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We present a new theoretical picture of magnetically dominated, decaying turbulence in the absence of a
mean magnetic field. With direct numerical simulations, we demonstrate that the rate of turbulent decay is
governed by the reconnection of magnetic structures, and not necessarily by ideal dynamics, as has
previously been assumed. We obtain predictions for the magnetic-energy-decay laws by proposing that
turbulence decays on reconnection timescales while respecting the conservation of certain integral
invariants representing topological constraints satisfied by the reconnecting magnetic field. As is well
known, the magnetic helicity is such an invariant for initially helical field configurations, but it does not
constrain nonhelical decay, where the volume-averaged magnetic-helicity density vanishes. For such a
decay, we propose a new integral invariant, analogous to the Loitsyansky and Saffman invariants of
hydrodynamic turbulence, that expresses the conservation of the random (scaling as volume1=2) magnetic
helicity contained in any sufficiently large volume. We verify that this invariant is indeed well conserved in
our numerical simulations. Our treatment leads to novel predictions for the magnetic-energy-decay laws: In
particular, while we expect the canonical t−2=3 power law for helical turbulence when reconnection is fast
(i.e., plasmoid-dominated or stochastic), we find a shallower t−4=7 decay in the slow “Sweet-Parker”
reconnection regime, in better agreement with existing numerical simulations. For nonhelical fields, for
which there currently exists no definitive theory, we predict power laws of t−10=9 and t−20=17 in the fast- and
slow-reconnection regimes, respectively. We formulate a general principle of decay of turbulent systems
subject to conservation of Saffman-like invariants and propose how it may be applied to MHD turbulence
with a strong mean magnetic field and to isotropic MHD turbulence with initial equipartition between the
magnetic and kinetic energies.

DOI: 10.1103/PhysRevX.11.041005 Subject Areas: Astrophysics, Fluid Dynamics,
Plasma Physics

I. INTRODUCTION

The nature of the decay of magnetohydrodynamic
(MHD) turbulence is an important outstanding problem
in fluid dynamics, with far-reaching consequences in
astrophysics, from the evolution of primordial magnetic
fields in cosmology [1–3] to the dynamics of the solar wind
[4]. Naturally, the subject of decaying turbulence is one
with a long history. In the hydrodynamic case, the basic
problem of determining the exponent of the energy-decay
power law was solved by Kolmogorov, in the third of his

seminal 1941 papers on turbulence [5]. Kolmogorov’s
approach can be summarized as follows: (i) identify an
ideal invariant that is better conserved than the kinetic
energy, and (ii) posit a decay of the kinetic energy,
occurring on the dynamical timescale, that conserves that
invariant. In the case of hydrodynamic turbulence,
Kolmogorov identified the Loitsyansky integral,

IL ¼ −
Z

d3rr2huðxÞ·uðxþ rÞi; ð1Þ

as the relevant invariant. Physically, the conservation of IL
represents the net conservation of angular momentum of
the turbulent eddies [6,7]. Note, though, that the invariant
controlling the decay is not simply the mean angular
momentum, hLi ¼ hr × ui, which, while conserved, is zero
by isotropy. The Loitsyansky integral is therefore an
example of an invariant that encodes the conservation of
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a quantity that individual eddies are expected to possess but
that has vanishing mean value due to its randomly directed
nature.
Equation (1) implies the scaling U2L5 ∼ const, where L

is the correlation scale of the turbulence andU is the typical
velocity at that scale. Together with the identification of the
dynamical timescale as τ ∼ L=U, this is enough to fix the
decay rate of the kinetic energy E ¼ U2=2, as

dE
dt

∼ −
E
τ
∼ −

E3=2

L
∼ −E17=10; ð2Þ

which results in Kolmogorov’s famous decay law

E ∼ t−10=7: ð3Þ

This result has been confirmed to excellent precision
numerically [7,8].
In this paper, we show how Kolmogorov’s philosophy

can be adapted to MHD turbulence. Despite extensive
studies of the self-similar decaying solutions admitted by
the MHD equations [9–11], two problems have hindered
past attempts to predict specific decay laws. First, there
appear to exist a number of different regimes, depending on
properties of the initial conditions [11–14]. Restricting our
attention, for the moment, to the magnetically dominated
case, where magnetic energy is much greater than kinetic,
there are two canonical possibilities. First, there are helical
field configurations, where the volume-averaged magnetic-
helicity density, hhi ¼ hA·Bi, is nonzero. Then, conserva-
tion of hhi (a phenomenon sometimes referred to as
“selective decay” [14–20]) provides a scaling that can be
used to constrain the decay laws, B2L ∼ const [21–23],
where B is the typical size of the magnetic field at the
correlation scale L. However, magnetic helicity is not sign-
definite, so there also exist nonhelical field configurations,
for which hhi ≪ B2L. For such fields, the conservation of
hhi does not impose a constraint on the decay. In this work,
we show that even in such cases, the decay is still controlled
by helicity conservation, in a manner formally analogous to
the control of the decay of hydrodynamic turbulence by
angular-momentum conservation.
Second, since, besides velocity, MHD has an additional

field, B, there is no longer a dimensional inevitability in the
identification of the decay timescale, as there was in
hydrodynamics. Previous treatments [21–24] have assumed
the Alfvénic scaling U ∼ B in order to determine the ideal
timescale uniquely [25], though this is not well reproduced
in numerics, where B ≫ U appears to be maintained if it
was true initially; furthermore, for helical magnetic fields, a
faster decay of the kinetic energy than the magnetic energy
is often observed [1,22,30–33,37].
In fact, it is intuitively clear that relaxation on ideal

timescales may not be possible for a strong initial magnetic
field because of the topological constraints imposed
by magnetic-flux freezing. As was hypothesised by

J. B. Taylor, magnetic fields with nontrivial topologies
relax via the reconnection of magnetic-field lines [15,20],
which transfers magnetic energy to larger scales.
Reconnection, therefore, provides a physical explanation
for the inverse transfer of magnetic energy observed in both
helical and nonhelical decaying MHD turbulence
[34,35,37–43]. However, unless the values of the dissipation
coefficients are sufficiently small for reconnection to occur
in the plasmoid-dominated [44] or stochastic [45] regimes,
magnetic reconnection occurs in the so-called “Sweet-
Parker” regime [46,47] and is slow, i.e., has a rate that is
proportional to a negative fractional power of the Lundquist
number, S ¼ BL=η, where η is the fluid resistivity. It should
then be expected that the decay will proceed on the Sweet-
Parker reconnection timescale, not the ideal one. The critical
Lundquist number at whichmagnetic reconnection becomes
fast (i.e., independent of S) is very large, about 104 [44],
much larger than the typical Reynolds numbers at which
Eq. (3) becomes a good description of the decay of hydro-
dynamic turbulence (Re ≃ 102 [8]). The requirement of such
a large Lundquist number (corresponding to very thin
current sheets), together with the large scale separation
between the box size and the energy-containing scale needed
to eliminate finite-box-size effects, means that direct
numerical simulations aiming to measure decay laws will
generally be in the slow-reconnection regime [48]. In
Ref. [50], it was demonstrated that two-dimensional
MHD turbulence indeed decays on the Sweet-Parker time-
scale, and similar evidence has been presented for three-
dimensional, nonhelical turbulence, too [35], though it was
interpreted as arising from the two-dimensional decay
mechanism put forward by Ref. [50]. One of the main goals
of the present work will be to verify the reconnection-
controlled nature of the three-dimensional decay in both the
helical and nonhelical cases and to establish the correspond-
ing decay laws for both energies.
Sweet-Parker reconnection is defined by the following

conditions: (i) efficient conversion of magnetic energy to
kinetic energy of reconnection outflows, and (ii) a balance
between the inductive term, ∇ × ðu × BÞ, and the resistive
dissipation term in the MHD induction equation, so that
reconnection occurs in a time-invariant manner. This last
requirement means that reconnection-controlled decaying
turbulence in the Sweet-Parker regime is very different
from decaying hydrodynamic turbulence, in that it is
sensitive to the precise form of the dissipation term.
Importantly, this means that different decay power laws
are expected in numerical simulations depending on
whether Laplacian dissipation, ∝ η∇2B≡ η2∇2B, or
hyperdissipation, ∝ ηn∇nB, is employed. This fact, which
has not been widely appreciated, leads to a simple test of
whether reconnection indeed governs the decay timescale:
Simulations at moderately large (but not so large so as to be
in the “fast” reconnection regime) Lundquist numbers
should exhibit different decay power laws depending on
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the order of hyperdissipation, n. In this paper, we present
such simulations, conducted with the incompressible,
spectral MHD code Snoopy [51]. They turn out to be in
excellent agreement with these expectations.
An outline of the rest of this paper is as follows. In

Sec. II, we consider the decay of helical MHD turbulence
from a magnetically dominated state. Since magnetic
helicity is better conserved than magnetic energy in the
limit of vanishing resistivity, helicity is precisely a quantity
that can control the evolution in the same way as the
Loitsyansky integral does in hydrodynamics. Applying a
Kolmogorov-style argument to helicity conservation for a
decay occurring on the ideal timescale, L=B, yields a power
law of t−2=3 for both the magnetic and kinetic energies [21–
23], though this decay law is not well supported by
numerics, where a shallower decay law for magnetic energy
and a steeper decay law for kinetic energy are typically
observed [1,22,30–33,36,37]. We show that both of these
results are expected for a decay occurring via magnetic
reconnection in the Sweet-Parker regime. In particular, we
show that the magnetic energy should decay as t−4=7, with
t−2=3 only achieved by fast reconnection. We also find that,
provided the dominant flows are contained within Sweet-
Parker sheets, the faster decay of kinetic energy, as t−5=7, is
a natural consequence of their changing aspect ratio.
In Sec. III, we consider the decay of nonhelical MHD

turbulence from a magnetically dominated state. The
mechanism controlling this type of decay has so far
remained unknown: Because the mean helicity density
vanishes, its conservation cannot be used to derive a scaling
relation relating B, the characteristic magnetic field, to its
characteristic length scale L. Numerically, decay laws for
both the magnetic and kinetic energies of close to t−1 have
been observed [33–35,40,41], though there is no definitive
theoretical explanation for this behavior. An influential idea
is that, in the absence of an integral invariant, the decay
might satisfy the well-known scaling symmetry of the
MHD equations [52], including dissipative terms. Such a
decay would have a t−1 power law for the magnetic energy
[9,10,53,54]. Another suggestion is that the nonhelical
decay is effectively two dimensional. In this case, it is the
conservation of “anastrophy,” or the square of the magnetic
vector potential, that should control the decay [14,17]. A
Kolmogorov-style argument then leads to a t−1 power law
independently of whether the decay occurs on the ideal
[21,24,33,41] or the Sweet-Parker [35,43,50] timescale (see
the Appendix A). That both treatments predict the same
power law is a coincidence related to the fact that
anastrophy conservation implies a constant Lundquist
number for n ¼ 2 resistive dissipation [50] (incidentally,
the scaling argument is essentially this same point with the
direction of implication reversed). However, it is not clear
why fully three-dimensional, isotropic turbulence should
two-dimensionalize in this way, nor why any special
significance should be given to a constant Lundquist

number. Indeed, we show in Sec. III that both are incon-
sistent with numerical evidence.
Instead, we propose a treatment of the nonhelical decay

controlled by the conservation of fluctuations in magnetic
helicity. The key point is that the vanishing of the total
magnetic helicity does not necessarily imply that any given
magnetic-field structure is nonhelical. Indeed, nonhelical
magnetic structures generally relax on ideal timescales to
zero magnetic energy, assuming they are not constrained by
higher-order topological invariants. We therefore expect
that the natural state of the turbulence will be to contain a
collection of helical structures, though there will be equal
abundances of positive- and negative-helicity structures so
that the zero-overall-helicity constraint is satisfied. For such
a turbulence, we identify a new integral invariant whose
relation to magnetic helicity is precisely analogous to that
of the Loitsyansky integral to angular momentum. We refer
to this invariant as the “Saffman helicity invariant” because
of the close analogy between it and the integral invariant
proposed by Saffman for hydrodynamic turbulence [55],
and also between our arguments and the arguments usually
associated with the Saffman invariant and its various
anisotropic generalizations [7,56]. As we will show, the
conservation of our new invariant implies the scaling
B4L5 ∼ const. This scaling implies a magnetic-energy-
decay power law of t−20=17 if reconnection occurs on the
Sweet-Parker timescale or t−10=9 if reconnection is fast.
These power laws are different from t−1 but are still in
excellent agreement with published numerical results and
with our own numerical results presented below. We also
find that, for nonhelical magnetic fields, the rate at which
the aspect ratio of the current sheets changes is much
smaller than in the helical case, explaining why a faster
decay of kinetic energy is not observed for a nonhelical
decay from initial states that have small kinetic energy.
Finally, in Sec. IV, we discuss the behavior of systems

with fractional helicity, which we show will ultimately
always transition to the fully helical regime as long as the
system size is sufficiently large. We also discuss possible
applications of the Saffman formalism to wider classes of
turbulent decays. As an example, we suggest the existence
of a Saffman-type cross-helicity invariant that may control
the critically balanced decay of MHD turbulence in the
presence of a mean magnetic field, recently studied in
Ref. [43]. We also conjecture that the simultaneous con-
servation of both the Saffman-type cross-helicity invariant
and the magnetic helicity might govern the initial period of
decay of an MHD state starting with U ∼ B.

II. DECAY OF HELICAL TURBULENCE

We first consider the decay of MHD turbulence from an
initial state where magnetic energy dominates kinetic
(B ≫ U), and the magnetic field is helical; i.e., the
volume-averaged magnetic-helicity density,
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hhi ¼ lim
V→∞

1

V
HV ¼ lim

V→∞

1

V

Z
V
d3rA·B; ð4Þ

is large, of size B2L. The case of initial parity between the
two energies (U ∼ B) will be discussed in Sec. IV E.
Magnetic helicity is a topological invariant—the total
magnetic helicity of a collection of flux tubes is equal to
the amount of (signed) flux linked by these tubes. As such,
its conservation is related to Alfvén’s theorem, which states
that for ηn ¼ 0, the magnetic field is frozen into fluid
motions, ensuring that all topological invariants are pre-
cisely conserved. The special significance of magnetic
helicity is that, unlike other topological invariants, it
remains approximately conserved (i.e., better conserved
than energy) for small but nonvanishing ηn [57]. This
statement is true independently of the reconnection regime.
A proof, adapted from Ref. [58], is as follows.

A. Helicity is conserved by (hyper-resistive)
reconnection

In hyperdissipative MHD, the evolution of the magnetic
helicity in a closed volume whose surface is everywhere
normal to B satisfies

���� dHdt
���� ¼ 2ηn

����
Z

d3rð∇nAÞ·B
����: ð5Þ

Note that setting n ¼ 2 here yields the familiar expression
in terms of the current helicity. After integrating the integral
on the right-hand side by parts, applying the Cauchy-
Schwarz inequality, and then integrating by parts again, one
obtains

���� dHdt
����
2

≤ 4

���� dEM

dt
ηn

Z
d3rA·ð∇nAÞ

����; ð6Þ

where dEM=dt ¼ ηn
R
d3rB·ð∇nBÞ is the rate of magnetic-

energy decay due to Ohmic heating. For n ¼ 2, the other
integral in Eq. (6) is just twice the magnetic energy [58].
More generally, we can write

ηn

����
Z

d3rA·ð∇nAÞ
���� ¼ ηn

����
Z

d3rB·ð∇n−2BÞ
����

∼
dEM

dt
δη

2; ð7Þ

where δη is the resistive dissipation scale. Equation (6) then
implies

d logH
dt

∼
δη
L
d logEM

dt
: ð8Þ

Equation (8) states that the rate of change of magnetic
helicity is smaller than the rate of the energy decay due to
Ohmic heating (which will be even smaller than the true

magnetic-energy-decay rate because magnetic energy can
also be converted to the kinetic energy of reconnection
outflows) by a factor equal to the ratio of the integral scale
to the resistive dissipation length scale, which becomes
arbitrarily small as ηn → 0þ.
It may appear counterintuitive that reconnection, a

process that, by definition, changes the topology of
magnetic-field lines, can conserve helicity, a topological
invariant. The resolution of this apparent paradox is that
self-linkages, i.e., twists of the magnetic flux tube are also
associated with helicity. For example, during the unlinking
of two linked tori by reconnection to form a single torus,
the resulting torus ends up twisted, and the total helicity of
the configuration is conserved [57].

B. Theory of helical decay

The conservation of the volume-averaged magnetic
helicity, Eq. (4), implies the scaling

B2L ∼ const: ð9Þ

The remaining ingredient required to compute the mag-
netic-energy-decay law is the decay timescale, as a function
of U, B, and L. The simplest possible treatment is to
assume Alfvénic dynamics, withU ∼ B; similarity between
the integral scales of the magnetic and kinetic energies, L;
and, therefore, a decay timescale L=B ∼ L=U. For future
reference, we compute the expected decay power law under
such an assumption for a scaling more general than Eq. (9),
viz.,

BαL ∼ const: ð10Þ

Equation (2) becomes

d
dt

1

2
B2 ∼ −

B3

L
∝ −B3þα; ð11Þ

with the solution

B2 ∼ t−2=ð1þαÞ: ð12Þ

Now, setting α ¼ 2 for helicity conservation, the canonical
t−2=3 power law is recovered [21]. However, this prediction
has proved to be in poor agreement with numerics, which
have found a decay of the magnetic energy closer to t−1=2,
and, unexpectedly, a decay of the kinetic energy faster than
t−2=3 [1,22,30–33,36,37].
These discrepancies are readily resolved by assuming the

decay occurs on the reconnection, rather than ideal, time-
scale. Naturally, the reconnection timescale depends on the
reconnection regime, i.e., on whether the reconnection is
slow (Sweet-Parker) or fast (plasmoid-dominated [44] or
stochastic [45]). Fast reconnection, by definition, occurs on
dynamical timescales, so it will again produce a t−2=3
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decay. However, as explained in the Introduction, extant
numerical simulations of decaying MHD turbulence mostly
probe the slow regime, owing to the large Lundquist
numbers and hence large resolutions required for fast
reconnection to take place. In this case, the reconnection
timescale is

τrec ∼ S1=nn
L
B
; ð13Þ

where Sn ¼ BLn−1=ηn is the hyper-Lundquist number.
Using Eq. (13) for the decay timescale, Eq. (11) becomes

d
dt

1

2
B2 ∼ −

B3

L
B−1=nLð1−nÞ=n ∝ −Bð2αnþ3n−α−1Þ=n; ð14Þ

the solution of which is

B2 ∼ t−2n=ð2αnþn−α−1Þ: ð15Þ

Again, for a helicity-conserving decay, we set α ¼ 2 to
obtain a power law of

B2 ∼ t−2n=ð5n−3Þ: ð16Þ
For n ¼ 2 (Laplacian dissipation), the power law is

EM ∼ t−pM ; pM ¼ 4

7
≃ 0.57; ð17Þ

which is indeed shallower than pM ¼ 2=3. Indeed, some
recent studies at large resolution have reported pM ≃ 0.58,
in remarkable agreement with this prediction [33,36].
However, we caution against direct comparison with those
simulations because they employed time-dependent dis-
sipation coefficients. For numerical studies using n ¼ 4
hyperdissipation [22], Eq. (15) predicts an even slower
magnetic-energy-decay exponent of pM ¼ 8=17 ≃ 0.47.
This is in excellent agreement with the pM ≃ 0.5 found
numerically in Ref. [22].
It may appear counterintuitive that reconnection can

result in a faster decay of kinetic energy than magnetic
energy, as reconnection outflows are typically Alfvénic;
i.e., the outflow velocity is approximately equal to the
upstream Alfvén speed of the magnetic field prior to
reconnection—a condition that is hardwired into the
Sweet-Parker scalings. However, the current sheets, where
reconnection occurs, are not volume-filling. Denoting the
current sheet width by δ, the volume occupied by the
current sheet formed when two structures of volume L3

reconnect and merge is L2δ. Therefore, we expect

EK ∼
δ

L
EM ð18Þ

for Alfvénic outflows, where EK and EM should be
understood as the total kinetic and magnetic energies in

the system, respectively. This result allows for the pos-
sibility of different decay rates for the kinetic and magnetic
energy because the ratio δ=L need not be constant in time.
For example, with hyperdissipative Sweet-Parker sheets,
δ=L ∼ S−1=nn ∼ ðBLn−1Þ−1=n. For B2L ∼ const [Eq. (9)], we
find δ=L ∼ E1−3=2n

M , which, via Eq. (18), translates to

EK ∼ E2−3=2n
M : ð19Þ

Thus, kinetic energy is indeed expected to decay more
quickly than magnetic energy, simply because of the
changing aspect ratio of the Sweet-Parker sheets. For
n ¼ 2, this effect is relatively modest: The kinetic-energy
decay exponent is 5=4 times greater than the magnetic one,
so the decay exponents for EM and EK are pM ¼ 4=7 ≃
0.57 and pK ¼ 5=7 ≃ 0.71, respectively. For n ¼ 4,
though, the kinetic-energy decay exponent is 13=8 times
greater than the magnetic one, so these decay exponents
become pM ¼ 8=17 ≃ 0.47 and pK ¼ 13=17 ≃ 0.76.
We note that the validity of Eq. (18) requires the initial

kinetic energy to be much smaller than the magnetic
energy, by a factor of δ=L or smaller, as otherwise the
kinetic energy contained in outflows may be subdominant
to the rest. This condition will be true for our simulations,
which are initialized with U ¼ 0, but may not be true in all
situations of interest. However, as we discuss in Sec. IV E,
there is reason to believe that decaying helical MHD
turbulence should be driven towards Eq. (18), even if
EK is larger than ðδ=LÞEM initially.

C. Numerical results

In this section, we compare the theoretical predictions of
the previous section with numerical simulations of MHD
turbulence, initialized as a Gaussian random magnetic field
with characteristic scale around 1=33 of the box size. These
simulations employ the incompressible, spectral MHD
code Snoopy [51], with Prandtl number Pm≡ νn=ηn ¼ 1.
We provide further information about Snoopy and describe
the details of our numerical setup in Appendix D.
In simulations with n ¼ 2 dissipation, resolution con-

straints prevent the use of Lundquist numbers that are
sufficiently large to achieve good conservation of the
magnetic helicity. Nonetheless, supposing that helicity
decays as HðtÞ ∼ t−pH , while EMðtÞ ∼ t−pM , we expect
B2ð1−pH=pMÞL ∼ const. For small but nonvanishing ηn,
therefore, we expect to find an α somewhat smaller than
2 such that BαL ∼ const. We can determine this value of α
numerically by measuring EMðtÞ and

L ¼ 2π

EM

Z
dk

EMðkÞ
k

; ð20Þ

where EMðkÞ is the spectral magnetic-energy density.
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As long as ηn is not too large, the decay should still occur
on the Sweet-Parker timescale. We can then use Eq. (15) to
determine the expected magnetic-energy-decay exponent
based on the empirically determined value of α and
compare it with the value measured in our simulations.
While we do not expect that this procedure will yield exact
agreement between the predicted and empirical decay
exponents, as it neglects the role of Ohmic diffusion
(which, when Sn is small, will ultimately become more
important to the decay than reconnection), we expect
approximate agreement that becomes better as Sn increases
and α, therefore, becomes closer to 2.
In Fig. 1, we present the results of such a comparison,

plotting the empirically measured values of pM against
those of α, for simulations with n ¼ 2 and n ¼ 4 (how the
error bars are determined is explained in Appendix D). This
figure shows remarkable agreement between our simula-
tions and the Sweet-Parker decay curves (colored), despite
the fact that we do not reach the asymptotic value of α ¼ 2
with n ¼ 2 dissipation. For n ¼ 4, we also find excellent
agreement, reaching α ¼ 2. As other authors have noted
[22], this asymptotic scaling is reached much more rapidly
in the hyperdissipative case, and indeed, we were forced to
choose relatively small values of S1=nn in order to populate
the part of Fig. 1 with α < 2. To illustrate this point further,
we plot two simulations with n ¼ 6 hyperdissipation,
which also exhibit the α ¼ 2 scaling (and are almost
coincident in Fig. 1). The faster attainment of the correct

asymptotic scaling with hyperdissipation will be important
in establishing the correct value of α for nonhelical
turbulence, previously unknown, in the next section.
Interestingly, we note that for α ≃ 2, the decay exponent

pM is consistently somewhat larger than our theoretical
prediction based on Sweet-Parker reconnection, which
suggests these simulations may be at the start of the
transition to the fast-reconnection regime. We do not find
the same transition in two-dimensional simulations (see
Appendix A), despite employing even larger Lundquist
numbers, which is consistent with the intuitive expectation
that fast reconnection should “turn on” more quickly in
three dimensions because of turbulence in the reconnection
region.
For the decay of the kinetic energy also, we find that the

predictions of the previous section are in good agreement
with our simulations, as shown in Fig. 2. The upper panel
shows the evolution of the magnetic- and kinetic-energy
spectra for a run with n ¼ 4, η4 ¼ 2 × 10−8, confirming
that at any given time, kinetic energy is contained at much
smaller scales than the magnetic energy, consistent with the
expectation that reconnection outflows should have a width
δ ≪ L. The inset shows the relative sizes of the total
magnetic and kinetic energies in the same run, which are in
excellent agreement with Eq. (18). The lower panel shows
the kinetic-energy decay exponents, pK , plotted against the
corresponding exponents for the magnetic energy, pM,
confirming that a faster decay of kinetic energy is realized
in our simulations, in reasonably good agreement with our
theoretical prediction, Eq. (19).
We note that, while we do observe faster decay of kinetic

energy than magnetic in our simulations, the difference is
not as stark as in the numerical study by Ref. [22], who
found EK ∝ E2

M. As we discuss in Sec. IV, this discrepancy
may arise because the initial state in their study was one
with equipartition between the magnetic and kinetic ener-
gies, U ∼ B, unlike the U ≪ B we have employed here.
We argue that when U ∼ B, the conservation of cross-
helicity, even though the latter is a sign-indefinite quantity,
might play an important role in governing the decay.
Simultaneously conserving magnetic helicity and fluctua-
tions in the cross-helicity—under the same formalism as we
propose for helicity conservation in nonhelical turbulence
in Sec. III B—implies the scaling EK ∝ E2

M conjectured
in Ref. [22].
To conclude, the results of this section represent what we

consider compelling evidence that helical, magnetically
dominated MHD turbulence relaxes by the self-similar
coalescence of magnetic structures via magnetic reconnec-
tion, as was suggested by J. B. Taylor [20]. Physically, this
implies that the correct way to think about the system is as
consisting of a collection of magnetic structures that are
unable to relax under ideal dynamics due to the topological
constraints imposed by the flux freezing and, therefore, relax
via coalescence on a timescale at which these constraints can
be broken, i.e., on the reconnection timescale.

FIG. 1. Relation between the empirically obtained magnetic-
energy-decay power-law exponent pM and the value of α for
which BαL ∼ const. Solid curves show the expected relationship,
Eq. (15), for decays occurring on the Sweet-Parker timescale,
with n ¼ 2, n ¼ 4, and n ¼ 6 shown in blue, red, and magenta,
respectively. The grey solid curve depicts the “ideal” scaling
given by Eq. (12). Simulation results are in excellent agreement
with the colored curves but not with the grey curve. This confirms
that the decay takes place on the Sweet-Parker, rather than ideal,
timescale. The full set of decay curves from which this plot was
derived can be found in Appendix D.
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III. DECAY OF NONHELICAL TURBULENCE

Having established a theory of the reconnection-
controlled decay of helical turbulence from a magnetically
dominated state, we now consider the case of nonhelical
turbulence, i.e., turbulence for which the volume-averaged
magnetic-helicity density [Eq. (4)] vanishes. Here, as in

Sec. II, we consider the decay from an initial state with
predominant magnetic energy (B ≫ U), postponing the
discussion of the case with U ∼ B until Sec. IV E. As we
have already noted, the mechanisms controlling the evo-
lution of such turbulence are not well understood.
Numerically, a power law close to t−1 has been measured
[33–35,40,41], prompting comparisons with the two-
dimensional decay [21,24,50], which conserves anastro-
phy, or the square of the magnetic vector potential (see
Appendix A), resulting in a t−1 decay law independently of
the reconnection regime. The evidence that has been
presented for this picture in three dimensions relies on
demonstrating that the mean-square magnetic vector poten-
tial (defined according to some particular, necessarily
nonunique gauge choice) changes more slowly with time
than does the magnetic energy [35]. However, this will be
true for any decay satisfying BαL ∼ const for any α > 0.
Here, we propose a different theory of nonhelical decay.

A. Qualitative theory of nonhelical decay

The key point, already made in Sec. I, is that a vanishing
mean helicity density does not imply that individual
magnetic structures are nonhelical, because helicity is
not a sign-definite quantity. Moreover, if not constrained
by higher-order topological invariants, nonhelical magnetic
structures will relax to zero energy on the ideal timescale
(as required by J.B. Taylor relaxation [15,20]). For exam-
ple, consider a toroidal structure without a twist—such a
structure will shrink under the magnetic tension force
(driving outflows along its axis) to zero magnetic energy.
In contrast, for a toroidal structure with a net twist relative
to the poloidal axis, such a relaxation is topologically
impossible. Thus, we expect a collection of helical struc-
tures of different signs to be the natural state of nonhelical
MHD turbulence. Indeed, visualizations of our simulations
appear to support this intuition; see Fig. 3.
To motivate the more formal approach to follow, we first

present an informal “cartoon” of the expected dynamics
(Fig. 4). Consider a volume filled with helical magnetic
structures, which we refer to as “blobs,” as we wish to
remain agnostic about their precise morphology. As in the
helical case, we expect that topological constraints will
hinder their relaxation on ideal timescales and that, instead,
the blobs will evolve via coalescence with other blobs on
the prevailing reconnection timescale.
For simplicity, suppose that all blobs have helicity H

and, for the moment, that they all have the same sign of
helicity. When any two blobs merge, the resulting structure
will have helicity H0 ¼ 2H, implying that the characteristic
magnetic field and length scale, B and L, will satisfy
B02L04 ∼ 2B2L4. If every blob in the system undergoes such
a pairwise merger, then the total number of blobs, N, will
decrease by a factor of 2: N0 ¼ N=2. Assuming the blobs
fill all space, their characteristic size must then increase as

FIG. 2. Top panel: evolution of kEðkÞ, where EðkÞ is the
spectral energy density, for the magnetic (blue) and kinetic
(red) energies. These plots are obtained from a helical simulation
with n ¼ 4, η4 ¼ 2 × 10−8. Each plot of kEðkÞ is separated by a
time interval of 1.0 between t ¼ 1.0 and t ¼ 10.0 (t ¼ 10.0 in
bold), where time is in code units based on normalizing the box
size and initial mean-square magnetic field to 2π and 1,
respectively, so that 1 time unit is approximately the initial
Alfvén crossing time of the box. The peak of the magnetic energy
is at much larger scales (smaller k) than the peak of the kinetic
energy, consistent with the expectation that the kinetic energy
should be contained within the Sweet-Parker sheets. Inset: decay
of the total magnetic and kinetic energies. The total kinetic energy
curve is much below the magnetic energy curve, and it coincides
with ðδ=LÞEM (black), in agreement with Eq. (18), with δ=L
computed as the ratio of the wave numbers at which kEMðkÞ and
kEKðkÞ peak. Bottom panel: plot of the kinetic-energy decay
exponent pM against the magnetic-energy-decay exponent pK as
measured in simulations with S1=nn;0 > 9.0. Results are in reason-
able agreement with the theoretical prediction, Eq. (19) (colored
lines), and are inconsistent with EK ∝ EM (grey line).

RECONNECTION-CONTROLLED DECAY OF … PHYS. REV. X 11, 041005 (2021)

041005-7



FIG. 3. Slices of Ĵ·B, the projection of the magnetic field onto the direction of the electric current (Ĵ is the unit vector in this direction),
for three different times during helical (above) and nonhelical (below) simulations with n ¼ 2, η2 ¼ 2 × 10−4 (time is in code units, as
explained in the caption to Fig. 2). Positive values are shown in red, negative values in blue. Note that Ĵ·B is a local measure of the twist
of the magnetic-field lines, with different signs indicating different directions of the twist. It is also related to the magnetic helicity
because the sign of Ĵ·B is equal to the sign of the magnetic helicity for a fully relaxed helical magnetic structure, according to the J.B.
Taylor relaxation theory [15,20]. Indeed, our helical simulations feature a superabundance of blobs with positive Ĵ·B, while in our
nonhelical simulations, blobs with both signs of Ĵ·B have approximately equal representation.

(a) (b)

FIG. 4. (a) Cartoon of a typical merger of two helical structures (“blobs”). As explained in the main text, B02L0 ¼ B2L for helical
turbulence in which this is the only allowed process. (b) The additional “annihilation” process that is also possible in nonhelical
turbulence, where it should occur equally frequently as the process shown in (a). The presence of this process modifies the previous
scaling to B04L05 ¼ B4L5.
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L0 ¼ 21=3L. Together, these relations imply B2L ∼ const,
which, of course, is precisely the condition obtained from
the conservation of the volume-averaged helicity den-
sity, Eq. (9).
In contrast, for a system with vanishing total helicity,

there will be equal numbers of blobs with helicities −H and
þH. When two blobs with opposite helicities merge, the
resulting structure will be nonhelical, and assuming that no
higher-order topological invariants constrain its subsequent
evolution, it will relax to zero magnetic energy on the ideal
timescale [59]. In other words, when blobs of opposite
helicity merge, they mutually “annihilate.” Otherwise, the
signs of the helicities of the blobs should not modify the
dynamics, so the system will have no preference between
like-helicity and opposite-helicity mergers. This implies
that, after one merger timescale, we have N0 ¼ N=4
because, of any four randomly chosen blobs, on average,
two will annihilate and two will merge to form a single
blob. Again, assuming blobs fill all space, we have
L0 ¼ 22=3L, which, together with B02L04 ∼ 2B2L4, implies

B4L5 ∼ const: ð21Þ

This new scaling is the nonhelical analogue of Eq. (9).
This picture, while conceptually simple, relies on sig-

nificant assumptions about the nature of the dynamics that
are not obviously justifiable, e.g., that all structures have
the same length scale and helicity, that the only dynamical
processes are mergers (rather than, say, fragmentation due
to MHD instabilities), and that all mergers are pairwise
processes. We now discuss how to formalize this picture.

B. Invariant-based theory of nonhelical decay

1. The Saffman helicity invariant

We propose that the general evolution of a collection of
localized structures of mixed magnetic helicity should
conserve the integral

IH ¼
Z

d3rhhðxÞhðxþ rÞi; ð22Þ

where, as before, h ¼ A·B is the helicity density and angle
brackets denote an ensemble average. The form of this
integral is immediately reminiscent of the integrals that
govern hydrodynamic decay: the already-introduced
Loitsyansky integral, Eq. (1), and the Saffman integral [55],

IP ¼
Z

d3rhuðxÞ·uðxþ rÞi: ð23Þ

The Saffman integral is finite for, and conserved by,
hydrodynamic turbulence initialized with strong, long-
range spatial correlations, corresponding to a kinetic-
energy spectrum proportional to k2 at the largest scales
[55] (we shall return to the connection with the small-k part

of the spectrum below). Such turbulence is known as
“Saffman turbulence” [7]. When strong correlations are
absent, IP ¼ 0, and the Loitsyansky integral, Eq. (1), is
conserved instead [7,8,55]. This case is known as
“Batchelor turbulence,” after Batchelor and Proudman,
who explored its properties in Ref. [60]. Physically, the
conservation of IP is related to the conservation of linear
momentum, P≡ R

d3xu, much as the conservation of the
Loitsyansky integral is related to angular-momentum con-
servation, and, as we are about to show, IH is related to
helicity conservation. Owing to this analogy, of which we
make further profitable use in Sec. IV, we refer to IH as the
Saffman helicity invariant. We proceed by establishing the
claims that, in nonhelical turbulence, IH is gauge invariant,
finite, and conserved. These arguments are, in most
respects, analogous to those originally made by Saffman
for IP [55] (see Ref. [7] for a review).
(1) IH is gauge invariant.

Assuming that volume and ensemble averages are
the same,

IH ¼ lim
V→∞

1

V

�Z
V
d3xhðxÞ

�
2

¼ lim
V→∞

1

V
hH2

Vi; ð24Þ

so IH is the density of magnetic helicity squared.
Gauge invariance is then guaranteed in the same
manner as for the magnetic helicity, by arranging
that the surface of the volume V is always normal to
the magnetic-field direction. This can always be
achieved because of our assumption that the mag-
netic field forms localized structures, which are
arbitrarily small compared to V in the limit V → ∞.

(2) IH is finite.
Returning to the definition of IH, Eq. (22), and

assuming that the system has no preference for
accumulation of like- or opposite-helicity structures,
hhðxÞhðxþ rÞi is zero if r extends beyond the
characteristic size of a helical structure, L, and of
size ∼hh2i ∼ B4L2 otherwise. Integrating over r then
gives IH ∼ B4L5. Formally, this requires the two-
point magnetic-helicity-density correlation function
to decay faster than r−3 as r → ∞, which is
the condition for the magnetic structures to be
“localized.”
Another way to obtain this scaling is to consider

the volume integral in Eq. (24) as a random walk in
the net helicity contained within the volume V—the
number of “steps” is V=L3, so

HV ¼
Z
V
d3xhðxÞ ∼

�
V
L3

�
1=2

B2L4: ð25Þ

Then, there is cancellation of V in Eq. (24), and the
scaling IH ∼ B4L5 is recovered.
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(3) IH is conserved.
According to Eq. (25), the expectation value of the

square helicity in a large volume of nonhelical
turbulence is hH2

Vi ∝ V. As η → 0þ, the magnetic
helicity is conserved during all processes that occur
locally inside the volume V, so hH2

Vi ∝ V can only
be changed by processes occurring at the surface of
V, S ¼ ∂V. These are fluxes of helicity in or out of
the volume or reconnection with magnetic structures
not contained within the volume. However, both are
random processes, and hence, the net rate of change
of square helicity associated with them is propor-
tional to S ∼ V2=3. Ultimately, then, we find that

1

hH2
Vi

dhH2
Vi

dt
∝ V−1=3; ð26Þ

with the result that, in the limit V → ∞, hH2
Vi is a

conserved quantity. Therefore, so is IH.
An alternative proof of the invariance of IH, which

follows directly from the MHD induction equation under
the assumption of sufficiently rapid decay of long-range
correlations, is detailed in Appendix B.
In the context of this work, the primary importance of the

conservation of IH is that it implies precisely the same
scaling as we found from our qualitative theory, Eq. (21).
The more formal argument proposed here is much more
general, however: While it requires that helical structures
be localized (i.e., that local correlations decay sufficiently
quickly with distance) and that there be no preference for
accumulation of like-helicity or opposite-helicity struc-
tures, it does not require that all structures be of the same
size or magnitude of helicity at any given instant, nor does
it require that the only relevant dynamics be pairwise
mergers. The cartoon dynamics presented in Sec. III A
should, therefore, be considered as a particular example of
dynamics that would conserve IH and that, therefore, must
produce the correct scaling, but these need not be the only
allowed dynamics (or even be prevalent) in order for
Eq. (21) to hold.

2. Permanence and impermanence of the large scales

We now discuss some important consequences of the
invariance of IH for the small-k asymptotics of the spectra.
In particular, we find that the phenomenon of “inverse
transfer” of magnetic energy [34,41], whose explanation
has so far been unclear, follows naturally from the con-
servation of IH. We also find that the invariance of IH
implies an invariant small-k asymptotic of the helicity-
variance spectrum, a fact that we utilize in Sec. III D to
provide a numerical test of our theory.
As is well known, the Saffman and Loitsyansky integrals

are, respectively, proportional to the coefficients of k2 and
k4 in the small-k asymptotic expansion of the kinetic-
energy spectrum. To see why, note that if correlations

between distant points decay sufficiently quickly, viz., if
huðxÞ·uðxþ rÞi < Oðr−5Þ as r → ∞, then the kinetic-
energy spectrum,

EKðkÞ ¼
k2

4π2

Z
d3rhuðxÞ·uðxþ rÞie−ik·r; ð27Þ

may be Taylor-expanded in kL ≪ 1, which yields (under
the assumptions of statistical isotropy and homogeneity),

EKðk → 0Þ ¼ IPk2

4π2
þ ILk4

24π2
þOðk5Þ: ð28Þ

Thus, Saffman turbulence, with IP ≠ 0, has Eðk → 0Þ ∝ k2

[55], while Batchelor turbulence, with IP¼0, has Eðk→0Þ∝
k4 instead [60].Owing to the invariance of IP and IL, Eq. (28)
leads to a phenomenon known as the “permanence of the
large-scale eddies”—as hydrodynamic turbulence decays,
the small-k part of its energy spectrum remains unchanged.
As a result, nonhelical hydrodynamic turbulence supports no
inverse energy transfer. This is not the case for nonhelical
MHD turbulence, which, if initialized in a magnetically
dominated statewith EMðk → 0Þ ∝ k4 (or steeper, like in our
simulations—see Appendix D), has been found in simula-
tions to increase its magnetic-energy content at large scales
[34,41]. This result is a consequence of the noninvariance of
the magnetic equivalent of the Loitsyansky integral,

ILM
≡ −

Z
d3rr2hBðxÞ·Bðxþ rÞi; ð29Þ

which is related to the magnetic energy spectrum via the
expansion analogous to Eq. (28),

EMðk → 0Þ ¼ IBk2

4π2
þ ILM

k4

24π2
þOðk5Þ; ð30Þ

where IB will be defined and discussed in Sec. IV C, but for
now, it can be assumed to be zero.
Of course, there was no reason to suspect that ILM

should
have been a dynamical invariant, as angular momentum
does not have a magnetic equivalent—LM ≡ r × B is not a
conserved quantity in MHD. In fact, the growth of ILM

, and
hence the inverse transfer, can be recovered immediately
from the conservation of the Saffman helicity invariant, as

ILM
∼ B2L5 ∼

IH
B2

: ð31Þ

Thus, if IH is conserved while B2 decays, ILM
must grow.

Owing to the presence of the inverse transfer, it would
appear that there is no permanence-of-the-large-scales
principle for nonhelical MHD. However, a modified
version of this principle may be obtained by noting that
IH is proportional to the coefficient of k2 in the small-k
expansion of the helicity-variance spectrum,
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ΘðkÞ ¼ k2

2π2

Z
d3rhhðxÞhðxþ rÞie−ik·r: ð32Þ

Namely, at small k,

Θðk → 0Þ ¼ IHk2

2π2
þOðk3Þ; ð33Þ

provided that hhðxÞhðxþ rÞi < Oðr−3Þ as r → ∞. Thus,
nonhelical MHD has a kind of permanence-of-the-large-
scales phenomenon, though it manifests itself in the
helicity-variance spectrum rather than in the energy spec-
trum. Detecting this phenomenon numerically will be a
useful test of our theory and a way of confirming the
conservation of IH (see Sec. III D).

C. Decay laws

Let us now compute the decay laws associated with the
conservation of IH. Equation (15) with α ¼ 4=5, as
demanded by Eq. (21), implies a magnetic-energy decay

EM ∝ t−20=17 ≃ t−1.18; ð34Þ

if the dynamics occur on the Sweet-Parker timescale (with
Laplacian viscosity), or Eq. (12) gives

EM ∝ t−10=9 ≃ t−1.11; ð35Þ

if reconnection is fast, i.e., either stochastic or plasmoid-
dominated. These exponents are both close to −1, so they
are consistent with previous numerical results that have
reported EM ∝ t−1 [33–35,40,41].
For the kinetic energy, we again expect Eq. (18) to

hold, provided the kinetic energy is dominated by recon-
nection outflows. Under the Sweet-Parker scalings and
B4L5 ∼ const, this becomes

EK ∼ Eð14n−9Þ=10n
M : ð36Þ

For n ¼ 2 and n ¼ 4, this gives EK ∼ E19=20
M and

EK ∼ E47=40
M , respectively. The closeness of these exponents

to 1 indicates that the current-sheet aspect ratio changesmore
slowly in the nonhelical case than the helical case, and it
explains why no significant difference in the kinetic- and
magnetic-energy-decay laws has been reported in the pre-
vious numerical studies cited above.

D. Numerical results

To test the theory proposed in Secs. III B and III C, we
now present results from simulations of decaying non-
helical turbulence, analogous to those presented for helical
fields in Sec. II C.
We first address the question of the scaling and con-

servation of IH in our simulations. In a periodic box, rather

than infinite space, one should interpret the limit V → ∞ in
Eq. (24) as requiring V to be large compared to the energy-
containing scales but small compared to the box size, where
the assumption of isotropy fails, as does the random-walk
scaling of magnetic helicity, Eq. (25), if the total helicity in
the box is constrained to be exactly zero by the initial
condition. Figure 5 shows plots of hH2

Vi=V vsR, where V is
a cube of width 2R, and we take an ensemble average over
many different cube positions in the simulation box
(employing the Coulomb gauge, ∇·A ¼ 0, for numerical
convenience). As R → 0, hH2

Vi=V ∝ V → 0, because hH2
Vi

is dominated by individual structures. Similarly, hH2
Vi=V

vanishes as R → π because then V is the entire periodic
simulation domain, which has zero magnetic helicity by
construction. However, for intermediate values of R,
hH2

Vi=V turns out to be independent of V, confirming
the random-walk scaling, Eq. (25).
The value of IH is hH2

Vi=V in this flat region. Computing
it as the average of hH2

Vi=V between the two dashed lines in
Fig. 5 as a function of time, we find that IH decays
approximately as t−0.1 (see the inset to Fig. 5). Considering
the strong scaling of IH with B and L, IH ∼ B4L5, this
decay is very slow; i.e., Eq. (21) holds well. For compari-
son, if anastrophy were conserved, as in two dimensions,
then, according to the robust Sweet-Parker scaling for
n ¼ 4, viz., BL ∼ const, B2 ∼ t−3=4 (see Appendix A), IH
would grow: B4L5 ∼ t3=8 (and, indeed, even faster growth
should be expected under the often-assumed B2 ∼ t−1,
L ∼ t1=2, since then B4L5 ∼ t1=2). Thus, the distinction

FIG. 5. Confirmation of the expected scaling of hH2
Vi=V

with volume, V ¼ ð2RÞ3, for a simulation with n ¼ 6,
η6 ¼ 1.42 × 10−12. Flat parts of the curves correspond to the
volume-independent limit, as expected from Eq. (25). Curves are
plotted with a constant interval of 1.0 between t ¼ 0.0 (red) and
t ¼ 15.0 (blue), where time is in code units, as explained in the
caption to Fig. 2. The inset shows the evolution of IH , computed
as the mean value of hH2

Vi=V between R ¼ 1.3 and R ¼ 1.9.
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between our theory of nonhelical decay and the conjecture
of quasi-two-dimensional dynamics [33,35,41] is measur-
able in numerical simulations, and there is strong evidence
in support of the former over the latter.
The conservation of IH may also be demonstrated from

the invariance of the small-k part of the helicity-variance
spectrum, ΘðkÞ, as explained in Sec. III B 2. The evolution
of this spectrum is shown in Fig. 6. The small-k part
exhibits a k2 power law, indicating that the expansion
Eq. (33) is valid and that IH is finite. As the turbulence
decays, the small-k part is preserved to a good approxi-
mation, though there is a small amount of decay, owing to
the finite scale separation between the box scale [close to
which ΘðkÞ ∝ k2 should fail] and the energy-containing
scales. Nonetheless, the behavior is once again markedly
different from what should be expected under the often-
assumed B2 ∼ t−1, L ∼ t1=2 laws. In that case, an inverse
transfer of helicity variance should be expected, with the
small-k part of ΘðkÞ growing like B4L5 ∼ t1=2.
Turning to the measured decay laws, we note that, as in

the helical case, the asymptotic scaling B4L5 ∼ const will
not necessarily be satisfied for a decay at finite ηn.
Nevertheless, we can still measure a value of α for which
BαL ∼ const is satisfied and compare the measured value of
the magnetic-energy-decay exponent, pM, with the one
expected for a decay on Sweet-Parker or ideal timescales.
The results of this comparison are shown in Fig. 7. While
agreement with the Sweet-Parker curves (colored) for
α < 4=5 is not quite as good as in the helical case, we
still observe (i) a clear preference for the Sweet-Parker
prediction over the prediction of a decay on ideal timescales

(grey) and (ii) convergence to B4=5L ∼ const for the hyper-
dissipative simulations.
Finally, we describe the decay of kinetic energy. Figure 8

again shows that, like in the helical case, the kinetic energy
is peaked at smaller scales than the magnetic energy is,
consistent with the expectation of Alfvénic outflows in
current sheets. We also find that Eq. (18) is very well
satisfied and a reasonable agreement with Eq. (36),
although the magnetic- and kinetic-energy decay exponents
are very close to each other.

E. Behavior of other invariants

To conclude the discussion of numerical results, we now
address the evolution of the other, better-known invariants
during our simulations, namely, the cross-helicity, as well
as the Loitsyansky and Saffman integrals.
First, we consider the cross-helicity,

Hc ¼
Z

d3r u·B; ð37Þ

which is an ideal invariant of the (incompressible) MHD
equations, though we find that it is not conserved in our
simulations any better than energy is. In Fig. 9(a), we plot
the average value of the squared total cross-helicity con-
tained in a cube of volume V ¼ ð2RÞ3, in a manner

FIG. 6. Evolution of the helicity-variance spectrum, Eq. (32),
plotted for the same nonhelical simulation and at the same times
as Fig. 5. An invariant small-k asymptotic ΘðkÞ ∝ k2 indicates
finiteness and conservation of IH , as explained in Sec. III B 2.
Inset: helicity spectrum, plotted at the same times, for reference
(with a linear vertical axis). While small fluctuations are present,
there is no strong net helicity of either sign at any scale.

FIG. 7. Relation between the empirically obtained magnetic-
energy-decay power-law exponent pM and the value of α for
which BαL ∼ const for the nonhelical simulations. As in Fig. 1,
solid curves show the expected relationship, Eq. (15), for decays
occurring on the Sweet-Parker timescale, with n ¼ 2, n ¼ 4, and
n ¼ 6 shown in blue, red, and magenta, respectively. The grey
solid curve depicts the scaling given by Eq. (12). Simulation
results are in excellent agreement with the colored curves, with
better agreement as α increases towards the limiting value of 4=5.
As in the helical case, simulations at the largest Lundquist
numbers appear to be on the brink of the transition to the fast-
reconnection regime. The full set of decay curves from which this
plot was derived can be found in Appendix D.
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analogous to Fig. 5 for the magnetic helicity. We find that
hH2

cVi ∼ V for R≲ π=2, as is expected from the random-
walk argument. For R > π=2, hH2

cVi=V increases with R
but not as fast as R3, which indicates that there is no net

cross-helicity in the box. Even so, one may consider the
Saffman-type invariant IHc

that is associated with cross-
helicity (see Secs. IV D and IV E). It is given by the value
of hH2

cVi=V in the flat region of Fig. 9(a), and, as we see, it
decays. The reason for this behavior is that the cross-
helicity’s decay rate has the same scaling with the dis-
sipation coefficients ηn (resistivity) and νn (viscosity) as the
decay rate of the magnetic energy does (as is inevitable
because cross-helicity and energy have the same physical
dimensions).
Likewise, the Loitsyansky integral, which encodes the

statistics of angular-momentum fluctuations [6,61], is not
conserved in our simulations, as is clear from the small-k
part of Fig. 8. In Fig. 9(b), we plot hjLV j2i against R, where
LV is the total angular momentum contained in a spherical
control volume V of radius R, calculated about its center.
Presumably, this is due to injection of angular-momentum
fluctuations by the reconnection outflows. Intriguingly, we
observe a shift in the scaling properties of hjLV j2i vs R—at
early times, hjLV j2i ∼ R4, which is the expected scaling for
Batchelor turbulence, i.e., when correlations between dis-
tant points are weak [7,60]; subsequently, the system
appears to evolve towards a state with hjLV j2i ∼ R5. The
latter is the Saffman-turbulence scaling, and it suggests
strong long-range correlations in the velocity field [7,55]. A
corresponding shift in the analogous quantity for linear
momentum, hjPV j2i, vs R is suggested by Fig. 9(c), which
shows a stronger scaling than R2 (the Batchelor scaling) for
R < π=2 at later times, closer to the Saffman-turbulence
scaling of R3. This shift is also consistent with Figs. 2
and 8, which appear to show a decreasing slope in the large-
scale kinetic-energy spectrum over time, perhaps towards
EK ∝ k2, the hallmark of Saffman turbulence [7,55]. This
spectral behavior has been noted in other studies
[33,36,41], though it was considered an effect of com-
pressibility, owing to the fact that the incompressible
simulations of Ref. [32] appeared not to see it. However,
this may have been because there was not enough time for
the k2 velocity spectrum to establish itself before the outer
scale of the turbulence reached the box size in that study.
While not present in decaying hydrodynamic turbulence
[7], we suggest the effect might be related to the “thermal-
ization” phenomenon that is observed in forced, hydro-
dynamic turbulence [62–65]. We address this topic
specifically in a future publication [66].
Finally, for the reader concerned that the standard

scalings for hjLV j2i and hjPV j2i referred to here are not
the same as the ∝ R3 random-walk scalings assumed in
Sec. III B, we show how these scalings may be obtained
from the random-walk approach in Appendix C. A more
formal derivation of them may be found in Ref. [7].

FIG. 8. Top panel: evolution of kEðkÞ, where EðkÞ is the
spectral energy density, for the magnetic (blue) and kinetic
(red) energies. These plots are obtained from the nonhelical
simulation with n ¼ 4, η4 ¼ 2 × 10−8. Each plot of kEðkÞ is
separated by a time interval of 2.0 between t ¼ 1.0 to t ¼ 21.0
(t ¼ 21.0 in bold), where time is in code units, as explained in the
caption to Fig. 2. As in the helical case (Fig. 2), the peak of the
magnetic energy is at much larger scales (smaller k) than the peak
of the kinetic-energy spectrum, consistent with the expectation
that the kinetic energy should be contained within the Sweet-
Parker sheets. Inset: decay of the total magnetic and kinetic
energies. The total kinetic energy curve is much below the
magnetic energy curve, and it coincides with ðδ=LÞEM (black), in
agreement with Eq. (18). Here, we compute δ=L as the ratio of the
wave numbers at which kEMðkÞ and kEKðkÞ peak. Bottom panel:
kinetic-energy decay exponent pK against the magnetic-energy-

decay exponent pM as measured in simulations with S1=nn;0 > 9.0.
Results are in reasonable agreement with the theoretical pre-
diction, Eq. (36) (colored lines), though as noted in the main text,
this prediction is very similar to EK ∝ EM (grey).
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IV. DISCUSSION

A. Case of small, but nonzero, helicity

In Sec. III, we proposed a way to impose the constraint of
magnetic-helicity conservation on the decay of nonhelical
MHD turbulence via the conservation of IH. Of course, no
real field configuration will have precisely zero helicity,
and therefore, it is important to consider the evolution of a
field configuration with small, but nonzero, magnetic
helicity. In such a case, the system will undergo a transient
(though, perhaps, long) period of evolution according to the
nonhelical decay law B4L5 ∼ const [Eq. (21)] before
ultimately entering the fully helical regime, with a corre-
sponding change in the decay law to B2L ∼ const [Eq. (9)].
This conclusion is an immediate consequence of the

nonhelical decay laws, as follows. Suppose that the system
starts with some small helicity fraction σ0 ≪ 1, defined so
that the total helicity isH ¼ σ0B2

0L0V. At a later time, since
helicity is conserved,

σB2L ¼ σ0B2
0L0: ð38Þ

Because σ0 ≪ 1, the system is not controlled by its total
helicity, at least initially. It therefore evolves according to
B4L5 ∼ const. Using this in Eq. (38), we find

σ ∼ σ0

�
B
B0

�
−6=5

∼ σ0

�
L
L0

�
3=2

: ð39Þ

Thus, the helicity fraction σ will grow with time. This
growth can continue until σ ∼ 1, at which point the system
enters the helical regime, which occurs when

B ∼ B0σ
5=6
0 ; L ∼ L0σ

−2=3
0 ; ð40Þ

provided that the energy-containing scale L has not yet
reached the system size.
This result is intuitive from the cartoon picture presented

in Sec. III: When blobs with one sign of helicity are more
populous, the ultimate consequence of random mergers is
for the less populous type to be used up (although this can
take a long time, which scales with an appropriate negative
power of σ0, if the initial population imbalance is small).
The same conclusion can be reached from the consid-

eration of the Saffman helicity invariant, Eq. (24), though
some care should be taken, as IH is formally infinite in the
presence of any net helicity. However, if the helicity fraction
σ is small, then we can interpret the limit V → ∞ in Eq. (24)
as requiring L3 ≪ V ≪ Vc, where Vc is the critical volume
at which HV ceases to be dominated by the net helicity
fluctuation owing to its collection of helical structures of
random signs, and instead is dominated by the helicity
imbalance (see Fig. 10). This condition implies

σhh2i1=2Vc ∼ hh2i1=2L3

�
Vc

L3

�
1=2

⇒ Vc ∼
L3

σ2
: ð41Þ

For any V such thatL3 ≪ V ≪ Vc, the arguments presented
in Sec. III B in favor of the conservation ofHV remain valid,
and hence IH still provides the dominant constraint on the
decay of magnetic structures. Choosing instead V > Vc,
hH2

Vi ∼ σ2VB4L2 ∼ const, so we recover the evolution
equation for σ, Eq. (38). However, when ultimately σ ∼ 1,
there is no longer any possibility of satisfyingL3 ≪ V ≪ Vc

because Vc ∼ L3. At this point, hH2
Vi ∼ VB4L2 for any

(a) (b) (c)

FIG. 9. Evolution of Saffman-type invariants (other than the helicity invariant) in a nonhelical simulation with
n ¼ 6; η6 ¼ 1.42 × 10−12. Curves are plotted with a constant interval of 1.0 between t ¼ 1.0 (red) and t ¼ 15.0 (blue), where time
is in code units, as explained in the caption to Fig. 2. (a) hH2

cVi, where HcV is the cross-helicity contained in a cube with V ¼ ð2RÞ3.
While the expected random-walk scaling hH2

cVi ∼ V is obeyed, hH2
cVi is not conserved. (b) hjLV j2i, where LV is the angular momentum

contained in a sphere of radius R, about the center of the sphere. We find hjLV j2i ∼ R5, at late times, though the scaling is closer to R4

initially. (c) hjPV j2i, where PV is the linear momentum contained in a cube with V ¼ ð2RÞ3. We find hjPV j2i ∼ R2, though the scaling
appears to become somewhat stronger with time.
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chosen volume, and we are back to the fully helical
scaling, Eq. (9).
These arguments suggest that the nonhelical decay is

ultimately transient for any real system, and there will
always eventually be a transition to the helical regime,
provided that the growing, energy-containing scale does
not reach the system size before this happens. The same
conclusion was reached by Ref. [1], although their argu-
ment was based on different nonhelical decay laws than
those we have proposed. A numerical simulation demon-
strating the expected transition between the two regimes
would be highly desirable; however, it imposes consid-
erable numerical cost, so it is left for future work.

B. General decay principles

Let us now discuss how the principles that guided us in
the above might be applied to other types of decaying
turbulence. In any type of turbulence with an ideal
invariant, F ¼ R

d3xfðxÞ, that is better conserved than
the energy, the conservation of that invariant implies

hfi ¼ lim
V→∞

1

V

Z
V
d3xfðxÞ ∼ const: ð42Þ

This is the “selective decay” principle of Refs. [14–20] in
general form.
If nonlinear structures (eddies, blobs) are necessarily in

possession of F, so that the characteristic size of f can be
related to the sizes and correlation scales of the dynamical
fields, then Eq. (42) imposes a constraint on these fields
that must be satisfied as the turbulence decays. In particular,
if the sign of fðxÞ within each structure is the same, either
because it is sign-definite or because the initial condition
stipulates a predominance of structures of one particular

sign, then hfi can be related to the characteristic sizes of
dynamical fields and their correlation scales:

hfi ∼ ψaLb
ψ…; ð43Þ

where ψ is a representative dynamical field, Lψ is its
correlation scale, a and b are exponents determined by the
functional form of f, and “…” denotes the possibility of
other fields and scales. Together, Eqs. (42) and (43) imply a
constraint on the dynamical fields that must be satisfied
during the decay,

ψaLb
ψ… ∼ const: ð44Þ

Alternatively, for sign-indefinite f, there may be no
strong predominance of structures associated with either
sign of the invariant. In this case,

hfi ∼ σhf2i1=2 ∼ σψaLb
ψ…; ð45Þ

where σ ≪ 1 is the fractional imbalance in F, as in
Sec. IVA. While Eq. (42) still holds, its utility is reduced,
as σ is generally a function of time—the relationship

σhf2i1=2 ∼ σψaLb
ψ… ∼ const; ð46Þ

implied by Eqs. (42) and (45), should be considered as an
evolution equation for σ, rather than a constraint on ψ
and Lψ .
However, all is not lost. We propose that when σ ≪ 1,

conservation of local fluctuations in F imposes a constraint
on the decay, through the associated Saffman-type integral

IF ¼
Z

d3rhfðxÞfðxþ rÞi ∼ hf2iL3
f ∼ const; ð47Þ

where Lf is the correlation scale of f. Again, if nonlinear
structures are in possession of F, then hf2iL3

f can be related
to the characteristic sizes and correlation lengths of
dynamical fields,

hf2iL3
f ∼ ψcLd

ψ…; ð48Þ

where c and d are different exponents than those in
Eq. (43). Together with Eq. (47), this scaling leads to a
different constraint on the decay,

ψcLd
ψ… ∼ const; ð49Þ

which is independent of the fractional imbalance σ.
We note that an eventual transition from the balanced

regime [Eqs. (46) and (49)] to the imbalanced regime
[Eq. (44)] is a general consequence of these results because,
together, Eqs. (46) and (47) imply

FIG. 10. Schematic of hH2
Vi=V as a function of V, as a system

with small initial fractional helicity, σ0, transitions to the fully
helical regime, as explained in the main text. The progression of
time is shown from red to blue, with plots at logarithmically
spaced time intervals. Note that both axes are plotted on
logarithmic scales.
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σ ∝ L3=2
f : ð50Þ

Therefore, a necessary and sufficient condition for the
fractional imbalance to grow is that the scale Lf should
increase with time. This will be the case for any realistic
decay problem, even in the absence of inverse transfer of
energy in k space, because small-scale structures generally
dissipate faster than large-scale ones.
The correspondence of Saffman-type invariants to the

small-k asymptotics of spectra, as explained for IH in
Sec. III B, is also a general property: The invariant IF is
related to the spectrum of the variance of fðxÞ,

ΘFðkÞ≡ k2

4π2

Z
d3rhfðxÞfðxþ rÞie−ik·r; ð51Þ

via

ΘFðk → 0Þ ¼ IFk2

4π2
þOðk3Þ; ð52Þ

provided that hfðxÞfðxþ rÞi < Oðr−3Þ as r → ∞, and that
the system is statistically isotropic (though this statement is
easily reformulated for anisotropic systems). Therefore,
systems that decay while respecting the conservation of a
Saffman-type invariant generally have a permanence-of-
large-scales principle that applies to the spectrum of the
variance of the relevant conserved quantity. This principle
provides a convenient way to assess the existence and
conservation of candidate invariants in numerical studies
(as we did in Fig. 6).
To conclude this section, we note that our discussion has

relied on two conditions: (i) that the invariant F is
conserved, i.e., that its rate of change is smaller than the
energy decay rate, and (ii) that it can always be considered
the case that typical structures possess F, so that hfi and
hf2i may be related to the sizes and correlation lengths of
the dynamical fields, via Eqs. (43), (45), and (48).
Establishing whether conditions (i) and (ii) hold for any
given turbulent system requires some physical idea of the
decay dynamics. For example, we found in Sec. III E
that the Saffman-type invariant corresponding to cross-
helicity was not conserved in our numerical simulations.
Nonetheless, different dynamical processes can result in
invariants being dissipated at different rates, and indeed,
there are plausible reasons to argue that cross-helicity (or its
Saffman-type-invariant counterpart) might be conserved by
the decaying turbulence of interacting nonlinear Alfvén
waves, as we will explain in Sec. IV D.
Dynamical processes may also govern whether struc-

tures possess the relevant invariants, condition (ii). For
example, we have argued that in decaying MHD turbu-
lence, nonhelical magnetic structures tend to relax to zero
energy (as is consistent with J.B. Taylor relaxation), so at

any given time, individual magnetic structures are max-
imally helical.
As a final general remark, we point out that it is possible

for nonlinear structures to possess more than one invariant.
If the constraints implied by the conservation of these
invariants are not mutually exclusive, then they must be
satisfied simultaneously. If, however, these conditions are
contradictory, then it will be necessary for some of them to
be broken. In that case, the decay cannot take place on the
characteristic nonlinear timescale (“eddy-turnover time”)
but must instead take place on the timescale on which the
weaker constraint (in the sense of quality of conservation)
can be broken. This is precisely the situation in magneti-
cally dominated turbulence: Magnetic helicity is not the
only topological invariant associated with the magnetic
field [67], and in principle, all higher-order topolo-
gical invariants might impose constraints on the decay.
Conserving all topological invariants is not consistent with
a decay in the magnetic energy, however, because it implies
B ∼ const. Therefore, the decay can only proceed on the
timescale on which the higher-order topological constraints
may be violated, i.e., the reconnection timescale [57]. This
phenomenon is illustrative of a general rule that stronger,
consistent constraints set the scalings between the integral
scales and energies that control the decay, while incon-
sistent constraints set the decay timescale.

C. When the Saffman helicity invariant fails

Let us now apply the insights of Sec. IV B to determine
the conditions under which the conservation of the Saffman
helicity invariant does not impose a constraint on the decay
of isotropic, nonhelical MHD turbulence.
Naturally, thiswill be the case if it is zero,which is possible

if eachmagnetic structure is individually nonhelical, i.e., h is
pointwise zero, so condition (ii) in Sec. IV B is violated. An
example would be an ensemble of untwisted, unlinked
magnetic tori, such as those that arise in the final stage of
process (b) shown in Fig. 4 [68]. Such a configuration would
not be prevented by the invariance of its magnetic topology
from relaxing quickly under ideal dynamics, transferring
magnetic energy to kinetic energy. The evolution should then
be constrained by invariants pertaining to the velocity field,
such as the Loitsyansky integral or cross-helicity—plausibly,
the latter may be conserved in a net [cf. Eq. (42)] or
fluctuating [cf. Eq. (47)] sense in turbulence with U ∼ B
and similar integral scales for both fields, as we explain in
Secs. IVD and IV E.
While we thus acknowledge the possibility that IH can be

zero, we view such a field configuration as rather artificial.
In any realistic physical scenario, it seems likely that some
nonzero fraction of magnetic structures should possess
helicity, whether due to twists or to linkages, so IH ≠ 0.
Even if this fraction is not 1, we expect that individually
nonhelical structures should relax on ideal timescales
(cf. Fig. 4), and the evolution of those that remain should

HOSKING and SCHEKOCHIHIN PHYS. REV. X 11, 041005 (2021)

041005-16



then be constrained by conservation of IH (also see
Ref. [69] for a study of the tendency of MHD turbulence
to form local helical patches).
The other scenario in which conservation of IH will not

impose a constraint on the decay is if it diverges, which
it will do if the magnetic-helicity correlation function
hhðxÞhðxþ rÞi decays as r−3 or slower as r → ∞.
Physically, IH diverges when our assumption of localized
magnetic structures fails, which should be expected if

IB ≡
Z

d3rhBðxÞ·Bðxþ rÞi ð53Þ

is nonzero; as we saw in Eq. (30), this corresponds to
EMðk → 0Þ ∝ k2. Such a turbulence has long-range (longi-
tudinal) correlations in the magnetic field that decay as r−3

as r → ∞ (the reason for this is the same as the one for
which long-range correlations in the velocity field are
required for IP ≠ 0—we refer the interested reader to
Ref. [7]). Magnetic-helicity correlations should be expected
to decay at least as slowly (A being formally an integral of
B), in which case IH will diverge.
So, what principle governs the decay of nonhelical

turbulence of this sort? We suggest that it should be con-
strained by the conservation of fluctuations in the magnetic
flux, under the formalism described in Sec. IV B. In this case,
IB itself is the relevant invariant, which we might call the
Saffman flux invariant [cf. Eq. (47)], as

IB ¼ lim
V→∞

1

V
hjΦV j2i; ð54Þ

where ΦV ¼ R
V d

3xB is the total flux contained within the
control volumeV. In light of Eq. (30), we note that nonhelical
turbulence with EMðk → 0Þ ∝ k2 should not have an inverse
energy transfer; its energy spectrum should instead obey a
permanence-of-large-scales principle. This prediction is con-
sistent with the results of the extensive parameter study in
Ref. [34]. In decay from a magnetically dominated state,

IB ∼ B2L3 ∼ const ð55Þ

(i.e., α ¼ 2=3) corresponds to a decay law of

EM ∝ t−6=5 ð56Þ

if the decay occurs on ideal timescales [see Eq. (12)],
which is, inevitably, the same as Saffman’s law for the
decay of kinetic energy in hydrodynamic turbulence with
Eðk → 0Þ ∝ k2 [55]. Assuming that fast-reconnection out-
flows are the dominant motions, Eq. (18) with δ=L ∼ const
gives EK ∝ EM (though EK ≪ EM), so EK obeys the same
law asEM. If reconnection occurs slowly, in the Sweet-Parker
regime, then Eqs. (15) and (19) give

EM ∝ t−4=3; EK ∝ t−5=3; ð57Þ

for Laplacian (n ¼ 2) dissipation, where the latter law again
assumes the dominant motions to be the reconnection
outflows.
These predictions would be interesting to test. However,

while it is possible to initialize turbulence in a state with
IB ≠ 0, the requirement of strong long-range correlations
in B would appear to make it somewhat artificial. For
example, in cosmological contexts, causality constraints are
expected to rule out spectra shallower than the Batchelor
EMðk → 0Þ ∝ k4 [33,34,41,70], which, as explained above,
corresponds to localized magnetic structures (i.e., rapidly
decaying correlations).

D. Decay of MHD turbulence in the
presence of strong mean field

So far in this work, we have restricted our attention to the
decay of isotropic MHD turbulence, i.e., MHD turbulence
without a mean magnetic field. The case of turbulence with
a strong mean field is fundamentally different because then
the magnetic helicity is not a conserved quantity. Formally,
this is because the mean field “sticks out” of any volume for
which one might choose to compute the magnetic helicity.
Intuitively, also, this situation is different from isotropic
turbulence because the constraints imposed by topology are
greatly reduced. For example, purely magnetic structures
need not persist until they are able to reconnect with each
other; instead, they can relax by decomposing themselves
into Alfvén waves traveling in opposite directions along the
mean field.
Aside from energy, MHD turbulence with a strong mean

field [described by the “reduced MHD” (RMHD) equations
[71,72] ] has only one conserved quantity related to the
presence of the magnetic field, the cross-helicity,

Hc ¼
Z

d3r u⊥·b⊥; ð58Þ

where u⊥ is the fluid velocity perpendicular to the mean
magnetic field, and b⊥ is the magnetic-field perturbation.
Like magnetic helicity, the cross-helicity is sign-indefinite.
In simulations of driven MHD turbulence with a strong
mean field, a tendency to develop patches of strong local
cross-helicity is observed, even in so-called balanced
turbulence where the volume-averaged cross-helicity den-
sity is zero [13,14,69,73,74]. The reason for this is that
structures of large cross-helicity are also structures con-
taining strong imbalance in the sizes of the two Elsässer
fields, Z� ¼ u⊥ � b⊥. Importantly, individual Elsässer
fields each represent exact nonlinear solutions to the
MHD equations. Nonlinearity, and hence turbulent decay,
can, therefore, only be present where both fields are
present. Since u⊥·b⊥ ¼ ðjZþj2 − jZ−j2Þ=4, a small cross-
helicity density indicates balance between the Elsässer
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fields and, therefore, large nonlinearity. Such structures are
prone to turbulent decay. In contrast, structures with strong
cross-helicity of either sign have reduced nonlinearity and,
therefore, are more immune to turbulent decay.
Note, however, that these considerations need not apply

to isotropic, magnetically dominated MHD turbulence
decaying via reconnection, because the possession of
cross-helicity does not afford immunity to reconnection.
For balanced, RMHD turbulence, however, they motivate
us to conjecture that the decay might be controlled by the
“Saffman cross-helicity invariant”

IHc
¼

Z
d3rhhcðxÞhcðxþ rÞi; ð59Þ

where hc ¼ u⊥·b⊥ [75]. We note that, like IH, IHc
is an

example of an invariant that depends on a fourth-order
correlation function. The relevance of fourth-order corre-
lators to distinguishing between different species of
decaying MHD turbulence has previously been suggested
by Ref. [11], inspired by the numerical results of Ref. [81].
One might expect IHc

to be finite and conserved by
precisely the same arguments as we presented for IH, the
Saffman helicity invariant, in Sec. III. By a random-walk
argument analogous to the one in Sec. III B, we have

IHc
∼ b2⊥u2⊥l2⊥lk; ð60Þ

where lk and l⊥ are the characteristic length scales parallel
and perpendicular to the mean field, respectively. For
Alfvénic motions, b⊥ ∼ u⊥. Note that this scaling is on
much firmer ground in the mean-field case than the
isotropic case because of the absence of topological
constraints associated with helicity conservation. The
parallel and perpendicular length scales can be related to
each other by the conjecture of critical balance [43], which
states that b⊥=l⊥ ∼ B0=lk, and is a cornerstone of the theory
of strong MHD turbulence [82–84]. Critical balance is
essentially a statement of causality: The characteristic
parallel length scale of an eddy cannot be longer than
the distance traveled by an Alfvén wave in one nonlinear
timescale. Critical balance has been confirmed numerically
to great precision in driven RMHD turbulence [76], and it
appears to be satisfied in decaying turbulence, too [43].
Putting these scalings together, we find that IHc

∝ b3⊥l3⊥.
If IHc

is indeed conserved in decaying MHD turbulence,
this implies

b⊥l⊥ ∼ const: ð61Þ

Then, since the energies of the Elsässer fields are compa-
rable in balanced turbulence, the turbulent decay would
likely be governed by

dEZ�

dt
∼ −

Z∓EZ�

l⊥
∼ −E2

Z� ; ð62Þ

which results in the energy-decay laws,

EM ∼ EK ∼ t−1: ð63Þ

Intriguingly, this decay law has indeed been observed in
simulations of decaying, balanced RMHD turbulence,
though rationalized differently, by assuming local effec-
tive conservation of anastrophy, which also implies
Eq. (63), as in two-dimensional MHD turbulence [43]
(see Appendix A).
If, indeed, the decay of MHD turbulence in the pre-

sence of a strong mean field conserves cross-helicity, any
initial imbalance will eventually lead to a final state with
maximal cross-helicity, i.e., a pure Elsässer state, accord-
ing to the general argument presented in Sec. IV B [see
Eq. (50)]. Such a state will not decay since it is an
exact solution of the nonlinear RMHD equations. Such
behavior has indeed been reported in numerical studies
[4,78–80].

E. Decay of isotropic MHD turbulence
from an initial state with U ∼ B

Another problem to which the formalism developed here
may be usefully applied is the decay of isotropic MHD
turbulence from an initial state with U ∼ B, as opposed to
the B ≫ U that we have so far considered in this work
(apart from in Sec. IV D). Such a state is the natural final
state of the MHD dynamo (see, e.g., Refs. [77,85] for
reviews). In such a case, we conjecture that the simulta-
neous conservation of magnetic helicity and cross-helicity
might be respected by the decay, as the constraints they
imply are not mutually exclusive. Such a prospect has been
considered by Refs. [9,11,14,16,17] for net-cross-helical
initial states—here, however, we impose cross-helicity
conservation via the Saffman-type-invariant formalism
developed in Sec. IV B, reflecting the fact that no strong
net cross-helicity is generically present in MHD turbulence
without a mean magnetic field. Naturally, checking the
circumstances under which conservation of Eq. (59) (with
hc ¼ u·B in the isotropic case) is valid will require a
detailed numerical study, which is left for future work.
However, the consequences of this conjecture merit dis-
cussion here because they appear to be consistent with
already-existing numerical studies, and the argument dem-
onstrates a general principle of simultaneous conservation
of multiple invariants.
Let us consider a system that, as a result of dynamo or

some other process, has reached equipartition between
magnetic and kinetic energy, U ∼ B, with the same integral
scale L.
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1. Helical magnetic field

First, let us assume that the magnetic field is helical but
that there is no predominance of either sign of cross-
helicity. Then, the conjecture of simultaneous conservation
of magnetic helicity and cross-helicity (the latter as a
Saffman-type invariant) implies B2L ∼ const [Eq. (9)]
and B2U2L3 ∼ const, respectively. Together, these condi-
tions imply U ∼ B2, or

EK ∼ E2
M; ð64Þ

precisely the condition found numerically by Refs. [22,37],
though without theoretical justification. Those studies
conjectured that the decay should take place on the time-
scale associated with the u·∇u nonlinearity in the MHD
equations, i.e., L=U, which is consistent with the idea that
the timescale associated with the magnetic nonlinearity
B·∇B is effectively lengthened by topological constraints
on the magnetic field. It is readily verified that such a decay
leads to the power laws

EK ∼ t−1; EM ∼ t−1=2; ð65Þ

as found numerically by Refs. [22,32,37].
The more rapid decay in kinetic energy will result in a

state with U ≪ B. The system should then decay in the
strong-field regime described in Sec. IV D. Denoting the
small perturbations to the newly established strong mag-
netic field by δB ∼U, we should, according to Eq. (63),
then have δB2 ∼ U2 ∼ t−1, assuming the decay is critically
balanced. Meanwhile, B2 should decay according to the
reconnection-controlled law, either t−2=3 for fast reconnec-
tion or B2 ∼ t2n=ð5n−3Þ [Eq. (16)] for Sweet-Parker recon-
nection. For the n ¼ 4 simulations employed by
Refs. [22,37], this implies

EK ∼ t−1; EM ∼ t−8=17; ð66Þ

which will persist until the Sweet-Parker outflows domi-
nate the kinetic energy, at which point the kinetic-energy
law should change to the one given by Eq. (19), which,
independently of the type of reconnection, is always slower
than t−1.
The decay laws given by Eq. (66) are very close to those

of Eq. (65), and, therefore, either might explain the laws
found numerically by Refs. [22,37]. Regardless, a more
rapid decay of the kinetic than magnetic energy appears to
be robust, as does the corresponding establishment of a
magnetically dominated state. Indeed, a magnetically
dominated final state was observed in the simulations of
Ref. [36], despite being initialized with U ≫ B, with decay
laws similar to Eq. (65) in the transient U ∼ B regime.

2. Nonhelical magnetic field

Alternatively, let us consider the case of a nonhelical
magnetic field, initially in equipartition with the kinetic
energy. Then, instead of the condition B2L ∼ const, we
have B4L5 ∼ const [Eq. (21)]. Together with the constraint
implied by the conservation of the Saffman cross-helicity
invariant, B2U2L3 ∼ const, this implies U ∼ B1=5, or

EK ∼ E1=5
M : ð67Þ

Unlike Eq. (64), Eq. (67) implies a much faster decay of the
magnetic energy than the kinetic energy. However, this
decay will be short lived because the magnetic energy can
be maintained at a small, but finite, fraction of the kinetic
energy by dynamo. Nonetheless, the magnetic field will
always remain just below dynamical strength because, if it
were to grow to dynamical levels, cross- and magnetic-
helicity conservation would force it to decay rapidly.
In the absence of a dynamical-strength magnetic field,

the kinetic energy should decay according to the purely
hydrodynamic Kolmogorov law, EK ∼ t−10=7 [Eq. (3)].
Because the magnetic energy is tied to a finite fraction
of the kinetic energy by the competing effects of dynamo
and simultaneous cross- and magnetic-helicity conserva-
tion, it must also be the case that EM ∝ t−10=7, i.e.,

EM ∝ ðbut <ÞEK ∼ t−10=7: ð68Þ

Such a decay of EM and EK has indeed been observed in
nonhelical simulations (though initialized with U ≫ B) by
Ref. [35], together with evidence of dynamo action. We
note, however, that it is possible that the reason EM never
grew to equipartition in these simulations was, rather, that
the efficiency of the dynamo was reduced in the absence of
the mean-field dynamo effect associated with helical
velocity fields (see Ref. [85] and references therein).
The arguments presented in this section, if correct,

suggest a remarkable general principle: An initially helical
velocity field will, because of its tendency to grow a helical
magnetic field through mean-field dynamo action, even-
tually decay in a magnetically dominated state, with
EM; EK ∝ t−2=3 (in the fast reconnection regime). In con-
trast, nonhelical velocity fields will always remain in a
kinetic-energy-dominated state, with EM; EK ∝ t−10=7.

F. Conclusion

As Secs. IV D and IV E illustrate, the Saffman-
type-invariant approach appears to be an extremely useful
general tool that allows consideration of sign-indefinite
invariants in the “selective-decay” framework for decay-
ing turbulence [86]. There are many different types of
fluid turbulence to which the approach may be usefully
applied—a number of them are reviewed in Ref. [7], and
there are likely to be others, especially in the large variety
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of plasma systems increasingly of interest in the context of
various types of space or astrophysical turbulence (see, e.g.,
Refs. [87–89]). The invariant IH, proposed in this work for
incompressible magnetohydrodynamic turbulence, should
remain an invariant even in the more complex cases of
compressible [90,91], relativistic [40], and/or kinetic
dynamics [92–95], since magnetic helicity remains a
conserved quantity in such contexts. Thus, the invariance
of IH (and the physical principle of conservation of local
magnetic-helicity fluctuations from which it follows)
should provide a constraint on decaying turbulence in a
wide variety of magnetized astrophysical systems (pro-
vided the dominant motions occur at scales much smaller
than the system size). Possible applications include turbu-
lence in star-forming molecular clouds [90,96] and galaxy
clusters [3,97]; the generation of seed fields for galactic
dynamo [43]; and the evolution of primordial magnetic
fields in the early Universe [1–3]. With regard to the latter,
we note that the nonhelical decay laws that we have derived
in this work [see Sec. III C] are consistent with observa-
tional constraints on magnetic fields in cosmic voids,
whereas previously accepted models are not [98]. This
point will be addressed specifically in a future publica-
tion [99].
In those physical systems where frozen-in magnetic

fields are dominant actors in the dynamics, magnetic
reconnection is likely to be the key physical process
whereby the decay occurs. Combining this insight with
the constraints imposed by invariants appears to be a
winning strategy for constructing decay theories, as it
has proven to be in the MHD turbulence regimes that
we have considered above.
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APPENDIX A: DECAY OF TWO-DIMENSIONAL
TURBULENCE

In this Appendix, we review the problem of decaying
two-dimensional MHD turbulence, which, like its three-
dimensional counterpart, respects the conservation of an
invariant associated with the topology of the magnetic field:
the square of the magnetic vector potential, hA2i ¼ hA2

zi
[14,17,21,24], sometimes called anastrophy. In two dimen-
sions, anastrophy is well defined (i.e., not gauge depen-
dent) and evolves according to

���� ddt
Z
V
d2rA2

���� ¼ 2ηn

����
Z
V
d2rA·∇nA

����
¼ 2ηn

����
Z
V
d2rB·∇n−2B

����
∼
dEM

dt
δη

2; ðA1Þ

where dEM=dt ¼ ηn
R
d2rB·∇nB is the rate of magnetic-

energy decay due to Ohmic heating. Equation (A1) implies
that

d log
R
V d

2rA2

dt
∼
δη

2

L2

d logEM

dt
; ðA2Þ

which is an even slower rate of change than the one we
found for the magnetic helicity in three dimensions, Eq. (8).
Therefore, like helicity, anastrophy in two dimensions
should be conserved as the turbulence decays, for
ηn → 0þ. Physically, anastrophy conservation is related
to the conservation of in-plane magnetic flux [50]. Unlike
helicity, though, the anastrophy is manifestly positive
definite, so there is only one decay regime and no
Saffman-type invariant.
The conservation of anastrophy implies

BL ∼ const; ðA3Þ

i.e., α ¼ 1 in Eq. (10). According to Eqs. (12) and (15), this
implies a power-law decay of the magnetic energy,

EM ∼ t−1; ðA4Þ

if the decay proceeds on the “ideal” L=B timescale, and

EM ∼ t−2n=ð3n−2Þ; ðA5Þ

for a decay proceeding on the Sweet-Parker timescale,
ðL=BÞS1=nn . Coincidentally, these laws are the same for
n ¼ 2. Remarkably, the Sweet-Parker scaling for the
kinetic-energy decay also turns out to be

EK ∼
δ

L
EM ∼ Eð3n−2Þ=2n

M ∼ t−1; ðA6Þ

which is independent of n. These results mean that a decay
on ideal timescales produces indistinguishable power laws
(EK ∼ EM ∼ t−1) to a decay on the n ¼ 2 Sweet-Parker
timescale. This is perhaps why over 30 years separates the
derivation of the ideal decay law [21,24] and the suggestion
of a decay controlled by Sweet-Parker reconnection by
Ref. [50]. The picture presented in Ref. [50] is analogous to
(and has inspired) the “cartoon” model that we proposed in
Sec. III, although we observe that, as for the cartoon model
in our study, the formulation based on the conservation of
integral invariants, with decay proceeding on the
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reconnection timescale, is more general, as it does not
require that pairwise mergers between structures of equal
anastrophy (or helicity) be the only allowed dynamical
process.
As a consequence of the degeneracy in power laws, it

was confirmed in Ref. [50] that the Sweet-Parker timescale
governed the decay in their simulations by showing that
their evolution curves collapsed onto each other when time
was renormalized by the initial Sweet-Parker reconnection
timescale. An alternative method by which the Sweet-
Parker-controlled decay can be established is via the use of
hyperdissipation, in the same manner as we have done in
the main part of this work, thanks to hyperdissipation
lifting the power-law degeneracy. For example, from
Eq. (A5), the magnetic-energy-decay power laws are
t−4=5 and t−3=4 for n ¼ 4 and n ¼ 6, respectively.
In Figs. 11(a)–11(c), we show the evolution of the

magnetic-energy-decay rate in our two-dimensional simu-
lations (see Table I in Appendix D for details), normalized
by the power of the energy to which it is proportional in the
reconnection-based theory [i.e., the power of B2 on the
right-hand side of Eq. (14), with α ¼ 1]. As explained in
Appendix D (also, see Ref. [22]), such plots are preferable
to more conventional plots of logEM against log t because
they give an unbiased estimate of the decay law. On these
plots, horizontal curves indicate agreement with theoretical

expectations. As the resistivity decreases, and hence the
Lundquist number increases, Figs. 11(a)–11(c) show
increasingly horizontal curves, in agreement with
Eq. (A5). The insets to these figures show the scaling that
would be expected if the decay proceeded via ideal motions
[21,24]. In both cases, we find clearly decreasing curves for
the largest Lundquist numbers tested, so these results are
inconsistent with the “ideal” law, Eq. (A4).
In Fig. 11(d), we show EM against t=τrec;0, where τrec;0 is

the Sweet-Parker timescale S1=2L=B at the start of the self-
similar decay period, which we take to occur at t ¼ 1 in all
cases for the purposes of this calculation. While such plots
are not well suited to an accurate determination of the decay
law, they do show a clear difference in behavior between the
case of Laplacian dissipation (n ¼ 2, blue) and hyper-
dissipation (n ¼ 4, red). As previously mentioned, the
collapse of the decay curves onto each other under such a
normalizationwas presented as evidence for a reconnection-
controlled decay in two dimensions by Ref. [50].
Figure 11(d) shows that the same behavior occurs in the
n ¼ 4 hyperdissipative case, and we find the same in the
n ¼ 6 case (not shown); thus, we agree entirely with
Ref. [50] that the decay is controlled by reconnection.
The remaining panels of Fig. 11 show other relevant

quantities besides the magnetic energy. In Fig. 11(e), we
show the evolution of the hyper-Lundquist number, which

(a) (b) (c)

(d) (e) (f)

FIG. 11. Evolution of average quantities during our two-dimensional simulations. (a) Normalized energy-decay rate for n ¼ 2,
(b) n ¼ 4, and (c) n ¼ 6. In each case, a flat profile indicates agreement with the expected decay power laws, which are t−1, t−4=5, and
t−3=4, respectively [Eq. (A5)]. Blue to red colors indicate increasing S1=nn . Insets show the scaling that would be expected if the ideal law
EM ∼ t−1 was satisfied [Eq. (A4)]. (d) Magnetic energy evolution for n ¼ 2 (blue) and n ¼ 4 (red) plotted against time renormalized to
the reconnection timescale at t ¼ 1, as in Ref. [50]. (e) Growth of the hyper-Lundquist number with time, for n ¼ 2 (blue), n ¼ 4 (red),
and n ¼ 6 (magenta) simulations. Dashed lines indicate the expected scalings. (f) Constancy of BL with time. Note that the two n ¼ 2

runs with smallest S1=nn are not plotted in panels (d)–(f) as they do not exhibit constant BL (see Table I).
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is in excellent agreement with theoretical expectations
based on Eqs. (A3) and (A5). Interestingly, the hyper-
Lundquist number is expected to grow when n > 2, so even
if the simulation starts in the Sweet-Parker reconnection

regime, it can ultimately transition to the plasmoid-
dominated regime. We reiterate that in such a regime,
which is formidable to simulate, the reconnection timescale
becomes proportional to the ideal timescale (though longer
by a factor of 102 [44]), and then we expect a transition to
the ideal t−1 decay [Eq. (A4)]. Finally, Fig. 11(f) confirms
that BL is indeed constant during the decay, as demanded
by the conservation of anastrophy.
Consider now the decay of the kinetic energy. Figure 12

shows plots of our best numerical estimates of pK vs pM.
While we note that most of our runs fall close to the pK ¼ 1
line, as predicted by Eq. (A6), the numerical evidence for
pK ¼ 1 over pK ¼ pM is not very strong because of the
similarity between the decay laws involved. Another factor
that makes this comparison difficult is the high level of noise
in the decay curves (see Fig. 15), which is not present in three
dimensions and arises because of the greatly reduced number
of magnetic structures in the two-dimensional simulations.
Because we initialize both types of simulations with the
magnetic-spectral-energy density peaked at the same wave
number, kp ≃ 33 (see Appendix D), there are initially about
33 times fewer structures in our two-dimensional runs.

APPENDIX B: ALTERNATIVE PROOF OF THE
CONSERVATION OF THE SAFFMAN HELICITY

INVARIANT

In this Appendix, we present an alternative proof of the
invariance of IH, which follows directly from the MHD
induction equation. As in Sec. III B, we rely on the
assumption of rapidly decaying spatial correlations.

TABLE I. Details of all simulations, together with the measured
decay exponents and the values of α such that BαL ∼ const.

Type n Resolution ηn ¼ νn S1=nn;0
α pM pK

H 2 5763 8.92 × 10−4 14.59 0.93 1.07 1.20
H 2 5763 6.08 × 10−4 17.68 1.16 0.85 1.00
H 2 5763 4.14 × 10−4 21.42 1.37 0.76 0.92
H 2 5763 2.82 × 10−4 25.93 1.52 0.70 0.85
H 2 5763 1.92 × 10−4 31.44 1.64 0.69 0.83
H 2 5763 1.31 × 10−4 38.09 1.74 0.66 0.85
H 4 5763 2.00 × 10−5 4.30 0.30 1.80 1.15
H 4 5763 9.28 × 10−6 5.21 0.45 1.25 1.20
H 4 5763 6.32 × 10−6 5.74 0.58 1.00 1.15
H 4 5763 4.31 × 10−6 6.32 0.90 0.75 0.97
H 4 5763 2.94 × 10−6 6.95 1.40 0.59 0.76
H 4 5763 2.00 × 10−6 7.65 1.60 0.56 0.95
H 4 5763 2.00 × 10−7 13.61 1.93 0.56 0.95
H 4 5763 2.00 × 10−8 24.20 1.99 0.56 0.91
H 4 11523 2.00 × 10−9 43.03 2.00 0.56 0.90
H 6 5763 4.48 × 10−11 13.29 1.98 0.60 0.90
H 6 5763 1.42 × 10−12 23.64 2.00 0.60 1.00
NH 2 5763 8.92 × 10−4 14.59 0.46 2.10 1.95
NH 2 5763 6.08 × 10−4 17.68 0.49 1.90 1.90
NH 2 5763 4.14 × 10−4 21.42 0.53 1.75 1.75
NH 2 5763 2.82 × 10−4 25.93 0.56 1.59 1.59
NH 2 5763 1.92 × 10−4 31.44 0.60 1.50 1.40
NH 2 5763 1.31 × 10−4 38.09 0.65 1.40 1.32
NH 4 5763 5.0 × 10−6 6.09 0.48 1.25 1.30
NH 4 5763 2.0 × 10−6 7.65 0.46 1.30 1.30
NH 4 5763 1.0 × 10−6 9.10 0.60 1.05 1.20
NH 4 5763 5.0 × 10−7 10.82 0.72 1.00 1.05
NH 4 5763 2.0 × 10−7 13.61 0.75 1.03 1.08
NH 4 5763 2.0 × 10−8 24.20 0.78 1.03 1.13
NH 4 11523 2.0 × 10−9 43.03 0.80 1.04 1.12
NH 6 5763 4.48 × 10−11 13.29 0.80 1.00 1.05
NH 6 5763 1.42 × 10−12 23.64 0.80 1.03 1.20
2D 2 11522 8.92 × 10−4 14.59 0.55 1.50 1.40
2D 2 11522 2.82 × 10−4 25.93 0.80 1.15 1.10
2D 2 23042 8.92 × 10−5 46.15 0.98 1.00 1.25
2D 2 23042 2.82 × 10−5 82.01 1.00 0.95 0.95
2D 2 46082 8.92 × 10−6 145.94 0.97 0.91 1.00
2D 4 11522 2.0 × 10−7 13.61 0.90 0.95 0.95
2D 4 11522 2.0 × 10−8 24.20 1.00 0.90 0.90
2D 4 23042 2.0 × 10−9 43.03 1.00 0.80 0.90
2D 4 23042 2.0 × 10−10 76.52 0.95 0.77 1.00
2D 4 46082 2.0 × 10−11 136.08 0.95 0.78 1.00
2D 6 11522 4.48 × 10−11 13.29 0.98 0.90 1.00
2D 6 11522 1.42 × 10−12 23.64 1.02 0.85 1.10
2D 6 23042 4.48 × 10−14 42.04 1.00 0.85 1.00
2D 6 23042 1.42 × 10−15 74.76 1.00 0.76 1.00
2D 6 46082 4.48 × 10−17 132.95 0.97 0.71 1.00

FIG. 12. Relation between the measured magnetic- and kinetic-
energy decay exponents in our two-dimensional simulations.
Equation (A6) predicts that all simulations should have pK ¼ 1,
independently of pM. While many of the simulations do fall close
to this line, the evidence for pK ¼ 1 over pK ¼ pM is not very
strong, owing to the closeness of all powers involved and the
large amount of noise in the two-dimensional simulations (see
end of Appendix A).
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Restricting to the physical case of Laplacian (n ¼ 2)
dissipation, for simplicity, the MHD induction equation
reads

∂B
∂t ¼ ∇ × ðu × B − η∇ × BÞ: ðB1Þ

Uncurling this equation, we have

∂A
∂t ¼ u × B − η∇ × Bþ ∇χ; ðB2Þ

where χ is an arbitrary scalar function. From Eqs. (B1) and
(B2), it follows that

∂h
∂t þ ∇·F ¼ −2ηB·ð∇ × BÞ; ðB3Þ

where, as elsewhere, h ¼ A·B is the magnetic helicity
density, while

F ¼ uðA·BÞ − BðA·uÞ − χB − ηA × ð∇ × BÞ ðB4Þ

is the magnetic-helicity flux. As argued in Sec. II A, the
resistive helicity-dissipation term on the right-hand side of
Eq. (B3) is small—its size is ηB2=δη, giving a helicity-
dissipation timescale of Lδη=η, which is long compared to
the magnetic-energy dissipation timescale, δ2η=η. Dropping
this term, Eq. (B3) becomes a continuity equation for
magnetic helicity. Integrating over space, we obtain its
conservation law.
Alternatively, we may use Eq. (B3), applied at x and

xþ r, to compute the evolution of the two-point helicity
correlation function. After taking an ensemble average, and
using statistical isotropy and homogeneity, we have

∂
∂t hhðxÞhðxþ rÞi þ 2

∂
∂r ·hhðxÞFðxþ rÞi ¼ 0: ðB5Þ

Integrating over r, assuming hhðxÞFðxþ rÞi < Oðr−3Þ as
r → ∞, Eq. (B5) gives

dIH
dt

¼ 0: ðB6Þ

The conservation of general Saffman-type invariants (see
Sec. IV B) may be shown from their corresponding con-
tinuity equations in precisely the same manner.

APPENDIX C: RANDOM-WALK SCALINGS FOR
LINEAR AND ANGULAR MOMENTUM

In this Appendix, we provide simple arguments for the
scalings of hjPV j2i and hjLV j2i vs R, based on the random-
walk argument employed in the main text. These are,
respectively, the expectation values of the squared linear
and angular momenta contained within a control volume

V ∼ R3. In the latter case, we take V to be spherical and
compute the angular momentum about its center. As noted
in Sec. III E, these quantities do not necessarily scale with
V as suggested by the naive random-walk estimates
employed in Sec. III B. However, the correct scalings
may be obtained if one accounts for incompressibility,
as we now demonstrate.
First, let us consider hjPV j2i for a volume V ∼ R3. The

random-walk argument put forward in Sec. III B suggests
that hjPV j2i ∝ R3. This is the correct scaling for Saffman
turbulence, where the velocity field is initialized with
long-range correlations and individual eddies can have
nonvanishing linear momentum [7,55]. However, for u
initialized with a (longitudinal) correlation function that
falls off with distance sufficiently rapidly (Batchelor
turbulence), the correct scaling turns out to be hjPV j2i ∝
R2 [7,55]. We can understand this from the random-walk
argument, taking into account incompressibility, as follows:

hjPV j2i ¼
��Z

V
d3xu

�
2
�

¼
��Z

S
dS × ψ

�
2
�

∼ L4U2R2; ðC1Þ

where u ¼ ∇ × ψ, and we have assumed that
R
S dS × ψ

will sum as a random walk (an assumption that fails if the
long-range correlations in u are strong). Therefore, the
Saffman integral

IP ¼ lim
V→∞

1

V
hjPV j2i → 0 ðC2Þ

for such turbulence. Note, also, that the linear-momentum
fluctuation in V will not be conserved because it has the
same scaling with R as the net surface flux that can cause it
to change (both are proportional to R). For the same reason,
the conservation of the total magnetic flux

R
d3xB does not

provide a constraint on the decay of turbulence without
strong long-range correlations in B (see Sec. IV C for a
discussion of turbulence that has such correlations).
Even if the Saffman integral vanishes, the local fluctua-

tions in the linear momentum dominate over the local
rotation of the eddies in determining hjLV j2i. The reason is
that structures further from the origin contribute more
angular momentum than closer structures, leading to
hjLV j2i > OðR3Þ (this effect also means that hjLV j2i
depends on the shape of V, which is why it is necessary
to assume V is spherical). In Saffman turbulence, where
correlations are long range and individual flow structures
may have finite linear momentum, it turns out that
hjLV j2i ∼ R5, owing to this effect [7]. This conclusion
can also be obtained from a random-walk argument: The
expected square angular momentum in a spherical shell of
radius r and width δr satisfying L ≪ δr ≪ r is
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δhjLj2i ∼ r2U2
t L6

4πr2δr
L3

; ðC3Þ

where Ut is the typical size of the net translational velocity
of a structure. Assuming any two shells are uncorrelated,
the total square angular momentum is simply the sum over
all shells of Eq. (C3). Integrating over r, we get

hjLV j2i ∼U2
t L3R5: ðC4Þ

Like Eq. (C1), the scaling in Eq. (C4) is also adjusted by
incompressibility when correlations fall off quickly with
distance. Integrating

LV ¼
Z
V
d3r r × u ¼

Z
V
d3r r × ð∇ × ψÞ ðC5Þ

by parts and expanding the double cross product gives

ðLVÞi ¼ −
Z
∂V

dS

�
δij −

rirj
r2

�
rψ j þ 2

Z
V
d3rψ i. ðC6Þ

Since ψ is a random field, the first integral scales as R2, so it
dominates over the second, which scales as R3=2. Therefore,
Eq. (C6) implies

hjLV j2i ∼U2
t L4R4: ðC7Þ

As above, whether ultimately Eq. (C4) or Eq. (C7) provides
the correct scaling depends on the strength of long-range
correlations between eddies. A formal derivation of these
statements can be found in Ref. [7].
In either case, the scaling of hjLV j2i is different from the

naive expectation, hjLV j2i ∼ R3, which assumes all eddies
have no translational motion. In that case, the angular
momentum of an eddy at a distance r from the origin
is ½ðrþ LÞUr − ðr − LÞUr�L3 ∼ UrL4, where Ur is the
typical rotational velocity of a structure. Then, Eq. (C3)
becomes

δhjLj2i ∼U2
rL8

4πr2δr
L3

; ðC8Þ

whence

hjLV j2i ∼U2
rL5R3: ðC9Þ

In summary, while the scalings of hjPV j2i and hjLV j2i
with R are modified from the naive R3, the correct
application of the random-walk argument (taking into
account incompressibility and the greater contribution of
more distant structures to hjLV j2i) results in the correct
scalings. Therefore, we do not consider there to be an
essential problem with the application of the random-walk
argument in our treatment of the Saffman helicity invariant

in Sec. III B, or in our discussion of general invariants in
Sec. IV B, though it should be understood that some of
these scalings may have to be modified for particular
conserved quantities that do not scale with R in a naive way.

APPENDIX D: NUMERICAL SETUP AND
SIMULATION DETAILS

In this work, we have presented numerical simulations
conducted with the spectral MHD code Snoopy [51]. The
code solves the equations of incompressible MHD with
hyperviscosity and hyperresistivity both of order n, viz.,

∂u
∂t þ u·∇u ¼ −∇pþ ð∇ × BÞ × Bþ νn∇nu; ðD1Þ

∂B
∂t ¼ ∇ × ðu × BÞ þ ηn∇nB; ðD2Þ

where p, the thermal pressure, is determined via the
incompressibility condition

∇·u ¼ 0: ðD3Þ

In all our runs, Pm≡ νn=ηn ¼ 1. The code employs a
pseudospectral algorithm in a periodic box of size 2π, with
a 2=3 dealiasing rule. Snoopy performs time integration of
nondissipative terms using a low-storage, third-order,
Runge-Kutta scheme, whereas dissipative terms are solved
using an implicit method that preserves the overall third-
order accuracy of the numerical scheme (comparisons
between the results of Snoopy and other popular MHD
codes for various nonlinear problems may be found in
Refs. [100–102]; also see Ref. [103] for a test of Snoopy’s
Hall-MHD module). Units of time are chosen so that the
initial magnetic energy is EM ¼ 1=2 (i.e., the unit of time is
the initial Alfvén crossing time of the box).
We initialize the simulations with a magnetic field whose

Fourier representation is

BiðkÞ ¼
�
iϵijk

kk
k
þ sPijðkÞ

�
FðkÞGjðkÞ; ðD4Þ

where PijðkÞ ¼ δij − kikj=k2 is the projection operator
perpendicular to k, and GiðkÞ is the Fourier transform of
a two- or three-dimensional Gaussian random field with
zero correlation length. The parameter s controls the
helicity—s ¼ 1 for a helical field, s ¼ 0 for a nonhelical
field—and is related to the fractional helicity σ discussed in
Sec. IVA by σ ¼ 2s=ð1þ s2Þ [36]. The function FðkÞ sets
the initial spectrum of the field:

FðkÞ ¼ A

	
kða−dþ1Þ=2 k < kc
kða−dþ1Þ=2 expð1 − k2=k2cÞ k > kc;

ðD5Þ

HOSKING and SCHEKOCHIHIN PHYS. REV. X 11, 041005 (2021)

041005-24



FIG. 13. Plots used to obtain the parameters α (left), pM (center), and pK (right), for each helical simulation. Simulations with n ¼ 2,
n ¼ 4, and n ¼ 6 hyperdissipation are plotted in blue, red, and magenta, respectively. In each case, a horizontal line indicates agreement
with the stated value. The shaded region indicates the times at which the decay laws appear to be valid. Grey lines correspond to the
values of α, pM, and pK at the extremes of the error bars shown in Figs. 7 and 8. Dashed lines show the time at which L ¼ 2π=5, i.e.,
when magnetic structures have scale 1=5 of the box size, which we find to be roughly the time at which finite-box-size effects begin to
affect the decay laws.

RECONNECTION-CONTROLLED DECAY OF … PHYS. REV. X 11, 041005 (2021)

041005-25



where d ¼ 2, 3 is the number of spatial dimensions, a is the
initial spectral exponent of the subinertial range (small k),
and kc sets the initial peak of the magnetic-energy
spectrum, kp, via kp ¼ ð7=4Þ1=2kc. In all runs, we set

a ¼ 7, and kc ¼ 25 ⇒ kp ≃ 33, so that the magnetic
energy is initialized at scales approximately 1=33 of the
box size. We note that the initial k7 subinertial-range
spectrum is different from the k4 spectrum (or k3 in two

FIG. 14. Same as Fig. 13, but for nonhelical simulations.
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dimensions) that the system establishes quickly in the
subsequent evolution (see Figs. 2 and 8; see also
Ref. [7] for a discussion of the role of the large-scale
spectrum in decaying hydrodynamic turbulence). Our

choice to initialize the simulation with this spectrum was
motivated by a finding in our exploratory runs that the
transient period before the system entered a period of
power-law decay was shorter when the large-scale slope

FIG. 15. Same as Fig. 13, but for two-dimensional simulations.
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was allowed to establish itself organically. Presumably, this
is because, even if the spectral exponent is the right one, the
structure of the synthetic field, Eq. (D4), is not; thus, it is
better not to prejudice the system but instead let it decide
for itself what structures to create at large scales (k < kp).
We measure the decay exponents pM and pK by plotting

jEi
1þ1=pidEi=dtj against time, selecting the parameter pi

(i ¼ M, K) so as to obtain a flat curve. As noted in
Ref. [22], plots of this type give an unbiased estimate of the
decay laws, as compared to more conventional logarithmic
plots of E against t. The reason for this is that, because the
power-law behavior is only established after a short time t0
following the initialization of the simulation, a plot of E ∼
ðt − t0Þ−p against t has a bias towards large energies, which
decreases over time, giving the false impression of a steeper
power law. Furthermore, a logarithmic t axis exaggerates
the importance of the initial times, during which the system
has not, in fact, established a steady-state decay. In a similar
way, we establish the value of α in Eq. (10) by plotting
Eα=2
M L against time and selecting the value of α to give a flat

curve. The power laws and values of α thus obtained are
given for all of our runs in Table I, together with the
resolution and initial Lundquist number for each run. For
reference, the plots from which these results are obtained
are shown in Figs. 13–15. Also plotted there are the curves
obtained using the values of pM, pK , and α at the extremes
of the error bars in Figs. 1, 2(b), 7, 8(b), and 12, to give a
sense of the precision with which these results hold.
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