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Local three- and four-point correlators yield important insight into strongly correlated systems and have
many applications. However, the nonperturbative, accurate computation of multipoint correlators is
challenging, particularly in the real-frequency domain for systems at low temperatures. In the
accompanying paper, we introduce generalized spectral representations for multipoint correlators. Here,
we develop a numerical renormalization group approach, capable of efficiently evaluating these spectral
representations, to compute local three- and four-point correlators of quantum impurity models. The key
objects in our scheme are partial spectral functions, encoding the system’s dynamical information. Their
computation via numerical renormalization group allows us to simultaneously resolve various multiparticle
excitations down to the lowest energies. By subsequently convolving the partial spectral functions with
appropriate kernels, we obtain multipoint correlators in the imaginary-frequency Matsubara, the real-
frequency zero-temperature, and the real-frequency Keldysh formalisms. We present exemplary results for
the connected four-point correlators of the Anderson impurity model, and for resonant inelastic x-ray
scattering spectra of related impurity models. Our method can treat temperatures and frequencies—
imaginary or real—of all magnitudes, from large to arbitrarily small ones.

DOI: 10.1103/PhysRevX.11.041007 Subject Areas: Computational Physics
Condensed Matter Physics
Strongly Correlated Materials

I. INTRODUCTION

Correlation functions beyond the standard two-point (2p)
functions, such as 3p and 4p functions, play a central role in
many-body theory. For instance, the 4p vertex describes the
effective interaction between two particles in a many-body
environment and signals pairing instabilities; 3p functions
give the full detail of a particle reacting to an external
perturbation and connect to 2p correlators through various
Ward identities. Through their physical significance and
mutual relations, 2p, 3p, and 4p functions form the basis of
the microscopic Fermi-liquid theory.
In the accompanying paper [1], we describe a novel

approach for analyzing and computing l-point (lp) corre-
lators. Its central idea is to separate system-dependent
spectral information from formalism-dependent analytic
properties. This is achieved via the convolution of
partial spectral functions (PSFs) with various types of
convolution kernels. We consider three different frame-
works, the imaginary-frequency Matsubara formalism
(MF), the real-frequency zero-temperature formalism (ZF),

and the real-frequency finite-temperature Keldysh formal-
ism (KF). The convolution kernels are responsible for the
analytic structure of the theory; they depend on the choice
of formalism, but are system independent. The PSFs
encode the spectral properties of the system; they are
independent of the choice of formalism and can be viewed
as the central porters of information about the dynamics of
the system. They have generalized Lehmann representa-
tions, expressed through the eigenenergies and correspond-
ing many-body eigenstates of the system. Having compact
support, bounded by the largest energy scale in the system,
they are particularly convenient for numerical storage.
In Ref. [1], we illustrate our spectral approach for lp

functions by showing numerical results of 4p vertices for
selected quantum impurity models. Such functions are
needed, e.g., in diagrammatic extensions [2] of dynamical
mean-field theory (DMFT) [3,4]. There, one starts from the
self-consistent DMFT solution of an impurity model,
capturing local correlations, and aims to include nonlocal
correlations by utilizing various diagrammatic relations,
taking local 4p functions as input [2,5–18].
The local 4p vertices shown in Ref. [1] were computed

using a generalization of the numerical renormalization
group (NRG) [19,20]. This powerful impurity solver allows
one to directly compute real-frequency correlators, at
arbitrarily low temperatures, with exponentially fine reso-
lution at the lowest excitation energies. For this reason, it
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has been used extensively to compute 2p correlators [20], at
high accuracy for single-orbital models [21–25] and even
multiorbital ones [26–37]. Importantly, these features also
offer new opportunities for computing local 4p correlators,
compared to other well-established impurity solvers, such
as exact diagonalization (ED) [38] and quantum
Monte Carlo (QMC) [39–52] methods.
The present paper offers a detailed discussion of how

NRG can be utilized to compute 3p and 4p correlators for
quantum impurity models. To this end, we generalize the
full-density-matrix (FDM) NRG approach [21,22], devised
for 2p correlators, to the 3p and 4p cases. To tackle the
novel dependence of lp PSFs on l − 1 frequencies, we
introduce an additional, iterative scheme to finely resolve
regimes involving frequencies of different magnitudes,
jωij ≪ jωjj (1 ≤ i; j < l). The bulk of this paper is devoted
to a detailed description of this approach.
We have performed numerous benchmark checks of

our new method, focusing on the computation of the
local connected 4p correlator and corresponding 4p
vertex of various impurity models. We obtained excel-
lent agreement with (i) analytical predictions for the
power-law behavior of the ZF vertex for x-ray absorp-
tion, (ii) QMC results for the MF vertex of the
Anderson impurity model (AIM) at intermediate temper-
atures, (iii) exact results for the KF vertex of the AIM
with infinitely strong interactions (the Hubbard atom),
(iv) perturbative results for the KF vertex of the AIM
with weak interactions, and (v) perturbative results
for the ZF and KF connected correlator for the AIM
with weak interactions. The numerical results for checks
(i)–(iv) were discussed in Ref. [1]. Here, we present the
underlying PSFs and the results for check (v). The
success of all these tests establishes the reliability of our
method, and its ability to treat temperatures and
frequencies—imaginary or real—of all magnitudes,
including very small ones. For example, for the AIM,
our approach can reach temperatures much lower than
the Kondo temperature and accurately resolve corre-
spondingly low frequencies.
In this paper, we also include an application of great

physical interest, the computation of resonant inelastic
x-ray scattering (RIXS) spectra. RIXS is a powerful
experimental technique for probing various excitations in
solids over a wide energy range [53,54]. However, the
effects of many-body correlations on RIXS spectra are
poorly understood, even for simple models. Numerical
calculations of RIXS spectra are typically based either on
ED of small systems [55–66] or on a Bethe–Salpeter
approach building on ab initio calculations using density
functional theory [67–69]. These methods have limited
ability for capturing strong-correlation phenomena charac-
terized by low energies and long length scales, such as the
Kondo effect, or the emergence of a small quasiparticle
coherence energy scale in many correlated metals.

Our method is ideally suited for overcoming this
limitation. We demonstrate this with proof-of-principle
calculations of the RIXS spectra of two minimal models:
the Mahan impurity model (MIM) involving a free con-
duction band interacting with a core hole, used to describe
x-ray absorption in metals in a seminal work by Mahan
[70], and an augmented AIM (AAIM), involving the AIM
and a core hole. We elucidate how the RIXS spectra of
these models are affected by Anderson orthogonality and
the Kondo effect, respectively. Note that the scope of the
AIM goes beyond impurity models, as DMFT and its
diagrammatic extensions describe lattice systems by the
AIM with a self-consistently determined bath.
As an overview, we here summarize the workflow of our

NRG method for the case of local 4p correlators. First, one
constructs a Wilson chain by discretizing the impurity
model and obtains a complete basis of (approximate)
energy eigenstates of the entire chain; Sec. III outlines
this step. Then, one computes 4p PSFs in a recursive way,
described in Sec. V, such that contributions to 4p PSFs
involving frequencies of widely different magnitudes can
be obtained by invoking the routines for 3p and 2p PSFs. To
enable such a recursive approach, we rephrase the estab-
lished scheme for computing 2p PSFs, introducing addi-
tional notational and diagrammatic conventions, as
elaborated in Sec. IV.
By convolving the 4p PSFs with the kernels given in

Sec. II, one obtains the full 4p correlators in the MF, ZF,
and KF. For the real-frequency ZF or KF correlators, it is
necessary to broaden the 4p PSFs, which are discrete due to
the discretization in the beginning. Further, to describe
genuine two-particle properties, such as 4p vertices, one
needs to extract the connected part of 4p correlators. This
can be numerically challenging. In Sec. VI, we describe
strategies for improving the accuracy of these steps.
Our result for connected 4p correlators are presented in

Sec. VII, and for RIXS spectra in Sec. VIII. Finally, Sec. IX
offers a summary and an outlook to applications opened up
by our NRG approach to 3p and 4p correlators.

II. SPECTRAL REPRESENTATIONS

We begin with a summary of the spectral representations
of lp correlators derived in Ref. [1], defining lp PSFs and
their convolution kernels. To describe key ideas and
introduce notation, we first focus on the ZF, stating
analogous MF and KF results thereafter.

A. Zero-temperature formalism

In the ZF time domain, an lp correlator is defined by a
time-ordered product, GðtÞ ¼ ð−iÞl−1hT Ql

i¼1O
iðtiÞi,

with t ¼ ðt1;…; tlÞ. It involves a tuple O ¼
ðO1;…;OlÞ of operators, each time-evolving as
OiðtÞ ¼ eiHtOie−iHt, and h…i ¼ Tr½ϱ…� denotes thermal
averaging, with density matrix ϱ ¼ e−βH=Z and inverse
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temperature β ¼ 1=T. The time-ordered product can be
expressed as a sum over permutations yielding all possible
operator orderings,

GðtÞ ¼
X
p

ζpKðtpÞ
�Yl

i¼1

OīðtīÞ
�
; ð1Þ

where the kernel KðtpÞ ¼
Q

l−1
i¼1 ½−iθðtī − tiþ1Þ� is nonzero

only if the permuted times tp ¼ ðt1̄;…; tl̄Þ satisfy tī > tiþ1.
Here, pð12…lÞ ¼ ð1̄2̄…l̄Þ [or p ¼ ð1̄2̄…l̄Þ for short]
denotes the permutation replacing i by pðiÞ ¼ ī, and

P
p

includes all such permutations. For example, if p ¼ ð312Þ,
then ðt1; t2; t3Þp ¼ ðt3; t1; t2Þ. The sign factor ζp equals −1
if Op ¼ ðO1̄;…;Ol̄Þ differs from O by an odd number of
transpositions of fermionic operators; otherwise ζp ¼ þ1.
The Fourier transform of GðtÞ, as defined in Ref. [1], is

GðωÞ ¼
Z

dlteiω·tGðtÞ ¼ 2πδðω1���lÞGðωÞ; ð2Þ

with ω ¼ ðω1;…;ωlÞ. Using the shorthand notation
ω1���i ¼

P
i
j¼1 ωj, the δ function on the right expresses

energy conservation, ω1���l ¼ 0, following from time-
translational invariance for GðtÞ. Because of the multipli-
cative structure of Eq. (1), GðωÞ can be expressed as an
(l − 1)-fold convolution of the Fourier transforms ofK and
the operator product, resulting in an expression of the form

GðωÞ ¼
X
p

ζp
Z

dl−1ω0
pKðωp − ω0

pÞS½Op�ðω0
pÞ: ð3Þ

Here, G, K, and S each have only l − 1 independent
arguments, with ω and ω0

p ¼ ðω0̄
1
;…;ω0̄

lÞ understood to
obey energy conservation, ω1���l ¼ 0 and ω0̄

1���l̄ ¼ 0. The
ZF convolution kernel K can be chosen as

Kðωp − ω0
pÞ ¼

Yl
i¼2

ξ−1
ī���l̄; ξī ¼ −ωī þ ω0̄

i þ iγ ī; ð4Þ

with the shorthand notation ξī���j̄ ¼
Pj

m¼i ξm̄. This corre-
sponds to Eq. (54a) of Ref. [1]. For numerical calculations,
the imaginary parts have small but finite values γi > 0. The
PSFs S have a Lehmann representation:

S½Op�ðω0
pÞ ¼

X
1;…;l

ρ1
Yl−1
i¼1

½Oī
i iþ1δðω0̄

1���ī − Eiþ1 1Þ�Ol̄
l 1: ð5Þ

Here, each underlined summation index i enumerates a
complete set of many-body eigenstates jii of the
Hamiltonian H, with eigenenergies Ei, transition energies
Ej i ¼ Ej − Ei, and matrix elements Oij ¼ hijOjji,

ρ1 ¼ e−βE1=Z. (We use calligraphic symbols for operators,
roman ones for matrix elements.) Equations (3)–(5) give
the spectral representation for ZF lp correlators.

B. Matsubara formalism

In the MF, operators time-evolve asOiðτÞ ¼ eHτOie−Hτ,
and lp correlators are defined as GðτÞ ¼
ð−1Þl−1hT Ql

i¼1O
iðτiÞi. Operators are time-ordered on

the imaginary-time interval τi ∈ ð0; βÞ. The Fourier trans-
form of GðτÞ takes the form

GðiωÞ ¼
Z

β

0

dlτeiω·τGðτÞ ¼ βδω1���l;0GðiωÞ; ð6Þ

with ω denoting a set of discrete Matsubara frequencies,
and the Kronecker symbol enforcing energy conservation.
A permutation expansion for GðτÞ analogous to Eq. (1)
leads to the spectral representation,

GðiωÞ ¼
X
p

ζp
Z

dl−1ω0
pKðiωp − ω0

pÞS½Op�ðω0
pÞ; ð7Þ

with real frequencies ω0
p, and ω1���l ¼ 0 and ω0̄

1���l̄ ¼ 0

understood. The PSFs S are again given by Eq. (5). The MF
kernel, expressed through Ωp ¼ iωp − ω0

p ¼ ðΩ1̄;…;Ωl̄Þ
and Ω1̄���ī ¼

P
i
j¼1Ωj̄, reads

KðΩpÞ ¼

8>>>>><
>>>>>:

Yl−1
i¼1

Ω−1
1̄���ī; if

Yl−1
i¼1

Ω1̄���ī ≠ 0;

−
1

2

�
βþ

Xl−1
i¼1
i≠j

Ω−1
1̄���ī

�Yl−1
i¼1
i≠j

Ω−1
1̄���ī; if Ω1̄���j̄ ¼ 0:

ð8Þ
The first line gives the regular part of the kernel, applicable
if all denominators are nonzero. If this is not the case,
anomalous contributions arise. The second line gives their
form under the assumption that at most one denominator
vanishes, say, Ω1̄���j̄, for some j < l. This includes the case
of arbitrary 2p correlators, 3p correlators with only one
bosonic operator, as well as 4p correlators of fermionic
operators, such that ω1̄���ī, with i < l, produces at most one
bosonic frequency. Equations (5), (7), and (8) give the
spectral representation for MF lp correlators.

C. Keldysh formalism

KF correlators in the contour basis, Gc, are defined as
GcðtÞ ¼ ð−iÞl−1hT c

Ql
i¼1O

iðtcii Þi, where tcii are real times
and T c denotes contour ordering. They carry a tuple of
contour indices c ¼ c1 � � � cl, with ci ¼ − or þ if operator
Oi resides on the forward or backward branch of the
Keldysh contour, respectively. In this work, we will treat
KF correlators in the Keldysh basis, Gk, carrying a tuple
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k ¼ k1 � � � kl of Keldysh indices ki ∈ f1; 2g. The correlator
Gk is obtained from Gc by applying a linear transformation
D to each contour index, GkðtÞ ¼ P

c1…clQ
l
i¼1½Dki;ci �GcðtÞ, with Dki;∓ ¼ ð�1Þki= ffiffiffi

2
p

.
The Fourier transform of Gk is defined as in Eq. (2). The

resulting GkðωÞ has the spectral representation,

GkðωÞ ¼ 2

2l=2

X
p

ζp
Z

dl−1ω0
pKkpðωp − ω0

pÞS½Op�ðω0
pÞ;

ð9Þ

involving real frequencies ω and ω0
p, with ω1���l ¼ 0 and

ω0̄
1���l̄ ¼ 0 understood. The PSFs S are yet again given by

Eq. (5). The KF kernel can be expressed as

Kkp ¼
Xl
λ¼1

ð−1Þk1̄���λ−1 1þð−1Þkλ̄
2

�Yλ−1
i¼1

ξ−1
1̄���ī

Yl
j¼λþ1

ξ−1
j̄���l̄

�
; ð10Þ

with ξī from Eq. (4). This corresponds to Eqs. (63) and (52)
of Ref. [1]. Equations (5), (9), and (10) give the spectral
representation for KF lp correlators needed here, conclud-
ing our summary of the results derived in Ref. [1].

D. Structure of partial spectral functions

A very attractive feature of the above spectral represen-
tations is that all three formalisms, ZF, MF, and KF, contain
the same PSFs, given by Eq. (5). These PSFs are thus the
central porters of dynamical information. The main goal of
this paper is to describe a numerical algorithm for comput-
ing them. We conclude this section with some general
remarks on their structure.
First, for a given permutation p, the kernels K and the

PSFs S all depend on the l − 1 integration variables
ðω0̄

1
;…;ω0

l−1
Þ only in the combinations εi ¼ ω0̄

1���ī, for
1 ≤ i < l. For numerical purposes, it is convenient to
use these combinations as independent integration varia-
bles. We collect them in an (l − 1)-tuple, ε ¼ ðε1;…; εl−1Þ
and express the PSFs through this tuple, defining

SpðεÞ ¼ S½Op�ðω0
pÞjω0

1̄���ī¼εi
: ð11Þ

We will henceforth display the subscript on SpðεÞ only in
formulas involving a permutation sum, such as Eq. (9);
elsewhere the subscript p will be suppressed, it being
understood that SðεÞ refers to a specified permutation.
When computing SðεÞ, the spectral resolution can be

controlled individually for each εi. This is crucial for NRG
computations, where the spectral resolution attainable for
each εi is not uniform but proportional to jεij. For a given
permutation p, the index contraction pattern of SðεÞ, as
given by Eq. (5) with εi ¼ ω0̄

1���ī there, can be depicted
diagrammatically as follows (for l ¼ 4):

Here, the matrix elements Oī
i iþ1 and ρ1 are represented by

black squares and a dot, respectively. An arrow i on a solid
line connecting two such symbols denotes a sum over i. It
points away from the second (ket) index and toward the
first (bra) index of the corresponding operator matrix
elements. Each δ function is represented by a dashed line,
whose arrow points from the incoming index 1 to the
outgoing index iþ 1 in the corresponding condition
εi ¼ Eiþ1 − E1. It will be convenient to express S in a
form reflecting the nested structure of the dashed lines:

SðεÞ ¼ Tr½ððððϱO1̄Þε1O2̄Þε2…Ol−1Þεl−1ÞOl̄�: ð12Þ

Here, Oε is defined as an operator with matrix elements

½Oε�i j ¼ ðOi jÞε ¼ Oijδðε − Ej iÞ; ð13Þ

with ð i jÞε a shorthand notation for multiplication by a δ

function. Similarly, the matrix elements of ððϱO1̄Þε1O2̄Þε2
involve a combination of δ functions with nested
arguments:

ððρO1̄Þε1O2̄Þε213 ¼
X
2

ððρ1O1̄
12Þε1O2̄

23Þε2

¼
X
2

ρ1O1̄
12δðε1 − E21ÞO2̄

23δðε2 − E31Þ:

ð14Þ

This nesting complicates the numerical computation of S
using NRG, as will be elaborated in the next sections.

III. WILSON CHAINS

In this section, we summarize the key ingredients of
Wilson’s NRG approach for solving quantum impurity
models. We begin with the construction of Wilson shells,
sets of approximate energy eigenstates resolving succes-
sively lower-energy parts of the spectrum with ever finer
resolution. We then review how complete sets of eigen-
states for the entire system can be constructed from the
Wilson shell eigenstates. Finally, we give a brief preview of
how these complete sets of states can be used in Lehmann
representations to compute a 2p PSF. This sets the stage for
a more detailed discussion of the computation of PSFs for
l ¼ 2, 3, and 4 in subsequent sections.
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A. Wilson shells

A quantum impurity model describes a discrete degree of
freedom coupled to a continuous bath of excitations. In the
NRG approach devised by Wilson [19], the bath is
discretized on a logarithmic grid characterized by a dis-
cretization parameter Λ ð> 1Þ. The discretized bath levels
have energies typically scaling as ∼� Λ−kD, with integer
k ≥ 0 and D the half-bandwidth (taken as unit of energy).
Then, the model is mapped onto a semi-infinite “Wilson
chain,” where the impurity is represented by the leftmost
site, having index −1, and the bath by the sites 0; 1;…. Site
n has on-site energy ϵn and couples to site n − 1 via
hopping amplitude tn. The exponential decay of tn ∼ Λ−n=2

and the even stronger decay of ϵn ensures energy-scale
separation. In practice, one studies finite chains, choosing
the largest site index N sufficiently large to resolve all
relevant energy scales of the problem, including the
temperature (requiring Λ−N=2 ≪ TÞ.
The Hilbert space of such a “length-N” chain is spanned

by the local basis states fjσNig ¼ fjσNi ⊗ � � � ⊗ jσ−1ig,
with local dimension d per site for sites n ≥ 0. (Following
Ref. [22], we build the direct product basis from right to
left, as if filling the chain in the order c†N…c†−1j0i, where for
brevity we displayed only site indices.) Exploiting energy-
scale separation, the chain can be diagonalized iteratively,
starting with the impurity and increasing the subchain
length n, one site at a time. This amounts to resolving ever
smaller energy scales, resulting in a top-down (high- to
low-energy) refinement strategy. However, the subchain
Hilbert space dimension, ∼dn, increases exponentially.
Hence, a truncation scheme is needed, in which some
states are kept (K) and others discarded (D).
Let n0 be the last site for which the Hamiltonian of a

length-n0 subchain Hn0 can be diagonalized exactly with-
out truncation. The set of eigenstates of Hn0 is known as
Wilson shell n0. Its lowest-lying levels have characteristic
level spacing ∼Λ−n0=2, as that is the smallest energy scale in
Hn0 . Now, one partitions this shell into two sectors,
containing low-lying kept and high-lying discarded states,
respectively, fjsin0X g, X ∈ fK;Dg, with eigenenergies En0

Xs.
Then, one proceeds iteratively as follows.
For any n > n0, suppose that Hn−1 has been diagonal-

ized, yielding the eigenstates fjsin−1X g, X ∈ fK;Dg of shell
n − 1, with eigenenergies En−1

Xs . Now, add site n and
diagonalize Hn on the truncated space spanned by the
direct product of the new site and the kept sector of shell
n − 1, fjσni ⊗ jsin−1K g. (The neglect of the high-lying
discarded sector during this step is justified by
energy-scale separation [19].) The resulting eigenstates
form shell n. It has low-lying level spacings ∼Λ−n=2;
hence, it provides a refined description of the K sector
of shell n − 1, which had larger spacings ∼Λ−ðn−1Þ=2. If

n < N, partition the eigenstates of shell n again into
low-lying kept and high-lying discarded sectors, fjsinXg,
with eigenenergies En

Xs, concluding the nth iteration step.
At the last iteration n ¼ N, one declares all eigenstates of
HN as discarded, since there is no next iteration in need of
kept states.
The eigenstates obtained in step n can be written as linear

combinations of the form [22]

ð15aÞ

ð15bÞ

where sums over the repeated indices s, σn are implied. The
coefficients are arranged as matrices, Mσn

KX, with elements
labeled by ss0. The matricesMσn andMσn† appearing in the
ket (15a) and bra (15b) can be graphically represented by
three-leg vertices, with incoming or outgoing arrows
associated with the kets on the right or left of Eq. (15a),
respectively, and all arrows inverted for the bra version,
Eq. (15b). Equations (15) also apply for the first few
iterations up to n0, just without truncation. (For the
impurity site, Mσ−1

K is a vector, not a matrix.) The eigen-
states ofHn thus obtained are matrix product states (MPSs)
[71,72] of the form

ð16aÞ

ð16bÞ

They form an orthonormal set,

ð17Þ

In our MPS diagrams, sums over s or σ indices, indicated
by bonds between vertices, will usually not be displayed
but understood to be implicit. Vertices on right- or left-
pointing lines for kets or bras represent M’s or M†’s,
respectively, lines connecting vertices denote index con-
tractions, and the empty circle indicates an identity matrix.
We will henceforth suppress arrows on vertical lines
representing local state spaces.
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B. Anders–Schiller basis for Wilson chain

Following Anders and Schiller [73], we next construct
states defined not on subchains but the full length-N chain.
For this purpose, we change our perspective: whereas,
above, Hn was defined on a length-n chain, we henceforth
define it asHn ¼ HN jtn̄>n¼ϵn̄>n¼0, living on the full length-N
chain just as HN , but with couplings tn̄ ¼ 0 and on-site
energies ϵn̄ ¼ 0 turned off for all n̄ > n. A top-down
refinement of the chain, starting from Hn0 , then succes-
sively replaces Hn−1 byHn, “switching on” the parameters
tn, ϵn. By diagonalizing each Hn and combining its
eigenstates with the discarded states of previous iterations,
one obtains a sequence of sets of basis states, each spanning
the Hilbert space of the full chain, but with ever finer
energy resolution for low-lying energies.
For any subchain ending at site n (≥ n0), we denote the

set of states spanning its environment (the rest of the chain)
by fjein ¼ jσN;…; σnþ1ig. Then, the states

ð18Þ

resolve the spectrum of Hn, with low-lying level spacings
∼Λ−n=2, but carry an additional degeneracy dN−n due to the
environmental degrees of freedom. For shell n0, the set of
all states fjsein0X g forms a complete basis for the full length-
N chain, albeit with a coarse energy resolution and very
high degeneracy. For any later shell n, the union of all its
states with the discarded states from previous iterations,
∪n0≤n̄<n fjsein̄Dg ∪ fjseinXg, likewise forms a complete
basis for the length-N chain. [Completeness is proven
below; see Eq. (28).] With increasing n, the low-energy
spectral resolution becomes exponentially finer and the
environmental degeneracy exponentially smaller. For the
last shell at site N, all states are defined as D and there are
no environmental states and no environmental degeneracy.
The set ∪n0≤n≤N fjseinDg, comprising the discarded states of
all shells, is again complete on the full length-N chain and
known as Anders–Schiller (AS) basis.
Evoking energy-scale separation, we now adopt the NRG

approximation. It states that, when acting on states from
shell n, the Hamiltonian of the full chain, H ¼ HN , can be
approximated by that of the first n sites, Hn, yielding the
eigenvalue En

Xs:

HjseinX ≃ En
XsjseinX: ð19Þ

The AS basis, collecting all discarded states, thus forms a
complete set of approximate eigenstates of the full H, with
spectrum fEn

Dsg (and degeneracy dN−n for each En
Ds).

C. Spectral functions from NRG: Brief preview

Here, we briefly preview the computation of 2p PSF by
NRG, to set the stage for the formal developments of
subsequent sections. Since the AS basis is complete and
equipped with eigenenergy information (albeit approxi-
mate), it can in principle be used to compute spectral
functions via Lehmann representations [21,22], with the
identification jii ¼ jseinD. For l ¼ 2, e.g., Eq. (12) yields

S½A;B�ðεÞ ¼
X
1 2

ððϱAÞ1 2ÞεB2 1

≃
X

nse;n̄s̄ē

n
DhsejϱAjs̄ēin̄Dn̄

Dhs̄ējBjseinD

× δðε − En̄
Ds̄ þ En

DsÞ; ð20Þ

with approximate eigenenergies En̄
Ds̄, E

n
Ds. Since the energy

resolution of the AS basis becomes finer with increasing n,
the spectral resolution attainable becomes exponentially
fine with decreasing energy ε. This fact makes NRG a
singularly powerful tool for studying the low-energy
dynamics of quantum impurity models.
Yet, the Lehmann representation (20) is not the final

expression used for NRG calculations. The reason is that
the evaluation of shell-off-diagonal ðn ≠ n̄Þ contributions
to the double sum is computationally demanding, without
improving the accuracy of the results. A shell-off-diagonal
contribution, say with transition energy ε ¼ En̄

Ds̄ − En
Ds for

n < n̄, involves the difference between two energy values
with different resolutions, ∼Λ−n̄=2 and ∼Λ−n=2. The fre-
quency resolution of such off-diagonal contributions is
dominated by the coarser Λ−n=2 of the earlier shell. The
better resolution of the later shell thus is futile, yielding no
added benefit—the latter shell is overrefined.
We thus arrive at a central principle for the NRG

computation of spectral functions: avoid shell-off-diagonal
contributions and find shell-diagonal representations.
Reserving a detailed discussion for later sections, we here
just state the main idea: the K sector of a given shell n may
be viewed as a coarse-grained description of all later shells
n̄ > n (after all, the latter are obtained by refining the
former). Thus, the overrefined off-diagonal contributions to
Lehmann representations can be coarse grained bottom-up
(low- to high-energy) by replacing

P
n̄>n;s̄ē js̄ēin̄Dn̄

Dhs̄ēj byP
s̄ē js̄ēinKn

Khs̄ēj, i.e., the projector onto all shells later than
n by the projector onto the KK sector of shell n. As shown
in Refs. [21,22] and recapitulated in Sec. VA, this leads to a
coarse-grained version of Eq. (20) with just a single sum
over shell-diagonal contributions:
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S½A;B�ðεÞ ≃
X
nse;s̄ē

X≠KK
XX̄

n
XhsejϱAjs̄ēinX̄n

X̄hs̄ējBjseinX

× δðε − En
X̄s̄ þ En

XsÞ: ð21Þ

This is the final expression used in NRG calculations. Here,
each transition energy En

Xs − En
X̄s̄ involves two energies

from the same shell n, computed with the same accuracy
∼Λ−n=2. For each n, the sum over sectors includes only DD,
DK, and KD matrix elements; KK contributions are
excluded, since these are represented, in refined fashion,
by later shells. Finally, we note that the frequency depend-
ence of the spectral function is resolved with a resolution
comparable to jεj, furnished by those shells in the expan-
sion for which Λ−n=2 matches jεj.
The above ideas form the basis of the FDM NRG

approach of Ref. [22] for computing 2p PSFs. Our purpose
here is to generalize it to 3p PSFs and 4p PSFs. To this end,
we will need various formal properties of Wilson shell
projectors, expressed in a compact and economical nota-
tion. The next few sections thus develop a formalism for
expanding operator products in terms of operator projec-
tions to specific shells.
In the material that follows, the expansions of nonlocal

operators (Sec. IV C) and their products (Sec. IV F), the
operator slicing scheme needed for such expansions
(Sec. V B), and the subsequent methods for computing
multipoint PSFs and correlators (Secs. V C–VI) are novel
methodological developments from this paper. To explain
the new notions efficiently, below we reformulate some
well-established ideas and methods, such as the expansion
of local operators and the binning [21,22,71], in terms of
our formalism.

IV. OPERATOR EXPANSIONS

This section describes how to expand various types of
operators and operator products along a Wilson chain. We
begin by defining projectors onto specific Wilson shells
and discussing their properties. We then consider the
expansions of local operators, acting nontrivially only on
sites −1 to n0. Thereafter, we turn to their time- or
frequency-dependent versions, which are nonlocal, in that
they depend on the Hamiltonian of the full chain. Next, we
discuss the representation of the density operator on the
Wilson chain. Finally, we consider expansions of products
of two or more operators.

A. Shell projectors

We begin by noting that AS states defined on shells n and
n̄ have overlaps of the following forms [cf. Eq. (16)]:

ð22Þ

[Here, δeē refers to the environmental modes of sites
> maxðn; n̄Þ.] In words, n ≠ n̄ overlaps vanish unless
the “earlier” sector is K, and n ¼ n̄ overlaps yield identity
[by Eq. (17)]. These properties will be used repeatedly.
We next introduce shell projectors as convenient tools for

working with the AS basis. For any n ≥ n0, let

ð23Þ

denote the projector onto the X sector (with X ∈ fK;Dg) of
shell n. Since the K sector of shell n spans both the K and D
sectors of shell nþ 1, their projectors satisfy a refinement
identity:

ð24Þ

This can be used to iteratively refine the description of the
K sector of shell n in terms of the K and D sectors of
subsequent shells up to any shell n̂, with n < n̂ ≤ N:

Pn
K ¼

X̂n
n̄¼nþ1

Pn̄
D þ Pn̂

K: ð25Þ

If n̂ ¼ N, the last term is absent, since we define all states of
shell N as D, so that it has no K sector:

ð26Þ
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This identity reflects the fact that the K sector of shell n,
spanned by the basis fjseinKg, is also spanned by
∪n̄>n fjs̄ēin̄Dg, providing a basis for the union of the D
sectors of all later shells. The latter basis has a finer energy
resolution than the former. Thus, Eq. (26) can be used in
two ways: top down, where the right-hand side refines the
left, or bottom up, where the left-hand side coarse grains the
right. Depending on context, we will adopt either one or
the other point of view below.
Now, consider the identity operator on the full N-site

chain, expressed via the K and D projectors for site n0:

ð27Þ

This resolves the identity using eigenstates of Hn0 , but
since n0 typically is small, the energy resolution is poor. To
improve the resolution, we may refine the K sector of shell
n0 via Eq. (24), obtaining a sequence of equivalent
resolutions of the identity, for any n̂ from n0 to N:

ð28Þ

This proves completeness of the AS basis, and of its less
finely resolved analogs, mentioned after Eq. (18).
Importantly, any of these bases may thus be used for
evaluating the PSFs, as indicated in Sec. III C.
We henceforth view sites n0 to N as default summation

range for n, writing
P

n,
P

n≤n̂, and
P

n>n̄ for
P

N
n¼n0,P

n̂
n¼n0 , and

P
N
n¼n̄þ1, respectively.

We will often encounter products of projectors. Such
products can be simplified using the following identity,

Pn
XP

n̄
X̄ ¼ δn<n̄δXKPn̄

X̄ þ δnn̄δXX̄P
n
X þ δn>n̄Pn

XδKX̄; ð29Þ

obtained via Eq. (22). The δ symbols indicate that the first,
second, and third terms contribute only for n < n̄, n ¼ n̄,
and n > n̄, respectively:

The projector product identity (29) implies the following
rules: a projector product (i) with n ≠ n̄ vanishes unless the
“earlier” sector is K, and then it equals the projector of the
later shell; (ii) with n ¼ n̄ is sector diagonal; (iii) with KD or
DK vanishes unless K is “earlier” than D; (iv) with DD is site
diagonal. These rules will be used extensively in later
sections.

B. Expanding local operators

A local operator, acting nontrivially only on sites−1 to n0,
can be represented exactly in the basis of shell n0:

ð30Þ

The operator O can be expanded in various ways along the
Wilson chain. Such expansions involve operator projections
to specified combinations of shells and sectors:

Onn̄
XX̄ ¼ Pn

XOPn̄
X̄ ¼

X
se;s̄ē

jseinX½Onn̄
XX̄�se;s̄ēn̄X̄hs̄ēj: ð31Þ

One obvious expansion strategy sandwichesO between two
identities, resolved through the AS basis using Eq. (28):

ð32Þ
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This expansion involves shell-off-diagonal terms. However,
for reasons explained in Sec. III C, we prefer an expansion
that involves only shell-diagonal terms.
One way to obtain a shell-diagonal expansion is bottom-

up coarse graining. We replace
P

n̄>n P
n̄
D in Eq. (32) byPn

K,
using Eq. (26):

O ¼
X
n

½Pn
DOPn

D þ Pn
DOPn

K þ Pn
KOPn

D� ¼
X
n

X≠KK
XX̄

Onn
XX̄:

ð33Þ

The expansions (32) and (33) are equivalent ifO is local, as
assumed here, but not for nonlocal ones, such as OðtÞ or
Oε. This will be elaborated in the next section.
When working with shell-diagonal projections, we will

use the shorthand notation On
XX̄ ¼ Onn

XX̄ and write On ¼P
XX̄ On

XX̄ for the sum over all sectors. The matrix elements
½Onn

XX̄�se;s̄ē then have the form δeē½On
XX̄�ss̄, where the

elements ½On
XX̄�ss̄ ¼ n

XhsejOjs̄einX̄ are known at site n,
and for later sites can be computed recursively:

½On
XX̄�ss̄ ¼

X
s0 s̄0

½Mσn†
XK�ss0 ½On−1

KK �s0 s̄0 ½Mσn
KX�s̄0 s̄: ð34Þ

These relations are graphically represented as

To be consistent with Eq. (18), we depict the first (second)
index of ½On

XX̄�ss̄ by an incoming (outgoing) leg.
We now discuss a more economical, top-down approach,

leading directly to the shell-diagonal expansion (33) with-
out a shell-off-diagonal detour. Starting from shell n0, we
iteratively refine only the KK sector of each successive
shell. For a given shell n ð≥ n0Þ, we may use Eq. (25) to
refine its KK sector in terms of shell nþ 1,

ð35Þ

Iterating up to any shell n̂ larger than n, we obtain

On
KK ¼

X̂n
n̄>n

X≠KK
XX̄

On̄
XX̄ þOn̂

KK: ð36aÞ

By construction, all terms generated in this manner are shell
diagonal, and each sum on XX̄ always excludes the case
KK, except for the site n̂where the expansion terminates. If
it terminates at n̂ ¼ N, where there is only a DD sector,
there is no KK contribution at all:

On
KK ¼

X
n̄>n

X≠KK
XX̄

On̄
XX̄: ð36bÞ

Just as Eq. (26), the identities (36) can be used either top
down, with the right side refining the left, or bottom up,
with the left side coarse graining the right.
Starting from site n0, we can go top down to construct a

sequence of equivalent Wilson-chain expansions for O,

O ¼
X
n≤n̂

X≠KK
XX̄

On
XX̄ þOn̂

KK ¼
X
n

X≠KK
XX̄

On
XX̄; ð37Þ

where n̂ may take any value from n0 to N. For the latter
choice, shown on the right, Eq. (37) matches Eq. (33).
Thus, the top-down and bottom-up approaches for expand-
ing operators are equivalent.
The shell-diagonal expansion of local operators is exact,

as follows directly from the completeness of the AS basis.
For nonlocal operators, the expansion becomes approxi-
mate, but it is a reasonable approximation given logarith-
mic energy resolution ∼Λ−n=2. In the next section, we
demonstrate the expansion of nonlocal operators in the top-
down approach.

C. Expanding nonlocal operators

Next, we consider time-dependent operators and their
Fourier transforms, needed for the computation of spectral
functions. Even if O is local, OðtÞ ¼ eiHtOe−iHt is not,
since its definition involves the full Hamiltonian acting on
all sites, HN . The same is true for its Fourier transform
Oε ¼ R ðdt=2πÞeiεtOðtÞ, with matrix elements given by
Eq. (13), needed in Eq. (12) for PSFs. Hence, such
operators must a priori be expressed through Wilson-chain
expansions involving the entire chain. For reasons
explained in Sec. III C above, this should be done in a
manner leading to a shell-diagonal expansion.
We derive the shell-diagonal expansion of frequency-

dependent nonlocal operatorOε in the top-down way. [The
expansion of time-dependent operators OðtÞ can be
obtained by Fourier transforming the expansion of Oε.]
Hence, we start from a coarse-grained representation ofOε,
say

P
XX̄ðOn0

XX̄Þε, where the Hamiltonian is represented by
Hn0 . We then refine it by successively turning on the
couplings tn and energies ϵn along the chain, i.e., replacing
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Hn−1 by Hn. This amounts to repeating the iterative
refinement of the KK sector of shell n via Eqs. (35) and
(36a), but now with added frequency labels ε:

ðOn
KKÞε ↦

X
XX̄

ðOnþ1
XX̄ Þε ↦

X̂n
n̄>n

X≠KK
XX̄

ðOn̄
XX̄Þε þ ðOn̂

KKÞε:

ð38Þ

This expansion is approximate as the frequency-dependent
matrix elements employ the NRG approximation:

ð½On
XX̄�ss̄Þε ¼ ½On

XX̄�ss̄δðε − En
X̄X;s̄sÞ; ð39aÞ

En
X̄X;s̄s ¼ En

X̄s̄ − En
Xs: ð39bÞ

Diagrammatically, we represent the δ function in
Eq. (39a) by a dashed line bracketing the symbol for the
matrix element. The arrow on the dashed line points from
the incoming to the outgoing energies in the corresponding
condition ε ¼ En

X̄s̄ − En
Xs:

For a given ε, nonzero matrix elements will come mainly
from those shells whose low-lying level spacing ∼Λ−n=2 is
of order ε. However, energy differences between high-lying
levels of earlier shells will also contribute a bit, since the
level spacing within a shell rapidly decreases with increas-
ing energy.
In Eq. (38), the KK projector on the left of each↦ can be

viewed in two ways: as a coarse-grained placeholder, to be
replaced by the more refined expression on its right once
the need for further refinement arises, or, if there is no such
need, as the final expression terminating the expansion. We
will henceforth adopt this refinement strategy throughout,
but for simplicity use the “¼” notation for both local and
nonlocal operators. Since the frequency dependence of Oε

enters simply via a factor multiplying its matrix elements,
we will often drop the superscript, writing just O. Where
needed, the frequency dependence can easily be restored.

D. Density matrix

We now discuss the thermal density matrix ϱ, a nonlocal
operator, needed for thermal averages. In the AS basis,

ϱ ¼
X
n

ϱnDD; ϱnDD ¼
X
ss̄e

jseinD½ρnDD�ss̄nDhs̄ej: ð40Þ

Further employing the NRG approximation, ϱ is fully
diagonal, where the weight contributed by each discarded
state of shell n is given by a Boltzmann factor:

ð41Þ

The sector projections of ϱ for shell n, defined as ϱnXX̄ ¼
Pn

XϱP
n
X̄ and found via Eq. (29), are given by

ϱnDD; ϱnKK ¼
X
n̄>n

ϱn̄DD; ϱnKD ¼ ϱnDK ¼ 0: ð42Þ

Thus, ϱnXX̄ is sector diagonal. Note that ϱnKK encompasses a
sum over all later shells; this sum provides a refinement of
shell n in the spirit of Eq. (36b). Hence, for any n̂ from n0 to
N, we can express the density matrix as [cf. Eq. (37)]

ϱ ¼
X
n≤n̂

ϱnDD þ ϱn̂KK: ð43Þ

Next, we consider the reduced density matrix, ϱ̄nXX̄, for a
subchain of length n, obtained from ϱnXX̄ in bottom-up
fashion by tracing out the environmental states of all later
sites, starting from N and working back to nþ 1:

ϱ̄nXX̄ ¼ Tr
sites>n

½ϱnXX̄� ¼
X
e

nhejϱnXX̄jein: ð44Þ

Equation (42) implies ϱ̄nKD ¼ ϱ̄nDK ¼ 0. We find the matrix
elements of ϱ̄nDD and ϱ̄nKK using Eqs. (42) and (44) and the
following diagrams, which depict them as circled dots:

The vertically aligned dashed lines, understood to be
connected, represent the trace over sites > n. For ϱ̄nDD,
this trace yields a degeneracy factor dN−n:

½ρ̄nDD�ss̄ ¼ ½ρnDD�ss̄dN−n ¼ wnδss̄e−βE
n
Ds=ZD

n : ð45aÞ

On the right, ZD
n ¼ P

s e
−βEn

Ds is the partition function of
the D sector of shell n (without its environmental states),
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and wn ¼ dN−nZD
n =Z the relative weight contributed by that

sector to the total partition function. Finally, for ϱ̄nKK, the
sum over n̄ > n in Eq. (42) yields

½ρ̄nKK�ss̄ ¼
X
n̄>n

½Mσnþ1

KK …Mσn̄
KDρ̄

n̄
DDM

σn̄†
DK…Mσnþ1†

KK �ss̄:

Starting at n ¼ N − 1, it can be computed recursively via a
backward sweep (see above diagram, last line, right-hand
part):

½ρ̄nKK�ss̄ ¼
X
X

½Mσnþ1

KX ρ̄nþ1
XX Mσnþ1†

XK �ss̄: ð45bÞ

The reduced density matrix ϱ̄nKK residing in the K sector
is used when the density matrix contracts with the shell-
diagonal expansion of operators [cf. Eqs. (33) and (38)]. If
the projection of an operator onto a K sector does not need
further refinement (e.g., since the operator is local), the
density matrix to contract with the projection does not need
to resolve later shells. Then, the reduced density matrix
instead of the original ϱ can be used for the contraction
through the K sector. We will see an example of this in the
next section.

E. Thermal averages

The expectation value hOi ¼ Tr½ϱO� of a local operator,
nontrivial only on sites ≤ n0, can be computed as follows:

hOi ¼
X
X

Tr
all sites

½ϱn0XXOn0
XX� ¼

X
X

Tr
sites≤n0

½ϱ̄n0XXOn0
XX�: ð46Þ

In the first step, we expressed ϱO through their sector
projectors for iteration n0, recalling that ϱn0 is sector
diagonal and the trace cyclic. Since O is local, it acts as
the identity operator on the Hilbert space of all sites > n0.
In the second step, we exploited this to trace out these sites,
reducing ϱn0XX to ϱ̄n0XX. Performing the remaining trace over
the Hilbert space of sites ≤ n0 yields a simple trace over
matrix elements (denoted by tr) of shell n0,

hOi¼
X
X

tr
shelln0

½ρ̄n0XXOn0
XX� ¼

X
X

X
ss̄

½ρ̄n0XX�ss̄½On0
XX�s̄s; ð47Þ

with the eigenstates of shell n0 made explicit on the right.
We will mostly use the more compact trace-of-matrix-
product notation of the middle expression, suppressing s
indices. The diagram depicts the expressions on the right of
Eq. (46) and Eq. (47), respectively:

For future reference, we note that the above strategy also
works for thermal averages of shell-n projections:

hOn
XX̄i ¼ Tr

all sites
½ϱnXXOn

XX̄� ¼ δXX̄ tr
shell n

½ρ̄nXXOn
XX�: ð48Þ

For the first step, we used Eq. (43), ϱ ¼ P
n̄≤n ϱ

n̄
DD þ ϱnKK,

and noted that On is orthogonal to the D sectors from all
earlier shells [cf. Eq. (29)]. The second step mimics
Eq. (47), with δXX̄ from the cyclicity of the trace.
Importantly, the above strategy also works for

averages of shell-diagonal products, hAnBni, hAnBnCni,
or hAnBnCnDni. Such products, just like On, are orthogo-
nal to all earlier D sectors and trivial on all later shells.
Hence, Eq. (48) applies again, with On

XX on the right
replaced by a corresponding product of blocks of matrix
elements, e.g.,

P
XX̄ ρ̄nXXA

n
XX̄B

n
X̄X. We will exploit this fact

when computing spectral functions below.

F. Expanding operator products

The computation of lp PSFs inevitably involves
products of frequency-dependent operators, e.g.,
ðððϱAÞε1BÞε2CÞε3D for l ¼ 4. These require Wilson-chain
expansions. Moreover, the latter should be shell diagonal,
to avoid overrefinement and to facilitate computing expect-
ation values via Eq. (48). We now explain how such
expansions can be obtained.
One approach starts by individually expressing each

operator in the product in terms of its full-chain expansion
(37) from site n0 all the way to site N. However, the
resulting expansion is not shell diagonal. It can be brought
into shell-diagonal form by bottom-up coarse graining the
D sectors of shell-off-diagonal terms, but this requires
tedious rearrangements, discussed in Appendix A.
A simpler, top-down approach is to iteratively refine

entire products rather than individual operators, in a manner
that retains shell diagonality throughout. For brevity, we
use notation appropriate for local operators. [For nonlocal
ones, frequency labels should be added and the “¼” signs
in Eqs. (49) and (50) below read as “↦” refinements, as
discussed at the end of Sec. IV C.] Starting from n0, we
refine, for each shell n, only the all-K sector of the product,
representing it by a sum over all sectors of shell nþ 1.
Using iteration steps analogous to Eq. (35),

An
KKB

n
KK ¼ Anþ1Bnþ1; ð49aÞ

COMPUTING LOCAL MULTIPOINT CORRELATORS USING THE … PHYS. REV. X 11, 041007 (2021)

041007-11



An
KKB

n
KKC

n
KK ¼ Anþ1Bnþ1Cnþ1; ð49bÞ

An
KKB

n
KKC

n
KKD

n
KK ¼ Anþ1Bnþ1Cnþ1Dnþ1; ð49cÞ

one finds the following generalizations of expansion (37)
for a single operator:

AB ¼
X
n

X≠KKK
XX̄X̂

An
XX̄B

n
X̄X̂

; ð50aÞ

ABC ¼
X
n

X≠KKKK
XX̄X̂X̃

An
XX̄B

n
X̄X̂

Cn
X̂X̃

; ð50bÞ

ABCD ¼
X
n

X≠KKKKK

XX̄X̂X̃X0
An

XX̄B
n
X̄X̂

Cn
X̂X̃

Dn
X̃X0 : ð50cÞ

We depict shell-diagonal operator products as follows:

As an important example, consider the composite oper-
ator ϱA ¼ P

XX̄ ðϱAÞn0XX̄. Since ϱ is sector diagonal, the
Wilson-chain expansion (50a) of ϱA reduces to

ϱA ¼
X
n

X≠KK
XX̄

ðϱAÞnXX̄; ðϱAÞnXX̄ ¼ ϱnXXA
n
XX̄: ð51Þ

Operator products as in Eqs. (50) always appear in thermal
averages, such that the trace equates the first and last sector
index. For l ¼ 2, e.g., Eq. (50a) and (48) yield

hABi ¼
X
n

X≠KK
XX̄

tr
shell n

½ρ̄nXXAn
XX̄B

n
X̄X�; ð52Þ

where KK contributions are excluded. However, for prod-
ucts of l ≥ 3 operators, the expansions obtained via
Eqs. (50) do contain terms involving KK sectors. In the
top-down approach, this is an inevitable consequence of
insisting on shell diagonality. (In the bottom-up approach,
such KK contributions are not present a priori. Yet, they do
arise once one coarse grains in order to avoid shell-off-
diagonal terms; see Appendix A.) If the corresponding
operators are frequency dependent, ðOn

KKÞε, their matrix
elements [cf. Eq. (39a)] involve δ functions of the form
δðε − En

KKÞ, containing KK transition energies. These
require further refinement in case ε is much smaller than

the characteristic scale of shell n. Strategies for achieving
this will be discussed in detail in Secs. V C and V D.
In Eqs. (50), each product is shell diagonal; hence, the

energy differences in the δ functions of a given product are
all computed with the same accuracy. To be specific, the
matrix elements of ðAnÞε1Bn or ððAnÞε1BnÞε2 are given by
[cf. Eq. (14)]

½ðAn
XX̄Þε1Bn

X̄X̂
�sŝ ¼

X
s̄

½An
XX̄�ss̄δðε1 − En

X̄X;s̄sÞ½Bn
X̄X̂

�s̄ŝ; ð53Þ

ð½ðAn
XX̄Þε1Bn

X̄X̂
�sŝÞε2

¼
X
s̄

½An
XX̄�ss̄δðε1 − En

X̄X;s̄sÞ½Bn
X̄X̂

�s̄ŝδðε2 − En
X̂X;ŝs

Þ

¼
X
s̄

ð½An
XX̄�ss̄Þε1 ½Bn

X̄X̂
�s̄ŝδðε2 − En

X̂X;ŝs
Þ; ð54Þ

and analogously for higher products. We depict the result-
ing contraction patterns as follows:

The underlined ε frequencies and slashes through some
dashed lines indicate “slicing,” a numerical strategy for
dealing with products of δ functions discussed in Sec. V B.

V. PARTIAL SPECTRAL FUNCTIONS

We now have all ingredients needed for computing PSFs.
We start with the case l ¼ 2, recapitulating the FDM NRG
approach of Ref. [22]. We then discuss some numerical
techniques used to deal with the δ functions arising in
Lehmann representations. Finally, we consider the cases
l ¼ 3 and l ¼ 4. We will denote 2p PSFs by SðεÞ, 3p PSFs
by SðεÞ with ε ¼ ðε1; ε2Þ, and 4p PSFs by SðεÞ with
ε ¼ ðε1; ε2; ε3Þ, using the same symbols S throughout. The
number of independent frequency arguments, l − 1, will
always be clear from the context.

A. Partial spectral functions: l= 2

We begin with the case l ¼ 2. By Eq. (12), the 2p PSF of
A and B is given by

S½A;B�ðεÞ ¼ Tr½ðϱAÞεB� ð55aÞ

¼ Tr½ϱAB−ε�: ð55bÞ
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We denote it by SðεÞ for short. The above two forms of
writing the trace are equivalent and can be used inter-
changeably. They implement the δ functions occurring in
Eq. (5) in different ways while exploiting the fact that ϱ is
diagonal in the energy eigenbasis. Analogous equivalent
forms also exist for the shell-diagonal traces encountered
below. In the present section, we focus on the first form; in
subsequent sections, we will refer to both.
We start from Eq. (55a). To finely resolve the ε

dependence of the product ðϱAÞεB, we use Eq. (50a) to
express it as a sum over all shells ≥ n0, obtaining the
expansion

SðεÞ ¼
X
n

X≠KK
XX̄

SnXX̄½A;B�ðεÞ; ð56Þ

where each Sn is a trace over a shell-diagonal product:

SnXX̄½A;B�ðεÞ ¼ Tr½ððϱAÞnXX̄ÞεBn
X̄X�: ð57Þ

The following diagram schematically depicts the iterative
refinement of KK sectors (red squares) leading to Eq. (56).

The traces in Eq. (57) can be computed using Eq. (48),
replacing an operator trace over the entire Wilson chain by
a shell-n trace over products of shell-n matrices, and ϱ by
the reduced density matrix ρ̄n of shell n:

SnXX̄½A;B�ðεÞ ¼ tr
shelln

½ððρ̄AÞnXX̄ÞεBn
X̄X�: ð58Þ

The depiction of Eq. (58) mimics the diagram for Eq. (47):

Combining Eqs. (56)–(58) and making the matrix trace
over shell n from the latter explicit, we obtain our final
formula for 2p PSFs:

SðεÞ ¼
X
n

X≠KK
XX̄

X
ss̄

½ðρ̄AÞnXX̄�ss̄δðε − En
X̄X;s̄sÞ½Bn

X̄X�s̄s: ð59Þ

This formula, restating Eq. (21) in more compact notation,
reproduces an expression first given in Ref. [22].
In numerical practice, the Wilson chain is diagonalized

in a forward sweep, yielding all coefficients ½Mn
KX�ss0 and

energies En
sX from site n ¼ −1 to N. Subsequently, the

matrix elements of ρ̄nXX are computed recursively during a
backward sweep from site N to n0. To evaluate PSFs, the
matrix elements An

XX̄, B
n
X̄X, and ðρ̄AÞnXX̄ are evaluated in a

second forward sweep up to site N. The δ function is dealt
with by “binning,” a technique described next.

B. Binning and slicing

We briefly interrupt our formal development with an
interlude on numerical matters. As illustrated by Eq. (59),
the Lehmann representations of PSFs involve sums over
very many discrete δ functions, originating from the
frequency-dependent matrix elements in Eq. (39a). To
obtain smooth functions, the discrete δ peaks have to be
broadened at the end of the computation through con-
volution with a suitable broadening kernel, as further
explained in Sec. VI B and Appendix C. Therefore, it is
not necessary to keep track of the precise position, En

X̄X;s̄s,
of each peak. (Storing all pairs of spectral weights and peak
positions becomes intractable when large numbers of states
are kept during the iterative diagonalization.) Instead, we
may adopt a binning strategy: we partition the ε axis into
narrow intervals such that each interval Iε is centered
around ε. Then, for all spectral peaks with positions En

X̄X;s̄s

lying within Iε, we adjust their positions to ε, i.e., replace
δðε − En

X̄X;s̄sÞ by δðε − εÞ. This discretization of frequency
variables enables us to store the PSF as a histogram array;
each of its elements is the sum of the spectral weights
whose transition energies fall into Iε and are then adjusted
to ε. This binning strategy is graphically explained in
Fig. 1(a).
Because of the logarithmic bath discretization under-

lying the Wilson chain, the ε grid should have a logarithmic
structure, too, fine enough to resolve separate shells.
Enumerating grid points ε½m� by an index m, we choose
ε½�m� ¼ �10ðjmj−1Þ=ndecεmin for m ≠ 0 and ε½m ¼ 0� ¼ 0,
where ndec is the number of grid points per decade and
εmin ¼ ε½m ¼ 1� is the smallest energy resolved on the grid.
We limit the grid size by taking jε½m�j ≤ εmax, with εmax
larger than all other energy scales in the system. The grid
point at ε ¼ 0 collects spectral weights sitting at truly zero
frequency (up to numerical precision) rather than small but
finite frequencies. It is needed for the anomalous MF
kernels in Eq. (8) and for constructing the PSFs of
disconnected correlators (see Sec. VI A). When the grid
is plotted on a logarithmic axis, the spacing between grid
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points on this axis, Δε ¼ ðln 10Þ=ndec, should be much
narrower than that between the discretized bath energy
levels, ΔLD ¼ lnΛ. In this work we use Λ ¼ 4 and
ndec ¼ 32, yielding Δε ¼ 0.072 and ΔLD ¼ 1.39.
Whereas 2p PSFs have only one frequency argument, the

spectral contributions to lp PSFs for l > 2 have multiple
frequency positions, ε1; ε2;…. Generally, the frequency
values associated with the same spectral contribution can
largely differ in size, e.g., jε1j ≫ jε2j. In such a case, the
value of ε1 is determined at an earlier shell, that of ε2 at a
later shell. (See Secs. V C and VD for details.) Thus,
information on large frequencies associated with early
shells has to be recorded while information on smaller
frequencies from later shells is still being evaluated. For
this, we use a slicing strategy.
For a given shell n and sector XX̄, the frequency-

dependent matrix elements ð½On
XX̄�ss̄Þε constitute a

three-dimensional object labeled by two discrete indices
ss̄ and a continuous index ε. Upon discretizing the latter,
i.e., replacing ε by ε, this object should be replaced by a
rank-three tensor with discrete indices s; s̄; ε, defined as

ð½On
XX̄�ss̄Þε ¼

� ½On
XX̄�ss̄ if En

X̄X;s̄s ∈ Iε;

0 otherwise:
ð60Þ

Each ε value defines a two-dimensional slice through this
tensor, containing nonzero entries only if En

X̄X;s̄s lies within
the bin Iε. Thus, slicing involves no physically motivated
approximations—it is merely a convenient way of dealing
with a three-dimensional data structure.
The sliced tensor, depicted schematically in Fig. 1(b),

has to be stored explicitly. By keeping the ε leg open while
computing tensor contractions involving ss̄, this task can be
performed in parallel for all values of ε.
To indicate diagrammatically that a frequency ε is treated

by slicing, we will use a perpendicular slash, “slicing”
through the associated dashed line, as illustrated in the
diagram after Eq. (54). Dashed lines without slashes signify
binning. Whether a δ function requires binning or slicing
depends on the context; we explain this in detail in the
subsequent two sections.

C. Partial spectral functions: l = 3

We next turn to 3p PSFs, S½A;B; C�ðεÞ, with two
frequency arguments, ε ¼ ðε1; ε2Þ. Their computation
starts along the same lines as that for l ¼ 2, with a top-
down shell-diagonal expansion of the threefold operator
product using Eq. (50b). However, extra refinement efforts
are required if the two frequencies differ significantly,
jε1j ≪ jε2j or jε2j ≪ jε1j. We will express the terms
describing these cases through 2p PSFs of a single operator
and a composite operator, the latter incorporating the
dependence on the larger frequency via slicing. A high
resolution for the smaller frequency can then be achieved
by a further top-down expansion of the 2p PSFs. This
strategy, not needed for l ¼ 2, is the main new ingredient
for the NRG computation of higher-order PSFs.
We again begin from Eq. (12),

S½A;B; C�ðεÞ ¼ Tr½ðϱAε1BÞε2C� ð61aÞ

¼ Tr½ðϱAÞε1BC−ε2 �; ð61bÞ

or SðεÞ for short. The above two ways of writing the trace
are equivalent and will be used interchangeably. Expanding
Eq. (61b) via Eqs. (50b), we obtain

SðεÞ ¼
X
n

X≠KKK
XX̄X̂

Sn
XX̄X̂

½A;B; C�ðεÞ; ð62Þ

where each Sn denotes a shell-diagonal trace:

Weight Weight

(a)

(b)

FIG. 1. (a) Binning. Left: Each line represents a δ peak; its
length represents the associated weight, its vertical position the
transition energy En

X̄X;s̄s. Right: Peaks lying in the same interval Iε
are treated as having the same energy difference ε; thus, their
weights are added. (b) Slicing. Left: A gray shape labeled ss̄
represents the matrix element ½On

XX̄�ss̄; its horizontal placement
reflects the values of the indices ss̄, the vertical position the
transition energy En

X̄X;s̄s. Right: Matrix elements with energy
differences lying in the same interval Iε are treated as all having
the same energy difference ε and are gathered into a matrix with
elements ð½On

XX̄�ss̄Þε.
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Sn
XX̄X̂

½A;B; C�ðεÞ ¼ Tr½ððϱAÞnXX̄Þε1Bn
X̄X̂

ðCn
X̂X

Þ−ε2 �: ð63Þ

The following diagram depicts the iterative refinement of
KKK sectors (red cubes) leading to Eq. (62) (the E1-E2

plane lies at the front, and the E3 axis points away from the
reader):

Out of the seven contributions from the sum over sectors
in Eq. (62), five, namely DX̄X̂ and KDD, do not involve
products of KK sectors of the two frequency-dependent
operators ðϱAÞε1 and C−ε2 . For instance, the DDK term
ððϱAÞnDDÞε1Bn

DKðCnKDÞ−ε2 does not involve any KK sectors;
the DKK term ððϱAÞnDKÞε1Bn

KKðCnKDÞ−ε2 does, but only for
the frequency-independent B. These five contributions can
be computed using Eq. (48), binning both ε1 and ε2
dependencies. They are adequately refined—further refine-
ment, yielding shell-off-diagonal energy differences, would
be futile.
By contrast, the remaining two terms, KKD and KDK,

do need further refinement. Fortunately, this can be
achieved by expressing them through two-point PSF, albeit
involving composite operators—this simplification is one
of the crucial ingredients of our strategy. Consider, e.g.,

SnKKD½A;B; C�ðεÞ ¼ Tr½ððϱAÞnKKÞε1Bn
KDðCnDKÞ−ε2 �: ð64aÞ

The ε1 dependence enters via a KK sector and should be
further refined. By contrast, the ε2 dependence, entering via
a DK sector, need not be refined further and can be sliced.
We indicate this by replacing ε2 by ε2. We thus view
Bn
KDðCnDKÞ−ε2 as the KK sector of a composite operator with

a sliced, not direct, frequency dependence. Evoking
Eq. (55a), we can then read Eq. (64a) as the ε1-dependent
2p PSF of a single and a composite operator:

SnKKD½A;B; C�ðεÞ ≃ S½An
KK;B

n
KDðCnDKÞ−ε2 �ðε1Þ; ð64bÞ

where we used ðϱAÞnKK ¼ ϱðAÞnKK. The “≃” sign signifies
that the right-hand side involves the numerical approxi-
mation of slicing, which limits the resolution attainable for
ε2 to ≃Λ−n=2. Note that slicing is needed only for KD and
DK sectors, but not for the DD sector, since the latter is
excluded during further refinement. This is numerically

convenient, since slicing the DD sector would require much
more memory than for the KD and DK sectors.
The KDK term can be treated similarly. Starting from

Eq. (61a), we express it as

SnKDK½A;B; C�ðεÞ ¼ Tr½ðϱnKKðAn
KDÞε1Bn

DKÞε2CnKK�: ð65aÞ

Since ε1 enters through a KD sector we slice it as ε1,
viewing ððAn

KDÞε1Bn
DKÞε2 as a composite operator. Its

dependence on ε2 enters through KK elements; hence,
we refine it by identifying a 2p PSF via Eq. (55a):

SnKDK½A;B; C�ðεÞ ≃ S½ðAn
KDÞε1Bn

DK; C
n
KK�ðε2Þ: ð65bÞ

We note that there also are other, equivalent ways of
associating ε1 and ε2 with operators. For example, if SnKDK
is expressed via Eq. (61b), then the representation (65b)
would be obtained via Eq. (55b). When implementing this
scheme numerically, it is convenient to prioritize associat-
ing the original frequencies εi with operators rather than
their sign-flipped versions −εi, unless the sign flip is
inevitable, e.g., as in Eq. (64b). This prioritization yields
a better organization when the routine for 3p PSFs is
invoked recursively, as needed in the next section.
Since the 2p PSFs (64b) and (65b) are built from two KK

operators, they can be refined top down to improve the ε1 or
ε2 resolution, respectively. Iterative use of Eq. (49a) yields
expansions similar to Eq. (56):

SnKKDðε1; ε2Þ ¼
X
n̄>n

X≠KK
XX̄

Sn̄XX̄½An
KK;B

n
KDðCnDKÞ−ε2 �ðε1Þ;

ð66aÞ

SnKDKðε1; ε2Þ ¼
X
n̄>n

X≠KK
XX̄

Sn̄XX̄½ðAn
KDÞε1Bn

DK; C
n
KK�ðε2Þ:

ð66bÞ

These expansions are restricted to shells n̄ > n, since they
are seeded by operators defined on the KK sector of shell n
(their XX̄ ≠ KK matrix elements vanish for all shells ≤ n).
The expansions (66a) and (66b) yield high resolution of the
smaller frequency in the regimes jε1j < jε2j or jε2j < jε1j,
respectively. The diagram below depicts the iterative
refinement (66b) of the KDK sector for fixed ε1, repre-
sented by the slanted blue plane (viewed from somewhat
below, again with the E1-E2 plane at the front):
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It is instructive to visualize our treatment of 3p PSFs by
depicting the trace contraction patterns for Eq. (63) and the
summands of Eqs. (66a) and (66b) diagrammatically:

The middle and right-hand diagrams involve projections of
KK composite operators from shell n onto later shells n̄,
e.g., ðϱn̄XXPn̄

XðAn
KDÞε1Bn

DKP
n̄
X̄Þε2 for SnKDK. Such projections

can be computed recursively, as shown here:

It mimics the diagram after Eq. (34) for finding On from
On0 , but is seeded by ðAn

KDÞε1 and Bn
DK, the former sliced.

The triple line on the right edge of the effective matrix
element signifies a contraction over the ladder from sites n
to n̄. The frequency dependence enters shell diagonally for
both ε1 on site n and ε2 on site n̄, with resolution ∼Λ−n=2 or
Λ−n̄=2, respectively. For n̄ much larger than n, such matrix
elements contribute only for frequencies satisfying
jε1j ≫ jε2j. In physical terms, they give the amplitudes
for the composite operator AB to cause low-energy
transitions with energy cost ε2 via virtual intermediate

states with energy cost ε1. The ε2 dependence may be either
binned (as here) or sliced (as in Sec. V D).
The expansion (62), with summands Sn

XX̄X̂
½A;B; C�ðεÞ

given by Eq. (63) for DX̄X̂ and KDD, Eq. (66a) for KKD,
and Eq. (66b) for KDK, constitute our final formulas for
SðεÞ. They express it through

P
n sums of both adequately

refined three-operator traces and 2p PSFs enabling further
refinement. The numerical cost for computing all
adequately refined terms scales as ∼N. The cost for
computing the refinements of all 2p PSFs scales as ∼N2,
requiring a

P
n̄>n sum for every n, but this can be done in a

nested fashion, reusing code written for 2p PSFs. In other
words, though Eqs. (66) and their graphical depictions are
instructive for understanding the structure of the refinement
procedure, they need not be coded explicitly; instead, SnKKD
and SnKDK can be computed using the 2p PSF subroutine
implementing Eq. (59), with some sliced matrix elements
as input.

D. Partial spectral functions: l= 4

Finally, we consider 4p PSFs, SðεÞ with ε ¼ ðε1; ε2; ε3Þ.
Evoking Eq. (12), we will use the five equivalent forms

S½A;B;C;D�ðεÞ¼Tr½ðϱðAε1BÞε2CÞε3D�
¼Tr½ðϱAε1BÞε2CD−ε3 �¼Tr½ððϱAÞε1BÞε2CD−ε3 �
¼Tr½ðϱAÞε1BðCD−ε3Þ−ε2 �¼Tr½ðϱAÞε1Bε2−ε1CD−ε3 �: ð67Þ

There is some freedom in choosing which form to use in a
given situation. Our choices below are convenient for
expressing some contributions to 4p PSFs through 2p
PSFs and 3p PSFs involving composite operators contain-
ing sliced matrix elements, facilitating their numerical
computation.
Expanding the third form via Eqs. (50c) yields

SðεÞ ¼
X
n

X≠KKKK
XX̄X̂X̃

Sn
XX̄X̂X̃

ðεÞ; ð68Þ

with shell-diagonal traces Sn defined as

Sn
XX̄X̂X̃

ðεÞ ¼ Tr½ððϱAÞnXX̄Þε1Bn
X̄X̂

Þε2Cn
X̂X̃

ðDn
X̃X

Þ−ε3 �: ð69Þ

Out of the 15 contributions from the sum over sectors, nine,
namely DX̄X̂X̃ and KDDD, do not involve products of KK
sectors of the three frequency-dependent operators ðϱAÞε1 ,
Bε2 , D−ε3 . These nine are adequately resolved and can be
computed as shell-n traces using Eq. (48) while binning all
three frequencies. By contrast, the other six contributions
need KK top-down refinements via PSFs of composite
operators. The three terms involving two K’s and two D’s
can be expressed through 2p PSFs of a single operator and a
composite triple, or of two composite doubles. For the
KKDD term, e.g., we express Eq. (69) through the fourth
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form in Eq. (67) and then slice the dependence on ε2 and ε3,
entering via KD or DK sectors:

SnKKDDðεÞ ¼ Tr½ððϱAÞnKKÞε1Bn
KDðCnDDðDn

DKÞ−ε3Þ−ε2 �
≃ S½An

KK;B
n
KDðCnDDðDn

DKÞ−ε3Þ−ε2 �ðε1Þ: ð70aÞ

Here, we view Bn
KDðCnDDðDn

DKÞ−ε3Þ−ε2 as the KK sector of a
composite triple, sliced with respect to both ε2 and ε3, and
the second line as a 2p PSF of two shell-n operators
[cf. Eq. (55a)]. The KDKD and KDDK terms can be treated
analogously, using the second and first forms of Eq. (67):

SnKDKDðεÞ ¼ Tr½ðϱnKKðAn
KDÞε1Bn

DKÞε2CnKDðDn
DKÞ−ε3 �

≃ S½ðAn
KDÞε1Bn

DK; C
n
KDðDn

DKÞ−ε3 �ðε2Þ; ð70bÞ

SnKDDKðεÞ ¼ Tr½ðϱnKKððAn
KDÞε1Bn

DDÞε2CnDKÞε3Dn
KK�

≃ S½ððAn
KDÞε1Bn

DDÞε2CnDK;Dn
KK�ðε3Þ: ð70cÞ

Each of the three 2p PSFs defined in Eqs. (70) depends
on a single, nonsliced frequency argument, with the other
two frequencies entering via slicing of composite operators.
The dependence on the nonsliced frequency can be further
refined via a subsequent

P
n̄>n S

n̄
XX̄ expansion, as discussed

in earlier sections. The representations used for Eqs. (69)
and (70) can be depicted as follows,

with composite triple matrix elements found iteratively:

The remaining three contributions to Eq. (68), involving
three K’s and one D, can be expressed through 3p PSFs of

two single operators and one composite double. Using the
fourth, fifth, or first forms of Eq. (67), we obtain

SnKKKDðεÞ ¼ Tr½ððϱAÞnKKÞε1Bn
KKðCnKDðDn

DKÞ−ε3Þ−ε2 �
≃ S½An

KK;B
n
KK; C

n
KDðDn

DKÞ−ε3 �ðε1; ε2Þ; ð71aÞ

SnKKDKðεÞ ¼ Tr½ððϱAÞnKKÞε1ðBn
KDÞε2−ε1CnDKðDn

KKÞ−ε3 �
≃ S½An

KK; ðBn
KDÞε2−ε1CnDK;Dn

KK�ðε1; ε3Þ; ð71bÞ

SnKDKKðεÞ ¼ Tr½ðϱnKKððAn
KDÞε1Bn

DKÞε2CnKKÞε3Dn
KK�

≃ S½ðAn
KDÞε1Bn

DK; C
n
KK;D

n
KK�ðε2; ε3Þ; ð71cÞ

identifying 3p PSF by evoking Eq. (61b) for the first two
cases and Eq. (61a) for the last one. For each 3p PSF
defined in Eqs. (71), the dependence on the two nonsliced
frequencies can be refined top down via an expansionP

n̄>n S
n̄
XX̄X̂

as in Eq. (62), but restricted to n̄ > n. The
resulting terms can be depicted as follows:

Each such Sn̄
XX̄X̂

is treated as discussed in Sec. V C: the
DX̄X̂ and KDD contributions via shell-n̄ traces, the KKD
and KDK contributions via identification of 2p PSFs and
their top-down expansions over shells n̂ > n̄, thereby
achieving independent resolutions for the smaller two
frequencies. The n̄ > n expansion of SnKKKD, e.g., contrib-
utes mainly for jε3j > jε1j; jε2j. Each SñKKD and SñKDK term
in this expansion can be refined via a further top-down 2p
PSF expansion

P
n̂>n̄ S

n̂
XX̄, which mainly contributes for

jε3j > jε2j > jε1j or jε3j > jε1j > jε2j, respectively:
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Similarly, the refinement of SnKKDK yields proper resolution
for jε2j > jε1j; jε3j, and of SnKDKK for jε1j > jε2j; jε3j. The
matrix elements of composite triples arising in such n̂ >
n̄ > n expansions are built from nested combinations of
matrix elements of composite doubles, such as

Equations (68)–(71) are our final formulas for comput-
ing 4p PSFs. The cost for computing all the adequately
resolved DX̄X̂X̃ and KDDD contributions scales as∼N, for
all KKDD, KDKD, KDDK as ∼N2 (computation of a 2p
PSF for every n), and for all KKKD, KKDK, and KDKK as
∼N3 (a 3p PSF for every n). Though costly, these
computations can be performed in a systematic, nested
fashion, reusing the subroutines for 2p PSFs when comput-
ing 3p PSFs, and the 2p and 3p PSF subroutines when
computing 4p PSFs. Of course, this presumes subroutines
which work irrespective of how their input operators have
been generated and whether they are sliced or not. There is
then no need to write separate routines for all those
diagrams above depicting

P
n̄>n or

P
n̂>n̄ refinements;

instead, their contributions are generated automatically
through nested function calls.

VI. FROM DISCRETE PARTIAL SPECTRAL
FUNCTIONS TO CONNECTED CORRELATORS

The PSF computations described in the preceding
sections lead to numerical results with the following
structure. For a given permutation p, the PSF SpðεÞ defined
in Eq. (11) is represented as

SpðεÞ ¼
X
ε

δðε − εÞSpðεÞ; ð72Þ

where ε and ε are (l − 1)-tuples, the former containing the
continuous variables εi ¼ ω0̄

1���ī (i < l), the latter consisting
of discrete frequencies defined on the logarithmic grid used
for binning and slicing, and δðε − εÞ ¼ Q

l−1
i¼1 δðεi − εiÞ.

The coefficients SpðεÞ on the right, distinguished from the
function SpðεÞ on the left by having arguments with
underbars, are stored as an (l − 1)-dimensional histogram.
Such PSFs have to be convolved with a suitable kernel to

compute lp correlators. If the spectral representations of
Sec. II are expressed through εi variables, the convolution
integrals

R
dl−1ω0

p over functions of ω0
p (subject to

ω0̄
1���l̄ ¼ 0) turn into

R
dl−1ε integrals over functions of

ε, yielding
P

ε sums upon insertion of Eq. (72) for SpðεÞ.
For ZF correlators, e.g., we obtain [cf. Eqs. (3) and (4)]

GðωÞ ¼
X
p

ζp
Z

dl−1εKðωp; εÞSpðεÞ ð73aÞ

¼
X
p

ζp
X
ε

Kðωp; εÞSpðεÞ; ð73bÞ

Kðωp; εÞ ¼
Yl
i¼2

ð−ωī���l̄ þ iγ ī���l̄ þ εiÞ−1: ð73cÞ

Similar expressions are obtained for MF and KF correla-
tors. Evidently, each grid point ε defines the position of a
pole for the kernel. To avoid a proliferation of poles, we
choose the same ε grid for all permutations p.
Given a set of PSF histograms, the numerical evaluation

of the above expressions is conceptually simple but
requires great care in practice. One reason is that the ZF
and KF kernels have poles lying very close to the real axis.
The corresponding correlators, expressed as discrete

P
ε

sums over such kernels as in Eq. (73b), therefore do not
yield smooth functions of frequency. To recover ZF or KF
correlators with a smooth frequency dependence, as desired
for a system whose original bath (before discretization) is
continuous, the δ peaks of the PSFs have to be broadened.
However, the broadening scheme should not spoil delicate
cancellations in the sum

P
p over permutations—a chal-

lenging requirement.
By contrast, MF correlators need no broadening: their

frequency dependence is smooth, since it enters as iω, so
that the kernel denominators are always sufficiently far
from zero. Vanishing bosonic frequencies in denominators
are avoided, as their contributions are encoded in anoma-
lous terms [cf. Eq. (8)].
The second major challenge arises if one is interested in

computing the connected part, Gcon ¼ G − Gdis, of a
correlator. It describes mutual correlations between
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particles (in contrast to their independent propagation), and
is needed for extracting a corresponding vertex by ampu-
tating the external legs. Since the disconnected partGdis has
very large extremal values, its subtraction has to be
performed very accurately, and in such a manner that
the discrete poles of G and Gdis are aligned.
The present section describes how we deal with these

challenges, with focus on computing Gcon for fermionic
4p correlators. We employ a multistep procedure.
(A) Disconnected contributions are subtracted already at
the level of PSFs. (B1) The PSFs are broadened in a
Lorentzian manner and (B2) convolved with kernels to
obtainGcon; in the MF, (B1) is omitted. (C) An equation-of-
motion (EOM) scheme is used to improve the quality of
Gcon; this eliminates small disconnected contributions
which remain after step (A) due to numerical inaccuracies.
(D) External legs are amputated to obtain the vertex F. For
the ZF and KF cases, the external legs are computed using
the same Lorentzian broadening scheme as in (B1);
improved results for Gcon can be obtained by subsequently
reattaching external legs, computed using a more refined
log-Gaussian broadening scheme. In the ensuing sections,
we motivate and describe these steps in detail. Numerical
results for Gcon are presented in Sec. VII below; results for
F can be found in Ref. [1].

A. Subtracting disconnected parts

Any multipoint correlator can be split into a connected
and a disconnected part,G ¼ Gcon þGdis. For example, for
ZF 4p correlators involving four fermionic operators,
O ¼ ðO1;O2;O3;O4Þ, the disconnected part is (ζ ¼ −1)

Gdis½O�ðωÞ¼−2πifG½O1;O2�ðω1ÞG½O3;O4�ðω3Þδðω12Þ
þζG½O1;O3�ðω1ÞG½O2;O4�ðω2Þδðω13Þ
þG½O1;O4�ðω1ÞG½O2;O3�ðω2Þδðω14Þg; ð74Þ

with each summand a product of two 2p correlators. The
subtraction of Gdis from the full G is numerically nontrivial
for two reasons. First, the extremal values of Gdis are
generally much larger in magnitude than Gcon: In the ZF
and KF, the 2p frequency conservation inherent in Gdis is
implemented via Dirac δ functions [cf. Eq. (74)] whose
peak heights, even if regularized, are very large. In the MF,
the Dirac δ’s are replaced by Kronecker δ’s, with a
potentially large prefactor 1=T. Second, the δ’s (Dirac or
Kronecker) implementing 2p frequency conservation
restrict the three-dimensional (3D) argument of GðωÞ to
a 2D plane. This 2D dependence is incompatible with the
broadening scheme used in this work, which broadens 4p
PSFs along all three frequency directions (see Sec. VI B
below). Indeed, the 2D dependence is a peculiarity of the
disconnected part; if a 4p correlator does not involve
operators describing decoupled degrees of freedom, its
connected part should have a full 3D structure.

Given these challenges, it is advisable to subtract the
disconnected part prior to broadening, already at the level
of PSFs. To this end, we exploit the fact [1] that the
decomposition G ¼ Gcon þ Gdis has a counterpart at the
level of PSFs, Sp ¼ Sconp þ Sdisp for each permutation p.
The disconnected PSFs Sdis½Op�ðωpÞ corresponding to
Gdis½O�ðωÞ are defined in direct analogy to Eq. (74) [see
Eq. (31) in Ref. [1] ]. Expressed in the notation of Eq. (11),
with εi ¼ ω1̄���ī and ω1̄ ¼ ε1, ω2̄ ¼ ε2 − ε1, ω3̄ ¼ ε3 − ε2,
ω4̄ ¼ −ω1̄2̄3̄ ¼ −ε3, they read

Sdisp ðεÞ¼S½O1̄;O2̄�ðε1ÞS½O3̄;O4̄�ðε3−ε2Þδðε2Þ
þζS½O1̄;O3̄�ðε1ÞS½O2̄;O4̄�ðε3Þδðε1−ε2þε3Þ
þS½O1̄;O4̄�ðε1ÞS½O2̄;O3̄�ðε2−ε1Þδðε1−ε3Þ: ð75Þ

Rather than computing the 2p PSFs occurring herein
anew, we extract them from the (full) 4p PSFs via
generalized sum rules, without extra NRG calculations.
This facilitates the cancellation between Sp and Sdisp , as then
all (4p and 2p) PSFs are obtained with the same accuracy.
The sum rules are of the type

Z
dε3S½O1;O2;O3;O4�ðε1;ε2;ε3Þ¼S½O1;O2;O3O4�ðε1;ε2Þ;Z

dε2S½O1;O2;O3�ðε1;ε2Þ¼S½O1;O2O3�ðε1Þ: ð76Þ

These rules, and the (anti)commutation relation dσd
†
σ−

ζd†σdσ ¼ 1, imply that a 2p PSF can be obtained from a
double integral over two 4p PSFs, e.g.,

S½O1;O2�ðε1Þ ¼
ZZ

dε2dε3fS½O1;O2; dσ; d
†
σ�ðεÞ

− ζS½O1;O2; d†σ; dσ�ðεÞg: ð77Þ

As consistency checks on our numerical data, we verified
that the 2p PSFs S½dσ; d†σ�ðε1Þ and S½d†σ; dσ�ðε1Þ obtained
from 4p PSFs (i) satisfy the sum rule

P
ε1
fS½dσ; d†σ�ðε1Þ þ

S½d†σ; dσ�ðε1Þg ¼ 1 with machine precision and (ii) match
those obtained from direct 2p computations with an
absolute accuracy of 10−3 (see Fig. 14 in Appendix B).
Property (i) is expected, since our iterative scheme for
computing lp PSFs conserves sum rules by construction.
The quality of agreement for (ii) is very satisfying, given
the complexity of the computation. Nevertheless, small
discrepancies remain, as discussed in Appendix B.
Therefore, it is preferable to compute Sdisp using 2p PSFs
obtained not directly, but from precisely the 4p PSFs
involved in Sp. Then, numerical inaccuracies inherent in
Sp are passed on to Sdisp , facilitating the proper removal of
disconnected contributions in Sp − Sdisp .
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Inserting discrete 2p PSFs, S½O1;O2�ðε1Þ ¼P
ε1
δðε1 − ε1ÞS½O1;O2�ðε1Þ, into Eq. (75), and using sums

on ε1 and ε3 for the first and second factors in each line, we
obtain

Sdisp ðεÞ¼
X
ε1;ε3

fS½O1̄;O2̄�ðε1ÞS½O3̄;O4̄�ðε3Þδðε−ðε1;0;ε3ÞÞ

þζS½O1̄;O3̄�ðε1ÞS½O2̄;O4̄�ðε3Þδðε−ðε1;ε1þε3;ε3ÞÞ
þS½O1̄;O4̄�ðε1ÞS½O2̄;O3̄�ðε3Þδðε−ðε1;ε1þε3;ε1ÞÞg:

ð78Þ

We seek to express Sconp ¼ Sp − Sdisp in the form (72), with
histograms SpðεÞ and Sdisp ðεÞ defined on matching 3D ε
grids, so that their difference directly yields the histogram
Sconp ðεÞ. (Different grids for Sp and Sdisp would yield
nonmatching pole positions for G and Gdis and a less
reliable subtraction.) In Eq. (78), the first term has support
in the ε2 ¼ 0 plane of the 3D grid. The second and third
terms, however, have support at ε2 ¼ ε1 þ ε3, defining
slanted planes incommensurate with the 3D grid. To
associate these terms with points on the 3D grid, we rebin
ε1 þ ε3 onto the ε2 grid, e.g., assigning a histogram element
associated with the transition energies ðε1; ε1 þ ε3; εiÞ
(i ¼ 3, 1) to the grid point ðε1; ε2; εiÞ closest to it on a
logarithmic scale (i.e., with ln jε2j closest to ln jε1 þ ε3j).
Since rebinning, needed to align the poles of G and Gdis,

slightly shifts some transition energies without recomput-
ing the corresponding matrix elements, it introduces a
non-negligible numerical error. Furthermore, at finite
temperature, the effective finite length of the Wilson chain
[22,71] introduces a low-energy cutoff, which limits the
spectral resolution below T. More specifically, the thermal
density matrix ϱnDD is mostly populated at shells n ∼ nT ¼
−2 logΛðT=DÞ [22,71]. Therefore, transitions originating
from very low-lying energy levels with E1 ≪ T, resolved
only within later shells with n > nT , are not captured
accurately. Because of these numerical artifacts, arising
from rebinning and finite temperature, the disconnected
part in S is not canceled exactly. For example, Figs. 2(b)
and 3(b) show results for Scon for a noninteracting system; it
should vanish by Wick’s theorem but does not. We remedy
this by removing the remaining disconnected contributions
with a EOM-based strategy, described in Sec. VI C below.
Yet, before that, a broadening procedure, described next, is
required for ZF and KF kernels.

B. Broadening

ForZFandKFcorrelators,whose kernels have poles lying
very close to the real axis, thePSFsmust bebroadenedbefore
convolving them with kernels, as mentioned above. To this
end,eachDiracδðε − εÞ inSpðεÞ is replacedbyapeak-shaped
broadening kernel, δbðε; εÞ ¼

Q
l−1
i¼1 δbðεi; εiÞ. This amounts

to replacing the convolution kernels, e.g., Kðωp; εÞ in
Eq. (73b), by broadened versions:

Kbðω; εÞ ¼
Z

dl−1εKðωp; εÞδbðε; εÞ: ð79Þ

For each grid direction i, the broadening kernel δbðεi; εiÞ
is characterized by the shape and width of its peak when
viewed as a function of εi for given εi. We first discuss
the requirements for its width, say γb;i. (The meaning of
“width” of course depends on the peak shape, but the
ensuing arguments are generic.) Because of the logarith-
mic bath discretization, the dominant contributions to the
coefficients SpðεÞ lie within clusters on the ε grid, with
each cluster involving transitions within a specific com-
bination of NRG shells. When plotted using logarithmic
grid axes, the clusters are spaced by ∼ lnΛ, along each
grid axis (see, e.g., Fig. 2 below), reflecting the single-
particle level spacing of the discretized bath. The width
of the broadening peak, plotted on the same axes, should
be comparable to this in order to smooth out the clusters,
i.e., ln½ðjεij þ γb;iÞ=jεij� ≲ lnΛ. This requires a peak
width proportional to frequency, γb;i ¼ bjεij, with
b≲ Λ − 1. Smaller choices for b are possible if one
averages over several, say nz, discretization grids (“z
averaging” [20]).
We next discuss the choice of peak shape for

δbðε; εiÞ. NRG calculations of 2p functions conventionally
use a log-Gaussian broadening kernel [20,22], i.e.,
a Gaussian function of ln jεi=εij (for details, see
Appendix C). It has the useful property of not over-
broadening low-energy features resolvable only on a
logarithmic scale.
For 4p correlators, we were not able to obtain satisfac-

tory results using log-Gaussian broadening. By contrast, a
Lorentzian broadening kernel with width bLjεij,

δLðεi; εiÞ ¼
bLjεij=π

ðεi − εiÞ2 þ ðbLjεijÞ2
; ð80Þ

yielded very good results for benchmark checks against
various analytic results for the 4p vertex [1]. Via Eq. (79), it
leads to broadened ZF and KF kernels of the form

KLðωp; εÞ ¼
Yl
i¼2

ξ̃−1ī���l̄; ð81aÞ

K
kp
L ðωp; εÞ ¼

Xl
λ¼1

ð−1Þk1̄���λ−1 1þ ð−1Þkλ̄
2

×

�Yλ−1
i¼1

ξ̃−1
1̄���ī

Yl
j¼λþ1

ξ̃−1j̄���l̄

�
; ð81bÞ

which match Eqs. (4) and (10), respectively, except for the
replacements:
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ξ1̄���ī ↦ ξ̃1̄���ī ¼ −ω1̄���ī þ εi þ iðγ1̄���ī þ bLjεijÞ;
ξj̄���l̄ ↦ ξ̃j̄���l̄ ¼ −ωj̄���l̄ − εj−1 þ iðγj̄���l̄ þ bLjεj−1jÞ:

ð81cÞ

Note that ξ̃1̄���ī and ξ̃j̄���l̄ are the broadened version of ξ1̄���ī
and ξj̄���l̄, respectively, and not the sum of individual ξ̃m’s.
Thus, Lorentzian broadening modifies the kernels only by
shifting their poles away from the real axis by �ibLjεij.
Importantly, however, it does not change their analytic
structure. As a result, the intricate cancellation patterns
between different PSFs in permutation sums

P
p largely

remain intact during broadening. We believe this to be the
main reason why, for 4p correlators, Lorentzian broadening
outperforms log-Gaussian broadening.
The disadvantage of Lorentzian broadening, of course,

is that Lorentzian peaks have long tails which very
strongly overbroaden low-energy features—indeed, this
is the reason why Lorentzian broadening is not used for 2p
correlators. For 4p correlators, the effects of overbroaden-
ing appear to be more tolerable. Moreover, when comput-
ing the 4p vertex, some of their consequences can be
canceled out by also using Lorentzian broadening for the
external-leg 2p functions being divided out. To calculate
the latter, we use the kernel (81) for l ¼ 2, but there is one
subtlety: While we use the same value of γi ¼ γ0 for all
1 ≤ l ≤ 4 when computing 4p correlators, the values of
γi¼1;2 for each 2p correlator depend on which leg it is
attached to. This is explained in more detail in Sec. VI D.
The values used for the broadening parameters bL and γ0

depend on the discretization parameter Λ, and on nz if z
averaging is used. Artifacts appearing for frequencies lower
than temperature can be smeared out by choosing γ0 to be
∼T. In practice, we choose bL and γ0 just large enough to
yield smooth results for broadened correlators. For the ZF
and KF results in this paper, we used Λ ¼ 4, nz ¼ 4,
γ0 ¼ 3T, and bL ¼ 0.6. (These values were also used for
the results presented in Ref. [1], with two exceptions: we
used bL ¼ 1.4, γ0 ¼ T=2 for the x-ray–edge singularity,
and bL ¼ 0, γ0 ¼ T for the Hubbard atom. Though we
treated the former in the ZF, we chose a small but finite
T ¼ 10−5D to define the density matrix and γ0.)

C. Equation of motion

When computing the connected contributions of PSFs,
as described in Sec. VI A, some disconnected parts remain,
due to numerical inaccuracies. To remove these, we employ
an EOM strategy [74] which expressesGcon through two 4p
correlators whose disconnected parts mutually cancel.
(This step is not needed if the computation of PSFs is
exact, as was the case for benchmark results on the
Hubbard atom in Ref. [1].) We first explain the EOM
strategy in the MF, then discuss its transcription to the ZF
and KF.

In NRG computations of 2p correlators for quantum
impurity models, it is common practice to improve the
results by computing the self-energy via an EOM scheme
[75]. In the MF, QMC computations of local 4p correlators
use a similar strategy, employing EOMs to obtain improved
results for the connected part, Gcon [74,76]. Transcribed to
our situation, Eq. (26) of Ref. [74] reads

Gcon½dσ; d†σ; dσ0 ; d†σ0 �ðiωÞ
¼ G½dσ; d†σ�ðiω1ÞG̃½d̃σ; d†σ; dσ0 ; d†σ0 �ðiωÞ
− G̃½dσ; d̃†σ�ðiω1ÞG½dσ; d†σ; dσ0 ; d†σ0 �ðiωÞ; ð82Þ

where d̃σ ¼ ½dσ;Hint� and d̃†σ are composite operators, and
we put tildes on correlators containing one of them.
Suppressing arguments to reveal the structure, this reads

Gcon
4p ¼ G2pG̃4p − G̃2pG4p: ð83Þ

Equation (83) correctly yields Gcon
4p ¼ 0 if Hint ¼ 0, since

then G̃4p ¼ G̃2p ¼ 0 by construction. In the QMC study of
Ref. [74], computing Gcon

4p via Eq. (83), rather than
G4p −Gdis

4p , indeed led to markedly improved results.
The reason is that the statistical errors for G4p and Gdis

4p

are very different, whereas those for G4p and G̃4p are
similar. Our NRG computations ofG4p andGdis

4p are also not
perfectly matched—before subtracting the latter, rebinning
of discrete spectral data is needed; see Sec. VI A. Thus,
computing Gcon

4p via Eq. (83) is advisable in our case, too.
Benchmark checks against analytical results (e.g., for

weak interactions) show that a direct application of
Eq. (83), with full 4p correlators as input on the right,
does not yield optimal results for Gcon. Instead, we use
connected 4p correlators as input, available via the sub-
traction scheme of Sec. VI A. Expressing both 4p corre-
lators on the right of Eq. (83) as sums of connected and
disconnected parts, we obtain

Gcon
4p ¼ G2pG̃

con
4p − G̃2pGcon

4p ; ð84Þ

as the disconnected parts mutually cancel, G2pG̃
dis
4p−

G̃2pGdis
4p ¼ 0. This cancellation follows by using Eq. (74)

and G̃½d̃σ; d†σ� ¼ G̃½dσ; d̃†σ�. The latter equality stems from
two different EOM derivations for G2p, differentiating it
with respect to either the first or the second time argument
[74] and using ∂t1G2p ¼ −∂t2G2p.
We evaluate Eq. (84) for Gcon

4p by inserting, on its right,
results for Gcon

4p and G̃con
4p obtained by subtracting discon-

nected parts as described in Sec. VI A. Benchmark checks
show that the output Gcon

4p is improved relative to the input
Gcon

4p . The reason is likely that remnant disconnected
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contributions, still contained in the input correlators due to
numerical inaccuracies, tend to cancel in Eq. (84).
We now turn to real-frequency EOMs for ZF and

KF correlators. Apart from the fact that, here, input
correlators must first be broadened, one proceeds analo-
gously. The ZF, just as the MF, involves time-ordered
correlators. Hence, ZF EOMs can be obtained from MF
ones by simply replacing real by imaginary times. In the
frequency domain, this yields the EOM (82) with iω
replaced by ω.
In the KF in the Keldysh basis, a derivation analogous to

that of Ref. [74], but tracking Keldysh indices, yields the
same operator and frequency structure as Eq. (83):

Gcon;k
4p ¼ ðG2pσxG̃4p − G̃2pσxG4pÞk: ð85Þ

The only complication is that the ω1 leg of each 4p
correlator is contracted with the Pauli matrix

σx ¼ ð0
1

1
0
Þ via ðG2pσxG̃4pÞk1k2k3k4 ¼

P
k0
1
k00
1
G

k1k01
2p σ

k0
1
k00
1

x ×

G̃
k00
1
k2k3k4

4p . As a consistency check, we note that the ZF
version of Eq. (83) can be obtained from Eq. (85) by
transforming the latter to the contour basis and considering
only components restricted to the forward branch of the
Keldysh contour.
The mutual cancellation of disconnected parts discussed

above applies to the real-frequency EOMs, too. For the ZF,
Eq. (84) applies unchanged. For the KF, it becomes

Gcon;k
4p ¼ ðG2pσxG̃

con
4p − G̃2pσxGcon

4p Þk; ð86Þ

while the cancellation of disconnected parts can be
verified using G̃k½d̃σ; d†σ� ¼ G̃k½dσ; d̃†σ�, abbreviated G̃k

2p,
and ðG2pσxG̃2pÞk ¼ ðG̃2pσxG2pÞk. The latter relation
follows by evoking the fluctuation-dissipation theorem,
G22ðωÞ ¼ tanhðβω=2ÞðG21 − G12ÞðωÞ, for both G2p

and G̃2p.
The EOM scheme described above treats the frequency

arguments of 4p correlators asymmetrically, in that ω1

receives special treatment. For KF correlatorsGk, this leads
to the fact that the k ¼ 2111 component is obtained with
better quality than others. This problem can be remedied
using a symmetric EOM scheme presented recently in the
MF in Ref. [76]. We leave its transcription to the KF and
use for NRG computations to the future.

D. Amputating and reattaching external legs

The strategies described in the preceding sections yield a
connected 4p correlator,Gcon, free from disconnected parts.
To obtain the corresponding 4p vertex F, the external legs
are amputated by dividing out 2p correlators for all
frequencies ωi. The MF vertex, e.g., is

FðiωÞ ¼ GconðiωÞ=ðGðiω1ÞGð−iω2ÞGðiω3ÞGð−iω4ÞÞ;
ð87Þ

with a positive (negative) sign in the propagator of
an outgoing (incoming) leg, associated with an annihila-
tion (creation) operator in the definition of the 4p
correlator.
The ZF and KF vertices are obtained using similar

expressions (see Ref. [1] for details), but require special
care. First, the choice of imaginary shifts for the arguments
of the external legsGðωiÞ have to be chosen consistent with
those of GconðωÞ (see Appendix D of Ref. [1]). We choose
γ1 ¼ γ0 and γ2 ¼ 3γ0 (γ1 ¼ 3γ0 and γ2 ¼ γ0) for the
outgoing (incoming) legs, where γ0 is the value of all
γi’s in the kernel (81) used for computing the 4p correlator.
Second, since real-frequency versions ofGcon are computed
using Lorentzian-broadened kernels, we compute the 2p
correlators in the denominator using the same Lorentzian
broadening scheme (81c). Hence, the broadening width
parameter bL is chosen identical to the one of the 4p
correlator. This ameliorates the undesired overbroadening
effects of Lorentzian broadening, in that they tend to cancel
out in the ratio (87). This strategy is essential for obtaining
the correct large-frequency behavior for F, since the large-
frequency behavior for Gcon is dominated by the 2p
correlators.
Having computed F, a yet-again improved version of

Gcon can be obtained by multiplying F with external-leg
2p correlators, now computed using the customary log-
Gaussian broadening scheme (cf. Appendix C). This
ensures that those features dominated by the external
legs are not overbroadened. In other words, to obtain a ZF
or KF Gcon most accurately, we first compute the F vertex
using Lorentzian-broadened ingredients, and then
reattach the external legs through optimally broadened
2p correlators. This strategy for optimizing the
treatment of external legs is particularly useful from
the perspective that experimental probes typically mea-
sure response functions corresponding to correlators with
external legs.

VII. RESULTS: CONNECTED CORRELATORS

To establish the power of our multipoint NRG scheme,
we have performed detailed benchmark computations for
the paradigmatic AIM. We presented MF and KF results
for its 4p vertex in Ref. [1]. To complement these, we here
analyze both the underlying PSFs and the connected 4p
correlators Gcon obtained from them by convolution with
suitable MF, ZF, or KF kernels.
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A. Model

The Hamiltonian of the AIM in standard notation is

HAIM ¼
X
ϵσ

ϵc†ϵσcϵσ þ
X
σ

ϵdd
†
σdσ þ Ud†↑d↑d

†
↓d↓

þ
X
ϵσ

ðVϵd
†
σcϵσ þ H:c:Þ: ð88Þ

It describes a band of spinful electrons, hybridizing with a
local level with energy ϵd and Coulomb repulsion U. We
take ϵd ¼ −U=2. The coupling between impurity and bath
is fully characterized by the hybridization function
ΔðνÞ ¼ P

ϵ πjVϵj2δðν − ϵÞ, which we choose box-shaped,
ΔðνÞ ¼ ΔθðD − jνjÞ, with half-bandwidthD. Our goal is to
compute the connected part of the local 4p correla-
tor G½dσ; d†σ; dσ0 ; d†σ0 �ðωÞ.
For the NRG calculation, the bath is represented on a

discrete, logarithmic grid, with grid intervals bounded by
the points �DΛ−k−z. Here, k ≥ 0 is an integer and z ∈
ð0; 1� a shift parameter. A discrete energy representing each
grid interval is chosen using the prescription proposed in
Ref. [23]. We use Λ ¼ 4, and average results from nz
different discretization grids, with z ¼ 1=nz; 2=nz;…; 1.
We choose nz ¼ 2 for MF correlators, which are less
sensitive to discretization artifacts (for the same reason
as why MF PSFs need not be broadened; see Sec. VI B),
and nz ¼ 4 for the more challenging real-frequency corre-
lators. The Wilson chain is diagonalized iteratively by
keeping 300 multiplets respecting U(1) charge and SU(2)
spin symmetries. We generate and manipulate non-Abelian
symmetric tensors using the QSpace library developed by
Weichselbaum [77,78]. By exploiting non-Abelian sym-
metries, the different spin components of the 4p correlator
are all obtained simultaneously.

B. Discrete partial spectral functions

The first output of our multipoint NRG calculations are
discrete 4p PSFs. Figures 2(a) and 2(c) [Figs. 2(b) and 2(d)]
display the full [connected] part of the PSF
S½d↑; d†↑; d↓; d†↓�ðεÞ, computed for U ¼ 0 in Figs. 2(a)
and 2(b) [U ≠ 0 in Figs. 2(c) and 2(d)] and shown as a
function of ε1 and ε3 at ε2 ¼ 0. Generally, we observe that
the spectral contributions are spread over a range of
energies, from −T to the largest energy scale in the system
(here D). As 4p PSFs describe excitation spectra—their
arguments are transition energies, ε ¼ ðE2 1; E3 1; E4 1Þ—
the spectral weight predominantly lies at positive energies.
The spectral weight at negative energies, ε ≪ −T, is
exponentially suppressed by the Boltzmann factor.
For noninteracting systems, Wick’s theorem implies that

4p PSFs consist of only disconnected contributions, so
that exact numerics would yield S ¼ Sdis, with Sdis½d↑; d†↑;
d↓; d

†
↓�ðεÞ ¼ S½d↑; d†↑�ðε1ÞS½d↓; d†↓�ðε3Þδðε2Þ, cf. Eq. (75).

This factorization into two 2p PSFs is visible in Fig. 2(a), as
the spectral weight is distributed on an equidistant, square
grid for ln ε1 and ln ε3, with grid spacing lnΛ.
Though Scon ¼ S − Sdis should vanish for U ¼ 0, we

numerically obtain a small but nonzero result; see Fig. 2(b).
One reason stems from the fact that discrete spectral data at
low energies, jεij ≲ T, are inaccurate. We therefore broaden
them, using a broadening width ∼T [24], to obtain Scon ≃ 0
at energies jεij ≲ T. The finite but minuscule value of Scon

for jεij slightly larger than T [note the logarithmic color
scale in Fig. 2(b)] comes from the tail of the inaccurate low-
energy region, which is not fully smeared out through
broadening.
Additional numerical artifacts arise from the rebinning of

the sum of frequencies ε1 þ ε3 into ε2 bins during the
computation of Sdis (cf. Sec. VI A). This is exemplified in
Fig. 3, showing S½d↑; d†↑; d↑; d†↑�ðεÞ as a function of ε1 and
ε2 at ε3 ¼ ε1, with a layout analogous to Fig. 2. The
rebinning artifacts, seen in Fig. 3(b) along the diagonal, are
small as well. For example, the maximum magnitude of the

FIG. 2. An exemplary opposite-spin 4p PSF of the AIM,
S½d↑; d†↑; d↓; d†↓�ðεÞ (out of the 24 PSFs Sp), as a function of
ε1 and ε3 at ε2 ¼ 0. The top and bottom rows show noninteracting
(U ¼ 0) and strongly interacting ðU=Δ ¼ 5Þ cases, the left and
right columns the full PSF S and its connected part Scon,
respectively. For U ¼ 0, Scon should vanish by Wick’s theorem;
the fact that small but nonzero values remain in (b) is due to
numerical artifacts discussed in Sec. VI A. For U ≠ 0, the
distribution of spectral weight reflects the energy scales U=2
and TK ≃D=200, and Scon reveals mutual two-particle correla-
tions. These PSFs were computed using Λ ¼ 4 and z ¼ 1. For
visualization, the discrete data were minimally broadened, using
the log-Gaussian–Fermi kernel (C1) [24] with narrow width
parameters. The intensity values for each row are normalized by
the maximum magnitude of S on the left.
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data of Fig. 3(b) is about 2.5% of that of Fig. 3(a).
Meanwhile, Fig. 2 is free from rebinning artifacts, because
ε2 ¼ 0 there. Generally, rebinning artifacts are smeared out
by broadening (cf. Sec. VI B). They can be further reduced
via the EOM strategy described in Sec. VI C. (For U ¼ 0,
the property Gcon ¼ 0 is then obtained exactly.)
In the presence of interactions, the 4p PSFs exhibit a rich

structure; see Figs. 2(c), 2(d), 3(c), and 3(d). The spectral
distribution patterns in Figs. 2(c) and 3(c) change notice-
ably across characteristic energy scales induced by inter-
actions, such as the Hubbard-band position U=2 and the
Kondo temperature TK. The connected part Scon, describing
mutual two-particle correlations, now has considerable
weight over a wide frequency range; see Figs. 2(d) and
3(d). It is most pronounced at energies below U=2 and
around TK but very small at large energies εi > U; hence,
two-particle correlations are negligible there. The full and
connected PSFs for the other permutations exhibit similar
behavior; see Fig. 15 in Appendix D.

C. Connected 4p correlators for AIM

We next present results for the connected correlatorGcon,
computed from PSFs using the strategies described in
Sec. VI, including the amputation and reattachment of
external legs (Sec. VI D). We start with MF results, as these
can also be obtained by means of ED or QMC, and consider
the AIM at strong interaction U=Δ ¼ 5, with U=D ¼ 1=5.
In Ref. [1], we benchmarked the NRG 4p vertex, Fσσ0 ðiωÞ,
against QMC at an intermediate temperature T ¼ 10−2D,
finding relative deviations on the level of 1%. (For that

benchmark, both QMC and NRG results were generated
without using the EOM strategy of Sec. VI C.) We also
presented results for the 4p vertex at much lower temper-
atures, out of reach for QMC algorithms. For convenience,
Fig. 4(a) reproduces the results from Fig. 8 of Ref. [1] for
Fσσ0 ðiωÞ, now obtained by using the EOM strategy.
Figure 4(b) shows the corresponding connected correlator
Gcon

σσ0 ðiωÞ at T ¼ 10−4D as a function of ν and ν0 at ω ¼ 0,
in the particle-hole representation [1,2],

ω ¼ ðν;−ν − ω; ν0 þ ω;−ν0Þ; ð89Þ
obtained by reattaching external legs to the vertex. These
external legs ensure that Gcon decays in all directions (note
the logarithmic color scale), contrary to the finite back-
ground value of F. There is a strong signal at the origin and
along the axes νð0Þ ¼ 0. Just as for the vertex [1], the equal-
spin component vanishes for ν ¼ ν0 and ω ¼ 0 by sym-
metry. These features are mostly known already; Fig. 4
demonstrates that NRG provides a viable tool to compute
MF 4p correlators at very low temperatures.
For the real-frequency frameworks, ZF and KF, we

cannot resort as easily to previous results. Hence, we next
benchmark our NRG ZF and KF data against perturbation
theory (PT), for the AIM at weak interaction, U=Δ ¼ 1=2.
In Ref. [1], we discussed second-order PT for the vertex in
the MF and KF (one proceeds analogously in the ZF);
results for Gcon follow after reattaching external legs.
Figure 5(a) shows Gcon

σσ0 ðωÞ for the ZF, again at T ¼
10−3D and ω ¼ 0. There is very good agreement between
NRG and PT. The color plots, now involving real and
imaginary parts, show features somewhat similar to the MF

FIG. 4. (a) MF 4p vertex Fσσ0 ðiωÞ=U, and (b) MF connected 4p
correlator ðΔ4=UÞGcon

σσ0 ðiωÞ, for the strongly interacting AIM
(U=Δ ¼ 5, Δ=D ¼ 1=25, T=D ¼ 10−4), as a function of ν and ν0
at ω ¼ 0. The left (right) panels show σ ≠ σ0 (σ ¼ σ0).

FIG. 3. Analogous to Fig. 2, but for a same-spin 4p PSF
S½d↑; d†↑; d↑; d†↑�ðεÞ, shown as a function of ε1 and ε2 at ε3 ¼ ε1.
In (b), the narrow adjacent red and blue regions along the
diagonal ε1 ≃ ε2 > 0 reflect contributions from S and Sdis which
fail to cancel fully, due to rebinning involved for Sdis.
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results discussed above: a decay in all directions and a plus-
shaped structure around a prominent signal at the origin.
The two spin components mostly have opposite signs;
however, contrary to the MF, the ZF data also involve
sign changes within a spin component. Further, for these
weak-interaction results, the ↑↓ component is larger in
magnitude and extends to larger νð0Þ values than the ↑↑
component, since the former has a first-order contribution
while the latter starts at order U2.
Turning to KF results, our scheme of extracting Gcon out

of the full PSFs S works best for the retarded Keldysh
components, where the Keldysh indices k of a correlator
contain only one entry equal to 2. The reason is that we use
a simple but asymmetric EOM (see Sec. VI C). Figure 5(b)
shows the retarded correlator Gk;con

σσ0 ðωÞ with k ¼ 2111 for
the weakly interacting AIM (identical parameters as
above). Again, there is good agreement between NRG
and PT. Similar to the ZF results, we observe that the ↑↓
component exceeds the ↑↑ component in magnitude.
However, the structure of these ν-ν0 color plots at ω ¼ 0
is markedly different between the ZF and KF: whereas the
ZF ↑↓ component is mirror and point symmetric, the
retarded counterpart is only point symmetric. The mirror
symmetry of the ZF ↑↑ component is merely broken by the
vanishing diagonal; the retarded counterpart, sharing the
vanishing diagonal, is generally only point symmetric.
The reduced symmetry of the KF correlator is due to the
fact that the Keldysh indices k ¼ 2111 single out the first
index, related to the frequency ν. The ν-ν0 structure at ω ¼
0 of other retarded components not shown, i.e.,
k ∈ f1211; 1121; 1112g, follows from the k ¼ 2111 com-
ponent by 90° rotations in either the real part, the imaginary
part, or both.
Finally, we turn to real-frequency connected correlators

for the AIM at strong interaction, setting U=Δ ¼ 5 as for
the MF results. Figures 6(a) and 6(b) show the ZF and
retarded KF (k ¼ 2111) connected correlators Gcon

σσ0 ,

FIG. 5. Weak-coupling benchmark comparison of real-frequency correlators. We show the connected 4p correlator ðΔ4=UÞGcon
σσ0 at

ω ¼ 0, obtained by NRG (top row) or second-order perturbation theory (PT) (bottom row), for the weakly interacting AIM
(U=Δ ¼ 1=2, Δ=D ¼ 1=10, T ¼ 10−3D). For both (a) the ZF and (b) the KF (k ¼ 2111) correlators, the NRG and PT results show very
good qualitative agreement. Perfectly quantitative agreement cannot be expected, due to the broadening needed to obtain smooth results.
The retarded KF component k ¼ 2111 looks intriguingly different from the ZF correlator.

FIG. 6. Real-frequency correlators at strong coupling. (a) ZF
and (b) KF (k ¼ 2111) connected 4p correlator, ðΔ4=UÞGcon

σσ0 , of
the strongly interacting AIM (U=Δ ¼ 5, Δ=D ¼ 1=25,
T ¼ 10−4D, TK=D ≃ 1=200). In both panels, the real-frequency
structure is much richer than that obtained at weak interaction
(Fig. 5), and also than that of the imaginary-frequency MF results
(Fig. 4) obtained for the same system parameters.
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respectively. We see that the symmetry considerations from
above still hold, and the characteristic structure with
distinct values at the origin, along the νð0Þ axes, and at
the diagonal (with zero values for σ ¼ σ0) persists. Apart
from these similarities, the real-frequency structure seen in
Fig. 6 is much richer than that of the weak-interaction
results of Fig. 5 or the imaginary-frequency MF results of
Fig. 4. The latter were obtained not only with identical
system parameters, but from the same discrete data for the
connected PSFs as the ZF and KF results of Fig. 6. This
striking increase in complexity of real-frequency versus
imaginary-frequency data illustrates the benefits of having
direct access to real-frequency data—attempting to recover
it from imaginary-frequency data via analytic continuation
would be extremely challenging.
Altogether, the collection of plots in this section illus-

trates the power of the spectral representation of multipoint
correlators and our NRG scheme to evaluate them: The
dynamic information of the system is fully and compactly
encoded in the PSFs (exemplified in Figs. 2, 3, and 15). The
diverse correlators of the MF [Fig. 4], ZF [Fig. 6(a)], and
KF [Fig. 6(b)] all follow upon convolution of the same
PSFs with appropriate kernels.

VIII. RESULTS: RIXS

We conclude our presentation of numerical results with
an application of great physical interest: resonant inelastic
x-ray scattering. This type of measurement involves pho-
ton-in–photon-out spectroscopy. An incident x-ray photon
excites an electron from a core level into a valence orbital
[Fig. 7(a)]. Then, a valence electron relaxes to fill the core
hole, emitting a photon, while the difference between the
energies of the incident and emitted photons, ωloss ¼
ωin − ωout, is transferred into the solid [Fig. 7(b)].
Measuring ωloss thus yields spectroscopic information
about the excitations of the solid.
Below, we compute RIXS spectra by convolving a single

4p PSF for a specified set of four operators with a suitably
chosen convolution kernel (different from those used
hitherto). By using NRG, we achieve a fine resolution of
power-law singularities and characteristic low-energy
scales not accessible by ED methods.

A. Models

We have performed proof-of-principle computations for
two minimal models. The first, to be called Mahan impurity
model (MIM), was used by Mahan for describing x-ray
absorption spectroscopy (XAS) in metals, manifesting the
celebrated x-ray–edge singularity [70,79–81] in the absorp-
tion spectrum. Its Hamiltonian is

HMIM ¼
X
ϵ

ϵc†ϵcϵ þ jϵpjpp† −Upc†cpp†; ð90Þ

where c ¼ P
ϵ cϵ. The first term describes a flat, half-filled

band of spinless electrons with ϵ ∈ ½−D;D� and Fermi

energy at ϵ ¼ 0, the second a localized core level with
energy ϵp ≪ −D, usually occupied. An x-ray absorption
process, described by the transition operator T † ¼ c†p,
transfers an electron from the core level into the conduction
band. The resulting core hole, with hole number operator
pp†, induces an attractive, local scattering potential −Up <
0 for the band (with Up ≪ jϵpj), described by the third
term. Its sudden switch-on changes the wave functions of
all conduction electrons, so that their initial and final
ground states become orthogonal. This is Anderson’s
orthogonality catastrophe [82–84]. It is also responsible
[85,86] for the singular behavior in the XAS spectrum
[70,79–81], accessible by NRG [86–88], and also to the
RIXS spectrum [89,90]. To our best knowledge, the
singularity-related features of the latter have not yet been
studied numerically.
The second model describes x-ray absorption for an

augmented Anderson impurity model (AAIM). We take the
AIM Hamiltonian (88), augmented by core level terms,

HAAIM ¼ HAIM þ jϵpjpp† −Up

X
σ

d†σdσpp†: ð91Þ

We ignore the spin of the core electron, since the interaction
between the core and impurity levels is spin independent
and the core-hole number cannot be larger than one. The
transition operator describing x-ray absorption now reads
T †

σ ¼ d†σp. The XAS and RIXS spectra will have a richer
structure than those for the first model, reflecting properties
of the local density of states of the AIM, such as the
presence of a Kondo resonance and Hubbard side bands.
We note in passing that a model of this type has been

used to describe optical absorption for quantum dots with
Kondo correlations [88,91], predicting x-ray–edge-type

(a) (b)

FIG. 7. Schematic depiction of XAS and RIXS. (a) A photon of
energy ωin þ ωth is absorbed (with absorption threshold ωth),
transferring an electron from the core level (p) to a valence orbital
at the same location. For the Mahan impurity model (MIM), the
local density of states of the valence orbital is flat (dashed box);
for the augmented Anderson impurity model (AAIM), it has
structure (solid line), including a Kondo resonance. (b) An
electron at the valence orbital relaxes to the core level to fill
the hole, emitting a photon of energy ωout þ ωth and resulting in
an excitation of energy ωloss ¼ ωin − ωout in the solid. XAS
measures the probability for (a) as a function of ωin; RIXS
measures the joint probability for (a) and (b) as a function of ωin
and ωloss.
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line shapes that have been verified experimentally [92].
Moreover, our methodology is applicable also if the local
density of states is computed self-consistently via DMFT,
as done for RIXS computations for material systems
[65,66]. We leave such applications, and generalizations
to nonlocal RIXS processes with momentum-dependent
spectra, for future work. Here, our goal is to use the above
two minimal models to highlight features in RIXS spectra
that emerge when truly low-energy scales, beyond the reach
of ED [55–66] or Bethe–Salpeter treatments [67–69], can
be resolved.

B. Partial spectral functions for XAS and RIXS

We now turn to the computation of XAS and RIXS
spectra, starting with the former. XAS measures the
probability for the absorption of an x-ray photon
[Fig. 7(a)], the first part of a RIXS process, without
tracking what happens subsequently. This probability is
given by [54,93]

IXASσ ðωinÞ ¼
−1
π

Im
X
1 2

ρ1ðT σÞ1 2ðT †
σÞ2 1

ωin þ ωth − E2 1 þ iΓp
; ð92Þ

where ωin þ ωth is the incident photon energy, ωth the
absorption threshold, and Γp the inverse lifetime of the core
hole. Using notation encompassing both models, we write
the transition operator as T †

σ ¼ x†σp, with x† ¼ c† and the
spin index omitted for the MIM, or x†σ ¼ d†σ for the AAIM.
The transition operator links two Hilbert subspaces, to be
called “no hole” and “one hole.” These are not coupled by
the Hamiltonian, ½p†p;H� ¼ 0, and can be diagonalized
separately. The sums

P
2 or

P
1 run over all energy

eigenstates of the one-hole or no-hole subspaces, respec-
tively. The difference between their ground-state energies
defines ωth.
Equation (92) has the form of a convolution of a 2p PSF,

SXASσ ðεÞ ¼ S½T σ; T
†
σ�ðεÞ, with a Lorentzian peak:

IXASσ ðωinÞ ¼
Z

dε
ðΓp=πÞSXASσ ðεÞ

ðωin þ ωth − εÞ2 þ Γ2
p
: ð93Þ

The x-ray absorption spectrum thus measures the 2p PSF
SXASσ ðωin þ ωthÞ, broadened by Γp.
Next, consider RIXS spectra. They measure the proba-

bility for the absorption and subsequent reemission of x-ray
photons with energies ωin þ ωth and ωout þ ωth, respec-
tively, with ωloss ¼ ωin − ωout (Fig. 7). This probability is
given by the Kramers–Heisenberg formula [53,54,94]:

IRIXSσσ0 ðωin;ωlossÞ

¼
X
13

ρ1

����
X
2

ðT σÞ12ðT †
σ0 Þ23

ωinþωth−E21− iΓp

����
2

δðωloss−E31Þ

¼
X
1234

ρ1ðT σÞ12ðT †
σ0 Þ23δðωin−ωout−E31ÞðT σ0 Þ34ðT †

σÞ41
ðωoutþωth−E23− iΓpÞðωinþωth−E41þ iΓpÞ

:

ð94Þ

In the second line, the expression within the square is the
amplitude for a second-order process, involving upward
and downward transitions from the no-hole to one-hole
subspaces and back. The third line explicates the depend-
ence on the frequencies ωin and ωout. Transitions with
ωin ¼ E4 1 − ωth and ωout ¼ E2 3 − ωth conserve energy
and are “real.” If both equalities hold (at T ¼ 0 this requires
ωin > 0), the net result is a resonant fluorescence-type
process with a diverging amplitude due to vanishing energy
denominators, requiring regularization by Γp. If one or both
equalities are violated, the net result is an off-resonance
Raman-type process involving virtual intermediate states.
Nevertheless, its amplitude can be sizable provided that
ωloss ¼ E3 1 (at T ¼ 0 this requires ωloss > 0), correspond-
ing to a real initial-to-final transition between two no-hole
states. Hence, IRIXS has support for both positive and
negative ωin, but only for ωloss ≳ −T, i.e., the dependence
on ωloss has threshold character. Sharp features in the ωin

dependence of IRIXS are smeared out by Γp. By contrast, the
ωloss dependence enters separately from Γp and ωin in
Eq. (94); hence, it is not smeared out and can contain sharp,
distinctive features even if ωloss ≪ Γp; jωinj.
We can express Eq. (94) as a convolution involving

a 4p PSF, SRIXSσσ0 ðεÞ ¼ S½T σ; T
†
σ0 ; T σ0 ; T

†
σ�ðεÞ and suitable

kernel:

IRIXSσσ0 ðωin;ωlossÞ

¼
Z

d3ε
SRIXSσσ0 ðεÞδðωloss−ε2Þ

ðωinþωth−ε1−iΓpÞðωinþωth−ε3þiΓpÞ
: ð95Þ

The PSF arguments ε1 and ε3 are connected to ωin þ ωth by
Lorentzian kernels, ε2 to ωloss by a Dirac δ function. The
dependence of IRIXS on ωin and ωloss thus probes that of
SRIXS on ε1, ε3, and ε2, respectively, the former two
broadened by Γp, the latter not. [Note that, if Γp → 0þ,
IRIXS can also beviewed as a component of theKF correlator
in the contour basis, ð1=4πÞGc½T σ;T

†
σ0 ;T σ0 ;T

†
σ�ðωÞ, with

c ¼ þþ −− and frequency arguments, in the particle-hole
convention (89), given by ν ¼ ν0 ¼ ωin þ ωth, ω ¼ −ωloss.]
For sufficiently large jωinj, the dependence of IRIXS on

ωloss mimics that of a dynamical susceptibility. This can be
seen as follows. When jωinj is much larger than Γp and also
lies far outside the support of the PSF along the ε1 − ωth
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and ε3 − ωth axes, the denominator of the RIXS kernel in
Eq. (95) can be approximated by jωinj2, ignoring its ε1 and
ε3 dependence. According to the PSF sum rules (76), IRIXS

then reduces to a 2p PSF,

IRIXSσσ0 ðωin;ωlossÞ ≃ jωinj−2S½T σT
†
σ0 ; T σ0T

†
σ�ðωlossÞ ð96aÞ

≃ jωinj−2S½xσx†σ0 ; xσ0x†σ�ðωlossÞ: ð96bÞ

The second line, following via T σT
†
σ0 ¼ xσx

†
σ0p

†p,
involves a 2p PSF evaluated purely within the no-hole
subspace. It represents the imaginary part of an equilibrium
2p correlator, the ZF particle-hole susceptibility
χσσ0 ðωlossÞ ¼ G½xσx†σ0 ; xσ0x†σ�ðωlossÞ, considered for frequen-
cies ωloss ≳ T. [The latter restriction is needed because
χðωÞ involves PSFs for two permutations, whereas
Eq. (96b) involves only one.] Similarly, when Γp, instead
of jωinj, is the largest scale in the kernel denominator, we
have

IRIXSσσ0 ðωin;ωlossÞ ≃ Γ−2
p S½xσx†σ0 ; xσ0x†σ�ðωlossÞ: ð97Þ

We next discuss some computational details. As men-
tioned above, the core-hole number is conserved; hence, the
no-hole and one-hole subspaces can be diagonalized
separately [71,84,86]. This yields two sets of
AS bases, capable of accurately resolving low frequencies
jωinj; jωlossj ≪ D. Their direct sum yields an eigenbasis for
the whole Hilbert space, suitable for computing PSFs as
explained in Sec. V. The density matrix is populated only
by no-hole states. We write the eigenenergies of the one-
hole subspace as Ei þ ωth. This splits off ωth from the
arguments ε of SXASðεÞ and ε1 and ε3 of SRIXSðεÞ, canceling
the ωth in the kernels of Eqs. (93) and (95). The discrete
PSFs SXASðεÞ and SRIXSðεÞ are saved as histograms. To
focus on the inelastic part of IRIXSðωloss⪈0Þ, we exclude the
spectral weights of the histogram SRIXSðεÞ at ε2 ¼ 0. We
use Λ ¼ 4 and nz ¼ 4. Broadened PSFs SXASðεÞ and
SRIXSðεÞ are obtained using centered log-Gaussian kernels,
as described at the end of Appendix C. We have verified
that our NRG code and a recent ED code [66] give
consistent result for Wilson chains short enough that exact
diagonalization is possible.

C. MIM: XAS and RIXS results

Figure 8 shows a typical XAS spectrum for the MIM.
IXASðωinÞ features a threshold at ωin ¼ 0, and, just above it,
the x-ray–edge singularity [Fig. 8(a)]. Sharp features are
smeared out by nonzero Γp or T. As these have analogous
broadening effects, we take Γp > T throughout, except for
the scaling analysis in the very next paragraph and Fig. 9. In
the following, we focus on the behavior outside the
broadening region, ωin ≫ Γp. A log-log plot for positive

frequencies [Fig. 8(b), black line] reveals power-law
behavior in the range Γp ≲ ωin ≲ 0.5D. Its form is con-
sistent with the analytical prediction [70,79–81],

IXASðωinÞ∼ω−α
in ; α¼ 2

δ

π
−
δ2

π2
; tanδ¼ πU

2D
; ð98Þ

and previous NRG studies [86,88]. Here, δ is the phase shift
for conduction electrons near the Fermi level induced by
the core-hole scattering potential. It can also be computed
using δ ¼ πΔh, where Δh is the charge drawn in toward the
scattering site by the core hole [84,86]. The power-law
behavior can be traced back to Anderson orthogonality
[82,83]; see Ref. [86] and Appendix E for a heuristic
discussion. Such power-law behavior is inaccessible to ED
methods, since the description of Anderson orthogonality
in essence requires an infinite bath.
Figures 9(a) and 9(b) show color-scale plots of the RIXS

spectrum, using (a) linear and (b) logarithmic frequency
axes. IRIXSðωin;ωlossÞ has support only at positive ωloss, and
at both positive and negative ωin, with somewhat more
weight at positive than negative ωin. It shows a power-law
dependence on both ωin and ωloss, culminating in a
divergence around ωin ¼ 0 (cut off by Γp; to better reveal
it, we here chose Γp ¼ 0þ). The power-law exponents
depend on the relative values of jωinj and ωloss, as indicated
by legends in Fig. 9(b). They were identified by plotting
IRIXS as a function of ωloss or ωin, respectively, for several
fixed values of the other variable [Figs. 9(c) and 9(d)].
We find (i) IRIXS ∼ jωinj−2−2αωloss for ωloss ≪ jωinj;
(ii) IRIXS ∼ jωinj−1−2α for ωloss ≃ jωinj; and (iii) IRIXS∼
jωinj−1−αω−α

loss for ωloss ≫ jωinj, with the same exponent
α as for XAS spectra. In summary,

FIG. 8. XAS spectrum IXASðωinÞ (black lines) for the MIM
(Up=D ¼ 0.5, T=D ¼ 10−5, Γp=D ¼ 10−3), using (a) linear and
(b) logarithmic scales. The power law IXAS ∼ ω−α

in observed for
Γp ≲ ωin ≲D quantitatively matches the prediction of Eq. (98).
For comparison, (b) also shows the RIXS maximum IRIXSmax ðωinÞ ¼
maxωloss

½IRIXSðωin;ωlossÞ� (blue lines, solid and dashed), diverging
much more strongly as ∼jωinj−1−2α. Here, ϵp merely shifts
ωth ≃ −0.33Dþ jϵpj ≫ D, without changing IXAS and IRIXS as
a function of ωin or ωloss.
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IRIXS∼
fðωloss=ωinÞ
jωinj1þ2α ; fðxÞ∼

8>><
>>:
jxj ðx≪ 1Þ
1 ðx≃1Þ
jxj−α ðx≫ 1Þ:

ð99Þ

The function f is not fully symmetric, fðxÞ ≠ fð−xÞ,
having the same asymptotic behavior but different pre-
factors for arguments of opposite sign. Figure 9(c) also
shows that IRIXSðωin;ωlossÞ, viewed as a function of ωloss
for fixed ωin, has a maximum around ωloss ≃ jωinj. Its value
at this maximum, IRIXSmax ðωinÞ, scales as ∼jωinj−1−2α
[Fig. 8(b), blue lines], with a smaller prefactor (by about
an order of magnitude) for negative than positive ωin.
The XAS and RIXS power laws for the MIM are

governed by the same exponent α because both stem from
Anderson orthogonality. This was recognized already in the
early 1970s [89], leading to analytic predictions for RIXS
exponents [cf. Eqs. (37) and (41)–(43) of Ref. [90] ]. These
predictions match our numerics for case (i) above (numeri-
cally most challenging since ωloss ≪ jωinj), but not for
cases (ii) and (iii). The discrepancies in the latter two cases,
where ωloss is not ≪ jωinj, suggest that, in Ref. [90], the
treatment of excitations in the no-hole subspace [labeled 3
in Eq. (94)] was not sufficiently accurate. Clarifying this
would require revisiting the analysis of Ref. [90], which is,
however, beyond the scope of this work.
Because of the strong dependence of the RIXS spectrum

on ωin, it is convenient, when analyzing its dependence
on ωloss, to first normalize the spectrum by its maximal
value, IRIXSnorm ðωin;ωlossÞ ¼ IRIXSðωin;ωlossÞ=IRIXSmax ðωinÞ.

A color-scale plot of IRIXSnorm is shown in Fig. 10(a). It
highlights the presence of a peak as a function of ωloss for
each value of ωin. We already encountered this peak in
Fig. 9(c). Its evolution with ωin is analyzed in Fig. 10(b),
showing very similar, though slightly asymmetric behavior
for positive and negative ωin. For jωinj in the range between
Γp ≲ ωin ≲ 0.5D, IRIXSnorm has a peak at ωloss ≃ jωinj. For
positive or negative ωin, this implies that emission is
strongest for ωout ≃ 0 or ωout ≃ 2ωin, respectively. In the
former case, all the above-threshold incident energy is
absorbed by the Fermi sea, implying fluorescence-type
behavior. The latter case does not seem to have a simple
interpretation, but for brevity we will call it “fluorescence-
like,” too. For both cases, the observed behavior implies
strongly energy-dependent matrix elements T i j in Eq. (94),

reflecting Anderson orthogonality.
For incident energies smaller than the hole decay rate,

jωinj < Γp, the peak gets pinned to ωloss ≃ Γp [Fig. 10(b)],
since the dependence on ωin becomes smeared. For very
large incident energies, ωin ≳ 0.5D, the peak positions
become pinned at ωloss ≃D. To understand the latter, we
evoke single-particle arguments, valid at large energies:
The probability distributions for the excitation of a single
particle or hole are flat (following the local density of
states), with support in the range ½0; D�. The distribution of
a one-particle–one-hole excitation energy has range
½0; 2D�, with a peak around D.
This case study of the RIXS spectrum of the MIM shows

(i) that our scheme is capable of resolving two-variable
power-law behavior even if the two variables differ by

FIG. 9. RIXS spectrum IRIXSðωin;ωlossÞ for the MIM (Up=D ¼ 0.5, T=D ¼ 10−5, Γp=D ¼ 0þ). (a),(b) Color-scale plots using linear
or logarithmic frequency scales. (c) Line cuts of IRIXS as a function of ωloss, for several fixed values of ωin (indicted by dots placed at
ωloss ¼ jωinj). (d) Analogous to (c), with the roles of ωloss and jωinj interchanged. The power laws revealed in (c) and (d) are summarized
in Eq. (99), and in (b) using legends placed at positions indicating the corresponding values of jωinj and ωloss.
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orders of magnitude and (ii) that the normalized RIXS
spectrum is dominated by a peak at ωloss ≃ jωinj (provided
that jωinj > Γp), reflecting strongly energy-dependent tran-
sition matrix elements.

D. AAIM: XAS and RIXS results

Finally, we discuss our XAS and RIXS results for the
AAIM. The unnormalized XAS and RIXS spectra are
shown in Figs. 11 and 12, respectively. For jωinj ≪ TK and
ωloss ≪ TK, they—remarkably—exhibit power-law behav-
ior of the same functional form as for the MIM.
For the XAS spectrum, this is expected: Its power-law

form can be understood [85,86] by assuming Fermi-liquid
excitations in the low-energy regimes of the no-hole or one-
hole subspaces, and this assumption is valid for both the
MIM and the AAIM. (Low-energy means ε ≤ D for the
MIM, and ε ≤ TK for the AAIM, where TK is the Kondo
temperature in the no-hole subspace.) The only difference
is that, for the AAIM, the power-law exponent governing
the XAS spectrum depends on spin,

IXASσ ðωinÞ∼ω−ασ
in ; ασ ¼ 1− ð1−ΔndσÞ2−Δn2d;−σ; ð100Þ

whereΔndσ ¼ nonedσ − nnodσ is the difference in ndσ ¼ hd†σdσi,
the dσ-level occupancy, between the one-hole and no-hole
ground states. Equation (100) was derived heuristically in
Refs. [91,92]. These describe theoretical predictions and
experimental observations for probing the Kondo effect in
quantum dots by optical absorption experiments [cf. Eq. (8)
of Ref. [91] ]. For the parameters chosen here, the no- or
one-hole subspaces have nnodσ ¼ 1=2 or nonedσ ¼ 0.949,
respectively, the former enabling, the latter prohibiting
Kondo correlations. The absorption-induced no-hole to
one-hole transition thus amounts to switching off Kondo
correlations. They decay with time in power-law fashion,
due to Anderson orthogonality [91], leading to power-law
behavior for the XAS spectrum. Equation (100) yields spin-
independent values of Δndσ ¼ 0.449 and ασ ¼ 0.495
(henceforth written as α). In Refs. [91,92], an exponent
α close to 0.5 was viewed as a fingerprint of Kondo
correlations in absorption spectra.
While the XAS spectrum in Fig. 11 matches the findings

of Refs. [91,92], the RIXS spectrum of the AAIM, shown
in Fig. 12, is new. As mentioned above, it shows power
laws with the same functional form as for the MIM, Fig. 9.
Presumably, this commonality again reflects the Fermi-
liquid nature of the low-energy excitations of the MIM and
AAIM. Understanding this in detail is left as a challenge for
future work. From a purely computational perspective,
Fig. 12 illustrates that our approach, applied to a model
with strong interactions and subtle correlations, is able to
probe energy regimes differing by many orders of magni-
tude, uncovering power-law behavior with a quantitatively
consistent value for the exponent α.
Though the unnormalized RIXS spectra of the MIM and

AAIM look similar, their normalized forms exhibit
differences. For the AAIM, we define IRIXSnorm;σσ0 ¼
IRIXSσσ0 =IRIXSmax , with IRIXSmax ðωinÞ ¼ maxωloss;σσ0 ½IRIXSσσ0 ðωin;

FIG. 11. XAS spectrum IXASσ ðωinÞ (black lines) for the AAIM
(U=Δ ¼ 1=5, Δ=D ¼ 1=25, Up=U ¼ 3=2, TK=D ≃ 1=200,
T=D ¼ 10−7, ωth ≃ −0.47Dþ jϵpj ≫ D). The layout is the same
as for Fig. 8. The power law IXAS ∼ ω−α

in observed for ωin ≲ TK

quantitatively matches the prediction of Eq. (100).

FIG. 10. Normalized RIXS spectrum IRIXSnorm ðωin;ωlossÞ of the
MIM (same parameters as for Fig. 8). (a) A color-scale plot using
linear frequency axes, and (b) line plots as functions of ωloss for
selected values of ωin > 0 (upper panel) and ωin < 0 (lower
panel), indicated by dots placed at ωloss ¼ jωinj. The vertical
dashed lines mark the value of Γp. Inset of (a) enlarges the low-
energy region of (a). In (b), the peak positions along the ωloss axis
depend on jωinj, occurring at (i)≃Γp for jωinj < Γp; (ii) ≃jωinj for
Γp < jωinj < D; (iii) ≃D for 0.5D ≲ ωin.
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ωlossÞ�. As an example, Fig. 13 shows IRIXS↑↑ . Compared to
Fig. 10 for the MIM, it has a richer structure, reflecting the
presence of Kondo correlations. Consider first the case that
the inverse core-hole lifetime is much smaller than the
Kondo temperature, Γp ≪ TK [Figs. 13(a) and 13(b)]. At
low incident energies, Γp < jωinj < TK, the spectrum
shows fluorescencelike behavior, having a single peak at
ωloss ≃ jωinj. If jωinj is further increased above TK, a
Raman-type peak remains pinned at TK, more pronounced
for IRIXSnorm;↑↓ than I

RIXS
norm;↑↑. Moreover, for positiveωin (but not

for negativeωin) a second, shoulder-type structure emerges,
moving upward with ωin, in fluorescencelike fashion. (See
the curves for ωin=D ¼ 10−1; 10−0.5.) The height of this
shoulder decreases as ωin gets larger, and for ωin ≃D, the
shoulder essentially disappears.
Next, consider the case Γp ≫ TK [Figs. 13(c) and 13(d)].

Then, a fluorescence-type peak is found only at positive
incident energies, ωloss ≃ ωin, and, since it requires
Γp ≲ ωin ≲D, only for ωin well above TK; in fact, such
a structure is visible only as a weak shoulder on the right of
Fig. 13(d). Importantly, however, the Raman-type peak at
TK persists—its position and shape are the same as for
Γp ≪ TK [Fig. 13(b)]. The reason is that ωloss enters the
Heisenberg–Kramers formula separately from Γp, as men-
tioned earlier.
The pinning of the peak at TK for large jωinj is consistent

with the relation (96b) between IRIXS and dynamical
susceptibilities. Expressed through d operators, it reads

jωinj2IRIXS↑↑ ðωin;ωlossÞ ≃ S½d↑d†↑; d↑d†↑�ðωlossÞ; ð101aÞ

jωinj2IRIXS↑↓ ðωin;ωlossÞ ≃ S½d↑d†↓; d↓d†↑�ðωlossÞ: ð101bÞ

Using d†↑d↑ ¼ n̂d=2þ Ŝz, d
†
↑d↓ ¼ Ŝþd , and d†↓d↑ ¼ Ŝ−d , we

may express Eqs. (101) through susceptibilities involving
the local charge, magnetization, and spin-flip operators.
(Here, n̂d ¼

P
σ d

†
σdσ is the particle number operator.)

Hence, for large jωinj, the different-spin spectrum IRIXS↑↓

is proportional to the dynamical spin susceptibility, probing
local spin fluctuations, which has a peak at TK [95]. By
contrast, the same-spin spectrum IRIXS↑↑ receives contribu-
tions from both the spin and charge susceptibilities, and
hence has peaks at both TK andU=2. The peak height of the
latter is very much smaller than that of the former, since the
spin and charge susceptibilities have peak heights inversely
proportional to the peak positions.
A more detailed discussion of the RIXS spectra of the

AAIM will be published elsewhere. For present purposes,
the main messages of the proof-of-principle data presented
here are the following: (i) at large jωinj or large Γp, RIXS
spectra probe dynamical susceptibilities; (ii) for models
involving Kondo correlations, they exhibit a distinct
Raman-type peak at ωloss ≃ TK, well-resolved irrespective
of the relative size of Γp and TK; and (iii) our multipoint
NRG scheme is very well suited for uncovering such peaks,
even for widely separate scales, ωloss ≪ jωinj.

IX. SUMMARY AND OUTLOOK

A. Summary

In this work, we showed how NRG can be used to
compute local 3p and 4p correlators of quantum impurity

FIG. 12. RIXS spectrum IRIXS↑↑ ðωin;ωlossÞ for the AAIM (same parameters as for Fig. 11). The layout is the same as for Fig. 9. The
spectrum IRIXS↑↓ (not shown) is qualitatively similar, exhibiting the same power laws.

COMPUTING LOCAL MULTIPOINT CORRELATORS USING THE … PHYS. REV. X 11, 041007 (2021)

041007-31



models. Building on the spectral representation introduced
in the accompanying paper, Ref. [1], we used NRG to
compute the fundamental PSFs, and then convolved these
with suitable kernels to obtain both imaginary- and real-
frequency correlators.
To compute the PSFs, we first developed a refined

tensor-network diagrammatic notation and explained
how to expand general operators along the NRG Wilson
chain in the AS basis. Then, we introduced a “slicing”
technique that enables recursively expressing higher-
through lower-point PSFs. The resulting PSFs can be
computed at any temperature and contain spectral infor-
mation over a wide range of energies, from the bare energy
scales (e.g., Coulomb repulsion, bandwidth) down to
excitations even below emergent energy scales (such as
the Kondo temperature).
Once the PSFs have been obtained, imaginary- and real-

frequency correlators can be computed from the same PSFs
by applying appropriate convolution kernels. This is

advantageous compared to other methods that mainly treat
imaginary-frequency correlators, since the numerical ana-
lytic continuation of multipoint objects from imaginary to
real frequencies is extremely challenging. Like the PSFs,
the correlators can be computed at arbitrary temperature
and frequencies. Our framework also encompasses a suite
of strategies, including real-frequency EOMs, to accurately
obtain connected correlators and vertex functions.
Altogether, results of the former, shown here, and of the
latter, shown in Ref. [1], pass numerous qualitative and
quantitative benchmark tests.
In addition to standard fermionic 4p functions, we also

applied our method to calculate RIXS spectra. To this end,
we rephrased the Kramers–Heisenberg formula, a theoreti-
cal description of RIXS spectra, as a special convolution of
a PSF involving transition operators. By studying two
minimal models, we could identify distinctive contributions
to the RIXS spectra: (i) a fluorescence-type peak at
ωloss ≃ jωinj, seen if ωin > Γp, or if −ωin is larger than

FIG. 13. Normalized RIXS spectrum IRIXSnorm;σσ0 of the AAIM, with the same parameters as for Fig. 11, except that Γp is larger (see panel
headers) and the broadening width smaller (see Appendix C). We normalize IRIXSσσ0 ðωin;ωlossÞ by IRIXSmax ðωinÞ ¼ maxωloss

½IRIXS↑↓ ðωin;ωlossÞ�,
since IRIXS↑↓ has larger maxima than IRIXS↑↑ [compare dashed to solid lines in (b)]. We chose Γp ≪ TK in (a) and (b) and Γp ≫ TK in (c) and
(d). For both cases, the same layout is used as for Fig. 10: (a),(c) Color-scale plots using linear frequency scales, and (b),(d) line cuts
using a logarithmic frequency scale to show the ωloss dependence for several fixed values of ωin, indicated by dots placed at ωloss ¼ jωinj.
A fluorescence-type peak or shoulder is seen at ωloss ≃ jωinj if Γp ≲ jωinj ≲ TK, and at ωloss ≃ ωin if maxfTK;Γpg≲ ωin ≲D. Moreover,
a Raman-type peak occurs at ωloss ≃ TK for maxfjωinj;Γpg ≳ TK.
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Γp and smaller than the upper bound to (quasi)particle
excitation energies (half-bandwidth D for the bare particles
in the MIM; Kondo temperature TK for the quasiparticles in
the AAIM); and (ii) a Raman-type part, peaked at ωloss ≃
TK for the AAIM, seen if jωinj ≳ TK or if Γp ≳ TK. This
Raman-like part is not smeared out by large Γp, demon-
strating the suitability of RIXS for probing (potentially
small) many-body correlation scales. Our approach, which
can treat strong correlations and low-energy excitations
accurately, may provide a benchmark for more approxi-
mate, but computationally cheaper, methods.

B. Outlook

Our scheme is both general and powerful, lending itself
to various interesting applications. The local 4p vertex,
which we analyze in detail in Ref. [1] and here use to
improve the accuracy of the connected 4p correlators, is at
the heart of Feynman-diagrammatic analyses of strongly
correlated systems. It is an input for diagrammatic exten-
sions of DMFT aiming to incorporate nonlocal correlations
[2]. Real-frequency applications along these lines are
discussed in Sec. V B of Ref. [1]. Furthermore, the vertex
is an input to the computation of nonlocal response
functions, including the magnetic structure factor [96]
and transport properties [3]. For the latter, it was recently
found that vertex corrections can be sizable even if the self-
energy is practically local, i.e., consistent with the DMFT
approximation [97]. Since a major complication for com-
puting conductivities is the numerical analytic continu-
ation, our real-frequency method promises to be a
breakthrough tool in this regard.
Another interesting application is to scrutinize how RIXS

spectra reflect emergent energy scales in correlated lattice
systems. Such scales indicate key physical mechanisms: For
instance, the Mott metal-to-insulator transition in the
Hubbard model is accompanied with the decrease of the
spin screening scale [25,98,99], and Hund metals are
characterized by spin-orbital separation [32,35–
37,100,101], i.e., the fact that spin and orbital screening
scales are separated by orders of magnitude. Such small,
many-body energy scales are hard to capture with estab-
lished RIXSmethods such as ED, while our NRG scheme is
ideally suited for them.
All applications will benefit from further methodologi-

cal development. The asymmetric EOM used in this work
leads to significant improvement for only some compo-
nents of Keldysh correlators. For applications building on
the vertex, improvement for all Keldysh components,
through a KF analog of the symmetric EOM scheme of
Ref. [76], will be necessary. Moreover, refined multipoint
broadening schemes, rather than the Lorentzian broad-
ening prone to overbroadening used here, should be
devised to better resolve all multiparticle spectral
features.
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APPENDIX A: CONVERTING SHELL-OFF-
DIAGONAL OPERATOR-PRODUCT

EXPANSIONS INTO SHELL-DIAGONAL FORM

In this Appendix, we discuss an alternative method of
deriving the shell-diagonal operator-product expansions
(50). It starts from expanding each operator all the way
up to site N, using Eq. (37). The result then contains
products of operator projections of the form An

XX̄B
n̄
X̄0X̂. By

the projector product identity (29), these yield three types
of terms:

An
XX̄B

n̄
X̄0X̂ ¼ δn<n̄δX̄KA

n
XKB

n̄
X̄0X̂ þ δnn̄δX̄X̄0An

XX̄B
n
X̄X̂

þ δn>n̄δKX̄0An
XX̄B

n̄
KX̂

: ðA1Þ

This equation implies two rules: (i) for shell-off-diagonal
products (n ≠ n̄), the “inner sector” of the earlier shell must
be K; (ii) for shell-diagonal products (n ¼ n̄), the inner
sectors must match.
The diagrammatic illustration of these statements is

analogous to that shown below Eq. (29), now with suitably
inserted matrix elements. For example, the case n ¼ n̄ is
depicted in the diagram after Eq. (50), and n < n̄ as
follows:

Using Eq. (A1), all operator products can be reduced to
nested sums over shells,

P
n

P
n̄≥n

P
n̂≥n̄ …, with each

summand involving only the building blocks of Eq. (A1),
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but containing numerous shell-off-diagonal products. For
the computation of thermal averages using Eq. (48) though,
we prefer a single sum

P
n, involving no shell-off-diagonal

contributions. This can be achieved by systematically using
Eq. (36b),

P
n̂>n̄

P≠KK
XX̄ On̂

XX̄ ¼ On̄
KK, etc., to collect all

shell-off-diagonal contributions into KK sectors of earlier
shells. The result is a sum

P
n containing, for given n, a

sum over all possible products of shell-n projections,
excluding the all-K case. The latter is represented, in
refined fashion, via later shells with larger n. This scheme
readily reproduces Eqs. (50). For example, expanding AB
using Eq. (37), simplifying via Eq. (A1), and collecting
shell-off-diagonal terms using Eq. (36b), we obtain

AB ¼
X
n

	
An

DK þ
X
X

An
XD


X
n̄

	
Bn̄
KD þ

X
X̂

Bn̄
DX̂




¼
X
n̄

½An̄
DKB

n̄
KD þ

X
XX̂

An̄
XDB

n̄
DX̂

þAn̄
KKB

n̄
KD�

þ
X
n

An
DKB

n
KK; ðA2Þ

which equals Eq. (50a). In the second line, the first two
terms contain the nonzero shell-diagonal n ¼ n̄ contribu-
tions; the third term collects the shell-off-diagonal con-
tributions with n > n̄ into An̄

KK, and the fourth those with
n̄ > n into Bn

KK. Equations (50b) and (50c) can be found
similarly.

APPENDIX B: DERIVED 2P PSFs FROM 4P PSFs

To construct the disconnected PSFs of Sec. VI A, we
derive 2p PSFs, which are the building blocks of the
disconnected PSFs, from the full 4p PSFs via sum rules.
For example, consider a system that preserves the SU(2)
spin symmetry. Then, a 2p PSF S½dσ; d†σ�ðεÞ can be derived
from 4p PSFs in four different ways, involving three
different permutations of O ¼ ðdσ; d†σ; dσ0 ; d†σ0 Þ: One may
sum either over ðε2; ε3Þ or over ðε1; ε2Þ, i.e.,

S12;σσ0 ðε ¼ ε1Þ ¼
X
ε2;ε3

S1234ðεÞ þ S1243ðεÞ;

S34;σσ0 ðε ¼ ε3Þ ¼
X
ε1;ε2

S1234ðεÞ þ S2134ðεÞ;

and do so for either the same-spin (σ ¼ σ0) or different-spin
(σ ≠ σ0) configuration. [Because of the SU(2) spin sym-
metry, the configurations are labeled only by the relation
between σ and σ0.] If the PSFs were computed exactly, then
all four 2p PSFs would be identical.
However, with the 4p PSFs obtained by NRG, there exist

small but finite differences among S12;σσ0 and S34;σσ0 . In
Fig. 14, we compare them with a 2p PSF S2p obtained by
using our 2p method [cf. Eq. (59)], which is equivalent to
FDM NRG. While S34;σσ0 is identical to S2p up to double

precision ≃10−16 regardless of σσ0 (hence not shown),
S12;σσ0 differs from S2p, and also from each other depending
on σσ0. The differences are smaller than the local maxima
for individual clusters of spectral weights (which appear as
peaks in the plot) by at least 2 orders of magnitude.
There are two reasons for these differences. First, the

reduced density matrices in the kept sectors ϱ̄nKK are not
diagonal, since they are obtained by tracing out entangled
states over a subsystem. Second, the way of measuring the
first argument ε1 of 4p PSFs depends on the sectors. For
example, while the first operator A is sliced with respect to
ε1 for computing SnKDKKðεÞ [cf. Eq. (71c)], ε1 is measured
as the energy difference across the product ϱA (not just A)
for DX̄X̂X̃ and KDDD [cf. Eq. (69)]. By contrast, ε3 is
always associated with D, up to a sign. For 2p PSFs, the
argument ε is always associated with ϱA or equivalently, B,
up to a sign. Given that the ϱ̄nKK’s are generally not
diagonal, such a discrepancy in measuring ε1 introduces
a numerical artifact to the distribution of spectral weights
along the ε1 grid, for both the full 4p PSFs and
S12;σσ0 ðε ¼ ε1Þ. For S34;σσ0 ðε ¼ ε3Þ, the ε1 dependence
has been summed over, so the artifact is removed.
As mentioned in Sec. VI A, the connected part can have

smaller values than the full 4p correlator, and thus be more
susceptible to numerical noise. Hence, we need to remove
the above-mentioned numerical artifact when subtracting
the disconnected part. For this, in evaluating Eq. (75), we
substitute the 2p PSFs obtained by summing over ðε2; ε3Þ,
such as S12;σσ0 , to the 2p PSFs involving O1̄, and those
obtained by summing over ðε1; ε2Þ, such as S34;σσ0 , to the
rest. Moreover, to calculate the disconnected part for a

FIG. 14. Exemplary discrete 2p PSFs of the AIM, with the same
parameters as used in Figs. 2(a), 2(b), 4, and 6. Blue circles
denote the 2p PSF S2pðεÞ ¼ S½dσ ; d†σ �ðεÞ obtained directly by the
2p shell-diagonal expansion. The weights S2pðεÞ are clustered.
Clusters are sharply concentrated (note the logarithmic scale of
the ordinate), and the logarithms of their center positions are
separated by ∼ logΛ. Red ×’s and yellowþ’s show the difference
of the 2p PSFs, derived from 4p PSFs via sum rules, from S2pðεÞ.
The PSFs are obtained by using discretization parameters Λ ¼ 4
and z ¼ 1.
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given spin configuration (σ ¼ σ0 or σ ≠ σ0), we use the 2p
PSFs derived from 4p PSFs for that configuration.

APPENDIX C: LOG-GAUSSIAN BROADENING

For standard NRG computations of 2p functions, it is
customary to use a log-Gaussian function for broadening
discrete spectral data. For example, the broadening scheme
of Ref. [24] broadens 2p PSFs with the convolution of a
symmetric log-Gaussian function δSL and the derivative of
the Fermi function δF,

δSLþFðεi; εiÞ ¼
Z

dε0δFðεi; ε0ÞδSLðε0; εiÞ;

δSLðε0; εiÞ ¼
θðε0εiÞffiffiffi
π

p
bSLjεij

exp

�
−
	
ln jεi=ε0j
bSL

−
bSL
4



2
�
;

δFðεi; ε0Þ ¼
1

2bF

	
1þ cosh

εi − ε0

bF



−1
; ðC1Þ

where δSL broadens discrete data, while δF, with bF ∼ T,
further smears out low-frequency artifacts arising
at energies below the temperature T [22,71]. We use
this broadening scheme (in conjunction with the self-
energy trick [75]) for the 2p correlators reattached to the
vertex when computing connected 4p correlators
(cf. Sec. VI D).
The symmetric log-Gaussian δSL is, by design, sym-

metric under the exchange of arguments, δSLðε0; εiÞ ¼
δSLðεi; ε0Þ. This ensures that broadening a curve using
δSL (i) preserves peak heights but (ii) shifts peak positions
(in a sense made precise in the Supplemental Material of
Ref. [22]). Property (i) is desirable, for example, when
computing fermionic 2p spectral functions featuring a
Kondo resonance of known height. However, property (ii) is
undesirable when computing bosonic correlators, such as
dynamical susceptibilities—the peak positions of their
imaginary parts are associated with characteristic energy
scales such as the Kondo temperature, and broadening-

FIG. 15. All independent different-spin 4p PSFs of the AIM, with the same parameters as used in Figs. 2(a), 2(b), 4, and 6. For all
permutations Op ofO not listed here, the corresponding PSFs Sp are related to those shown by spin and particle-hole symmetries. The
PSFs are obtained and narrowly broadened in the same way as in Figs. 2 and 3. The first and second rows show the PSFs as a function of
ε1 and ε3 for fixed ε2 ¼ 0, the third and fourth rows as a function of ε1 and ε2 along the cross section of ε1 ¼ ε3. Odd rows show the full
PSFs S; even rows show the connected PSFs Scon. Each pair of the full and connected PSFs, with the same operators and frequency
choices, are normalized by the maximum magnitude of the full PSF S in the pair. The dashed lines mark the Kondo temperature
TK=D ≃ 1=200 and the position of Hubbard side peak U=2 ¼ 0.1D.
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induced shifts in peak positions would induce errors in
identifying such scales. This problem can be avoided by
using a centered log-Gaussian [20], defined as

δCLðε0; εiÞ ¼
θðε0εiÞffiffiffi
π

p
bCLjεij

exp
	
−
ln2jεi=ε0j

b2CL
−
b2CL
4



: ðC2Þ

It preserves peak positions but yields bCL-dependent peak
heights. We used δCLþF, with δCL instead of δSL in Eq. (C1),
to broaden the PSFs of bosonic operators needed in
Sec. IVA of Ref. [1].
Bosonic correlators also arise when computing

the XAS and RIXS spectra of Sec. VIII of this paper.
We broadened them as follows. Energy dependencies not
affected by Γp were broadened using δCLþF, with
bF ¼ T=5. This applies to the dependence of the RIXS
kernel on ε2 regardless of Γp. For Γp < T, it also applies to
the dependence of the XAS kernel on ε, and of the RIXS
kernel on ε1 and ε3, because then their Lorentzian
dependence on Γp becomes irrelevant. By contrast, for
Γp > T, we implemented Lorentzian broadening of the ε
or ε1 and ε3 dependencies by replacing δF in Eq. (C1) by a
Lorentzian δL of the form (80), with bLjεij there replaced
by Γp. For the RIXS kernel, this yields the imaginary parts
of its Lorentzian denominators; their real parts were then
obtained using Kramers–Kronig transformations. We used
the broadening parameters bCL ¼ lnΛ, except for the data
shown in Fig. 13, where a smaller value, bCL ¼
ð1=2Þ lnΛ, was used to better resolve the separation of
the Raman- and fluorescence-type peaks.

APPENDIX D: FURTHER EXEMPLARY 4P PSFs

For completeness, in Fig. 15, we show the 4p PSFs of the
AIM at strong coupling for various permutations of
operators other than those shown in Fig. 2. Figures 2(c)
and 2(d) appear again as the top two panels in the leftmost
column of Fig. 15. The PSFs shown here form a “complete
set,” in the sense that those not shown are related to those
shown by spin and particle-hole symmetries. The former
symmetry involves permutations exchanging d↑ ↔ d↓ and
d†↑ ↔ d†↓; the latter involve permutations exchanging d↑ ↔

d†↑ and d↓ ↔ d†↓. The spectral distributions of the full and
connected PSFs change significantly across the character-
istic energy scales TK and U=2, marked by dashed
lines.

APPENDIX E: HEURISTIC DISCUSSION OF
ANDERSON ORTHOGONALITY

The power-law behavior observed for the XAS and
RIXS spectra reported in Secs. VIII C and VIII D is due to
Anderson orthogonality [82,83]. We here review how it
comes about in the context of the MIM. When a free Fermi
sea experiences a sudden change in a local scattering

potential, causing changes in the scattering phase shifts
of all its single-particle wave functions, the overlap
between the final and initial ground states vanishes as
hg0jgi ∼ L−Δ2

ch=2 in the limit of large system size L (∼ΛN=2

for a length-N Wilson chain [84]). Here, Δch is the
displaced charge, i.e., the charge flowing inward from
infinity into a large but finite region (of size < L)
surrounding the scattering site in response to the change
in scattering potential. In the present context, where the
scattering potential is switched on by T ¼ c†p, the dis-
placed charge is Δch ¼ Δh − 1. Here, Δh is the charge
drawn in toward the scattering site by the core hole [84,86],
related to the phase shift in Eq. (98) by the Friedel sum rule
[102], Δh ¼ δ=π; and −1 reflects the fact that the charge
added to the Fermi sea by c† flows outward to infinity in the
long-time limit, hence contributing negatively to the dis-
placed charge. (This argument is due to Hopfield [85]. A
thorough discussion thereof is given in Ref. [86], which
also contains a time-domain formulation of the argument
presented next.)
The scaling behavior IXASðωinÞ ∼ ω−α

in of Eq. (98) can
now be recovered by the following heuristic argument.
In the limit T;Γp → 0, Eq. (92) takes the form
IXASðωinÞ ¼

P
2 T 1g2

T †
21g

δðωin − ε2Þ. It involves matrix

elements between the no-hole ground state j1gi and
one-hole eigenstates j2i, and transition energies
ε2 ¼ E21g

− ωth. Since ωth ¼ E2g1g
is the subspace

ground-state energy difference, ε2 ¼ E2 − E2g
is an exci-

tation energy within the one-hole subspace. Viewing it as
the low-energy level spacing of a finite box of size L ∼
1=ε2 and evoking Anderson orthogonality, the correspond-

ing matrix element scales as T †
21g

∼ ðε2Þ−Δ2
ch=2. Expressing

the sum
P

2 as an integral,
R
dε2=ε2 (with 1=ε2 represent-

ing the density of states at the bottom of the spectrum of the
finite box), we obtain

IXASðωinÞ ∼
Z

dε2
ε2

ðε2ÞΔ2
chδðωin − ε2Þ ∼ ω

−1þΔ2
ch

in : ðE1Þ

This reproduces Eq. (98), since 1 − Δ2
ch ¼ 2Δh − Δ2

h ¼ α.
The above discussion gives some hints as to why the

exponent α governing XAS spectra also governs
RIXS spectra. The formula for RIXS spectra, Eq. (94),
likewise contains ground-to-excited states matrix ele-
ments, T 1g2

∼ ðε2Þ−ð1−αÞ2=2. To fully rationalize the
RIXS power-law behavior summarized in Eq. (99), how-
ever, one would also need to know the scaling behavior of
excited-to-excited states matrix elements, T †

2 3, as a
function of their energies ε2 and ε3. Working out the
corresponding details is left as an interesting task for
future work.
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