
distances. A way to extend a basic three-party repeater
protocol to arbitrarily long repeater chains is known as
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nested purification [22]. More advanced schemes using
error correction and one-way communication have also
been developed [23].
As in Refs. [50,57,77], we want to find upper bounds on

the rates at which the key can be distributed. Depending on
the repeater protocol, there are different ways in which we
can describe a quantum key repeater as a multipartite
channel and use our results to obtain such bounds. We now
describe how a repeater can be described by a bipartite
channel. For an alternative way to describe a repeater, we
refer to Appendix E.
In order to describe a repeater as a bipartite channel, we

consider two trusted parties, Alice and Bob, and a bipartite
quantum-to-classical (qc) channel that takes two quantum
(and possibly also classical) inputs from Alice and Bob and
returns two classical outputs to Alice and Bob, respectively.
Such an operation could include the channels from Alice to
Charlie and from Bob to Charlie, the measurement per-
formed by Bob, as well as classical communication of the
measurement result from Charlie to Alice and Bob. It could
also include an error-correction protocol that uses the
channels from Alice to Charlie and from Bob to Charlie
multiple times and makes use of one-way classical com-
munication from Alice to Charlie and from Bob to Charlie.
It is then followed by Charlie’s measurement and classical
communication to Alice and Bob. Alice and Bob are then
allowed to perform LOCC among them but not including
Charlie. In the case without error correction, we can define

N repeater
AB→XY ≔ MCACB→XY∘N A→CA

1 ⊗ N B→CB
2 ; ð58Þ

where MCACB→XY describes the measurement and sending
of classical messages X and Y to Alice and Bob, respec-
tively. If we add one-way error correction, we get a bipartite
channel of the form

N repeater
AkBkX0Y 0→XY

≔ MC̃AC̃B→XY∘EX0Ak→C̃A
1 ⊗ EY 0Bk→C̃B

2 ; ð59Þ

where EAk→C̃A
1 includes k instances of the channel N A→CA

1 ,
the transmission of the classical data X0 obtained by Alice’s
part of the one-way error-correction protocol to Charlie, as
well as Charlie’s part of the error-correction protocol
(Alice’s part of the one-way error-correction protocol is

included in the LOCC). Note that EY 0Bk→C̃B
2 is defined in the

same way.
By recursively combining the bipartite channelsN repeater,

it is possible to derive a bipartite channel N repeater chain

between Alice and Bob that includes a repeater chain with
an arbitrary amount of repeater stations.
Using the results of Refs. [51–53], or Theorem 4,

we can obtain upper bounds for key repeater protocols
that only involve one-way classical communication from
Charlie to Alice and Bob, as considered in Refs. [57,77].
The bounds are given by minfEmax;EðN repeater ðchainÞÞ;

E∞
E ðN repeater ðchainÞg. By Remark 5, if N 1;2 as well as M

are tele-covariant, so is N repeater ðchainÞ. Hence, by Theorem
5, the bound reduces to the relative entropy of entanglement
of the Choi state of N repeater ðchainÞ. Note that, whereas the
bounds in Refs. [57,77] only depend on the initial states
shared by Alice and Charlie as well as Bob and Charlie, the
formulation in terms of a bipartite channel can provide
bounds that also depend on the measurement performed by
Charlie, as well as operations performed during error
correction. The new bounds take into account imperfect
measurements and error correction, which provide an
additional limitation on the obtainable rate in practical
implementations. Our bounds can at least be shown to be
comparable with the results of Refs. [57,77] under certain
situations of practical interest. For example, our bound is
certainly better when N A→CA

1 and N B→CB
2 are identity

channels, allowing Alice and Charlie as well as Bob and
Charlie to share maximally entangled states, whereas
Charlie’s measurement is noisy.

D. Limitations on some practical prototypes

In this section, we explore fundamental limitations on
some practical prototypes for MDI-QKD protocols
between two trusted parties. We first begin by considering
photon-based prototypes for which a detailed discussion of
the quantum system and transmission noise model can be
found in Ref. [67]. In Appendix F, we consider MDI-QKD
prototypes with qubit systems and transmission noise
models depicted by dephasing or depolarizing channels.
We begin by considering a dual-rail scheme based on

single photons to encode the qubits [113]. The dual-rail
encoding of a qubit in two orthogonal optical modes can be
represented in the computational basis of the qubit
system, where only one of the two modes is occupied by
a single photon and another mode is vacuum. When these
optical modes are two polarization modes—horizontal and
vertical—of the light, then we express eigenstates in the
computational basis as jHi and jVi for horizontal and
vertical polarization. It is also possible to consider fre-
quency-offset modes instead of polarization modes for
dual-rail encodings. We assume a noise model for the
transmission of a photon through the optical fiber to be a
pure-loss bosonic channel with transmissivity η. The inputs
to the optical fiber are restricted to a single-photon sub-
space that is spanned by jHi and jVi. The action of this
pure-loss channel on a qubit encoded with our dual-rail
scheme is identical to an erasure channel [114] E with
erasure parameter 1 − η and erasure state jei, where jei is
the vacuum state, i.e., zero photon in both modes. We note
that an erasure channel is tele-covariant.
Two trusted parties Ai, i ∈ ½2�, use the above-mentioned

polarization-based dual-rail photons to transmit their qubit
systems to Charlie at the measurement-relay station,
through the optical fibers with respective transmissivities
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ηi (see Fig. 4 for MDI-QKD). We make a simplistic noise
model assumption on the measurement channelMC⃗i→X by
Charlie: It can perform perfect qubit Bell measurement for
bipartite MDI-QKD, respectively, with probability q,
whereas with probability 1 − q for the failed measurement,
we assume the relay station signals j⊥ih⊥jX to the users. In
addition, we can safely assume classical communication
X → Z⃗ among all parties to be clean (noiseless) as they do
not require any quantum resource. Finally, for simplicity,
we assume that error-correcting local operations for all
parties can be made perfectly.
To calculate the upper bound on the MDI-QKD

capacity, it suffices to consider the relative entropy of
entanglement of the Choi state of the associated multiplex
channel NMDI;E

A⃗→Z⃗
as it is tele-covariant. Notice that the

action of the erasure channel EAi→Ci
on Di ∈ fjHihHjAi

;
jHihVjAi

; jVihHjAi
; jVihVjAi

g is given as

EAi→Ci
ðDiÞ ¼ ηiDi þ ð1 − ηiÞTr½Di�jeihejCi

: ð60Þ

Then, the Choi state JE
L⃗ C⃗

of ⊗
2

i¼1
EAi→Ci

is

JE
L⃗ C⃗

¼⊗
2

i¼1

�
ηiΦþ

LiCi
þ ð1 − ηiÞ

1Li

2
⊗ jeihejCi

�
: ð61Þ

For the bipartite MDI-QKD,

MC1C2→Xð·Þ ¼ q
X4
j¼1

Tr½ΦðjÞð·ÞΦðjÞ�jjihjjX

þ ð1 − qÞTr½·� ⊗ j⊥ih⊥jX; ð62Þ

where fΦðjÞ
C1C2

g4j¼1 is the Bell measurement, which is a

projective measurement. Here, fΦðjÞ
C1C2

g4j¼1 represents the
set of maximally entangled states fΦþ;Φ−;Ψþ;Ψ−g for
two-qubit systems and j⊥i⊥jji. We note that the Bell
measurement is tele-covariant. Upon action of the

measurement channel MC1C2→X on the state JEL1L2C1C2

[Eq. (61)], the output state is essentially of the form (see
Ref. [67])

qη1η2
1

4

X4
j¼1

ΦðjÞ
L1L2

⊗ jjihjjXþð1−qη1η2Þ
1L1L2

4
⊗ j⊥ih⊥jX;

ð63Þ
which implies that the relative entropy of entanglement of
the Choi state ofNMDI;E

A1A2→Z1Z2
is qη1η2. Employing Theorem

7, the bipartite MDI-QKD capacity for the given MDI-
QKD prototype with erasure channels is

P̃LOCCðNMDI;fEig2i¼1Þ ¼ qη1η2; ð64Þ

as qη1η2 bits is an achievable rate for the given setup (see
Refs. [48,49,105] for the private capacities of EAi→Ci

).
Notice that qη1η2 is a strong converse bound.
For bipartite MDI-QKD (see Fig. 4), using the results

of Ref. [48,105], we get upper bound (RB) on the
bipartite MDI-QKD capacity as minfη1; η2g (e.g., see
Refs. [50,60]). This bound is always looser than our strong
converse upper bound qη1η2 bits, for all practical purposes.
In Fig. 5, we plot the rate-distance trade-off (secret key
capacity versus distance L in km) for our bound in Eq. (64)
when n¼2, η1 ¼ η2 ¼ expð−αLÞ, and α ¼ ð1=22 kmÞ and
compare it with the upper bound (RB) η1 (since η1 ¼ η2).
We note that, whereas there now exist variants of MDI-

QKD schemes or setups that can achieve the repeaterless
bound, e.g., Refs. [31,32,34], the dual-rail protocols we
consider here, while being suboptimal, may be easier to
implement practically. In particular, implementation of a
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FIG. 5. Rate-distance trade-off comparison between our bound
(64) (blue, red, yellow, and purple lines) and the RB bound (green
line) for the MDI-QKD protocol for our photon-based prototype.

FIG. 4. Pictorial illustration of our photon-based MDI-QKD
between two parties using the dual-rail encoding scheme.
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twin-field protocol requires long-distance phase stabiliza-
tion, which can be challenging [115]. We showcase here the
ability to get nontrivial upper bounds for a specific,
suboptimal implementation of QKD schemes. These non-
trivial upper bounds are derived from a universal frame-
work, which illustrates the usefulness of the framework we
have proposed.

VII. LOWER BOUNDS ON PRIVACY

In this section, we derive lower bounds on the secret-
key-agreement rate of a multiplex channel achievable by
means of cppp, in the sense of Ref. [68]. This is a
generalization of the lower bound presented in Ref. [14]
from multipartite states to multiplex channels, as well as a
generalization of the lower bounds on one-to-one channels
presented in Ref. [69] to the multiplex case.
The DW protocol [68], which is considered with

bipartite states, only uses one-way communication from
Alice to Bob. In Ref. [69], which is concerned with one-to-
one channels, direct and reverse scenarios are considered.
The former corresponds to the case where the quantum
channel and the classical communication are oriented in the
same direction. The latter corresponds to the case where
the two are oriented in opposite directions. In Ref. [14], the
DW protocol is generalized to multipartite states by
selecting one distributing party, which performs the DW
protocol with all remaining parties simultaneously.
We now generalize this result to the setting of multiplex

channels. We begin with a fully separable pure state

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ. Here, the notation Xn

⟶
means

we consider n copies of all subsystems X1;…; XM.
Application of n copies of the isometric extension of the
multiplex channel N

A0B
⟶

→AC
⟶ results in a pure state

ψn

∶AnL
��!

∶R⃗∶CnP
��!

∶En
. Let us now choose one party, Xi,

i ∈ f1;…;Mg, as the distributing party. Party Xi performs
a POVM Q ¼ fQxg with a corresponding random variable
X ¼ fx; pðxÞg on her subsystem, resulting in a classical-
quantum-...-quantum (cq) state

ωcq ¼
X
x

pðxÞjxihxjX ⊗ ωx; ð65Þ

where ωx is the post-measurement state of the remaining
parties and Eve. Party Xi then processes X using classical
channels X → Y and Y → Z, where Y ¼ fy; qðyÞg and Z ¼
fz; rðzÞg are classical random variables. Here, Y is kept by
party Xi (to be used for the key), and Z is broadcast to all
other trusted parties (and Eve). Upon receiving Z, the
other parties then perform their respective POVMs, with the
goal of estimating the key variable Y. Thus, as shown in
Ref. [68], every trusted partyXj, where i ≠ j ∈ f1;…;Mg,
obtains a common key with X at a rate ri→j

n of

ri→j
n ¼ 1

n
(IðY∶XjjZÞω̃cq

− IðY∶EnjZÞω̃cq
); ð66Þ

where, in a slight abuse of notation, we use Xj as a
placeholder for An

jLj, Rj, or Cn
jPj, depending if Xj is in

fAaga, fBbgb, or fCcgc, respectively. The second and
third cases correspond to the reverse and direct scenarios in
Ref. [69], respectively, whereas

ω̃cq ¼
X
xyz

rðzjyÞqðyjxÞpðxÞjxyzihxyzj ⊗ ωx: ð67Þ

Equation (66) has to be maximized over all free input states

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ, POVMs Q, as well as classical

channels X → Y and Y → Z. As discussed in Ref. [14], a
conference key among all trusted parties can be obtained at
the worst-case rate between any pair ðXi;XjÞ. We also have
the freedom to choose the distributing party. Putting it all
together, we can achieve the following rate of the
conference key:

P̂N
cppp ≥ max

i
min
j

lim
n→∞

max
ϕn;QPOVM
X→Y;Y→Z

ri→j
n ; ð68Þ

with ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ. Note that in the case of a

single-sender–single-receiver channel N ∶B → C, this
reduces to the maximum of the direct and reverse key
rates presented in Ref. [69].
Next, we propose an alternative generalization of the DW

protocol to the case of multipartite states and multiplex
channels. The rough idea is that, instead of performing the
DW protocol simultaneously with all other parties after her
measurement, the distributing party performs a one-way
protocol with a second party, who then performs a one-way
protocol with a third party, and the iteration continues. In
particular, the random variables obtained in all previous
measurements can be passed on in every classical commu-
nication step, so a party can adapt her measurement depend-
ing on all previous measurements instead of the first
measurement as in the protocol described in Ref. [14].
We now describe the protocol in detail: As before,

we begin with a fully separable pure state

ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ and apply n copies of the iso-

metric extension of the multiplex channel N
A0B
⟶

→AC
⟶ ,

resulting in a pure state ψn

∶AnL
��!

∶R⃗∶CnP
��!

∶En
.

Now, assume that we are given some permutation
σ∶f1;…;Mg → fσð1Þ;…; σðMÞg, which determines the
order in which the parties participate in the protocol. Party
Xσð1Þ begins by performing a POVMQð1Þ on her share ofψn,
i.e., on subsystem An

σð1ÞLσð1Þ, Rσð1Þ, orCn
σð1ÞPσð1Þ, depending

on which kind of party Xσð1Þ is. This results in a
random variable Xð1Þ ¼ fp1ðx1Þ; x1g. The corresponding
classical-quantum-...-quantum (cq) state is

UNIVERSAL LIMITATIONS ON QUANTUM KEY DISTRIBUTION … PHYS. REV. X 11, 041016 (2021)

041016-17



ωð1Þ
cq ¼

X
x1

p1ðx1Þjx1ihx1jXð1Þ ⊗ ωx1 : ð69Þ

Party Xσð1Þ then performs classical channels
Xð1Þ → Yð1Þ → Zð1Þ, keeping the random variable Yð1Þ and
sending Zð1Þ to party Xσð2Þ. The corresponding cq state is
then given by

ω̃ð1Þ
cq ¼

X
x1y1z1

r1ðz1jy1Þq1ðy1jx1Þp1ðx1Þjx1y1z1ihx1y1z1j⊗ωx1 ;

ð70Þ

whereωx1 is the state of the remaining parties and Eve. Next,

party Xσð2Þ performs a POVM Qð2Þ
Zð1Þ on her share of ωx1 ,

which provides the random variable Xð2Þ. Party Xσð2Þ then
performs classical channels Zð1ÞXð2Þ → Yð2Þ → Zð2Þ, keeps
Yð2Þ for herself, and sends Zð2Þ to the next party Xσð3Þ, who
applies the same procedure. The protocol is repeated until
party XσðMÞ receives ZðM−1Þ, followed by her POVM and
postprocessing. The cq after k ∈ f1;…;Mg measurements
and postprocessing steps is given by

ω̃ðkÞ
cq ¼

X
x1…xky1…yk
z1…zk

p̃x1y1z1…xkykzk

× jx1y1z1…xkykzkihx1y1z1…xkykzkj ⊗ ωx1…xk ;

ð71Þ

where we have defined, recursively,

p̃x1y1z1…xkykzk ¼ rkðzkjykÞqkðykjxkzk−1ÞpkðxkÞ
× p̃x1y1z1…xk−1yk−1zk−1 : ð72Þ

Parties XσðkÞ and Xσðkþ1Þ can establish a key rate of [68]

rσðkÞ→σðkþ1Þ ¼ 1

n
ðIðYðkÞ∶Xσðkþ1ÞjZðkÞÞ

ω̃ðkÞ
cq

−IðYðkÞ∶EnjZðkÞÞ
ω̃ðkÞ
cq
Þ: ð73Þ

We can again maximize over all free input states,
POVMs, as well as classical channels and consider the
worst-case rate between any pair ðXi;XjÞ. Furthermore, we
have the freedom to choose the order of the parties. Putting
it all together, we can achieve the following rate of the
conference key:

P̂N
cppp ≥ max

σ∈perm
min
k

lim
n→∞

max
ϕn;Qð1Þ ;…;QðkÞPOVM

Xð1Þ→Yð1Þ→Zð1Þ ;
Xð2ÞZð1Þ→Yð2Þ→Zð2Þ ;…;
XðkÞZðk−1Þ→YðkÞ→ZðkÞ

rσðkÞ→σðkþ1Þ; ð74Þ

with ϕn ∈ FSð∶A0nL
��!

∶BnR
��!∶P⃗∶Þ.

A. Lower bound for bidirectional network
via spanning tree

In this section, we observe that one can tighten the lower
bounds presented in the previous section for a particular
multiplex channel called the bidirectional network (BN). In
the BN, each of the nodes is connected with its neighbors
by product bidirectional channels, which are specific
bidirectional channels that is a tensor product of two
point-to-point channels directed in opposite ways from
each other.
We first observe that BN is a particular case of a

multiplex channel (call it N ). Indeed, in this case, all
the parties are of type A; i.e., they can read and write. The
rule is that each party represented in the network as a vertex
v has deg(v) of neighbors (see Ref. [116] for an introduc-
tion to graph theory). Each party is assumed to write to her
neighbors and also receive from these neighbors some
quantum data. We now present a tighter bound on the
private capacity ofN based on the above exemplary graph.
To be more specific, the BN can be represented by a

weighted, directed multigraph G ¼ ðE;VÞ in which each
edge eij ¼ ðvi; vjÞ ∈ E represents a product bidirectional
channel Λij ¼ Λi→j ⊗ Λj→i with weight W∶E ↦ Rþ such
that WðeijÞ ¼ WðejiÞ ¼ PðΛi→jÞ ¼ PðΛj→iÞ (this edge
can be represented by two directed edges: one from vi
to vj and the other vice versa; hence, the structure is
directed multigraph). Each product bidirectional channel
has in both directions the same private capacity (that,
however, may differ for different channels). By convention,
we consider edges with index i > j only. The number of
nodes in the network is denoted as jVj ≔ n and the number
of edges as jEj ≔ m.

(a)

(b)

FIG. 6. (a) Exemplary graph. Red edges correspond to private
capacity 1 and blue to private capacity 2. The first strategy for
obtaining the conference key uses a vertex connected to all others
and reaches the suboptimal rate minfwðeijÞ∶ðv1; v6Þ; ðv1; v5Þ;
ðv1; v4Þ; ðv1; v3Þ; ðv1; v2Þg ¼ 1. The same happens for any path,
which inevitably has to pass through some red edge. The solution
is a tree, which is a spanning tree of this graph, and it contains no
red edge (b). Traversing the edges of this tree is equivalent to the
breadth-first search.
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As a motivation for the next consideration, for such
multiplex channels, the bounds given in inequalities (68)
and (74) above are not tight. We exemplify this on the graph
presented in Fig. 6(a). Namely, we assume that each red
edge of the graph G depicted there represents a (bidirec-
tional) channel with private capacity 1, while each blue
edge is with capacity equal to 2. We do not depict all other
edges (connections) as they have zero private capacity by
assumption. We now make two observations: (i) The
approach of inequality (68) would yield overall secret
key agreement at rate 1, as the only node connected to all
others in G (v1) contains (in fact, more than one) red edge.
(ii) We observe, by direct inspection, that every path
connecting all vertices also contains at least one red edge.

On the other hand, there is a set of vertices [depicted
with edges in Fig. 6(b)] that forms the so-called spanning
tree T ≔ ðVT; ETÞ ⊂ G of the graph G. The spanning
tree is an acyclic connected subgraph of G, and the word
“spanning” refers to the fact that all the vertices of the graph
G belong to VT . It is easy to see that starting from
any vertex of this tree, by the breadth-first search algorithm,
one can visit all its edges, and one can obtain the conference
key at rate 2 (see Ref. [117] for an introduction to
algorithms).
As a generalization of this idea, one easily comes up with

the following lower bound, which is the main result of this
section:

P̂N
cppp ≥ max

T⊆G
min

t∈VT;t0∈N½t�
lim
n→∞

max
ϕn;Qð1Þ ;…;QðjVT jÞPOVM
Xðv1Þ→Yðv1Þ→Zðv1Þ ;

XðN½v1 �ÞZðv1Þ→YðN½v1 �Þ→ðZðN½v1 �ÞÞjdeg≥2 ;
XðN2 ½v1 �ÞZðN½v1 �Þ→YðN2 ½v1 �Þ→ðZðN2 ½v1 �ÞÞjdeg≥2 ;…;

XNl ½v1 �ZNl ½v1 �→YNl ½v1 �

rσðtÞ→σðt0Þ; ð75Þ

where 1 ≤ l ≤ n is an index that counts howmany times the
breadth-first search needs to be invoked in order to traverse
all the edges of the spanning tree T. For ease of notation, T
is meant to be a rooted, without loss of generality, at vertex
v1. By N½v�, we mean the proper neighborhood of the node
v (i.e., the set of all vertices that are connected by a single
edge with v). In a rooted tree, every vertex is reachable
from the root vertex by a path. By Ni½v1�, we mean the set
of vertices reachable from vertex v1 by a path of length i.
Owing to this notation, N½v1�≡ N1½v1�, while all vertices
achievable from v1 by traversing two edges belong to
N2½v1� and so on.
The first inner maximization needs to be understood

inductively. The first step is obvious: We begin with an
arbitrary vertex v1 ∈ VT . The party Xv1 who is at node v1
performs a POVM Q1, which produces a random variable
Xðv1Þ. She processes this variable further to obtain Yðv1Þ and
sends a communication in the form of a variable Zðv1Þ. The
latter variable is broadcast to all the next neighbors of v1,
i.e., N½v1�nfv1g. Furthermore, if at step m − 1 the form of
operations and communication between the nodes has
concise notation XSmZSm−1 → YSm → ZSm jdeg≥2, then the
next level of nesting, i.e.,

XN½Sm�ZSm → YN½Sm� → ðZN½Sm�Þjdeg≥2; ð76Þ

has to be understood as a short notation of the following
postprocessing at a number of nodes from the set N½Sm� ¼
fs1;…; srg with r ¼ jN½Sm�j:

∀ si∈N½Sm�∶ degðsiÞ ≥ 2X
ðsiÞZN½si �∩pðsiÞ→YðsiÞ→ZðsiÞ

∀ si∈N½Sm�∶ degðsiÞ ¼ 1X
ðsiÞZN½si �∩pðsiÞ→YðsiÞ ;

where pðsiÞ denotes the parent vertex of the vertex si, that
is, the unique vertex belonging to the neighborhood that is
the closest to the root v1 in terms of traversed edges.
The above description means that if some vertex of the

tree is of degree equal to 1, it has no further children in the
tree to pass useful information contained in the Z-type
variable, while all vertices with larger degree than 1 need to
broadcast appropriate data to their further neighbors in
the tree.
We exemplify the lower bound given in inequality (75)

with the broadcast network depicted on Fig. 6. Let us first
focus on involved sets of vertices in the process of the
breadth-first search over the tree T. The set of vertices of
the spanning tree T reads fv1;…; v6g. As the root vertex,
we choose v1. Next, N1½v1� ¼ fv2g, N2½v1� ¼ fv3; v6g and
N3½v1� ¼ fv4; v5g. In this case, the presented lower bound
reads

P̂N
cppp ≥ max

T⊆G
min

t∈VT;t0∈N½t�
lim
n→∞

max
ϕn;Qð1Þ ;…;Qð6ÞPOVM
Xðv1Þ→Yðv1Þ→Zðv1Þ ;

Xðv2ÞZðv1Þ→Yðv2Þ→Zðv2Þ ;
Xðv3ÞZðv2Þ→Yðv3Þ→Zðv3Þ ;

Xðv6ÞZðv2Þ→Yðv6Þ ;
Xðv5ÞZðv3Þ→Yðv5Þ ;
Xðv4ÞZðv3Þ→Yðv4Þ

rσðtÞ→σðt0Þ:

ð77Þ

In Appendix G, we briefly comment on the complexity
of finding a subgraph, which allows us to realize the
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conference key agreement with the capacity indicated by
the inequality (75).

VIII. KEY DISTILLATION FROM STATES

In this section, we concentrate on the subject of the
distillation of secret keys from quantum states. An ðn;K; εÞ
LOCC conference key distillation begins withM partiesAi
for i ∈ ½M� sharing n copies of theM-partite quantum state
ρA⃗, to which they apply an LOCC channel L

A⊗n
��!

→SK
⟶ . The

resulting output state satisfies the following condition:

FðL
A⊗n
��!

→SK
⟶ðρ⊗n

A⃗
Þ; γ

KS
⟶Þ ≥ 1 − ε: ð78Þ

The one-shot secret-key-distillation rate from a single copy

of a multipartite quantum state Kð1;εÞ
D is upper bounded as

follows (cf. Sec. V).
Theorem 8: For any fixed ε ∈ ð0; 1Þ, the achievable

region of secret key agreement from a single copy of an
arbitrary multipartite quantum state ρA⃗ satisfies

Kð1;εÞ
D ðρÞ ≤ Eε

h;GEð∶A⃗∶Þρ; ð79Þ

where

Eε
h;GEð∶A⃗∶Þρ ≔ inf

σ∈BSð∶A⃗∶Þ
Dε

hðρkσÞ ð80Þ

is the ε-hypothesis-testing relative entropy of genuine
entanglement of multipartite state ρA⃗.
Proof.—The proof argument is the same as that of

Theorem 2, so we omit the proof here. ▪
In the asymptotic limit, the rate Kðn;εÞ

D satisfies

inf
ε>0

limsup
n→∞

1

n
Kðn;εÞ

D ðρ⊗nÞ ¼ KDðρÞ; ð81Þ

which follows directly from the definition of the secret key
rate KD [14].
Using the same argument as in the proof of Theorem 6 in

Sec. V C, we can also get the following asymptotic bound,
which is generalized in Theorem 9 of Ref. [62]:
Proposition 2: For an m-partite state ρA⃗, it holds

that

KDðρA⃗Þ ≤ E∞
GEðρA⃗Þ: ð82Þ

In general, to share the conference key, it is necessary
for the honest parties to distill genuine multipartite
entanglement.
Corollary 6: For a tensor-stable biseparable state ρA⃗, it

holds that KDðρA⃗Þ ¼ 0.
The above Corollary of Theorem 8 is precisely due to the

infimum over biseparable states. However, already in the

tripartite setting, there are two nonequivalent families of
three-partite genuinely entangled states, that is, ΦGHZ

M -type
andΦW

M-type states [79,85,118–121]. Both families of states
contain states that are maximally entangled; however, they
cannot be transformed with LOCC one into another at unit
rate [81,84,86,87,122,123]. As the perfect ΦGHZ

M state plays
a role of the honest (or perfect) implementation of
conference quantum key agreement protocols, the distilla-
tion of ΦGHZ

3 states from ΦW
3 states has been intensively

studied [80–84,86]. In particular, recalling Example 11 of
Ref. [80], it is known that one cannot transform a singleΦW

3

state into a ΦGHZ
3 state even in a probabilistic manner.

However, according to Theorem 2 of Ref. [80], the calcu-
lated asymptotic rate for conversion fromΦW

3 toΦGHZ
3 due to

certain protocols is approximately 0.643 (per copy), which
constitutes a lower bound for the general case. Another
complementary lower bound has been provided in Ref. [86].
Surprisingly, in the one-shot regime, distillation of ΦGHZ

3

states fromΦW
3 states, and therefore of the secret key, is still

possible. To accomplish this task, it is sufficient to consider
the initial state as being made up of two copies of the ΦW

3

state. Then, using results in Ref. [81], it follows that we can
obtain twoΦþ

2 states in two distinct bipartite systems with a
probability that is arbitrarily close to 2

3
; having this in

mind, one can obtain ΦGHZ
3 by employing ancilla and the

entanglement swapping protocol [112]. In this way, we
calculate a lower bound on the distillation of ΦGHZ

3 states
from two copies of the ΦW

3 state in a one-shot regime (one
ΦGHZ

3 state with probability 2
3
from two ΦW

3 states). This
lower bound can be compared with the upper bound in
Theorem 8 given above.
Nevertheless, distillation ofΦGHZ

M states is only an example
of a key distillation technique [13,14,84,86,124–127]. A
more general conference key agreement scenario of our
interest incorporates distillation of twisted ΦGHZ

M states (see
Definition 3) [14,61,119,128,129]. In that case, an approach
for upper bounding conference key rates that is different than
the estimation of ΦW

M to ΦGHZ
M conversion rates is required.

This approach corresponds to a possible gap between rates of
ΦGHZ

M (that can be distilled) and secret key distillation. Since
theΦGHZ

M state is an instance of a private state, an upper bound
on the conference key rate is also an upper bound on the
distillation rate from any state. For plotting our numerical
results, we concentrate on secret key distillation fromn copies
of the ΦW

M state in order to compare with other limitations
discussed in this section.
The upper bound in Theorem 8 has optimization over all

possible biseparable states. Computation of the exact value
of the bound given in Eq. (79) need not be feasible in
general. As we take the infimum in Eq. (80), we can obtain
non-trivial upper bounds on the upper bound given in
Eq. (79) by considering optimization over suitable subsets
of biseparable states. We make an educated guess for the
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form of biseparable state to yield a non-trivial upper bound.
We remark here that the set of biseparable states is not
closed under a tensor product, so we have to find different
states for any tensor power n of ΦW

M or ΦGHZ
M states. We

devise two families of biseparable states, πn;MW and πn;MGHZ,
adjusted to both number of copies, n, and number of
parties, M,

πn;MGHZ ≔
1

M

XM
i¼1

[S1;i

�
I
2
⊗ ΦGHZ

M−1

�
]
⊗n

; ð83Þ

πn;MW ≔
1

M

XM
i¼1

(S1;iðj0ih0j ⊗ ΦW
M−1Þ)⊗n; ð84Þ

where the operator S1;i swaps the qubit of the first party

with the qubit of the ith party. The choice of πn;MGHZ and π
n;M
W

states is motivated by keeping the correlation between
M − 1 parties most similar to those in ΦGHZ

M or ΦW
M states

while keeping one party explicitly separated. Additionally,
πn;MGHZ and πn;MW states, by definition, are symmetric with
respect to permutation of parties because of permutations
with S1;i.
We would like to point out that the π1;3W presented here is

closer to the ΦW
3 state in the Hilbert-Schmidt norm than the

state (let us call it ϒ) in Ref. [130], even though the state
constructed there was supposed to be the biseparable state
closest to ΦW

3 in the Hilbert-Schmidt norm. This result is
due to different definitions of biseparability; the state in
Ref. [130] is a tensor product with respect to one of the
cuts, whereas we make use of the convexity of the set of
biseparable states. Indeed, our states are biseparable by
construction (see Sec. IVA).
The upper bound on the asymptotic secret key rate can be

compared with the lower bound on asymptotic ΦGHZ
3 states

from ΦW
3 state distillation [80] in the following way. First,

we notice that if two parties unite, then the M − 1-partite
key is no less than the initial M-partite key because the set
of operations of the M-partite LOCC protocol is a strict
subset of the set of operations for the case in which two
parties, i and j, are in the same laboratory. We have the
following Proposition:
Proposition 3: For any M-partite state ρ½M�, the asymp-

totic secret-key-agreement rate satisfies the following
inequality:

max
k

KDðρ½Mþ1�kÞ ≤ KDðρ½M�Þ ≤ min
i;j

KDðρ½M−1�ijÞ; ð85Þ

where ½M� ¼ ½1;…;M� and ½M − 1�ij ¼ ½1;…; i − 1;
ði; jÞ; iþ 1;…; j − 1; jþ 1;…;M� indicate a state ρ½M−1�
in which subsystems i and j are merged. Analogously,
½Mþ1�k¼½1;…;k−1;k1;k2;kþ1;…;Mþ1� indicates the
state in which subsystem k is split into systems k1 and k2.

Proof.—It is enough to notice that the class of LOCC
protocols involved in the definition of KDðρ½M�Þ is strictly
contained in the class of protocols involved in the definition
of KDðρ½M−1�ijÞ. Indeed, the merged parties can still
simulate any operation from the former class; however,
together, they can perform many more operations, includ-
ing global quantum operations on all merged subsystems
together. Since KD is defined as the supremum of the key
rate over such protocols, the upper bound follows. For the
lower bound, it is enough to notice that by splitting
subsystem(s) of ρ, we restrict the class of operations that
can be used to distill the key. ▪
We immediately observe that Proposition 3 provides a

whole family of nonequivalent upper bounds. To see this,
one can consider a state that is not invariant under
permutations. What is more, one can continue merging
as long as there is still two or more subsystems left.
Corollary 7: For anyM-partite state ρ½M� defined on the

Hilbert space H, the asymptotic secret-key-agreement rate
satisfies the following inequality:

max
L

KDðρ½L�Þ ≤ KDðρ½M�Þ ≤ min
N

KDðρ½N�Þ; ð86Þ

where the state ρ½L� is obtained from the state
ρ½M� by splitting its subsystems so that L ≥ log dimðHÞ.
Analogously, the state ρ½N� is obtained via any merging of
subsystems of ρ½M�, such that ρ½N� has at least two subsystems.
Hence, in the particular case of theΦW

3 state, we can also
skip minimization with respect to i, j since the state is
symmetric. Using properties of entanglement measures
[131–133], we have

KDðΦW
3 Þ ≤ KDðΦW

2þ1Þ ≤ E∞
r ðΦW

2þ1Þ ð87Þ

¼ h2

�
1

3

�
≈ 0.9183 bit; ð88Þ

where h2ðxÞ is the binary entropy function.
The asymptotic key rate and bounds on it are usually

noninteger real numbers. In the one-shot regime, express-
ing these quantities in a similar manner, instead of integers
obtained with floor or ceiling functions, is no less mean-
ingful because the amount of secret key and the value of
bounds are functions of privacy test parameter ε, which can
vary, yielding, in general, different values of these quan-
tities. Therefore, dependence of the scenario on the privacy
parameter ε is interesting on its own. See Appendix H and
Ref. [134].
Remark 6: It is natural that the analogies of Proposition

3 and Corollary 7 hold for the multiplex quantum channel
N . The upper bound on the M-partite multiplex quantum
channel takes the form of the M − 1-partite multiplex
channel, where the new party’s type is determined accord-
ing to the following rule: If the two parties are of the same
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type (say, B), then the new type is the same (B in that case).
If the types are different, then the new type always becomes
A because, e.g., when B and C are merged, they have the
ability to both read and write.

IX. DISCUSSION

We have provided universal limits on the rates at which
one can distribute the conference key over a quantum
network described by a multiplex quantum channel. We
have shown that multipartite private states are necessarily
genuine multipartite entangled. As a consequence, it is not
possible to distill multipartite private states from tensor-
stable biseparable states. We have obtained an upper bound
on the single-shot, classical preprocessing and postprocess-
ing assisted secret-key-agreement capacity. The bound is in
terms of the hypothesis-testing divergence with respect to
biseparable states of the output state of the multiplex
channel, maximized over all fully separable input states.
We have further provided strong-converse bounds on the
LOCC-assisted private capacity of multiplex channels that
are in terms of the max-relative entropy of entanglement as
well as the regularized relative entropy of entanglement. In
the case of tele-covariant multiplex channels, we have also
obtained bounds in terms of the relative entropy of entan-
glement of the resource state. We have shown the versatility
of our bounds by applying it to several communication
scenarios, including measurement-device-independent QKD
and conference key agreement as well as quantum key
repeaters. In addition to our upper bounds, we have also
provided lower bounds on asymptotic conference key rates,
which are asymptotically achievable in Devetak-Winter-like
protocols. We also derived an upper bound on the secret key
that can be distilled from finite copies of multipartite states
via LOCC, and we showed some numerical examples. The
task of distillation ofΦGHZ

3 fromΦW
3 was extensively studied

in the literature [81,122,123]. Here, we initiate the study on
the distillation of the key rather than ΦGHZ

3 distillation from
the ΦW

3 state. This is the rate of the distillation of “twisted”
ΦGHZ

3 being private states—a class to which ΦGHZ
3 belongs.

It would be interesting to find if the distillation of the key
from ΦW

3 is just equivalent to the distillation of ΦGHZ
3 (see

recent result on this topic [127]).
Distillation of the secret key allows trusted parties to

access private random bits. Our lower bound on an asymp-
totic LOCC-assisted secret-key-agreement capacity over a
multiplex channel also provides an asymptotic achievable
rate of private random bits for trusted parties over a multiplex
channel with classical preprocessing and postprocessing.
Our work also provides frameworks for the resource

theories of multipartite entanglement for quantum multi-
partite channels (analogous to bipartite channels as dis-
cussed in Refs. [51,53,97,98]). In this context, it is natural
to extend the results of Ref. [135], where the so-called
layered QKD is considered, to the noisy case of multipartite
private states. It would be interesting to systematically

consider other frameworks in the resource theory of
multipartite entanglement. An important future direction
for application purposes is to identify new information
processing tasks and determine bounds on the rate regions
of classical and quantum communication protocols over a
multiplex channel (e.g., see Refs. [53,136–142]).
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APPENDIX A: GENERALIZED DIVERGENCES
AND THEIR PROPERTIES

Any generalized divergence Dð·k·Þ satisfies the follow-
ing two properties for an isometry U and a state τ [63]:

DðρkσÞ ¼ DðUρU†kUσU†Þ; ðA1Þ

DðρkσÞ ¼ Dðρ ⊗ τkσ ⊗ τÞ: ðA2Þ

The sandwiched Rényi relative entropy obeys the fol-
lowing “monotonicity in α” inequality [64]:
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D̃αðρkσÞ≤ D̃βðρkσÞ if α≤ β; for α;β∈ ð0;1Þ∪ ð1;∞Þ:
ðA3Þ

The following inequality states that the sandwiched Rényi
relative entropy D̃αðρkσÞ between states ρ, σ is a particular
generalized divergence for certain values of α [143,144].
For a quantum channel N ,

D̃αðρkσÞ ≥ D̃α(N ðρÞkN ðσÞ); ∀ α ∈ ½1=2; 1Þ ∪ ð1;∞Þ:
ðA4Þ

In the limit α → 1, the sandwiched Rényi relative
entropy D̃αðρkσÞ between quantum states ρ, σ converges
to the quantum relative entropy [63,64]:

lim
α→1

D̃αðρkσÞ ¼ DðρkσÞ; ðA5Þ

and the quantum relative entropy [92] between states is

DðρkσÞ ≔ Tr½ρ log2ðρ − σÞ� ðA6Þ

for suppðρÞ ⊆ suppðσÞ and otherwise it is ∞.
In the limit α → 1=2, the sandwiched Rényi relative

entropy D̃αðρkσÞ converges to − log2 Fðρ; σÞ, where
Fðρ; σÞ is the fidelity between ρ, σ defined as

Fðρ; σÞ ≔
h
Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
p

ρ
ffiffiffi
σ

pq ii2
: ðA7Þ

The following inequality relatesDε
hðρkσÞ to D̃αðρkσÞ for

density operators ρ, σ, α ∈ ð1;∞Þ and ε ∈ ð0; 1Þ (see
Refs. [145–147] and Lemma 5 in Ref. [148]):

Dε
hðρkσÞ ≤ D̃αðρkσÞ þ

α

α − 1
log

�
1

1 − ε

�
: ðA8Þ

The following inequality also holds [94]:

Dε
hðρkσÞ ≤

1

1 − ε
(DðρkσÞ þ h2ðεÞ); ðA9Þ

where h2ðεÞ ≔ −ε log2 ε − ð1 − εÞ log2ð1 − εÞ is the binary
entropy function.
In a specific case, ε-hypothesis-testing relative entropy

can be calculated exactly.
Lemma 3: If ρ is a pure state and it is one of the

eigenvectors of σ, i.e., there exists decomposition
σ ¼ p0ρþ

P
i¼1 piγ

⊥
i , with

P
i¼0 pi ¼ 1, 0 ≤ pi ≤ 1,

p0 ≠ 0 and states γ⊥i orthogonal to ρ, then for any ϵ ∈ ½0; 1�,

Dε
hðρkσÞ ¼ − log2 Tr½Ωσ�; ðA10Þ

with Ω ¼ ð1 − εÞρ.

APPENDIX B: MULTIPLEX QUANTUM
CHANNELS

All network channels that are possible in a communi-
cation setting are special cases of multiplex quantum
channels N

A⃗0 B⃗→A⃗ C⃗
(see Fig. 1):

(1) Point-to-point quantum channel: This is a quantum
channel of the formN Bb→Cc

with a single sender and a
single receiver. When a multiplex quantum channel
has the formN Bb→Cc

thenA ¼ ∅ and jBj ¼ 1 ¼ jCj.
This is arguably thesimplest formofacommunication
(network) channel as it involves only two parties with
one party sending input to the channel and the other
receiving the output from the channel.

(2) Bidirectional quantum channel: This is a multiplex
quantum channel of the form N A0

1
A0
2
→A1A2

with two
parties who are both senders and receivers, i.e.,
jAj ¼ 2 and B ¼ ∅ ¼ C (cf. Refs. [53,101]).

(3) Quantum interference channel: This is a bipartite
quantum channel of the form N B1B2→C1C2

with two
senders and two receivers (cf. Ref. [149]). We may
also call N B⃗→C⃗, with an equal number of senders
and receivers, as the quantum interference channel.

(4) Broadcast quantum channel: This is a multipartite
quantum channel of the form N Bb→C⃗ with a single
sender and multiple receivers (cf. Refs. [150,151]). We
may also call N B⃗→C⃗ as a broadcast channel if the
number of senders is less than the number of receivers.

(5) Multiple access quantum channel: This is a multi-
partite quantum channel of the form N B⃗→Cc

with
multiple senders and a single receiver (cf. Ref. [152]).
We may also callN B⃗→C⃗ as a multiple access channel
if the number of senders is more than the number of
receivers.

(6) Physical box: Any physical box with quantum or
classical inputs and quantum or classical outputs.

(7) Network quantum channels of types N
A⃗0→A⃗ C⃗

and
N

A⃗0 B⃗→A⃗
.

If inputs and outputs to a multiplex channel are classical
systems and underlying processes are governed by classical
physics, then the channel is called a classical multiplex
channel (see Ref. [137] for examples of such network
channels). If inputs and outputs to the channel are quantum
and classical systems, respectively, then the channel is called
a quantum-to-classical channel. If inputs and outputs to the
channel are classical and quantum systems, respectively,
then the channel is called a classical to a quantum channel.

APPENDIX C: PRIVACY TEST

Recall the definition of the twisting operation

Utw

KS
⟶ ¼

XK−1
i1;…;iM¼0

ji1…iMihi1…iMjK⃗ ⊗Uði1…iMÞ
S⃗

ðC1Þ
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and a privacy test as

Πγ;K

KS
⟶ ¼ Utw

KS
⟶ðΦGHZ

K⃗
⊗ 1S⃗ÞUtw†

KS
⟶ ðC2Þ

¼ 1

K

XK−1
i;k¼0

ðjiihkjÞ⊗M
K⃗

⊗ UðiMÞ
S⃗

UðkMÞ†
S⃗

; ðC3Þ

where we have defined the notation iM ≔ i…i|{z}
Mtimes

. We now

provide the proof of Theorem 1:
Proof of Theorem 1.—We begin by showing the bound

for pure biseparable states jφi
KS
⟶ . For such a state, there

exists a bipartition of the parties, defined by nonempty
index sets I ⊂ f1;…;Mg and J ¼ f1;…;MgnI, such that
the state is a product with respect to that bipartition.
Namely, jφi

KS
⟶ ¼ jφ̃iSIKI

⊗ jφ̄iSJKJ
, where we have

defined HSIKI
¼ ⊗

i∈I
HSiKi

and HSJKJ
¼ ⊗

j∈J
HSjKj

. Let us

also define m ≔ jIj and n ≔ jJj and note that M ¼ mþ n.
We can expand

jφ̃iSIKI
¼

XK−1
i1;…;im¼0

α̃i1…im ji1…imiKI
⊗ jϕ̃i1…imiSI ; ðC4Þ

jφ̄iSJKJ
¼

XK−1
j1;…;jn¼0

ᾱj1…jn jj1…jniKJ
⊗ jϕ̄j1…jniSJ : ðC5Þ

Here, α̃i1…im ∈ C such that
P

K−1
i1;…;im¼0 jα̃i1…im j2 ¼ 1 and

ᾱj1…jn ∈ C such that
P

K−1
j1;…;jn¼0 jᾱj1…jn j2 ¼ 1.

Furthermore, it holds that

Tr½Πγ;K

KS
⟶ φ

KS
⟶ � ¼ Tr

��
1

K

XK−1
i;k¼0

ðjiihkjÞ⊗M
K⃗

⊗ UðiMÞ
S⃗

UðkMÞ†
S⃗

�
φ̃KISI ⊗ φ̄KJSJ

	
ðC6Þ

¼ 1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�Tr½UðiMÞ†jϕ̃imihϕ̃km jSI ⊗ jϕ̄inihϕ̄kn jSJUðkMÞ� ðC7Þ

¼ 1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii; ðC8Þ

where we have defined the state

jζiiS⃗ ≔ UðiMÞ†jϕ̃imiSI ⊗ jϕ̄iniSJ : ðC9Þ

We note that Eq. (C8) is a probability; in particular, it is real
and non-negative. Hence, it holds that

1

K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii ðC10Þ

¼




 1K

XK−1
i;k¼0

α̃im ᾱinðα̃kmÞ�ðᾱknÞ�hζkjjζii




 ðC11Þ

≤
1

K

XK−1
i;k¼0

jα̃im jjᾱin jjα̃km jjᾱkn jjhζkjjζiij; ðC12Þ

where in the first inequality, we have used the subadditivity
and multiplicity of the absolute value of complex numbers.
We note that for all i, k in the sum, jhζkjjζiij ≤ 1. Let us
define pi ¼ jα̃im j2 and note that pi ≥ 0 and

P
K−1
i¼0 pi ≤ 1.

Let us also define qi ¼ jᾱin j2 and note that qi ≥ 0 and

P
K−1
i¼0 qi ≤ 1. Hence, there exist respective probability

distributions fp̂ig and fq̂ig over f0;…; K − 1g such that
pi ≤ p̂i and qi ≤ q̂i for all i ¼ 0;…; K − 1. We then obtain

1

K

XK−1
i;k¼0

jα̃im jjᾱin jjα̃km jjᾱkn jjhζkjjζiij ðC13Þ

≤
1

K

XK−1
i;k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piqipkqk

p ¼ 1

K

�XK−1
i¼0

ffiffiffiffiffiffiffiffiffi
piqi

p 	2
ðC14Þ

≤
1

K

�XK−1
i¼0

ffiffiffiffiffiffiffiffiffi
p̂iq̂i

p 	2
≤

1

K
; ðC15Þ

where we have used the fact that the classical fidelity
between two probability distributions is upper bounded by
1. This establishes the theorem for pure biseparable states
with respect to arbitrary bipartitions. Noting that every

mixed biseparable state σ
KS
⟶ ∈ BSð∶KS⟶

∶Þ can be expressed
as a convex sum of pure biseparable states finishes the
proof. ▪
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APPENDIX D: UPPER BOUNDS ON THE CKA
RATES OF MULTIPLEX CHANNELS

1. Proof of Theorem 2

Proof.—Let us consider any cppp-assisted protocol that

achieves a rate P̂N
cppp ≡ P̂. Let ρð1Þ ∈ FSð∶LA0⟶

∶RB
⟶

∶P⃗∶Þ be
a fully separable state generated by the first use of LOCC
among all spatially separated allies. Let

τð1Þ
LA
⟶

R⃗ PC
⟶ ≔ N ðρð1Þ

LA
⟶

RB
⟶

P⃗
Þ: ðD1Þ

We note that τð1Þ is a separable state with respect to

bipartition LA
⟶

R⃗ C⃗ ∶P⃗. The action of the decoder channel

D ≔ Lð2Þ
LA
⟶

R⃗ PC
⟶

→SK
⟶ on τð1Þ yields the state

ω
SK
⟶ ≔ Lð2Þðτð1Þ

LA
⟶

R⃗ PC
⟶ Þ: ðD2Þ

By assumption, we have that

Fðγ
SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε; ðD3Þ

for some (M-partite) private state γ, which implies that
there exists a projector Πγ

SK
⟶ corresponding to a γ-privacy

test such that (see Proposition 1)

Tr½Πγ

SK
⟶ω

SK
⟶ � ≥ 1 − ε: ðD4Þ

From Theorem 1,

Tr½Πγ

SK
⟶σ0

SK
⟶ � ≤ 1

K
¼ 2−P̂; ðD5Þ

for any σ0 ∈ BSð∶SK⟶∶Þ.
Let us suppose a state σ

LA
⟶

R⃗ PC
⟶ ∈ BSð∶LA⟶∶R⃗∶PC

⟶
∶Þ of

the form σ
LA
⟶

R⃗ PC
⟶ ¼ σ

LA
⟶

R⃗ C⃗
⊗ σP⃗, where σ

LA
⟶

R⃗ C⃗
is arbi-

trary. It holds that σ
SK
⟶ ≔ Lð2Þðσ

LA
⟶

R⃗ PC
⟶ Þ ∈ BSð∶SK⟶∶Þ.

Thus, the privacy test is feasible for Dε
hðωkσÞ, and we

find that

P̂ ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ ðD6Þ

≤ Dε
hðτð1Þ

LA
⟶

R⃗ PC
⟶ Þkσ

LA
⟶

R⃗ PC
⟶ Þ ðD7Þ

≤ sup
ψ∈FSðLA0⟶

∶RB
⟶

∶P⃗Þ
Dε

hðN ðψ
LA0⟶

∶RB
⟶

∶P⃗
Þkσ

LA
⟶

R⃗ PC
⟶ Þ ðD8Þ

¼ sup
ψ∈FSðLA0⟶

∶RB
⟶Þ

Dε
hðN ðψ

LA0⟶
∶RB
⟶Þkσ

LA
⟶

R⃗ C⃗
Þ: ðD9Þ

The second inequality follows from the data-processing
inequality. The third inequality follows from the quasicon-
vexity of Dε

h. The equality follows from Eq. (A2) and a
suitable choice of σP⃗ that always exists because, for any

pure state ψ ∈ FSðLA0⟶
∶RB
⟶

∶P⃗Þ, the output state N ðψÞ is

separable with respect to the bipartition LA
⟶

R⃗ C⃗ ∶P⃗.
Since inequality (D9) also holds for an arbitrary

σ ∈ BSð∶LA⟶∶R⃗∶C⃗∶Þ, we can conclude that

P̂ ≤ Eε
h;GEðN Þ: ðD10Þ

▪

2. Proof of Theorem 3

Proof.—The following inequality holds for an ðn;K; εÞ
LOCC-assisted secret-key-agreement protocol over a
multiplex channel N :

Fðω
SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε: ðD11Þ

For any σ
SK
⟶ ∈ FSð∶SK

⟶
∶Þ, we have the following bound

due to inequality (D11) and Theorem 1:

log2K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ: ðD12Þ

Employing inequality (A8) in the limit α → þ∞, we obtain

log2 K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ ðD13Þ

≤ DmaxðωSK
⟶kσ

SK
⟶Þ þ log2

�
1

1 − ε

�
: ðD14Þ

The above inequality holds for arbitrary σ ∈ FSð∶SK⟶∶Þ;
therefore,

log2K ≤ Emax;Eð∶SK
⟶

∶Þω þ log2

�
1

1 − ε

�
; ðD15Þ

where Emax;Eð∶SK
⟶

∶Þω is the max-relative entropy of
entanglement of the state ω

SK
⟶ .

The max-relative entropy of entanglement Emax;E of a
state is monotonically nonincreasing under the action of
LOCC channels, and it is zero for states that are fully
separable. Using these facts, we get that
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Emax;Eð∶SK
⟶

∶Þω
≤ Emax;Eð∶LðnÞAðnÞ�����!

∶RðnÞ��!
∶PðnÞCðnÞ�����!

∶Þτn ðD16Þ

¼ Emax;Eð∶LðnÞAðnÞ�����!
∶RðnÞ��!

∶PðnÞCðnÞ�����!
∶Þτn

− Emax;Eð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!
∶Þρ1 ðD17Þ

¼ Emax;Eð∶LðnÞAðnÞ�����!
∶RðnÞ��!

∶PðnÞCðnÞ�����!
∶Þτn

þ
�Xn
i¼2

Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi

−
Xn
i¼2

Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi

	

− Emax;Eð∶Lð1ÞAð1Þ0�����!
∶Rð1ÞBð1Þ����!

∶Pð1Þ��!
∶Þρ1 ðD18Þ

≤
Xn
i¼1

½Emax;Eð∶LðiÞAðiÞ����!
∶RðiÞ�!

∶PðiÞCðiÞ����!
∶Þτi

− Emax;Eð∶LðiÞAðiÞ0����!
∶RðiÞBðiÞ����!

∶PðiÞ�!
∶Þρi � ðD19Þ

≤ nEmax;EðN Þ: ðD20Þ

The first equality follows because Emax;Eð∶Lð1ÞAð1Þ0�����!
∶

Rð1ÞBð1Þ����!
∶Pð1Þ��!

∶Þρ1 ¼ 0. The second inequality follows
because Emax;GE is monotone under LOCC channels and
ρi ¼ Liðτi−1Þ for all i ∈ f2; 3;…; ng. The final inequality
follows from Lemma 1.
From inequalities (D15) and (D20), we conclude that

log2K ≤ nEmax;EðN Þ þ log2

�
1

1 − ε

�
: ðD21Þ

▪

3. Proof of Theorem 4

Proof.—For an ðn;K; εÞ LOCC-assisted secret-key-
agreement protocol over a multiplex channel N , such that
Fðω

SK
⟶ ; γ

SK
⟶Þ ≥ 1 − ε, due to inequality (D11) and Theorem

1, it holds for any σ
SK
⟶ ∈ FSð∶SK⟶∶Þ: that

log2K ≤ Dε
hðωSK

⟶kσ
SK
⟶Þ: ðD22Þ

Using the fact that [94]

Dε
hðωSK

⟶kσ
SK
⟶Þ≤ 1

1− ε

�
Dðω

SK
⟶kσ

SK
⟶ÞþhðεÞ

	
; ðD23Þ

where h is the binary entropy function, and that the bound

(D22) holds for arbitrary σ ∈ FSð∶SK⟶∶Þ, we obtain

log2K ≤
1

1 − ε
½EEð∶SK

⟶
∶Þω þ hðεÞ�: ðD24Þ

As the relative entropy of entanglement of a state is mono-
tonically nonincreasing under the action of LOCC channels
and vanishes for states that are fully separable, we can repeat
the argument in inequalities (D16)–(D20) and obtain

EEð∶SK
⟶

∶Þω ≤ nEp
EðN Þ ≤ nE∞

E ðN Þ; ðD25Þ

where the second inequality follows from Lemma 2. Taking
the limits ε → 0 and n → ∞, we obtain

P̂LOCCðN Þ ≤ E∞
E ðN Þ; ðD26Þ

showing the converse. As for the strong converse, we follow
the argument used in Ref. [49]: From inequalities (D22) and
(A8), we obtain

log2 K ≤ Ẽα;Eð∶SK
⟶

∶Þω þ α

α − 1
log2

�
1

1 − ε

�
; ðD27Þ

where α ∈ ð1;∞Þ and Ẽα;Eð∶SK
⟶

∶Þω is the sandwiched
Rényi relative entropy of entanglement of the state ω

SK
⟶ .

Rewriting inequality (D27), we obtain

ϵ ≥ 1 − 2
−nα−1α

�
log2K

n −1
nẼα;Eð∶SK

⟶
∶Þω

�
: ðD28Þ

Assuming that the rate log2K=n exceeds E∞
E ðN Þ,

by inequality (D25), it will be larger than

ð1=nÞEEð∶SK
⟶

∶Þω. Hence, there exists an α > 1, such that

ðlog2K=nÞ − ð1=nÞẼα;Eð∶SK
⟶

∶Þω > 0, and the error
increases to 1 exponentially. ▪

4. Proof of Theorem 5

Let N
A⃗0 B⃗→A⃗ C⃗

be a multipartite quantum channel that is
tele-covariant with respect to groups fGaga∈A and fGbgb∈B
as defined in Sec. V C. By definition, for all a ∈ A and
b ∈ B, we have

1

Ga

X
ga

Uga
A00
a
ðΦþ

A00
aLa

Þ ¼ 1A00
a

jA00
aj
⊗

1La

jLaj
; ðD29Þ

1

Gb

X
gb

Ugb
B0
b
ðΦþ

B0
bRb

Þ ¼ 1B0
b

jB0
bj
⊗

1Rb

jRbj
; ðD30Þ
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respectively, where A00
a ≃ La, B0

b ≃ Rb, and Φþ denotes an
EPR state. Note that in order for each fUga

A00
a
g and fUgb

B0
b
g to

be one-designs, it is necessary that jA00
aj2 ≤ Ga and jB0

bj2 ≤
Gb [153].
For every a ∈ A and every b ∈ B, we can now define

fEga
A00
aLa

gga and fEgb
B0
bRb

ggb , with respective elements

defined as

Ega
A00
aLa

≔
jA0

aj2
Ga

Uga
A00
a
Φþ

A00
aLa

ðUga
A00
a
Þ†; ðD31Þ

Egb
B0
bRb

≔
jBbj2
Gb

Ugb
B0
b
Φþ

B0
bRb

ðUgb
B0
b
Þ†; ðD32Þ

where A0
a ≃ A00

a and Bb ≃ B0
b. It follows from the fact that

jA0
aj2 ≤ Ga and jBbj2 ≤ Gb as well as Eqs. (D29) and (D30)

that fEga
A00
aLa

gga and fEgb
B0
bRb

ggb are valid POVMs for all a ∈
A and b ∈ B.
The simulation of the channelN

A⃗0 B⃗→A⃗ C⃗
via teleportation

begins with a state ρ
A⃗00 B⃗0 and a shared resource

θ
LA
⟶

R⃗ C⃗
¼ N

A⃗0 B⃗→A⃗ C⃗
ðΦþ

L⃗ R⃗ jA⃗0 B⃗
Þ. The desired outcome is for

the receivers to receive the state N ðρ
A⃗00 B⃗0 Þ and for the

protocol to work independently of the input state ρ
A⃗00 B⃗0 .

The first step is for senders Aa and Bb to locally perform
the measurement f⊗a∈AE

ga
A00
aLa

⊗⊗b∈BE
gb
B0
bRb

g
g⃗
and then

send the outcomes g⃗ to the receivers. Based on the outcomes

g⃗, the receivers Aa and Cc then perform Wg⃗
Aa

and Wg⃗
Cc
,

respectively. The following analysis demonstrates that this
protocol works by simplifying the form of the postmeasure-
ment state:

�Y
a∈A

Ga

Y
b∈B

Gb

�
Tr

A00L
⟶

B0R
⟶

��
⊗
a∈A

Ega
A00
aLa

⊗⊗
b∈B

Egb
B0
bRb

��
ρ
A⃗ B⃗0 ⊗ θ

LA
⟶

R⃗ C⃗

�	

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
Tr

A00L
⟶

B0R
⟶

nh
⊗
a∈A

Uga
A00
a
Φþ

A00
aLa

Uga
A00
a

† ⊗⊗
b∈B

Ugb
B0
b
Φþ

B0
bRb

Ugb
B0
b

†
	
ðρ

A⃗ B⃗0 ⊗ θ
LA
⟶

R⃗ C⃗

�o
ðD33Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B0⟶

jL⃗ R⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�†
ρ
A⃗ B0⟶ ⊗ θ

LA
⟶

R⃗ C⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
ðD34Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B⃗0 jL⃗ R⃗

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�†
ρ
A⃗ B0⟶

�
⊗
a∈A

Uga
A00
a
⊗⊗

b∈B
Ugb

B0
b

�
⊗ θ

LA
⟶

R⃗ C⃗
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
ðD35Þ

¼
�Y

a∈A
jA0

aj2
Y
b∈B

jBbj2
�
hΦþj

A00⟶
B0⟶

jL⃗ R⃗

h�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�†
ρL⃗ R⃗

�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�i�
θ
LA
⟶

R⃗ C⃗
jΦþi

A00⟶
B0⟶

jL⃗ R⃗
: ðD36Þ

The first three equalities follow by substitution and some rewriting. The fourth equality follows from the fact that

hΦjA0AMA0 ¼ hΦjA0AM
�
A ðD37Þ

for any operator M, where � denotes the complex conjugate, taken with respect to the basis in which jΦiA0A is defined.
Continuing, we have that

Eq: ðD36Þ ¼
�Y

a∈A




A0
a




Y
b∈B




Bb




�TrL⃗ R⃗

nh�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�†
ρL⃗ R⃗

�
⊗
a∈A

Uga
La

⊗⊗
b∈B

Ugb
Rb

�i�
N

A0⟶
B⃗→A⃗ C⃗

�
Φþ

L⃗ R⃗ jA0⟶
B⃗

�o
ðD38Þ

¼
�Y

a∈A




A0
a




Y
b∈B




Bb




�TrL⃗ R⃗

�
N

A⃗0 B⃗→A⃗ C⃗

��
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�†
ρ
A⃗0 B⃗

�
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�
Φþ

L⃗ R⃗ jA0⟶
B⃗

�	
ðD39Þ

¼ N
A0⟶

B⃗→A⃗ C⃗

��
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

�†
ρ
A0⟶

B⃗

�
⊗
a∈A

Uga
A0

a
⊗⊗

b∈B
Ugb

Bb

��
ðD40Þ

¼
�
⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

�†
N

A0⟶
B⃗→A⃗ C⃗

�
ρ
A0⟶

B⃗

��
⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

�
: ðD41Þ

The first equality follows because jAjhΦjA0Að1A0 ⊗ MABÞjΦiA0A ¼ TrAfMABg for any operator MAB. The second equality
follows by applying the conjugate transpose of Eq. (D37). The final equality follows from the covariance property of the
channel.
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Thus, if the receivers finally perform the unitaries

⊗
a∈A

Wg⃗
Aa

⊗⊗
c∈C

Wg⃗
Cc

upon receiving g⃗ via a classical channel

from the senders, then the output of the protocol is
N

A⃗0 B⃗→A⃗ C⃗
ðρ

A⃗0 B⃗Þ, so this protocol simulates the action of
the multipartite channel N on the state ρ. ▪

5. Proof of Theorem 6

Before proving Theorem 6, we need the following
lemma, which generalizes Lemma 7 in Ref. [62]:
Lemma 4: Let T ¼ fUtw†ρ

SK
⟶Utw∶ρ

SK
⟶ ∈ BSð∶SK⟶∶Þg

be the set of twisted biseparable states. Then, for any
σ
SK
⟶ ∈ T , it holds that

DðΦK⃗jjσK⃗Þ ≥ logK: ðD42Þ
Proof.—Let σ

SK
⟶ ∈ T , i.e., σ

SK
⟶ ¼ Utw†ρ

SK
⟶Utw for some

twisting unitaryUtw and biseparable ρ
SK
⟶ . Here,Utw defines

a privacy testΠγ

SK
⟶ ¼ UtwðΦK⃗ ⊗ 1S⃗ÞUtw†. By Theorem 6, it

then holds that

Tr½ΦK⃗σK⃗� ¼ Tr½Πγ

SK
⟶ρ

SK
⟶ � ≤ 1

K
: ðD43Þ

By the concavity of the logarithm, it then holds that

DðΦK⃗jjσK⃗Þ ¼ −SðΦK⃗Þ − Tr½ΦK⃗ log σK⃗� ðD44Þ

≥ − log Tr½ΦK⃗σK⃗� ðD45Þ

≥ logK; ðD46Þ

finishing the proof. ▪
Now, we can follow Ref. [48] to prove Theorem 6:
Proof of Theorem 6.—Let ϵ > 0 and n ∈ N. We begin by

noting that in the case of teleportation-simulable
multiplex channels, LOCC assistance does not enhance
secret-key-agreement capacity, and the original protocol
can be reduced to a cppp-assisted secret-key-agreement
protocol [48]. Namely, in every round 1 ≤ i ≤ n, it
holds that

ρi¼LiðτiÞ¼Li(N
A0ði−1Þ���!

Bði−1Þ���!
→Aði−1Þ���!

Cði−1Þ���!ðρi−1Þ)

ðD47Þ

¼Li(T
A0ði−1ÞLA
������!

Bði−1ÞR
����!

C
⟶

→Aði−1Þ���!
Cði−1Þ���!ðθ

LA
⟶

R⃗C⃗
⊗ρi−1Þ);

ðD48Þ

where Li and T are LOCC. As the initial state ρ0 is
assumed to be fully separable, we find that the final state

ω
SK
⟶ ¼ ρn of an adaptive LOCC CKA protocol, involving

n uses of the teleportation-simulable multiplex channel
N

A⃗0 B⃗→A⃗ C⃗
, can be expressed as

ω
SK
⟶ ¼ L

LnAn���!
Rn�!

Cn�!
→SK

⟶ðθ⊗n

LA
⟶

R⃗ C⃗
Þ; ðD49Þ

where L is an LOCC operation with respect to the

partition ∶LnAn���!∶ Rn�!∶Cn�!∶. By assumption, it holds
that kω

SK
⟶ − γ

KS
⟶k1 ≤ ϵ for some m-partite private

state γ
KS
⟶ ¼ UtwðΦK⃗ ⊗ τS⃗ÞUtw†, where m is the number

of parties. Let σ̃
LnAn���!

Rn�!
Cn�! ∈ BSð∶LnAn���!∶ Rn�!∶Cn�!∶Þ.

Following the proof of Theorem 9 in Ref. [62],
we obtain

Dðθ⊗n

LA
⟶

R⃗ C⃗
jjσ̃Þ

≥ D(ω
SK
⟶ jjLðσ̃

LnAn���!
Rn�!

Cn�!Þ) ðD50Þ

¼D(Utw†ω
SK
⟶UtwjjUtw†Lðσ̃

LnAn���!
Rn�!

Cn�!ÞUtw) ðD51Þ

≥ inf
σ
SK
⟶∈T

DðTrS⃗½Utw†ω
SK
⟶Utw�jjσK⃗Þ ðD52Þ

≥ inf
σ
SK
⟶∈T

DðΦK⃗jjσK⃗Þ − 4mϵ logK − hðϵÞ ðD53Þ

≥ ð1 − 4mϵÞ logK − hðϵÞ; ðD54Þ

where, in the last two inequalities, we have used the
asymptotic continuity of the relative entropy and
Lemma 4, respectively. Letting n → ∞ and ϵ → 0, we
finish the proof. ▪

6. Proof of Theorem 7

As in the proof of Theorem 6, we have

ω
SK
⟶ ¼ L

LnAn���!
Rn�!

Cn�!
→SK

⟶ðθ⊗n

LA
⟶

R⃗ C⃗
Þ; ðD55Þ

where L is an LOCC operation with respect to the partition

∶LnAn���!∶ Rn�!∶Cn�!∶. Now, following the proof of Theorem 2,
we have that

Fðγ
SK
⟶ ;ω

SK
⟶Þ ≥ 1 − ε; ðD56Þ

for some private state γ; hence, there exists a projector
Πγ

SK
⟶ corresponding to a γ-privacy test such that (see

Proposition 1)

Tr½Πγ

SK
⟶ω

SK
⟶ � ≥ 1 − ε: ðD57Þ

On the other hand, from Theorem 1, we have
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Tr½Πγ

SK
⟶σ

SK
⟶ � ≤ 1

K
; ðD58Þ

for any σ ∈ FSð∶SK⟶∶Þ. Let us suppose a state

σ0
LA
⟶

R⃗ C⃗
∈ FSð∶LA⟶∶R⃗∶C⃗∶Þ, and let us define σ

SK
⟶ ¼

L
LnAn���!

Rn�!
Cn�!

→SK
⟶ðσ0⊗n

LA
⟶

R⃗ C⃗
Þ, which is in FSð∶SK⟶∶Þ.

Hence, for all α > 1, it holds that

log2K ≤ Dε
h

�
ω
SK
⟶

���σ
SK
⟶

�
ðD59Þ

≤ Dε
h

�
θ⊗n

LA
⟶

R⃗ C⃗

���σ0⊗n

LA
⟶

R⃗ C⃗

�
ðD60Þ

≤D̃α

�
θ⊗n

LA
⟶

R⃗C⃗

���σ0⊗n

LA
⟶

R⃗C⃗

�
þ α

α−1
log2

�
1

1−ϵ

�
ðD61Þ

¼nD̃α

�
θ
LA
⟶

R⃗C⃗

���σ0
LA
⟶

R⃗C⃗

�
þ α

α−1
log2

�
1

1−ϵ

�
:

ðD62Þ

The first inequality holds for any σ ∈ FSðSK
⟶

Þ. The second
inequality follows from the data-processing inequality. The
third inequality follows from Eq. (A8). The equality is due
to the additivity of D̃α [64]. As the above holds for any

σ0
LA
⟶

R⃗ C⃗
∈ FSð∶LA⟶∶R⃗∶C⃗∶Þ, we obtain Theorem 7.

APPENDIX E: REPEATER
AS A MULTIPARTITE CHANNEL

In order to provide bounds for more repeater protocols
that involve two-way communication between Alice and
Charlie or between Bob and Charlie before Charlie’s
measurement, we have to slightly generalize our results
in Sec. V. Namely, in addition to trusted parties
fXigMi¼1 ¼ fAaga ∪ fBbgb ∪ fCcgc, we can add a number
of cooperative but untrusted parties fX̃igM̃i¼1 ≔
fÃãgã∈Ã ∪ fB̃b̃∈B̃gb̃ ∪ fC̃c̃∈C̃gc̃. Let us denote the quan-
tum systems hold by respective untrusted parties aseA0

ã; L̃ã; Ãã; B̃b̃; R̃b̃; C̃c̃; P̃c̃ and redefine

A⃗0 ≔ fA0
aga∈A ∪ feA0

ãgã∈Ã; A⃗ ≔ fAaga∈A ∪ fÃãgã∈Ã;
L⃗ ≔ fLaga∈A ∪ fL̃ãgã∈Ã;
B⃗ ≔ fBbgb∈B ∪ fB̃b̃gb̃∈B̃; R⃗ ≔ fRbgb∈B ∪ fR̃b̃gb̃∈B̃;
C⃗ ≔ fCcgc∈C ∪ fC̃c̃gc̃∈C̃; P⃗ ≔ fPcgc∈B ∪ fP̃c̃gc̃∈C̃;

while keeping the old definitions for K⃗ and S⃗. We then
assume that we have a multiplex channel N

A⃗0 B⃗→A⃗ C⃗
and

LOCC operations Li, for i ¼ 1;…; n, among trusted and

untrusted parties. However, we assume that as part of the
last round of LOCC, Lnþ1, all subsystems belonging to
untrusted parties are traced out, resulting in a state ω

SK
⟶

among the trusted parties only. It is now easy to show that
the proofs of Theorems 3 and 4 also go through in this
slightly generalized scenario. Namely, tracing out parties in
a fully separable state results in a fully separable state on
the remaining parties, and by the monotonicity of the
generalized divergences, inequalities (D16) and (D25) also
hold if we trace out the untrusted parties in order to obtain
ω. Note that the same does not hold true in the case of
Theorem 2, where we have the distance to the set of
biseparable states, which is not preserved under the
trace-out.
Returning to the quantum key repeater, we can now

identify Alice and Bob as two trusted parties and Charlie as
an untrusted party and define a multiplex channel as the
tensor product of the two channels from Alice to Charlie
and Bob to Charlie, namely,N repeater

AB→C ≔ N 1
A→CA

⊗ N 2
B→CB

,
with C ≔ CACB. We include the local state preparation by
Alice and Bob; the LOCC performed by Alice, Charlie, and
Bob during key distillation protocols; and Bob’s entangle-
ment-swapping measurement and subsequent classical
communication into the LOCC operations that interleave
the uses of N repeater

AB→C . Crucially, the final LOCC operation
has to include the trace-out of Charlie’s system, as he is an
untrusted party. Application of the generalized versions of
Theorem 3 or Theorem 4 then provides us with an
upper bound on the achievable key rate in terms of
minfEmax;EðN repeater

AB→C Þ; E∞
E ðN repeater

AB→C Þg. As has been shown
in Ref. [74], there are examples of channels acting on finite-
dimensional systems where the regularized relative entropy
of entanglement is strictly less than max-relative entropy of
entanglement, in which case, Theorem 4 provides tighter
bounds than the ones provided in Ref. [50]. For tele-
covariant channels, we can invoke Remark 5 and Theorem
5 to obtain bounds in terms of the relative entropy of
entanglement.
Let us now consider repeater chains with more than a

single repeater station. We assume a protocol where each
channel has to be used the same number of times to get the
desired fidelity. We consider Alice and Bob as trusted
parties and the repeater stations C1;…; Cl as coopera-
tive but untrusted parties. Defining a multiplex
channelN repeater chain

AC0
1
;…;C0

l→C1;…;ClB
≔ N 1

A→C1
⊗ N 2

C0
1
→C2

⊗ … ⊗

N l
C0
l−1→C0

l
⊗ N lþ1

C0
l→B and including entanglement purifica-

tion and swapping operations of all nesting levels into the
LOCC operations, we then apply Theorem 3 or Theorem 4
to bound the achievable key rate between Alice and Bob by
minfEmax;EðN repeater chainÞ; E∞

E ðN repeater chainÞg. If involved
channels are tele-covariant, then we obtain bounds in terms
of the relative entropy of entanglement.
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APPENDIX F: LIMITATIONS ON SOME
MDI-QKD PROTOTYPES

Following the discussion in Sec. VI D, let us now
consider MDI-QKD settings with the noise model for
transmission of qubit systems from both Aa1 and Aa2 to
Charlie through qubit channels given by either the depola-
rizing channel Dl

Ai→Ci
or the dephasing channel Ds

Ai→Ci
:

Dl
Ai→Ci

ðρAi
Þ ¼ λlρCi

þ 1 − λl
2

1Ci
; ðF1Þ

Ds
Ai→Ci

ðρAi
Þ ¼ λsρCi

þ ð1 − λsÞẐρCi
Ẑ†; ðF2Þ

where

−
1

3
≤ λl ≤ 1; 0 ≤ λs ≤ 1; ðF3Þ

Ẑ is a Pauli-Z operator, and ρ is an arbitrary input state.
Like the MDI-QKD setup with erasure channels discussed
earlier, we assume that Charlie can perform a perfect Bell
measurement MC⃗→X with probability q and failure prob-
ability 1 − q. We notice that the multiplex channels

NMDI;Dl

A⃗→Z⃗
;NMDI;Ds

A⃗→Z⃗
for these MDI-QKD prototypes are also

tele-covariant, which implies that the MDI-QKD capacities
for respective MDI-QKD settings, i.e., with depolarizing
channels and dephasing channels, are upper bounded
as (see following subsections for proofs and plots
(Figs. 7 and 8) for some values of q:
(1) MDI-QKDwith depolarizing channelsDl [Eq. (F2)],

where − 1
3
≤ λl ≤ 1,

P̃LOCCðNMDI;DlÞ ≤ q

�
1 − h2

�
3

4
λ2l þ

1

4

�	
ðF4Þ

for 1ffiffi
3

p < λl ≤ 1, and 0 otherwise.

(2) MDI-QKD with dephasing channels Ds [Eq. (F1)],
where 0 ≤ λs ≤ 1,

P̃LOCCðNMDI;DsÞ

≤

8>>><
>>>:

q(1 − h2ð12p−ðλsÞ) for λs > 3
4

0 for 1
4
≤ λs ≤ 3

4

q(1 − h2ð12p−ð1 − λsÞ) for λs < 1
4
;

ðF5Þ
where p−ðxÞ ≔ 4x2 − 3xþ 1.

1. MDI-QKD via depolarizing channels

In this section, we show a bound on MDI-QKD (or,
equivalently, on a particular type of quantum repeater). In the
latter setup, there are three stations: A,B, and an intermediate
one C≡ CACB. We consider the links ACA and CBB to be
depolarizing channels Ds, both with the same parameter λl
[see Eq. (F2)]. We also consider that the Bell measurement,
followed by communication of the results to both the parties,
happens only with probability q. With probability (1 − q),
the state of C is just traced out. We call the multiplex channel
for a given MDI-QKD setup composed of depolarizing
channels Dl with Bell measurement, which happens with
probability q in total, a q-depolarizing-MDIQKD channel.
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FIG. 7. Upper bounds [Eq. (F4)] on the secret key capacities for
the MDI-QKD protocol with depolarizing channels for different
values of parameters q and λl, in comparison to the RB
bound [48].

0 0.2 0.4 0.6 0.8 1

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
ou

nd
 o

n 
ca

pa
ci

ty

q=0.4
q=0.5
q=0.9
q=1.0
RB

FIG. 8. Upper bounds [Eq. (F5)] on the secret key capacities for
the MDI-QKD protocol with dephasing channels for different
values of parameters q and λs, in comparison to the RB
bound [48].
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The upper bound that we derive below quantitatively
demonstrates that the operation of distillation of entangle-
ment along the links does not commute with the operation of
entanglement swapping. Indeed, even for q ¼ 1, if one does
the Bell measurement first, the output key is zero for
λl ≤ ð1= ffiffiffi

3
p Þ.

We are interested in the Choi-Jamiolkowski state of the
q-depolarizing-MDIQKD channel, which we obtain from
the Choi states (up to local unitary as the input state is
Ψ−) of the two depolarizing channels. The latter
two states read λlΨ− þ ð1 − λlÞ 14. The Choi state ρoutAB
reads

ρoutAB ≔
λ2l q
4

½Ψ−
AB ⊗ j00ih00jIAIB þΨþ

AB ⊗ j11ih11jIAIB
þΦ−

AB ⊗ j22ih22jIAIB þΦþ
AB ⊗ j33ih33jIAIB �

⊗ j00ih00jI0AI0B

þ ð1 − λ2l Þq
1AB
4

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð1 − qÞ 1AB
4

⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B : ðF6Þ

Let us examine this case. First, with probability (1 − q),
the parties are left with the initial state on AB, which is 1

4
,

and the “flag” j11ih11jI0AI0B reporting error in the Bell
measurement. With probability q, they obtain a flag
j00ih00jI0AI0B , which informs us that the Bell measurement
was successful. They also receive the classical result of the
Bell measurement: fjiiihiijIAIBg3i¼0. Only with probability
λ2l does this measurement result in the output of
the appropriate Bell state on AB. With probability
ð1 − λ2l Þ ¼ ð1 − λlÞλl þ λlð1 − λlÞ þ ð1 − λlÞ2, we have
one of three possibilities with respective probabilities:
(i) teleportation of 1CB

=2 from CA to A with probability
λlð1 − λlÞ, (ii) teleportation of 1CA

=2 from CB to B with
probability ð1 − λlÞλl, and (iii) a Bell measurement on
systems CACB of the state ð1ACA

=4Þ ⊗ ð1CBB=4Þ followed
by communication of the outcomes [with probability
ð1 − λlÞ2]. As one can check by inspection, all three
operations result in the state 1

4
on system AB.

The relative entropy of ρoutAB reads

ERðρoutABÞ ≤ qERðρoutABj00Þ þ ð1 − qÞERðρoutABj11Þ ðF7Þ

¼ qERðρoutABj00Þ; ðF8Þ

where ρoutABj11 ¼ ð1AB=4Þ ⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B and
ρoutABj00 is such that ð1 − qÞρABj11 þ qρABj00 ¼ ρAB. We
have used the convexity of the relative entropy and the

fact that it is zero for a maximally mixed state. We then
observe that

ERðρoutABj00Þ ¼ ER(
�X3

i¼0

λ2l jψ iihψ ijAB þ ð1 − λ2l Þ
1AB
4

�

⊗ jiiihiijIAIB ⊗ j00ih00jI0AI0B); ðF9Þ

where jψ iihψ ij are the Bell states. Next, we use the fact that
for each i, the state λ2l jψ iihψ ijAB þ ð1 − λ2l Þ 14 is a Bell
diagonal state. A Bell diagonal state of the formP

j pjjψ jihψ jj has ER equal to 1 − hðpmaxÞ, where pmax ¼
maxj pj is the maximal of the weights of the Bell state
jψ jihψ jj in the mixture, or 0 if pmax ≤ 1

2
. In our case,

pmax ¼ λ2l þ ð1 − λ2l Þ=4. Thus, via convexity and Eq. (F8),
we obtain that

ERðρoutABÞ ≤ q

�
1 − h2

�
λ2l þ

ð1 − λ2l Þ
4

�	
ðF10Þ

for λ2l þ ð1 − λ2l Þ=4 > 1=2, and 0 otherwise. The condition
λ2l þ ð1 − λ2l Þ=4 > 1=2 on λl is equivalent to λl > ð1= ffiffiffi

3
p Þ.

This implies that for q ¼ 1, the bound is zero for
λl ∈ ð1

3
; ð1= ffiffiffi

3
p Þ�, for which the depolarizing channel is

nonzero, and hence, its private capacity is nonzero as well.
We interpret this as the noncommutativity of the indepen-
dent and identically distributed (i.i.d.) Bell measurement
and entanglement distillation. Indeed, for this range of λl,
given access to an isotropic state ρðλlÞ, one can distill
ED(ρðλlÞ) ¼ (1 − h2ðλlÞ) of entanglement, and hence, the
quantum capacity QðDlÞ ¼ 1 − h2ðλlÞ (or zero for
λl ≤ 1=3). On the other hand, this amount of key becomes
inaccessible when the Bell measurement is done first.

2. MDI-QKD via dephasing channels

In this section, we consider two dephasing channels
[Eq. (F1)] between Alice and Charlie and Bob and
Charlie. We again observe that the operation of distil-
lation and i.i.d. entanglement swapping via the Bell
measurement do not commute. Altering them leads to
different amounts of key in the output. We use the fact
that MDI-QKD via the dephasing channel is teleportation
covariant.
Note that the Choi-Jamiolkowski state (up to local unitary

operations as the input state isΨ−) of the dephasing channel
equals λsΨ− þ ð1 − λsÞΨþ ¼ ð2λs − 1ÞΨ− þ ð2 − 2λsÞρcl,
with ρcl ¼ 1

2
ðj01ih01j þ j10ih10jÞ. Hence, the Choi-

Jamiolkowski state of the dephasing-MDIQKD channel
reads
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ρoutAB ≔ ð2λs − 1Þ2qΨ−
AB ⊗

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B
þ ð2 − 2λsÞð2λs − 1ÞqρABcl

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð2 − 2λsÞq
1AB
4

⊗
1

4

X3
i¼0

jiiihiijIAIB ⊗ j00ih00jI0AI0B

þ ð1 − qÞ 1AB
4

⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B ; ðF11Þ

given that Alice has performed the control-Pauli operations
on her systemsAIA. We can safely assume that this decoding
has been done because the local unitary operation does not
change the relative entropy of entanglement. The first case is
a straightforward result of correct entanglement swapping.
Regarding the next term, with probability ð2 − 2λsÞ×
ð2λs − 1Þ, a subsystem CA of the state ρcl gets correctly
teleported toA, and hence, finally, ρABcl is shared byAlice and
Bob. However, with probability ð2 − 2λsÞ ¼ ð2 − 2λsÞ2þ

ð2 − 2λsÞð2λs − 1Þ, the resulting state is maximally mixed
because, with probability ð2 − 2λsÞ2, the state on systemC is
traced out; hence, a product of subsystems of ρABcl is an
output. On the other hand, with probability ð2 − 2λsÞ×
ð2λs − 1Þ, subsystem CB of the state ρcl is teleported to
Bob; however, Bob does not do the decoding. It is then
straightforward to check that 1

4

P
1
i¼0 σ

B
i ⊗ 1AρABcl σ̂

B
i ⊗ 1A,

with σ̂i being Pauli operators, is themaximallymixed state of
two qubits.
The relative entropy of ρoutAB reads

ERðρoutABÞ ≤ qERðρoutABj00Þ þ ð1 − qÞERðρoutABj11Þ ðF12Þ

¼ qERðρoutABj00Þ; ðF13Þ

where ρoutABj11 ¼ ð1AB=4Þ ⊗ j⊥ih⊥jIAIB ⊗ j11ih11jI0AI0B and

ρoutABj00 is such that ð1 − qÞρABj11 þ qρABj00 ¼ ρAB. We have

again used the convexity of the relative entropy and the fact
that it is zero for a maximally mixed state. We then
observe that

ERðρoutABj00Þ ¼ ER(ð2λs − 1Þ2jΨ−ihΨ−jAB þ ð2 − 2λsÞð2λs − 1ÞρABcl þ ð2 − 2λsÞ
1AB
4 ); ðF14Þ

where we have neglected systems IAIB and I0AI
0
B due to

subadditivity of ER and the fact that it is zero for both the
states

P
3
i¼0 jiiihiijIAIB and j00ih00jI0AI0B . The resulting state is

Bell diagonal [note that ρABcl ¼ 1
2
ðjΨ−ihΨ−j þ jΨþihΨþjÞ];

it is thus sufficient to find the largest weight of a Bell state to
compute its relative entropy. Bell diagonal states are sepa-
rable if the largest weight is less than or equal to half, i.e.,
when none of the Bell states (Φþ;Φ−;Ψþ;Ψ−) has weight
greater than 1=2.
For the case λs ≥ 1

2
, the state jΨ−ihΨ−j is in the mixed

state ρoutABj00 with probability ð2λs−1Þ2þð2−2λsÞð2λs−1Þþ
ð2−2λsÞ=4¼1

2
ð4λ2s−3λsþ1Þ.

Thus, keeping the structure of the Choi state of the
dephasing channel inmind,we arrive at the following bound:

ERðρoutABÞ ≤

8>>><
>>>:

q(1 − h2ð12p−ðλsÞ) for λs > 3
4

0 for 1
4
≤ λs ≤ 3

4

q(1 − h2ð12p−ð1 − λsÞ) for λs <
1
4
;

ðF15Þ

where p−ðxÞ ≔ 4x2 − 3xþ 1.

APPENDIX G: COMPLEXITY OF FINDING
LOWER BOUNDS OF THE SKA RATE FOR THE

BIDIRECTIONAL NETWORK

Here, we briefly comment on the complexity of finding a
subgraph, which allows us to realize the conference key
agreement with the capacity indicated by the inequality
(75). As we show, the complexity is a polynomial of low
degreeOðn2Þ. In what follows, a minimum spanning tree is
a tree with a minimal sum of the weights of its edges. A
minimum bottleneck spanning tree is the one in which the
edge with the highest weight has the lowest possible value
for the considered graph.
The algorithm of finding the maximal of the minimal

edges over all spanning trees of the graph is as follows.
(1) Find the maximal weight of the edges of G (denoted

as M).
(2) Find the minimum spanning tree TMST in the graph

G0 ¼ ðVG; EGÞ, which is the same as G but with the
weights of the edges changed from wðeÞ to
M − wðeÞ, where M ≡maxe0∈EG

wðe0Þ.
(3) Find the minimal weight of the edges in T, denoted

wmin. Return M − wmin.
The correctness of this algorithm follows from the fact that

every minimum spanning tree is a minimal bottleneck
spanning tree. Finding the highest weight of the edges of
this tree that is as low as possible is the opposite task from
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ours. Indeed, we aim at finding trees with the lowest
weight over its edges to be as high as possible, which is
why we search for the minimal spanning tree in the graph
with converted edges toM≡maxe0∈EG

wðe0Þ − wðeÞ. Next,
we use the fact that minT⊆Gmaxe∈ET

½M − wðeÞ� ¼
M −maxT⊆G mine∈ET

wðeÞ, so M − wmin is the solution.
The overall time complexity of this algorithm is
Oðmþ n log nÞ. Indeed, the first step takes OðmÞ time.
The next two take Oðmþ n lognÞ, where finding the
minimum spanning tree is via Prim’s algorithm based on
the data structure called the Fibonacci heap [117]. The final
step takes Oðn log nÞ, which is the time for sorting the
weights of edges (e.g., by the QuickSort algorithm). Taking
into account that m scales pessimistically as n2, we obtain
Oðn2Þ as the worst-case complexity.
To summarize, the value of the lower bound can be found

efficiently on a classical computer, given that all the
capacities describing the bidirectional network are known
and represented in the form of a graph.

APPENDIX H: KEY DISTILLATION FROM
STATES—PLOTS

To calculate our upper bounds, we utilize the technique
of semidefinite programming (SDP) with MATLAB (version)
library “SDPT3 4.0” [154], see Ref. [134]. We calculate
upper bounds for several cases, incorporating both ΦGHZ

M
states andΦW

M states. First, we vary the number of copies of
the state that enter the protocol; second, we make calcu-
lations for multipartite states with the number of parties
exceeding three. Finally, we extend our consideration to
states subjected to dephasing or depolarizing noises char-
acterized in Eq. (H1) (each qubit is subjected to noise
separately). We investigate the effect of noise in the case of
a different number of copies and different number of
parties:

ρnoisy ¼ D⊗MðρÞ; ðH1Þ

for D given by

Dq
dephðωÞ ¼ qωþ ð1 − qÞσzωσz; ðH2Þ

Dq
depolðωÞ ¼ qωþ ð1 − qÞ 1

2
; ðH3Þ

where σz is the Pauli Z matrix and q is the noise parameter.
We present the plots for the upper bound on the key rate

distilled from both ΦGHZ
M and ΦW

M states and tensor powers
of them. The plots are a function of the ε parameter
controlling the fidelity of the target state ρA⃗ with respect
to a private state.
We compare the performance of our upper bound and

choice of biseparable states for a tripartite single copy state
in Figs. 9 and 10. In the control plot in Fig. 9, for the

noiseless ΦGHZ
M state, the upper bound, as expected,

exhibits the value to be just above 1 for the chosen range
of ε, which indicates that the ε-hypothesis-testing upper
bound is not too loose. For the single copy tripartite ΦW

M
state, the value of the upper bound in Fig. 10 for ε ≈ 0 is
below 0.6, which is below the value of the rate of the
optimal LOCC asymptotic protocol, approximately
0.643 per copy [80]. In the case of two copies of bipartite
ΦW

M in Fig. 11, we obtain an upper bound that for ε ≈ 0 has
a value of around 1.18, which is significantly above the 2

3

achieved by the protocol described earlier in this Appendix,
and 1.286, which is an asymptotic limit for the state being
two copies of the ΦW

M state (Theorem 2 in Ref. [80]). Both
of these results are in agreement with the fact that single-
copy and two-copy one-shot protocols constitute a very
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FIG. 9. Plot of ε-hypothesis-testing upper bound on conference
key rate for a single copy of the ΦGHZ

3 state, for noiseless,
dephased, and depolarized cases.
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FIG. 10. Plot of ε-hypothesis-testing upper bound on the
conference key rate for a single copy of the ΦW

3 state, for
noiseless, dephased, and depolarized cases.
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limited class of protocols compared to those available for
calculating the asymptotic limit. For two copies of the ΦW

M
state, the large gap between our upper bound for the
conference key rate and the rate of the ΦGHZ

M state
distillation protocol makes us think that, indeed, the former
is larger than the latter. However, a formal proof is still
missing. Moreover, we notice that the optimal protocol ΦW

M
to ΦGHZ

M conversion has to incorporate at least three copies
of the ΦW

M state because our ε-hypothesis-testing upper
bound is smaller than the asymptotic limit for ΦGHZ

M
distillation.
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