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When interacting motile units self-organize into flocks, they realize one of the most robust ordered states
found in nature. However, after 25 years of intense research, the very mechanism controlling the ordering
dynamics of both living and artificial flocks has remained unsettled. Here, combining active-colloid
experiments, numerical simulations, and analytical work, we explain how flocking liquids heal their
spontaneous flows initially plagued by collections of topological defects to achieve long-ranged polar order
even in two dimensions. We demonstrate that the self-similar ordering of flocking matter is ruled by a living
network of domain walls linking all �1 vortices and guiding their annihilation dynamics. Crucially, this
singular orientational structure echoes the formation of extended density patterns in the shape of
interconnected bow ties. We establish that this double structure emerges from the interplay between
self-advection and density gradients dressing each −1 topological charge with four orientation walls. We
then explain how active Magnus forces link all topological charges with extended domain walls, while
elastic interactions drive their attraction along the resulting filamentous network of polarization
singularities. Taken together, our experimental, numerical, and analytical results illuminate the suppression
of all flow singularities and the emergence of pristine unidirectional order in flocking matter.
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I. INTRODUCTION

Dazzling nonequilibrium steady states are consistently
observed in soft condensed matter assembled from motile
units [1–4], but their lively dynamics comes at a high price.
Unlike in equilibrium, the interplay between the inner
structure and flows of active matter prohibits the emergence
of macroscopic order [4–6]. At large scales, the sustained
proliferation of topological defects traps virtually all
synthetic active materials in isotropic and chaotic dynami-
cal states. This picture of topological charges endlessly
rampaging through active crystals and liquid crystals finds
a remarkable exception in flocks [7–9]. Flocks generically
refer to collections of interacting polar units collectively
moving along the same average direction [7] as observed
over more than 6 orders of magnitude in scale, from
kilometer-long insect swarms to colloidal and molecular
flocks cruising through microfluidic devices [10–14].

Both living and synthetic flocks support self-advected
density and velocity fluctuations captured by Toner-Tu
hydrodynamics [1,7,9], thereby realizing one of the most
stable broken-symmetry phases observed in nature, in vitro
and in silico: Flocks can support long-ranged polar order
both in three and two dimensions, even when challenged by
thermal fluctuations and quenched isotropic disorder
[9,15–17]. However, after 25 years of intense research,
the very mechanism controlling the ordering dynamics of
flocking matter remains unsettled. The question is decep-
tively simple: Starting from a homogeneous ensemble of
motile particles undergoing uncoordinated motion, how
does their velocity field initially marred by a number of
topological defects heal to reach pristine orientational
order, as illustrated in the Supplemental Material Video 1
[18] and Fig. 1?
The response to this fundamental question remains

elusive or restricted to idealized incompressible systems
[19–21], and the essential obstacle to elucidate the phase
ordering of polar active matter lies in our poor under-
standing of their topological defects. Because of the
inherent coupling between polar order and density via
self-propulsion, the topological defects of flocking matter
are highly nonlinear objects yielding nonlocal flow dis-
tortions and extended density perturbations [9,17,22–24].
As a result, unlike in active nematics, or passive systems
such as ferromagnets, superfluids, liquid crystals, or even

*Corresponding author.
denis.bartolo@ens-lyon.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 031069 (2021)

2160-3308=21=11(3)=031069(15) 031069-1 Published by the American Physical Society

https://orcid.org/0000-0002-8783-7107
https://orcid.org/0000-0002-3674-9043
https://orcid.org/0000-0001-8610-2670
https://orcid.org/0000-0001-7740-5960
https://orcid.org/0000-0001-5035-6898
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.031069&domain=pdf&date_stamp=2021-09-29
https://doi.org/10.1103/PhysRevX.11.031069
https://doi.org/10.1103/PhysRevX.11.031069
https://doi.org/10.1103/PhysRevX.11.031069
https://doi.org/10.1103/PhysRevX.11.031069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


model universes [25–31], the very principles ruling the
interactions and annihilation of topological charges in
flocks remain out of reach of our current understanding
of active condensed matter.
In this article, we describe the elementary topological

excitations of two-dimensional flocking liquids and eluci-
date their phase-ordering dynamics. To do so, we first
characterize the coarsening of colloidal-roller liquids after a
rapid quench in the flock phase. We show that a self-similar
dynamics emerges from the annihilation of �1 vortices
along a filamentous network of domain walls with no
counterparts in passive materials. This lively orientational
structure is mirrored by very characteristic density patterns
having the shape of interconnected bow ties generic to all
realizations of Toner-Tu fluids. Combining experiments,
numerics, and theory, we establish that this double structure
is determined by extended singularity lines growing from

−1 vortices and shaped by the competition between self-
advection and pressure gradients. Finally, we model the
annihilation dynamics of vortex pairs and show how the
active analog of Magnus forces links defects of opposite
topological charges with domain walls localizing all shear
deformations of the spontaneously flowing liquids. In turn,
orientational elasticity attracts all topological defects along
this emergent filamentous structure which eventually van-
ishes to form a material assembled from self-propelled units
all flocking along the same direction.

II. COLLOIDAL FLOCKS

To study two-dimensional flocks, we use colloidal rollers
which we observe in microfluidic devices illustrated in
Fig. 1(a) and Supplemental Material Video 1 [18]. The
experimental methods are detailed in Appendix A and

FIG. 1. Ordering dynamics of flocking fluids: experiments and simulations. (a) Picture of an experiment showing approximately
4 × 106 colloidal rollers self-assembled into an active polar fluid. The picture reveals typical bow-tie patterns prior to the formation of a
pristine vortex pattern at system spanning scale; see Supplemental Material, Video 1 [18]. Scale bar: 1.5 cm. (b) At the onset of flocking,
the flow field of the active-colloidal fluid is plagued by a collection of �1 topological defects. The density bow ties are centered on −1
defects.þ1 defects are located at the minima of the local density. The color indicates the local packing fraction. Scale bar: 250 μm.
(c) Series of five experimental snapshots of the density field and a map of the local strain magnitude j∇pj. The polarization field is
segmented by a fully connected network of domain walls focusing the flow distortions. Each wall coincides with a bow-tie edge in the
density field. Scale bar: 2 mm. (d) Same representation as in (c) for the numerical resolution of Toner-Tu hydrodynamics, Eqs. (1) with
periodic boundary conditions, starting from a homogeneous packing fraction ρ0 ¼ 0.1 and a random velocity field (λ ¼ 0.7,
σ ¼ 5 mm2 s−2, D ¼ 10−2 mm2 s−1, α0 ¼ 100 s−1, β ¼ 10 mm−2 s). See the Appendix B. Scale bar: 1.5 mm.
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Refs. [13,32]. In short, we start the experiments by filling
circular microfluidic chambers of diameter comprised
between 2R ¼ 3.5 mm and 2R ¼ 3 cm with inanimate
polystyrene (PS) spheres of radius a ¼ 2.4 μm in a solution
of dioctyl sulfosuccinate sodium salt (AOT) in hexadecane
oil. We let the colloids sediment on the bottom electrode
and adjust their area fraction to 10%. We then take
advantage of the Quincke mechanism [33,34] to power
the rotation of the PS spheres by applying a dc electric field
across two transparent electrodes. Video 1 in the
Supplemental Material [18] shows that the microscopic
rollers undergo a flocking transition and collectively
organize their flow into a unique system spanning vortex.

III. COARSENING PATTERNS:
BOW TIES AND DOMAIN WALLS

A. Self-organization of a colloidal flocking liquid

To understand how colloidal rollers initially propelling
along random direction self-organize to achieve nearly
pristine polar order and steady flows, we measure the
instantaneous density and velocity fields ρ ¼ ρðr; tÞ and
v ¼ vðr; tÞ, as detailed in Appendix A. We find that the
spontaneous flows are first plagued by a very high density
of�1 point defects which we detect from the local winding
of the polarization field: p ¼ v=jvj; see Fig. 1(b) and
Supplemental Material [18]. Remarkably, Fig. 1(c) and
Video 2 in the Supplemental Material [18] showing the
magnitude of the instantaneous strain field j∇pj both reveal
that the point defects are not the sole singularities of the
velocity field. In fact, they live on a fully connected
network formed by persistent domain walls separating
areas of incompatible orientations.
The resulting highly tortuous flows are coupled to strong

density fluctuations repeating a very characteristic bow-tie
pattern, giving the visual impression of a lively folded
structure, even though the dynamics is strictly two dimen-
sional; see Figs. 1(a) and 1(c) and Supplemental Material
Video 3 [18]. This characteristic motif emerging from an
initially uniform distribution of rollers is delimited by two
discontinuity lines in the ρ field which coincide with
polarization walls crossing at the center of −1 defects;
see Figs. 1(b) and 1(c). Therefore, as the defects annihilate,
the number of bow ties decreases over time while their
typical extent increases until they span the whole chamber
and vanish. We are then left with a heterogeneous polar
fluid characterized by a stable radial density gradient, and a
nearly perfect azimuthal flow around a single þ1 defect
consistently reported in flocks of motile grains [12,35],
active biofilaments [10], and active colloids [23] in circular
geometries.

B. Coarsening of Toner-Tu liquids

The coarsening dynamics illustrated in Fig. 1 is robust
and does not rely on any feature specific to the Quincke

rollers. To demonstrate this universality, we numerically
solve a hydrodynamic model based on the Toner-Tu theory
of flocking [7,15]. To single out the essential competitions
ruling the phase-ordering dynamics, we simplify the original
Toner–Tu picture [15] and disregard possible effects of
long-range hydrodynamic couplings [13,36,37]. We instead
consider a minimal theory which has already proved to
quantitatively account for the salient features of colloidal-
roller fluids [17,38,39]. It combines mass conservation and
the slow dynamics of the velocity field associated with the
broken rotational symmetry of the particle orientation as
follows:

∂tρþ∇ · ðρvÞ ¼ 0; ð1aÞ

∂tvþ λv ·∇v ¼ ðα − βv2ÞvþD∇2v − σ∇ρ: ð1bÞ

Equations (1) make the intimate relation between the density
and orientational order-parameter dynamics very clear. From
a condensedmatter perspective, Eq. (1b) can be thought of as
a Ginzburg-Landau theory for a broken U(1) symmetry
embodied in the vector order parameter v complemented by
self-convection, i.e., λv ·∇v, and an ordering field σ∇ρ.
Furthermore, mass conservation naturally couples velocity
and density fluctuations. Froma fluidmechanics perspective,
Eqs. (1) are akin to the hydrodynamics of a compressible
Newtonian fluid of kinematic viscosity D, spontaneously
flowing at average speed v ¼ ffiffiffiffiffiffiffiffi

α=β
p

in response to the active
drag force ðα − βv2Þv.Whereas all the coefficients inEqs. (1)
can in principle be density dependent [32], for simplicity, we
henceforth treat them as constants, with the exception of α ¼
α0ðρ − ρcÞ andβ ¼ β0ρ, whereρc is the critical density of the
flocking transition, and α0, β0 are two constants. This choice
guarantees a transition toward collective motion upon
increasing the particle density above ρc, as well as the
saturation of the flow speed toward the speed v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
α0=β0

p
of individual Quincke rollers when ρ ≫ ρc, deep in the
ordered phase.
Using periodic boundary conditions and initializing our

numerical resolution of Eqs. (1) with homogeneous density
and random velocity, we find a coarsening dynamics
strikingly similar to our experiments; see Fig. 1(d) and
Supplemental Material Videos 4 and 5 [18]. The numerical
methods are detailed in Appendix B. The same bow-tie
patterns and domain-wall networks are consistently
observed over a range of hydrodynamic parameters as
detailed in the Supplemental Material [18].
Three comments are in order. First, our observations

contrast with the patterns found when solving the (passive)
Ginzburg-Landau equation corresponding to λ ¼ σ ¼ 0 in
Eqs. (1), and describing, for instance, the relaxational
dynamics of passive XY ferromagnets (see, e.g.,
Refs. [25,40] and Supplemental Material Video 6 [18]).
For a passive Ginzburg-Landau dynamics, no mechanism
can stabilize domain walls when a U(1) symmetry is
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spontaneously broken. All domain walls possibly formed
upon a rapid quench vanish diffusively leaving all orienta-
tional singularities at the core of �1 pointwise vortices; see
also the Supplemental Material [18]. Second, þ1 vortices
in the shape of asters are present only at the very early stage
of the dynamics in polar flocks, while they prevail over the
full phase-ordering process in passive Ginzburg-Landau
systems. Finally, beyond the qualitative agreement between
experiments and simulations seen in Fig. 1, we confront our
measurements to theoretical predictions in the next sections
and Supplemental Material [18]. Our findings unambigu-
ously confirm that Eqs. (1a) and (1b) quantitatively capture
the collective dynamics of colloidal rollers. Additional
nonlinearities [41] and couplings to additional hydrody-
namic fields [13,36,37] are irrelevant to account for the
dynamics of our colloidal flocks from the micron to the
centimeter scales. These observations could be further
rationalized with the help of a microscopic model, spe-
cifically accounting for the hydrodynamic interactions
between the Quincke rollers and the solvent, but this goes
beyond the scope of this work.

IV. MORPHOLOGY OF THE TOPOLOGICAL
DEFECTS IN FLOCKING ACTIVE MATTER

In this section, we elucidate the atypical geometry of the
topological defects of flocking matter and explain how the
−1 charges shape the emergent domain-wall network and
bow-tie patterns discussed in Sec. III.

A. + 1 vortices

It is useful to recall first what determines the morphology
of theþ1 topological defects, which is clearly illustrated by
the final vortex pattern of Fig. 1(c); see also Ref. [23]. Mass
conservation Eq. (1a) favors exclusively the emergence of
þ1 vortices, as opposed to asters and spirals [22]. They
correspond to divergenceless azimuthal flows dressed with
a radial density gradient extending over system spanning
scales. We can understand this pattern from the stationary
and long-wavelength limit of Eqs. (1), where Eq. (1b)
reduces to the balance between convection and density
gradients, i.e.,

λv ·∇vþ σ∇ρ ¼ 0: ð2Þ

We provide a detailed solution of Eq. (2) in Appendix C,
but we can readily gain some insight into the þ1 vortex
geometry by neglecting the spatial variations of the flow
speed away from the defect center. This assumption is
consistent with our experiments where the flow speed
hardly depends on the local density sufficiently far from the
defect center; see Supplemental Material [18]. As they bend
the streamlines, þ1 defects induce a transverse centrifugal
acceleration v20=r at a distance r from the vortex center,

which is balanced by a radial density gradient over the same
scale: σ∂rρ ¼ λv20=r.
This competition explains why þ1 defects are located at

the minima of the ρ field in Figs. 1(a) and 1(b). Moreover, it
also reveals that, unlike in liquid crystals, there is no
intrinsic length scale setting the size of the defect core. Both
the density and flow gradients around a þ1 vortex are
determined by the system geometry as well as the position
of other defects [23].

B. Antivortices, bow ties, and domain walls

In contrast to the vortex flow discussed in the previous
section, there exists no available characterization or theory
for the distortions induced by a −1 topological charge in
flocking matter. To gain insight into the structure of
antivortices, we use a microfluidic chamber in the shape
of an 8, Fig. 2(a), such as to guarantee the existence of an
isolated −1 topological charge in the polarization field. As
prominent in Fig. 2(a), the fluid self-organizes in a “bow-
tie” motif characterized by four wedge-shaped regions,
where the density and velocity are spatially uniform,
separated by sharp boundaries across which both fields
change discontinuously. These qualitative observations are
quantitatively confirmed by the angular spectra shown in
Figs. 2(b) and 2(c). They correspond, respectively, to
experiments and numerical solutions of Eqs. (1) in the
geometries shown in Fig. 2(a). In both cases, we measure
the polarization field p at a distance r from the vortex core
and Fourier transform it with respect to the azimuthal angle
ϕ: pðr;ϕÞ ¼ P

k pkðrÞ expðikϕÞ. Unlike in passive sys-
tems, where the angular spectra would be solely captured
by the k ¼ −1 Fourier component, Fig. 2(b) reveals that a
−1 defect excites all polarization modes in a flocking
liquid. Furthermore, the algebraic decay of the two power
spectra measured in experiments and simulations confirms
the singular nature of the flow field. The jpkj ∼ k−1 scaling,
which corresponds to the Fourier transform of a piecewise
constant function at large k values, confirms the formation
of four genuine domain walls emanating from the defect
center and separating four uniform regions of incompatible
orientations; see Figs. 3(a) and 2(b). The same features
are observed in the azimuthal spectra of the density field;
Fig. 2(c). The bow-tie pattern is delimited by four density
discontinuities along the four domain walls of the polari-
zation field. We therefore conclude that the domain-wall
network guiding the coarsening dynamics shown in Fig. 1
emerges from the extended singularities dressing the −1
topological charges of flocking matter.

C. Focusing the strain field and density gradients along
stationary domain walls

Our experiments and simulations demonstrate that flock-
ing fluids do not feature perfect antivortices, but can
support long-lived domain walls focusing all orientation

AMÉLIE CHARDAC et al. PHYS. REV. X 11, 031069 (2021)

031069-4



and density gradients. This observation challenges our
intuition based on broken U(1) phases in equilibrium
and begs for a quantitative explanation.

1. Flocking matter cannot host ideal antivortices

Let us first consider a hypothetical perfect antivortex
having constant flow speed v ¼ const and orientation p ¼
cosϕex − sinϕey representing the far-field configuration
around a classical −1 defect located at the origin. The
associated streamlines are hyperbolas described by the
implicit equation xy ¼ r20=2, with r0 the minimal distance
of the streamline from the origin attained when
ϕ ¼ ðπ=4Þn, with n ¼ �1;�3. In steady state, denoting
∂k ¼ p ·∇ differentiation along a streamline, we can recast
mass conservation Eq. (1a) into

∂kρ
ρ

¼ cos 2ϕ
r

: ð3Þ

Defining the curvilinear coordinate s and setting s ¼ 0 at
ðr;ϕÞ ¼ ðr0; π=4Þ, we can then readily integrate Eq. (3)
along a streamline to express the density variations as

log

�
ρðsÞ
ρð0Þ

�
¼

Z
s

0

ds0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − r40

p
r3

: ð4Þ

Equation (4) implies that the fluid density ρ monotonically
decreases in the upstream direction (s < 0). However, as
v2 ¼ v20ð1 − ρc=ρÞ, the flow speed decreases with ρ, and
therefore, Eq. (4) contradicts the initial assumption of a
uniform flow speed. In fact, Eq. (4) implies that flocking

FIG. 2. −1 topological charges are dressed with four domain walls and a density bow tie. (a) Top: picture of a polar liquid flowing in
microfluidic channel in the shape an 8 and corresponding polarization field. The polarization vectors are colored according to their
orientation and reveal an isolated −1 defect. Channel width: 5 mm. Bottom: polarization and density fields in the vicinity of the −1
defect center. The bow-tie structure is clearly visible in the absence of other defects. A single −1 charge is stabilized by the imposed
direction of the flow field at the boundaries. The density is represented by the local packing fraction. Scale bar: 1 mm. (b) Numerical
simulation of an isolated −1 defect. Density and polarization fields. Boundary conditions described in Appendix B. Same color maps as
in (a). Scale bar: 150 μm. (c) Angular power spectra of the polarization field computed along the circle shown in (a). The maximum of
jpkj is reached for k ¼ −1 (vertical line in the leftmost panels). However, the polarization field does not merely feature a single angular
mode as in the case of an ideal antivortex with hyperbolic streamlines. Top: experimental data. Bottom: numerical resolution of the
Toner-Tu equations (1) in the geometry shown in (b). The solid line jpkj ∼ k−1 indicates our theoretical prediction. It corresponds to the
defect geometry sketched in Fig. 3(a): Four wedge-shaped regions, where ρ and v are piecewise constant, are separated by four domain
walls emanating from the defect center. (d) Angular power spectra of the density field computed along the circle in (a). Same power
spectra and same observation as in (c). Both jpkj and jρkj decay algebraically revealing the singular nature of the bow-tie patterns.
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motion would be suppressed at a sufficiently large distance
from the defect center as v would vanish once ρ < ρc. We
therefore conclude that macroscopic polar flocks cannot
host perfect antivortices. The −1 defects of polar active
matter are inherently associated with inhomogeneities in
the density and flow speed. We show below how they can
nevertheless be partially relieved by focusing orientational
variations along one-dimensional singularity lines emanat-
ing from the defect center.

2. Strain focusing around −1 topological charges

To gain further physical insight into the strain focusing
around −1 defects, we perform an additional set of experi-
ments in the shamrock geometry shown in Fig. 3(b). The
resulting flow field hosts a −1 defect at the shamrock’s
center and one þ1 defect in each leaf. We can therefore
measure the ratio σ=λ by fitting the density profiles in the
four vortices, as detailed in the Supplemental Material [18].
We then plot the magnitude of the convective acceleration
jv ·∇vj as a function of the modulus of the local density
gradient measured in the vicinity of the defect center. Doing
the same analysis for the numerical flow field of Fig. 2(b),
we find that all experimental and numerical data measured
around the −1 charge consistently obey the scaling relation
jv ·∇vj ¼ ðσ=λÞj∇ρj; Figs. 3(b) and 3(c). This relationship
establishes that the polarization walls and density bow ties
centered on −1 defects emerge from the competition
between self-advection and density gradients generic to
all spontaneously flowing liquids.
Informed by our experimental observations, we consider

a piecewise uniform configuration for ρ and p in four
wedge-shaped regions as defined in Fig. 3(a). To find a

solution of the full active-hydrodynamic problem, we must
now show that the density and flow speed can interpolate
between two adjacent bulk values within finite domain
walls, while the orientation p rotates, either continuously or
discontinuously, by π=2.
Switching again to streamline coordinates, we write

∇ ¼ p∂k þ p⊥∂⊥, with p⊥ the counterclockwise normal
to p, and Eq. (2) takes the form

p∂k

�
1

2
λv2 þ σρ

�
þ p⊥ðσ∂⊥ρþ κv2Þ ¼ 0; ð5Þ

where κ is the signed curvature of the streamline. Similar to
the case ofþ1 vortices (see Sec. IVA), a transverse density
gradient ∂⊥ρ is necessary to counterbalance the centrifugal
acceleration κv2 resulting from the bending of the stream-
lines. However, because of the microscopic thickness of
domain walls, which sets the radius of curvature of the
streamlines, such a density gradient would have to be
significantly large at any finite speed v, thereby making the
flow potentially unstable against density fluctuations.
Alternatively, the fluid can continue traveling in a straight
trajectory (i.e., κ ¼ 0) until reaching the domain-wall
centerline. The infinite curvature originating from the
abrupt π=2 rotation is then compensated by a vanishing
flow speed without requiring any transverse gradient
(∂⊥ρ ¼ 0). In this case, the second term on the left-hand
side of Eq. (5) vanishes, whereas the balance between self-
advection and pressure gradients along the longitudinal
directions results in the conservation law

FIG. 3. Bow ties and domain walls emerge from the competition between self-convection and pressure. (a) Left: sketch of the ideal −1
defect configuration dressed with four domain walls. The density and flow speed are both piecewise uniform. Right: close-up on the
domain wall and definition of the local tangent T and normal N unit vectors at the domain wall separating the acute and the obtuse
regions. (b) Left: density field in a shamrock chamber. The density is represented by the local packing fraction. Scale bar: 1 mm. Right:
measuring the stationary flow and density fields in the square region delimited in (b) left, we plot the magnitude of the convective term
jv ·∇vj against the density gradient j∇ρj. The slope of the solid line is given by the ratio σ=λ measured independently by fitting the
density profiles around the þ1 defects hosted by the circular petals; see Supplemental Material [18]. The collapse of all data points
demonstrates that density gradients locally balance the convective pressure to stabilize the singular bow-tie patterns. (c) Same
measurements as in (b) for the numerical solution of Eqs. (1) in the geometry of Fig. 2(b). The straight line has a slope
σ=λ ¼ 7.1 mm2 s−1; see Appendix B.
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1

2
λv2 þ σρ ¼ const: ð6Þ

This relation is a flocking-matter analog of the Bernoulli
law of inviscid flows. Having assumed that deep in the
ordered phase, alignment interactions ensure the local
relation v2 ¼ v20ð1 − ρc=ρÞ, and using Eq. (6) to solve
Eq. (1b) with respect to v, finally gives the an approximated
solution for the configuration of the density and flow speed
within domains walls. Calling ρ< and ρ>, with ρ< ≤ ρ> and
ρ0 ¼ ðρ< þ ρ>Þ=2, the density of either one of the
two regions separated by the same domain wall [Fig. 3(a)],
we find

ρðsÞ ¼ ρ≶ þ λ

2σ
½v20 − v2ðsÞ�; ð7aÞ

vðsÞ ¼ v0 tanh

�
s
ξ≶

�
; ð7bÞ

where we approximate v ≈ v0 away from the domain wall
under the assumption that ρ≶ ≫ ρc. The thickness of the
domain wall is given by ξ≶ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D=ðα0ρ≶Þ
p

, as detailed in
Appendix D. This typical domain-wall solution allows
the flow and density field to interpolate between seemingly
incompatible domains. It further confirms that self-

advection, aligning interactions, and pressure gradients
are the basic ingredients dressing the−1 topological defects
with orientational domain walls and density bow ties.
In turn, the discontinuity in the density field ρ originates

from mass conservation across domain walls, in a way
reminiscent of Snell’s law in optics. As long as the number
of particles crossing a domain wall is conserved, Eq. (1a)
demands the momentum flux across each of the four
domain walls to vanish. Thus, integrating the mass con-
servation relation in the rectangular region of arbitrary size
shown in Fig. 3(a), we relate the density jump to the
orientation mismatch between the regions across a domain
wall sketched in Figs. 4(c) and 4(d). As detailed in
Appendix D, taking ρ> ¼ 2φρ0 and ρ< ¼ 2ð1 − φÞρ0, with
1=2 ≤ φ ≤ 1, deep in the flocking phase this relation
reduces to

φ ¼ cot θin
cot θin − 1

¼ tan θout
tan θout þ 1

; ð8Þ

and where θin and θout are the angles between the incoming
and outgoing streamlines and the domain wall and are such
that jθinj − jθoutj ¼ π=2; see Fig. 3(a).
Toner-Tu hydrodynamics, however, cannot prescribe the

absolute magnitude of the orientational discontinuity across
the polarization walls, the orientation, and the opening of
the bow-tie pattern. Analogous to the core radius a of þ1

FIG. 4. Self-advection and pressure gradients link topological charges with polarization walls. (a) Solving Eqs. (1), we study the
dynamics of the polarization and density field around a pair of topological defects in a periodic box. At t ¼ 0, the flow field is the
superposition of the ideal vortex and antivortex (hyperbolic streamlines). The flow gradient first focuses to form sharp domain walls
growing from the center of the −1 defect. The domain walls subsequently bend and rotate to link the þ1 charge. Once the defects are
linked, the þ1 charge approaches and annihilates with the −1 defect, thereby yielding a perfect uniaxial order. Scale bar: 500 μm.
(b) Corresponding evolution of the initially uniform density field around the defect pair. A bow-tie pattern emerges as the domain walls
grow and eventually vanishes once the two topological charges annihilate. Scale bar: 500 μm. (c) Illustration of the pressure-driven
dynamics of the domain walls around a −1 defect. (d) Once the four domain walls form four π=2 wedges and link to theþ1 charge, their
opening remains fixed provided that the incoming and outgoing flows satisfy the horizontal mirror symmetry.
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vortices, these three geometrical features are determined by
the far-field configuration of the velocity field v. They are
therefore set by the boundary conditions and interactions
with the other defects populating the system, which we
discuss in the next section.

V. EMERGENT DOMAIN-WALL NETWORKS AND
DEFECT INTERACTIONS

We now need to explain how the polarization domain
walls form the prominent network linking all �1 defects in
polar liquids when actively organizing their flows; see
Figs. 1, 5, and Supplemental Material Videos 2 and 4 [18].

A. Interactions between domain walls
and topological charges

To illuminate this spectacular example of topology-
driven self-organization, we simulate the annihilation
dynamics of a single pair of �1 defects, whose initial
configuration consists of a perfect vortex-antivortex pair in
a homogeneous Toner-Tu fluid. The image sequence of
Fig. 4 illustrates this three-step dynamics. Shortly after the
beginning of the simulation, the −1 defect evolves toward
the typical bow-tie structure, distinguishing two acute and
two obtuse wedge-shaped regions separated by domain
walls, where the velocity field rotates discontinuously by
π=2. Although the neighboring þ1 defect is initially
disconnected from the four singular lines, the east-west-
oriented wall subsequently bends and rotates to irreversibly
connect to theþ1 vortex center. Remarkably, it is only once
the link is formed that the�1 charges approach one another
along the polarization wall to eventually annihilate and
yield a pristine uniaxial flow.
Until now, our experimental and numerical findings

consistently indicate that the spin-wave elasticity associ-
ated with the polarization field plays a secondary role in the
emergence of the domain wall and bow-tie patterns.
Ignoring this contribution, the D term in Eq. (1b), the
hydrodynamics of our active fluid is essentially that of an
inviscid fluid flowing at constant speed. We can use this
simplified picture to single out the mechanisms under-
pinning the rotation of the domain walls at the onset of a
fully connected network; see Figs. 1(c) and 5(a). To do so, we
consider the typical situation involving two defects of
opposite charges sketched in Fig. 4(c). In the presence of
a nearbyþ1 vortex, the density mismatch between the acute
and obtuse regions delimited by the domain walls is further
increased. Therefore, the resulting pressure gradient drives a
lift force that rotates the domain walls. The only possible
stationary state is then given by the symmetric conformation
depicted in Fig. 4(d), where the domain walls emanating
from the same −1 defects are orthogonal and oriented at a
π=4 anglewith respect to the incoming and outgoing velocity
field. In order to go beyond this basic symmetry argument
and account for the subsequent attraction between the defect

centers, we introduce below a quantitative theory of topo-
logical-defect interactions in flocking matter.

B. Topological-defect interactions in flocking matter

Our minimal theory of defect interactions is inspired by
the dynamics of quantized vortices in superfluids; see, e.g.,
Ref. [42]. Given a topological defect of position R and
velocity _R, we show in Appendix C that convection and
density gradients result in a net active Magnus force

FM ¼ Γϵ · ðVfar − _RÞ; ð9Þ
where Vfar is the velocity resulting from the far-field
configuration of the flow, ϵ the antisymmetric tensor, with
ϵxy ¼ −ϵyx ¼ 1 and ϵxx ¼ ϵyy ¼ 0, and Γ an effective drag
coefficient associated with the configuration of the velocity
field along the core C, namely,

Γ ¼ λ

I
C
dl · ðρVÞ; ð10Þ

where V ¼ v − Vfar is the contribution to the total velocity
originating from the defect. FM reflects the transverse
response of the�1 defects when driven by an external flow
and is akin to the conventional Magnus force experienced
by vortices in Euler fluids [43]. In the case of an isolated
defect, FM is either vanishing or balanced by the longi-
tudinal drag force FD ¼ −ζ _R, with ζ a drag coefficient
resulting from the broken Galilean invariance of Eq. (1b)
and reflecting, in particular, the slow spatiotemporal
variations of the order parameter v originating from the
motion of the defect core.
In the presence of other defects, however, both forces

must balance the classic Coulomb interaction FC resulting
from the orientational elasticity of the polarization field p
(see, e.g., Ref. [44]). Under the simplifying assumption that
the three forces can be computed independently, the force
balance condition FM þ FC þ FD ¼ 0 is readily recast in
an equation of motion for the interacting defect centers Ri,
with i ¼ 1; 2; 3;…. These equations of motion read

ðζi1þ ΓiϵÞ · _Ri ¼ Γiϵ ·
X
j≠i

Vj þ 2πKi

X
j≠i

ΩiΩj
Ri − Rj

jRi − Rjj2
;

ð11Þ

where 1 is the identity tensor, Ki ¼ ζiD is the orientational
stiffness of the polarization field, Ωi ¼ �1 is the winding
number of the vortices, andwe approximateVfar ¼

P
j≠i Vj.

Although evidently simplified, this theory does not only shed
light on the linking of topological defects by polarization
walls but also explains the subsequent annihilation of defects
cruising along the resulting singularity network. Considering
again the two-defect configuration of Fig. 4 where two
defects of opposite charge are located atRþ andR−, Eq. (11)
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implies that the dynamics in the direction transverse to Rþ
andR− stops onlywhenΓ� vanishes. In particular, Γ− can be
calculated from Eq. (10) in the form

Γ− ¼ λ
X4
n¼1

ρðnÞLðnÞ½VðnÞ
in sin θðnÞin þ VðnÞ

out sin θ
ðnÞ
out�; ð12Þ

where the index n denotes each of the four domain walls
comprising the core and LðnÞ their length. We find that
the right-hand side of Eq. (12) vanishes in the geometry of

Fig. 4(d), when the polarization walls are orthogonal and of
equal length, in which case, the terms in the sum have equal
magnitude and alternating signs. Once this situation is
reached, the Magnus drag remains vanishingly small, and
the defect dynamics of Eq. (11) is then purely longitudinal. In
other words, a remarkable prediction of our theory is that
flocking liquids actively organize their flows to form
polarization walls and density bow ties making the topo-
logical-defect dynamics virtually indistinguishable from a
passive polar material devoid of such intricate excitations
[25]; see Supplemental Material Videos 2, 4, and 6 [18].
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FIG. 5. Orientational elasticity rules a self-similar phase-ordering kinetics. (a) Snapshot of the polarization field (experiments). The
red lines indicate the domain walls, the light green (resp., dark blue) circles indicate the position of the þ1 (resp., −1) topological
charges. The surrounding regions form domains of incompatible uniform polarization. (b) Time evolution of the total number of
topological defects. We take advantage of the numerical resolution of Eqs. (1) to vary independently the three essential hydrodynamic
parametersD, σ, and λ setting the magnitude of the orientational elasticity of the compressibility and of the self-advection coefficient of
the flocking liquid. All the constant parameters are the same as in Fig. 1. The number of the defects plaguing the active flows decays as
1=t for all hydrodynamic parameters. The long-time coarsening dynamics is chiefly determined by the orientational elasticity of the
polar liquid, and all data collapse on a single master curve when plotted againstDt (left panel inset). (c) Experimental characterization of
the phase-ordering kinetics in chambers of increasing size. In agreement with our simulations, the number of defects decays as 1=t.
(d) Equivalently, the absolute ξ1 and curvilinear ξ3 distances between the defects defined in (a) grow algebraically as t1=2 and so does the
correlation length ξ2 of the p field; see also the Supplemental Material [18]. (e) The typical size of the polarization domains l, however,
grows ballistically in time. (f) Three snapshots of the strain field corresponding to the experiment shown in (a). When a defect pair
annihilates (dashed line), two domain walls emanating from them bend and eventually vanish. As a result, defects defining the vertices
of the polarization network end up living along the domain walls. The typical distance between the defects (ξ3) hence grows slower than
the distance between the network vertices (l).
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VI. SELF-SIMILAR PHASE-ORDERING KINETICS

We are now equipped to quantitatively explain the phase-
ordering kinetics of flocking matter. At long time, when the
defect dynamics is purely longitudinal (Γi ¼ 0) and
restricted to the domain-wall network, Eq. (11) predicts
an algebraic kinetics as in passive XY ferromagnets and
polar liquid crystals [25,27,40,45]. For instance, as defects
annihilate via pair collisions, the number density of �1
defect pairs, nP obeys a first-order kinetic equation
∂tnP ¼ −knP. Within this mean-field picture, the time-
dependent kinetic constant k ¼ kðtÞ equates the inverse
annihilation time τ. k can be estimated by solving
Eq. (11) for a pair of �1 defects in the limit of vanishing
Magnus force, which yields jRþ − R−j2 ¼ 4πτD. This gives
k ∼D=δ2, with δ the typical intervortex distance. Finally,
taking δ ∼ 1=

ffiffiffiffiffiffi
nP

p
gives k ∼DnP, from which readily

follows the classic scaling law of defect coarsening of the
XY model and related systems, i.e., N ∼

R
dAnP ∼ ðDtÞ−1.

Equivalently, we expect the coarsening dynamics to be self-
similar and to observe a diffusive growth of all structural
length scales (up to logarithmic corrections) [25].
In order to quantitatively confirm that the asymptotic

phase ordering of flocks is ruled by the elasticity of this
active broken-symmetry phase, we first perform a series of
numerical simulations varying independently the three
essential parameters λ, σ, and D of Eq. (1b) (as well as
the additional nonlinearities of the full Toner-Tu hydro-
dynamics in the Supplemental Material [18]). Measuring
the number of defectsN in Fig. 5(b) unambiguously shows
that the defect-annihilation kinetics is chiefly controlled by
the elastic or Coulomb interactions; see also the
Supplemental Material [18]. To further ascertain the self-
similar nature of the dynamics and rule out possible finite-
size effects, we quantify the temporal evolution of the
polarization network geometry in a series of experiments
and simulations spanning an order of magnitude in size. We
show our experimental findings in Figs. 5(c)–5(e) and our
consistent numerical results in the Supplemental Material
[18]. Figure 5(c) confirms that the number of�1 topological
defects decays algebraically as N ∼ t−1 regardless of the
system size. Equivalently, the absolute and curvilinear
interdefect distances ξ1 and ξ3 defined in Fig. 5(a) both
obey a diffusive scaling law ξ ∼ t1=2; see Fig. 5(d). The
absolute distance between the defect cores matches the
orientational correlation length ξ2 measured from the spatial
decay of the two-point function CpðrÞ ¼ hpðr; tÞ · pð0; tÞi,
which also grows diffusively in time as the colloidal flocks
self-organize; see Fig. 5(d) and the Supplemental Material
[18]. However, Fig. 5(e) indicates that the size l of the
domains delimited by the polarization walls features a much
faster ballistic dynamics. This observation does not contra-
dict our explanation of the active coarsening process but
provides additional insight into the interplay between
the domain-wall geometry and the topological charge

dynamics. The faster growth of the domain size indeed
originates from the fact that the�1 defects do not only define
the vertices of the network but can also navigate along its
edges. The image sequence of Fig. 5(f) illustrates this crucial
aspect of the dynamics. The�1 defects interact solely along
the edges of the network, and each vertex hosts a defect
connected up to four defects of opposite topological charge.
But, when two defects attract and annihilate, the transverse
domainwalls theywere attached to bend and connect another
opposite charge or fade away. The defect annihilation
therefore leaves �1 defects living along an edge of the
network, away from a vertex. This intricate yet consistent
dynamics explains why the typical domain size set by the
intervertex distance exceeds the typical separation between
opposite topological charges living along the edges.

VII. CONCLUSION

Combining experiments, numerical simulations, and
analytical work, we explain how flocks of self-propelled
particles suppress the topological excitations of their flow
field and self-organize in one of the most stable ordered
phases observed in nature. This atypical phase-ordering
dynamics is ruled by the emergence of domain-wall net-
works shaped by self-advection and density gradient
around −1 topological charges. This lively structure mir-
rored by density patterns in the form of bow-tie structures
has no counterparts in passive systems. Remarkably, by
actively constraining their topological charges to cruise and
annihilate along polarization walls, flocking matter
achieves a self-similar coarsening kinetics characterized
by the same diffusive exponent as in passive ferromagnets,
superconductors, or thin films of liquid crystals. The
consistent and quantitative agreement between our exper-
imental measurements and the resolution of a minimal
hydrodynamic model of active polar flows further confirms
the universality of our findings beyond the specifics of
colloidal-roller experiments.
A natural question arises from our work: How does

collective motion emerge over system spanning scales in
higher-dimensional systems such as bird flocks, polar
tissues, or 3D synthetic flocks? How does the interplay
between density fluctuations and polar order alter the
fundamental topological excitations of high-dimensional
polar active matter and compressible active liquid
crystals?
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AMÉLIE CHARDAC et al. PHYS. REV. X 11, 031069 (2021)

031069-10



APPENDIX A: EXPERIMENTAL METHODS

1. Quincke rollers experiments

Our experimental setup corresponds to the one intro-
duced in Refs. [13,32]. We disperse polystyrene colloids of
radius 2.4 μm (Thermo Scientific G0500) in a solution of
hexadecane including 5.5 × 10−2 wt% of AOT. We then
inject the suspension in microfluidic chambers made of two
electrodes spaced by a 25-μm-thick Scotch tape. The
electrodes are glass slides coated with indium tin oxide
(Solems, ITOSOL30, thickness 80 nm). In all our experi-
ments, we let the colloids sediment on the bottom electrode
and apply a dc voltage of 130 V. The resulting electric field
triggers the so-called Quincke electrorotation and causes
the colloids to roll at a constant speed v0 ¼ 0.8 mm=s
[13,46]. The geometry of the microfluidic device is
illustrated in Fig. 1(a). We confine the Quincke rollers
inside circular chambers of diameter comprised between
2R ¼ 3.5 mm and 2R ¼ 30 mm. The confining circles are
made of a 2-μm-thick layer of insulating photoresist resin
(Microposit S1818) patterned by means of conventional
UV lithography as explained in Ref. [38]. The patterns are
lithographed on the bottom electrode. We start the experi-
ments by filling homogeneously the microfluidic cham-
bers, and the average packing fraction approximately equal
to 10% is chosen to be far beyond the flocking transition
threshold (approximately equal to 0.1%). We use the same
roller fraction in all the experiments discussed in the
main text.
We image the whole chamber with a Nikon AZ100

microscope using a magnification comprised between 2×
and 6× depending on the chamber size and record videos
with a Luxima LUX160 camera (Ximea) at a frame rate of
200 fps. We start measuring the flow field before the
application of the dc field and stop recording only once the
active flow has relaxed all its singularities; i.e., once it
forms a steady vortex pattern spanning the whole circular
chamber. Every experiment is repeated several times.

2. Velocity and density fields

In the largest chambers, we cannot detect the individual
position of all the rollers with a sufficient accuracy to rely on
particle-tracking velocimetry. Instead, we systematically use
particle-imaging velocimetry (PIV) to construct the velocity
field v. PIV is performed using the PIVLAB MATLAB package;
see Ref. [47]. The PIV box size is 83.2 × 83.2 μm2, with an
overlap of a half PIV box between two adjacent measure-
ments. We systematically check that our findings are
qualitatively insensitive to the specific choice of the PIV
parameters. The polarization and strain fields are then readily
computed with the same spatial resolution from v.
In order to measure the density field ρ, we use the

intensity scale of the 8-bit images. In practice, we first
subtract the background image (average intensity over 500
subsequent images) from each original image, and then we

divide the result by its maximal intensity value. Averaging
over boxes of 83.2 × 83.2 μm2, we finally reconstruct the
density field with the same resolution as for the velocity
field. A direct comparison with measurements performed
by locating the position of every single colloid using a
higher magnification confirms the accuracy of our method
within an accuracy of 10%.
To accurately measure the individual velocity and the

packing fraction of the colloids, we track the position of all
the rollers with a subpixel accuracy using the algorithms
introduced by Lu et al. [48] and by Crocker and Grier [49].
When powered with an electric field of magnitude 130 V, all
colloids roll at a constant speed: v0 ¼ 0.80� 0.04 mm=s.
Using the same procedure, we also measure the rotational
diffusivity DR of the rollers defined as the exponential
decorrelation rate of the velocity orientation in an isotropic
phase: DR ¼ 2.2� 0.1 s−1.

APPENDIX B: NUMERICAL METHODS

We solve numerically Eqs. (1) using an open source
software package FENICS. It offers a finite-element-method
platform for solving partial differential equations; see
Ref. [50]. We use periodic boundary conditions in a square
box of size L × L for all numerical resolutions, but for the
isolated −1 defect configuration, we use that of Figs. 2
and 3. In this case, the boundary conditions are defined as
follows: pðx ¼ −L=2; y; tÞ ¼ ex, pðx ¼ L=2; y; tÞ ¼ −ex,
pðx; y ¼ L=2; tÞ ¼ ey, pðx; y ¼ −L=2; tÞ ¼ −ey. If not
specified otherwise, we initialize all our numerical simu-
lations with a homogeneous packing fraction ρ0, and
random velocity fields and choose hydrodynamic coeffi-
cients matching the experimental values measured and
estimated in Refs. [32,51]: ρ0 ¼ 0.1, λ ¼ 0.7, σ ¼
5 mm2 s−2, D ¼ 10−2 mm2 s−1, α ¼ α0ðρ − ρcÞ where
α0 ¼ 102 s−1 and ρc ¼ 3 × 10−3, β ¼ 10 mm−2 s. All den-
sities are normalized by 1=ðπa2Þ where a ¼ 2.4 μm is a
colloid radius. L is varied from 1 to 10 mm.
The time step between two time increments δt is chosen

to be small compared to the typical relaxation timescale of
the fast-speed mode τ ¼ α−1ðρ0Þ ¼ 10−1 s. In practice, we
take 5 × 10−4 s < δt ≤ 5 × 10−3 s. The computational
mesh consists of 2N × N triangular cells. The number of
triangles per unit length is constant in all the simulations:
N ¼ L=δL, with δL ¼ 0.09 mm. The density and velocity
fields are interpolated using second-order polynomials on
Lagrange finite-element cells; see Ref. [50].

APPENDIX C: VORTEX SOLUTION FOR
+1 DEFECTS

In this Appendix, we provide a simple derivation of the
steady-state solution of Toner-Tu equations around an
isolated þ1 defect located at the origin. Assuming that
in steady state the Ginzburg-Landau term of Eq. (1b) is
saturated, i.e., v2 ¼ v20ð1 − ρc=ρÞ, we seek a vortex
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solution of Eq. (2) of the form v ¼ veϕ, with v ¼ vðrÞ by
virtue of the azimuthal symmetry of the flow (eϕ indicates
the azimuthal direction). With this ansatz, the velocity
gradient tensor in Eq. (2) can be expressed as

∇v ¼ ∂rvereϕ −
v
r
eϕer; ðC1Þ

where er is the radial unit vector. Next, replacing Eq. (C1)
in Eq. (2), one finds

r∂rρ ¼ λv20
σ

�
1 −

ρc
ρ

�
; ðC2Þ

whose solution can be expressed in terms of the Lambert
function W ¼ WðzÞ defined as the solution of the tran-
scendental equation W expðWÞ ¼ z (see, e.g., Ref. [52]),
and which satisfies

z∂zW ¼ W
1þW

: ðC3Þ

Setting z ¼ rΛ, W ¼ ρ=ρc − 1, and using Eq. (C3) finally
yields

ρ ¼ ρc

�
1þW

��
r
a

�
Λ
��

; ðC4aÞ

v ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc

r
eϕ; ðC4bÞ

where Λ ¼ λv20=ðσρcÞ. Importantly, the integration con-
stant a represents the core radius of the vortex, namely, the
distance below which the order parameter is significantly
lower than its preferred value, i.e., v ≪ v0. Unlike in liquid
crystals, however, here there is no intrinsic length scale
setting this quantity, which is then determined by the
geometry of the system as well as the position of other
defects [23].
Since WðzÞ ≈ z, for 0 ≤ z ≪ 1 and WðzÞ ≈ logðzÞ, for

z ≫ 1, one can readily find asymptotic expansions for the
density field ρ in the near and far field of the vortex,
namely,

ρ ≈ ρc

8<
:

1þ
	r
a



Λ
; r ≈ a;

1þ Λ log
	r
a



; r ≫ a:

ðC5Þ

It is worth noticing that, as opposed to point vortices in
inviscid fluids, whose velocity field v ¼ eϕ=ð2πrÞ mono-
tonically decays with the distance r from the center, in
flocking matter the speed of a vortex increases with r and
eventually saturates at large distances, where ρ ≫ ρc and v
reaches the maximal speed of the self-propelled units.

In practice, we use Eq. (C5) in the Supplemental
Material [18] to measure the ratio between the two material
parameters σ=λ.

APPENDIX D: BOUNDARY LAYER SOLUTION
FOR − 1 DEFECTS

The inhomogeneity in the speed of the flow around −1
defects cannot be entirely removed, but it can nevertheless
be partially relieved by focusing density variations along
extended, but narrow, domain walls emanating from the
defect center and acting as interfaces between homo-
geneous portions of the fluid. Here, we detail the structure
of the domain walls and their stabilizing effect. To do so,
we construct an approximated piecewise uniform solution
of Eqs. (1). Orienting the system as illustrated in Fig. 3(a)
and labeling with ρ≶ the largest and smallest density value
attained by the system, and such that ρ0 ¼ ðρ< þ ρ>Þ=2,
the solution takes the form

ðρ; vÞ ¼
� ðρ>;�v>exÞ east and west;

ðρ<;∓ v<eyÞ north and south;
ðD1Þ

where v2≶ ¼ v20ð1 − ρc=ρ≶Þ and east, west, north, and south
denote the angular position of the four wedge-shaped
regions, as displayed in Fig. 3(a). Adjacent regions have,
in general, different shape, but equal area, being delimited
by isosceles triangles with a common edge. Evidently,
Eq. (D1) is a bulk solution of Eqs. (1), featuring a −1 defect
at the origin.
The problem we want to solve reduces to finding the

constants ρ≶ as well as the configuration of both fields
within the domain walls. To address the first task, we seek a
weak solution of Eq. (1a). This solution is obtained by
expressing with

Vin ¼ v<ðcos θinN þ sin θinTÞ; ðD2aÞ

Vout ¼ v>ðcos θoutN þ sin θoutTÞ; ðD2bÞ

the velocity of the streamlines entering and exiting the
domain wall on the basis of the normal and tangent vector,
i.e., fN;Tg [see Fig. 3(a)]. Then, assuming ρ stationary and
integrating both sides of Eq. (1a) in a rectangular domain,
spanning a segment of the domain wall gives

0 ¼
Z

dA∇ · ðρvÞ ¼ ρ<v< cos θin þ ρ>v> cos θout: ðD3Þ

Parametrizing ρ> ¼ 2φρ0 and ρ< ¼ 2ð1 − φÞρ0, with
1=2 ≤ φ ≤ 1 and ρ0 ¼ ðρ< þ ρ>Þ=2, approximating
v≶ ≈ v0, under the assumption that ρ≶ ≫ ρc, and solving
Eq. (D3) with respect to φ yields Eq. (8), where we make
use of the fact that jθinj − jθoutj ¼ π=2.
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To compute the configuration of the velocity field in the
interior of the domain wall, we focus on the semi-infinite
domain above the centerline of the domain wall illustrated
in Fig. 3(a). Assuming Eq. (2) to hold in the interior of the
domain wall, Eq. (1b) reduces to

∂tv ¼ D∇2vþ ðα − βv2Þv ¼ 0 ðD4Þ

with boundary conditions

vð0Þ ¼ 0; lim
r→∞

v ¼ Vout: ðD5Þ

Now, following the discussion of Sec. IV B, we assume the
streamlines to be straight, so that, in the internal upper half
of the domain wall, v is parallel to Vout and its magnitude is
a function of the sole arc-length distance s along the
streamline. Under these assumptions, using Eq. (7) and
expanding Eq. (D4) at the cubic order in v=v> < 1 yields

D∂2
kvþ ðα> − β>v2Þv ¼ 0; ðD6Þ

with the renormalized mean-field coefficients

α> ¼ α0

�
ρ> − ρc þ

λ

2σ
v2>

�
; ðD7aÞ

β> ¼ β0

�
ρ> þ λ

2σ
ðv20 þ v2>Þ

�
: ðD7bÞ

Finally, solving Eq. (D6) yields

v ¼
ffiffiffiffiffiffi
α>
β>

r
tanh

�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D=α>
p

�
; ðD8Þ

where length scale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=α>

p
sets the upper half-width of

the domain wall. Using the same algebraic manipulations,
one can obtain an analogous approximated solution in the
lower half of the domain wall, hence, Eq. (7). Finally, in our
experiments and, in general, away from the onset of the
flocking transition, v ≈ v0, from which we obtain Eq. (7b).

APPENDIX E: MAGNUS FORCE FOR �1
DEFECTS

To compute the Magnus force FM, we assume the
velocity field to be fully relaxed and Eqs. (1) can be
simplified in the form

∂tρþ∇ · ðρvÞ ¼ 0; ðE1Þ

∂tvþ λv ·∇vþ σ∇ρ ¼ 0: ðE2Þ

The force acting along an arbitrary contour C of the system,
thus, in particular on the boundary of the defect core, can
then be expressed as

FM ¼ −
I
C
dlΠ · N; ðE3Þ

whereΠ is the momentum current density defined from the
equation

∂tðρvÞ þ∇ ·Π ¼ 0: ðE4Þ

Using Eqs. (E1b) one can find, after standard algebraic
manipulations,

∂tðρvÞ þ∇ ·

�
1

2
σρ21þ λρvv

�
¼ ð1 − λÞv∂tρ: ðE5Þ

Now, as the motion of the core generally occurs at a much
slower rate compared to the relaxation of the fields ρ and
ρv, one can assume all time derivatives to vanish, except for
_R ¼ dR=dt, with R the position of the core’s center. Using
Eqs. (E4) and (E5) then yields

Π ¼ 1

2
σρ21þ λρvv; ðE6Þ

as well as

Π ¼ σρ2 þ λρv2 ¼ const; ðE7Þ

where Π ¼ trðΠÞ and using the fact that ρv is approxima-
tively constant at the timescale of a moving defect. Solving
Eq. (E7) with respect to σρ2, replacing this in Eq. (E6), and
expressing the result in the reference frame of the moving
defect gives

Π ¼ 1

2
ðΠ − λρjv − _Rj2Þ1þ λρðv − _RÞðv − _RÞ: ðE8Þ

Dotting Π with the normal vector N and integrating over
the contour encircling the defect core thus yields two
contributions:

FM ¼ 1

2
λ

I
C
dlρjv − _Rj2N − λ

I
C
dlρðv − _RÞðv − _RÞ · N;

ðE9Þ

where we assume that
H
C dlρN ¼ 0 because of the sym-

metric structure of the core. Next, expressing v ¼ V þ Vfar,
with V the contribution to the flow velocity originating
from the moving defect, and Vfar any far-field contribution
possibly caused by other defects, we can compute the
integrals on the right-hand side of Eq. (E9), which yields

FM ¼ Γ · ðVfar − _RÞ; ðE10Þ

where the effective (transverse) drag tensor takes the
general form
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Γ ¼ λ

I
C
dlρðVN − NVÞ: ðE11Þ

In deriving this equation, we assume that Vfar and _R are
approximately uniform within the core and that, consistent
with experimental evidence,

H
C dlρV · N ¼ 0 for both �1

defects. Finally, expressing V in the basis fN;Tg of the
normal and vector, one can explicitly calculate the integral
and find Γ ¼ Γϵ, with Γ given in Eq. (10), where
dl ¼ dlT.
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