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Order parameters are key to our understanding of phases of matter. Not only do they allow one to classify
phases, but they also enable the study of phase transitions through their critical exponents which identify
the universal long-range physics underlying the transition. Topological phases are exotic quantum phases
which are lacking the characterization in terms of order parameters. While probes have been developed to
identify such phases, those probes are only qualitative, in that they take discrete values, and, thus, provide
no means to study the scaling behavior in the vicinity of phase transitions. In this paper, we develop a
unified framework based on variational tensor networks (infinite projected entangled pair states) for the
quantitative study of both topological and conventional phase transitions through entanglement order
parameters. To this end, we employ tensor networks with suitable physical and/or entanglement
symmetries encoded and allow for order parameters detecting the behavior of any of those symmetries,
both physical and entanglement ones. On the one hand, this gives rise to entanglement-based order
parameters for topologically ordered phases. These topological order parameters allow one to quantitatively
probe the behavior when going through topological phase transitions and, thus, to identify universal
signatures of such transitions. We apply our framework to the study of the toric code model in different
magnetic fields, which along some special lines maps to the ð2þ 1ÞD Ising model. Our method identifies
3D Ising critical exponents for the entire transition, consistent with those special cases and general belief.
However, we, in addition, also find an unknown critical exponent β� ≈ 0.021 for one of our topological
order parameters. We take this—together with known dualities between the toric code and the Ising model
—as a motivation to also apply our framework of entanglement order parameters to conventional phase
transitions. There, it enables us to construct a novel type of disorder operator (or disorder parameter), which
is nonzero in the disordered phase and measures the response of the wave function to a symmetry twist in
the entanglement. We numerically evaluate this disorder operator for the ð2þ 1ÞD transverse field Ising
model, where we again recover a critical exponent hitherto unknown in the ð2þ 1ÞD Ising model,
β� ≈ 0.024, consistent with the findings for the toric code. This shows that entanglement order parameters
can provide additional means of characterizing the universal data both at topological and conventional
phase transitions and altogether demonstrates the power of this framework to identify the universal data
underlying the transition.
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I. INTRODUCTION

Symmetries play a central role in modern physics. In
particular, they are the key to understand the way in which

many-body systems, both classical and quantum, organize
themselves into different phases, a problem central to
condensed matter physics, high-energy physics, and
beyond. To this end, one needs to consider the full set
of symmetries of the interactions which describe a system
at hand and study whether its state obeys the same
symmetries or chooses to break some of them. This can
be captured through local order parameters which are
chosen such as to detect a breaking of the symmetry. The
understanding in terms of symmetries and order parame-
ters, however, not only enables us to classify the ways in
which many-body systems can order, but it moreover
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allows us to quantitatively assess how the system behaves as
it undergoes a phase transition, which forms the heart of
Landau theory. Indeed, the scaling behavior of the order
parameter in the vicinity of a phase transition allows one to
extract the universal features of the transition, that is, the
fingerprint of its long-range physics; it is a most notable fact
that phase transitions in scenarios as different as liquid-gas
or magnetic transitions fall into the same few universality
classes, which, in turn, allows one to use effective field
theories to capture the universal long-range physics.
Topological phases are zero-temperature phases of

quantum many-body systems which fall outside of the
Landau paradigm [1,2]. They exhibit ordering, witnessed,
e.g., by a nontrivial ground space degeneracy and excita-
tions with a nontrivial statistics (“anyons”). Yet, those
ground states, and, thus, the topological phase itself, cannot
be characterized by any local order parameter. Instead,
other probes for identifying topologically nontrivial states
have been developed, such as a universal constant correc-
tion γ to the area-law scaling of the entanglement entropy,
SðAÞ ¼ cjAj − γ [3,4], features of the entanglement spec-
trum [5], or properties extracted from a full set of
“minimally entangled” ground states which carry informa-
tion about the statistics of the excitations [6].
Yet, all these probes for topological order suffer from a

severe shortcoming as compared to conventional order
parameters: On the one hand, conventional order param-
eters allow one to identify the phase at hand—they are
qualitative order parameters. But, at the same time, they
also allow one to quantitatively study the behavior of the
system as it undergoes a phase transition and to extract
information about the universal properties of the transition
—they are quantitative order parameters. While finger-
prints for topological order such as the topological correc-
tion γ or anyon statistics are qualitative order parameters for
topological phases, they can take only a discrete set of
values by construction and, thus, cannot be used for a
quantitative study of topological phase transitions. This
leaves the quantitative study of topological phase transi-
tions wide open, with information about the underlying
universal behavior limited to cases where exact [7] or
approximate [8] duality mappings to other known models
can be devised or where universal signatures can be
extracted from the scaling of the bulk gap [9] or the
conformal field theory (CFT) structure of the full entan-
glement spectrum of the 2D bulk at criticality [10].
In this paper, we develop a framework for the quanti-

tative study of topological phase transitions through order
parameters based on tensor networks, specifically, infinite
projected entangled pair states (IPEPS) [11–13]. Given a
lattice model H, our method uses variationally optimized
IPEPS wave functions to construct order parameters which
characterize the topological features of the system, namely,
the behavior of the topological quasiparticles (anyons) and
the way in which they cease to exist at the phase transition,
that is, their condensation and confinement. Unlike other

signatures of topological order, these order parameters
vanish continuously as the phase transition is approached
and, thus, allow for the extraction of critical exponents
which enable the microscopic study of topological phase
transitions and the verification and identification of their
universal behavior.
We apply our framework to the study of the toric code

model in a simultaneous x and zmagnetic field,wherewe use
it to extract different critical exponents which characterize
the transition.On the one hand,we recover the anticipated 3D
Ising critical exponents β (for the order parameter) and ν (for
diverging lengths), consistent with previous evidence found
for the 3D Ising universality class [7–9]. For the order
parameter for deconfinement, however,we find a newandyet
unknown critical exponent β� ≈ 0.021. Our framework, thus,
allows one to extract the universal signatures of topological
phase transitions but goes even further and provides access to
additional critical exponents.
The observation of a yet unknown critical exponent,

together with the well-known duality mapping between the
toric code with a pure x or z field and the ð2þ 1ÞD
transverse field Ising model, motivates us to investigate
whether similar techniques can also be used to set up
disorder parameters for conventional phase transitions,
such as for the ð2þ 1ÞD Ising model, and whether those
exhibit those unknown critical exponents as well.
We therefore consider symmetry-breaking phase tran-

sitions, which we simulate variationally using IPEPS with
the global symmetry encoded in the tensor. We propose to
use the response of the variational wave function to the
insertion of a “symmetry twist” on the entanglement
degrees of freedom as a disorder parameter, as we show
that a nonzero value implies being in the disordered phase.
We study the proposed disorder parameter numerically for
the ð2þ 1ÞD Ising model and find a critical exponent β� ≈
0.024 (consistent with the toric code result up to numerical
precision), in agreement with the expected duality map-
ping. Our construction, therefore, constitutes a novel way
to define disorder parameters for conventional phases,
which provide a new tool to extract additional signatures
of universal behavior at criticality from the system.
Notably, this construction intrinsically relies on the descrip-
tion of the system in terms of symmetric PEPS, which gives
access to properties which cannot be captured in a direct
way by probing the physical degrees of freedom alone.
In order to achieve the goals of the paper, we build on a

number of ingredients. First, we exploit that IPEPS form a
powerful framework for the simulation of strongly corre-
lated quantum spin systems, based on the description of a
complex entangled many-body wave function in terms of
local tensors which flesh out the interplay of locality and
entanglement, and we make use of the powerful variational
algorithms developed for IPEPS [14–17]. Next, we exploit
the key role played by entanglement symmetries in describ-
ing topologically ordered systems: While these symmetries
had originally been identified in explicitly constructed
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model wave functions with topological order [18–21], they
have recently also been found to show up in variationally
optimized wave functions for topologically ordered sys-
tems [22]; they, thus, constitute the right structure for the
description of topologically ordered systems. We, thus,
impose the corresponding symmetries when variationally
optimizing the IPEPS tensor. Next, these symmetries are
known to allow one to model anyons and study their
behavior in explicitly constructed wave function families
[18,20,23–27]. A key step of our work is to show that it is
possible to generalize this description to the case of
variationally optimized IPEPS. In particular, this requires
a careful consideration of the way in which order param-
eters are constructed solely based on the symmetries
present, without any further information at hand. While
this seems contrived for regular order parameters (where
the full Hamiltonian and its dependence on external
parameters such as magnetic fields is known) and for
explicitly constructed PEPS model wave functions (where
the full tensor and its parameter dependence are given
explicitly), this turns out to be crucial for variationally
optimized IPEPS, where we have no information available
but the symmetry itself; a significant part of the manuscript
deals with this discussion.
The remainder of the paper is structured as follows: In

Sec. II, we develop our framework for the construction of
order parameters in topological phases. In Sec. III, we
apply our method to the in-depth study of the toric code
model in different magnetic fields. Finally, in Sec. V, we
discuss some further aspects of the method, before con-
cluding in Sec. VI.

II. CONSTRUCTION OF TOPOLOGICAL
ORDER PARAMETERS

In this section, we describe how to construct and measure
topological order parameter using IPEPS. We start in
Sec. II A with an introduction to IPEPS, a discussion of
entanglement symmetries, and the way in which those
symmetries underly topological order and how they can be
used to construct anyonic operators at the entanglement
level. In Sec. II B, we discuss the different physical
behavior which those anyonic operators can display and
their relation to the topological phase the system exhibits.
The following two sections, Secs. II C and II D, form the

theoretical core of the construction of topological order
parameters: We develop the framework of how to use
anyonic operators to construct order parameters. The key
challenge is that this construction must be based on the
weakest possible assumption, namely, that we know only
about the symmetry of the model at hand, without any
other information about the problem. This is since we
describe the system by variationally optimized IPEPS
tensors on which we impose only the entanglement
symmetry—thus, the way the symmetry acts is the only
information which we can be certain about, while all other

degrees of freedom are subject to arbitrary gauge choices.
While such a situation seems contrived in the case of an
actual model where a concrete Hamiltonian is given, the
study of order parameters based solely on the underlying
symmetry can nevertheless be discussed in that general
scenario, where it provides insights on their own right.
Specifically, in Sec. II C, we discuss how, from symmetry
considerations, we can connect anyonic order parameters
to conventional and string-order parameters in one dimen-
sion and how symmetries underly the construction of the
latter; in Sec. II D, we discuss the additional obstacles
which appear when transitioning to the case where we
want to use order parameters for the quantitative study of
phase transitions. There, knowledge of the symmetry alone
seems insufficient due to the free (and a priori random)
gauge degrees of freedom, and we explain how this can be
overcome by constructing order parameters which are
gauge invariant, as well as through the introduction of
suitable gauge-fixing procedures.
Finally, in Sec. II E, we provide a succinct and detailed

technical recipe for how to measure topological order
parameters in practice.

A. IPEPS, entanglement symmetries,
and topological order

We start by introducing IPEPS [11–13]. For simplicity,
we restrict to square lattices; other geometries can be
accommodated either by adapting the lattice geometry or
by blocking sites. We denote the physical dimension per
site (possibly blocked) by d. An IPEPS of bond dimension
D is given by a five-index tensor

ð1Þ

with physical index i ¼ 1;…; d and virtual indices
α; β; γ; δ ¼ 1;…; D. It describes a wave function on an
infinite plane by arranging the tensor on a square grid and
contracting connected indices (that is, identifying and
summing over them), depicted as

ð2Þ

More formally, this contraction should be thought of as
placing some suitable boundary conditions at the virtual
indices at the boundary and taking those boundaries to
infinity; numerically, this amounts to convergence of bulk
properties independent of the chosen boundary condi-
tions (except for possibly selecting a symmetry-broken
sector).

ENTANGLEMENT ORDER PARAMETERS AND CRITICAL … PHYS. REV. X 11, 041014 (2021)

041014-3



IPEPS form a powerful variational Ansatz, as their
entanglement structure (built up through the contraction
of the virtual indices) is well suited to describe low-energy
states of correlated quantum many-body systems, and there
exists a range of algorithms to find the variationally optimal
state for a given Hamiltonian [14–17]. At the same time,
they can be used to exactly capture a range of interesting
wave functions, in particular, renormalization fixed point
(RGFP) models with (nonchiral) topological order, as well
as models with finite correlation length through suitable
deformations of the RGFP models.
A key point of the PEPS Ansatz is that there is a gauge

ambiguity: Two tensors which are related by a gauge

ð3Þ

(with gaugesQ and R) describe the same wave function, as
the gauges cancel in the contraction (2). In particular, for
PEPS which are obtained from a variational optimization
rather than having been constructed explicitly—that is,
those which are at the focus of this work—we cannot
assume a specific gauge, and picking a suitable gauge turns
out to be of key importance later on.
PEPS models with topological order are characterized by

an entanglement symmetry which is closely tied to their
topological features. This symmetry shows up in all known
model wave functions with topological order but has
recently also been found to appear in variational optimized
tensors and is, thus, naturally linked to topological order
[18–22]. In the case of quantum doubles of finite groups G
[28] (which are the focus of this work), this entanglement
symmetry is given by

ð4Þ

where Vg, g ∈ G, is some unitary representation of G [18].
(In the graphical calculus, the Vg are understood as two-
index tensors which are accordingly contracted with the
virtual indices.) Equation (4) implies a “pulling through”
property: Strings formed by Vg (or V†

g, depending on the
relative orientation of the string and the lattice) can be
freely deformed [29], e.g.,

ð5Þ

For simplicity, in the following, we denote the Vg’s (or V
†
g)

by blue dots, if needed labeled by placing the group
element g next to it.
Restricting to tensors with a fixed symmetry (4), as we

do in our variational simulations, also induces a corre-
sponding symmetry constraint on the gauge degrees of
freedom (3): In order for the symmetry condition (4) to be
preserved, we must have that

VgQV†
g ¼ Q and VgRV

†
g ¼ R: ð6Þ

As it turns out, condition (5) is closely tied to topological
order; in the following, we focus on the case of Abelian
groups G for simplicity. First, we can use condition (5) to,
for instance, parametrize a ground space manifold with a
topological degeneracy, by wrapping strings of Vg around
the torus—as those strings are movable, they cannot be
detected locally [30]. Second, a string with two open ends
—see Fig. 1(a)—allows one to describe paired excitations:
While the string itself can be moved using Eq. (4) and is,
thus, not detectable, its end points (which are plaquettes
with an odd number of adjacent Vg’s) cannot be moved, and
we, thus, expect them to be detectable; these correspond to
magnetic excitations. On the other hand, replacing a tensor
by one with a nontrivial transformation property

ð7Þ

where αðgÞ is an irreducible representation of G [or,
alternatively, placing a matrix Xα with transformation
property

(a) (b) (c)

(d)

FIG. 1. (a) Strings of symmetry operations g≡ Vg [Eq. (4)],
possibly dressed by trivially transforming end points C, form
pairs of magnetic fluxes. (b) Objects which transform as non-
trivial irreducible representations α under Vg form electric
excitations, such as site tensors Bα, or matrices Xα placed on
links; again, they can be dressed with some trivially transforming
tensor C. (c) A general pair of anyonic excitations, as used in this
work to study anyon condensation and deconfinement. (d) Braid-
ing as described in the language of entanglement symmetries (4)
(see the text).
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VgXαV
†
g ¼ αðgÞXα ð8Þ

on a bond]—see Fig. 1(b)—also yields a topological
excitation: As it carries a total irrep charge under the
action of Vg, it must come in charge-neutral pairs on a torus
(or otherwise be compensated by the boundary conditions).
Objects of this form are electric excitations. For both these
type of excitations, or combinations of electric and mag-
netic excitations (“dyons”), we can additionally dress the
end point with a trivially transforming tensor C [i.e., one
which satisfies Eq. (4)], e.g., to create an exact energy
eigenstate. The most general pair of excitations (without the
dressing) is shown in Fig. 1(c).
When seen on the entanglement degrees of freedom,

these objects carry all properties expected from anyonic
excitations. They can be created only in pairs, and, if we
assume for a moment that we have a way to move and
probe them, they exhibit precisely the statistics of the
anyons in the double model DðGÞ. Most importantly,
creating a pair of magnetic excitations for some g ∈ G,
moving them around an electric excitation α, and annihilat-
ing them again leaves us with a loop of Vg ’s around Xα and,
thus, yields a nontrivial braiding phase equal to αðgÞ,
following Eq. (8), illustrated in Fig. 1(d).
For the RGFP model, where the tensor—up to a basis

transformation on the physical system—is nothing but a
projector onto the invariant space of the symmetry (4),
these anyonlike objects on the entanglement level are
mapped one to one to the physical level at the RGFP; that
is to say, they can be created (in pairs), manipulated, and
detected by local physical operations (the operations just
need to respect the global Vg symmetry). Thus, at the
RGFP, these objects on the entanglement level describe real
anyons, that is, localized excitations (quasiparticles) which
are eigenstates of the Hamiltonian and have anyonic
statistics. These excitations are characterized by a group
element g and an irreducible representation α, and we label
them by a≡ ðg; αÞ and its antiparticle by ā≡ ðg−1; ᾱÞ
(here, ᾱ denotes the complex conjugate).

B. Behavior of anyonic operators vs topological order

Do the objects which we have just constructed neces-
sarily describe topological excitations? They certainly
possess the right properties at the entanglement level
(we are going to call them “virtual anyons”), but does this
necessarily mean they also describe proper physical
anyons? As just argued, at the RGFP this can easily be
seen to be the case, due to the unitary correspondence
between the entanglement and physical degrees of free-
dom on the invariant subspace (4)—thus, the anyonic
operators at the entanglement level can be created,
manipulated, and detected by physical unitaries. This
continues to holds as we move away from the RGFP—
we can understand this, e.g., using quasiadiabatic evolu-
tion [31], which effectively evolves the tensors without

affecting the entanglement symmetry (4) and which, thus,
dresses only the end points of the strings [as in Figs. 1(a)
and 1(b)]. In fact, this is precisely what underlies, e.g., the
excitation Ansatz for topological excitations [32,33].
Without this dressing of the end point, our virtual anyons
might not be eigenstates of the Hamiltonian, but they
regardless describe an excitation in the corresponding
topological sector (that is, a dispersing superposition of
anyonic excitation with identical anyonic quantum
number).
However, if we deform our tensors sufficiently strongly

(e.g., toward a product state), even while keeping the
symmetry (4), topological order eventually breaks down.
Yet, on the entanglement level, the “anyonic operators”
still possess the same properties [34]. This raises the
question: How can we determine whether the virtual
anyons in Fig. 1(c) do indeed describe actual physical
anyons? Or, equivalently, when is a system whose wave
function is described by tensors with a symmetry (4) truly
topologically ordered?
As it turns out, whether the system is topologically

ordered, and whether the virtual anyons represent physical
anyons, is precisely reflected in two properties, which we
naturally demand from true anyonic excitations.

1. Properties of anyonic excitations

To define the properties we require from anyonic
excitations in the topological phase, let us normalize our
tensors such that the state is normalized on the infinite
plane:

hΩjΩi ¼ 1; ð9Þ

and let us denote by jΨaāðlÞi the state with a pair of
“virtual anyons” a and ā [Fig. 1(c)] placed at the entangle-
ment degrees of freedom at separation l. We require the
following properties from this state to describe a pair of
physical anyons.
(1) We need to be able to construct a well-defined,

normalizable wave function with individual anyons
at arbitrary locations. This is measured by the
quantity

NaāðlÞ ≔ hΨaāðlÞjΨaāðlÞi: ð10Þ

For well-defined anyonic excitations, we require
NaāðlÞ → K2

a ≠ 0 as l → ∞, such that jΨaāi is
normalizable for arbitrarily separated anyonic ex-
citations.

(2) Individual anyonic excitations must be orthogonal to
the ground state, as they are characterized by a
nontrivial topological quantum number; i.e., they
live in a different (global) symmetry sector. This is
quantified by the overlap

ENTANGLEMENT ORDER PARAMETERS AND CRITICAL … PHYS. REV. X 11, 041014 (2021)

041014-5



FaāðlÞ ≔ jhΨaāðlÞjΩij2: ð11Þ

We thus require that, for nontrivial anyons a,
FaāðlÞ → 0 as l → ∞. (As long as the anyons
are close to each other, the total object aā has a
trivial topological quantum number and can, thus,
have a nonzero overlap with the ground state.)

Note that 0 ≤ FaāðlÞ ≤ NaāðlÞ, where the second inequal-
ity is the Cauchy-Schwarz inequality. It is, thus, natural to
define a normalized quantity

F̂aāðlÞ ≔ FaāðlÞ=NaāðlÞ ≤ 1: ð12Þ

In which way can the above two properties break down?
First, we can have that, for some anyon a, NaāðlÞ → 0 as
l → ∞; that is, we are unable to construct a well-defined
state as we separate the anyons a and ā. In that case, we say
that the anyons a and ā are confined. This implies that
also FaāðlÞ → 0. Second, we can have that, for some
anyon a, FaāðlÞ → C2

a > 0 [and, thus, also NaāðlÞ →
K2

a > 0]. In that case, the “anyon” a is no longer orthogonal
to the ground state; that is, it is no longer characterized by a
distinct topological quantum number and, thus, has con-
densed into the ground state.
We, thus, see that, for each “virtual anyon” a constructed

from the entanglement symmetry and its antiparticle ā, we
have three distinct possibilities:
(1) free anyon.—Naā → K2

a > 0 and Faā → 0;
(2) confined anyon.—Naā → 0;
(3) condensed anyon.—F̂aā→Ĉ2

a>0 and Naā →K2
a > 0.

We call F̂aā the condensate fraction and Naā the deconfine-
ment fraction for anyon a.
It turns out that these different behaviors can be used to

identify the different topological phases (including the
trivial phase) compatible with a given entanglement sym-
metry (4) with symmetry group G. In fact, it has been
shown to be in one-to-one correspondence to the possible
phases which can be obtained by the framework of anyon
condensation from the quantum double model DðGÞ.

C. Anyonic operators as qualitative order parameters

As we have seen in the preceding subsection, the
asymptotic behavior of NaāðlÞ → K2

a and FaāðlÞ → C2
a

can serve as order parameters which allow one to distin-
guish different topological and trivial phases. Let us now
see how they can be related to conventionally defined order
parameters and string-order parameters [24,35]. This not
only is insightful on its own right, but also provides us with
guidance on how to use them as starting points for the
construction of quantitative order parameters which allow
us to study universal behavior in the vicinity of topological
phase transitions.
To this end, let us consider the evaluation of NaāðlÞ and

FaāðlÞ in an IPEPS, where a≡ ðg; αÞ. There, both of these
quantities take the form

ð13Þ

that is, they are stringlike operators which are evaluated
along a cut in the (infinite) PEPS. Specifically, for NaāðlÞ,
h ¼ g and β ¼ α, while, for FaāðlÞ, h ¼ id (the identity
element of G) and β ¼ 1. In order to evaluate those
quantities, one proceeds as follows: Denote by

ð14Þ

the transfer operator, that is, one column of Eq. (13). Then,
determine the left and right fixed points σL and σR of T .
Numerically, this is done by approximating σL and σR with
infinite MPS (IMPS) of bond dimension χL and χR (with
tensors ML and MR); this is justified by the fact that, in
gapped phases, correlations decay exponentially, and, thus,
IMPS provide a good approximation (the quality of which
can be assessed by increasing χ) [36–38]. One, thus, finds
that the evaluation of the anyon behavior reduces to
evaluating the one-dimensional object

ð15Þ

where we define the double-layer symmetry operators
Wg ≔ Vg ⊗ V̄h with g ¼ ðg; hÞ and double-layer operators
Oα which transform as the irrep αðgÞ ≔ αðgÞβ̄ðhÞ of
G ≔ G × G, WgOαWg

† ¼ αðgÞOα.
The fact that the fixed points of T are well approximated

by MPS is very resemblant of ground states of local
Hamiltonians. In turn, the fact that those ground states
are well described by MPS is constitutive of their physics
and the types of order they exhibit [39–41]. Thus, it is
suggestive to analyze the above expression from the
perspective of σL;R being ground states of an “effective
Hamiltonian” defined through T ¼ e−H. This Hamiltonian
(just as T ) possesses a symmetry
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½H;Wg
⊗N � ¼ 0 ð16Þ

which it inherits fromEq. (4). Viewed from this angle, we see
(and discuss further in a moment) that the expressions in
Eq. (15) can be understood as (string) order parameters for
the symmetry G ×G [Eq. (16)], measured in the “ground
state” of H, i.e., the fixed point of T . Differently speaking,
they represent order parameters at the boundary, that is, in the
entanglement spectrum. Note that T (and, thus, H) is not
Hermitian and, thus, has different left and right fixed points,
which leads to additional subtleties when making analogies
to the Hamiltonian case.
To better understand the structure behind these operators,

let us first discuss conventional order parameters from a
bird’s-eye perspective, using the minimum information
possible. This allows us to reason by analogy in the
discussion of topological order parameters but at the same
time also helps us to flesh out those aspects where the
current situation is fundamentally different and poses novel
challenges. As guidance, we consider models H with a Z2

symmetry ½H;Z⊗N � ¼ 0 with

Z ¼
�
1De

−1Do

�
ð17Þ

with some degeneracy De and Do of the two irreps. As a
specific example, we keep returning to the (1þ 1)D
transverse field Ising model

H ¼
X

XiXiþ1 þ h
X

Zi ð18Þ

(with X, Z the Pauli matrices, i.e., De ¼ Do ¼ 1), but we
also find that the case where De;Do > 1 holds additional
challenges. The following considerations similarly also
hold for more general symmetry groups G with represen-
tationsWg, g ∈ G. (We limit the use of boldface notation to
when interested specifically in the double-layer structure of
the PEPS.)
A key point in the symmetry-breaking paradigm of

studying phases is that, a priori, all we are supposed to
use is the symmetry itself and not additional properties of
the concrete H given. This is particularly important in the
situation at hand, where, for the transfer operator T and the
underlying Hamiltonian H, all we know is indeed the
symmetry (16). (Recall that we consider PEPS tensors
obtained from a full variational optimization where solely
the symmetry is imposed.)
For the Ising model above, one would usually choose X

as the order parameter. However, this choice is not at all
unique: Based solely on the symmetry, any other operator
O with ZOZ† ¼ −O (that is, O ¼ cos θX þ eiϕ sin θY)
serves the same purpose, namely, to be zero in the
disordered (symmetric) phase due to symmetry reasons
and generically nonzero in the ordered (symmetry-broken)
phase except for fine-tuned choices of θ and ϕ. A dual way

of seeing this is to notice that the Ising Hamiltonian (18)
can be arbitrarily rotated in the XY plane while preserving
the Z2 symmetry. The same principle holds for more
general symmetries and/or other representations: All that
matters for an order parameter is that it transforms as a
nontrivial irreducible representation of the symmetry
group, WgOαW

†
g ¼ αðgÞOα. Indeed, there is not even the

need to restrict to single-site operators—any operator
acting on a finite range, such as O ¼ X ⊗ X ⊗ X, shares
those properties; this point becomes relevant later on.
Order parameters are directly tied to correlation functions:

Given an order parameter O≡Oα which transforms as an
irrep α, we can consider the correlation function hOiO

†
ji

betweenO at position i andO† (transforming as ᾱ) at j, which
goes to zero in the disordered phase and to a nonzero constant
in the ordered phase, namely, jhOij2 evaluated in a symmetry-
broken state. hOiO

†
ji has the advantage that, unlike hOi, it

transforms trivially under the symmetry and, thus, does not
dependon the state inwhich it is evaluated (this is used, e.g., in
quantum Monte Carlo simulations). Note that, at the same
time, in the disordered phase hOiO

†
ji decays exponentially to

zero (as long as it is a gapped phase), and, thus, any order
parameterO also defines a length scale at the other side of the
phase transition.
Comparing this discussion with Eq. (15), we see that

hOiO
†
ji is indeed one of the objects which appear there,

namely, for g ¼ h ¼ id. However, there are also other
quantities appearing in Eq. (15), such as the expectation
value of a string of symmetry operations, hWg ⊗ � � � ⊗ Wgi.
In the Ising model, this would amount to measuring the
expectation value of a string hZi ⊗ � � � ⊗ Zji. This operator
has a natural interpretation: In the symmetry-broken phase, it
flips the spins in a region and, thereby, creates a pair of
domain walls. Thus, after applying Zi ⊗ � � � ⊗ Zj, the spins
between i and j aremagnetized in the opposite direction, and
hZi ⊗ � � � ⊗ Zji → 0 as ji − jj → ∞. On the other hand, in
the disordered phase, this creates only local defects at the end
point, and, thus, hZi ⊗ � � � ⊗ Zji → const; this constant can
be seen as an order parameter corresponding to a semi-
infinite string of Zi ’s (a soliton). Note that, under the self-
duality of the Isingmodel, such a semi-infinite string ofZ’s is
exchanged with an X at its end point; that is, it is the order
parameter for the dual model, which is nonzero in the
disordered phase (sometimes termed a “disorder
parameter”).
In fact, this is a special case of a string-order para-

meter, that is, a correlation function of the form
hOi ⊗ Wg ⊗ � � � ⊗ Wg ⊗ O†

ji, where O transforms as an
irrep α of the symmetry group. String-order parameters can
be used to characterize both conventional (symmetry-
breaking) and symmetry-protected (SPT) phases in 1D,
and their pattern is in one-to-one correspondence to the
different SPT phases [specifically, the nonzero string-order
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parameters satisfy αðhÞ ¼ ωðg; hÞ=ωðh; gÞ, whereω is the 2-
cocycle characterizing the SPT phase] [35,42]. In fact, this is
exactly what happens above in Eq. (15): The behavior of
anyons is in one-to-one correspondence to string-order
parameters at the boundary under the G ×G symmetry
[Eq. (16)]; indeed, it has been shown that the possible ways
in which anyons can condense and confine is in exact
correspondence to the possible SPT phases under the
symmetry group G ×G, if one additionally takes into
account the constraints from positivity of σL; σR ≥ 0 [35].
In the following, we use the terminology “order param-

eter” to refer to both “conventional” order parameters and
string-order parameters equally.

D. Anyonic operators as quantitative order parameters

Up to now, we have discussed the interpretation of
anyonic operators as order parameters for the detection and
disambiguation of different phases under the topological
symmetry Wg ¼ Vg ⊗ V̄h of the transfer operator. But
order parameters can also be used to quantitatively study
transitions between different phases and investigate their
universal behavior. In the following, we discuss whether
and how we can use anyonic operators to the same end, that
is, for a quantitative study of topological phase transitions.
However, as we are going to see, the situation has a number
of additional subtleties as opposed to the conventional
application of order parameters. Those subtleties do not
a priori arise from fundamental differences between
topological vs conventional phase transitions. Rather, they
stem from the fact that for PEPS obtained from a varia-
tional optimization in which only the topological symmetry
(4) is imposed—which is what we focus on in this work—
all we know for sure about the transfer matrix T and, thus,
about the effective Hamiltonian H is that it possesses that
very same symmetry [Eq. (16)]. This is rather different
from physical Hamiltonians or engineered variational “toy
models” (as, e.g., in Refs. [25,27,43–47]), where we have a
smooth dependence of HðλÞ or HðλÞ on the external
parameter.
How is this smooth dependence relevant? Let us illus-

trate this with the Ising model or, generally, models with a
Z2 symmetry (17). If the Hamiltonian HðλÞ depends
smoothly on the parameter λ, such as in the Ising model,
we can choose any fixed local operator which anticom-
mutes with the symmetry as our order parameter, such as X.
However, let us now consider a “scrambled” version of the
Ising model:

HsðλÞ ¼ RðλÞ⊗NHðλÞ½RðλÞ†�⊗N; ð19Þ

where, for each value of λ, we apply a random gauge RðλÞ
which commutes with the symmetry; that is, RðλÞ ¼
exp½iθðλÞZ=2� is a rotation about the z axis by an angle
θðλÞ which is chosen at random separately for each value of

λ [48].While this seems contrived for an actual Hamiltonian,
this situation is exactly what we must expect to face in our
simulation: The variationally optimized tensor can come in a
random basis—that is, with a random gauge choiceQ and R
in Eq. (3)—for each value of the parameter λ independently,
and the only property we are guaranteed is that it possesses
the symmetry (4), and, thus, the gauge commutes with the
symmetry, ½Q;Vg� ¼ ½R; Vg� ¼ 0.
Clearly, picking a fixed order parameter such as X does not

work for the randomly rotated Hamiltonian (19), as it yields
the “normal” Ising order parameter hXi modulated with a
random amplitude cos½θðλÞ� and, thus, is random itself. A
way around could be to maximize the value of the order
parameter over all single-site operators O with ZOZ† ¼ −O
(or even all k-site operators for some fixed k). However,
while this approach likely works well in the scenario above, it
is not a viable approach in the case of anyonic operators in
PEPS. The reason is that, in a PEPS, local objects on the
entanglement level, or, e.g., a modified tensor, can affect the
PEPS on a length scale of the order of the correlation length
(and, in principle, even beyond, at the cost of singular
behavior), which is precisely the reason why, e.g., PEPS
excitation Ansätze work even though they change only a
single tensor [33,49]. In our case, however, this amounts to
allowing optimization over O which are supported on a
region on the order of the correlation length. In that case, it is
easy to see that this approach is bound to fail: Specifically, in
the case of the (non-gauge-scrambled) Ising model, we can
take the RGFP order parameter X and quasiadiabatically [31]
continue it with λ, to obtain an effective order parameter XðλÞ
with expectation value hXðλÞiλ ≡ hXiλ¼0 ¼ 1 all the way
down to the phase transition and where XðλÞ is approx-
imately supported on a region of the order of the correlation
length. We, thus, see that an order parameter which is
optimized over such a growing region yields the value 1
all the way down to the phase transition and, thus, does not
allow one to make quantitative statements about the nature of
the transitions [50].
We, thus, require another way to obtain well-defined

order parameters. A natural approach is to choose order
parameters which are gauge invariant, that is, order
parameters which are constructed such as to be invariant
under a random gauge choice. For a local order parameter
alone, however, this is not possible, since ZOZ† ¼ −O

implies O ¼ ð 0 a

b 0
Þ, which transforms under RðλÞ ¼

ð c0
c1
Þ as

RðλÞORðλÞ−1 ¼
�

0 c0ac−11
c1bc−10 0

�
; ð20Þ

which is never gauge invariant, independent of the choice
of a and b. However, there still is a way to measure the
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order parameter in a gauge-invariant way: To this end,

define a pair of order parameters O ¼ ð 0 1

0 0
Þ and O† ¼

ð 0 0

1 0
Þ and measure hOiO

†
ji for ji − jj → ∞. Let us now

see what happens to this object under a gauge trans-
formation R: O acquires a factor c0c−11 , while O† acquires
c1c−10 . In the correlator hOiO

†
ji, the gauge therefore

cancels, and we obtain a well-defined, gauge-invariant
quantity. Thus, we see that we can obtain a gauge-invariant
order parameter by combining pairs of order parameters for
which the gauges cancel and measuring the corresponding
correlator for l → ∞. (We can then, e.g., assign the square
root of the correlation to each of the order parameters.) The
same idea also works for general Abelian symmetries, as
long as all irreps are nondegenerate: In that case, the
symmetry ½Oα;Wg� ¼ 0 limits the nonzero entries of Oα to
be ðOαÞi;iþα, which under a gauge R ¼ diagðc0; c1;…Þ
acquire a prefactor cic−1iþα. Thus, by choosing Oα ¼ δi;iþα

for an arbitrary i, Oα and O†
α acquire opposite prefactors

and, thus, yield again gauge-invariant correlators.
So does this allow us to define a gauge-independent

order parameter? Unfortunately, this is only partly the case:
As soon as we have symmetries with degenerate irrep
spaces, such as in Eq. (17), any generalized gauge trans-
formation of the form

R ¼
�
R0

R1

�
ð21Þ

is admissible, under which an order parameter

O ¼ ð A

B
Þ transforms as

ROR−1 ¼
�

R0AR−1
1

R1BR−1
0

�
: ð22Þ

In this case, no gauge-invariant choice can be made, since
hROR−1i is evaluated in the reduced density matrix at that
site, about which we do not have any additional informa-
tion a priori. In particular, the dependence of the two end
points on G does not cancel out, even if we set A or B to 0,
respectively; nor does a special choice like A ¼ B ¼ 1 help
(as it leaves us, e.g., with R0R−1

1 ). In that case, we must rely
on a way of fixing a smooth gauge for the Hamiltonian H
(or H); we explain the concrete recipe in Sec. II E.
A special case is given by order parameters which

involve only semi-infinite strings of symmetry operators
� � � ⊗ Wg ⊗ Wg ⊗ 1… (in the context of topological
order, these measure flux condensation and deconfine-
ment); in the case of the Ising model, we see that they create
domain walls in the symmetry-broken phase and are dual to
the usual order parameters. These order parameters have
the feature that they are gauge invariant, since any gauge R

must satisfy ½R;Wg� ¼ 0—they, thus, have a well-defined
value and can be measured without involving any addi-
tional gauge fixing. Note, however, that this holds only for
string-order parameters with a trivial end point. In case the
model has dualities between those “pure” string-order
parameters and other order parameters, we can additionally
use these dualities to measure further order parameters
directly in a gauge-invariant way.

E. A practical summary: How to compute anyonic
order parameters in IPEPS

In the following, we summarize our finding in the form
of a practical recipe: How do I compute anyonic order
parameters for a model Hamiltonian using IPEPS? Again,
we focus on Abelian symmetry groups G. Our starting
point is always a physical Hamiltonian model H≡HðλÞ,
for which we optimize the energy variationally.
In the first step, we need to define the overall setting: the

way in which the symmetries are imposed on the tensors,
which is the same for all values of the parameter λ.

1. (I) Define symmetries

(1) Pick the appropriate symmetry group G for the
system at hand, together with a representation Vg ¼
⨁
α
αðgÞ ⊗ 1dα with irreps αðgÞ. (Note that we work

in a basis where Vg is diagonal.)
(2) Define “end point operators” Xα;γ [representing

charges α; cf. Fig. 1(c)] as

Xα;γ ¼ δγþα;γ ⊗ Mα;γ ð23Þ

for someM—that is, Xα;i has only nonzero elements
in the row and column with irrep γ þ α and γ,
respectively [51]. We chooseMα;γ ¼ 1 (this requires
that the two irreps γ þ α and γ have the same
dimension); other choices are discussed in Sec. V B.

Now, we can perform a PEPS optimization and compute
order parameters for each λ andH≡HðλÞ; we suppress the
dependence on λ in the following.

2. (II) Compute order parameters

(1) Optimize the IPEPS tensor A subject to the sym-
metry

ð24Þ

such as to minimize the energy with respect to the
Hamiltonian H≡HðλÞ. This can be accomplished, e.g.,
by using a gradient method and projecting the gradient back
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to the symmetric space (24) or using a tangent-space
method on the manifold of symmetric PEPS [52].
(2) Consider the tensor

ð25Þ

with i the physical index. This is an MPS tensor with
symmetry Vg, Ci

h ¼ V†
gCi

hVg. Apply the MPS gauge fixing
described in part (IIa) below. This yields a gauged tensor
C̃h and a gauge Q ¼ ⨁Qα which commutes with the
symmetry:

ð26Þ

Similarly, consider the tensor Cv obtained from closing the
indices horizontally and perform the analogous gauge
fixing, yielding a gauge R ¼ ⨁Rα:

ð27Þ

The gauge-fixed PEPS tensor Ã is then obtained as

ð28Þ

(3) Compute the PEPS environment ρðg; hÞ for a single
site from the gauge-fixed tensor Ã, with a semi-
infinite string of group actions Vg ⊗ V̄h ≡Wg

attached (including the identity operator g; h ¼ id):

ð29Þ

[The four indices of ρðg; hÞ are marked by the orange box.]
For instance, this can be done by computing the IMPS fixed
point of the transfer operator from left and right, with

tensors ML and MR [cf. Eq. (15)] and then contracting the
“channel operator” with a string on one side:

ð30Þ

whereWg ¼ Vg ⊗ V̄h. Alternatively, one can, e.g., also use
a corner transfer matrix (CTM)-based method.
(4) Define the normalizations

N ðg; α; γÞ ¼ tr½ρðg; gÞXα;γ ⊗ X̄α;γ�; ð31Þ

N vac ¼ tr½ρðid; idÞXvac ⊗ X̄vac� ð32Þ

and the overlaps

Oðg; α; γÞ ¼ tr½ρðg; idÞXα;γ ⊗ X̄vac�; ð33Þ

where Xvac ¼ 1 ¼ P
X0;γ.

(5) The condensate fraction of anyon a ¼ ðg; αÞ and its
antiparticle ā ¼ ðg−1; ᾱÞ is obtained as

Ĉa;γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Oðg; α; γÞOðg−1; ᾱ; γ0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðg; α; γÞN ðg−1; ᾱ; γ0Þ

p
N vac

ð34Þ

with γ0 ¼ γ þ ᾱ, which ensures that Ĉa;γ is gauge
invariant. Note that Ĉa ≡ Ĉa;γ can depend on the
choice of γ, but we expect all of them to exhibit the
same universal behavior.

(6) The deconfinement fraction is obtained as

Ka;γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðg; α; γÞN ðg−1; ᾱ; γ0Þ

p
N vac

ð35Þ

with γ0 as before. Again, Ka;γ can depend on γ and
the choice of vacuum but with the same universal
behavior.

3. (IIa) Gauge fixing

Let us now describe the gauge-fixing procedure used in
step (II), point (2), above for the tensors in Eqs. (25)
and (27).
In either case, we are given an MPS tensor C≡ Ci with

Ci ¼ V†
gCiVg; that is, the Ci are diagonal in the irrep basis

of Vg: Ci ¼ ⨁
α
Ci
α. The key point in the following is that the

gauge fixing must uniquely fix all gauge degrees of
freedom.
The following gauge-fixing procedure is then carried out

individually for each irrep sector Ci
α ≡ Bi.
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(1) Fix the right fixed point (i.e., the leading right
eigenvector) of the transfer matrix E ¼ P

i B̄
i ⊗

Bi to be the identity. To this end, compute the
leading right eigenvector ρ ≥ 0 of E and replace Bi

by Bi
r ¼ ρ1=2Biρ−1=2.

(2) Fix the left fixed point of Er ¼
P

i B̄
i
r ⊗ Bi

r to be
diagonal with decreasing entries. To this end, com-
pute the leading left eigenvector σ ≥ 0 of Er,
diagonalize it as σ ¼ UΛU† with Λ diagonal and
decreasing and U unitary, and let Bi

rl ¼ U†Bi
rU.

(Note that this has to be done consistently with the
index ordering chosen for σ.)

(3) There is a remaining degree of freedom: Both the left
and the right fixed point remain invariant if we
conjugate Bi

rl with a diagonal phase matrix S. To fix
this degree of freedom, choose the diagonal of S
equal to the phase of the first row of B1

rl, and set the
first entry of S ¼ 1. Then, B̃i ¼ SBi

rlS
−1 has positive

entries on the first row (except possibly the diagonal
entry). This uniquely fixes the remaining phase
degrees of freedom up to an irrelevant global phase.

(4) The overall gauge transformation O, Bi → B̃i ¼
OBiO−1, is then given by

O ¼ SU†ρ1=2: ð36Þ

Importantly, O is uniquely determined: ρ is uniqu-
ely determined (with eigenvalue decomposition
ρ ¼ VDV†), and U† is determined up to left multi-
plication by a diagonal phase matrix, which is
subsequently fixed by S. Thus, SU†ρ1=2 ¼
ðSU†VÞDV† uniquely fixes all free parameters in
the singular value decomposition of O.

The steps above give a gauge fixing O≡Qα for each irrep
block α, Bi ≡ Ci

α. The overall gauge fixing for Ci,
Ci → C̃i ¼ QCiQ−1, is then given by Q ¼ ⨁Qα. Note,
however, that this does not fix the relative weight of
different irrep blocks; this is taken care of by considering
order parameters which are invariant under this gauge,
namely, pairs of end points where the respective gauge
degrees of freedom cancel out.
Note that the gauge-fixing procedure is highly nonun-

ique, and different procedures can be used; however, we
find that they do not affect the universal behavior observed.
For instance, one could replace the choice of one identity
and one diagonal fixed point by a gauge where both fixed
points are chosen to be equal. Maybe more importantly, the
phase fixing is rather arbitrary and in certain situations
might have to be replaced by a different procedure, such as
when the entries used to fix S are very small, in which case
on could, e.g., pick a different combination of matrix
elements.

4. (III) Anyon lengths (mass gaps)
and confinement length

In addition to order parameters, we can also extract anyon
masses ma, that is, the correlation length ξa ¼ 1=ma asso-
ciated to a given anyon, for free anyons. Specifically, ξa is the
correlation length associated to the exponential decay of
FaāðlÞ ∼ e−l=ξa [Eq. (11)], that is, the overlap of the PEPS
with anyonsa and ā placed at distancelwith thevacuum.On
the other hand, for confined anyons, a “confinement length”
ξKaā can be extracted—this is the length scale associated to the
exponential decay of NaāðlÞ ∼ e−l=ξ

K
aā . To extract these

lengths, proceed as follows.
(1) Define

ð37Þ

where Wg ¼ Vg ⊗ V̄g0 , g ¼ ðg; g0Þ, and Πα ¼
ð1=jGj2ÞPh;h0 αðhÞᾱ0ðh0ÞYh is the projection onto irrep
sector α ¼ ðα; α0Þ. Here, Yh is the rotation on the “virtual
virtual” indices of MR corresponding to Wh, h ¼ ðh; h0Þ,
i.e.,

ð38Þ

[It can, e.g., be computed by comparing the fixed point ρ of
the transfer matrices

PðM̄RÞij ⊗ ðMRÞij and ρWh
of the

dressed transfer matrix
PðM̄RÞi0jðWhÞi0i ⊗ ðMRÞij, which

are related as ρWh
¼ ρYh; this can be facilitated by bringing

ML into canonical form such that ρ ¼ 1, which also yields
a unitary Yh [25,42].]
(2) Let λ1ðXÞ and λ2ðXÞ denote the two eigenvalues of X

with largest magnitude. Then, the mass gap in the
topologically trivial sector is

mvac ¼ 1=ξvac ¼ − log jλ2ðEid;1
id;1Þ=λ1ðEid;1

id;1Þj; ð39Þ

and the mass gap of a nontrivial anyon a ¼ ðg; αÞ ≠
ðid; 1Þ is given by

ma ¼ 1=ξa ¼ − log jλ1ðEid;1
g;α Þ=λ1ðEid;1

id;1Þj: ð40Þ

Finally, the confinement length is given by

ξKaā ¼ −1= log jλ1ðEg;α
g;αÞ=λ1ðEid;1

id;1Þj: ð41Þ
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III. TORIC CODE IN A MAGNETIC FIELD

A. Model and tensor network representation

We now apply our framework to study the physics of the
toric code model with magnetic fields:

H ¼ HTC − hx
X
i

σxi − hz
X
i

σzi : ð42Þ

Here, the degrees of freedom are two-level systems (qubits)
sitting on the edges of a square lattice, the sums run over all
sites i, and

HTC ¼ −
X
p

ðσxÞ⊗4
p −

X
v

ðσzÞ⊗4
v ð43Þ

is the toric code model [28], where the sums run over all
plaquettes p and vertices v, respectively, and ðσxÞ⊗4

p and
ðσzÞ⊗4

v act on the four sites around plaquette p and vertex v,
respectively; see Fig. 2(a).
The toric code model exhibits Z2 topological order. Its

ground state minimizes all Hamiltonian terms individually
and can be seen—cf. Fig. 2(a)—either as an equal-weight
superposition of all loop configurations on the original
lattice (solid lines) in the σz basis fj0i; j1ig (red loops), or
as an equal weight superposition of all loop configurations
on the dual lattice (dashed lines) in the σx basis fjþi; j−ig

(green dashed loops). Its ground state has an exact PEPS
representation with D ¼ 2 and a Z2 entanglement sym-
metry. It can, e.g., be derived in the following two
inequivalent ways, both relevant for later on: First, shown
in Figs. 2(b) and 2(c), by blocking the four sites in every
other plaquette to one tensor (gray square), “decorating”
the resulting lattice as indicated (without adding physical
degrees of freedom on the additional edges), and defining
the decorated plaquette as one tensor—that is, the virtual
degrees of freedom encode (in the fj0i; j1ig basis) whether
there is an outgoing loop at that point. Differently speaking,
the tensor is constructed such that the virtual index is the
difference (equivalently, sum) modulo 2 of the two adjacent
physical indices. Since only closed loops appear, the Z2

entanglement symmetry precisely corresponds to the fact
that the number of loops leaving the tensor is even; i.e.,
there are no broken loops. We denote the generators of the
symmetry group as before by Z (here, Z ¼ σz). In this
representation, inserting a symmetry string corresponds to
assigning a −1 phase to all loop configurations which
encircle the end point of the string an odd number of times
(a magnetic excitation, or vison) while inserting a nontrivial

irrep such as Xα ¼ ð 0 1

1 0
Þ or Xα ¼ ð 0 1

0 0
Þ terminates a

string and, thus, gives rise to broken strings (an electric
excitation). Following the usual convention, we denote the
anyons by m≡ ðZ; 1Þ and e≡ ðid;−1Þ, with Z the non-
trivial group element of G ¼ Z2.
Second, we can work in the dual loop picture (with loops

in the fjþi; j−ig basis on the dual lattice) [Fig. 2(d)] and
assign “color variables” to each plaquette such that loops are
boundaries of colored domains. If we choose the same
blocking of four sites as before (gray square), we obtain a
tensor network representation where the virtual indices carry
the color label in the fjþi; j−ig basis, and the physical
indices correspond to domain walls between colors; that is,
the tensor is constructed such that the physical index is the
difference modulo 2 of the adjacent virtual indices (all in the
j�i basis) [Fig. 2(e)]. Here, the Z2 symmetry arises from the
fact that flipping all colors leaves the state invariant and is,
thus, again Z≡ σz. In this dual basis, inserting an irrep Xα on
a link assigns a relative−1 phase to a colored plaquette (i.e., a
plaquette enclosed by an odd number of loops in the dual
basis), while Z strings flip colors and, thus, break dual loops.

B. Qualitative phase diagram

What is the effect of a magnetic field on the toric code
model? If we apply only a field hz > 0 in the z direction
(hx ≡ 0), the field commutes with the ðσzÞ⊗4

v term, and,
thus, the ground state stays within the closed loop space (on
the original lattice). However, the field shifts the balance
between different loop configuration toward the vacuum
configuration and eventually induces a phase transition into
a trivial phase. This disbalance between different loop

(a)

(b)

(d) (e)

(c)

FIG. 2. The two dual PEPS representations of the toric code
ground state. (a) The toric code can be seen as a pattern of closed
loops in the z basis on the original lattice (red) or in the x basis on
the dual lattice (green). By blocking plaquettes of the original
lattice, we can obtain two representations: (b) The virtual indices
double the loop degrees of freedom on the primal lattice, and,
(c) in the resulting tensor, the virtual indices are the difference of
the adjacent physical indices. (d) The loops on the dual lattice can
be represented as differences of dual plaquette colors, which form
the virtual indices, and (e) in the resulting tensor, the physical
indices (in the dual basis) are the difference of the adjacent virtual
indices.
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configurations corresponds to a doping with magnetic
excitations, and, thus, the phase transition is driven by
magnon condensation, while electric excitations become
confined. (From now on, the terminology for excitations—
electric, magnetic, etc.—always refers to this basis, unless
explicitly mentioned otherwise.) On the other hand, a pure
x-field hx > 0 has the same effect in the dual loop basis but
breaks loops in the σz basis and, thus, induces a phase
transition to a trivial phase through charge condensation. In
fact, the whole model (42) has a duality under exchanging x
and z and at the same time going to the dual lattice (which
also exchanges electric and magnetic excitations) and, thus,
under hx ↔ hz.
The phase diagram of the model is well known [7–

9,53,54] and shown in Fig. 3 (where we mark lines which
we are going to study in detail with roman letters I–VII):
There is a topological phase at a small field which
transitions into a trivial phase through either flux con-
densation (e.g., lines I and III) or charge condensation
(lines II and IV), as just discussed. Along the self-dual line
hx ¼ hz, there is a first-order line which separates the
charge condensed from the flux condensed phase (crossed
by line VI), which eventually disappears at a large enough
value of the field, at which point a crossover between the
two different ways to obtain the (ultimately identical) trivial
phase through anyon condensation appears (line VII).
Along the two lines hx ≡ 0 (line I) and its dual hz ≡ 0
(line II), it is well known that the ground state of the model
can be mapped to the ground state of the 2D transverse field
Ising model (we discuss the mapping in Sec. III H in the
context of our order parameters). Generally, the entire
transition line between the topological phase and the trivial

phase (except along the diagonal) is believed to be in the
3D Ising universality class.

C. Variational simulation

For the IPEPS simulation, we work with the 2 × 2 site
unit cell described above [Figs. 2(b) and 2(c)] which
contains one plaquette. We impose a virtual Z2 symmetry
with generator Z ¼ 1Dþ ⊕ ð−1D−

Þ, with D ¼ Dþ þD−
the bond dimension. We optimize the variational energy by
iteratively updating the tensor by using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [55–58]. After each
update, we project the tensor back to the symmetric space.
To calculate the gradient of the objective function (i.e., the
energy density) with respect to the tensor, we use the corner
transfer matrix method [59]. Furthermore, we observe that,
for the phase transitions between topological and trivial
phases, the BFGS algorithm always tends to converge
faster and find ground states with lower energies if it is
initialized with the tensor that belongs to the topological
phase. This observation suggests an important feature of
the optimization algorithm: As the algorithm minimizes the
energy by updating the local tensor at each step, it is easier
to remove than to build up long-range entanglement, and,
thus, initializing with a state with more complex entangle-
ment order is advantageous.
Figure 4(a) shows the variational energy obtained for an

x field for D ¼ 2, 3, 4, 6 (where D ¼ 3 ¼ 1þ 2 ¼
Dþ þD−, and otherwise Dþ ¼ D−), with the region
around the critical point enlarged in the inset. We find
that the optimal variational energy converges rather quickly
with D, with energies for D ¼ 4 and D ¼ 6 already being
indistinguishable. In addition, we observe that a symmetric
splitting Dþ ¼ D− is generally favorable. For comparison,
we also show energies obtained by optimizing PEPS
tensors without any symmetry. We find that D ¼ 2 without
symmetries is comparable to D ¼ 3 with symmetries
(whereas D ¼ 2 with symmetries is considerably worse
and, in fact, gives a qualitatively wrong transition, as
already observed in Ref. [60]), while D ¼ 4 with and
without symmetry give essentially the same energy. This
demonstrates that imposing the symmetry does not sig-
nificantly restrict the variational space beyond halving the
number of parameters, and, in particular, it does not
necessitate to double the bond dimension due to some
nontrivial interplay of constraints. Our findings are also in
line with previous observations that, for the transverse field
Ising model (whose ground state is dual to ours), the energy
is essentially fully converged for D ¼ 3 [61].
In addition, Fig. 4(b) shows the magnetization along the

field. We see that, for D ¼ 2 with symmetries, the phase
transition is off and first order. For larger bond dimensions
or without symmetries, the point of the phase transitions is,
however, rather close to the exact value. Notably, we see that
the Ansatzwithout symmetries undershoots the critical point
—that is, it has a tendency toward the trivial phase—while

FIG. 3. Qualitative phase diagram of the toric code with x and z
magnetic field [Eq. (42)]. Phase boundaries are indicated in
black, and lines which we study in detail later on in red, labeled
by roman numbers I–VII. There is a toric code phase (TC) at a
small field, which for large field transitions into a trivial phase
either through flux condensation (hz > hx) or charge condensa-
tion (hx > hz). The model exhibits a duality under exchanging
hx ↔ hz and simultaneously electric and magnetic excitations.
Along the self-dual line hx ¼ hz, there is a first-order line
separating the two different anyon condensation mechanisms
through which the trivial phase can be obtained, which ends at a
sufficiently large field and is replaced by a crossover regime.
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the Ansatz with symmetries for D ≥ 4 slightly overshoots
the critical point—that is, it has a tendency to stabilize
topological order. Given the connection between entangle-
ment symmetries and topological order, this is indeed
plausible. An exception is the case of D ¼ 1þ 2 with
symmetries, which is closer to the D ¼ 2 case without
symmetries. This indicates that the one-dimensional trivial
irrep is still too restrictive, and, in this case, the Ansatz
possibly rather uses the unrestricted degrees of freedom in
the twofold degenerate irrep space.

D. Topological to trivial transition: Order parameters

Let us first investigate the behavior of the order param-
eters as we drive the system from the topological into the
trivial phase by increasing the field along a fixed direction.
Figure 5 shows the order parameters for condensation and
deconfinement for the four lines I–IV. Here, the first row
reports the data for lines I and III, along which fluxes
condense, while the second row corresponds to lines II and
IV, where charges condense.

Along all four lines, we observe a qualitatively similar
behavior: As we increase the field, the deconfinement
fraction of the electric (I and III) or magnetic (II and IV)
charge decreases and drops to zero rather steeply at the
critical point, indicating their confinement. Past the critical
point, the condensate fraction for the condensed charge
becomes nonzero, with an apparently much smaller slope.
We also see that the difference for the data with D ¼ 4 and
D ¼ 6 is barely visible, confirming what we find for the
energy and magnetization in Fig. 4. For line I (top left), we
additionally show the data for D ¼ 2: As already discussed
in Sec. III C, it not only gives an incorrect critical point, but,
more importantly, also predicts a first- rather than second-
order phase transition.
As discussed before, the lines I and II, as well as the lines

III and IV (each pair plotted in the same column), are self-
dual to each other. On the other hand, they clearly do not
display the same value for the order parameters, as can be
seen from the lower panels (lines II and IV), where we
indicate the D ¼ 6 data for their dual lines I and III as gray
lines. This is not surprising—while the pairs of lines are dual
to each other, the way in which we extract the order
parameters is not; in particular, under the duality mapping,
the stringlike order parameters, which are gauge invariant,
get mapped to the irreplike order parameters, which are not
gauge invariant and require a gauge-fixing procedure, and
vice versa.
This nonuniqueness of the order parameters should not

come as a surprise and is, in fact, in linewith the discussion in
Sec. II D, where we discuss the ambiguities which arise in
fixing an order parameter when all we are allowed to use is
the symmetry. However, as we argue there, we expect that,
for well-designed order parameters (that is, a well-designed
gauge-fixing procedure), wewill observe the same universal
signatures, that is, the same critical exponents.

E. Topological to trivial transition: Critical exponents

Let us now study the scaling behavior of the order
parameters in the vicinity of the critical point.
Figure 6 shows the order parameter for anyon conden-

sation along the four lines I–IV (flux condensation for lines
I and III and charge condensation for lines II and IV). We
find that all lines show the same critical scaling, which
matches the known critical exponent β ≈ 0.3265 of the
magnetization in the ð2þ 1ÞD Ising universality class,
consistent with the fact that lines I and II map to the ð2þ
1ÞD Ising model and confirming the belief that the whole
transition line is in the Ising universality class. Indeed, as
we observe in Fig. 5, the magnetic condensate fraction
along line I equals the magnetization in the ð2þ 1ÞD Ising
model, a connection which is made rigorous in Sec. III H.
Let us now turn toward the order parameter for decon-

finement. Figure 7 shows the scaling behavior of the order
parameter for deconfinement along the same four transi-
tions. We again find that the deconfinement fraction
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FIG. 4. Variational results for energy (a) and magnetization
along the field (b) for the toric code with an x field. We find that,
for D ¼ 4, the results with symmetry are essentially fully
converged; on the other hand, a simulation with D ¼ 2 with
the entanglement symmetries in Eq. (4) imposed yields a
qualitatively wrong first-order transition. For comparison, we
also show results obtained without imposing symmetries. See the
text for further details.
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exhibits the same universal scaling behavior along all four
lines. However, the critical exponent observed is rather
different and much smaller, namely, roughly β� ≈ 0.021.
However, the precise value should be taken with care, since
(as always) the fitting is rather susceptible to the value
chosen for the critical point, and the very small value of β�
implies a rather large relative error.

What is the nature of this new critical exponent
β� ≈ 0.021, which does not even in order of magnitude
resemble any known critical exponent of the ð2þ 1ÞD Ising
model? In Sec. III H, we show that the underlying order
parameter maps to an order parameter obtained from
a “twist defect line” inserted into the ground state of the
ð2þ 1ÞD Ising model which can be constructed based on
its PEPS representation and which should serve as a
disorder operator for the Ising model. This suggests that
our technique, developed with the characterization of
topological phase transitions in mind, can equally be used
to construct novel types of disorder parameters for conven-
tional phases. We construct such a disorder parameter and
study it in detail for the ð2þ 1ÞD Ising model, in Sec. IV,
where we find that it indeed exhibits the same novel critical
exponent β�. There, we also discuss possible interpretations
of this critical exponent, as well as its utility in further
characterizing the phase transition.
At the end of this section on critical exponents, let us

stress that the fact that our order parameters give the same
universal behavior, even though the dual order parameters
for the charge and flux condensation transition are con-
structed in entirely different ways (in particular, charges
require gauge fixing, while fluxes do not) gives an
a posteriori confirmation of our approach to extracting
order parameters and universal behavior.

FIG. 5. Order parameters Ĉa for condensation and Ka for confinement across the four lines I–IV in Fig. 3, where along lines I and III
magnetic fluxes a ¼ m condense and charges e confine, and vice versa for lines II and IV. Even though I and II, as well as III and IV, are
dual to each other, the actual values of the order parameters are different due to the gauge degree of freedom in the construction of
electric order parameters—for comparison, the D ¼ 6 data from the first row are indicated in gray in the dual panels below. Yet, their
critical exponents are the same; see Figs. 6 and 7. We also observe that the magnetization of the transverse field Ising model equals Ĉm
along line I, as proven in Sec. III H.

FIG. 6. Scaling of condensate fractions close to the critical
point for the lines I–IV. The slope matches the critical exponent
β ≈ 0.3265 of the order parameter of the 3D Ising transition.
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F. Topological to trivial transition: Anyon masses

As discussed, we can also extract length scales from our
simulations. Specifically, we can, on the one hand, extract
correlation lengths ξa for anyon-anyon correlations or,
equivalently, anyon masses ma ¼ 1=ξa for free anyons; a
divergence of ξa (i.e., a closing mass gap) witnesses a
condensation of anyon a. On the other hand, we can extract
a confinement length scale ξKaā for confined anyons, which
diverges as the anyons become deconfined.
Figure 8 shows these lengths along line II, where charges

condense. Specifically, we see that the inverse anyon mass

of the electric charge, ξe, diverges at the phase transition,
while, in the trivial phase, the magnetic fluxes become
confined, witnessed by a finite confinement length ξKmm̄. In
addition, we also show the inverse mass gap for topologi-
cally trivial excitations, which diverges at the critical point
as well but is smaller than the other length (typically, one
would assume that trivial excitation with the smallest mass
gap is constructed from a pair of topological excitations
and, thus, should have roughly twice their mass, neglecting
interactions).
The analysis of the critical scaling of the different lengths

reveals that they all display the same scaling behavior,
consistent with the critical exponent ν of the correlation
length in the ð2þ 1ÞD Ising model.

G. Rotating the direction of the magnetic field:
First-order line and crossover

Finally, let us study what happens when we rotate the
magnetic field in the x-z plane while keeping its strength
constant, i.e., moving radially in the phase diagram Fig. 3
along the three lines V, VI, and VII. The resulting data are
shown in Fig. 9. Here, the panels in the first line show the
condensation and deconfinement fractions for the magnetic
particles, while the panels in the second line display the
behavior of the x and z magnetization as a function of the
angle ϕ, with the energy shown in the inset. The three
columns correspond to the three radial lines V, VI, and VII.
For line V, we observe two second-order topological

phase transitions, first from the trivial to the topological
phase through decondensation of the magnetic flux and
subsequently from the topological to the trivial phase
through flux confinement. Both Ĉm and Km show a clear
second-order behavior. Similarly, the two magnetizations
hσxi and hσzi each show a kink, yet again indicative of
underlying second-order transitions. On the other hand, the
energy does not exhibit clear signs of the phase transitions,
which show up only in its derivatives.
For line VI, the condensation and the confinement of the

magnetic flux coincide at ϕ ¼ π=4: The system undergoes
a transition from a flux condensed to a charge condensed
(flux confined) phase, without going through an intermedi-
ate topological phase. In addition, the order parameters Ĉm
and Km show a clear jump, indicative of a first-order
transition. Similarly, hσxi and hσzi both exhibit a disconti-
nuity at ϕ ¼ π=4, and the energy shows a kink (and, thus, a
discontinuous derivative).
Finally, along line VII, the order parameter plot now

shows two curves for the deconfinement fraction Km,
obtained by starting the optimization from two different
initial states, either in the charge or in the flux condensed
phase. We see that, around ϕ ≈ π=4, the value of the
deconfinement fraction becomes unstable and depends on
the choice of the initial phase. This is not all too surprising,
since line VII realizes a crossover between the two
different mechanisms of realizing the trivial phase, and,

FIG. 8. Scaling of different correlation lengths along line II:
Inverse mass gap ξe for charges (in the topological phase),
confinement length ξKmm̄ for fluxes (in the trivial phase), and
trivial correlation length ξ0. The scaling analysis (inset) shows
that they all exhibit the same critical exponent, which matches
that of the 3D Ising transition.

FIG. 7. Scaling of deconfinement fractions close to the critical
point for the lines I–IV. The slopes along the different lines agree
yet give a critical exponent β� ≈ 0.021, which is not among the
known critical exponents of the 3D Ising model. In the text, we
discuss interpretations of this exponents in terms of the 2D
quantum Ising model, the 3D classical Ising model, and the
prefactor of the area-law scaling of the Wilson loop in a 3D Ising
gauge theory.
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in the crossover regime, the interpretation of the trivial
phase as an either charge or flux confined phase should
become ambiguous; the observed dependence of the
deconfinement fraction Km on the initial phase can, thus,
be taken as a fingerprint of this crossover. On the other
hand, the lower panel shows that the physical state
obtained in the optimization is stable independent of the
choice of the initial condition: Both the value of hσxi and
the energy are independent of the choice of the initial
tensor. The observed instability is, thus, purely a signature
of the ambiguous interpretation of the trivial phase in the
crossover regime when thought of as a condensed version
of the topological model—that is, the way the state is
realized on the entanglement level—rather than an insta-
bility of the variational method as such.

H. Mapping to the ð2 + 1ÞD Ising model

It is well known that there is an analytical mapping of the
ground state of the toric code with only an x or a z field to
the ð2þ 1ÞD Ising model (i.e., the 2D transverse field Ising
model) [7]. In the following, we use this mapping to

interpret our order parameters for condensation and con-
finement in terms of conventional and generalized order
parameters for the ð2þ 1ÞD Ising model.
To this end, we start by briefly reviewing the mapping.

To start with, consider the toric code with a z field:

H ¼ −
X
p

ðσxÞ⊗4
p −

X
v

ðσzÞ⊗4
v − hz

X
i

σzi : ð44Þ

Since the field σzi commutes with the vertex stabilizers
ðσzÞ⊗4

v , for any hz the ground state is spanned by closed
loop configurations in the fj0i; j1ig basis on the original
lattice. We can, thus, work in a dual description of the loop
basis, similar to Fig. 2(d), but now on the original lattice,
where we color plaquettes pwith two colors (white=j0i and
red ¼ j1i) and interpret loops as domain walls of color
domains; see Fig. 10(a). We label plaquette variables by j{̂pi
and also mark Hamiltonian terms (Paulis) acting on them
by a hat.
Let us now see how the Hamiltonian (44) acts in the dual

basis. The Hamiltonian term ðσzÞ⊗4
v is then trivially

(a)

(b)

FIG. 9. Behavior for rotating field, lines V–VII, which move between two different condensation mechanisms of realizing the trivial
phase. Each column corresponds to one of the lines V–VII. Top row (a): condensate and deconfinement fraction of magnetic fluxes.
Bottom row (b): magnetization hσxi and hσzi and energy hHi (inset). Line V has two second-order phase transitions with a topological
phase in between, line VI a first-order phase transition between the two inequivalent trivial phases, and line VII a crossover. For line VII,
we rather show the deconfinement fraction, the xmagnetization, and the energy for two different choices of initial conditions (following
the notation of Ref. [35], Z1⊠Z1 denotes the flux confined phase and Z2⊠Z2 the flux condensed phase): We find that, while the
physical properties converge independent of the initial configuration, the interpretation in terms of a charge or flux condensate becomes
unstable around ϕ ≈ π=4, indicating a crossover regime where the interpretation of the physical phase in terms of the virtual symmetries
breaks down.
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satisfied. ðσxÞ⊗4
p flips the loop around p and, thus,

corresponds to flipping the plaquette color j{̂pi; i.e., it acts
as σ̂xp. On the other hand, the magnetic field σzi assigns a
sign −1 to a loop on that edge; as loops are domain walls of
plaquette colors, this corresponds to ð−1Þ{̂pþ{̂p 0 and, thus,
σ̂zpσ̂

z
p0 . In this basis, H [restricted to the loop space, i.e., the

ground space of
P

vðσzÞ⊗4
v ], thus becomes

Ĥ ¼ −
X
p

σ̂xp − hz
X
hp;p0i

σ̂zpσ̂
z
p0 : ð45Þ

Note again that this is primarily a mapping between the
ground states of the models and, in particular, does not
cover excitations beyond the closed loop space.
Let us now see what happens to the anyonic order

parameters under this mapping. We focus our initial
discussion on the order parameters constructed from Z
strings, since these are gauge invariant and, thus, yield a
unique quantity on the dual Ising model. However, the
mapping can also be applied to irrep-like order parameters
Xα, and we give a brief account of those at the end of the
discussion.
First, let us consider the case of a z field as just discussed.

In that case, the natural tensor network representation—that
is, the one which is constructed from the loop constraint in
the z basis—is the one in Fig. 2(c). The key property lies in
the fact that the irreps on the virtual legs carry the loop
constraint (that is, the irrep label of the virtual index equals
the sum of the adjacent physical legs in the loop basis). As
it turns out, this property is preserved by the variationally
optimal wave function also at finite field, and, thus, anyonic
order parameters constructed on the entanglement level still
have a natural interpretation in terms of the loop picture
and, thus, of the dual Ising variables. We have verified
numerically that this holds to high accuracy, but it is also
plausible analytically: On the one hand, the ground state is
constrained to the closed loop space, and, on the other
hand, the tensor is constrained to the Z2-symmetric space,
and, thus, identifying these two constraints should give the

maximum number of unconstrained variables to optimize
the wave function.
Now consider the order parameter for condensation, that

is, a semi-infinite (or very long finite)Z string; see Fig. 10(b).
ThisZ assigns a−1 sign to every edgewith a loop, and, thus,
for every edge, its effect equals to ð−1Þ{̂1þ{̂2 for the two
adjacent plaquettes 1 and 2, as indicated in Fig. 10(b). Thus,
for a long string of Z’s, the overall action equals
ð−1Þ{̂1þ{̂2ð−1Þ{̂2þ{̂3 � � � ð−1Þ{̂l−1þ{̂l ¼ ð−1Þ{̂1þ{̂l and, thus, the
two-point correlator σ̂z1σ̂

z
l of the Isingmodel variables.As the

condensation order parameter evaluates the overlap of this
statewith the ground state, it measures hσ̂z1σ̂zli:We, thus, find
that the order parameter for flux condensation under a z field
maps precisely to themagnetization in the 2D transverse field
Ising model—as we already observed numerically in Fig. 5.
Let us now turn to the case of the x field. Here, the

“good” basis is the one spanned by x basis loops on the dual
lattice, and, thus, we naturally arrive at the tensor network
representation in Fig. 2(e). Its defining feature—which we
again checked numerically to also hold away from the toric
code point—is that the loops, that is, the physical degrees
of freedom in the fjþi; j−ig basis, are obtained as the
difference of the “color” label of the virtual legs. However,
different from before, the color label is not uniquely
defined: “Color” corresponds to a decomposition of the
bond space as CD ≃ Swhite⨁Sgreen, such that Z acts by
swapping the two color spaces, ZSwhite ¼ Sgreen. Indeed,
by applying any matrix Λ which commutes with Z, we can
obtain another such decomposition (even with a non-
orthogonal direct sum). This ambiguity in the choice of
the color basis—which becomes precisely the Ising basis
after the duality mapping—is a reflection of the fact that, in
our approach, the only basis fixing comes from the
symmetry action, leaving room for ambiguity, as discussed
in Sec. II. However, let us point out that numerically we
observe that the “physical index equals difference of
colors” constraint is very well preserved for the “virtual

x basis,” that is, for the “color projections” ð 1 �1

�1 1
Þ, likely

due to the choice of initial conditions (the toric code tensor)
in the optimization.
Since in this PEPS representation the Ising degree of

freedom in the duality mapping is nothing but the color
degree of freedom of the plaquettes, the mapping from the
toric code to the Ising model can be made very explicit on
the level of the PEPS: We need to duplicate the color degree
of freedom as a physical degree of freedom and, sub-
sequently, remove the original physical degrees of freedom
of the toric code, similar to an ungauging procedure; see
Fig. 11(a). The latter can be done, for instance, through a
controlled unitary (in the dual basis) controlled by the Ising
(color) degrees of freedom, since we know that the physical
degrees of freedom are just their differences. Note that for
this construction to work, we must know the correct color
basis (see above), which, however, is a property which can

(a) (b)

FIG. 10. Mapping of the toric code in a magnetic field to the
Ising model; the mapping works on the space of closed loops.
(a) The Ising variables are obtained by assigning color labels {̂ to
the plaquettes, where loops are the domain walls between
different colors. (b) Z operators measure the difference between
two adjacent colors, ð−1Þ{̂1þ{̂2 . A magnetic flux (Z string), thus,
corresponds to a z correlator ð−1Þ{̂1þ{̂l between the Ising variables
at its ends.
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be extracted from the tensor (and is needed only in case we
want to carry out the mapping explicitly).
For an x field, at the phase transition fluxes become

confined. What does the order parameter for flux decon-
finement—the normalization of the PEPS with a semi-
infinite (or very long) string of Z’s placed along a cut—get
mapped to in the Ising model? The effect of a Z is to flip the
color label. A semi-infinite string of Z’s thus flips the color
labels along a semi-infinite cut on the lattice. Since the loop
variables are the difference of the color variables and the
“closed loop” constraint is implicitly guaranteed by the fact
that we arrive at the same color when following a closed
curve on the original lattice (recall that the loops live on
the dual lattice and, thus, the colors on the vertices of the
original lattice), flipping the color variable within the
plaquette gives rise to a broken “closed loop” constraint
for any circle around the end point of the Z string—that is,
the end point of the Z string is the end point of a broken
loop; see Fig. 11(b). Indeed, this is precisely what a
magnetic flux corresponds to in the dual basis: a broken
string.
However, how can this be mapped to the Ising model?

The fact is that it cannot, at least not in a direct way which
gives rise to an observable for the Ising model: The
mapping to the Ising model precisely relies on the fact
that we are in the closed loop space, which is no longer the
case in the current basis after introducing a flux. However,

we can still give an interpretation of this object in terms of
the Ising model, if we describe the ground state of the Ising
model in terms of PEPS: After the duality mapping
described above, we obtain nothing but a variational
PEPS description of the ground state of the Ising model
(which becomes exact as the bond dimension grows),
constructed from tensors with a Z2 symmetry

ð46Þ

[e.g., by blocking the “ungauged” tensor at the bottom of
Fig. 11(a) with the left and bottom physical index]. The
order parameter then corresponds to inserting a semi-
infinite string of Z’s along a cut—a “twist defect”—and
computing the normalization of the modified tensor net-
work (relative to the original one). It can be easily seen
that this is zero in the ordered phase: In that case, the
virtual indices carry the information about the symmetry-
broken sector; that is, they are all supported predomi-
nantly in the same sector, which is flipped by the action of
the Z string. Gluing the network with a Z string, thus,
leads to a decrease in normalization which goes down
exponentially with the length of the string, as configura-
tions which are approximately in different sectors (with
overlap < 1) are being glued together. Conversely, in the
disordered phase, we generally expect a nonzero norm,
since, sufficiently far away from the cut, the spins are
disordered and, thus, do not have a preferred alignment
relative to each other along the cut. The only contribution
comes from the end point of the string (since the spins are
still aligned up to a scale on the order of the correlation
length). Thus, we expect a nonzero value in the disordered
phase and a zero value in the ordered phase (a disorder
parameter) and, thus, a nontrivial behavior as the phase
transition is approached.
It is notable that this way we can define a (dis)order

parameter for the Ising model based on its ground state,
even though there is no direct way of measuring it from the
ground state itself: Rather, one first has to find a Z2-
symmetric PEPS representation of the ground state and
construct the order parameter through the effect of twisting
the PEPS on the entanglement degrees of freedom. In some
sense, it is the combination of the correlation structure of
the ground state and the locality notion imposed by the
tensor network description on the quantum correlations
which makes this possible. This is the reason why the
deconfinement order parameter allows us to transgress the
mapping to the Ising model and, thus, probe properties of
the system which are inaccessible when directly probing
the system. Let us note that, of course, the twisted state is
no longer a ground state of the Ising model and has a large
energy around the twist, which, however, yet again rein-
forces the point that this type of order parameter is defined

(a) (b)

FIG. 11. (a) Mapping from the PEPS tensor for the toric code in
a field in the dual representation in Fig. 2(e) (top) to the Ising
model. First, the virtual degrees of freedom (color variables) are
copied to physical degrees of freedom, which become the Ising
degrees of freedom (middle; three meeting lines correspond to a
delta tensor in the Ising = j�i basis). Then, the physical degrees
of freedom of the toric code are disentangled, e.g., by using
controlled-NOToperations in the j�i basis, controlled by the Ising
degrees of freedom (as indicated by the arrows in the middle
panel). The disentangled degrees of freedom can then be
discarded, resulting in a tensor network for the Ising model
(bottom). This can be seen as the reverse of a gauging trans-
formation. (b) Effect of a string of Z operators in the dual
representation: Z operators flip the color label of a plaquette,
giving rise to a domain wall in the coloring and, thus, broken dual
loops (green line) at the end point of the Z string.

ENTANGLEMENT ORDER PARAMETERS AND CRITICAL … PHYS. REV. X 11, 041014 (2021)

041014-19



through a deformation of the tensor network description of
the ground state and not as a directly observable property of
the ground state as such.
This discussion suggests that the same ideas as used in

the construction of topological order parameters can also be
applied to directly construct disorder operators for phases
with conventional order, such as the ð2þ 1ÞD Ising model;
this is studied in detail in Sec. IV.
Finally, an analogous mapping can be carried out for

electric charges. In the case of the z field, a charge breaks a
loop, and, correspondingly, the duality mapping to the Ising
model via plaquette colors breaks down. This can be
remedied by introducing a twist along a line emerging from
the charge acrosswhich the color, that is, the Ising variable, is
flipped; this gives rise to precisely the same order parameter
constructed from inserting a twist defect in the PEPS
representation of the Ising ground state as discussed above.
In the case of the x field, on the other hand, the charge
operator maps directly to the magnetization operator of the
Ising (color) variable, given that it is constructed in the right
way relative to the good color basis Swhite ⊕ Sgreen.

IV. ENTANGLEMENT ORDER PARAMETERS
FOR CONVENTIONAL PHASE TRANSITIONS

The fact that, under the duality mapping between the
toric code and the transverse field Ising model, the
deconfinement order parameter gets mapped to a twist
defect in the Ising model, which should serve as a disorder
parameter, suggests the surprising possibility that tensor
networks and the direct access to entanglement which they
provide can be used to also construct disorder parameters
for conventional phase transitions in entangled quantum
matter; and the unexpected critical exponent observed for
the deconfinement fraction suggests that this might equally
give access to new critical exponents for those conventional
transitions.
In the following, we describe a general such framework

for the construction of disorder operators for conventional
phase transitions, based on the direct access to entangle-
ment provided by tensor networks. We then present
numerical results obtained for the ð2þ 1ÞD transverse
field Ising model which confirm that this new kind of
disorder operator indeed displays a new critical exponent
which is not found otherwise in the 3D Ising theory. We
discuss its relation to other disorder operators, and we
conclude by explaining how both these disorder parameters
and order parameters for conventional phase transitions, as
well as the order parameters for topological phase tran-
sitions which we construct, can be understood on a unified
footing as entanglement order parameters, that is, order
parameters which are constructed to identify (dis)ordering
relative to all symmetries of the system—physical as well
as entanglement symmetries—on a unified footing.

A. Construction

Consider a Hamiltonian with a global symmetry,
½HðλÞ; U⊗N

g � ¼ 0, where Ug is a (faithful) representation
of some symmetry group G. We focus on discrete sym-
metry groups G in the following, though most of our
arguments (with some caveats) apply to continuous groups
as well. As λ changes, the Hamiltonian undergoes a phase
transition from a symmetry-broken (ordered) to a sym-
metric (disordered) phase. As an example, one could, e.g.,
think of the transverse field Ising model or a ZN Potts or
compass model with magnetic fields.
Let us now approximate the ground state (using a

variational method) with a tensor network state jΨi of
some bond dimensionD, where the symmetry is encoded in
the local tensor A:

ð47Þ

From the tensor network jΨi, we can, of course, compute
conventional order parameters, i.e., measure the expectation
value of a local physical operator Swhich does not commute
with Ug, such as an operator Sα transforming as a nontrivial
one-dimensional irrep α of G, UgSα ¼ αðgÞSαUg.
However, from the tensor network for jΨi, we can also

define a disorder parameter as follows: First, define a state
jΨgðlÞi by inserting a “twist” with a string of Vg ’s of
length l:

ð48Þ

Then, define

NgðlÞ ¼
hΨtw

g ðlÞjΨtw
g ðlÞi

hΨðlÞjΨðlÞi : ð49Þ

What behavior do we expectNgðlÞ to display in the ordered
and disordered phase, respectively? To get a qualitative
understanding, let us consider the case of G ¼ ZN ≅
f0; 1;…; N − 1g with a representation Ug ¼

P jgþ jihjj.
In the limiting case of a Potts model with zero field, the
ground space is spanned by states of the form

P
wjjji⊗N .

The corresponding tensor A (with Vg ¼ Ug) is then a tensor
with all indices the same,A ¼ P

j w
0
jjjihj; j; j; jj, with some

suitable weight w0
j. This forces all physical and virtual

indices in any connected component of the tensor network
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to have the same value j. However, when placing a twist Vg

(g ≠ 0) along a cut, j is changed to gþ j, which is orthogonal
to the virtual index on the other side of Vg, and, thus,
NgðlÞ ¼ 0.On the other hand, in the limit of infinite field, the
ground state is of the form jþi⊗N , jþi ¼ P jgi, which can
be represented by a tensor A ¼ jþiht; t; t; tj, where jti is a
state in the trivial irrep of Vg. Thus, Vg acts trivially on the
tensor, and NgðlÞ ¼ 1.
As we interpolate between the two phases, we expect

that NgðlÞ interpolates between these two behaviors. In the
ordered phase, we expect that the physical degrees of
freedom, and, thus, also the entanglement degrees of
freedom, are aligned up to short-ranged fluctuations on
the order of the underlying length scale, and, thus, we
expect NgðlÞ ∼ e−l=ξ, where ξ has a critical exponent
ν� ¼ ν. On the other hand, in the disordered phase, we
expect that the spins are not correlated beyond the
correlation length, and, thus, NgðlÞ → D2 > 0. Thus, D
serves as an order parameter for the disordered phase; that
is, it is a disorder parameter (also called disorder operator).
Note that D can be considered as the normalization of the
ground state tensor network with a semi-infinite twist,
given suitable boundary conditions.

B. Numerical results

Let us now study how this disorder parameter behaves
for a model with a symmetry-breaking phase transition.
Specifically, we consider the 2D transverse field Ising
model

HIsing ¼ −
X
hi;ji

σziσ
z
j − h

X
i

σxi : ð50Þ

It possesses a Z2 ≡ f0; 1g symmetry ½HIsing; U⊗N
g � ¼ 0

with U1 ¼ σx. We variationally optimize a tensor network
ansatz for the ground state of HIsing with a Z2 symmetry
encoded:

ð51Þ

where V1 ¼ σx ⊗ 1D=2, using the same numerical methods
as described in Sec. III C.
From the optimized tensor, we determine both the order

parameter (the magnetization) and the disorder parameter
(the normalization of the twist defect). Figure 12 shows the
results: As expected, we find that, in the ordered phase, the
order parameter is nonzero and the disorder parameter is
zero, and vice versa in the disordered phase. As for the
previously considered toric code model with magnetic
fields, we observe that the disorder parameter vanishes
much more steeply as the phase transition is approached.

Figure 13 shows the scaling of the order parameter and
disorder parameter as the phase transition is approached.
For the order parameter, our data are in agreement with the

1 2 3 4
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1

FIG. 12. Order parameter hmzi (z magnetization) and disorder
parameter D (response of normalization to inserting a semi-
infinite “symmetry twist”) for the ð2þ 1ÞD transverse field Ising
model; see the text for details.
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FIG. 13. Critical scaling for order parameter and disorder
parameter at the phase transition. As for the toric code, we find
that convergence is reached starting from bond dimensionD ¼ 4,
whileD ¼ 2 is overly restricted due to the symmetries. (a) For the
order parameter hmzi, we recover the well-known scaling of the
3D Ising universality class. (b) For the disorder parameter D, we
observe a new critical exponent β� ≈ 0.024, which matches the
critical exponent observed for the deconfinement fraction in the
toric code model.
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well-known value β ≈ 0.3265, while, for the disorder
parameter, we find that it vanishes with a critical exponent
of about β� ≈ 0.024, fully compatible with what we observe
for the deconfinement fraction in the toric code model.

C. Relation to other disorder parameters

Recently, another way of constructing disorder param-
eters has been proposed, namely, to act with a membrane of
physical symmetry operators U⊗R

g on a region R of the
ground state jΨi, as shown in Fig. 14(a), and to compute
the overlap with the ground state, i.e., Θ ≔ hΨjU⊗M

g jΨi. In
the ordered phase, this leads to a state which is approx-
imately orthogonal to jΨi locally in all ofR, and, thus, one
expects a volume law scaling − logΘ ∼ cjRj (here, jRj is
the volume of R). On the other hand, in the disordered
phase, acting with U⊗R

g has an effect only on the boundary
ofR but not on its (disordered) bulk, and, thus, we expect a
boundary law scaling − logΘ ∼ dj∂Rj (with j∂Rj the
length of the boundary of R). Specifically, as the phase
transition into the ordered phase is approached, d must
diverge in order to transition to a volume law scaling, and,
thus, d−1 can serve as an order parameter. Indeed, this is
what is observed in Ref. [62] for the transverse field Ising
model, and, in particular, it is found that d scales as the
correlation length ξ and, thus, d−1 vanishes with the same
critical exponent ν ≈ 0.6205.
It is remarkable that these two different ways to define

disorder parameters result in such different scaling behav-
iors. Are these two order parameters entirely unrelated? To
start with, note that, if a tensor network with symmetric
tensors is used, it is immediate that a physical membrane
U⊗R

g is equivalent to a virtual loop operator V⊗∂R
g as shown

in Fig. 14(b). Thus, ed can be interpreted as the overlap per
unit length of the tensor network with and without an
infinite (not semi-infinite) twist line. We, thus, see that both
order parameters share quite some similarity: They are both
obtained by measuring the effect of inserting twist defects
in the tensor network. However, they are also rather distinct
in other ways: While our disorder parameter is obtained
from an open-ended string, the other is obtained from a
closed or infinite string. Moreover, in one case, the order
parameter is a normalization, while, in the other, it is an
overlap. Finally, one of them has a length-dependent

contribution and needs to be taken per unit length, while
the other one does not display such behavior (that is, it is
length independent), a distinction clearly confirmed by the
numerics.
It is nevertheless tempting to think that the two order

parameters should, in fact, behave the same way, by using a
Wick rotation argument. The pronounced difference
observed between these two order parameters in the
numerical simulations, however, makes it clear that this
is not the case. Let us nevertheless briefly discuss the Wick
rotation argument and also why one should not expect such
a behavior. Specifically, we can think of the ground state of
a Hamiltonian as being obtained from imaginary time
evolution e−βH of an arbitrary initial state; through
Trotterization, one arrives at a 3D tensor network for the
ground state as well as expectation values, which can at the
same time be seen as a way to construct the 2D tensor
network by blocking columns. Specifically, for the Ising
model, one obtains a classical 3D Ising partition function in
the limit of extreme anisotropy, namely, couplings 2βJk ¼
− logðϵhÞ ≫ 1 along the imaginary time direction and
2βJ⊥ ¼ log½ð1þ ϵÞ=ð1 − ϵÞ� ≪ 1 along the spatial direc-
tions, where the limit ϵ → 0 needs to be taken. The two
order parameters can now both be understood as inserting a
twist (i.e., coupling spins antiferromagnetically) along a
half-infinite plane. For our disorder parameter, the boun-
dary line of this plane is aligned along the imaginary time
axis, while for the one of Ref. [62], it is aligned along a
spatial axis. Given the extreme anisotropy limit which
needs to be considered, it is indeed plausible that these two
disorder operators exhibit different scaling behavior, as is
clearly confirmed by the numerics.

D. What could β� be?

A possible hypothesis for the value of β� in terms of the
underlying CFT could be based on assuming an effective
description at the critical point where physical and virtual
degrees of freedom in the PEPS behave in the same way
and, thus, exhibit the same scaling of their correlations with
an exponent 1þ η (with η the anomalous dimension).
Regluing the spins after twisting and integrating over a
finite cut suggests an exponent η for a twist line correlator
at the critical point and, thus, a critical exponent β� ¼ ην=2
for the order parameter away from criticality [where
β ¼ ð1þ ηÞν=2]; the resulting value β� ≈ 0.0114 for the
3D Ising model agrees reasonably with the magnitude of
the observed value, given the difficulty to extract critical
exponents with high absolute precision. Indeed, this specu-
lative formula also matches the results obtained for topo-
logical phase transitions observed in PEPS families which
map to the ð2þ 0ÞD Ising model [25] as well as the ð2þ
0ÞD Ising model itself (where β ¼ β� ¼ 1=8 due to the self-
duality of the model) and mean field (where β� ¼ 0).
Could the critical exponent β� give us access to new

universal signatures of the phase transition? First off, this

(a) (b)

FIG. 14. Disorder parameter constructed from a physical
symmetry action on a membrane (a) and its reformulation in
terms of an entanglement symmetry (b); see the text for details.
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depends on whether β� can be derived from the underlying
CFT at criticality or, more generally, the scaling exponents
of the model at criticality. While this is certainly plausible,
the construction through twisting the PEPS ground state—
which takes us outside the ground space—nevertheless
leaves the possibility that the critical exponent can, in fact,
be obtained only from the exponents of some extension of
the model. In case β� can be derived from the scaling
dimensions at criticality, it will not give access to new
information for the ð2þ 1ÞD Ising model, since the model
is fully specified by two scaling dimensions (which can be
computed from β and ν). On the other hand, this need no
longer be true for more complex models with more scaling
dimensions, in which case β� might give access to addi-
tional universal data. Finally, even in case that the formula
conjectured above holds, or otherwise β� could be com-
puted from β and ν, the exponent β� of the disorder operator
still provides an additional probe for universal behavior
which, depending on the concrete values of the exponents
in a given scenario, might well allow one to obtain higher
accuracy data about scaling dimensions as compared to
other exponents.

E. Entanglement order parameters: A unifying
perspective

Let us conclude this section by explaining how topo-
logical order parameters and the disorder parameters
obtained from “entanglement twists” can be understood
on a unified footing as the most general order parameters
for tensor networks with symmetries. To this end, consider
a tensor with symmetry

ð52Þ

where now Ug is not necessarily a faithful representation—
therefore, this does, in particular, include the case of
topological order (for Ug ¼ 1) and phases with physical
symmetries exhibiting conventional order (Ug faithful), as
well as symmetry-enriched phases.
The most general order parameter for a tensor network

with such a symmetry should be an object which detects the
breaking of any of those of the symmetries, that is, an
operator on either the physical or the entanglement degrees
of freedom which transforms as an irrep of the symmetry
group. However, placing such an irrep Sα on the physical
level can always be replaced by placing a corresponding
irrep Rα on the virtual level, as

ð53Þ

transform in the same way. We, thus, find that the most
general order parameter is given by irreps acting on the ket
and/or bra virtual indices which transform as an irrep of the
joint ketþ bra symmetry group [depending on the repre-
sentation Ug, this can be G (conventional order), G × G
(topological order), or something in between, as the
physical symmetry action has to cancel when building
the ket-bra object]. Similarly, disorder operators can be
constructed by strings of Vg on the entanglement or by
membranes of Ug on the physical degrees of freedom.
However, yet again, due to the relation shown in Fig. 14,
any physical symmetry membrane can be replaced by a
string of Vg on the virtual layer. We, thus, find that the most
general disorder parameter is constructed from symmetry
strings on the ket and/or bra layer of the entanglement. As
for the case of topological order parameters, order and
disorder parameters can be combined, such as to detect
symmetry-protected order (the most prominent example
being string-order parameters for 1D symmetry-protected
phases).
We, thus, find that in all those cases it is sufficient to

construct order and disorder parameters right away on the
level of the entanglement degrees of freedom, that is, as
entanglement order parameters. From this perspective, the
order parameters for topological and for conventional order,
including the new disorder parameter, are just different
manifestations of entanglement order parameters in settings
with different symmetry realizations.

V. DISCUSSION

Before concluding, let us discuss a few relevant aspects
with regard to our method.

A. Gauge fixing

First, an interesting question is linked to the gauge fixing
involved in our algorithm. It can be easily checked that
applying a random gauge of the form (3) independently for
each point in the phase diagram leads to a completely
random and uncontrolled behavior of the order parameter.
Applying the gauge-fixing procedure after such a scram-
bling always returns the same tensor and, thus, stabilizes
the behavior of the order parameter again. On the other
hand, the data obtained in numerical simulations typically
do not display a random gauge; rather, we expect the gauge
to be determined by the choice of the initial tensor and the
way in which the optimization is performed (though this
can, of course, involve randomness or other effects which
destabilize the gauge). In particular, we find that, for data
which are obtained by independently optimizing the tensor
for the individual points in the phase diagram, the opti-
mized tensors yield an order parameter with noticeable
residual noise, which can be significantly improved by
applying the gauge-fixing procedure. On the other hand, we
also find that, in order to obtain the best data, it is advisable
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to initialize the tensors with the optimal tensors obtained for
a nearby point in the phase diagram (i.e., to adiabatically
change the field); in that case, we observe that the order
parameters obtained from the optimized tensors already
display a very smooth behavior, and applying an additional
gauge-fixing step leads to only minor improvements. This
is certainly plausible, given that an adiabatic change of the
field leads to only minor changes in the tensor and, thus,
ideally to no significant drift in the gauge.
We also compare different gauge-fixing schemes [in

particular, the one described in Sec. II E and a “symmetric”
gauge fixing where the spectrum of the left and right fixed
point in Eq. (26) are fixed to be equal] and find that they
lead to slightly different order parameters, which, however,
display identical critical exponents, as expected.

B. End points and vacua

Second, the construction of our order parameters leaves
open degrees of freedom in the end point operators. On the
one hand, in the case of a trivial irrep label, α ¼ 1, there is
no reason to restrict the end point to a single irrep block γ—
recall that we make this choice to obtain gauge-invariant
quantities when considering pairs of particle-antiparticle
end points—since the gauge already cancels out for each
end point individually. We can, thus, replace Xα;γ in
Eqs. (31) and (33) by any object in the trivial irrep sector,
that is, any r ¼ P

wγXα¼1;γ (differently speaking, any r
with VgrV

†
g ¼ r). We investigate this degree of freedom

and find that, while it affects the (nonuniversal) value of the
order parameter, it does not affect the universal scaling
behavior.
In addition, the end point operators Xα;γ ¼ δγþα;γ ⊗ Mα;γ

defined in Eq. (23) leave the freedom of choosing different
Mα;γ in the degeneracy space of the irreps. Choosing
different such Mα;γ can affect the stability of the resulting
curve (making a fitting of the scaling difficult), where we
observe that our choice Mα;γ ¼ 1 leads to a particularly
stable behavior. A considerably more stable way of
choosing Mα;γ different from 1 is to impose that
Mᾱ;−γ ¼ M−1

α;γ, motivated by the fact that this way is
how these two blocks transform relative to each other
under gauge transformations. Indeed, this yields more
stable order parameters (again with different values but
the same scaling behavior), but, depending on the choice of
M, we still observe cases where the curve becomes unstable
and no longer allows for a reliable scaling analysis. This
suggests that the chosen gauge fixing is special, and
changing the gauge by a fixed invertible matrix can
decrease the stability of the method.
On the other hand, one might wonder whether one can

also replace the vacuum Xvac ¼ 1 in Eqs. (31)–(33) by a
different operator describing an excitation in the trivial
sector. We find that this is not the case, as it can affect the
observed critical behavior. This might be understood as

follows: An excitation in the trivial sector can be seen as a
particle-antiparticle pair; since each of those displays
critical behavior at the phase transition, we also expect
—and observe—such a nonanalytical behavior for order-
parameter-like quantities for those trivial particles. While
these are not proper order parameters—that is, they are
nonzero on both sides of the transition—they nevertheless
display a nonanalyticity at the phase transition (similar to
the magnetization; cf. Fig. 9). Thus, dividing the order
parameters by such a nonanalytic normalization in
Eqs. (34) and (35) affects the critical behavior in the
regime where its nonanalyticity dominates its nonzero
value and, thus, potentially masks the true critical scaling.
We, thus, conclude that, for the normalization, one should
use the trivial vacuum Xvac ¼ 1.

C. Why does it work at all?

An interesting question one might raise is why the
method works at all, and why it gives meaningful results
also in the trivial phase.
In particular, one might argue that, if the PEPS opti-

mization is carried out with a very large bond dimension
D → ∞, one can easily transform any IPEPS into one
which additionally carries the entanglement symmetry (4),
yet without coupling this entanglement symmetry to the
physics of the system at all: To this end, simply take any
PEPS with bond dimension D, and construct a new PEPS
with D0 ¼ 2D by tensoring each virtual index with a qubit
which is placed in the j0i state. The new tensor has a Z2

symmetry under the action of 1 ⊗ σz, while, at the same
time, the additional virtual degree of freedom is completely
detached from the original PEPS and, thus, can by no
means give any information whatsoever about the physics
of the system.
The answer is that the finiteness of the bond dimension is

relevant here—as long as the bond dimension is finite,
using all degrees of freedom is variationally favorable; in
particular, it is favorable for the method to use the
symmetry-constrained degrees of freedom to encode the
topological degrees of freedom, as we see. In that sense,
going to a large bond dimension—where no energy is
gained from the extra bond dimension within numerical
accuracy—could, in principle, destabilize the method,
likely around a bond dimension jGjDcrit, where Dcrit is
the dimension where no further energy is gained in an
unconstrained optimization. (For example, for the 2D Ising
model, it has been found that, beyond Dcrit ¼ 3, variational
optimization does not work reliably any more due to the
marginal gain in energy [61]; it is, thus, natural to expect for
the toric code Dcrit ¼ 6.)
A related question is why the method still gives useful

information in the trivial phase, given that it probes the
properties of topological excitations. This should, however,
not come as a surprise: A phase transition into an ordered
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phase (either conventionally, i.e., magnetically, or topo-
logically ordered) is characterized by the formation of
ordered domains of increasing size ξ which diverges at the
phase transition. Thus, the structure of the ordered phase is
already present in the disordered phase sufficiently close to
the transition, and, thus, using the entanglement sym-
metries to store this information is yet again advantageous.
On the other hand, we also see in Fig. 9 that, for very large
fields, where the corresponding length scale becomes very
small and only a very small bond dimension is needed for
an accurate description of the ground state, the data
extracted from the entanglement degrees of freedom indeed
start to become unstable and sensitive to initial conditions,
with no effect on the physical properties of the variational
state; that is, it no longer provides meaningful information
about the system.

D. Where does the additional
order parameter come from?

We have seen that, in the toric code model, we are able to
use our method to construct an additional order parameter,
which does not show up in the ð2þ 1ÞD Ising model. This
might come as a surprise, since there exists a mapping from
the ground state of the toric code model to that of the ð2þ
1ÞD Ising model. How can this be the case?
The explanation lies in the fact that, by being constructed

on the entanglement degrees of freedom of the optimized
ground state tensor, our order parameters can leave the
ground space of the toric code, and, thus, the mapping to
the ground space of the Ising model breaks down. This is
discussed in Sec. III H: Inserting string operators at the
entanglement level breaks loops, and the mapping to the
Ising model works only within the closed loop space.
As we see subsequently in Sec. IV, this also opens up a

new avenue for constructing order parameters based on
PEPS which is not restricted to topological order, by
encoding physical symmetries locally in the IPEPS tensor,
and computing the response of the wave function (i.e., the
change in normalization) to the insertion of a symmetry
string along a cut at the entanglement level. Such a
“disorder operator” shows a distinct behavior in the two
phases: In the ordered phase, where all degrees of freedom
are aligned, it gives rise to misaligned degrees of freedom
all along the cut and, thus, to a norm zero. On the other
hand, in the disordered phase, the spins (and, thus, tensors)
are correlated only at the scale of the correlation length:
The misalignment along the cut, thus, persists only for that
distance, and, thus, a finite value of the order parameter is
expected.
In some sense, the ability of these order and disorder

parameters to probe otherwise unaccessible properties can
be understood as emerging from the interplay between the
symmetry and entanglement structure of the wave function
with the local description enforced through the PEPS

description: This local description exposes the way in
which symmetries and entanglement build up locally
and, thereby, gives access to information which cannot
be simply extracted through local or stringlike operators
acting on the physical degrees of freedom, as those do not
give access to information about how the quantum corre-
lations in the system organize locally.
In summary, PEPS with symmetries form a framework

which allows one to access additional order parameters also
for conventional phases, by optimizing the IPEPS tensor
and subsequently studying the response to symmetry twists
inserted on the entanglement level. They, thus, allow one to
extend disorder parameters—previously defined only for
classical models at finite temperature [63,64]—to the
domain of quantum phase transitions.

VI. CONCLUSIONS

In conclusion, we have presented a framework to
construct and measure order parameters for topologically
ordered phases. Our framework is based on variational
IPEPS simulations with a fixed entanglement symmetry
and the ability of these symmetries to capture the
behavior of anyons and, in particular, their disappearance
at a phase transition through anyon condensation and
confinement. Importantly, we have devised methods to
construct and measure these order parameters in a gauge-
invariant way, making the method suitable for fully
variational IPEPS simulations where nothing but the
symmetry is imposed.
We have applied our framework to the study of the toric

code model in simultaneous x and z fields and have found
critical exponents for condensation β and for the length
scales associated with the mass gap and confinement, ν,
which are consistent with the 3D Ising universality class for
the entire transition. In addition, however, our method also
allowed us to unveil a novel critical exponent for the order
parameter measuring the deconfinement fraction. This
demonstrates the suitability of our framework for the
microscopic study of topological phase transitions.
We have then argued that our approach can, in fact, be

understood more generally as a way of defining order
parameters using all symmetries present in the IPEPS
tensors, leading to a general framework of entanglement
order parameters, treating topological order and global
physical symmetries on a unified footing. In particular, we
have demonstrated that this allows one to define novel
disorder operators for conventionally ordered phases such
as the ð2þ 1ÞD Ising model. We have numerically studied
the behavior of the disorder parameter for the latter model
at criticality and found that it exhibits the same unknown
critical exponent as for the toric code above, demonstrating
the power of the PEPS framework and entanglement order
parameters to probe critical behavior in novel ways.
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[52] As usual in PEPS optimizations, the correct choice of the
initial tensor can be relevant. Experience shows that one
should choose an initial tensor in the topological phase.
Moreover, changing tensors adiabatically in λ can give more
stable results. See Sec. III for further discussion.

[53] J. Vidal, S. Dusuel, and K. P. Schmidt, Low-Energy Effec-
tive Theory of the Toric Code Model in a Parallel Field,
Phys. Rev. B 79, 033109 (2009).

[54] F. Wu, Y. Deng, and N. Prokof’ev, Phase Diagram of the
Toric Code Model in a Parallel Magnetic Field, Phys. Rev.
B 85, 195104 (2012).

[55] C. G. Broyden, The Convergence of a Class of Double-Rank
Minimization Algorithms 1. General Considerations, IMA
J. Appl. Math. 6, 76 (1970).

[56] R. Fletcher, A New Approach to Variable Metric Algo-
rithms, Comput. J. 13, 317 (1970).

[57] D. Goldfarb, A Family of Variable-Metric Methods
Derived by Variational Means, Math. Comput. 24, 23
(1970).

[58] D. F. Shanno, Conditioning of Quasi-Newton Methods for
Function Minimization, Math. Comput. 24, 647 (1970).

[59] L. Vanderstraeten, J. Haegeman, P. Corboz, and F.
Verstraete, Gradient Methods for Variational Optimization
of Projected Entangled-Pair States, Phys. Rev. B 94,
155123 (2016).

[60] Z.-C. Gu, M. Levin, and X.-G. Wen, Tensor-Entanglement
Renormalization Group Approach to Topological Phases,
Phys. Rev. B 78, 205116 (2008).

[61] M. Rader and A.M. Läuchli, Finite Correlation Length
Scaling in Lorentz-Invariant Gapless iPEPS Wave Func-
tions, Phys. Rev. X 8, 031030 (2018).

[62] J. Zhao, Z. Yan, M. Cheng, and Z. Y. Meng, Higher-Form
Symmetry Breaking at Ising Transitions, Phys. Rev. Re-
search 3, 033024 (2021).

[63] L. Kadanoff and H. Ceva, Determination of an Operator
Algebra for the Two-Dimensional Ising Model, Phys. Rev. B
3, 3918 (1971).

[64] E. Fradkin, Disorder Operators and Their Descendants, J.
Stat. Phys. 167, 427 (2017).

ENTANGLEMENT ORDER PARAMETERS AND CRITICAL … PHYS. REV. X 11, 041014 (2021)

041014-27

https://doi.org/10.1103/PhysRevB.99.165121
https://doi.org/10.1103/PhysRevLett.111.090501
https://doi.org/10.1103/PhysRevB.95.235119
https://doi.org/10.1007/s00220-014-2213-8
https://doi.org/10.1007/s00220-014-2213-8
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://doi.org/10.1146/annurev-conmatphys-031016-025507
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevB.98.165115
https://doi.org/10.1103/PhysRevLett.124.130603
https://doi.org/10.1103/PhysRevLett.119.070401
https://doi.org/10.1103/PhysRevB.100.245125
https://doi.org/10.1103/PhysRevB.100.245125
https://doi.org/10.1103/PhysRevB.85.100408
https://doi.org/10.1103/PhysRevB.85.100408
https://doi.org/10.1103/PhysRevB.79.033109
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.1090/S0025-5718-1970-0274029-X
https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevB.94.155123
https://doi.org/10.1103/PhysRevB.78.205116
https://doi.org/10.1103/PhysRevX.8.031030
https://doi.org/10.1103/PhysRevResearch.3.033024
https://doi.org/10.1103/PhysRevResearch.3.033024
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1007/s10955-017-1737-7
https://doi.org/10.1007/s10955-017-1737-7

