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Recently discovered Z, topological kagome metals AV;Sbs (A = K, Rb, and Cs) exhibit charge-density-
wave (CDW) phases and novel superconducting paring states providing a versatile platform for studying
the interplay between electron correlation and quantum orders. Here we directly visualize CDW-induced
bands renormalization and energy gaps in RbV;Sbs using angle-resolved photoemission spectroscopy
pointing to the key role of tuning van Hove singularities to the Fermi energy in mechanisms of ordering
phases. Near the CDW transition temperature, the bands around the Brillouin zone (BZ) boundary are
shifted to high-binding energy, forming an M-shaped band with singularities near the Fermi energy. The
Fermi surfaces are partially gapped, and the electronic states on the residual ones should be possibly
dedicated to the superconductivity. Our findings are significant in understanding CDW formation and its

associated superconductivity.
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I. INTRODUCTION

Layered kagome-lattice transition metals are emerging
as an exciting platform to explore frustrated lattice
geometry and quantum topology. A set of typical
kagome-lattice electronic bands is produced by the
tight-binding calculation featuring a Dirac dispersion at
the Brillouin zone (BZ) corner, a saddle point at the zone
boundary, and a flat band through the BZ [1]. Close-to-
textbook kagome electronic bands with orbital differ-
entiation physics have been experimentally observed in
paramagnet CoSn [1]. In some kagome-lattice materials,
the versatile quantum phenomena associating with the
features near the Fermi energy (Er) have been found,
such as Dirac and Weyl fermions [2—12], ferromagnetism
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[13-15], negative flat-band magnetism [16], and the
topological Chern magnet [17].

The theory was put forward early that a two-dimensional
(2D) energy band with saddle points in the vicinity of E is
unstable against charge-density-wave (CDW) formation
[18]. The CDW, superconducting, and topological phases
have been extensively investigated in 2D transition-metal
dichalcogenides [19], and the underlying microscopic
mechanism of the CDW formation is still controversial.
Recently, the CDW state and superconductivity were
discovered in a family of layered kagome metals
AV3Sbs (A = K, Rb, and Cs) [20-24], which hosts a Z,
topological invariant and nontrivial topological Dirac sur-
face states near E [21]. The CDW state is probably driven
by the competing electronic orders at the saddle-point
singularity with a high density of states [25-39]. X-ray
diffraction and scanning tunneling microscopy (STM)
reveal the formation of a three-dimensional (3D) 2 x 2 x 2
superlattice at both CDW and superconducting states
[24-28], which energetically favors a chiral charge order
and an inverse Star of David distortion in a kagome lattice
with the shift of van Hove singularity to E [34,35,40]. The
CDW states and double superconducting domes are asso-
ciated with multiple singularities with different energies
and orbital characters near Ep [27-37,41-44], which at
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(a) Crystal structure of RbV3Sbs with space group P6/mmm (no. 191). (b) The original (red lines) and 2 x 2 reconstructed

(blue lines) BZs projected on the (001) surface with the high-symmetry points. (c),(d) Integrated intensity plot (10 meV) at Er and
Er —0.28 eV taken at 140 K. The red lines indicate the high-symmetry directions and the original BZs. (e),(f) Integrated intensity plots
(£10 meV) on the k, — k| plane at Er and Er —0.28 eV with k| oriented along the ['-K direction. The high-symmetry points are
plotted. (g),(h) Intensity plot and corresponding second derivative plot along the I'-K direction. The MDCs taken at Ep and Ej —
0.28 eV are shown by the red curves. The bands are indicated by the greek letters and the red dashed lines.

present need to be further studied in detail. In addition, a
giant anomalous Hall effect with the reversal of the Hall
sign is observed [22], and magnetic order and the local
moment are not found by magnetic susceptibility and muon
spin spectroscopy [22,23,45]. To fundamentally understand
these anomalous behaviors and quantum orders, the inves-
tigation of the temperature evolution of the low-energy
electronic structure is highly desired.

In this paper, we report on a combined angle-resolved
photoemission spectroscopy (ARPES) and first-principles
calculations study of the temperature evolution of the low-
energy electronic structure in RbV3Sbs, which has a CDW
transition temperature (Tcpw) of about 102 K, a sign
change of the Hall coefficient at about 40 K, and a
superconducting transition temperature (7.) of about
0.92 K [23]. As a result of the CDW transition, we find
that the bands at the zone boundary (M) are shifted down
about 40 meV forming an M-shaped band with its singu-
larity at about 60 meV below Er. Below Tcpw, the energy
gap of about 20 meV is opened at the Fermi momentum
(kp) of the band centered at M, and no gap is observed at
the band centered at I" at 10 K within experimental energy
resolution. The electronic states on the residual Fermi
surfaces should be dedicated to the superconducting

pairing. Our findings reveal CDW-induced strong bands
renormalization and energy gaps at the zone boundary,
implying that they are the multiple singularities at M which
play ultimate roles in the formation of both CDW and its
related superconducting phases.

II. RESULTS AND DISCUSSION

The crystal structure of RbV;Sbs crystallizes in a
hexagonal structure with P6/mmm (no. 191) space group
[20-24], in which V-Sb slabs consisting of V kagome nets
and interspersing Sb atoms are separated by alkali-metal
ions along the ¢ axis, as shown in Fig. 1(a). There are two
kinds of Sb sites: the Sb1 site at the centers of V hexagons,
and the Sb2 site below and above the centers of V triangles
forming hexagon layers. The corresponding original (red
lines) and 2 x 2 reconstructed (blue lines) BZs projected on
the (001) surface with the high-symmetry points are shown
in Fig. 1(b). Figures I(c) and 1(d) show constant-energy
surfaces taken at 140 K at Er and Er — 0.28 eV, respec-
tively. The high intensity around the M points at the Fermi
surfaces suggests the singularities or the surface states at
the proximity of Er. To investigate the 3D character of the
Fermi surfaces, we carry out the photon-energy-dependent
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FIG. 2.

(a),(b) Intensity plots along the I'-M direction taken at 120 and 10 K. The sample (#S1) is cleaved at 120 K and measured along

with the decreasing temperature. The bands are indicated by the greek letters. (c) MDCs around the T point taken at 120 K, as indicated
by the dashed rectangles in (a). (d),(e) Energy distribution curves (EDCs) around the # point at 120 and 10 K, as indicated by the dashed
rectangles in (a) and (b). The x’ and y bands are indicated by different color makers. (f) EDCs at the M center taken at different
temperatures. (g),(h) EDCs and their symmetrizations at the k- of the y band along T~ taken at different temperatures. Different colors

represent different temperatures.

ARPES measurement. With an empirical value of the inner
potential of approximately 8.2 eV and ¢ = 9.07 A [24], we
find that hv = 86 eV is close to the I" point and 100 eV
close to the A point according to the free-electron final-state
model [46]. Three electronlike pockets («, f#, and k) along
the I'-K direction are indicated in Figs. 1(g) and 1(h). All
three bands show weak k, dispersions both at E, and
Er —0.28 eV, as shown in Figs. 1(e) and 1(f), which reveal
the 2D electronic dispersions along I-K and 2D Dirac
cones at the K points. Based on the ARPES data, we
estimate that the widths of the a, f, and x Fermi pockets
along T-K are about 0.42, 0.10, and 0.31 A~!, and their
Fermi velocities are about 3.25, 3.60, and 1.70 eV A
(1.28 eV A for another branch of the Dirac bands),
respectively.

Figure 2 shows the temperature evolution of the bands
along the T'-M direction on a sample cleaved at 120 K
(#S1). The intensity plots along the T'-M direction taken at
120 and 10 K are shown in Figs. 2(a) and 2(b), respectively.
Comparing the data taken at the two temperatures, one can
see that the a band is shifted up, which is mainly attributed
by surface reconstructions along with time [47]. Figure 2(c)
shows the moment distribution curves (MDCs) of the

a band taken at 120 K, revealing the two splitting sub-
branches. The STM results suggest an isotropic scattering
vector connecting different states of the a pocket [26-28],
while the two Sb sites or k, integration can also cause the
bands splitting in the ARPES data. We carry out substantial
experiments on the samples with various conditions, e.g.,
cleaved at both high and low temperatures and then
measure them at a few stabilized temperatures along with
decreasing and increasing temperatures, as shown in the
Supplemental Material Fig. S(1) [48]. Our data reveal that
the o band at I" is sensitive to the sample surface and the
vacuum, while the other bands are not.

At the M point, the ¥ and y bands can be observed at
120 K [Fig. 2(d)]. The two bands are shifted down at 10 K
and the § band is brought out [Fig. 2(e)]. The § band could
be an edge state cut by the Fermi distribution function. We
estimate that the widths of the «, ¥/, and y Fermi pockets
along -M at 10 K are about 0.42, 0.22, and 0.10 A~" and
their Fermi velocities are about 3.32, 1.68, and 4.20 eV IOX,
respectively. We display in detail the temperature-
dependent data in Figs. 2(f)-2(h). As shown in Fig. 2(f),
one can find that the ¥’ and y bands begin to be shifted
down around Tcpw (100 K) and stand steadily around
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FIG.3. (a)—(d) Intensity plots and corresponding EDCs along the K-M direction taken at 140 and 30 K, respectively. The sample (#52)

is cleaved at 140 K and measured along with the decreasing temperature. The x’ and y bands are indicated by different color makers.
(e) EDCs at the M center as indicated by the line in (a), taken at different temperatures. The energy positions are indicated by the black
arrows. (f) EDCs at the fixed momentum [indicated by « in (d)] taken at different temperatures and divided by the EDC taken at 140 K.
(g) EDCs at the K center as indicated by the line in (a), taken at different temperatures. The energy positions are indicated by the black
arrows. (h) The symmetrized EDCs at the kj of the y band along K-M taken at different temperatures. The values of the gaps are marked.
#53 represents the EDCs taken on the third sample. (i) Intensity plot along the K- direction taken on the freshly cleaved sample at 10 K
(#53). kp is indicated by the black arrows. (j) EDCs and their symmetrizations at the k. of the y band along K-M, as indicated in (i).

60-80 K with their band bottoms at 0.08 and 0.13 eV below
Ep, respectively. Below approximately 80 K, the y band
further opens the energy gap of about 20 meV, as shown in
the energy distribution curves (EDCs) and their symmet-
rizations at kp [Figs. 2(g) and 2(h)]. While we do not
observe the CDW gap opening at the a band centered at I" at
low temperatures along both I'-M and I'-K, as shown in
Supplemental Material Fig. S(2) [48].

Figures 3(a)-3(h) show the temperature evolution of the
bands along the K-M direction on a sample cleaved at
140 K (#S2). From the intensity plots and the correspond-
ing EDCs, one can clearly see that the bands near the M
point are remarkably renormalized by CDW. The «’ band
crosses E at 140 K as shown in Figs. 3(a) and 3(b). The «/
and y bands shifting down along with the decreasing
temperature mentioned above can be more clearly identi-
fied along the K-M direction, as shown in Figs. 3(a)-3(e).
More strikingly, the ¥’ band centered at M is flattened and
sinks below Ej at approximately 50-70 K, as shown in
Figs. 3(d) and 3(f), forming an M-shaped band with the tips

of the x’ band (singularities) at about 60 meV below Ep.
The y band along K-M also further opened the energy gap
of about 20 meV, as shown in the symmetrized EDCs at the
ky of Fig. 3(h). The temperature evolution of the x’ band
seems like the calculation with an inverse Star of David
pattern in Fig. 4(b).

To check the CDW-induced bands renormalization, we
directly compare the data taken on the freshly cleaved
samples at low temperature (#S56 cleaved at 10 K) and high
temperature (#S7 cleaved at 140 K), as shown in the
Supplemental Material Fig. S(3) [48]. The sharp contrast
between Figs. S(3)(a) and S(3)(b) reveals that the band
renormalization is indeed induced by the temperature rather
than a trivial surface reconstruction. We also measure
the energy gaps on a freshly cleaved sample at 10 K
(#S53), as shown in Figs. 3(i) and 3(j). The energy positions
in Fig. 3(j) show CDW gaps at —20 meV and the tip of the
k' band at about —60 meV, respectively. In addition, the
temperature evolution of the Dirac cone at the K point is
shown in Fig. 3(g). The Dirac point is almost not moved
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(a) Orbital-projection band-structure calculation of RbV;Sbs with spin-orbit coupling for the normal state. Here the main

contribution orbitals near E are shown, and the orbitals” weights are represented by both the colors and the size of the bands. The
orbitals’ weights of V atoms are the average values of the adjacent three V atoms. The saddle points (SPs) are indicated by the arrows,
and the Dirac points (DPs) are marked with the dashed circles. The features at M (M and L) are indicated by the red squares. (b) The
unfolded band structure of the inverse Star of David phase. The bands with a strong renormalization at the M and L points are marked
with the dashed ellipses. The marked band at L sinks below E in the CDW state.

along with decreasing temperature. The energy gap of the
Dirac cone is about 100 meV, which is much larger than
the calculated value of approximately 15-25 meV induced
by spin-orbit interaction in the normal state [Fig. 4(a)].
The CDW gaps induced by the band folding around the
Dirac points along the T'— K direction [Fig. 4(b)] are
needed to be considered.

With the help of the orbital-projection band calculation
[Fig. 4(a) and the Supplemental Material Figs. S(4) [48]],
one can find the a band at I" is mainly contributed by the
out-of-plane Sb1-p, (dark), and the ¥’ and y bands at M are
mainly derived from the out-of-plane V-d, (green) and
V-d,./d,, (blue) orbitals. The bonding of the out-of-plane
orbitals and the interlayer coupling strength are enhanced
along with decreasing the temperature, which is also
revealed by the reduction of the c-axis lattice constant
[21]. The renormalization of the bands with the out-of-
plane character should be more appreciated with the CDW
instability. Coulomb scattering of electrons between the
orbital-selective saddle-point singularities at M can give
rise to instabilities of the Fermi surfaces and lead to CDW
states [25-39]. The 2D Dirac bands at K (x and «’) originate
from in-plane V-d,,/d,,_,, (red) orbitals, and hybridized
with out-of-plane V-d,./d,. (blue) orbitals near the M
point. The Dirac bands remain nearly motionless upon the
CDW phase transition.

The calculation in the CDW state with the inverse Star of
David can well describe our experimental observations
[Fig. 4(b) and the Supplemental Material Fig. S(5) [48]].
As marked with the dashed ellipses in Fig. 4(b), the ' band
at the L point sinks below Ep, forming an M-shaped
band with its tips at about 60 meV. The tips can be viewed
as new singularities, which may be further associated
with superconducting states. The CDW-induced bands
renormalization is endowed with an electronic correlation

effect. Previous studies provide strong evidence that
traversing the singularity to Ep is beneficial in the for-
mation of ordering phenomena. For instance, in CDW-
material TaSe, also with 3D 2 x 2 x 2 superstructure, by
tuning the energy position of the singularity, the 7. is
enhanced by more than an order of magnitude [49].
Recently, thermal conductivity and high-pressure resistance
measurements reveal two superconducting domes and
exotic pairing states [29,30,43,44], which may be associ-
ated with the optimal positions of the singularities con-
cerning Er match with corresponding bosons.

In addition to the bands renormalization mentioned
above, the CDW-induced energy gap A ~ 20 meV is opened
at kp of the band near M which is consistent with STM
results [25-28]. The CDW-induced gap is not observed at
the band nearI"at T = 10 K within the experimental energy
resolution. Thus, momentum and orbital dependence of the
electronic states are involved in the CDW formation in
RbV;Sbs. The STM measurements further reveal that the
CDW gap is particle-hole asymmetric [25-28], which is
previously found in CDW-material NbSe, [50,51]. Asacase
of typical quasi-2D materials without a strongly nested
Fermi surface, the presence of a particle-hole asymmetric
gap in NbSe, could be an indication that electron correlation
is important in driving the CDW [50,51]. Analogously,
combined with the large ratio 2A /kgTcpw ~ 4.55 in anal-
ogy to strong-coupling superconductors, the CDW forma-
tion in RbV;Sbs is likely mediated by electronic interactions
enhanced by low dimensionality. Recent inelastic x-ray-
scattering studies demonstrate an unconventional and elec-
tronic driven mechanism that couples the CDW and the
topological band structure in RbV;Sbs [33].

In addition, as a Z, topological kagome metal, RbV;Sbs
hosts nontrivial topological Dirac surface states at the
time-reversal-invariant M points and remains the same
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after the CDW transition, as shown in the Supplemental
Material Fig. S(6) [48]. It is possible to realize the
Majorana zero-energy modes and their related topological
superconductivity in these materials. Because the electron-
like bands near the M point show k, dispersions [see the
Supplemental Material Fig. S(7) [48]], the surface states at
M are possibly located above E. The chemical potential
needs to be elevated for further study of the surface states in
detail.

III. CONCLUSION

In summary, we study the electronic structures of a
kagome superconductor RbV;Sbs in both the normal phase
and the CDW phase. We observe the CDW-induced bands
renormalization and energy gaps on the bands at the zone
boundary, where multiple orbital-selective singularities
exist. Momentum and orbital dependence of the electronic
states are involved in the CDW formation and the asso-
ciated superconductivity. Our findings strongly imply that
the singularities near Ep play important roles in the
formation of ordering phases and the electronic states on
the residual Fermi surfaces to the superconducting pairing.
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APPENDIX: METHODS

Single crystals of RbV;Sbs are synthesized by the self-
flux method as described elsewhere [23]. RbV;Sbs single
crystals are stable in the air. ARPES measurements are
performed at the Dreamline and 03U beam lines of the
SSRFE. The energy and angular resolutions are set to
1024 meV and 0.02 A~!, respectively. The Fermi cutoff
of the samples is referenced to an evaporated gold film on
the sample holder. Samples are cleaved in situ, exposing
flat mirrorlike (001) surfaces. The pressure is maintained
at less than 2 x 107!° Torr during temperature-dependent
measurements.

The first-principles electronic structure calculations on
RbV;Sbs are performed by using the projector-augmented-
wave method [52,53] as implemented in the Vienna ab
initio simulation package [54]. The generalized-gradient
approximation of Perdew-Burke-Ernzerhof type [55] is
used for the exchange-correlation functional. The kinetic
energy cutoff of the plane-wave basis is set to 350 eV. The
BZ is sampled with a 10 x 10 x 6 k-point mesh. For the
Fermi-surface broadening, the Gaussian smearing method
with a width of 0.05 eV is adopted. The zero-damping DFT-
D3 method is adopted to describe the interlayer van der
Waals interactions [56]. The lattice constants and the
atomic positions are fully relaxed until the forces on all
atoms are smaller than 0.01 eV/A. The relaxed lattice
constants ¢ = b = 5.4333 A and ¢ = 8.9986 A are con-
sistent with the experimental result [24]. The surface states
in the projected 2D BZ are calculated with the surface
Green’s function method by using the WannierTools package
[57]. The tight-binding Hamiltonian of the semi-infinite
system is constructed by the maximally localized Wannier
functions [58]. To study the CDW phase of RbV;Sbs, a
2 x 2 x 1 supercell and a 5 x5 x 5 k-point mesh for the
corresponding BZ sampling are used. The initial atomic
distortions are first set according to the in-plane structures
of the previously reported Star of David and inverse Star of
David patterns [34], and then both the lattice parameters
and the internal atomic positions are fully relaxed. The
band structures of the CDW phases are unfolded in the BZ
of the unit cell with the band-unfolding method [59] as in
the PyVaspwfc package [60].
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