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The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a
metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at
intermediate coupling, ultimately becoming a magnetic insulator at strong coupling. In this multimethod
study, we combine a finite-temperature tensor network method, minimally entangled thermal typical states
(METTS), with two Green-function-based methods, connected-determinant diagrammatic Monte Carlo
and cellular dynamical mean-field theory, to establish several aspects of this model. We elucidate the
evolution from the metallic to the insulating regime from the complementary perspectives brought by these
different methods. We compute the full thermodynamics of the model on a width-four cylinder using
METTS in the intermediate to strong coupling regime. We find that the insulating state hosts a large entropy
at intermediate temperatures, which increases with the strength of the coupling. Correspondingly, and
consistently with a thermodynamic Maxwell relation, the double occupancy has a minimum as a function
of temperature which is the manifestation of the Pomeranchuk effect of increased localization upon heating.
The intermediate coupling regime is found to exhibit both pronounced chiral as well as stripy
antiferromagnetic spin correlations. We propose a scenario in which time-reversal symmetry-broken
states compete with stripy-spin states at lowest temperatures.
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I. INTRODUCTION

The interplay between strong electronic interactions and
geometric frustration gives rise to a plethora of intriguing
physical phenomena. It also raises fundamental questions
that are still largely open, such as how insulating spin
liquids transition into a metallic or superconducting phase
upon reducing the interaction strength or introducing doped
charge carriers.
Several classes of experimental platforms are available in

which these questions can be explored. The most recent
one is the rapidly developing field of twisted moiré

heterostructures of two-dimensional materials, such as
graphene [1–3] or transition-metal dichalcogenides [4,5].
Recent work has demonstrated that these heterostructures
provide a versatile platform for quantummaterials design in
which a broad range of lattice and band structures can be
engineered [6,7]. A triangular lattice structure, which is the
focus of the present paper, can be realized in this context for
B moiré superlattices [8,9], twisted WSe2 double bilayers
[10] as well as twisted bilayer boron nitride [11,12]. The
observation of a Mott insulating state in, e.g., the
WSe2=WS2 moiré superlattice system [8] provides direct
experimental evidence of the importance of strong elec-
tronic correlations in these materials. We also note that the
triangular superlattice dichalcogenide 1T-TaS2 has been
proposed to host a spin-liquid state [13–16].
Besides moiré materials, strong electronic correlations in

the context of (anisotropic) triangular lattice structures are
also directly relevant to the two-dimensional molecular
materials of the κ-ET family [17]. This class of materials
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has been the subject of intense experimental research and
displays a diversity of remarkable phenomena (for reviews,
see Refs. [18,19]). Among those are Mott insulating phases
with either magnetic long-range order or spin liquid
behavior as in, e.g., κ-ðETÞ2Cu2ðCNÞ3, a pressure-induced
metal-insulator transition (MIT). Several experiments
found evidence of first-order phase transitions at finite
temperature up to a proposed critical temperature of ∼20 K
[20,21]. Moreover, superconductivity with a critical tem-
perature reaching ∼14 K has been found. [21–31]. Finally,
transition-metal oxides such as the layered superconductor
LixNbO2 also form triangular lattices, with structural
similarities to some of the dichalcogenides [32–34].
While the Hubbard model [35–38] on the triangular

lattice is directly relevant to this wide variety of materials, it
is also a paradigmatic model of strongly correlated electrons
subject to geometric frustration and has therefore been
subject to intense computational and theoretical research
[39,40]. However, due to the high complexity of the
problem, only a partial understanding of its physics has
been reached. The model is defined by the Hamiltonian:

Ĥ ¼ −t
X
hi;ji;σ

ðĉ†iσ ĉjσ þ ĉ†jσ ĉiσÞ þU
X
i

n̂i↑n̂i↓; ð1Þ

where ĉ†iσ; ĉiσ denote the fermionic creation and annihilation
operators on site i with fermion spin σ, n̂iσ ¼ ĉ†iσ ĉiσ , and
hi; ji denotes summation over nearest-neighbor bonds of the
triangular lattice.
At half filling (hn̂i↑ þ n̂i↓i ¼ 1) the model has a metallic

phase for smallU=t, while it is an insulator with long-range
magnetic order in the large U=t limit for T ¼ 0. At finite
temperatures true long-range magnetic order is prohibited
in two dimensions by the Mermin-Wagner theorem [41,42].
It has been suggested early on that an intermediate
insulating phase without magnetic long-range order exists
between these two phases, at intermediateU=t [43,44]. The
existence of this intermediate phase has been corroborated
by several different computational methods [45–52].
Recent density matrix renormalization group (DMRG)
studies showed strong evidence that the intermediate phase
ground state realizes a gapped chiral spin liquid (CSL)
[52–54]. This elusive state of matter was proposed in the
late 1980s [55,56] and in recent years has been found to be
stabilized in several frustrated spin systems [57–63],
including extended triangular lattice spin-1=2 Heisenberg
models [64,65]. The demonstration of the emergence of
topological superconductivity upon hole doping the tri-
angular lattice CSL [66] (see also Ref. [67]) constitutes an
exciting prospect for the physics of the moiré materials and
organic superconductors. Other previous suggestions on
the nature of the intermediate phase include a Gutzwiller
projected Fermi sea [68–70] and other forms of gapless
spin liquids [71–73]. However, the existence of the inter-
mediate CSL phase is also challenged by earlier DMRG

results [74] as well as recent variational Monte Carlo
studies, suggesting the absence of a spin liquid phase close
to the metal-insulator transition [75,76]. Other recent
DMRG results on width-three cylinders have suggested
a gapless spin liquid being realized in the intermediate
phase [77].
Computational methods for studying quantum many-

body systems rely on diverse concepts and usually involve
approximations whose validity has to be subject to critical
evaluation. In the context of the Hubbard model, direct
comparisons and benchmark studies involving multiple
methods have proved successful in establishing the physics
in the strongly correlated [78–80] and intermediate cou-
pling [81] regimes beyond the uncertainties associated with
the limitations of one particular method (see also a recent
study on the kagome lattice [82]). This multimethod
approach is currently playing a crucial role in the field
and accelerates further theoretical and computational
developments.
In this article, we combine conceptually different meth-

ods to investigate the physics of the half-filled triangular
lattice Hubbard model at finite temperature. For some
physical observables, the results from these different
methods can be directly compared, but each method also
comes with physical observables that it can more naturally
address. Such a “multimethod, multimessenger” approach
[81] therefore allows us to investigate the physics of this
complex model from different perspectives.
On the one hand, we employ the minimally entangled

thermal typical state method (METTS) [83,84] which is an
extensionofDMRGto finite temperature.On the other hand,
we use two Green-function-based techniques, the diagram-
matic Monte Carlo method (DiagMC) [85] in its connected
determinant version [86–90], dynamical mean-field theory
(DMFT [91–94]) and a cluster extension [95] thereof:
cellular DMFT (CDMFT) [96,97] in its center-focused
formulation [98]. Such a “handshake” between wave-
function-based and Green-function-based methods is a
notable advancewhich opens new perspectives for the study
of quantum many-body problems at finite temperature.
Each of these methods has strengths and limitations

which we now briefly describe. As a matrix-product state
technique METTS can be applied with high precision on
cylindrical geometries of finite circumference, as demon-
strated recently by some of the authors in the case of the
hole-doped square lattice Hubbard model [99], where a
detailed description of the implementation of the method
can be found. In this manuscript we mostly focus on a
particular cylindrical geometry of circumference 4, called
the YC4 geometry shown in Fig. 7. Selected results on the
XC4 and YC3 geometries (see, e.g., Ref. [52]) are also
presented for comparison. Since we demonstrate conver-
gence of our results in the maximal bond dimension Dmax
(Appendix A), the main limitation is in the finite trans-
verse size.
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As the triangular lattice Hubbard model is afflicted by
the fermionic sign problem, we cannot use traditional
quantum Monte Carlo techniques [100]. The diagrammatic
Monte Carlo method can work directly in the thermody-
namic limit and is therefore immune from the sign problem,
while being numerically exact: it is possible to compute
quantities with arbitrary precision given enough com-
putational time, and the convergence can be checked by
comparing results from different expansion orders.
Reaching the strong coupling regime can, however, be
hindered by the increased difficulty of resumming the
perturbative series beyond their radius of convergence [87],
and many orders must be computed, which in itself can
present computational challenges. In this work, using the
recent computational advances of the connected-determi-
nant version [86], we are able to compute up to 10 orders of
the perturbative expansion at fixed density; this is achieved
[101] by renormalizing the chemical potential in the spirit
of Ref. [89]. Thanks to the high orders reached, we manage
to get converged results with controlled error bars at
temperatures T=t ¼ 0.1 and up to U=t ¼ 10.
CDMFT also works directly in the thermodynamic limit

for the lattice, but it retains only a finite number of real-
space components of the self-energy organized according
to spatial locality and approximated by their value on a
(self-consistent) cluster of finite size Nc. The method is
controlled in the sense that it converges to the exact solution
in the limit Nc → ∞, but in practice, this convergence can
only be reached in specific parameter regimes. Here,
CDMFT is used in a twofold way: (i) as an approximation
with Nc ¼ 7 restricted to the paramagnetic (PM) phase
[CDMFT-7 (PM)] and (ii) as an approximation with
Nc ¼ 4 (CDMFT-4) allowing for magnetic ordering.
Unless noted otherwise the label “CDMFT” denotes results
from the first variant. In either case on-site and nearest-
neighbor components of the self-energy are taken into
account, besides all temporal (quantum) correlations
already present in single-site DMFT.
This article is organized as follows. We discuss the

transition from a metallic state at weak coupling to an
insulating state at strong coupling in Sec. II. There, we
perform a critical comparison between our numerical
methods and propose that, in the accessible range of
temperatures, a smooth crossover between these states is
found rather than a first-order phase transition. In Sec. III
we discuss the locality of the electronic self-energy by
comparing results from CDMFT and DiagMC. In Sec. IV
we investigate the basic thermodynamic properties of the
system and firmly establish an order-by-disorder effect,
where increasing temperature decreases the double occu-
pancy. We relate this effect to an increase in entropy upon
increasing the interaction strength via a Maxwell relation.
In Sec. V we discuss competing (magnetic) orders as a
function of temperature and interaction strength. In par-
ticular, we investigate magnetic structure factors and the

chiral susceptibility to propose a scenario where chiral and
stripy antiferromagnetic spin correlations coexist at low
temperatures. Finally, we summarize and discuss our
findings in Sec. VI.

II. METAL-INSULATOR CROSSOVER

We begin by investigating the evolution from a metallic
state at weak coupling to a Mott insulating state at strong
coupling. At high enough temperature, this is a crossover.
Whether it remains a crossover down to lowest temper-
atures or whether a phase transition also exists at low but
finite temperature is discussed at the end of this section.
In order to identify this crossover, we consider two

complementary observables, which are accessible within
the CDMFT and METTS frameworks, respectively. The
first one is the zero-frequency value of the local (on-site)
electronic spectral function:

Acðω ¼ 0Þ ¼ −
1

π
ImGcðiωn → i0þÞ: ð2Þ

This quantity is evaluated by considering the central site of
the cluster within the center-focused CDMFT method (see
Appendix D and Ref. [98])—hence the subscript in Ac. The
extrapolation to zero frequency is obtained from a fit of the
Matsubara frequency Green’s function GðiωnÞ. We have
also calculated within CDMFT the local and nearest-
neighbor components of the self-energy and can extract
the low-frequency slope:

Zc ¼
�
1 −

∂Σc

∂ω
����
ω→0

�
−1
; ð3Þ

which is also a good indicator of the MIT. The nonlocal
components of the self-energy are found to be quite small
for weak to intermediate U=t (see Sec. III for more details);
hence Zc is a reasonable approximation in this regime to the
spectral weight of quasiparticles. Acð0Þ is plotted in
Fig. 1(a) as a function of U=t for several values of
temperature, along with Zc at T=t ¼ 0.1 (inset). We see
that for each value of T, Acð0Þ undergoes a marked drop as
U=t is increased, signaling a crossover from a metal with a
large value of the zero-frequency spectral density to an
insulator with a small value (but as expected still finite at
nonzero T). Being a crossover there is a certain arbitrari-
ness in defining its location precisely, but it is apparent that,
at the lowest temperatures, it occurs for 8≲ U=t≲ 9.
Correspondingly, Zc drops rapidly as U=t is increased.
At still larger values of U=t, the CDMFT self-energy has
the characteristic divergent low-frequency behavior of an
insulator; see Fig. 17 in Appendix D. Importantly, we see
that Acð0Þ increases upon cooling for U=t≲ 9, while it
decreases upon cooling forU=t≳ 9, which are the expected
behaviors in a metallic and an insulating regime, respec-
tively. We note that for small temperatures and large
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interactions the CDMFT calculation becomes increasingly
difficult due to the fermionic sign problem.
The evolution from a metallic state to an insulating state

can also be characterized by the localization of electrons
[102,103]. An appropriate measure of localization is given
by the localization length λ, which on open boundary
conditions as employed by METTS is defined as [104–106]

λ2 ¼ 1

N
ðhX2i − hX2iÞ: ð4Þ

Here, X ¼ P
i rini denotes the position operator, where ri

denote the coordinates of the lattice, ni the local density
operators, and N the total number of sites.
At zero temperature, the localization length λ is directly

related to the real part of the conductivity σðωÞ by [107]

λ2 ¼ ℏ
πe2n

Z
∞

0

dω
ω

ReσðωÞ ðT ¼ 0Þ; ð5Þ

where e denotes the electron charge and n the average
density. The integral on the right-hand side, also referred to
as Souza-Wilkens-Martin integral [104,106,107], diverges

in the metallic regime and attains a finite value in the
insulating regime for N → ∞. The behavior of λ2 for
temperatures T=t ¼ 0.025, 0.100, 0.300 and YC4 cylinder
lengths L ¼ 8, 16, 24 computed by METTS is shown in
Fig. 1(b). The metallic and insulating regimes can be
coarsely distinguished by the behavior of λ2. Whereas in
the insulating regime λ2 is almost constant as a function of
the cylinder length L and temperature, it increases with L in
the metallic regime. We also observe that at higher temper-
ature, such as T=t ¼ 0.300 in Fig. 1(b), the localization
length decreases, indicating increased localization of the
system.
Furthermore, we study the behavior of the charge

structure factor given by

ScðkÞ ¼
1

N

XN
l;m¼1

eik·ðrl−rmÞhðnl − hnliÞðnm − hnmiÞi; ð6Þ

where nl denotes the local density at site l. When using
METTS we are working in the canonical ensemble with
zero global charge fluctuation, which implies Scð0Þ ¼ 0 at
any temperature. The behavior of ScðkÞ around k ¼ 0 is
indicative of metallic or insulating behavior. While a
metallic state at T ¼ 0 is characterized by a linear charge
dispersion [108–111],

Scðkx; 0Þ ≈ αjkxj; ð7Þ

an insulating state exhibits a quadratic dispersion,

Scðkx; 0Þ ≈ βk2x: ð8Þ

The behavior of the charge structure factor on the 16 × 4
YC4 cylinder from METTS at various temperatures
is shown in Fig. 2. We compare between the metallic
regime at U=t ¼ 6 in Fig. 2(a) and the insulating regime at
U=t ¼ 10 in Fig. 2(b). The two regimes clearly exhibit the
expected linear (quadratic) behavior close to k. We observe
a rather mild temperature dependence. To quantify this
behavior, we make the following ansatz close to kx ¼ 0:

S̃cðkx; 0Þ ¼ αjkxj þ βk2x: ð9Þ

The value of α (β) can be interpreted as a metallic
(insulating) weight. We fit this ansatz to the numerical
data shown in Figs. 2(a) and 2(b) for the seven k points
closest to the origin. Results for a range from U=t ¼ 4 to
U=t ¼ 12 are shown in Fig. 2(c). At lowU=t in the metallic
regime, we observe that increasing temperature decreases
the metallic weight α while increasing the insulating
weight. In the insulating regime, we observe only a weak
temperature dependence of α and β. We can define a
crossover interaction strength Uc=t by the intersection of
αðUÞ and βðUÞ. We observe thatUc=t shifts toward weaker
interaction strengths when increasing temperatures. From

FIG. 1. Metal-insulator crossover at finite temperature from
CDMFT and METTS. (a) Spectral weight at the Fermi level from
CDMFT. The inset shows the quasiparticle renormalization factor
for the central site in CDMFT (squares) as well as for PM-
restricted DMFT (dots). A drop of the spectral weight at the
Fermi level is observed. (b) Normalized localization length as a
function of temperature and system size as obtained from
METTS on the YC4 cylinder. Simulations have been performed
with maximal bond dimension Dmax ¼ 4000. The normalized
localization length attains a finite value in the insulating regime
and increases in the linear system size L in the metallic regime,
where higher temperatures decrease the localization length.
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this we estimate Uc=t ≈ 8.7 at T=t ¼ 0.025, Uc=t ≈ 8.5 at
T=t ¼ 0.100, and Uc=t ≈ 8.0 at T=t ¼ 0.500. This also
implies that, for a fixed U=t in that range, the system
undergoes increased localization upon heating.
To further study the metal to insulator crossover we

investigate the potential energy,

Epot ¼ U
X
i

hn̂i↑n̂i↓i; ð10Þ

and the kinetic energy,

Ekin ¼ −t
X
hi;ji;σ

hĉ†iσ ĉjσ þ ĉ†jσ ĉiσi: ð11Þ

Since these quantities are accessible with all our methods,
we show a direct comparison in Figs. 3(a) and 3(b) to assess
the effects of finite cluster size in CDMFT and finite
cylinder size in METTS. We focus on a temperature of
T=t ¼ 0.1, for which we perform numerically exact sim-
ulations with DiagMC up to U=t ¼ 10.5, which are used as
benchmark. Remarkably, results from all methods agree
within error bars up to an interaction strength of U=t ¼ 8.
Beyond this point, we still observe that the potential energy

from METTS compares well with CDMFT [with Nc ¼ 7
and restricted to its paramagnetic solution, CDMFT-7
(PM)] up to the strong coupling regime U=t ¼ 12. A
key difference between METTS and CDMFT is seen in
the kinetic energy, which is lower for METTS in the strong
coupling regime. We also note that the CDMFT kinetic
energy exhibits a slope discontinuity aroundU=t ∼ 9which

FIG. 2. Static charge structure factor ScðkÞ for ky ¼ 0 at
various temperatures [see legend in (c)] on the 16 × 4 YC4
cylinder from METTS with maximal bond dimension
Dmax ¼ 4000. (a) In the metallic regime at U=t ¼ 6, the density
structure factor behaves as ScðkxÞ ≈ αjkxj. (b) In the insulating
regime at U=t ¼ 10, we observe ScðkxÞ ≈ βk2x. (c) Optimal fit
parameters α, β for the ansatz ScðkxÞ ¼ αjkxj þ βk2x of ScðkxÞ
close to kx ¼ 0. α (β) is shown as triangles (circles). The
crossover interaction strength Uc=t can be defined by the
intersection of α and β. We observe Uc=t shifting toward weaker
interactions at higher temperatures.

FIG. 3. Comparison of energies from different computational
methodsatT=t ¼ 0.1.METTSresultsareobtainedona16 × 4YC4
cylinderwithDmax ¼ 4000, clusterDMFTis performed on a 7-site
cluster [restricted to its paramagnetic solution, CDMFT-7 (PM)]
and on a 4-site cluster (allowing for spin-symmetry breaking,
CDMFT-4), while DiagMC is numerically exact within the esti-
mated error bar. (a) Potential energy Epot. METTS and cluster
DMFTagreewith theDiagMCresults up toU=t ≈ 7.5. Beyond this
point we find excellent agreement between cluster DMFT and
METTS. (b) Kinetic energy Epot. We observe good agreement
between all methods up toU=t ¼ 8. The inset shows the derivative
of the kinetic energywith respect to the coupling strengthU. (c),(d)
The potential energy density from METTS as a function of
cylinder length L at temperatures T=t ¼ 0.025 and T=t ¼ 0.100.
We observe a smooth dependence on the coupling strength and for
both temperatures upon increasing the system size.
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is not observed by METTS: as discussed below, this is due
to the fact that a finite-temperature metal-insulator tran-
sition is found within CDMFT (as well as DMFT) when
constrained to nonmagnetic solutions. Nonetheless, the
data from CDMFT overall agree more closely with
METTS than the data from single-site DMFT.
Above T=t ≃ 0.1, all methods agree that the passage

from the metal to the insulator is a smooth crossover [112].
Furthermore, it is clear from previous work [45–48,52,
53,113] that at T ¼ 0 a metal-insulator phase transition
takes place. We now discuss whether our data allow us to
settle whether a sharp MIT also exists at low but finite
temperature or whether a smooth crossover applies for any
nonzero temperature.
Let us first recall what the situation is in the single-site

DMFT approximation. When solving the DMFT equations
constrained to solutions without long-range magnetic order,
one indeed finds that a first-order MIT develops for T <
TDMFT
c ≃ 0.1t (UDMFT

c =t ≃ 11) as previously demonstrated
by several authors and also shown in Fig. 13 of
Appendix C. Since there is no symmetry distinction at
finite temperature between a metal and an insulator with no
broken symmetries, a first-order transition line ending at a
second-order critical end point ðUc; TcÞ (analogous to a
liquid-gas transition) is a priori possible. This is what
happens in DMFT [93,114–122], as well as in cluster
extensions of DMFT [123–128] when restricted to non-
magnetic solutions. This transition is the reason for the cusp
in the kinetic energy found with these methods, as apparent
on Fig. 3(b) around UCDMFT

c =t ≃ 9. However it should be
emphasized that, when allowing for spin and translational
symmetry breaking, the single-site DMFT approximation
yields a solution with 120° Néel ordering for U=t≳ 9.5
[113] (see Appendix C): this is the true minimum of the free
energy in the DMFT approximation, hence overshadowing
the first-order nonmagnetic MIT. Incidentally, we note that
the magnetically ordered DMFT solution yields a rather
good approximation to both the kinetic and potential
energy (Fig. 3).
Analogously to the DMFT case, we also computed the

energetics within CDMFT on a Nc ¼ 4 site cluster, how-
ever now allowing for magnetic symmetry breaking
(CDMFT-4). The order sets in at similar interaction
strengths as in the case of DMFT. Because of the smaller
size of the cluster, and therefore the shorter nonlocal
correlations that are included in the calculation, deviations
from CDMFT-7 (PM) appear for the potential energy in the
paramagnetic regime at intermediate coupling. At larger
interaction strengths, when CDMFT-4 has ordered with a
120° Néel pattern, the potential energy acquires similar
values to both METTS and CDMFT-7 (PM). In the case of
the kinetic energy, we observe deviations also in the
ordered phase. They might have root in the fact that the
cluster geometries differ between CDMFT-7 (PM) and
CDMFT-4 (for further details we refer to Appendix D). We

note that calculations in the symmetry-broken phase for a
Nc ¼ 7 site cluster are not feasible at the moment due to the
fermionic sign problem.
Of course, the magnetic solution at nonzero temperature

is an artifact of the mean-field approximation inherent to
DMFT, and one may argue that because fluctuations and
Mermin-Wagner theorem actually prevent ordering, the
existence of a finite-T MIT in paramagnetic DMFT or
CDMFT is a hint that a similar phenomenon might take
place in our model. On a qualitative level, frustration
appears as a favorable factor by further suppressing order-
ing. The ET-organicmaterials with a (anisotropic) triangular
structure do display such a transition experimentally [19].
Our METTS and DiagMC results do not provide

evidence for such a first-order MIT or liquid-gas critical
end point at finite temperature. In the range of temperatures
that we could investigate, the kinetic and potential energy
displayed in Fig. 3 do not appear to have a singularity as a
function ofU=t. However, we acknowledge that limitations
of our computational methods prevent us from reaching a
definitive conclusion about this issue. Our METTS results
yield a smooth crossover between the metallic and the
insulating regime for temperatures down to T=t ¼ 0.025.
This is expected, since our simulations are performed on a
finite system. Hence, observables will depend smoothly on
the model parameters. We have, however, investigated the
possibility of a discontinuity, indicative of a first-order
phase transition, developing as a function of the length of
the YC4 cylinder. Our results are shown for temperatures
T=t ¼ 0.025 in Fig. 3(c) and for T=t ¼ 0.100 in Fig. 3(d).
The smooth behavior at all system sizes does not exhibit
any tendency to develop a discontinuity for L → ∞.
However, it is possible that the chosen cluster geometry
or the finite precision we achieve conceal potential singu-
larities developing in the infinite-volume limit. The data
points shown in Fig. 1 are spaced by ΔU ¼ 0.2t where the
maximal absolute statistical error is of size ε ≈ 5 × 10−3.
The DiagMC results, while dealing with the infinite system,
are limited in the present work to T=t≳ 0.1 and U=t≲ 10.
This is largely due to difficulties in computing enough
expansion coefficients with small enough error bars to
allow for controlled resummations of the perturbative series
beyond the aforementioned values of U.

III. (NON)LOCALITY OF CORRELATIONS:
SELF-ENERGIES

Although the electronic Coulomb interaction is modeled
as a purely local repulsion in the Hubbard model in Eq. (1),
the correlations it generates can be nonlocal. To assess in
which part of the phase diagram nonlocal correlations
become sizable in comparison to local ones, we calculate
the local and nearest-neighbor (NN) self-energy in DiagMC
and CDMFT in real space on the Matsubara axis. Figure 4
displays the self-energy at the first Matsubara frequency
Σðiω0 ¼ iπTÞ calculated by DiagMC (crosses) and
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CDMFT (squares) for two different temperatures (left-hand
panels, imaginary part; right-hand panels, real part). The
results of the calculations from both methods agree within
error bars for both local and NN components.
At high T=t ¼ 0.40 the correlations are mostly local and

continuously increase from small to large U. However,
there is an onset of nonlocality already visible in the
increase of the NN component at the largest interactions
shown. The nonlocal correlations remain very small at
lower T=t ¼ 0.10 (close to the critical temperature of the
MIT in CDMFT), until quite close to U=t ≈ 9.25 at which
the MIT takes place in CDMFT. Hence, through most of the
metallic regime except close to the MIT, the self-energy in
this temperature range is local to a good approximation in
this frustrated system.
Upon entering the insulating regime, nonlocal correla-

tions continuously increase. These nonlocal correlations
signal increasing magnetic fluctuations. The onset of a
magnetically ordered phase in DMFT (see Appendix C)
underpins this interpretation. In the true solution of the
system, of course, the Mermin-Wagner theorem [41,42]
prohibits magnetic ordering at finite temperature, but the
corresponding magnetic fluctuations are responsible for the
increase of the (nonlocal) correlations. We note that
the effect of magnetic fluctuations beyond DMFT using
the dual fermion approximation has been investigated for

this model in Refs. [47,112,129] and that the implications
of nonlocal effects for transport have been investigated in
Ref. [128].

IV. THERMODYNAMICS

We now turn to discussing the thermodynamic properties
of the system for a range of interactions from U=t ¼ 6 to
U=t ¼ 12. Figure 5 displays the specific heat C, thermal
entropy S, internal energy E, and double occupancy D as a
function of temperature. Results for the specific heat,

C ¼ ∂E
∂T ; ð12Þ

of the 16 × 4 YC4 cylinder using METTS at various values
of U=t are shown in Fig. 5(a). At intermediate and large
interaction strengths U=t ¼ 9, 10, 12 the specific heat
exhibits a large mostly featureless plateau down to temper-
atures of T=t ≈ 0.1. For U=t ¼ 10, 12, a small peak
develops at T=t ≈ 0.05 before the specific heat tends
toward zero at T ¼ 0.

FIG. 5. Thermodynamics of the 16 × 4 YC4 cylinder from
METTS for different values of U=t. We employed a maximal
bond dimension Dmax ¼ 3000. (a) Specific heat C. At U=t ¼ 9,
10, 12 we observe a broad continuum at higher temperatures with
a small peak at T=t ≈ 0.05. (b) Thermal entropy S. We observe an
increase in entropy when increasing U=t at low temperature.
(c) Internal energy E as a function of temperature on a refined
grid at lower temperatures. We observe regimes where approx-
imately E ∝ T2, which implies T-linear behavior of the specific
heat. The black and gray lines indicate E ∝ T2 and E ∝ T5=3

behavior. (d) Double occupancy D. At low temperatures, in-
creasing T=t decreases the double occupancy. This order-by-
disorder phenomenon is related to the increase in thermal entropy
with U=t by the Maxwell relation ∂S=∂U ¼ −∂D=∂T. We
compare our data to results from (cluster) DMFT and find the
CDMFT data closely matching the METTS results.

FIG. 4. Imaginary (a,c) and real (b,d) parts of the local (blue)
and nearest-neighbor (orange) self-energy at its lowest Matsubara
frequency calculated by DiagMC (crosses) and CDMFT
(squares) as a function of U=t for two different temperatures
T=t ¼ 0.4 (a,b) and T=t ¼ 0.1 (c,d). A substantial increase of
nonlocal correlations is observed at low temperatures, however, at
interactions (U=t ≈ 9.25) larger than the one of increased local
correlations (U=t ≈ 8).
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For U=t ¼ 6, 8 we find a T-linear behavior of C at low
temperature, consistent with a metallic phase with gapless
excitations. We note that the low-T slope for U=t ¼ 8 is
approximately 3 times larger than that at U=t ¼ 6: this is
qualitatively consistent with Zc (inset of Fig. 1) being
approximately 3 times smaller. For a metal in which the
self-energy can be approximated as local, the quasiparticle
effective mass enhancement which controls the slope of C
is related to the quasiparticle weight Z by m�=m ¼ 1=Z.
Indeed, as shown in the previous section, the nonlocal
components of the self-energy are small through most of
the metallic regime. Our findings for Zc and the slope of C
are thus consistent with quasiparticles developing a rather
heavy mass as the insulator is approached. Although this is
difficult to ascertain from our data, we find no evidence for
a divergence of the effective mass when approaching the
MIT, however, consistent with the increasing nonlocality of
the self-energy in this regime (see Sec. III). We also observe
that for U=t ¼ 6, the specific heat appears to have another
quasilinear regime for T=t≳ 0.1.
At larger interaction strengths the low-temperature

behavior of C also appears to be linear in T. However,
given the few data points in this regime, it is difficult to
discern this behavior from other scenarios. We note that the
specific heat of the YC4 cylinder closely resembles the
specific heat that has been obtained on smaller clusters
using the finite-temperature Lanczos method [130].
We also investigate the thermodynamic entropy,

S ¼ logðZÞ þ E
T
¼ S0 þ

Z
T

0

dΘ
CðΘÞ
Θ

; ð13Þ

where Z denotes the partition function and E the internal
energy. S0 denotes a residual entropy at zero temperature.
The entropy is obtained by integrating the specific heat as
in Eq. (13) from T ¼ 0, where the internal (ground state)
energy is computed by DMRG and we assume S0 ¼ 0; i.e.,
we assume a unique ground state on the finite-size cylinder.
Our results from METTS on the YC4 cylinder are shown

in Fig. 5(b). Interestingly, we find that the entropy (at fixed
T) increases rapidly with increasing interaction strength
from the metallic regime at U=t ¼ 6 to the insulating
regime beyondU=t ¼ 9. The increase in thermal entropy as
a function of interaction strength has previously also been
observed using the finite-temperature Lanczos method on
smaller cluster geometries [130]. Naively, one would
expect a decrease in entropy when the system is localizing.
However, we find the exact opposite behavior; i.e.,
∂S=∂U > 0. This behavior is also reflected in the temper-
ature dependence of the double occupancy,

D ¼ 1

N

XN
i¼1

hni↑ni↓i; ð14Þ

shown in Fig. 5(d). The Maxwell relation,

∂S
∂U

����
T
¼ −

∂D
∂T

����
U
; ð15Þ

relates the increase in entropy as a function of U to a
decrease in double occupancy as a function of T. Indeed, as
shown on Fig. 5(d), we observe a decrease of D at low T
upon heating, for all displayed values of U=t up to a
temperature T=t ≈ 0.5 at which the double occupancy has a
minimum. In this figure, our METTS results are also
compared to (C)DMFT, which confirms our finding.
This phenomenon is analogous to the Pomeranchuk

effect in liquid helium 3 [131]. When the entropy of the
insulating state is larger than that of the metal, increasing
temperature indeed leads to increased localization since this
yields a gain in free energy. To the best of our knowledge,
this behavior was first predicted for the Hubbard model
on the basis of DMFT studies [132] (see also
Refs. [114,115,129,133,134]). It has been proposed [135]
and experimentally realized [136] as a cooling scheme in
the context of cold atomic gases in optical lattices.
Interestingly, it has also been recently observed in magic
angle graphene [137]. In the present model, the large
entropy of the insulating phase due to frustration and
competing orders is responsible for this effect.
An important aspect of the thermodynamics is the

behavior of the specific heat at low temperatures. In
particular, the behavior of the specific heat allows us to
distinguish between gapped and gapless phases. Here, we
investigate the internal energy E instead of the specific
heat C ¼ ∂E=∂T, since we measure the energy directly,
whereas the specific heat is obtained from a numerical
derivative of the energy. Our results forU=t ¼ 8, 10, 12 are
shown in Fig. 5(c). An analysis of the convergence as a
function of bond dimension for U=t ¼ 10 is shown in
Appendix A in Fig. 9. In the case of U=t ¼ 8, we find that
the internal energy E approximately behaves as E ∝ T2 for
temperatures 0.02 ≤ T=t ≤ 0.1, which is indicated by the
black dashed lines. This translates to a T-linear behavior of
the specific heat upon differentiation. Similarly, for U=t ¼
10 and U=t ¼ 12 the energy is well described by E ∝ T2

behavior for 0.0125 ≤ T=t ≤ 0.4. We note that the temper-
atures in this regime coincide with the region below the
peak in the specific heat in Fig. 5(a). For comparison, we
also show a scaling E ∝ T5=3 (i.e., C ∝ T2=3) as a gray
dotted line, which is the expected behavior of a spinon
Fermi surface state [68–70]. As can be seen in Fig. 5(c) our
data are in closer agreement to a E ∝ T2 than the E ∝ T5=3

scenario. The T-linear behavior we observe would indicate
a gapless state. However, we would like to point out that the
lowest temperature attained in these simulations is
T=t ¼ 0.0125. Hence, our data do not rule out an activated
behavior from a gap smaller than this temperature. We
point out that these results are in agreement with exper-
imental measurements of the specific heat for the triangular
lattice compound κ − ðETÞ2Cu2ðCNÞ3 [138].
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V. MAGNETISM

We study the magnetic properties as a function of
temperature and interaction strength of the system on the
YC4 cylinder using the METTS algorithm. Results on
magnetic ordering from (dynamical) mean-field theory can
be found in Appendix C. To distinguish different kinds of
orderings, we investigate the magnetic structure factor:

SmðkÞ ¼
1

N

XN
l;m¼1

eik·ðrl−rmÞhS⃗l · S⃗mi: ð16Þ

The momenta k resolved by the YC4 cylindrical geometry
are shown in the inset of Fig. 6(a). Magnetic 120° Néel

order can be detected by observing a peak in the structure
factor at the K point in the Brillouin zone. On the YC4
cylinder, the K point is not exactly resolved, which is why
we resort to the closest point K0, shown in Fig. 6(a), to
indicate 120° Néel order. A peak at theM point can indicate
the following two kinds of magnetic correlations.

(i) A collinear “stripy” antiferromagnetic ordering is
characterized by breaking both spin and discrete C6

lattice rotation symmetry. This kind of ordering is
characterized by the spins being aligned ferromag-
netically along one direction of the triangular lattice
and antiferromagnetically along the other two. Note
that we use here the term stripy in relation to spin
degrees of freedom—we find no indication of a
charge stripe density modulation.

(ii) Noncoplanar tetrahedral order, on the other hand, is
formed when spins in a 2 × 2 unit cell align in a way
that they point toward the corners of a regular
tetrahedron [64,139].

Several recent DMRG studies [52–54] have demonstrated
that the triangular Hubbard model in the intermediate
regime is susceptible to time-reversal symmetry breaking,
which is indicated by a nonzero expectation value of the
scalar chirality operator in the thermodynamic limit. To
study such a scenario, we compute the chiral susceptibility,

X ¼ 1

N

X
μ;ν∈△

hχμχνi; ð17Þ

where the scalar chirality operator on a triangle μ ¼
ðl; m; nÞ is given by

χμ ¼ S⃗l · ðS⃗m × S⃗nÞ: ð18Þ

The sum in Eq. (17) extends over all pairs of elementary
triangles. In the case of spontaneous time-reversal break-
ing, we expect long-range chiral correlations indicated by a
large value of the chiral susceptibility X. Since our
simulations are working with real-valued wave functions,
the expectation values of the scalar chirality operators hχμi
are exactly zero.
Moreover, we noticed a particular feature in our data on

the YC4 cylinder, where prominent nearest-neighbor anti-
ferromagnetic correlations switch between the different
directions of the triangular lattice. To quantify this obser-
vation we introduce the nematic spin correlation,

N ¼ −
1

N

X
fi;jg0

hS⃗i · S⃗ji; ð19Þ

where the sum extends only over nearest-neighbor pairs
fi; jg0 along the short direction of the cylinder (i.e., the
direction pointing “northeast” in Fig. 7). The behavior of
the above quantities as both a function of U=t and
temperature T=t is shown in Fig. 6. We observe three

FIG. 6. Magnetic ordering as a function of interaction strength
U=t (left) and temperature T=t (right) on the 16 × 4 YC4 cylinder
from METTS. Simulations have been performed with a maximal
bond dimension Dmax ¼ 3000. (a),(b) Magnetic structure factor
SmðK0Þ indicating 120° Néel order. The inset in (a) shows the
momenta resolved by the YC4 cylinder, and the position of the
ordering vectors K0 and M (c),(d) chiral susceptibility X as
defined in Eq. (17). Chiral correlations build up in both the
intermediate as well as the strongly coupled regime at lower
temperature. (e),(f) Magnetic structure factor SmðMÞ indicative of
collinear stripy antiferromagnetic order. (g),(h) Nematic spin
correlation N , as defined in Eq. (19), is pronounced only in the
intermediate coupling regime.
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distinct regimes as a function of U=t. For U=t≲ 8.5 we do
not observe any dominant magnetic features. As we have
previously found in Figs. 1 and 2, this region corresponds
to the metallic regime.
The intermediate regime ranging from 8.5≲U=t≲ 10.5

exhibits interesting and peculiar behavior in all observables.
With decreasing temperature, magnetic correlations grow as
signaled by the structure factor at both the K0 andM points;
see Figs. 6(b) and 6(f). But below the temperature T=t ¼ 0.1
for U=t ¼ 10, the K0-point structure factor begins to
decrease, while at theM point it increases sharply beginning
around T=t ¼ 0.05. The chiral correlations in Fig. 6(d) also
increase below this scale, and the specific heat simultane-
ously develops a small maximum then rapidly decreases as
shown in Fig. 5(a). The development of low-T chiral
correlations is consistent with previous DMRG results
[52,54], which proposed that at T ¼ 0 the system sponta-
neously breaks time-reversal symmetry and forms a chiral
spin liquid. However, we also observe that the chiral
correlations similarly build up beyond U=t≳ 10.5.
As already pointed out, in principle a peak at theM point

in the intermediate regime could also indicate noncoplanar
tetrahedral magnetic order [139]. However, by inspecting
real-space spin correlations we clearly observe the formation
of stripy antiferromagnetism. Using METTS we can inves-
tigate “snapshots” of the system at a given temperature [99].
Briefly summarized, the METTS method decomposes the
thermal density matrix into a sum over rank-1 density
matrices corresponding to pure states [83,84],

1

Z
e−βH ¼

X
i

pijψ iihψ ij; ð20Þ

where pi ≥ 0 are real non-negative probabilities, jψ ii are the
so-called METTS wave functions, and Z denotes the
partition function. The pure states jψ ii are sampled with
probability pi. We show the properties of a typical METTS
wave function sampled in our simulations at T=t ¼ 0.0125
and U=t ¼ 10 in Fig. 7(a). The stripy spin correlations are
clearly pronounced for this METTS state. We also observe
sizable chiral correlations hχ0χμi which are indicated by the
color of the inner triangles. When comparing the snapshot at
U=t ¼ 10 in Fig. 7(a) to the snapshot at a largerU=t ¼ 12 in
Fig. 7(b) we observe that the nearest-neighbor spin corre-
lations are more strongly pronounced along the short
direction of the cylinder at U=t ¼ 10, whereas for U=t ¼
12 the spin correlations on the other two directions are
enhanced.
This motivates the definition of the nematic spin corre-

lationN in Eq. (19). In Figs. 6(g) and 6(h) we observe that
N is clearly pronounced only in the intermediate regime.
We would like to point out that the increased magnetic
correlations align with the stripy spin patterns, as can be
seen in Fig. 7(a).
One last notable aspect of the intermediate regime we

find is that increasing the temperature from T ¼ 0 not only
suppresses double occupancy, as shown previously in
Fig. 5, but also increases the 120° Néel order correlations.
Therefore, the effect of increasing temperature is similar to

FIG. 7. Snapshots of METTS states jψ ii at temperature T=t ¼ 0.0125 on the 16 × 4 YC4 cylinder in the intermediate regime at
U=t ¼ 10 (a) and in the strong coupling regime atU=t ¼ 12 (b). The length of the arrows is proportional to the spin correlation hS⃗0 · S⃗ii,
where the black cross marks the reference site. Hexagons and arrows which are blue indicate positive and red indicate negative spin
correlations. The color of the triangles indicates the magnitude of the chiral correlation hχ0χμi, where the reference triangle is indicated
in gray just below the reference site. Nearest-neighbor spin correlations hS⃗i · S⃗ji are indicated as the width and color of the bonds. We
observe collinear stripy-spin correlations at this temperature in the intermediate regime at U=t ¼ 10.
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the effect of further increasing the coupling strength U=t,
which also both localizes the system and favors 120° Néel
order for U=t ≥ 10.5.
The strong coupling regime U=t≳ 10.5 is most promi-

nently characterized by the increase in the magnetic
structure factor SmðK0Þ at lower temperatures, shown in
Figs. 6(a) and 6(b). This is indicative of 120° Néel order in
the ground state. We observe strong antiferromagnetic
correlations for U=t ¼ 12 setting in at a temperature below
T=t ¼ 0.05, which again coincides with the small maxi-
mum in the specific heat observed in Fig. 5(a). We find that
the behavior of the chiral correlations is similar to the
intermediate coupling regime. In particular, X as shown
in Fig. 5(d) is rather comparable between U=t ¼ 10
and U=t ¼ 12.

VI. DISCUSSION

The physics of the triangular lattice Hubbard model at
half filling is coarsely organized in three different regimes
as a function of the coupling strength U=t: a metallic
regime is followed by an intriguing insulating regime at
intermediate coupling regime whose nature is currently
hotly debated. At large interaction strength the system
enters a magnetic insulating regime, where coplanar 120°
Néel order is stabilized in the ground state. Evidence for the
existence of an intermediate nonmagnetic insulating regime
is ample in the literature [43,45–52,54,129] and clearly
confirmed by several of our findings using multiple
numerical methods.
We firmly establish the order-by-disorder effect at

intermediate coupling U=t, where increasing temperature
paradoxically leads to increased localization, as apparent in
the double occupancy shown in Fig. 5(d). As discussed in
Sec. IV, this effect is similar to the Pomeranchuk effect
[131] observed when liquid helium 3 solidifies upon
heating, and previously found to occur for the Hubbard
model in DMFT studies [114,115,132,133,135]. The
decrease in double occupancy upon heating is confirmed
by both our METTS and cluster DMFT results, where we
found good quantitative agreement between these two very
different numerical techniques. This observation suggests
that localized excitations carry a large thermal entropy at
low temperatures. This is consistent with the Maxwell
relation Eq. (15) relating decreasing double occupancy in
temperature to an increasing entropy with interaction
strength U, which we confirm by computing the thermal
entropy from METTS in Fig. 5(b), as also previously
observed using the finite-temperature Lanczos method on
smaller cluster geometries [130]. Upon increasing the
temperature we observe increased 120° Néel correlations
for U=t ¼ 10 in Fig. 6(b). Hence, both increasing temper-
ature as well as increasing U=t increase the system’s
tendency to localize and, therefore, form 120° order. The
formation of 120° magnetic order can thus be seen as an

analogy of liquid helium 3 solidifying upon increasing
temperature.
This order-by-disorder effect naturally gives rise to the

question about the nature of the proliferating excitations
causing the localization at finite temperature. Let us first
discuss the intermediate coupling regime at U=t ¼ 10. As
we have shown in Fig. 6, both the chiral correlations as well
as the magnetic structure factor at the M point develop a
maximum toward T ¼ 0 at U=t ¼ 10 on the 16 × 4 YC4
cylinder. Interestingly, finite temperature does not simply
melt this ordering. Instead, we observe a maximum in
SmðK0Þ at T=t ¼ 0.1 indicating increased 120° spin corre-
lations. It is interesting to note that increasing temperature
appears to have the same effect as increasing interaction
strength, which also favors 120° order.
Let us now turn to discussing the orders which may

develop in the intermediate regime 8.5≲U=t≲ 10.5. With
decreasing temperature, we find increased chiral correla-
tions as well as spin correlations at the M point. While the
onset of chiral correlations would be consistent with
spontaneous time-reversal and parity symmetry breaking,
as expected for a ground state chiral spin liquid [52–54], the
peak in SmðMÞ is not necessarily related to the formation of
a CSL. While a peak at the M point could in principle be
indicative of noncoplanar tetrahedral order [139], we find
that in the present geometry this peak is related to the
formation of nematic, stripy antiferromagnetic correlations.
This finding is backed up by a recent ground state DMRG
study [54], which analogously found a peak in SmðMÞ in
the intermediate regime, although the authors found these
correlations to be only short-ranged at T ¼ 0.
The occurrence of stripy spin correlations is remarkable

given that most known instances of chiral spin liquids are
stabilized in close proximity to noncoplanar magnetically
ordered states [57,59–61,64,65]. The melting of noncopla-
nar magnetic ordering has even been suggested as a guiding
principle to understand the formation of CSLs [140]. This
seems to be rather different in the present case, where
nematic collinear correlations and chiral correlations both
develop as the temperature is decreased. In this context, the
variational study of the triangular lattice Heisenberg model
with an additional ring-exchange term performed in
Ref. [71] is particularly interesting. The model with ring
exchange can be thought of as an approximate low-energy
effective Hamiltonian for the intermediate coupling regime
[51,68]. The authors compared variational energies of
several Gutzwiller projected ansatz wave functions, includ-
ing an ansatz for a gapped chiral spin liquid and a gapless
nematic spin liquid, breaking rotational symmetry. While
both of these wave functions have been shown to have a
comparable, competitive energy, the gapless nematic state
had the lower variational energy for this particular model. A
more recent variational Monte Carlo study has similarly
suggested the stabilization of a gapless nematic spin liquid
in the context of the half-filled triangular Hubbard model,
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albeit upon adding further second nearest-neighbor inter-
action [75]. Remarkably, our finite-temperature METTS
simulations now reveal exactly this competition between
chiral and stripy spin correlations at finite, but low temper-
atures. While the recent DMRG studies [52,54] provided
strong evidence that ultimately at T ¼ 0 a CSL is formed
on the investigated geometries, we now propose that stripy
spin correlations become relevant immediately at finite
temperatures. We point out that an estimate for the gap of
the CSL has been stated in Ref. [52] by computing the
domain wall tension to be Δ ≈ 0.0065t, which is below the
lowest temperature T=t ¼ 0.0125 we have been able to
simulate using METTS on the 16 × 4 cylinder. It is worth
pointing out that the effect of finite temperatures on the
system is nontrivial, as can be seen by the increase in
SmðK0Þ when increasing temperatures in Fig. 6(a) or the
decrease of the double occupancy in Fig. 5(d).
This raises the question about whether a (rotationally

symmetric) perturbation could stabilize nematic stripy
(quasi)order at T ¼ 0. In particular, it would be interesting
to find out whether indeed a nematic gapless spin liquid
with algebraic spin correlations can be realized and to
study its transition to the CSL. However, such a state will
likely have larger quantum entanglement than the gapped
CSL, rendering accurate DMRG computations more
difficult.
We expect the balance between chiral or nematic spin

correlations to be strongly dependent on the finite-size
geometry. As the DMRG studies on the YC3-6 and XC4
cylinders have shown [52–54], the precise nature of the
ground state still has rather strong dependence on the exact
shape of the cylindrical geometry. Therefore, a detailed
comparison of our finite-temperature METTS data for
different geometries is therefore highly desirable.
We have performed an in-depth comparison between

different geometries in Appendix B. There, we discuss
results on YC4 cylinders of varying length and also results
on the YC3 and XC4 cylinders [52]. We find that our
results only weakly depend on the length of the YC4
cylinders. The specific heat of the YC4 cylinder closely
resembles the specific heat obtained on the YC3 and XC4
cylinders. In particular, we observe that the maxima for
different values ofU=t develop at comparable temperatures
across all different geometries. Similarly, the Pomeranchuk
effect of decreasing double occupancy as a function of
temperature is clearly observed on all geometries. The
correlations at low temperatures in the intermediate cou-
pling regime differ, however. While both the YC4 and YC3
geometries exhibit pronounced stripy antiferromagnetic
correlations, this is not observed on the XC4 cylinder.
Also, the chiral susceptibility only smoothly increases as a
function of U=t on the YC3 and XC4 cylinders. This is in
contrast to the YC4 cylinder, where we observe the onset of
chiral correlations at smaller U=t than the onset of 120°
magnetic correlations.

At this point, we comment that finite-size effects are
expected to become less severe at higher temperatures,
since correlation lengths typically decrease. It remains to be
seen down to which temperature scale the finite-size
cylinders can fully capture the two-dimensional limit.
Let us now focus on the strong coupling regime at

U=t ¼ 12. In the limit U=t → ∞ the effective spin degrees
of freedom are described by the antiferromagnetic
Heisenberg model, whose 120° Néel ordered ground state
features spin-wave excitations. However, besides spin-
wave excitations several authors have found a different
kind of excitation being relevant in this case. Series
expansions found anomalous behavior of the magnon
spectrum, which exhibits a minimum beyond the descrip-
tion of linear spin-wave theory [141–143]. This minimum
is ascribed to the presence of a different kind of excitations,
reminiscent of the roton excitations of 4He forming a
minimum in the quasiparticle dispersion [144,145]. There-
fore, the excitations of the triangular lattice Heisenberg
antiferromagnet have often been referred to in literature as
“rotonlike” excitations (RLEs). It has been argued that
these excitations contribute significantly to the thermal
entropy down to temperatures T ≈ 0.1J [142], where J
denotes the antiferromagnetic coupling constant. More
thoroughly, the presence of two different kinds of excita-
tions in the S ¼ 1=2 triangular Heisenberg antiferromagnet
has been recently proposed by a study using the exponen-
tial tensor renormalization group (XTRG) method
[146,147], which, similar to METTS, allows for unbiased
numerical simulations at finite temperature on cylindrical
geometries. The authors indeed establish two temperature
scales corresponding to the magnon and the RLEs. The
RLEs are shown to manifest themselves in an increase of
the nearest-neighbor chiral correlations as well as a
maximum in the magnetic structure factor SmðMÞ [147].
The existence of the RLEs is demonstrated to be robust on a
wide variety of cylinder geometries, including cylinders of
circumference W ¼ 6.
In our simulations at U=t ¼ 12 we analogously find a

maximum in SmðMÞ in Fig. 6(e) indicating the RLEs. Also
an increase of chiral correlations in Fig. 6(d) at temper-
atures below T=t ≈ 0.1 is observed. The 120° magnetic
correlations at lower temperatures are signaled by a peak in
SmðK0Þ. This clearly resembles the situation encountered in
the Heisenberg model as in Ref. [147]. Interestingly, we
found the specific heat in Fig. 5 to be rather similar for both
the intermediate and strong coupling regime. It appears that
tuning the interaction strength from U=t ¼ 10 to U=t ¼ 12
interchanges the role of stripy correlations with 120°
correlations.
We elaborate on the behavior of the chiral susceptibility

X . If time-reversal symmetry is indeed broken at low
temperature in the intermediate regime, we would expect
the chiral correlations to diverge toward T ¼ 0. However,
we think that the temperatures (T ≥ 0.0125t) we simulated
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are above the transition temperature estimated by Ref. [52],
Δ ≈ 0.0065t. Furthermore, it has also been argued that the
stabilization of a CSL at T ¼ 0 can depend on the cylinder
length studied in DMRG [54], where a CSL at T ¼ 0 has
only been found in cylinders of length L ¼ 64, but not in
shorter cylinders. Nevertheless, we find pronounced chiral
correlations in the intermediate coupling regime. For the
strong coupling regime, pronounced chiral correlations at
finite temperature have been found in a previous study of
the Heisenberg model using XTRG [147]. There, the
correlations have been attributed to the rotonlike excitations
of the triangular lattice Heisenberg antiferromagnet. Here, we
find that the chiral correlations already build up in the
intermediate regime and remain sizable in the strong coupling
regime. This strongly suggests that the rotonlike excitations
are relevant excitations in the intermediate coupling regime.
Finally, an outstanding question is the occurrence of

superconductivity in the present model. While general
arguments suggest that the metallic phase studied here
hosts a low-temperature superconducting instability at
weak coupling (see, e.g., Ref. [148]), the possible occur-
rence of an unconventional superconducting phase near the
metal-insulator phase boundary [45] or upon doping the
insulating phase [67] are intriguing questions for future
computational studies.
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APPENDIX A: CONVERGENCE OF METTS
SIMULATIONS

We employ the METTS algorithm as described in
Ref. [99]. Thermal expectation values of an operator O
are evaluated as

hOi ¼ hψ ijOjψ ii; ðA1Þ

where the minimally entangled typical thermal states,

jψ ii ¼ e−βH=2jσii; ðA2Þ

are imaginary-time evolved product states jσii. Here, � � �
denotes statistical averaging over a series of subsequent
METTS. As such, the METTS algorithm is subject to
statistical sampling uncertainty, which can be reduced by
computing more samples and whose size can be estimated
using standard time series analysis. The imaginary-time
evolution is performed by using the time-dependent varia-
tional principle (TDVP) algorithm for matrix product states
[151–153]. In Ref. [99], some of the authors showed that
the maximal bond dimension d of the matrix product state
representation of the METTS serves as a control parameter
to achieve accurate and controlled computations on finite-
size cylinders. Here, we performed extensive comparisons
between simulations at different bond dimensions. Results

FIG. 8. Convergence of METTS results on the 16 × 4 YC4
cylinder as a function of maximal bond dimension Dmax. We
compare results from simulations performed with Dmax ¼ 1000,
2000, 3000, 4000. Results agree for all quantities within error
bars for Dmax ¼ 2000, 3000, 4000, whereas results at Dmax ¼
1000 deviate slightly. Comparisons are performed at T=t ¼ 0.025
(left) and T=t ¼ 0.1 (right). We show the double occupancy D
(a),(b), the magnetic structure factors evaluated at M (c),(d) and
K0 (e),(f), and the chiral susceptibility X (g),(h).
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on the 16 × 4 YC4 cylinder at temperatures T=t ¼ 0.025
and T=t ¼ 0.1 as a function of U=t are shown in Fig. 8.
Simulations have been performed up to a maximal
bond dimension ofDmax ¼ 4000. We find that all quantities
of interest are converged within error bars already at
Dmax ¼ 2000.
Furthermore, we have performed an analysis of the

effects of finite-bond dimension Dmax for our results on
the energy E as a function of temperature, as shown in
Fig. 9. We find the energy as a function of temperature
exhibits E ∝ T2 behavior in the regime where
0.0125 ≤ T=t ≤ 0.4, which implies that the specific heat
C is approximately linear in this regime.

APPENDIX B: COMPARISON OF METTS
CYLINDER GEOMETRIES

The results from METTS in the main text have mainly
been obtained on the 16 × 4 YC4 cylindrical geometry,
which is shown in Fig. 7. In this Appendix, we discuss the
effects of the cylinder geometry on our results. First, we
investigate the dependence of the magnetic observables on
the cylinder length L of the YC4 cylinder in Fig. 10. We
compare simulations at temperatures T=t ¼ 0.025, 0.100,
0.300 for 6 ≤ U=t ≤ 12. We find that our results only
weakly depend on the cylinder length L and are, therefore,
expected to be robust in the limit L → ∞ for the YC4
cylinder.
Moreover, we assess the effect of the cylinder width and

boundary conditions on our results. Here, the differences
between the geometries are more pronounced, and the
physics at lowest temperatures in the intermediate coupling
regime differs in some aspects. This has previously already

been observed in Refs. [52,53], where a detailed compari-
son of DMRG results on different geometries has been
performed. We focus on the YC3 and XC4 geometries. The
YC3 geometry is similar to the YC4 geometry shown in
Fig. 7, but has a circumference of Ly ¼ 3. The YC3
geometry allows for stabilizing the 120° Néel order and
features both the K and M points in reciprocal space. The
XC4 geometry, on the other hand, has a circumference of
Ly ¼ 4, but differs from the YC4 geometry by having a
distinct periodicity vector given by T ¼ ½0; ð ffiffiffi

3
p

Ly=2Þ�. The
120° Néel order is unfrustrated on this lattice and both K
andM points are featured in reciprocal space. The resolved
momenta of the YC3 and XC4 geometry are shown in
Figs. 11 and 12, respectively.
We show the behavior of the specific heat C, magnetic

structure factor SmðqÞ, double occupancy D, and chiral
susceptibility X for the YC3 cylinder in Fig. 11(a) and the
XC4 cylinder in Fig. 12(a). First, the behavior of the
specific heat is similar on all cylinder geometries we
investigated. At U=t ¼ 6 we observe a broad maximum
at T=t ≈ 0.25–0.4. This maximum is shifted toward lower
temperatures of around T=t ≈ 0.15 at U=t ¼ 8. In the
intermediate to strong coupling regime, we observe a small
maximum at temperatures around T=t ¼ 0.05 followed by
an extended plateau.
At low temperatures, we observe an increase of the

specific heat as a function of U=t, which by Eq. (13)
implies an increase in entropy upon increasing U=t. As
discussed in Sec. IV, this increase in entropy is related to a

FIG. 9. The internal energy E as a function of T=t at U=t ¼ 10
on the 16 × 4 YC4 cylinder depending on the maximal bond
dimensionDmax. We compare results from simulations performed
with Dmax ¼ 2000, 3000, 4000 and find our results to agree
within error bars. The behavior of the energy is found to be well
described by E ∝ T2, implying a T-linear specific heat C.

FIG. 10. Size dependence of magnetic structure factor SmðkÞ
and the chiral susceptibility X for three different temperatures.
We compare YC4 cylinders of length L ¼ 16 (squares), L ¼ 24
(crosses), and L ¼ 32 (triangles). Increasing opacity denotes
longer cylinder length. METTS simulations have been performed
with a maximal bond dimension Dmax ¼ 4000. (a) Magnetic
structure factor SmðK0Þ, (b) chiral susceptibility X, (c) magnetic
structure factor SmðMÞ, (d) nematic spin correlation N , from
Eq. (19). We observe only weak dependence of these observables
on the length L of the cylinder.
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decrease of the double occupancy D with temperature via
the Maxwell relation Eq. (15). The double occupancyD for
the YC3 and XC4 geometries is shown in Figs. 11(c) and
12(c). The decrease in double occupancy is clearly
observed in all geometries. Hence, the Pomeranchuk effect
is consistently realized on all geometries we investigated.

The magnetic structure factor SmðqÞ at temperature
T=t ¼ 0.025 as a function of U=t is shown in Fig. 11(b)
for the YC3 cylinder and Fig. 12(b) for the XC4 cylinder.
The YC3 cylinder exhibits a clearly pronounced peak at
q ¼ M in the intermediate coupling regime. This is con-
sistent with our results on the YC4 cylinder, where we
similarly detected stripy antiferromagnetic order. Also, at
strong coupling the structure factor is peaked at q ¼ K,
indicating 120° Néel order. However, we do not observe a
pronounced chiral susceptibility X in the intermediate
coupling regime in Fig. 11. Instead, the chiral susceptibility
smoothly increases as a function of U=t. This is consistent
with the ground state DMRG study performed in Ref. [52],
where no chiral spin liquid has been observed for periodic
boundary conditions on the YC3 cylinder.
Similarly, the XC4 cylinder also does not exhibit a

pronounced chiral susceptibility in the intermediate cou-
pling regime in Fig. 12(d). Also for this geometry, Ref. [52]
reported the chiral spin liquid not being realized at T ¼ 0
for periodic boundary conditions. In contrast to the YC3 and
YC4 geometries, the XC4 cylinder does not exhibit a
pronounced peak of the magnetic structure factor at the
M point in the intermediate regime, as shown in Fig. 12.
Instead, the peak at q ¼ K is smoothly increasing as a
function ofU=t. This demonstrates that the precise nature of
the state realized in the intermediate regime at low temper-
atures is dependent on the particular cylinder geometry. We
think the kind of order being exactly realized in the two full-
dimensional limit is still to be determined. However, the
pronounced the stripy antiferromagnetic correlations on the
YC3 and YC4 cylinders and the evidence for a CSL on the
YC4 cylinder [52,54] show that these two kinds of orderings
are competing at the lowest temperatures, and might be
realized in the full two-dimensional limit, possibly upon
adding further interaction terms.

APPENDIX C: MAGNETIC PHASE TRANSITION
IN (DYNAMICAL) MEAN-FIELD THEORY

In this Appendix we give an overview of the magnetic
properties of the Hubbard model on the isotropic triangular
lattice calculated by means of the dynamical mean-field
theory. By the inclusion of all temporal correlations present
in the Hubbard model Eq. (1), DMFT has proven to provide
a good starting point for the application of more sophis-
ticated techniques, which aim at including spatial correla-
tions on top (see, e.g., Refs. [47,81,129,154]).
The main panel of Fig. 13 shows the Néel temperature

calculated in DMFT TDMFT
N (red line and circles) and static

mean-field theory (MFT, dashed line), separating the
paramagnetic from a magnetically ordered phase [155].
In contrast to the case of the Hubbard model on a square
lattice where due to the nesting properties of the Fermi
surface the order appears for every finite U at low enough
temperatures, here a quantum critical point (QCP) separates
a Fermi liquid from a magnetically ordered ground state at

FIG. 12. Key results on the XC4 cylinder from METTS.
(a) Specific heat C exhibiting a small peak at T=t ≈ 0.05 in
the intermediate and strong coupling regime. (b) Magnetic
structure factor SmðqÞ at T=t ¼ 0.05 for q ¼ M and q ¼ K.
We do not observe an intermediate peak q ¼ M. (c) The double
occupancy D decreases as a function of temperature. (d) The
chiral susceptibility smoothly increases as a function of U=t.

FIG. 11. Key results on the YC3 cylinder from METTS.
(a) Specific heat C exhibiting a small peak at T=t ≈ 0.05 in
the intermediate and strong coupling regime. (b) Magnetic
structure factor SmðqÞ at T=t ¼ 0.05 for q ¼ M and q ¼ K.
We observe a peak at q ¼ M in the intermediate coupling regime.
(c) The double occupancy D decreases as a function of temper-
ature. (d) The chiral susceptibility smoothly increases as a
function of U=t.
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UDMFT
QCP =t ≈ 9.5 (cf. also Refs. [47,129]). From there TDMFT

N
increases steeply with a maximum of TDMFT

N;max=t ≈ 0.25
around U=t ¼ 11 before slowly decreasing again.
The following two points are particularly noteworthy.
(i) As in the case of the Hubbard model on a square

lattice the critical end point of the Mott MIT (orange
triangle) visible in the paramagnetically restricted
DMFT is shadowed, i.e., preempted, by the mag-
netic phase transition of DMFT (with the magneti-
cally ordered phase being the thermodynamically
stable phase of DMFT).

(ii) The CDMFT critical end point (blue square) lies
close to the phase boundary of the magnetic phase.
Note that we did not calculate the magnetic phase
diagram in the case of CDMFT, which is restricted to
its paramagnetic solution.

Comparing the magnetic phase diagram of DMFT to the
self-energies of CDMFT at T=t ¼ 0.10 presented in Fig. 4
of the main text, one can observe that the nearest-neighbor
component of the CDMFT self-energy starts to increase at
the interaction value U=t ¼ 9.5, where the DMFT orders
magnetically. In other words the spatial mean-field approxi-
mation reflects the increase of nonlocal fluctuations by
entering an ordered phase.
For the determination of the DMFT phase boundary, we

calculated the momentum-dependent magnetic susceptibil-
ity χDMFT

m ðk; iΩn ¼ 0Þ at zero Matsubara frequency by
means of the solution of the Bethe-Salpeter equations with
the irreducible vertex extracted from the self-consistently
determined Anderson impurity model [93], using the con-
tinuous time quantum Monte Carlo solver in its interaction

expansion (CTINT) and the TPRF framework [156] of TRIQS
[150]. For the vertex we used up to Niω ¼ 50 positive
fermionic Matsubara frequencies and extrapolated the value
of the physical susceptibility to Niω → ∞ with χ ∼ a þ
b=Niω (see, e.g., Supplemental Material of Ref. [157]).
Because of the second-order nature of the phase tran-

sition, approaching the phase boundary χDMFT
m ðk; iΩn ¼ 0Þ

diverges at the ordering vector k ¼ Q. Figure 14 shows
χDMFT
m ðk; iΩn ¼ 0Þ at T=t ¼ 0.40 (left-hand column) and
T=t ¼ 0.10 (right-hand column) for several interaction
values. One can see that the leading contribution always
stems from momentum vectors centered around k ¼ K.
Approaching the transition, at T=t ¼ 0.10, χDMFT

m ðk; iΩn ¼
0Þ continuously grows before it eventually diverges at
k ¼ K. The temperature dependence of the inverse sus-
ceptibility χ−1m;DMFTðk ¼ K; iΩn ¼ 0Þ is shown in Fig. 15
for two different values of the interaction. AtU=t ¼ 8 (with
a Fermi liquid ground state present in DMFT) it exhibits
Pauli-like behavior, i.e., approaching a constant at low
temperatures. At U=t ¼ 10 (with a magnetically ordered
ground state) the susceptibility diverges as χ ∼ jT −
TDMFT
N j−γT at TDMFT

N =t ≈ 0.22 with γT ¼ 1 being the sus-
ceptibility’s mean-field critical exponent.

FIG. 14. Momentum dependence of the DMFT magnetic sus-
ceptibility at zero frequency for several temperatures and inter-
actions. The leading contribution is (centered around) k ¼ K.

FIG. 13. Magnetic phase diagram of the isotropic triangular
Hubbard model calculated by MFT (red dashed line) and DMFT
(red circles and solid line). The red lines mark the second-order
transition from a paramagnet (white) to a 120° Néel ordered phase
(red shaded). Also shown are the critical temperatures and
interactions of the (PM-restricted) DMFT (orange triangle) and
CDMFT (blue square). Note that the CDMFT solution has been
restricted to its paramagnetic phase. The DMFT zero temperature
point has been taken from the ground state calculation of
Ref. [113].
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APPENDIX D: CELLULAR DYNAMICAL
MEAN-FIELD THEORY: CLUSTER

GEOMETRY, MATSUBARA DATA, AND
COMPUTATIONAL DETAILS

1. CDMFT on a Nc = 7 site cluster, restricted
to the PM solution [CDMFT, CDMFT-7 (PM)]

For the CDMFT calculations performed in this work, we
used Nc ¼ 7 sites which are arranged according to Fig. 16
with a central site and six equivalent sites that form an outer
ring. We restrict the CDMFT to its paramagnetic solution.
Because of the previously found observation [98] that the
self-energy obtained from a cluster center focused extrapo-
lation converges faster with the cluster size than the
periodization schemes previously introduced in the liter-
ature, for single-particle observables [like the spectral
function shown in Fig. 1(a)] and potential energies (double
occupancies) we show values for the central site. Similarly
for the self-energies shown in Fig. 4, we took the central
site as representative for its local component and as its
nearest-neighbor component the values from central site to

one of the (equivalent) outer ring sites. This results in a
remarkably good agreement with the results from numeri-
cally exact DiagMC in the regimes where DiagMC can be
controllably resummed.
For completeness and reference in Fig. 17 we show the

Matsubara frequency dependence of the single-particle
properties spectral function Ac as expressed by the
Green function (upper panel), the imaginary part (central
panel), and real part (lower panel) of the self-energy. These
quantities are shown for T=t ¼ 0.1 and for several values of
the interaction U=t. For the self-energy we show both the
central site and nearest-neighbor values. For the real part at
the central site we have subtracted the respective Hartree
term. The MIT is clearly visible between U=t ¼ 9 and 9.25
as (i) a suppression of the spectral weight at low frequen-
cies and (ii) a change of slope [158,159] and eventually
divergence of the imaginary part of the self-energy on the
central site with increasing U=t. The data of Fig. 1(a) in the
main have been obtained from a linear extrapolation of
the data in the upper panel of Fig. 17 to zero frequency.

FIG. 16. Cluster geometry with Nc ¼ 7 used in CDMFT. The
cluster consists of a central site (marked in red) and six equivalent
outer sites arranged on a ring. The translation vectors are a⃗1 ¼
ð5=2; ffiffiffi

3
p

=2Þ and a⃗2 ¼ ð1=2; 3 ffiffiffi
3

p
=2Þ.

FIG. 17. Top: spectral weight Ac expressed with the imaginary
part of the Green function on the central site of CDMFT at T=t ¼
0.1 for several interaction values as a function of the Matsubara
frequency. Center: imaginary part of the self-energy on the central
site (left) and to its nearest neighbor (right). Bottom: real part of
the self-energy on the central site (left, the Hartree term has been
subtracted here) and to its nearest neighbor (right).

FIG. 15. Temperature dependence of the (inverse) magnetic
susceptibility at k ¼ K and zero Matsubara frequency for two
different interaction values calculated by DMFT. For U=t ¼ 12
the linear fit to determine TDMFT

N is shown.
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For the calculations of the self-energies, we converged
the CDMFT self-consistency cycle using a continuous time
quantum Monte Carlo solver in its interaction expansion
(CTINT) in the TRIQS framework [150].

2. CDMFT on a Nc = 4 site cluster, allowing for
spin-symmetry breaking (CDMFT-4)

For the CDMFT calculations that allow for spin-
symmetry breaking (Fig. 3, CDMFT-4), we used a Nc ¼
4 cluster with the geometry given in Fig. 18. As already
stated in the main text, the convergence of a larger cluster
(at least close to phase transitions) is prohibited by the
fermionic sign problem.
For being able to enter the symmetry-broken phase we

use an approach similar to the one described in Ref. [113]
for single-site DMFT. However, instead of rotating the
Green function we rotate an external magnetic fieldHσz by
applying

eiϕσy=2½Hσz�e−iϕσy=2; ðD1Þ
where σi; i ∈ fx; y; zg denote the Pauli matrices. The 120°
Néel ordering corresponds to a rotation with
ϕ ¼ Q⃗R⃗i; Q⃗ ¼ ð2π=3; 2π=3Þ. The breaking of the SU(2)
symmetry of the Green function results in an effective
eight-orbital calculation at the impurity level. After some
iterations of the algorithm we switch off the field and let the
system converge self-consistently.
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Transition, Antiferromagnetism, and Unconventional
Superconductivity in Layered Organic Superconductors,
Phys. Rev. Lett. 85, 5420 (2000).

[24] P. Limelette, P. Wzietek, S. Florens, A. Georges, T. A.
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