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We illuminate the many-body effects underlying the structure, formation, and dissolution of cellular
adhesion domains in the presence and absence of forces. We consider mixed Glauber-Kawasaki dynamics
of a two-dimensional model of nearest-neighbor-interacting adhesion bonds with intrinsic binding affinity
under the action of a shared pulling or pushing force. We consider adhesion bonds that are immobile due to
being anchored to the underlying cytoskeleton, as well as adhesion molecules that are transiently diffusing.
Highly accurate analytical results are obtained on the pair-correlation level of the Bethe-Guggenheim
approximation for the complete thermodynamics and kinetics of adhesion clusters of any size, including the
thermodynamic limit. A new kind of dynamical phase transition is uncovered—the mean formation and
dissolution times per adhesion bond change discontinuously with respect to the bond-coupling parameter.
At the respective critical points, cluster formation and dissolution are the fastest, while the statistically
dominant transition path undergoes a qualitative change—the entropic barrier to a completely bound or
unbound state is rate-limiting below, and the phase transition between dense and dilute phases above the
dynamical critical point. In the context of the Ising model, the dynamical phase transition reflects a first-
order discontinuity in the magnetization-reversal time. Our results provide a potential explanation for
the mechanical regulation of cell adhesion and suggest that the quasistatic and kinetic responses to
changes in the membrane stiffness or applied forces is largest near the statical and dynamical critical
points, respectively.
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I. INTRODUCTION

Cell adhesion refers to the specific binding of cells to
neighboring cells or the extracellular matrix. It plays a
major role in cell regulation [1], intercellular communica-
tion [2], immune response [3], wound healing [4], morpho-
genesis [5], cellular function [6], and tumorigenesis [7,8].
Cellular adhesion domains form as a result of the associ-
ation of transmembrane cellular adhesion molecules
(CAMs) that interact with the actin cytoskeleton [9] and
can translocate over the membrane [10]. There are four
major superfamilies of CAMs—the immunoglobulins,
integrins, cadherins, and selectins—and throughout, we
generically refer to them as CAMs. Biological adhesion
bonds are typically noncovalent, with binding energies on
the order of a few kBT corresponding to forces on the order

of 4 pN · nm at T ≃ 300 K [11,12]. As a result of thermal
fluctuations, these bonds have finite lifetimes—they can
break and reassociate depending on the receptor-ligand
distance, their respective conformations and local concen-
trations, and internal and external mechanical forces
[12,13]. While it was originally thought that the strength
of adhesion is determined by the biochemistry of CAMs
alone, more recently, cellular mechanics [14] and adhesion
bond interactions induced by thermal undulations of the
membrane [15–19] emerged as essential physical regulators
of cellular adhesion.
Diverse aspects of biological adhesion have been inves-

tigated experimentally by contact-area fluorescence recov-
ery after photobleaching [20], Förster resonance energy
transfer [21], metal-induced energy transfer [22], reflection
interference contrast microscopy [23], optical tweezers
[24], flow-chamber methods [25,26], centrifugation assays
[27,28], biomembrane force probe [29,30], micropipette
techniques [31,32], and atomic force spectroscopy [13,
33–38]. Experiments unraveled a collective behavior of
clusters of adhesion bonds that cannot be explained as a
sum of their individual behavior [3,21,39–41], which is
meanwhile well understood (see, e.g., Refs. [42,43]). More
specifically, the opening or closing of adhesion bonds is
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profoundly affected by membrane fluctuations even if their
amplitude becomes as small as 0.5 nm—smaller than the
thickness of the membrane itself [44,45].
These observations imply that many-body physics are at

play, i.e., an interplay between the coupling of nearby
adhesion bonds through deformations of the fluctuating
membrane and mechanical forces acting on the membrane
[3,15–19,41,44–50]. Supporting the idea are experimental
observations of cells changing the membrane flexibility
and/or membrane fluctuations through ATP-driven activity
[51–54], decoupling the F-actin network [55], or remodeling
the actomyosin cytoskeleton [54], and through acidosis [45],
in order to alter adhesion binding rates and strength
[41,45,56–59] or to become motile [60]. There is also a
striking correspondence betweenmembrane stiffness and the
metastatic potential of cancer cells—the stiffness of cancer
cells was found to determine their migration and invasion
potential [60]. The effect is not limited to cells; the elastic
modulus was similarly found to significantly affect the
specific adhesion of polymeric networks [61].
Most of our current understanding of the formation and

stability of adhesion clusters derives from the analysis of
individual [11] and noninteracting adhesion bonds [62–64],
and studies of collective effects in biomimetic vesicular
model systems with floppy membranes [48,65] and mobile
CAMs [66]. Therefore, the results do not necessarily apply
to cells, where membranes are stiffened by the presence of,
and receptors are anchored to, the stiff actin cytoskeleton
that can actively exert forces on the membrane [9].
Notwithstanding all theoretical efforts [15–19,43,44,

46,47,49], a consistent and comprehensive physical picture
of collective adhesion under the action of a mechanical
force that could explain the observations on live cellular
systems [3,41,56–60,67] remains elusive. For example,
whether the coupling of individual bonds causes the
collective association and dissociation rates to increase
or decrease, respectively, was speculated to depend on
the intrinsic single-bond affinity [21,68], cell type (i.e.,
surface corrugation) [39], and the state of the actin
cytoskeleton [21]. An understanding of cellular adhesion
therefore must integrate the complex interplay between the
correlated, collective (un)binding [18,41,46–49,65], the
intrinsic affinity of anchored adhesion bonds [21,68,69],
the cell type and surface topology [39], as well as the
integrity of, and forces generated by, the actin cytoskeleton
[21,34,57–59] under physiological [67] or pathological
conditions [60,70–72].
While it is omnipresent in biological systems, cell

adhesion displays subtle differences in the specific micro-
scopic details. Here, we aim to capture the essential general
features of the physics of cell adhesion. In order to arrive
at a deeper understanding of the mechanical regulation
of cellular adhesion that would explain the collective
dynamics of adhesion bonds on the level of individual
(un)binding events, we consider mixed Glauber-Kawasaki
dynamics of a generic, two-dimensional model of diffusing

nearest-neighbor interacting adhesion bonds with intrin-
sic affinity μ under the action of a shared force h [see
Fig. 1(a)].
Highly accurate analytical results on the Bethe-

Guggenheim level reveal the many-body (that is, beyond
“mean field”) physics underlying biological adhesion. We
consider in detail cluster sizes ranging from a few CAMs to
the thermodynamic (TD) limit. In the thermodynamic limit,
we determine the equation of state and complete phase
behavior that displays a phase separation and coexistence
of dense and dilute adhesion domains. The critical behavior
is investigated in detail, and striking differences are found
between pulling and pushing forces. Strikingly, we prove
the existence of a seemingly new kind of dynamical phase
transition—the mean first passage time to cluster formation
or dissolution is proven to change discontinuously with
respect to the coupling strength. This dynamical phase
transition, and, more generally, the nonlinear and non-
monotonic dependence on the membrane flexibility, may

(a)

(b)

FIG. 1. Coarse-grained model for the cooperative association or
dissociation of adhesion bonds. (a) Schematic of the effective
many-body model governed by Eqs. (1) and (2), depicting an
adhesion domain on a cell patch with 16 CAMs anchored to a stiff
substrate. Adhesion bonds are arranged on a 4 × 4 square lattice
and can assume two states, σi ¼ �1, whereþ1 corresponds to an
open (red) and −1 to a closed bond (green). Nearest-neighbor
bonds experience an effective interaction J induced by undu-
lations of the anchoring membrane. An external force h is pulling
or pushing on the adhesion domain. Each adhesion bond has an
intrinsic binding affinity μ ≥ 0 that favors a bound state. A small
number of bonds is depicted for convenience only. In this work,
we consider different system sizes, including the thermodynamic
limit. (b) Glauber and Kawasaki transition. A Glauber transition
changes the binding state of a single adhesion bond to σi → −σi
with transition rate wiðfσjgÞ [see Eq. (3)]. A Kawasaki transition
interchanges two nearest-neighbor adhesion bonds σi ↔ σk with
transition rate wikðfσjgÞ [see Eq. (5)], corresponding to lateral
diffusion.
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explain the puzzling cooperative behavior of effective
association and dissociation rates measured experimentally.
The paper is structured as follows. In Sec. II, we present

an effective mesoscopic model of adhesion clusters and
provide a practical roadmap to the diverse calculations and
analyses. In Sec. III, we present explicit analytical results
for the thermodynamic equation of state and complete
phase behavior of adhesion clusters, and in Sec. IV, we
present analytical results for the kinetics of cluster for-
mation and dissolution, both in the presence and absence
of forces. In Sec. V, we discuss the biological implications
of our results and, in particular, the suggestive role of
criticality in the context of equilibrium adhesion strength
and the kinetic dissolution and formation rates, respec-
tively. Finally, in Sec. VI, we highlight the relevance of
our results in the context of the Ising model. We conclude
in Sec. VII with a summary and a perspective on the
importance and limitations of our results, and mention
possible extensions to be made in future studies. Details of
calculations, explicit asymptotic results, and further tech-
nical information are presented in a series of Appendixes.

II. MODEL OF INTERACTING ADHESION
BONDS UNDER SHARED FORCE

A. Equilibrium

We consider a two-dimensional patch of a cell surface
with N adhesion molecules embedded in the cell mem-
brane, their lateral positions forming a lattice with co-
ordination number z (see Fig. 1). The results we derive hold
for any lattice, but we focus mainly on the square lattice
with free boundary conditions. Opposing the patch is a stiff
substrate or a neighboring cell patch with complementary
adhesion molecules occupying a commensurate lattice. The
state of individual bonds is denoted by σi, i ¼ 1; 2;…; N,
where σi ¼ þ1 if bond i is broken and σi ¼ −1 if it is
closed.
In the presence of a timescale separation, the opening or

closing of nearest-neighbor bonds is coupled via membrane
fluctuations. Following closely the arguments of Ref. [17],
we can integrate out the membrane degrees of freedom to
obtain an effective Ising-like model for the bonds within the
patch with effective Hamiltonian

HðfσigÞ ¼ −J
X
hiji

σiσj − μNcðfσigÞ þHhðfσigÞ; ð1Þ

where J ≥ 0 is the membrane-induced short-range coupling
between the bonds, hiji denotes all nearest-neighbor pairs,
μ is the effective chemical potential (i.e., intrinsic affinity)
of individual bonds, and HhðfσigÞ is the Hamiltonian
describing the effect of the mechanical force. The first
term in Eq. (1) represents the effective coupling between
nearest-neighbor bonds and is isomorphic to the interaction
term in the Ising model [73]. It is an effective measure of

bond cooperativity; i.e., it reflects that the (free) energy
penalty of closing or breaking a bond is smaller if
neighboring bonds are closed or open, respectively [17].
Such an effective description in terms of bonds coupled via
a short-range membrane-mediated interaction is feasible
when bonds are flexible and/or the patch of the cell
membrane is quite (but not completely) stiff and is thus,
rather, pulled down as a whole instead of being locally
strongly deformed by the binding of individual bonds [17].
In this limit, the coupling strength is determined by the
effective bending rigidity of the cell membrane, κ, via J ∝
1=

ffiffiffi
κ

p
(see Ref. [17] and Appendix A). In other words,

in this regime, a relatively floppier cell membrane with
lower bending rigidity induces a stronger cooperativity
between neighboring bonds than a relatively stiff mem-
brane. Notably, a detailed comparison between the full
model of specific adhesion (i.e., reversible adhesion bonds
explicitly coupled to a dynamic fluctuating membrane) and
the lattice model captured by the first term of Eq. (1)
revealed a quantitative agreement (see, e.g., Fig. 5 in
Ref. [17]) in the range 0 ≤ J ≲ 1.2 kBT that lies entirely
within the rather stiff limit [17]. This is the range of J we
are interested in, and it includes the values relevant for cell
adhesion (see Sec. V below).
The second term in Eq. (1) reflects the fact that each

closed bond stabilizes the adhesion cluster by an amount
−μ. Aside from the last termHhðfσigÞ, the Hamiltonian (1)
is isomorphic to the lattice gas model developed in
Ref. [17], and a mapping between the two models is
provided in Appendix A.
The third term in Eq. (1), HhðfσigÞ, accounts for the

mechanical force h acting on the membrane-embedded
bonds that we assume to be equally shared between
all Nc closed bonds of a given configuration fσig, i.e.,
NcðfσigÞ≡P

i δσi;−1, where δik is Kronecker’s delta. More
precisely, the force h destabilizes the bound state by
introducing an elastic (free) energy penalty on all closed
bonds whereby broken bonds remain unaffected. If all
bonds are closed, Nc ¼ N, this penalty is set to be hx0,
where x0 is a microscopic length scale specific to a given
CAM that merely sets the energy scale associated with the
elastic strain caused by h. Conversely, the penalty must
vanish in a completely dissolved configuration with
Nc ¼ 0, and it is assumed to be a smooth and monotonic
function of Nc. A mathematically and physically consistent
definition is

HhðfσigÞ ¼ −2hx0
�

1

1þ NcðfσigÞ=N
− 1

�
: ð2Þ

A “pulling force,” h > 0, favors the dissociation of bonds
while a “pushing force,” h < 0, favors their association. We
are interested in strain energies on the order of the thermal
energy per bond, i.e., jhjx0=N ¼ OðkBTÞ. Note that the
assumption of an equally shared force in Eq. (2) is valid if
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either of the following conditions is satisfied: The anchor-
ing membrane has a large combined elastic modulus (i.e.,
stiff membranes or membrane-substrate pairs), individual
bonds are flexible, the bond-density is low, or the mem-
brane is prestressed by the actin cytoskeleton [43,74,75]. In
the limit of a rather stiff membrane, both a spin represen-
tation with effective coupling J and a uniform force load
are valid approximations to describe cell adhesion under
force over a broad range of physically relevant parameters,
as we detail below. The implications of a nonuniform force
load are addressed in detail in Sec. VII and Appendix E 2.

B. Kinetics

The breaking or closure and lateral diffusion of adhesion
bonds are assumed to evolve as a discrete time Markov
chain with mixed single-bond-flip Glauber dynamics [76]
and two-bond-exchange Kawasaki dynamics [77] [see
Fig. 1(b)]. For a single jump in the Markov chain, we
define the probability to attempt a Glauber transition as
pk ∈ ½0; 1�, which controls the diffusion rate and, for the
sake of generality, is allowed to depend on the number of
closed bonds k. Similarly, the probability to attempt a
Kawasaki transition is given by 1 − pk ∈ ½0; 1�. We con-
sider two distinct scenarios: one in which adhesion bonds
are immobile as a result of being anchored to the under-
lying cytoskeleton (i.e., pk ¼ 1 ∀ k), and the other in
which adhesion molecules are allowed to transiently diffuse
(i.e., 0 < pk < 1 ∀ k; see, e.g., Ref. [10]). Conversely,
permanently associated or dissociated freely diffusing
bonds (i.e., pk ¼ 0 ∀ k) will not be considered since these
are not relevant. Further details about the respective
transition rates are given below.
Glauber transitions.—Let fσjg0i denote the bond con-

figuration obtained by flipping bond i while keeping
the configuration of all other bonds fixed, i.e., fσjg0i ≡
ð−σi; fσj≠igÞ. Moreover, let wiðfσjgÞ denote the transition
rate from fσjg to fσjg0i and ΔHiðfσjgÞ≡Hðfσjg0iÞ −
HðfσjgÞ the energy difference associated with the tran-
sition. These rates can be specified uniquely by limiting
interactions to nearest neighbors, imposing isotropy in
position space, and requiring that wi satisfies detailed
balance, i.e., wiðfσjgÞ=wiðfσjg0iÞ ¼ exp ð−βΔHiðfσjgÞÞ,
where β ¼ 1=kBT is the inverse thermal energy. The
general result reads wiðfσjgÞ ¼ α½1 − tanhðβΔHiðfσjgÞ=
2Þ�=2N, where α is an intrinsic attempt frequency that sets
the fastest timescale [76], and time will be expressed
throughout in units of α−1. Furthermore, introducing the
dimensionless quantities J̃ ¼ βJ, μ̃ ¼ βμ, and h̃ ¼ βhx0=N,
this leads to

wiðfσjgÞ ¼
α

2N

�
1 − σi tanh

�
J̃
X
hiji

σj −
μ̃

2
þ Λh̃

fσjg;i

��
;

ð3Þ

where we defined the auxiliary function

Λh̃
fσjg;i ≡

h̃
ð1þ NcðfσjgÞ=NÞð1þ Ncðfσjg0iÞ=NÞ : ð4Þ

Kawasaki transitions.—Let fσjg0ik denote the bond
configuration upon interchanging the state of the nearest-
neighbor bonds σi and σk while keeping the configuration
of all other bonds fixed, i.e., fσjg0ik ≡ ðσi ↔ σk; fσj≠ði;kÞgÞ.
We denote the Kawasaki transition rate from fσjg to fσjg0ik
as wikðfσjgÞ, where ΔHikðfσjgÞ≡Hðfσjgik0Þ −HðfσjgÞ
is the energy difference associated with the transition.
Imposing the same symmetry constraints as for the
Glauber rates, as well as detailed balance, yields the general
expression [77]

wikðfσjgÞ ¼
α

2N

�
1 −

σi − σk
2

tanh

�
J̃

�X
hiji

σj −
X
hkli

σl

���
;

ð5Þ
where we have used the fact that ðσi − σkÞ=2 ∈ f−1; 0; 1g.
As pointed out in Ref. [77], the transition is only mean-
ingful when σk ¼ −σi; otherwise, the transition brings the
system to an identical state, which is equivalent to no
transition. Note that the Kawasaki rates given by Eq. (5) do
not depend on the external force h̃ nor the binding affinity μ̃
since the Kawasaki transition conserves the total number of
open and closed adhesion bonds. However, if, in addition,
we introduce a position-dependent force or binding affinity,
the Kawasaki rates also depend on h̃ and μ̃, which we
analyze in Appendix E 2.

C. Strategy roadmap

We focus in detail on both the equilibrium properties
and the kinetics of cluster formation and dissolution for
all cluster sizes. A roadmap to our extensive analysis is
presented in Fig. 2.
For small to moderate cluster sizes, i.e., up to 50 bonds

for the equilibrium properties and up to 25 bonds in the
case of formation or dissolution kinetics, we obtain the
exact solutions using standard algebraic methods [78]. To
circumvent the explosion of combinatorial complexity for
large system sizes, we employ a variational approach—the
so-called Bethe-Guggenheim approximation [79]—to
derive closed-form expressions for the partition function;
finally, we carry out the thermodynamic limit to derive
explicit closed-form results for large adhesion clusters.
When considering the formation or dissolution kinetics of
large clusters and, in particular, in the thermodynamic limit,
we employ the local equilibrium approximation, where we
assume that the growth and dissolution evolve like a birth-
death process on the free energy landscape.
We systematically test the accuracy of all approxima-

tions by comparing them with exact results for system sizes
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that are amenable to exact solutions. The results reveal a
remarkable accuracy that improves further with the size of
the system (e.g., see Fig. 11).

III. EQUILIBRIUM BEHAVIOR OF
ADHESION CLUSTERS

A. Small and intermediate clusters

In order to quantify the equilibrium stability of adhesion
clusters, we first analyze the equation of state for the
average fraction of closed bonds, hφi≡ hNcðfσigÞi=N at
given μ̃; J̃, and h̃. To this end, we require Qk, the partition
function constrained to the number of closed bonds
NcðfσigÞ ¼ k. We therefore write the total canonical
partition function Q for a system of N adhesion bonds
as Q≡P

fσig e
−βHðfσigÞ ≡P

N
k¼0 Qk, where

Qk ≡
X
fσig

e−βHðfσigÞδNcðfσigÞ;k ¼ e½μ̃þ2h̃ðk=Nþ1Þ−1�kZk; ð6Þ

and Zk ≡P
fσig exp ðJ̃

P
hiji σiσjÞδNcðfσigÞ;k is the partition

function of the Ising model at zero field conditioned to have
a magnetization N=2 − k. The free energy density (per
bond) in units of thermal energy kBT constrained to a given
fraction of closed bonds φ, f̃NðφÞ, and the equation of state,
hφðμ̃; J̃; h̃Þi, are given by

f̃NðφÞ ¼ −N−1 lnQk; hφi ¼ N−1∂ μ̃ lnQ: ð7Þ

We note that e−Nf̃NðφÞ=Q ¼ ProbðNc ¼ NφÞ in an equilib-
rium ensemble of N bonds. The sum over constrained

configurations in Zk contains ðNkÞ terms. Whereas it can be
performed exactly for N ≲ 50, it explodes for larger system
sizes. To overcome the computational complexity, we
employ a variational approach—the Bethe-Guggenheim
(BG) approximation [79]—yielding (see derivation in
Appendix B 1)

Zk ≈ ZBG
k ¼

�
N
k

�
ψ z̄k
z̄Nðz̄X�

kÞ
ψ z̄k
z̄Nðz̄X̄kÞ

e−z̄ J̃ð2X̄k−N=2Þ; ð8Þ

where z̄ ¼ P
N
i¼1 zi=N is the average coordination number

in a cluster with local coordination zi that accounts for
finite-size effects, X�

k ≡ kðN − kÞ=N, and we have defined

X̄k ≡ 2X�
k

½1þ 4X�
kðe4J̃ − 1Þ=N�1=2 þ 1

; ð9Þ

and introduced the auxiliary function

ψb
aðxÞ≡Γð½b− x�=2þ 1ÞΓ2ðx=2þ 1ÞΓð½a−b− x�=2þ 1Þ;

ð10Þ

where ΓðzÞ stands for the Gamma function. Note that by
setting X̄k ¼ X�

k in Eq. (8), we recover the mean field (MF)
result ZMF

k (which happens automatically for J̃ ¼ 0 or
k ¼ 0 ∨ N), which is discussed in Appendix C 1.
Figures 3(a)–3(c) show a comparison of the free energy

density f̃NðφÞ for a cluster of 40 bonds for various affinities
μ̃ and external forces h̃; these figures confirm the high
accuracy of the Bethe-Guggenheim approximation, on the
one hand, and the systematic failure of the mean field
result, on the other hand. This signifies that correlations
between adhesion bonds decisively affect cluster proper-
ties. Moreover, pairwise correlations captured by the Bethe-
Guggenheim approach are apparently dominant, whereas
three-body and higher-order correlations that were ignored
are apparently insignificant.
Similarly, in Figs. 3(d)–3(f), we depict the equation of

state for a cluster of 40 bonds. The Bethe-Guggenheim
approximation (blue lines) is very accurate for all values of
J̃, whereas the mean field approximation (red lines) fails for
intermediate values of the coupling. We observe striking
differences in the dependence of hφi on the coupling J̃ (and
hence membrane rigidity) with respect to the intrinsic
binding affinity μ̃ in the presence of a pulling force [see
Fig. 3(f)]. At strong coupling between adhesion bonds, hφi
depends strongly on μ̃. In the presence of a pulling force,
adhesion bonds with a weak affinity are, on average, all
broken, whereas they are all closed if the affinity is large.
Notably, the dependence of hφi on the coupling J̃ at zero
force [see Fig. 3(e)] agrees qualitatively well with exper-
imental observations [21,21,39,68] and hints at some form
of critical behavior underneath, which we discuss in more
detail in Sec. V.

FIG. 2. Strategy roadmap. We exactly solve for small system
sizes N ≤ 5 × 5. The thermodynamics of larger systems is treated
on the level of the highly accurate Bethe-Guggenheim approxi-
mation and the kinetics by assuming local equilibrium.Within the
Bethe-Guggenheim approximation, we take the TD limit N → ∞
and determine the phase behavior, master the scaling of dis-
solution or formation kinetics, and analyze the statical and
dynamical critical behavior.
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B. Thermodynamic limit

To explore the phase diagram in detail and analyze the
critical behavior, we consider the thermodynamic limit of
the BG and MF free energy density, i.e., the scaling limit

f̃BG;MFðφÞ≡ lim
N→∞;

k=N¼φ¼const

f̃BG;MF
N ðφÞ; ð11Þ

which exists and is given by

f̃BGðφÞ ¼ −μ̃φþ 2h̃φ
1þ φ

þ z̄
2
J̃½4Ωφ − 1� þ z̄

2
½Ξðφ −ΩφÞ þ Ξð1 − φ − ΩφÞ þ 2ΞðΩφÞ� þ ð1 − z̄Þ½ΞðφÞ þ Ξð1 − φÞ�;

ð12Þ

where X�
φ=N ¼ φð1 − φÞ, Ωφ ≡ X̄φ=N, and we have in-

troduced the auxiliary function ΞðxÞ≡ x ln x. The result for
f̃MFðφÞ is given in Appendix C 1. Somewhat surprisingly,
the free energy density of a finite system, f̃BGN ðφÞ, con-
verges to the thermodynamic limit f̃BGðφÞ already for
N ≳ 100. For convenience, we henceforth drop the super-
script BG when considering the Bethe-Guggenheim result,
i.e., f̃BGðφÞ → f̃ðφÞ.
The equation of state in the thermodynamic limit is

determined by means of the saddle-point method (for the
derivation, see Appendix D), yielding a weighted sum over
φ0
i , the M global minima of f̃ðφÞ:

hφiTD ¼ lim
N→∞

N−1∂ μ̃ lnQBG ≃
XM
i¼1

ciφ0
i ; ð13Þ

where f̃ðφ0
i Þ ¼ f̃min; ∀ i, and ≃ stands for the asymptotic

equality in the thermodynamic limit. In practice, M is
either 1 (unique minimum) or 2 (twofold degenerate
minima). The minima have the universal form φ0

m ¼ ξ4
μ̃;J̃;h̃

=

ð1þ ξ4
μ̃;J̃;h̃

Þ, with the coefficients ξμ̃;J̃;h̃ and weights ci given
explicitly in Appendix D. The equation of state hφi for a
finite cluster seems to converge to the saddle-point asymp-
totic hφiTD already forN ≳ 400 for any value of the force h̃,
bond affinity μ̃, and coupling J̃ [see Figs. 4(a)–4(c)] and is
qualitatively the same as for smaller clusters [compare
Figs. 4(a)–4(c) with Figs. 3(d)–3(f)]. However, important
differences emerge in the thermodynamic limit—the
system may undergo a phase transition and phase separate
into dense (“liquid”) and dilute (“gas”) phases of closed
bonds with composition φl and φg, respectively (see
also Ref. [49]).

(a) (b) (c)

(d) (e) (f)

FIG. 3. Free energy landscape and equation of state for small clusters. (a)–(c) Free energy density conditioned on φ, f̃NðφÞ from
Eq. (7) for a system of N ¼ 5 × 8 bonds on a square lattice for (a) a pushing force h̃ ¼ −0.5, (e) no force h̃ ¼ 0, and (f) pulling force
h̃ ¼ 0.5. Black symbols depict exact results, blue symbols the Bethe-Guggenheim approximation, and red symbols the mean field result.
(d)–(f) Equation of state, hφi, for a cluster of 5 × 8 adhesion bonds on a square lattice as a function of the dimensionless coupling J̃ for
(d) a pushing force h̃ ¼ −0.5, (e) no force, and (f) a pulling force h̃ ¼ 0.5. Symbols depict exact results, blue lines correspond to the
Bethe-Guggenheim approximation, and red lines are the mean field result.
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C. Phase diagram and critical behavior

To determine the phase diagram, we require the binodal
J̃bðφÞ and spinodal J̃sðφÞ lines. The binodal line J̃bðφÞ
denotes the onset of phase separation and is determined by
the “common tangent” construction, i.e., from the solution
of the coupled equations

f̃ 0ðφlÞ ¼ f̃ 0ðφgÞ;
f̃ðφlÞ − f̃ðφgÞ

φl − φg
¼ f̃ 0ðφlÞ; ð14Þ

where the prime denotes the derivative with respect to φ at
constant J̃. The spinodal line J̃sðφÞ, also known as the
stability boundary, denotes the boundary between the
metastable and unstable regimes and is determined by
f̃ 00ðφÞ ¼ 0. For a nonzero force, h̃ ≠ 0, we determine J̃bðφÞ
numerically, whereas we obtain an exact result for a
vanishing force h̃ ¼ 0 that reads (see derivation in
Appendix B 2)

J̃bðφ; h̃Þjh̃¼0 ¼
1

2
ln

�
1 − χφ

χ1=z̄φ − χ1−1=z̄φ

�
; ð15Þ

where we have introduced χφ ¼ φ=ð1 − φÞ. The spinodal
line for any force h̃ is, in turn, given exactly by

J̃sðφ; h̃Þ ¼
1

4
ln

�½φ −Φðφ; h̃Þ�½1 − φ −Φðφ; h̃Þ�
Φðφ; h̃Þ2

�
; ð16Þ

with the auxiliary function

Φðφ; h̃Þ≡ 2φð1 − φÞ þ z̄

�
1 − z̄

φð1 − φÞ −
4h̃

ð1þ φÞ3
�−1

; ð17Þ

which is defined for ð2 − z̄Þ=8h̃ ≤ φð1 − φÞ=ð1þ φÞ3 ≤
ð1 − z̄Þ=4h̃. Note that it follows from their respective
definitions that neither J̃bðφ; h̃Þ nor J̃sðφ; h̃Þ depends on
μ̃ (for a proof see Appendix B 2). The phase diagram for
a pushing, zero, and pulling force h̃ is shown in Figs. 4(d)–
4(f) and displays, above the critical coupling strength
J̃ > J̃scrit, a phase separation into a dense and dilute phase
of closed bonds with compositions φl and φg, respectively.
A pushing force h̃ < 0 lifts the critical coupling and “tilts”
the phase diagram towards higher density; i.e., at a given
coupling J̃ > J̃scrit, the density of both phases increases.
Conversely, a pulling force h̃ > 0 lowers the critical
coupling and “tilts” the phase diagram towards lower
density; i.e., at a given coupling J̃ > J̃scrit, the density of
both phases decreases. The biological implications of
these results will be discussed in Sec. V. The binodal

(a) (b) (c)

(d) (e) (f)
Spinodal

Binodal

FIG. 4. Equation of state and phase diagram in the thermodynamic limit. (a)–(c) hφi for a cluster of 20 × 20 adhesion bonds on a
square lattice (symbols) and the saddle-point asymptotic hφiTD from Eq. (13) as a function of the dimensionless coupling J̃ for various
affinities μ̃ and for (a) a pushing force h̃ ¼ −1, (b) no force, and (c) a pulling force h̃ ¼ 1. The dashed vertical line denotes the (statical)
critical coupling strength J̃scrit whereupon the system phase separates into dense and dilute phases of closed bonds. (d,e) Phase diagram
for (d) a pushing force h̃ ¼ −1, (e) no force, and (f) a pulling force h̃ ¼ 1; the full and dashed lines depict the binodal and spinodal lines,
respectively. The shaded area depicts the region where the system is metastable. The blue circle depicts the (statical) critical point
ðφs

crit; J̃
s
critÞ. Inset in (e): schematic of the free energy landscape f̃ðφÞ below the critical coupling J̃ < J̃scrit (bottom) displaying a single

minimum, and a bistable free energy landscape above the critical coupling J̃ > J̃scrit (top), with the black and red symbols illustrating the
meaning of the phase compositions highlighted in the phase diagram.
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and spinodal lines in the mean field approximation are
given in Appendix C 2.
We now address in detail the behavior of the statical

critical point ðφs
crit; J̃

s
critÞ—the point where the binodal

and spinodal lines merge, J̃bðφs
crit; h̃Þ ¼ J̃sðφs

crit; h̃Þ≡
J̃scritðφs

crit; h̃Þ. The critical point denotes the onset of phase
separation and is the solution of f̃ 000ðφÞ ¼ 0, which, in the
absence of the force, yields (for the derivation, see
Appendix B 2) ðφs;0

crit; J̃
s;0
critÞ≡ 1

2
½1; lnðz̄=z̄ − 2Þ�. In the pres-

ence of a force h̃ ≠ 0, we obtain the exact solution using
a Newton’s series approach [80–82] (for details regarding
the Newton series, see Appendix D 2). The analytical result
is nontrivial and is given explicitly in Appendix B 2. In
addition, for small forces jh̃j ≪ 1, we derive a second-
order perturbation expansion J̃scrit¼ J̃s;0crit−δJ̃scritðh̃ÞþOðh̃3Þ,
where

δJ̃scritðh̃Þ ¼
8

27

1

z̄ − 2

�
h̃þ 2

27

z̄þ 2

z̄ − 1
h̃2
�
; ð18Þ

and, correspondingly,φs
crit ¼ φs;0

crit − δφcritðh̃Þ þOðh̃3Þ, with

δφcritðh̃Þ ¼
2

3

ðz̄=3Þ2
ðz̄ − 2Þðz̄ − 1Þ

�
h̃þ 16

9

ðz̄=3Þ2 − z̄þ 1

ðz̄ − 2Þðz̄ − 1Þ h̃
2

�
:

ð19Þ

The dependence of the statical critical point on the external
force is depicted in Fig. 5. A pulling force (red) pulls the
critical point towards lower J̃ and lowerφ, whereas a pushing
force (blue) effects the opposite and shifts the critical point
towards larger coupling J̃ and higher density φ. The mean
field statical critical point can be derived exactly as a function
of the force h̃, and the result is given in Appendix C 2.

IV. KINETICS OF CLUSTER FORMATION
AND DISSOLUTION

A. Small and intermediate clusters

We are interested in the kinetics of cluster formation
from a completely unbound state and cluster dissolution
from a completely bound state. More general initial
conditions are treated in Appendix E. We quantify the
kinetics by means of the mean first passage time hτd;fi,
where the subscripts d and f stand for dissolution and
formation, respectively, and τd;f is the first passage time
defined as

τd ≡ inf
t
½φðfσigtÞ ¼ 0jφðfσig0Þ ¼ 1�;

τf ≡ inf
t
½φðfσigtÞ ¼ 1jφðfσig0Þ ¼ 0�; ð20Þ

where fσigt denotes the instantaneous state at time t. A
cluster with N adhesion bonds has 2N possible states fσig.
We enumerate them such that the first state corresponds to
all bonds closed and the final state to all bonds broken. The
transition matrix of the Markov chain describing mixed
Glauber-Kawasaki dynamics on this state space has dimen-
sion 2N × 2N , whereby we must impose absorbing boun-
dary conditions on the fully dissolved and fully bound
states, respectively. An exact algebraic result for hτd;fi is
given in Eq. (E2) in Appendix E 1 but requires the inversion
of a ð2N − 1Þ × ð2N − 1Þ sparse matrix, followed by a sum
over 2N − 1 terms, which is feasible only for N ≲ 5 × 5.
As a result of the nonsystematic cluster formation and

dissolution at zero coupling J̃ ¼ 0, and motivated by the
intuitive idea that the dynamics is dominated by low-energy
(i.e., minimum action) paths at large coupling J̃ ≫ 1, we
make the so-called local equilibrium approximation to treat
large clusters. Thereby, we map the dynamics of the 2N ×
2N state space onto a one-dimensional birth-death process
for the instantaneous number of closed bonds k (see Fig. 6),
with effective transition rates

w̄k→k�1 ≡ Q̃−1
k

X
fσig

e−βHðfσigÞw�
exitðfσigÞδNcðfσigÞ;k; ð21Þ

where we have defined the reweighted canonical partition
function Q̃k ≡Qk=pk, where pk is the Glauber attempt
probability in state k, and we have introduced the exit rates
from configuration fσig in the “þ” [i.e., Ncðfσig0jÞ ¼
NcðfσigÞ þ 1] and “−” [i.e., Ncðfσig0jÞ ¼ NcðfσigÞ − 1]
directions, respectively, given by

w�
exitðfσigÞ≡

XN
j¼1

wjðfσigÞδNcðfσig0jÞ;k�1: ð22Þ

Note that only the Glauber transitions, given by Eq. (3),
enter in Eq. (22). The Kawasaki transitions given by

Pushing force

Pulling force

FIG. 5. Statical critical point as a function of the force h̃.
Symbols depict the exact solution using a converged Newton’s
series, and the gradient line depicts the two-term (so-called
quadratic) approximation of the complete Newton’s series, which
is very accurate for any pulling and up to a moderate pushing
force, i.e., h̃ ≥ −1. Explicit expressions are given in Appendix E.
The black line corresponds to the prediction of second-order
perturbation theory from Eqs. (18) and (19), which is valid for
small forces.
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Eq. (5), which conserve the total number of closed bonds,
enter the dynamics through the diagonal of the transition
matrix as the waiting rates w̄k→k ¼ 1 − w̄k→kþ1 − w̄k→k−1,
where the right-hand side follows from conservation of
probability. Within the local equilibrium approximation,
the mean first passage time for cluster dissolution and
formation become, respectively,

hτdi ≈ hτled i ¼
XN−1

k¼0

1

w̄k→kþ1

XN
l¼kþ1

Q̃l

Q̃k
;

hτfi ≈ hτlef i ¼
XN
k¼1

1

w̄k→k−1

Xk−1
l¼0

Q̃l

Q̃k
; ð23Þ

where one can further use the detailed balance relation
Q̃kw̄k→k−1 ¼ Q̃k−1w̄k−1→k (which we prove in Appendix E
3) to interchange the backward and forward rates in the
second line and change the summation according toP

N
k¼1 w̄

−1
k→k−1

P
k−1
l¼0 Q̃l=Q̃k →

P
N−1
k¼0 w̄

−1
k→kþ1

P
k
l¼0 Q̃l=Q̃k.

In Appendix E 4, we prove that Eq. (23) holds for any birth-
death process where the transition rates obey detailed
balance. A comparison of the exact result given by
Eq. (E2) with the local equilibrium approximation in
Eq. (23) shown in Fig. 7 demonstrates the remarkable
accuracy of the approximation already for N ∼ 20 bonds,
which increases further for largerN. The reason for the high
accuracy can be found in the large entropic barrier to align
bonds in an unbound or bound state, effecting a local

equilibration prior to complete formation or dissolution.
Moreover, the local equilibrium approximation is expected
to become asymptotically exact even for small clusters in
the ideal, noninteracting limit J̃ → 0, as well as for J̃ → ∞,
which is dominated by the minimum-action, “instanton”
path. A further discussion of the local equilibrium approxi-
mation and an approximate closed-form expression for
Eq. (23) for larger systems is given in Appendixes E 5
and E 6.
The mean first passage times for cluster dissolution or

formation shown in Fig. 7 both display a strong and
nonmonotonic dependence on the coupling parameter J̃
with a pronounced minimum, hinting at some form of
critical dynamics. As we prove below, this minimum in the
thermodynamic limit indeed corresponds to a dynamical
critical coupling.

B. Thermodynamic limit

We now consider dissolution and formation kinetics in
very large clusters, i.e., in the limitN → ∞. Note that while
the mean first passage time formally diverges, i.e.,
limN→∞hτd;fi ¼ ∞, it is expected to do so with a math-
ematically well-defined “bulk scaling.” In anticipation of
an exponential scaling of relevant timescales with the

FIG. 6. Mapping the full dynamics onto a birth-death process.
For convenience, and without any loss of generality, we show
here an example of a system composed of three adhesion
bonds on a one-dimensional lattice. The mapping holds for
any lattice geometry. In the full dynamics, each lattice configu-
ration represents a different node, comprising a 2N × 2N tran-
sition matrix, whereas in the local equilibrium approximation, we
only need to distinguish between states with a different number of
closed or open bonds, comprising a ðN þ 1Þ × ðN þ 1Þ transition
matrix.

(a)

(b)

FIG. 7. Kinetics of dissolution and formation of small clusters.
Mean first passage time for (a) cluster dissolution and (b) for-
mation as a function of the coupling J̃ for N ¼ 4 × 5 adhesion
bonds with intrinsic affinity μ̃ ¼ 0.5 in the absence of a force (for
nonzero force values, see Fig. 16). Colored lines correspond to
exact results obtained from Eq. (E2) for various values of the
Glauber attempt probability p, which we set to be constant
pk → p, and symbols denote the local equilibrium approximation
Eq. (23) evaluated with the exact Qk and w̄k→k�1 from Eqs. (6)
and (21), respectively.
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system size N, we define the mean formation or disso-
lution time per bond in the thermodynamic limit as
htd;fi≡ limN→∞hτd;fi1=N . Using the local equilibrium
approximation for the mean first passage time given by
Eq. (23), and assuming that the Glauber attempt proba-
bilities pk are strictly subexponential in N, we prove via a
squeezing theorem in Appendix E 7, that the exact mean
dissolution and formation time per bond in the thermody-
namic limit reads

htd;fi ¼ ef̃ðφ
d;f
maxÞ−f̃ðφd;f

minÞ ≡ eΔf̃
†
; ð24Þ

where

φd
max ≡ sup

φ<1
f̃ðφÞ; φd

min ≡ inf
φ>φd

max

f̃ðφÞ;

φf
max ≡ sup

φ>0
f̃ðφÞ; φf

min ≡ inf
φ<φf

max

f̃ðφÞ: ð25Þ

Equation (24) shows that the mean first passage per bond
in the thermodynamic limit is determined exactly by the
largest left- or right-approaching free energy barrier
between the initial and final points, and it is completely
independent of the Glauber attempt probability pk. We
obtain analytical results for Eqs. (24) and (25) for arbitrary

J̃, μ̃, and h̃. Since these results are somewhat complicated
for μ̃ > 0 and h̃ ≠ 0, we present them in Appendix E 8 and
Fig. 17. In the force-free case with zero intrinsic affinity,
i.e., μ̃ ¼ h̃ ¼ 0, they turn out to be surprisingly compact
and are given by

htd;fi ¼

8>>><
>>>:

2e−2J̃cosh2J̃ 0 ≤ J̃ ≤ 1
2
ln 2

4 sinh22J̃
e4J̃−2

1
2
ln 2 ≤ J̃ ≤ 1

2
ln ð1þ ffiffiffi

2
p Þ

8e2J̃ sinh2J̃
e4J̃−2

J̃ ≥ 1
2
ln ð1þ ffiffiffi

2
p Þ;

ð26Þ

such that for J̃ ¼ 0 and J̃ → ∞ we have htd;fi ¼ 2 as the
maximum, and the minimum occurs at J̃ ¼ ln ð1þ ffiffiffi

2
p Þ=2,

where htd;fi ¼ ð4=7Þð2 ffiffiffi
2

p
− 1Þ. Figures 8(a) and 8(b) show

a comparison of the prediction of Eq. (24), with the results
for finite systems given by Eqs. (23) and (21) rescaled
according to hτd;fi1=N . Already for N ¼ 900, a nearly
complete collapse to the thermodynamic limit (24)
is observed for both cluster formation and dissolution.
The mean field analogue of Eq. (26) is given by Eq. (E35)
for a general z̄ and remarkably has a universal (i.e.,
z̄-independent) minimum value of htd;fiMF≈1.0785 at the
dynamical critical coupling J̃ ¼ 2 lnð2Þ=z̄ [see Eq. (E37)].

(a)

(b)

(c)

FIG. 8. Master scaling of mean dissolution and formation times per bond for finite clusters and in the thermodynamic limit, and the
origin of the dynamical critical point. (a) htd;fi for cluster dissolution and (b) formation as a function of the coupling J̃ for a pair of
intrinsic affinities μ̃ ¼ 0 and μ̃ ¼ 0.5 and various cluster sizes (symbols) as well as the thermodynamic limit (lines) in the absence of an
external force. Symbols are evaluated with the local equilibrium approximation, Eq. (23), usingQBG

k [Eqs. (6) and (8)] and w̄k→kþ1 from
Eq. (21). The discrepancy between the lines and symbols is due to finite-size effects. (c) In the thermodynamic limit and, more generally,
for large clusters, the mean dissolution or formation time htd;fi depends only on the largest free energy barrier [see Eq. (24)]. For small
coupling (regime I), the latter corresponds to the difference between the free energy minimum and the fully dissolved or bound
configuration, Δf̃† ¼ Δf̃†0;1, respectively. At the statical critical coupling value, J̃scrit (onset of regime II), a free energy barrier emerges,

separating the metastable from the stable phase, Δf̃†H⇄L, but the largest free energy barrier is still Δf̃
† ¼ Δf̃†0;1. At the dynamical critical

coupling, J̃dcrit (onset of regime III), the free energy barrier separating the metastable from the stable phase becomes dominant,
Δf̃† ¼ Δf̃†H⇄L. The depicted free energy landscapes f̃ðφÞ correspond to Eq. (12) with μ̃ ¼ 0.05 and h̃ ¼ 0.
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Moreover, htd;fiMF displays an unphysical divergence in the
limit J̃ → ∞ (see Fig. 18).

C. Dynamical phase transition and critical behavior

Strikingly, the mean dissolution and formation time in
the thermodynamic limit (24) display a discontinuity as a
function of the coupling J̃ [see jumps in ∂ J̃htd;fi depicted in
the insets in Figs. 8(a) and 8(b)]. In particular, for zero
affinity and external force, we find from Eq. (26) that

lim
J̃↗1

2
lnð1þ ffiffi

2
p Þ

∂ J̃htd;fi ¼ −ð4=7Þ2ð13
ffiffiffi
2

p
− 17Þ;

lim
J̃↘1

2
lnð1þ ffiffi

2
p Þ

∂ J̃htd;fi ¼ ð8=72Þð9
ffiffiffi
2

p
− 8Þ;

which implies the existence of a first-order dynamical
phase transition at the dynamical critical coupling J̃dcrit and
hence a qualitative change in the dominant dissolution or
formation pathway. Coincidentally, the Bethe-Guggenheim
dynamical critical point for μ̃ ¼ h̃ ¼ 0 coincides with
the exact (Onsager’s) statical critical point for the two-
dimensional zero field Ising model [83]. Similarly, the
mean field dynamical critical point for μ̃ ¼ h̃ ¼ 0 coincides
with the Bethe-Guggenheim statical critical point (for a
more detailed discussion, see Appendixes E 8 and E 9).
Strikingly, the dynamic critical point always corresponds to
the minimum of htd;fi. The explanation of the physics
underneath the dynamical phase transition and the meaning
of J̃dcrit are given in Fig. 8(c).
The qualitative behavior of htd;fi has three distinct

regimes. In regime I, where 0 ≤ J̃ < J̃scrit, the free energy
landscape f̃ðφÞ has a single well, and according to Eq. (24),
htd;fi is determined by Δf̃†0;1—the free energy difference
between the minimum and the absorbing point (i.e., φ ¼ 0
for dissolution and φ ¼ 1 for formation, respectively). Note
that Δf̃†0;1 is a decreasing function of J̃.
At the statical critical coupling J̃scrit, which marks the

onset of regime II, a second free energy barrier emerges,
delimiting the phase-separated low (L) and high (H)
density phases. We denote this free energy barrier by
Δf̃†H⇄L, where → and ← stand for dissolution and for-
mation, respectively. Note that Δf̃†H⇄L is an increasing
function of J̃. In regime II, when J̃scrit ≤ J̃ < J̃dcrit, the
dissolution and formation first evolve through a (thermo-
dynamic) phase transition and, finally, must also surmount
the second, predominantly entropic barrier to the complete
dissolved or bound state. In regime II, as in regime I, the
largest free energy barrier remains the free energy differ-
ence between the minimum and the absorbing point,
i.e., Δf̃†0;1 > Δf̃†H⇄L.
Exactly at the dynamical critical coupling J̃dcrit, the two

barriers become identical, Δf̃†0;1 ¼ Δf̃†H⇄L, and for

J̃ > J̃dcrit, we always have Δf̃†0;1 < Δf̃†H⇄L. Therefore, in
regime III, the rate-limiting event becomes the phase
transition itself, whereas the fully dissolved or bound
state is thereupon reached by typical density fluctuations.
SinceΔf̃†0;1 decreases with J̃ whileΔf̃

†
H⇄L increases with J̃,

the mean dissolution or formation time per bond at the
dynamical critical coupling J̃dcrit must be minimal, which
explains the dynamical phase transition completely.
Note that the dynamical phase transition is preserved

under initial conditions that lie beyond the largest free energy
barrier (from the final or absorbing state). For example, we
may consider φðfσig0Þ ¼ φ0

L;H in Eq. (20), where φ0
L;H is

the (meta)stable minimum in the high and low density
regions for cluster dissolution and formation, respectively. In
the thermodynamic limit, the equilibration time from the
initial condition φðfσigÞ ¼ 0 ∨ 1 to the (meta)stable mini-
mum φ0

L;H becomes exponentially faster than the total
transition time, which renders htd;fi unaffected.
The dependence of J̃dcrit on μ̃ and h̃ is determined in the

form of a Newton’s series in Appendix E 8 and is depicted
in Fig. 9. Depending on the intrinsic affinity μ̃, the
dependence of J̃dcrit may be nonmonotonic. Note that in
contrast to the statical critical coupling J̃scrit that is inde-
pendent of μ̃, the dynamical critical coupling J̃dcrit depends
on the particular value of μ̃.

V. MANY-BODY PHYSICS IN THE MECHANICAL
REGULATION OF ADHESION

Our results tie the effective bending rigidity κ and, in
turn, interactions between neighboring adhesion bonds,
J̃ ∝ κ−1=2 (see Appendix A), to the collective phase
behavior of adhesion clusters at equilibrium, and to distinct
dynamical phases of cluster dissolution and formation.
Based on the quantitative relationship between the coupling
strength J̃ and bending rigidity κ given by Eq. (A3), and an

FIG. 9. Dynamical critical point. Dynamical critical coupling
J̃dcrit as a function of the external force h̃ for several values of the
intrinsic binding affinity μ̃. Note that J̃dcrit as a function of h̃ may
be nonmonotonic with a global minimum whose location
depends on μ̃.
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order-of-magnitude estimation of the relevant parameters
listed in Table I, we find that the coupling strength in
cellular systems lies within the range 0≲ J̃ ≲ 2.5. Notably,
both the statical and dynamical critical points at moderate
values of the external force and/or intrinsic binding affinity
lie within said range (see Figs. 5 and 9). Yet, it remains to
be explained why a near-critical coupling may be beneficial
for cells and how it may be regulated.
Our results provoke the hypothesis that the membrane

rigidity (and hence the coupling strength) may lie close
to the statical critical value for quasistatic processes and
near the dynamical critical value for transient processes.
Mechanical regulation of the bending rigidity can be
achieved through hypotonic swelling [91], (de)polymeri-
zation of the F-actin network [92,93], decoupling of the
F-actin network from the plasma membrane [55], changes
of the membrane composition [88,89,94,95] or integral
membrane proteins [95], membrane-protein activity [96],
temperature modulation [28,35,88], and acidosis [45], to
name but a few. Moreover, it has been shown experimen-
tally that temperature modulations affect adhesion strength
through changes in membrane fluidity [28] or cell elasticity
[35], or via a temperature cooperative process [26], albeit
the denaturation of the binding proteins also provides a
possible explanation [36].
Below, we argue that the change in the response of a cell

to a perturbation, defined as a change in the equilibrium
binding strength or association and dissociation rates, is
largest near criticality. This change results in either a very
small or very large response, depending on the change of
the underlying parameter. Here, we follow the same kind of
reasoning as rooted in the criticality hypothesis, which
states that systems undergoing an order-disorder phase
transition achieve the highest trade-off between robustness
and flexibility around criticality [97].

A. Criticality at equilibrium

In Fig. 10(a), we depict how oscillations in the coupling
strength (arising through oscillations in the bending rigidity
κ) around the statical critical point affect the average
fraction of closed bonds. Similar oscillatory patterns and
their effect on the adhesion strength have been observed in
vascular smooth muscle cells, where changes in the
bending rigidity were concerted by the remodeling of
the actin cytoskeleton [34,57,58]. Minute changes in the

amplitude, δJ̃, can drive the system’s behavior from
oscillations within a dense phase with hφðtÞi > 0.5 to
intermittent periods of nearly complete dissolution [com-
pare solid and dashed lines in Fig. 10(a)]. Hence, we find
that the response [i.e., hφðtÞi] is most sensitive to a change
in the amplitude δJ̃ when J̃ lies close to the statical
critical point.
Similarly, in Fig. 10(b), we show the response of hφðtÞi to

amechanical perturbation oscillating quasistatically between
a pulling and a pushing force, h̃ðtÞ ¼ h̃ref þ δh̃ sinðωtÞ (for
practical examples, see, e.g.,Refs. [98,99]). Suchmechanical
perturbations can, for example, arise through changes in
active stresses generated within the cytoskeleton [100]. Here
as well, a small change in the force δh̃ acting on the cluster
can lead to stark differences in the cluster stability hφðtÞi. The
sensitivity to a change in the force is most amplified near the
statical critical coupling J̃scrit [compare solid and dashed lines
in Fig. 10(b)], where a small change in the amplitude, δh̃, can
cause intermittent periods of essentially complete cluster
detachment.
Drastic changes in the average number of closed bonds

have been observed experimentally in adhesion frequency
assays and single-molecule microscopy [21,68]. It was
shown that binding affinities and binding dynamics for a
T-cell receptor (TCR) interacting with the peptide-major
histocompatibility complex (pMHC) are more than an order
of magnitude smaller in solution (i.e., in 3D) as compared
to when they are anchored to a cell membrane (i.e., in 2D).
One possible contribution to the discrepancy between the
3D and 2D binding kinetics is the difference in the
reduction of the entropy upon binding, which is larger
in 3D than in 2D [40]. However, it has been explicitly
remarked that this contribution alone does not explain the
measured difference in the binding affinities [40]. The
authors of Refs. [21,68] rationalize these differences in
binding in terms of a cooperativity between neighboring
TCRs due to the anchoring membrane. In particular, Fig. 11
(a) in the Supplementary Material of Ref. [68] shows the
adhesion frequency PaðtcÞ ∈ ½0; 1�, defined as the fraction
of observed adhesion events between the TCR and pMHC
as a function of the contact time tc between the anchoring
membranes, derived from Monte Carlo simulations. Upon
introducing a heuristic neighbor-dependent amplification
factor in the binding rates, the authors observe an ampli-
fication of the adhesion frequency Pa (compare squares

TABLE I. Estimated parameter values in cellular systems.

Estimated parameter values

Parameter Symbol Estimated value or range Source

Spring constant βk ∼10−2 ½nm−2� [17,84,85]
Nonspecific interaction strength βγ ∼10−5 ½nm−4� [17]
Bond separation distance h0 − l0 25–50 [nm] [84,86,87]
Bending rigidity βκ 4–400 [55,88–90]
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with diamonds), indicating an increase in binding events, in
agreement with their experimental observations.
We may relate our results to the observations in Ref. [68]

by recalling the relation between Pa and hNci ¼ Nhφi, i.e.,
Pss
a ≡ limtc→∞ PaðtcÞ ¼ 1 − exp ð−NhφiÞ [see Ref. [101]

as well as Eqs. (1) and (2) in Ref. [68]]. In our model, the
aforementioned amplification factor arises naturally from a
nonzero coupling strength J̃ due to the anchoring mem-
brane. Indeed, in Fig. 3(e), an increase in J̃ leads to an
increase in hφi, which in turn causes an increase of the
steady-state adhesion frequency Pss

a . Hence, we find that the
amplification factor in Ref. [68] and coupling J̃ in our
model have the same effect on the adhesion frequency.
A similar observation was made in Ref. [39] on the basis

of a detailed analysis of the binding affinities of the
adhesion receptor CD16b placed in three distinct environ-
ments: red blood cells (RBCs), detached Chinese hamster
ovary (CHO) cells, and K562 cells. Based on Figs. 4(a)
and 4(b) in Ref. [39], the adhesion frequency for RBCs is
around 15-fold larger than for CHO and K562 cells. In the
discussion, the authors point towards the modulation of
surface smoothness as an explanation for the observed
differences in adhesion frequency [39]. Since K562 cells
are known to have a larger bending rigidity than RBCs
[102,103] (we were, unfortunately, not able to find the
corresponding information for CHO cells in the existing
literature), it is expected that the coupling strength J̃ is
generally higher in the latter (see Appendix A), which
provides a potential explanation for the observed difference
in adhesion frequencies between RBCs and K562 cells.

B. Criticality in kinetics

Many biological processes [104–107] and experiments
[108–110] involve adhesion under transient, nonequili-
brium conditions, where cells can become detached com-
pletely from a substrate (for a particular realization with a
constant force, see Ref. [108]). The duration of these
transients may be quantified by the mean dissolution and
formation time htd;fi (see Fig. 8). Imagine that the cell can

change the bending rigidity by an amount Δκ that in turn
translates into a change in coupling, J̃0 ¼ J̃ þ ΔJ̃ ∝
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ Δκ

p
. If the mechanical regulation is to be efficient,

a small change of ΔJ̃ should effect a large change of htd;fi.
The efficiency of the regulation, expressed as the change

of mean dissolution or formation time in response to a
change ΔJ̃, Δhtd;fi≡ htd;fðJ̃ þ ΔJ̃Þi − htd;fðJ̃Þi, is shown
in Figs. 10(c) and 10(d). The results demonstrate that the
regulation is most efficient—that is, it gives the largest
change—when J̃ is poised near the dynamical critical
coupling, J̃ ≃ J̃dcrit, regardless of the magnitude of the
change ΔJ̃. Recall that the formation and dissolution rates,
1=htfi and 1=htdi, respectively, are highest at the dynamical
critical coupling (see Fig. 8). Therefore, not only do we find
the largest response to a change in J̃ but also the fastest
formation and dissolution kinetics at the dynamical critical
coupling J̃ ≃ J̃dcrit.
An example where fast kinetic (un)binding and a large

sensitivity to the bending rigidity can be beneficial is found
in tumor cells that undergo metastasis—the process
through which tumor cells spread to secondary locations
in the host’s body. Recent studies suggest that cancer cells
are mechanically more compliant than normal, healthy cells
[111]. Moreover, experiments with magnetic tweezers have
shown that membrane stiffness of patient tumor cells and
cancer cell lines inversely correlates with their migration
and invasion potential [60], and an increase of membrane
rigidity alone is sufficient to inhibit invasiveness of cancer
cells [90]. Cells with the highest invasive capacity were
found to be 5 times less stiff than cells with the lowest
migration and invasion potential, but the underlying
mechanism behind this correlation remained elusive [60].
Based on our results, a decrease in the bending rigidity,

and hence the membrane stiffness, can alter both the
equilibrium strength of adhesion (see Fig. 3) and the
kinetics of formation and dissolution of adhesion domains
(see Fig. 8), which may provide a clue about the mechani-
cal dysregulation of cell adhesion in metastasis in terms of a
softening of the cell membrane.

(a) (b) (c) (d)

FIG. 10. Equilibrium and kinetic response to changes in cell stiffness, external force, or the binding affinity. Equilibrium response of
the average fraction of closed bonds hφðtÞi to a slow (quasistatic), periodic modulation of (a) the coupling J̃ðtÞ ¼ J̃ þ δJ̃ sinðωtÞ (and
hence membrane stiffness) and (b) the external force h̃ðtÞ ¼ h̃þ δh̃ sinðωtÞ. Note the strong sensitivity of the response near the statical
critical coupling J̃scrit. (c,d) Change in mean dissolution (c) and formation (d) time per bond, ΔJ̃htd;fi≡ htd;fðJ̃ þ ΔJ̃Þi − htd;fðJ̃Þi, as a
response to a change ΔJ̃ of the coupling, as a function of J̃ for various ΔJ̃. The kinetic response is largest for J̃ near the dynamical
critical coupling.
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VI. CRITICALITY IN THE ISING MODEL

By setting h̃ ¼ 0 and writing δσj;−1 ¼ ð1 − σjÞ=2, we
find that Eq. (1) is, up to a constant, identical to the
Hamiltonian of the isotropic ferromagnetic Ising model in a
uniform external magnetic field M ≡ μ=2. Therefore, our
findings, and, in particular, the uncovered dynamical phase
transition, also provide new insight into equilibrium and
kinetic properties of the Ising model in the presence of a
uniform external magnetic field.
The equilibrium properties of the two-dimensional Ising

model in the absence of a magnetic field—such as the total
free energy per spin, the statical critical point, and the
binodal line—were obtained in the seminal work by
Onsager [83]. The effect of a uniform magnetic field has
mostly been studied numerically [112,113]—e.g., by
Monte Carlo simulations [114] and renormalization group
theory [115]—but hitherto, no exact closed-form expres-
sion for the free energy per spin has been found. On the
Bethe-Guggenheim level, the free energy density, binodal
line, spinodal line, and statical critical point were known
[116], but to our knowledge, we are the first to provide an
exact closed-form expression for the equation of state in the
presence of a uniform magnetic field (see Appendix D).
The kinetics of the two-dimensional Ising model have

been studied in the context of magnetization-reversal
times (i.e., the time required to reverse the magnetization)

]117–119 ], nucleation times [120,121], and critical slowing
down [122,123]. Here, we report a new type of dynamical
critical phenomenon related to a first-order discontinuity
and a global minimum of the magnetization reversal time at
the concurrent dynamical critical point (see Fig. 8), which
is fundamentally different from the statical critical point.
The dynamical phase transition reflects a qualitative change
in the instanton path towards magnetization reversal and
has not been reported before.
In Table II, we summarize the values of the statical and

dynamical critical points obtained by the mean field and
Bethe-Guggenheim approximation in the absence of a

magnetic field, and for a general coordination number z̄
(for a derivation of the dynamical critical points, see
Appendixes E 8 and E 9). We also state the exact sta-
tical critical point of the two-dimensional Ising model.
Conversely, the exact dynamical critical point of the two-
dimensional Ising model remains unknown as it requires
the exact free energy density as a function of the fraction
of down spins [see Eq. (12) for the result within the
Bethe-Guggenheim approximation]. A lower bound on the
dynamical critical point is set by the statical critical point,
as the latter denotes the onset of an interior local maximum
that is required for the dynamical critical point (see Fig. 8).
The exact dynamical critical point may provide further
insight into the nature of the dynamical phase transition.
Moreover, it also sets a lower bound on the magnetization
reversal times per spin in ferromagnetic systems in the
absence of an external force.

VII. CONCLUDING REMARKS

The behavior of individual [11] and noninteracting
[62–64,74] adhesion bonds under force, the effect of the
elastic properties of the substrate and prestresses in the
membrane [43,75], as well as the physical origin of
the interaction between opening and closing of individual
adhesion bonds due to the coupling with the fluctuating cell
membrane [15–19,44,46,124,125] are, by now, theoreti-
cally well established. However, in order to understand the
importance of these interactions and their manifestation for
the mechanical regulation of cell adhesion in and out of
equilibrium, one must go deeper and disentangle the
response of adhesion clusters of all sizes to external forces
and how it becomes altered by changes in membrane
stiffness. This is paramount because interactions strongly
change the physical behavior of adhesion clusters under
force, both qualitatively and quantitatively.
Founded on firm background knowledge [11,15–19,

43,44,46,62–64,74,75,124,125], our explicit analytical
results provide deeper insight into cooperative effects in
cell-adhesion dynamics and integrate them into a compre-
hensive physical picture of cell adhesion under force.
We considered the full range of CAM binding affinities
and forces and established the phase behavior of two-
dimensional adhesion clusters at equilibrium as well as the
kinetics of their formation and dissolution.
We have obtained, to the best of our knowledge, the first

theoretical results on equilibrium behavior and dynamic
stability of adhesion clusters in the thermodynamic limit
beyond the mean field level (existing studies, even those
addressing noninteracting adhesion bonds [63,64,74], are
limited to small cluster sizes [16–18,43,75]). We explained
the complete thermodynamic phase behavior, including the
coexistence of dense and dilute adhesion domains, and
characterized, in detail, the corresponding critical behavior.
We demonstrated conclusively the existence of a seem-

ingly new kind of dynamical phase transition in the kinetics

TABLE II. Statical and dynamical critical point as a function of
the coordination number z̄ obtained within the mean field and
Bethe-Guggenheim approximation, alongside the exact statical
critical point J̃scrit for the two-dimensional Ising model at zero
field and binding affinity, μ̃ ¼ h̃ ¼ 0. The exact dynamical
critical point J̃dcrit for the two-dimensional Ising model remains
unknown; a lower bound is given by the Onsager statical critical
point.

Critical points

Approximation J̃scrit J̃dcrit

Mean field 1=z̄ ð2=z̄Þ ln 2
Bethe-Guggenheim − 1

2
ln ð1 − 2=z̄Þ −1

2
ln ð21−2=z̄ − 1Þ

Exact 2D 1
2
ln ð1þ ffiffiffi

2
p Þ ≥J̃scrit
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of adhesion cluster formation and dissolution, which arises
due to the interactions between the bonds and occurs at
a critical coupling J̃dcrit, whose value depends on the exter-
nal force h̃ and binding affinity μ̃. At the dynamical critical
coupling J̃dcrit, and, in turn, critical bending rigidity κdcrit ∝
ðJ̃dcritÞ−2, the dominant formation and dissolution pathways
change qualitatively. Below J̃dcrit, the rate-determining step
for cluster formation and dissolution is the surmounting of
the (mostly) entropic barrier to completely bound and
unbound states, respectively. Conversely, above J̃dcrit, the
thermodynamic phase transition between the dense and
dilute phases for dissolution, and between the dilute
and dense phases for cluster formation, becomes rate
limiting, whereas the completely bound and unbound
states, respectively, are thereupon reached by typical
density fluctuations.
We expect the nonmonotonic dependence of the mean

first passage time to cluster dissolution or formation on the
coupling strength J̃ that is asymmetric around the minimum
to be experimentally observable (though the notion of a
fully bound state during cluster formation may be exper-
imentally ambiguous). According to our theory, the exist-
ence of such a minimum and its asymmetric shape would
immediately imply a dynamical phase transition in the
thermodynamic limit.
Measuring the mean dissolution or formation time (in the

absence or presence of an external force), for an ensemble
of cells adhering to a stiff substrate, seems to be exper-
imentally feasible. The effective membrane rigidity (and
thus the coupling J̃) could, in principle, be controlled by
varying the membrane composition (e.g., increasing the
cholesterol concentration, which, in turn, increases mem-
brane rigidity [88]), by tuning the osmotic pressure of
the medium [126], or by the depolymerization of F-actin
[127]. Testing for signatures of the theoretically predicted
dynamical phase transition thus seems to be experimentally
(at least conceptually) possible, and we hope that our
results will motivate such investigations.
We discussed the biological implications of our results in

the context of mechanical regulation of the bending rigidity
around criticality. Based on our results, we have suggested
that the response of a cell to a change in the bending rigidity
may be largest near the statical critical point for quasistatic
processes and near the dynamical critical point for transient
processes. This observation agrees with the criticality
hypothesis and might expand the list of biological proc-
esses hypothesized to be poised at criticality [128].
Finally, we discussed the implications of our result for

the two-dimensional Ising model. The observed dynamical
phase transition is related to a first-order discontinuity in
the magnetization reversal time, and the exact dynamical
critical point for the two-dimensional Ising model remains
elusive (see Table II).
We now remark on the limitations of our results. The

mapping onto a lattice gas or Ising model [i.e., Eq. (1) and

Appendix A; see also Refs. [16,17]] may not apply to
genuinely floppy membranes encountered in biomimetic
vesicular systems [48,65]. Moreover, since we only allow
for two possible states of the bonds, i.e., associated and
dissociated, we neglect any internal degrees of freedom
(e.g., orientations of the bonds) that may contribute to the
entropy loss upon binding [40], thereby changing the free
energy.
Likewise, the assumption of an equally shared force is

generally good for stiff membranes (stiffened by the pre-
sence of, or anchoring to, the stiff actin cytoskeleton [9]) or
stiff membrane-substrate pairs, flexible individual bonds,
low bond densities, or the presence of prestresses exerted
by the actin cytoskeleton [43,74,75]. In Appendix E 2, we
provide an analysis of the effect of a nonuniform force load.
Based on this analysis, we find that in the case of rather
floppy membranes, corresponding to large values of the
coupling strength J̃ ¼ Oð1Þ, the difference between a
uniform and a nonuniform force load is negligible for a
broad range of realizations of the nonuniform force dis-
tribution. Only under the extreme, nonphysiological con-
dition that the ratio of forces experienced by inner and outer
bonds is larger than an order of magnitude do we observe
significant differences. Therefore, the dependencies of the
statical and dynamical critical points on the external force
(see Figs. 5 and 8, respectively) are expected to remain
valid for a nonuniform force distribution over a large range
of force magnitudes.
In their present form, our results may not apply to

conditions when cells actively contract in response to a
mechanical force on a timescale comparable to cluster
assembly or dissolution [129], as well as situations in
which cells actively counteract the effect of an external
pulling force and make adhesion clusters grow (see results
in terms of a change in membrane stiffness as well).
Finally, throughout, we have considered clusters consist-

ing of so-called “slip bonds,”whereas cell adhesion may also
involve “catch bonds” that dissociate slower in the presence
of sufficiently large pulling forces [130]. The reason for this
lies in a second, alternative dissociation pathway that
becomes dominant at large pulling forces [131–134]. Our
results therefore do not apply to focal adhesions composed
of catch bonds and would require a generalization of the
Hamiltonian [Eqs. (1) and (2)] and rate [Eq. (3)]. These open
questions are beyond the scope of the present work and will
be addressed in forthcoming publications.
The Open Source code for the evaluation of the equa-

tion of state and mean first passage times to cluster
dissolution and formation for finite-size systems is avail-
able at Ref. [135].
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APPENDIX A: RELATION BETWEEN
MEMBRANE RIGIDITY AND

COUPLING STRENGTH

Here, we provide a quantitative relation between the
effective bending rigidity κ and the coupling strength J̃
based on the results of Ref. [17]. Consider a set of adhesion
bonds at fixed positions frig coupled to a fluctuating
membrane. The effective bending rigidity quantifies the
amount of energy needed to change the membrane curva-
ture and is supposed to depend on the membrane compo-
sition [88,89], the state of the actin network [55], and other
intrinsic factors that determine the mechanical stiffness of
the cell. Let fbig describe the state of all bonds, where
bi ¼ 1 denotes a closed and bi ¼ 0 an open bond. The
bonds are represented by springs with constant k, resting
length l0, and binding energy ϵb. Nonspecific interactions
between the membrane and the opposing substrate are
described by a harmonic potential with strength γ, which
arises from a Taylor expansion around the optimal inter-
action distance h0 between the membrane and the substrate.
Assuming a timescale separation between the opening or
closing of individual bonds and membrane fluctuations, the
following partition function for the state of bonds fbig can
be derived [17]:

Z ¼
X
fbig

exp

�X
i≠j

J̃ijbibj þ μ̃
XN
i¼1

bi

�
þO

�
k2

γκ

�
; ðA1Þ

where μ̃ plays the role of an intrinsic binding affinity and
J̃ij is an effective interaction between the bonds given by

J̃ij ≡ βk2ðh0 − l0Þ2
16

ffiffiffiffiffi
γκ

p mðjri − rjjÞ; ðA2Þ

with mðrÞ ¼ −ð4=πÞkei0ðrðκ=γÞ1=4Þ; kei0ðxÞ is a Kelvin
function defined as kei0ðxÞ≡ ImK0ðxe3πi=4Þ, where K0ðzÞ
is the zero-order modified Bessel function of the second
kind [17]. A systematic comparison of the equation of state
φ of the full or explicit model (i.e., reversible adhesion
bonds coupled to a dynamic, fluctuating membrane) and of
the lattice gas governed by Eq. (A2) has been carried out in
Ref. [17]. Using the following set of parameter values
—βκ ¼ 80, βγ ¼ 10−5 nm−4, βk ¼ 2.25 × 10−2 nm−2,
h0 − l0 ¼ 45.9–50.3 nm, and mð1.5Þ ¼ 0.42194ð6Þ—cor-
responding to a coupling strength of J̃ ≈ 1.0–1.2, the
authors found a quantitative agreement between the full
and lattice gas models (see Fig. 5 in Ref. [17]). Note that the
lattice gas model becomes exact in the limit κ → ∞
corresponding to J̃ ¼ 0.

Our effective Hamiltonian, given by Eq. (1), is directly
derived from Eq. (A1) by considering the following argu-
ments: First, we note that the effective interaction J̃ij
decays exponentially fast as a function of the lattice
distance between the bonds, and therefore, it suffices
to only take into account nearest-neighbor interactions
[17]. Moreover, since we place the adhesion bonds on a
lattice with equidistant vertices, the position dependence in
Eq. (A2) drops out, and we get jri − rjj ¼ Δr. Finally,
upon introducing the variables σi ≡ 1�2bi ∈ ½−1; 1� and
applying the transformations μ̃ → μ̃ − z̄ J̃ and J̃ → 4J̃, we
arrive at our effective Hamiltonian [Eq. (1)]:

lim
κ→∞

γ≠0; k<∞;Δr<∞

J̃ ¼ βk2ðh0 − l0Þ2
16

ffiffiffiffiffi
γκ

p þO
�
ln κ
κ

�
: ðA3Þ

Here, we find the relation J̃ ∝ 1=
ffiffiffi
κ

p
, as mentioned in the

main text.

APPENDIX B: BETHE-GUGGENHEIM
APPROXIMATION

1. Partition function

Here, we derive the partition function of the spin-1=2
Ising model at zero field with fixed magnetization at
N=2 − k, Zk ≡P

fσig exp ðJ̃
P

hiji σiσjÞδNcðfσigÞ;k, within
the Bethe-Guggenheim variational approximation. As a
reminder, we point out that k denotes the number of closed
bonds and N − k the number of open bonds. Since the
sum in the exponent goes over nearest-neighbor terms, we
can write X

hiji
σiσj ¼ ðNcc þ Noo − NocÞ; ðB1Þ

where Noo; Noc, and Ncc denote the total number of open-
open, open-closed, and closed-closed adhesion pairs,
respectively. Notice that every closed-closed adhesion pair
consists of two closed adhesion bonds, and every open-
closed adhesion pair consists of a single closed adhesion
bond; hence, 2Ncc þ Noc ≈ z̄k. Similar reasoning applies
to open-open adhesion pairs, resulting in the general
relations

Ncc ≈
1

2
ðz̄k − NocÞ; Noo ≈

1

2
ðz̄ðN − kÞ − NocÞ: ðB2Þ

Equations (B2) become exact for infinite lattices and
lattices with periodic boundary conditions. Instead of
summing over all configurations fσig with Noc open-
closed pairs, we may formally sum over all distinct values
of Noc and account for their multiplicity by introducing a
degeneracy factor Ψz̄k

z̄NðNocÞ that counts the number of
configurations with a given Noc at fixed k, i.e.,
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X
fNocg

eJ̃
P

hiji σiσj ≈
X
Noc

Ψz̄k
z̄NðNocÞeJ̃ z̄ðN=2−2Noc=z̄Þ; ðB3Þ

where we have used Eqs. (B2). The core idea is to appro-
ximate Ψz̄k

z̄NðNocÞ by the variational Bethe-Guggenheim
approximation [136–138] (for an excellent explanation
of the method, see Refs. [79,116,139]). For J̃ ¼ 0, the
degeneracy factor must obey

ZkjJ̃¼0 ≈
X
Noc

Ψz̄k
z̄NðNocÞ ¼!

�
N
k

�
: ðB4Þ

To implement this constraint, it is convenient to normalize
Eq. (B3) at zero coupling and write

Zk ≈
�
N
k

�P
Noc

Ψz̄k
z̄NðNocÞeJ̃ z̄ðN=2−2Noc=z̄ÞP

Noc
Ψz̄k

z̄NðNocÞ
≡

�
N
k

�
S1
S2

;

ðB5Þ

where we determine S1;2 variationally. Then, we have for
J̃ ¼ 0 that Zk ¼ ðNkÞ. Let us now consider placing pairs of
adhesion bonds randomly onto the lattice. The total number
of unique lattice configurations for fixed Noo; Noc, and Ncc
may be approximated by

Ψz̄k
z̄NðNocÞ ≈

ðNcc þ Noc þ NooÞ!
ðNccÞ!ðNoc=2Þ!2ðNooÞ!

: ðB6Þ

Notice that for a two-dimensional square lattice that is
either infinite or has periodic boundary conditions,
the number of open-closed pairs is always even, and
therefore, the term ðNoc=2Þ! is well defined. For a finite
two-dimensional square lattice with free boundary con-
ditions, the number of open-closed adhesion pairs can be
odd, which forces us to consider the generalized factorial
(i.e., Gamma function). Replacing the factorial with the
Gamma function, we get

Ψz̄k
z̄NðNocÞ ≈

ΓðNcc þ Noc þ Noo þ 1Þ
ΓðNcc þ 1ÞΓðNoc=2þ 1Þ2ΓðNoo þ 1Þ ; ðB7Þ

where ΓðnÞ ¼ ðn − 1Þ! for n ∈ Zþ. Substituting Eqs. (B2)
for Ncc and Noo leaves Noc as the only free parameter
in Eq. (B7).
We approximate S1;2 by an analytic continuation of the

maximum term method [140,141] to real numbers. First,
we analytically continue the summands over positive real
numbers using Eq. (B7). We now approximate both sums in
Eq. (B5) by their respective largest term, i.e., by the
solutions of the pair of optimization problems

sup
x1

Ψz̄k
z̄Nðx1ÞeJ̃ z̄ðN=2−2x1=z̄Þ; sup

x2
Ψz̄k

z̄Nðx2Þ; ðB8Þ

which yields

S1 ≈Ψz̄k
z̄Nðz̄X̄kÞeJ̃ z̄ðN=2−2X̄kÞ; S2 ≈Ψz̄k

z̄Nðz̄X�
kÞ; ðB9Þ

with X�
k ≡ kðN − kÞ=N and X̄k defined in Eq. (9). We used

Stirling’s approximation for the Gamma function to find
the local maxima, i.e., ΓðzÞ ¼ ffiffiffiffiffiffiffiffiffiffi

2π=z
p ðz=eÞz½1þOð1=zÞ�;

therefore, we expect the accuracy of Eq. (B9) to increase
with increasing N. Using Eq. (B9) and introducing
ψ z̄k
z̄NðxÞ ¼ Γð1þ z̄N=2Þ=Ψz̄k

z̄NðxÞ, we obtain Eq. (8) in the
main text. The mean field solution is, in turn, recovered by
setting X̄k ¼ X�

k, which happens automatically for J̃ ¼ 0 or
k ¼ 0 ∨ N. In Fig. 11, we compare the accuracy of (a) the
Bethe-Guggenheim and (b) the mean field approximations
by means of the relative error ϵBG;MF

N ðφÞ≡ 1 − f̃BG=MF
N ðφÞ=

f̃NðφÞ between the exact and approximate free energy
density for a two-dimensional lattice with φ ¼ 1=2 closed
bonds as a function of the system size N. We find that the
Bethe-Guggenheim approximation converges to the exact
free energy density with increasing N, regardless of the
coupling strength J̃. Conversely, the mean field approxi-
mation diverges with both increasing system size N and
coupling strength J̃.

2. Phase diagram

a. Independence of the binodal
and spinodal lines on μ̃

Let us write f̃ðφÞ ¼ μ̃φþ g̃ðφÞ, where g̃ðφÞ is the
remainder of the free energy density after leaving out all
linear terms in φ. Plugging this expression into the binodal
line equations given by Eq. (14) gives

μ̃þ g̃0ðφlÞ ¼ μ̃þ g̃0ðφgÞ;

μ̃þ g̃ðφlÞ − g̃ðφgÞ
φl − φg

¼ μ̃þ g̃0ðφlÞ: ðB10Þ

(a) (b)

FIG. 11. Relative error of the approximate free energy density
for μ̃ ¼ h̃ ¼ 0 obtained by (a) the Bethe-Guggenheim and (b) the
mean field approximation as a function of the system size. Up to
N ¼ 36, each point corresponds to the relative error for a square
lattice of size

ffiffiffiffi
N

p
×

ffiffiffiffi
N

p
with free boundary conditions and φ ¼

1=2 closed bonds. For N ¼ 42, a rectangular lattice of size 6 × 7
with free boundary conditions is considered.
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Clearly, μ̃ cancels and therefore does not affect the
binodal line.
The spinodal line—also known as the stability boundary

—denotes the boundary between the metastable and
unstable states and is given by f̃ 00ðφÞ ¼ 0. The spinodal
line is also not affected by μ̃ since the second derivative of
the linear term vanishes.

b. Binodal line for zero force

At zero force, the binodal line equations simplify to
f̃ 0ðφÞjh̃¼0

μ̃¼0 ¼ 0. Our aim is to solve this equation for Ωφ

[defined as Eq. (9) in the thermodynamic limit] in Eq. (12)
and then use the inverse relation

J̃ðφ;ΩφÞ ¼
1

4
ln

�ðφ −ΩφÞð1 − φ −ΩφÞ
Ω2

φ

�
ðB11Þ

to obtain the binodal line. Notice that it follows from
Eq. (9) that Ωφ ≥ 0 for 0 ≤ φ ≤ 1, and this constraint has to
be obeyed by the implicit solution for Ωφ. Evaluating the
total derivative with respect to φ of Eq. (12) gives

f̃ 0ðφ;ΩφÞjJ̃;μ̃¼0¼ ∂φ f̃ðφ;ΩφÞjJ̃;μ̃¼0þ∂Ωφ
f̃ðφ;ΩφÞjJ̃;μ̃¼0 ·Ω0

φ;

ðB12Þ

where Ω0
φ ¼ ∂φΩφjJ̃. Since Ωφ was obtained by solving

∂Ωφ
f̃ðφ;ΩφÞjJ̃;μ̃¼0 ¼ 0, the second term in Eq. (B12) van-

ishes while the first term yields

2h̃
ð1þ φÞ2 þ ð1 − z̄Þ ln

�
φ

1 − φ

�
þ z̄
2
ln

�
φ − Ωφ

1 − φ − Ωφ

�
:

ðB13Þ

Setting h̃ ¼ 0 in Eq. (B13) and introducing χφ ≡ φ=
ð1 − φÞ and α≡ ðz̄ − 1Þ=z̄, we find the following solution
for Ωφ evaluated on the zero-force binodal line

ΩφðJ̃bðφÞjh̃¼0
μ̃¼0Þ ¼

χφ
1þ χφ

1 − χ2α−1φ

1 − χ2αφ
: ðB14Þ

Plugging Eq. (B14) into Eq. (B11) yields Eq. (15) for
the zero-force binodal line, which was also reported in
Refs. [79,116,139]. For h̃ ≠ 0, the binodal line can be
obtained by solving Eq. (14) numerically.

c. Spinodal line

To determine the spinodal line, we calculate the second
derivative of the Bethe-Guggenheim free energy density,

f̃ 00ðφ;ΩφÞ ¼ −
4h̃

ð1þ φÞ3 þ
1 − z̄

φð1 − φÞ þ
z̄
2

ð1 − 2ΩφÞ þ 2ð2φ − 1ÞΩ0
φ

ðφ − ΩφÞð1 − φ −ΩφÞ
þ z̄
2

½2φð1 − φÞ − Ωφ�Ω0
φ
2

Ωφðφ −ΩφÞð1 − φ −ΩφÞ
: ðB15Þ

Equation (B15) contains Ω0
φ, which we want to express in terms of Ωφ. Therefore, we use Eq. (B11) and differentiate both

sides with respect to φ for fixed J̃, yielding

Ω0
φ ¼ Ωφð1 − 2φÞ

2φð1 − φÞ −Ωφ
: ðB16Þ

Plugging Eq. (B16) into Eq. (B15) gives

f̃ 00ðφ;ΩφÞ ¼ −
4h̃

ð1þ φÞ3 þ
1 − z̄

φð1 − φÞ þ
z̄

2φð1 − φÞ − Ωφ
¼ 0: ðB17Þ

Solving Eq. (B17) for Ωφ yields Φðφ; h̃Þ in Eq. (16), which must be non-negative, thus implying that Eq. (16) is valid for
ð2 − z̄Þ=8h̃ ≤ φð1 − φÞ=ð1þ φÞ3 ≤ ð1 − z̄Þ=4h̃.

d. Statical critical point

We derive the Bethe-Guggenheim statical critical point in the form of a convergent Newton series [80,82,142]. We
determine the statical critical point from

f̃ 000ðφ;ΩφÞ ¼
12h̃

ð1þ φÞ4 þ
ð1 − z̄Þð2φ − 1Þ
φ2ð1 − φÞ2 −

z̄½2ð1 − 2φÞ −Ω0
φ�

ð2φð1 − φÞ −ΩφÞ2
¼ 0: ðB18Þ

Using Eq. (B16) for Ω0
φ, we get
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12h̃
ð1þ φÞ4 þ

ð1 − z̄Þð2φ − 1Þ
φ2ð1 − φÞ2 þ z̄ð2φ − 1Þ½4φð1 − φÞ − 3Ωφ�

ð2φð1 − φÞ −ΩφÞ3
¼ 0: ðB19Þ

To simplify Eq. (B19) further, we introduce the auxiliary parameter αh̃ ≡ 12h̃ and use the fact that the critical point lies on
the spinodal line, which allows us to use Eq. (17) for Ωφ and leads to

gðφÞ≡ αh̃φ
2ð1 − φÞ2 þ ð1þ φÞ4ð2φ − 1Þγz̄ðφÞ ¼ 0; ðB20Þ

with

γz̄ðφÞ≡ 1 −
1

z̄

�
3 −

2

z̄

�
þ 2αh̃

z̄

�
1 −

1

z̄

�
ΛðφÞ − α2

h̃

3z̄

�
1 −

2

z̄

�
Λ2ðφÞ − 2α3

h̃

27z̄2
Λ3ðφÞ; ðB21Þ

and ΛðφÞ≡ φð1 − φÞ=ð1þ φÞ3. For h̃ ¼ 0, the solution of
Eq. (B20) is given by φs

crit;BG ¼ 1=2, and the corresponding
statical critical point is given by J̃scrit;BG ¼ ln ½z̄=ðz̄ − 2Þ�=2̄.
For nonzero force, we solve Eq. (B20) by means of a

“quadratic” Newton series, as explained in more detail in
Appendix D. The main result for the statical critical fraction
obtained by the quadratic Newton series reads

φs
crit;BG ≈

1

2
−
g0ð1

2
Þ

g00ð1
2
Þ þ

�
g0ð1

2
Þ2

g00ð1
2
Þ2 − 2

gð1
2
Þ

g00ð1
2
Þ
�
1=2

¼ 1

2
−

3

24
δz̄ðh̃Þ
νz̄ðh̃Þ

þ 3

24

�
δ2z̄ðh̃Þ
ν2z̄ðh̃Þ

−
26

34
z̄2h̃
νz̄ðh̃Þ

�
1=2

; ðB22Þ

where g0ðφÞ ¼ ∂φgðφÞ, g00ðφÞ ¼ ∂2
φgðφÞ, and the auxiliary

functions δz̄ðh̃Þ and νz̄ðh̃Þ are defined as

δz̄ðh̃Þ≡
�
z̄ − 1 −

26

35
h̃2
��

z̄ − 2þ 24

32
h̃

�
þ 213

39
h̃3 ðB23Þ

and

νz̄ðh̃Þ≡
�
z̄ − 1þ 25

35
h̃2
��

z̄ − 2þ 22

32
h̃

�
−

2

32
z̄2h̃þ 27

39
h̃3;

ðB24Þ

respectively.
The statical critical coupling J̃scrit is obtained by inserting

Eq. (B22) into Eq. (16), and the result is depicted by the
gradient line in Fig. 5 in the main text, where the black
symbols represent the fully converged Newton’s series
[Eq. (D17)], as well as in Fig. 12, where the gradient line
depicts the fully converged Newton’s series.

APPENDIX C: MEAN FIELD APPROXIMATION

1. Partition function

Within the mean field approximation, the partition
function reads

ZMF
k ¼

�
N
k

�
ez̄ J̃ðN=2−2X�

kÞ; ðC1Þ

Pushing force

Pulling force

(a) (b) (c)

FIG. 12. Comparison of the BG and MF binodal line, spinodal line, and statical critical point. (a,b) Phase diagram for (a) zero force
and (b) pushing force h̃ ¼ −1. The solid and dashed lines depict the binodal and spinodal lines, respectively. Red lines correspond to the
mean field approximation obtained with Eqs. (C3) (for zero force) and (C4). Blue lines correspond to the Bethe-Guggenheim
approximation in Eqs. (15) (for zero force) and (16). The shaded area depicts the region where the system is metastable for the Bethe-
Guggenheim approximation. The blue and red circles depict the statical critical point ðφs

crit; J̃
s
critÞ for the mean field and Bethe-

Guggenheim approximations, respectively. (c) Statical critical point as a function of the force h̃. The Bethe-Guggenheim approximation
is the result obtained with a converged Newton’s series [see Eq. (D17)], whereas the mean field result is obtained by considering the first
ten terms of Eq. (C13).
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with X�
k ≡ kðN − kÞ=N, such that the corresponding free

energy density in the thermodynamic limit attains the form

f̃MFðφÞ ¼ −μ̃φþ 2h̃φ
1þ φ

þ 1

2
J̃ z̄½4φð1 − φÞ − 1� þ ΞΔðφÞ;

ðC2Þ

where ΞΔðxÞ≡ ΞðxÞ þ Ξð1 − xÞ, and where ΞðxÞ≡ x ln x.

2. Phase diagram

We now evaluate the binodal and spinodal lines, as well
as the statical critical point within the mean field approxi-
mation. The corresponding exact solutions for the Bethe-
Guggenheim approximation are given by Eqs. (15)–(19).

a. Binodal line for zero force

In the absence of an external field, h̃ ¼ 0, the binodal
line is given by

J̃b;MFðφÞjh̃¼0 ¼
1

2z̄ð2φ − 1Þ ln
�

φ

1 − φ

�
: ðC3Þ

This solution is well known and has been reported in the
literature extensively [79,116,139,143]. For h̃ ≠ 0, we
solve for the binodal line numerically.

b. Spinodal line

The spinodal line is, in turn, given by the solution of
f̃MF00 ðφÞ ¼ 0, and it reads

J̃s;MFðφÞ ¼
1

4z̄

�
1

φð1 − φÞ −
4h̃

ð1þ φÞ3
�
: ðC4Þ

c. Statical critical point

The statical critical point is given by the solution of
f̃ 000MFðφÞ ¼ 0, which, after introducing the parameter
αh̃ ≡ 12h̃, translates into solving the algebraic equation

αh̃φ
2ð1 − φÞ2 þ ð1þ φÞ4ð2φ − 1Þ ¼ 0: ðC5Þ

Notice that z̄, the average coordination number, does not
enter Eq. (C5). When h̃ ¼ 0, the solution is φs

crit;MF ¼ 1=2,
and the corresponding statical critical point is given by
J̃scrit;MF ¼ z̄−1. To solve Eq. (C5) for nonzero force, we first
note that 0 ≤ φs

crit;MF ≤ 1, and therefore, we can divide
Eq. (C5) by ð1þ φÞ4. Upon introducing the variable
w ¼ 2φ − 1, we get the equation

w
fðwÞ ¼ −αh̃; ðC6Þ

with fðwÞ ¼ ðwþ 1Þ2ðw − 1Þ2ðwþ 3Þ−4. Now, we recall
the Lagrange inversion theorem: Let fðwÞ be analytic in
some neighborhood of the point w ¼ 0 (of the complex
plane) with fð0Þ ≠ 0, and let it satisfy the equation

w
fðwÞ ¼ α: ðC7Þ

Then, ∃ a; b ∈ Rþ such that for jαj < a, Eq. (C7) has only
a single solution in the domain jwj < b. According to the
Lagrange-Bürmann formula, this unique solution is an
analytical function of α given by

w ¼
X∞
k¼1

αk

k!

�
dk−1

dwk−1 fðwÞk
�
w¼0

: ðC8Þ

Notice that Eq. (C6) has the form of Eq. (C7), and
therefore, we can use Eq. (C8) to obtain φs

crit;MF. To
evaluate the derivative inside Eq. (C8), it is convenient
to write fðwÞk ¼ gðwÞhðwÞ, with gðwÞ≡ ðwþ 1Þ2kðw −
1Þ2k ¼ ðw2 − 1Þ2k and hðwÞ≡ ðwþ 3Þ−4k. Using the fact
that

dn

dwn gðwÞhðwÞjw¼0 ¼
Xn
k¼0

�
n
k

�
gðn−kÞð0ÞhðkÞð0Þ; ðC9Þ

as well as

dn

dwn ðw2 − 1Þ2kjw¼0 ¼ cos

�
πn
2

�
n!

�
2k
n=2

�
ðC10Þ

and

dn

dwn ðwþ 3Þ−4kjw¼0 ¼ ð−1Þn3−4k−n ð4kþ n − 1Þ!
ð4k − 1Þ! ; ðC11Þ

we find

dk−1

dwk−1 fðwÞkjw¼0 ¼
ð−1Þk−13−5kþ1ðk − 1Þ!ð2kÞ!

ð4k − 1Þ!

×
Xbk−12 c

m¼0

ð−9Þm½5k − 2ð1þmÞ�!
m!ð2k −mÞ!ðk − 1 − 2mÞ! :

ðC12Þ

Plugging Eq. (C12) into Eq. (C8) and using the
relation φ ¼ ð1þ wÞ=2, we find φs

crit;MF ¼ φs;0
crit;MF−

6
P∞

k¼1 δφkðh̃Þ, with

δφkðh̃Þ ¼ ð4h̃Þk ð2kÞ!ð4kÞ!
Xbk−12 c

m¼0

ð−9Þm−2k½5k − 2ð1þmÞ�!
m!ð2k −mÞ!ðk − 1 − 2mÞ! :

ðC13Þ
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The statical critical coupling for nonzero force, J̃scrit;MFðh̃Þ,
is obtained by plugging φs

crit;MF into Eq. (C4).
In Fig. 12, we plot the statical critical point for the Bethe-

Guggenheim and mean field approximations as a function
of the force h̃. For a large pulling force (h̃ ≥ 2), the statical
critical point is pushed towards lower values of J̃, and as a
consequence, the Bethe-Guggenheim and mean field sol-
utions start to coincide. For other values of h̃, however, the
Bethe-Guggenheim and mean field solutions disagree
strongly, in particular, for weak forces jh̃j → 0.
To compare the critical points for weak pulling or

pushing forces in more detail, we inspect the perturbation
series given in Eqs. (18) and (19) and compare it with the
first two terms of Eq. (C13). Defining J̃scrit;MF ¼ J̃s;0crit;MF−
δJ̃scrit;MFðh̃ÞþOðh̃3Þ and φs

crit;MF ¼ φs;0
crit;MF − δφcrit;MFðh̃Þ þ

Oðh̃3Þ, we get

δJ̃scrit;MFðh̃Þ ¼
8

27

1

z̃

�
h̃þ 2

27
h̃2
�

ðC14Þ

and

δφs
crit;MFðh̃Þ ¼

2

27

�
h̃þ 16

81
h̃2
�
: ðC15Þ

Interestingly, whereas the Bethe-Guggenheim critical point
depends on z̄ [see Eq. (19)], the mean field result in
Eq. (C15) does not. In the limit z̄ → ∞, we find that the
Bethe-Guggenheim statical critical point converges to the
mean field solution, which is to be expected.

APPENDIX D: EQUATION OF STATE IN THE
THERMODYNAMIC LIMIT

Here, we derive the equation of state in the thermody-
namic limit using the saddle-point technique, i.e.,

hφiTD ≡ lim
N→∞

R
1
0 φe

−N f̃ðφÞdφR
1
0 e

−Nf̃ðφÞdφ

≃ lim
N→∞

R
1
0

P
M
i¼1 φ

0
i e

−N f̃00ðφ0
i Þðφ−φ0

i Þ2dφR
1
0

P
M
i¼1 e

−Nf̃ 00ðφ0
i Þðφ−φ0

i Þ2dφ
¼

XM
i¼1

ciφ0
i ;

ðD1Þ

with

cj ¼ lim
N→∞

R
1
0 e

−Nf̃ 00ðφ0
j Þðφ−φ0

j Þ2dφR
1
0

P
M
i¼1 e

−Nf̃ 00ðφ0
i Þðφ−φ0

i Þ2dφ

≃
�
1þ

XM
i¼1ji≠j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̃ 00ðφ0

jÞ=f̃ 00ðφ0
i Þ

q �−1

; ðD2Þ

and φ0
1;φ

0
2;…;φ0

M denote the locations of the local
minima of the Bethe-Guggenheim free energy density

f̃ðφÞ≡ f̃BGðφÞ in Eq. (12). The idea behind Eq. (D1) is
that, in the large-N limit, we expect the integral over φ to be
dominated by the immediate neighborhood of the local
minima of f̃ðφÞ. We may therefore approximate the
exponent by its Taylor expansion around these extremal
points. In general, special care has to be taken when one of
the global minima lies at the boundary of the integration
interval [144], which turns out not to be the case here.
The locations of the local minima, maxima, and saddle

points of the Bethe-Guggenheim free energy density are
given by the solution of f̃ 0BGðφÞ ¼ 0. Notice that here we
do not set the intrinsic binding affinity μ̃ to zero since we
are interested in the stationary points and not the binodal
line. We solve the former equation forΩφ and substitute the
solution into Eq. (B11), which gives

J̃ ¼ 1

2
ln

�
1 − χφ

c−1
μ̃;h̃
ðχφÞχ1−αφ − cμ̃;h̃ðχφÞχαφ

�
; ðD3Þ

where χφ ≡ φ=ð1 − φÞ, α≡ ðz̄ − 1Þ=z̄, and

cμ̃;h̃ðχφÞ≡ eμ̃=z̄e−ð2=z̄Þ(ð1þχφÞ=ð2þχφÞ)2h̃: ðD4Þ

Rewriting Eq. (D3) gives

χφ − e2J̃ðcμ̃;h̃ðχφÞχαφ − c−1
μ̃;h̃
ðχφÞχ1−αφ Þ − 1 ¼ 0: ðD5Þ

For a two-dimensional square lattice in the thermodynamic
limit, we have z̄ ¼ 4, so α ¼ 3=4. Upon introducing the
auxiliary variable ξ≡ χ1=4φ , we obtain the transcendental
equation

gðξÞ≡ ξ4 − e2J̃ðcμ̃;h̃ðξÞξ − c−1
μ̃;h̃
ðξÞξ−1Þξ2 − 1 ¼ 0: ðD6Þ

To solve for the roots of gðξÞ, we first consider the
force-free scenario h̃ ¼ 0 and afterwards solve for the
general case.

1. Zero force

For zero force, gðξÞ reduces to a quartic in ξ. The roots of
a general quartic equation are known and are given by

ξ1;2 ¼
Yþ
4

− S� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
Y2þ þ Y− − 1

8
Y3þ

S
− 4S2

s
; ðD7aÞ

ξ3;4 ¼
Yþ
4

þ S� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
Y2þ −

Y− − 1
8
Y3þ

S
− 4S2

s
; ðD7bÞ

where Y� ¼ e2J̃�μ̃=4 and
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S ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Y2þ þ 1

3

�
W þ Δ0

W

�s
; ðD8Þ

W ¼

0
B@Δ1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

1
CA

1=3

; ðD9Þ

Δ0 ¼ 3e4J̃ − 12; Δ1 ¼ −54e4J̃Δμ̃; Δμ̃ ¼ sinhðμ̃=2Þ:
ðD10Þ

Figure 13 depicts the four solutions in Eqs. (D7a) and
(D7b) as a function of J̃ for various values of μ̃.
To determine the local minima, we must analyze the

properties of these roots starting with the sign of the
discriminant, given by

Δ ¼ 1

27
ð4Δ3

0 − Δ2
1Þ ¼ 4ðe4J̃ − 4Þ3 − 108e8J̃Δ2

μ̃: ðD11Þ

For Δ < 0, there are two distinct real roots and two
complex conjugate roots, whereas for Δ > 0, there are
either four real roots or four imaginary roots, where the
former scenario applies here. The discriminant is zero at the
critical coupling value

J̃Δ¼0 ¼
1

4
ln

�
3Δ2

μ̃ð9Δ2
μ̃þ 8Þ

Φ1=3 þ 3Φ1=3þ 9Δ2
μ̃þ 4

�
; ðD12Þ

with

Φ ¼ 27Δ6
μ̃ þ 36Δ4

μ̃ þ 8Δ2
μ̃½1þ ð1þ Δ2

μ̃Þ1=2�: ðD13Þ

Increasing the coupling strength above J̃Δ¼0 gives rise to a
local maximum in the free energy landscape, its position
being ξ44=ð1þ ξ44Þ (see purple line in Fig. 13).

a. Zero intrinsic binding affinity

For zero intrinsic binding affinity, we note that J̃Δ¼0

coincides with the statical critical point J̃scrit ¼ lnð2Þ=2. In
this limit, the four solutions (D7a) and (D7b) simplify
substantially, and the corresponding locations of the local
minima—which are also global minima—are given by [see
Fig. 13(a)]

φ0
1;2jh̃¼0

μ̃¼0 ¼

8>><
>>:

1
2

0 ≤ J̃ ≤ J̃scrit

1
2

�
1� e2J̃

ffiffiffiffiffiffiffiffiffi
e4J̃−4

p
e4J̃−2

�
J̃ ≥ J̃scrit:

ðD14Þ

For J̃ ≤ J̃scrit, there is a single global minimum in the
free energy landscape, and therefore, the weight c1
given by Eq. (D2) becomes unity. For J̃ > J̃scrit, the
global minima are twofold degenerate and located
equidistantly from the local maximum at φ ¼ 1=2.
Since both global minima have the same curvature,
we find that the weights are given by c1;2 ¼ 1=2.
Combining these results, we obtain the average fraction
of closed bonds in the thermodynamic limit for zero
intrinsic binding affinity in the form

hφiTDjh̃¼0
μ̃¼0 ¼

1

2
; ðD15Þ

which is to be expected since the Hamiltonian in Eq. (1)
has a Z2 symmetry for zero external force and binding
affinity.

b. Nonzero intrinsic binding affinity

For nonzero intrinsic binding affinity, μ̃ ≠ 0, the free
energy landscape is tilted, resulting in a unique global
minimum with corresponding weight c1 ¼ 1. As a
result, the average fraction of closed bonds, which is
dominated by the minimum φ0

1, is given by [see Fig. 13(b)
and 13(c)]

(a) (b) (c)

FIG. 13. Stationary points of the Bethe-Guggenheim free energy density for zero force, given by Eqs. (D7a) and (D7b), as a function
of the coupling strength J̃. From left to right, we consider increasing values of the intrinsic binding affinity μ̃. The variable φ0

1;2 indicates
the location of the global minima, which is given by Eq. (D14) for zero intrinsic binding affinity (a), and given by Eq. (D16) for nonzero
intrinsic binding affinity (b,c). The coupling value J̃Δ¼0, given by Eq. (D12), indicates the coupling strength where all four solutions
become real, and it denotes the first appearance of a local maximum given by φ4.
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hφiTDjh̃¼0
μ̃≠0

8<
:

ξ4
1

1þξ4
1

0 ≤ J̃ ≤ lnmin f ffiffiffi
2

p
; s0g

ξ4
3

1þξ4
3

J̃ ≥ lnmin f ffiffiffi
2

p
; s0g;

ðD16Þ

where ln s0 ≡ ln
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

pp
e−μ̃=4 denotes the coupling strength

that solves for the root of S in Eq. (D8).

2. Nonzero force

We determine the roots of gðξÞ for a nonzero force by
means of a convergent Newton series yielding the exact
result [80,82,142]

ξ ¼ ξ0 −
X∞
k¼1

½gð0Þðξ0Þ�k
½gð1Þðξ0Þ�2k−1

detAkðξ0Þ
ðk − 1Þ! ; ðD17Þ

where ξ0 is an initial guess in a convex neighborhood
around ξ, gðiÞðξ0Þ denotes the ith derivative of gðξÞ at the
point ξ0, and Akðξ0Þ is an almost triangular matrix of size
ðk − 1Þ × ðk − 1Þ with elements

Aij
k ðξ0Þ ¼

gði−jþ2Þðξ0Þθði − jþ 1Þ
ði − jþ 2Þ!

× ðk½i − jþ 1�θðj − 2Þ þ iθð1 − jÞ þ j − 1Þ;
ðD18Þ

where θðxÞ denotes the Heaviside step function, i.e., θðxÞ ¼
1 if x ≥ 0 and 0 otherwise, and we symbolically set
detA1 ¼ 1. The determinant of almost triangular matrices,
also known as upper or lower Hessenberg matrices, can
be efficiently calculated using a recursion formula [145],
for which a numerical implementation can be found in
Ref. [146]. If we set gð3Þ ¼ gð4Þ ¼ � � � ¼ 0 in the almost
triangular matrices, the resulting matrix Ãk becomes
triangular, implying that its determinant is simply given
by the product of its diagonal elements. Making the
substitution Ak → Ãk in Eq. (D17) yields the so-called
“quadratic approximation” [82,142]

ξ ≈ ξ0 −
gð1Þðξ0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þðξ0Þ2 − 2gð0Þðξ0Þgð2Þðξ0Þ

q
gð2Þðξ0Þ

;

ðD19Þ

which becomes exceedingly accurate when the root moves
close to ξ0. For the initial point ξ0, we use the ansatz

ξ0 ¼ exp

�
μ̃

4
−
2

9
h̃þ sign

�
μ̃

4
−
2

9
h̃

�
6

5
J̃

�
; ðD20Þ

which is derived by considering an adapted form of
Eqs. (D7a) and (D7b) in combination with the implemen-
tation of the force term. The weight 2=9 is derived from the
term ð1þ ξ4Þ2=2ð1þ 2ξ4Þ2 in Eq. (D4) evaluated at the
point ξ ¼ 1 (corresponding to φ ¼ 1=2), and the weight
6=5 in front of J̃ is selected empirically. This choice assures
that Eq. (D6) satisfies the Lipschitz condition between ξ0
and the root ξ and thus assures the convergence of the
Newton series.
Plugging Eq. (D20) into Eq. (D19), and using the

relation φ0
1 ¼ ξ4=ð1þ ξ4Þ, we obtain the location of the

global minimum—and thus hφiTD—for nonzero force.
Notably, the ansatz given by Eq. (D20) also provides a
numerically correct solution for a zero force and nonzero
intrinsic binding affinity. For completeness, we explicitly
write down all the terms that are used to evaluate Eq. (D19)
[higher-order terms entering the fully converged series in
Eq. (D17) are omitted, as they are lengthy].
Let gðξÞ be given by Eq. (D6). Introducing the auxiliary

functions

αh̃ðξÞ≡ 4ξ4ðξ4 þ 1Þh̃
ð2ξ4 þ 1Þ3

βh̃ðξÞ≡ 4ξ4ð10ξ8 þ 11ξ4 − 3Þh̃
ð2ξ4 þ 1Þ4 ; ðD21Þ

the first and second derivatives can be written as

gð1ÞðξÞ ¼ 4ξ3 − e2J̃ðcμ̃;h̃ðξÞ½3þ αh̃ðξÞ�ξ − c−1
μ̃;h̃
ðξÞ½1 − αh̃ðξÞ�ξ−1Þξ; ðD22Þ

gð2ÞðξÞ ¼ 12ξ2 − e2J̃ðcμ̃;h̃ðξÞf½3þ αh̃ðξÞ�2 − ½3þ βh̃ðξÞ�gξþ c−1
μ̃;h̃
ðξÞ½2αh̃ðξÞ − 3α2

h̃
ðξÞ þ βh̃ðξÞ�ξ−1Þ; ðD23Þ

where cμ̃;h̃ðξÞ is defined in Eq. (D4). Equations (D15), (D16), and (D19) form our main result for the equation of state in the
thermodynamic limit. In Fig. 4, we show the results for various values of the force and intrinsic affinity.
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APPENDIX E: KINETICS OF CLUSTER
FORMATION AND DISSOLUTION

1. Exact algebraic result for small clusters

It is well known that the transition matrix for an
absorbing discrete-time Markov chain with a set of recur-
rent states has the canonical form [78]

P ¼
�
1 0

R Td;f

�
; ðE1Þ

where 1 is the identity matrix, Td;f is the submatrix of
transient states in dissolution or formation, and R is the
submatrix of recurrent states. In the particular case of
cluster dissolution, the ð2N − 1Þ × ð2N − 1Þ matrix Td
entering Eq. (E1) is obtained by removing the last column
and row, and the ð2N − 1Þ × ð2N − 1Þ matrix Tf entering
Eq. (E1), by removing the first column and row. If
we introduce the column vector êk with components
ðêkÞi ¼ δki and the column vector e whose elements are
all equal to 1, the mean first passage times for cluster
formation and dissolution read exactly

hτdi ¼ êT1 ð1 − TdÞ−1e; hτfi ¼ êT
2N−1ð1 − TfÞ−1e: ðE2Þ

In applying Eq. (E2), one must invert a ð2N − 1Þ× ð2N − 1Þ
sparse matrix and afterwards sum over 2N − 1 terms, which
is feasible for N ≲ 5 × 5. For a system of N ¼ 4 × 5,
the exact results are shown with the blue line in Fig. 7.
Larger clusters are treated within the local equilibrium
approximation.

2. Finite-size results for a nonuniform
force distribution

Under the condition of a small combined elastic modu-
lus, corresponding to large values of the coupling strength
J̃ ≫ 1, the assumption of an equally shared force load is
no longer valid [43,74,75]. We therefore address how a
nonuniform force distribution affects the equation of state
and mean first passage time to cluster dissolution or for-
mation for finite system sizes. Based on Eq. (7) in Ref. [75]
and Eq. (4) in Ref. [147], we introduce a nonuniform
force load by making the substitution h → C

P
i hiδσi;−1=

NcðfσigÞ in Eq. (2), where C≡ Nh=
P

i hi is a normali-
zation constant such that initially, i.e., when all bonds are
closed, the total force load is h. The load on bond i, denoted
as hi, is given by

hi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ξ − ϵ̄2i

p ; ðE3Þ

where ξ ≥ 1, and ϵ̄i ≡ ðϵi − rÞ=ðd − rÞ ∈ ½0; 1� is a nor-
malized distance of bond i to the center of the lattice, with
ϵi defined as the eccentricity of node i, which is the

maximum number of edges between node i and any other
node in the lattice. The radius r≡min ϵi and diameter d≡
max ϵi of the lattice are defined as the minimum and
maximum eccentricity, respectively. With the force distri-
bution given by Eq. (E3), which is depicted in Fig. 14(a),
closed bonds located at the outer edge of the lattice (ϵi ¼ 1)
experience a larger external force than bonds located at the
inner part of the lattice (ϵi ¼ 0). The parameter ξ is an
indicator for the spread in force load among the individual
bonds. For ξ ¼ 1, which holds when lim J̃ → ∞ [75], the
force distribution at the edge of the cluster is singular and
nonphysical. On the contrary, for lim ξ → ∞, which is valid
for lim J̃ → 0, we recover the uniform force distribution.
In Figs. 14(b)–14(d), we depict the equation of state (b)

and mean first passage time to cluster dissolution (c) and
formation (d) for mixed Glauber-Kawasaki dynamics with
a constant Glauber attempt probability pk → p ¼ 0.5 and
for various values of ξ under a pulling or pushing force
(h̃ ¼ �0.5). The results are obtained by exact summation
or algebraic techniques. Interestingly, for ξ ≥ 1.1, the
equation of state and mean first passage times are almost
identical to the uniform force load solutions that correspond
to ξ → ∞. Only for ξ < 1.1, which is valid for very large
coupling values corresponding to extremely floppy mem-
branes, do we observe deviations from the uniform force
results. The origin of the deviations is the extreme force
load on the outer bonds, which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ=ðξ − 1Þp

times larger
than the force load on the inner bond. For ξ ¼ 1.01, this
approximately leads to a factor of times 10, and for
ξ ¼ 1.001, this approximately leads to a factor of times
32. Hence, for most physically meaningful realizations
of a nonuniform force distribution [i.e., distributions based
on Eq. (E3)], the results converge to the uniform force
solutions. Only under the extreme conditions where the
force load on the outer bonds becomes at least an order of
magnitude larger compared to the inner bonds do we find
large deviations from the uniform force load.
Note that the relative fraction of edge bonds in the limit

of larger system sizes (and specifically in the thermody-
namic limit) vanishes. Therefore, we expect a nonuniform
force load, which mainly penalizes the edge bonds for
ξ → 1, to have an even weaker effect on the equation of
state and mean first passage times in large systems.

3. Proof of detailed balance for local
equilibrium rates

Before stating the explicit result for the mean first
passage time to dissolution or formation in the local
equilibrium approximation, we prove that the local equi-
librium transition rates w̄k→k�1 given by Eq. (21) obey
detailed balance with respect to Qk defined in Eq. (6). The
effective transition rates are obtained by mapping the full
mixed Glauber-Kawasaki dynamics onto an effective birth-
death process over the number of closed bonds (see Fig. 6),
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where we assume that the dynamics reaches a local
equilibrium at any number of closed bonds before any
transition. As a result, the birth-death process is a Markov
chain on the free energy landscape for the fraction of closed
bonds φ. Recall that the original Glauber rates in Eq. (3)
obey detailed balance with respect to the Hamiltonian
HðfσjgÞ, and therefore

e−βHðfσjgÞδNcðfσjgÞ;kwiðfσjgÞδNcðfσjg0iÞ;k�1

¼ e−βHðfσjg0iÞδNcðfσjg0iÞ;k�1wiðfσjg0iÞδNcðfσjgÞ;k; ðE4Þ

where we have explicitly incorporated the constraints
arising from single-bond-flip dynamics by means of the
Kronecker deltas. Upon summing the left-hand side of
Eq. (E4) over all initial configurations with NcðfσjgÞ ¼ k
and over all rates that jump to a configuration with
Ncðfσjg0iÞ ¼ k� 1, we reach all possible final configura-
tions with Ncðfσjg0iÞ ¼ k� 1, with a backward rate given
by the sum of all rates that jump to a configuration with
NcðfσjgÞ ¼ k. Hence, we find the equality

X
fσjg

XN
i¼1

e−βHðfσjgÞδNcðfσjgÞ;kwiðfσjgÞδNcðfσjg0iÞ;k�1

¼
X
fσjg0i

XN
i¼1

e−βHðfσjg0iÞδNcðfσjg0iÞ;k�1wiðfσjg0iÞδNcðfσjgÞ;k:

ðE5Þ

Comparing Eq. (E5) with Eq. (21), we recognize the left-
and right-hand sides as Q̃kw̄k→k�1 and Q̃k�1w̄k�1→k,
respectively, which proves the effective detailed-balance
relation

Q̃kw̄k→k�1 ¼ Q̃k�1w̄k�1→k: ðE6Þ

4. First passage time statistics within the local
equilibrium approximation

The local equilibrium approximation maps the complete
mixed Glauber-Kawasaki dynamics onto an effective birth-
death process with a right-acting tridiagonal transition
matrix Ple of size ðN þ 1Þ × ðN þ 1Þ with elements

Ple
ij ¼ Λiδij þ w̄i−1→iδiþ1jθðN − iÞ þ w̄i−1→i−2δi−1jθði− 2Þ

ðE7Þ

and Λi ¼ 1 −
PNþ1

j≠i Ple
ij. To obtain the mean first passage

time, we use the same algebraic technique as for small
clusters. Upon removing the first and last rows and columns
of Ple, we obtain the submatrix Tle

d;f for cluster dissolution

(a)

(b)

(c)

FIG. 14. Comparison between a uniform and nonuniform force
load. (a) Nonuniform force load distribution given by Eq. (E3) as
a function of the normalized lattice distance ϵ̄i. For ξ < ∞,
adhesion bonds located at the outer edge of the lattice are subject
to a larger external force than adhesion bonds located at the inner
part of the lattice. (b) Equation of state for a pulling (blue) and
pushing (red) force for various values of ξ for a system of N ¼
5 × 5 adhesion bonds with zero intrinsic binding affinity. (c,d)
Mean first passage time to dissolution (c) and formation (d) for
mixed Glauber-Kawasaki dynamics with constant Glauber at-
tempt probability p ¼ 0.5 under a pulling (blue) and pushing
(red) force for various values of ξ for a system of N ¼ 5 × 5
adhesion bonds with zero intrinsic binding affinity.
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and formation, respectively. We can invert the tridiagonal
submatrix exactly, which leads to the following LU/UL
decomposition

ð1 − Tle
d;fÞ−1 ¼ Ad;fBd;f ; ðE8Þ

where Ad and Bd are the lower and upper triangular
matrixes with elements

Ad
ij ¼

θði − jÞ
Q̃j−1

w̄j−1→j; Bd
ij ¼ Q̃jθðj − iÞ; ðE9Þ

and Af and Bf are the upper and lower triangular matrixes
with elements

Af
ij ¼

θðj − iÞ
Q̃j

w̄j→j−1; Bf
ij ¼ Q̃j−1θði − jÞ: ðE10Þ

A proof that Eq. (E8) is indeed the inverse of 1 − Tle
d;f is

given in the SM [150]. Let us denote with hτled;fim the mean
first passage time to cluster dissolution and formation,
starting from the state withm closed bonds. Using Eq. (E8),
we obtain an exact expression for the first moments,

hτled i0<m≤N ¼ êTmAdBde ¼
Xm−1

k¼0

1

w̄k→kþ1

XN
l¼kþ1

Q̃l

Q̃k
; ðE11Þ

hτlef i0≤m<N ¼ êTmþ1A
fBfe¼

XN
k¼mþ1

1

w̄k→k−1

Xk−1
l¼0

Q̃l

Q̃k
; ðE12Þ

where êm is the column vector with dimension N with
components ðêmÞi ¼ δmi, and e is the column vector
with all components equal to 1. Notice that Eq. (E8),
and therefore Eqs. (E11) and (E12), are applicable to any
right-acting tridiagonal transition matrix with rates obeying
detailed balance. Although we only present the mean first
passage time here, we can easily obtain any higher-order
moments of the first passage time to cluster dissolution and
formation using Eq. (E8) [78]. Notably, Eqs. (E11) and
(E12) appear to have a similar structure as the largest
eigenvalue of the transition matrix in classical nucleation
theory [120,148].

5. Bound on the effective transition rates

Here, we present a bound on the local equilibrium rates
given by Eq. (21), which proves that the transition rates are
strictly subexponential in N. First, we consider a bound for
the exit rates w�

exitðfσigÞ defined in Eq. (22), which contain
a sum over the original Glauber rates that are defined in
Eq. (3). Since 1 − tanhðxÞ ≥ 0 ∀ x ∈ R, the Glauber rates
are non-negative, and therefore, the exit rates obey the
bound

wmax
k→k�1 ≤ w�

exitðfσigÞ ≤ c�k w
max
k→k�1; ðE13Þ

with cþk ¼ N − k and c−k ¼ k denoting the number of terms
inside the sum of Eq. (22), and wmax

k→k�1 denoting the largest
transition rate to go from a state with k to k� 1 closed
bonds. The largest transition rate can be written as

wmax
k→k�1 ¼

1

2N
½1 − tanh ðΔHmin

k→k�1=2Þ�; ðE14Þ

where

ΔHmin
k→k�1 ≡ inf

NcðfσjgÞ¼k;
Ncðfσjg0iÞ¼k�1

fHðfσjg0iÞ −HðfσjgÞg ðE15Þ

denotes the smallest possible energy change between two
configurations fσjg and fσjg0i with NcðfσjgÞ ¼ k and
Ncðfσjg0iÞ ¼ k� 1, respectively. To obtain a closed-form
expression for wmax

k→k�1, we first note that the contribution to
ΔHmin

k→k�1 from the external force and intrinsic binding
affinity are fixed and given by the second and third terms
in Eq. (3). Therefore, we are left to consider the smallest
energy change due to the coupling strength, which we
denote as ΔJ̃H

min
k→k�1. For a square lattice with free

boundary conditions, the minimal energy “forward tran-
sitions” with energy difference ΔJ̃H

min
k→kþ1 for various

values of k are depicted in Fig. 15. Similarly, the minimal
energy “downward transitions” with energy difference
ΔJ̃H

min
k→k−1 are obtained by interchanging the open (red)

and closed (green) adhesion pairs in Fig. 15. Combining
these two results yields ΔJ̃H

min
k→k�1 ¼ 2m�

k J̃, with

m�
k ≡2ðc∓k − 1Þθð2− c∓k Þ−minðc∓k ;4Þθðc∓k − 3Þ; ðE16Þ

and it delivers the expression for wmax
k→k�1. Finally, since

wmax
k→k�1 is independent of the specific configuration fσig at

fixed k, it drops out of the sum over fσig in Eq. (21) for the

FIG. 15. Minimum energy forward transitions between
two configurations fσjg and fσjg0i with NcðfσjgÞ ¼ k and
Ncðfσjg0iÞ ¼ kþ 1, respectively. Although we depict here the
minimal energy differences for a lattice of size N ¼ 3 × 3, the
result holds for any two-dimensional lattice of size N ≥ 3 × 3 as
long as the transitions for k ¼ 0, 1, 2 are taken at the corner, and
the transition for k ¼ 3 is taken at the edge.
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effective transition rates, and therefore, the bound in
Eq. (E13) can directly be applied to the effective transition
rate upon multiplying both sides with the Glauber attempt
probability

pkwmax
k→k�1 ≤ w̄k→k�1 ≤ pkc�k w

max
k→k�1; ðE17Þ

which yields the bound on the effective transition rate.
The lower and upper bounds for the effective transition

rate are used to determine an upper and lower bound for the
mean first passage time to cluster dissolution and forma-
tion, respectively. The specific result for a rectangular
lattice of size N ¼ 6 × 7 for pure Glauber dynamics
(i.e., pk ¼ 1 ∀ k) is shown in Fig. 16. For small values
of the coupling strength J̃, we find that the upper bound in
Eq. (E17), corresponding to the lower bound in Fig. 16
(since htd;fi ∝ 1=w̄k→k�1), is saturated by the exact effective
transition rate. Conversely, for large values of the coupling
strength, it seems that the lower bound in Eq. (E17) is
saturated.

6. Approximate effective transition rate

For systems larger than N ≈ 50 bonds, the combinatorics
involved in the computation of Qk defined in Eq. (6) and
w̄k→kþ1 in Eq. (21) become prohibitive and thus forces us to
make further approximations. In order for Eq. (23) to be
fully explicit, we make an “instanton” approximation for

w̄k→k�1 using the Bethe-Guggenheim approximation with
the bound given by Eq. (E17), and it reads

w̄k→k�1 ≈maxð1; αkc�k Þpkwmax
k→k�1; ðE18Þ

with αk ¼ δk0þ δkN þ 2X̄k=N ∈ ½0;1�, cþk ¼N − k, c−k ¼ k,
and X̄k given by Eq. (9). The prefactor αkc�k is a measure
for the number of “favorable” adhesion bonds that are most
likely to flip in a configuration with k closed bonds. For
k ¼ 0 ∨ N, all bonds have an equal surrounding in the
thermodynamic limit (or for a periodic lattice), and there-
fore, all c�k open or closed bonds are equally likely to
attempt a flip. For 0 < k < N, it becomes energetically
more favorable to flip a bond that is part of an open-closed
adhesion pair (see Fig. 15). To determine the number of
bonds that constitute an open-closed pair, we recall that z̄X̄k
is a measure of the number of open-closed pairs in a lattice
of size N with k closed bonds. Upon dividing by the total
number of pairs in the system, given by z̄N=2, we obtain the
probability to select an open-closed pair in the lattice that is
given by

2X̄k

N
¼ 4X�

k=N

½1þ 4X�
kðe4J̃ − 1Þ=N�12 þ 1

; ðE19Þ

where 4X�
k=N ¼ 4kðN − kÞ=N2 ∈ ½0; 1�. Multiplying

Eq. (E19) by the total number of open or closed adhesion

(a) (b) (c)

(d) (e) (f)

FIG. 16. Comparison of the exact local equilibrium effective rates and the approximate Bethe-Guggenheim local equilibrium effective
rates for pure Glauber dynamics. We show htd;fi for (a)–(c) cluster dissolution and (d)–(f) cluster formation as a function of the coupling
J̃ for fixed intrinsic binding affinity μ̃ ¼ 0.5 in the presence of a pushing force h̃ ¼ −0.3 (a,d), zero force h̃ ¼ 0 (b,e), and a pulling force
h̃ ¼ 0.3 (c, f). The blue solid line is obtained with the exact local equilibrium effective transition rate and exact partition function Qk
[Eqs. (21) and (6), respectively] with pk ¼ 1 ∀ k. The black symbols are obtained with the Bethe-Guggenheim approximation to the
effective rate and partition functionQBG

k [Eqs. (21) and (6) in combination with Eq. (8), respectively]. The black dotted line indicates the
upper and lower bounds to the mean dissolution or formation time, which is obtained with the upper and lower bounds to the effective
transition rate in combination with the exact partition function [Eqs. (E17) and (6), respectively].
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bonds, i.e., 2c�k X̄k=N, we obtain an approximate expres-
sion for the number of open or closed bonds that constitute
an open-closed adhesion pair.
To prove that the approximate effective rate given by

Eq. (E18) obeys the bound given by Eq. (E17), we apply a
chain of inequalities. First, we note that 0 ≤ 2X̄k=N ≤ 1=2,
where the upper bound follows from considering J̃ ¼ 0 and
k ¼ N=2 in Eq. (E19), and the lower bound is given for
k ¼ 0 ∨ N or the limit J̃ → ∞. It follows that 0 ≤ αk ≤ 1,
and, therefore, 1 ≤ maxð1; αkc�k Þ ≤ c�k . Finally, since we
use pkwmax

k→k�1 in Eq. (E18), it cancels on both sides of the
inequality in Eq. (E17), which leaves the matter of proving
the inequality we have proven above and thereby completes
the proof.
Figure 16 shows the mean first passage time to cluster

dissolution and formation obtained with the approximate
effective rates (E18) in combination with the Bethe-
Guggenheim approximation forQk for a lattice of size N ¼
6 × 7 for pure Glauber dynamics (i.e., pk ¼ 1 ∀ k). The
results obtained with the approximate rates (black symbols)
agree, to a high degree, with the results obtained by the
exact effective rates (blue solid line).

7. Mean first passage time in the thermodynamic limit

Here, we prove the result for themean first passage time to
dissolution or formation in the thermodynamic limit given by
Eqs. (24) and (25) based on the local equilibrium approxi-
mation. Intuitively, hτd;fimust scale as hτd;fi ∼ eNΔf̃† , where
Δf̃† ≡ f̃max − f̃min denotes the difference in the free energy
density between the minimum, f̃min ¼ infφ f̃ðφÞ, and the
maximum, f̃max ≡ supφ f̃ðφÞ, which, for large clusters,
becomes independent of N. Indeed, according to Eq. (23),
we have Q̃l=Q̃k ¼ ðpk=plÞeN½f̃Nðk=NÞ−f̃Nðl=NÞ�, and recall that
w̄k→kþ1 is strictly subexponential in N. Furthermore, we
make the assumption that the Glauber attempt probabilities
pk are strictly subexponential in N. Since both series in
Eq. (23) are absolutely convergent, we can apply a version of
the “squeeze” theorem to Eq. (23).
To simplify the notation, we write the summands in

Eq. (23) as 0 < ðpk=plÞak;l=w̄k→kþ1 < ∞, where ak;l ≡
eN½f̃Nðk=NÞ−f̃Nðl=NÞ�. If k† denotes the index of the largest
k-dependent term

k† ≡ sup
0≤k<N

pk exp½Nf̃Nðk=NÞ�
w̄k→kþ1

ðE20Þ

and by l†d;f the index of the largest l-dependent term

l†d ≡ sup
k†<l≤N

exp ½−Nf̃Nðl=NÞ�
pl

;

l†f ≡ sup
0<l<k†

exp ½−Nf̃Nðl=NÞ�
pl

; ðE21Þ

then the following chain of inequalities holds for any N:

pk†ak†;l†d;f
pl†d;f

w̄k†→k†þ1

≤
XN−1

k¼0

XM−1

l¼m

pkak;l
plw̄k→kþ1

≤
cM;mpk†ak†;l†d;f
pl†d;f

w̄k†→k†þ1

;

ðE22Þ

where cM;m ≡ NðM −mÞ, M ¼ N þ 1, and m ¼ kþ 1 for
dissolution, andM ¼ kþ 1 andm ¼ 0 for cluster formation.
Since x1=N is monotonic in x > 0, such that x1 < x2 implies
x1=N1 < x1=N2 , the inequality (E22) is preserved when expo-
nentiated to 1=N. The thermodynamic limit of Eq. (E22) is a
scaling limit, i.e., lims≡ limN→∞ jl=N¼φl

k=N¼φk
, and thus the

inequality (E22) becomes

lims

� pk†ak†;l†d;f
pl†d;f

w̄k†→k†þ1

�1
N

≤ htd;fi ≤ lims

�cM;mpk†ak†;l†d;f
pl†d;f

w̄k†→k†þ1

�1
N

:

ðE23Þ

Moreover, since lims w̄
−1=N
k†→k†þ1

¼ 1, lims½cM;m�1=N ¼ 1, and

lims½pk†=pl†d;f
�1=N ¼ 1, all four limits in Eq. (E23) exist and

thus may be taken separately, implying the convergence
of the upper bound in Eq. (E23) to the lower bound.
Thereby, htd;fi becomes squeezed in between rendering
the inequality an equality. Since lims f̃Nðk†=NÞ ¼ f̃ðφmaxÞ
and lims f̃Nðl†d;f=NÞ ¼ f̃ðφd;f

minÞ, we finally obtain Eqs. (24)
and (25), thus completing the proof.

8. Evaluation of the Bethe-Guggenheim mean first
passage time in the thermodynamic limit

In the previous section, we have proven that, in the
thermodynamic limit, the mean first passage time to cluster
dissolution or formation scales as hτd;fi ≃ htd;fiN ¼ eNΔf̃† ,
where Δf̃† denotes the largest left or right barrier in the
Bethe-Guggenheim free energy density, Eq. (12). In this
section, we determineΔf̃† and thereby obtain a closed-form
expression for the mean first passage time per bond in the
thermodynamic limit.

a. Case 1: J̃ ≥ 0, h̃= μ̃= 0

We first consider the mean first passage time to cluster
dissolution or formation in the absence of an external force
and intrinsic binding affinity. Because of the Z2 symmetry
of the coupling strength, we note that htdi ¼ htfi. Our first
task is to find the locations of the global maximum and
minimum in the free energy landscape, denoted by φd;f

max

and φd;f
min, respectively.

The position of the global minimum for zero force and
intrinsic binding affinity is given by Eq. (D14), while the
position of the global maximum is located at φd;f

max ¼ 0 ∧ 1
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for low values of the coupling strength J̃, and at φd;f
max ¼

1=2 for large values. The coupling strength at which the
global maximum changes position corresponds to the root
of the equation

f̃ð0Þ − f̃

�
1

2

�
¼ z̄

2
ln ðe2J̃ þ 1Þ − z̄ J̃þ

�
1 −

z̄
2

�
lnð2Þ;

ðE24Þ

which is given by

J̃dcrit;BG ¼ −
1

2
ln ð21−2=z̄ − 1Þ; ðE25Þ

and sets the dynamical critical coupling value for the
zero field Ising model under the Bethe-Guggenheim
approximation.
Surprisingly, for the two-dimensional square lattice with

z̄ ¼ 4, we exactly recover the statical critical point obtained
by Onsager [83]. To check whether this is a mere
coincidence, we note that, for the honeycomb lattice with
z̄ ¼ 3, the exact statical critical point is given by J̃scrit ¼
1
2
ln ð2þ ffiffiffi

3
p Þ ¼ 0.65… [149], whereas Eq. (E25) gives

J̃dcrit ¼ −1
2
ln ð21=3 − 1Þ ¼ 0.67…; thus, we find direct evi-

dence that the dynamical critical point in the Bethe-
Guggenheim approximation does not (at least not always)
coincide with the exact statical critical point.
Combining our results for the locations of the global

maximum and minimum, we obtain the following result for
the mean first passage time per adhesion bond in the
thermodynamic limit for the zero field Ising model on a
two-dimensional square lattice:

lnhtd;fi ¼

8>><
>>:

f̃ð0Þ − f̃ð1
2
Þ 0 ≤ J̃ ≤ J̃scrit;BG

f̃ð0Þ − f̃ð1
2
½1� C�Þ J̃scrit;BG ≤ J̃ ≤ J̃dcrit;BG

f̃ð1
2
Þ − f̃ð1

2
½1� C�Þ J̃ ≥ J̃dcrit;BG;

ðE26Þ

where C≡ e2J̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4J̃ − 4

p
=ðe4J̃ − 2Þ comes from Eq. (D14),

J̃scrit;BG ¼ lnð2Þ=2 denotes the statical critical point for zero
force, and J̃dcrit;BG ¼ ln ð1þ ffiffiffi

2
p Þ=2 is the dynamical critical

point in the force-free case. This ultimately leads to
Eq. (26) in the main text.
In the strong coupling limit, we find from Eq. (E26),

limJ̃→∞htd;fi ¼ 2, which is identical to the result obtained
for zero coupling. The physical intuition behind this result
comes from considering the average number of steps
required to change the state of a single, independent
adhesion bond. For zero force and intrinsic binding affinity,
the probability to associate or dissociate is 1=2, and
therefore, the average dissolution or formation time is
given by

1

�
1

2

�
þ 2

�
1

2

�
2

þ 3

�
1

2

�
3

þ � � � ¼
X∞
n¼1

n

�
1

2

�
n
¼ 2:

For an infinite coupling strength, the interaction between
the bonds is so strong that, effectively, the system behaves
as one “super bond,” and therefore, the average dissolution
or formation time is equal to that of a single, independent
adhesion bond.

b. Case 2: J̃ ≥ 0, μ̃ ≠ 0, h̃= 0

Here, we use the results obtained in Appendix D, which
lead to

lnhtdi ¼

8>><
>>:

f̃ð0Þ − f̃ðφ1Þ 0 ≤ J̃ ≤ lnmin f ffiffiffi
2

p
; s0g

f̃ð0Þ − f̃ðφ3Þ lnmin f ffiffiffi
2

p
; s0g ≤ J̃ ≤ J̃d;−crit

f̃ðφ4Þ − f̃ðφ3Þ J̃ ≥ J̃d;−crit

ðE27Þ

for cluster dissolution, and

lnhtfi ¼

8>><
>>:

f̃ð1Þ − f̃ðφ1Þ 0 ≤ J̃ ≤ lnmin f ffiffiffi
2

p
; s0g

f̃ð1Þ − f̃ðφ3Þ lnmin f ffiffiffi
2

p
; s0g ≤ J̃ ≤ J̃d;þcrit

f̃ðφ4Þ − f̃ðφ1Þ J̃ ≥ J̃d;þcrit

ðE28Þ

for cluster formation, where φi ¼ ξ4i =ð1þ ξ4i Þ is given by

Eqs. (D7a) and (D7b), s0 ≡
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

pp
e−μ̃=4, and J̃d;−crit and J̃

d;þ
crit

are the dynamical critical points for cluster dissolution and
formation, respectively, which are solutions of

½f̃ð0Þ − f̃ðφ4Þ�jJ̃d;−crit
¼! 0; ðE29aÞ

½f̃ð1Þ − f̃ðφ3Þ − f̃ðφ4Þ þ f̃ðφ1Þ�jJ̃d;þcrit
¼! 0: ðE29bÞ

c. Case 3: J̃ ≥ 0, μ̃ ≠ 0, h̃ ≠ 0

Using a quadratic Newton series (which is defined in
Appendix D), Eqs. (E27) and (E28) are directly applicable
to the nonzero force scenario upon applying the trans-
formation φi → φ�

i , where φ�
i ¼ ξ�4i =ð1þ ξ�4i Þ and

ξ�i ¼ ξi −
gð1ÞðξiÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1ÞðξiÞ2 − 2gð0ÞðξiÞgð2ÞðξiÞ

q
gð2ÞðξiÞ

;

ðE30Þ

with a minus sign for the global minimum ξ�1;3 and a plus
sign for the global maximum ξ�4. The function gð0ÞðξÞ and
its first and second derivatives gð1;2ÞðξÞ are given in
Eqs. (D6), (D22), and (D23), respectively.
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Our analytical results for the mean first passage time
to cluster dissolution and formation per adhesion bond
are depicted in Figs. 8 and 17 for zero and nonzero exter-
nal forces, respectively; note the remarkable agreement
between the black solid line depicting the thermodynamic
limit and the results for finite system sizes on the order
of N ≥ 10 × 10.

9. Evaluation of the mean first passage time
in the thermodynamic limit in the

mean field approximation

Similarly to our previous analysis, we must determine
the global minimum and maximum, respectively, of the
mean field free energy density given by Eq. (C2). For
convenience, here we consider only zero force and zero
binding affinity.
Below the statical critical coupling J̃scrit;MF ¼ 1=z̄, there

is a unique global minimum located at φd;f
min ¼ 1=2. Above

the statical critical coupling, there exist two global minima,
which are given by the nonzero solutions of the transcen-
dental mean field equation

s ¼ tanh ðz̄ J̃ sÞ; ðE31Þ

with s ¼ 2φ − 1. Equation (E31) is obtained directly from
Eq. (C3) by using the relation ln jð1þ xÞ=ð1 − xÞj ¼
2tanh−1x.
Similarly to the Bethe-Guggenheim free energy density,

the position of the global maximum is located at φd;f
max ¼

0 ∧ 1 for small values of the coupling strength J̃, and at
φd;f
max ¼ 1=2 for large values. The transition at which the

global maximum changes location is given by the root of
the equation

fM̃Fð0Þ − fM̃F

�
1

2

�
¼ −

1

2
J̃ z̄þ lnð2Þ; ðE32Þ

which is given by

J̃dcrit;MF ¼
2

z̄
lnð2Þ; ðE33Þ

and it sets the mean field dynamical critical coupling. For
z̄ ¼ 4, we coincidentally recover the Bethe-Guggenheim
statical critical coupling.
Combining our results for the locations of the global

minimum and maximum, we obtain the following results
for the mean first passage time to cluster dissolution and
formation per bond:

lnhtd;fiMF ¼

8>>><
>>>:

fM̃Fð0Þ − fM̃Fð1
2
Þ 0 ≤ J̃ ≤ 1

z̄

fM̃Fð0Þ − fM̃Fð1
2
½1� s�Þ 1

z̄ ≤ J̃ ≤ 2
z̄ lnð2Þ

fM̃Fð1
2
Þ − fM̃Fð1

2
½1� s�Þ J̃ ≥ 2

z̄ lnð2Þ;
ðE34Þ

where s is the nonzero solution of Eq. (E31). Evaluating
Eq. (E34) explicitly using Eq. (C2), we find

htd;fiMF ¼

8>>><
>>>:

2e−z̄ J̃ =2 0 ≤ J̃ ≤ 1
z̄

2e−z̄ J̃ð1−s2Þ=2λðsÞ 1
z̄ ≤ J̃ ≤ 2

z̄ ln 2

ez̄ J̃ s
2=2λðsÞ J̃ ≥ 2

z̄ lnð2Þ;
ðE35Þ

where

λðsÞ≡ exp½−s arctanhðsÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p ¼ expð−z̄ J̃ s2Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p ; ðE36Þ

and in the second equality, we used Eq. (E31) to make the
substitution arctanhðsÞ ¼ z̄ J̃ s.
As with the Bethe-Guggenheim analysis, we find a

global minimum of htd;fiMF at the dynamical critical
coupling given by

(a) (b) (c) (d)

FIG. 17. Master scaling of mean dissolution and formation times per bond for finite clusters and in the thermodynamic limit. We show
htd;fi for (a,b) cluster dissolution and (c,d) formation as a function of the coupling J̃ for a pair of intrinsic affinities μ̃ ¼ 0 and μ̃ ¼ 0.5 and
various cluster sizes (symbols), as well as the thermodynamic limit (lines) in the presence of an external pushing (a,c) and pulling (b,d)
force. Symbols are evaluated with local equilibrium approximation (23) using QBG

k [Eqs. (6) and (8)] and w̄k→kþ1 from Eq. (E18) with
pk ¼ 1 ∀ k (i.e., pure Glauber dynamics). The discrepancy between the lines and symbols is due to finite-size effects.
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htd;fiMFjJ̃¼2
z̄ lnð2Þ ¼

exp ð− lnð2Þs2critÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2crit

p ¼ 1.0785ð1Þ; ðE37Þ

where scrit is the solution of the transcendental equation
scrit ¼ tanh ð2 lnð2ÞscritÞ. Remarkably, the minimum for
htd;fiMF is independent of the coordination number z̄,
and therefore, the mean field approximation predicts a
universal lower bound on the mean first passage time to
cluster dissolution and formation per bond.
At the dynamical critical coupling, there is a first-order

discontinuity with respect to the coupling J̃ given by

lim
J̃↗2

z̄ lnð2Þ
∂ J̃htd;fi ¼ −

z̄
2
ð1 − s2critÞhtd;fiMFjJ̃¼2

z̄ lnð2Þ;

lim
J̃↘2

z̄ lnð2Þ
∂ J̃htd;fi ¼

z̄
2
s2crithtd;fiMFjJ̃¼2

z̄ lnð2Þ; ðE38Þ

where we use Eq. (E37). The derivatives have a trivial
dependence on z̄, while the ratios of the two derivatives are
independent of z̄.
In the range 1=z̄ < J̃ < ∞, we need to solve Eq. (E31)

numerically to make Eq. (E35) fully explicit. In the limit
J̃ → ∞, Eq. (E31) translates to

s ¼ θðsÞ − θð−sÞ; ðE39Þ

where θðsÞ ¼ 1 for s ≥ 0 and zero otherwise. The two
nonzero solutions of Eq. (E39) are given by s ¼ �1,
corresponding to φ ¼ 0, 1. Finally, we use that
lims→�1 λðsÞ ¼ 1=2 to find

lim
J̃→∞

htd;fiMF ¼ lim
J̃→∞

1

2
exp

�
z̄ J̃
2

�
¼ ∞ ∀ z̄ > 0: ðE40Þ

The mean field approximation thus predicts unphysical
dynamics in the strong coupling limit, which is also

depicted in Fig. 18. The consideration of correlations is
required in order to arrive at a physically correct and
consistent result. It is therefore paramount to go beyond
the mean field approximation and consider correlations
explicitly.
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