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Random quantum circuits have played a central role in establishing the computational advantages of
near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth
random circuits with local connectivity in D > 1 spatial dimensions to generate quantum error-correcting
codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O(log N)
random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for
any finite amount below the optimal erasure threshold, set by the channel capacity, for any D. Previous
results on random circuits have only shown that O(N'/P) depth suffices or that O(log?® N) depth suffices
for all-to-all connectivity (D — o0). We then study the critical behavior of the erasure threshold in the so-
called moderate deviation limit, where both the failure probability and the distance to the optimal threshold
converge to zero with N. We find that the requisite depth scales like O(log N) only for dimensions D > 2
and that random circuits require 0(\/1V ) depth for D = 1. Finally, we introduce an “expurgation”
algorithm that uses quantum measurements to remove logical operators that cause the code to fail by
turning them into either additional stabilizers or into gauge operators in a subsystem code. With such
targeted measurements, we can achieve sublogarithmic depth in D > 2 spatial dimensions below capacity
without increasing the maximum weight of the check operators. We find that for any rate beneath the
capacity, high-performing codes with thousands of logical qubits are achievable with depth 4-8 expurgated
random circuits in D = 2 dimensions. These results indicate that finite-rate quantum codes are practically
relevant for near-term devices and may significantly reduce the resource requirements to achieve fault

tolerance for near-term applications.
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I. INTRODUCTION

Achieving reliable simulations of many-body quantum
dynamics remains a central challenge across different areas
of science. Quantum computers offer a natural computa-
tional advantage for such problems in near-term devices, as
exemplified by recent experiments on random circuit
sampling [1]. However, despite remarkable advances in
quantum control and measurement [1-10], many platforms
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face daunting resource requirements when accounting for
scalable quantum error correction [11-14]. On the other
hand, it is now understood that one can significantly lower
the resource requirements for fault tolerance through, e.g.,
hardware efficient encodings [15-17], accurate noise esti-
mation [18-20], noise-bias-preserving gates [21-23], long-
range interactions [24-26], and better choices of codes with
associated decoding algorithms [27-30]. These develop-
ments suggest that fault tolerance with much lower over-
head is possible in near-term devices [26].

A common technique in classical error correction is to
study random codes, which often nearly saturate the
bounds for the optimal codes [31-33]. Moreover, practical,
near-optimal codes with efficient encoders and decoders
are possible through random constructions of low-density
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parity check (LDPC) codes [32,33]. In the quantum case,
the decoding problem tends to be more difficult to solve
(including for LDPC codes), but analogous random coding
results have been obtained for stabilizer codes, where the
decoding problem is similar to the classical case. Two-local
random Clifford circuits with all-to-all connectivity have
been shown to achieve an extensive code distance on N
qubits at a depth upper bounded by O(log?® N) [34,35]. This
scaling is comparable to provably optimal constructions for
two-designs from Clifford gates at depth O(log N) with
access to O(N) additional ancillae [36]. Spatial locality is
often an important constraint in quantum computing
architectures. In D spatial dimensions, the depth for local
circuits to achieve an approximate two-design is upper
bounded by O(N'/P) [37,38]. Such constructions are only
required if the code needs to correct all errors up until
threshold. Achieving optimal performance for local noise
models requires fewer resources because the code only
needs to correct typical errors in the thermodynamic limit.

In this paper, we develop the general theory of optimal
decoding with low-depth random encodings that include
both unitaries and targeted measurements for one of the
simplest error models given by the erasure channel. Many
of the results apply for more general error channels, but
optimal recovery probabilities are easy to compute for
erasure errors, making it a useful error model for bench-
marking quantum codes [39,40]. We show that, in any
spatial dimension, random Clifford encodings of finite-rate
codes converge to zero failure probability below the
optimal erasure threshold, set by the channel capacity,
for depths O(log N), thus improving on the random circuit
bounds described above. We then introduce an “expurga-
tion” algorithm to surpass this logarithmic barrier and
achieve convergence at a sublogarithmic depth in D > 1
dimensions. This method works by using quantum mea-
surements to remove (expurgate) logical operators from the
code that have a high probability of failure until either a
steady-state code is reached or target coding parameters are
obtained. These low-quality logicals are either turned into
additional stabilizers or gauge operators to form a sub-
system code. This expurgation process monotonically
increases the code distance and recovery probability of
any stabilizer subsystem code. At a practical level, one can
use random coding and expurgation to generate high-
performance, finite-rate codes for thousands of logical
qubits with depth 4-8 circuits in two dimensions.

Our results also establish several connections between
quantum error-correction thresholds, random matrix theory
(RMT), and statistical physics. Using a RMT ansatz, we
develop a complete critical theory for optimal decoding of
erasure errors for random stabilizer codes. We numerically
benchmark this ansatz to a high degree of precision in the
critical region of the erasure threshold. These scaling
results guide our numerical analysis of optimal decoding
for finite-depth encoders in finite-size systems. Focusing on

the critical scaling theory of random codes at low depths,
we find that random Clifford circuits can achieve the
capacity of the erasure channel only at parametrically
larger depth 0(\/]V )in 1D.In D > 1 dimensions, however,
random Clifford circuits retain the depth < O(logN)
scaling at capacity. The marginal dimension being 2D is
consistent with Imry-Ma-type arguments regarding the
relevance of randomness in the error patterns at the optimal
threshold [41].

We also analyze the case of Haar random circuit
encoders at a high depth greater O(N), where optimal
decoding is likely exponentially hard. We find similar
results as for the high-depth Clifford encoders but with
small quantitative differences that indicate Haar random
codes are slightly more optimal than random stabilizer
codes. Through an approximate mapping to an Ising model,
we argue that the erasure threshold with local random
circuits can be generally understood as a type of first-order
domain-wall pinning phase transition.

A. Relation to previous work

In this section, we discuss the relation of our results to
some of the prior work on quantum error-correcting codes
and random quantum circuits.

1. Quantum error-correcting codes

Starting in the early days of quantum error correction,
a common strategy for proving fault tolerance was to
study concatenated codes [42—44]. These codes reduce
decoherence by successively encoding quantum informa-
tion in nested chains of small codes. Unfortunately, this
approach typically suffers from large space-time resource
costs and low error thresholds [11,13,26]. A paradigmatic
example of a code that, in balance, requires minimal
resources is the 2D surface code [45,46]. This topological
code saturates the capacity for the erasure channel at a zero
code rate on a square lattice [46], is provably fault tolerant
under more general noise models [46,47], and has highly
efficient decoding algorithms [27-30,39,40,46-51] as well
as a large variety of fault-tolerant strategies for implement-
ing gates [12,14,52-58]. However, despite its remarkable
properties, the surface code requires a prohibitively large
overhead in the number of physical qubits for applications
on near-term devices [14]. With issues of this nature in
mind, it remains a central goal to develop more space-
efficient, ideally finite-rate, codes that achieve similar
levels of performance to the surface code [26].

Extending topological codes, or, more generally, low-
density parity check (LDPC) codes, to finite rate faces
various theoretical obstructions in spatially local models
[59]. Two routes to overcome this obstacle are to use
subsystem codes [60] or remove the constraint of geometric
locality while keeping the LDPC condition. In all-to-all
coupled systems, a large variety of finite-rate LDPC codes
have been developed by extending the surface code to
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nonlocal geometries or adapting classical codes based on
expander graphs [24,25,61,62]. Furthermore, several
threshold theorems have been proven for a large family
of these codes [26,63,64]. Maintaining all-to-all connec-
tivity in the thermodynamic limit eventually runs into
prohibitive resource constraints, but these codes are appli-
cable to near-term ion-trap quantum computers [65,66] and
quantum networks [67]. Another interesting class of finite-
rate codes that retain some locality structure, but are not of
the LDPC type, are provided by holographic codes that
originally arose in the study of quantum gravity and the
AdS/CFT correspondence [68,69]. The quasilocal codes
considered here differ from these various classes of codes
because their properties emerge from generic, local scram-
bling dynamics instead of concatenation, topology,
expander graphs, or hyperbolic geometry.

2. Random quantum circuits

The theoretical methods in this work draw from a variety
of recent results in random quantum circuits, which have
served as a powerful tool to examine quantum many-body
dynamics in nonperturbative limits [70—79]. Notable exam-
ples are their extensive applications to quantum gravity
[70-72] and quantum chaos and equilibration [73-80].
Despite the intricate structure of a particular circuit, which
forms the basis for average-case hardness of random circuit
sampling [1,6,81-84], there is a notion of universality in the
dynamics of extensive quantities such as the entanglement
[74] or the distance of the code generated by the circuit
[35]. Such notions of universality build on the random
matrix theory or eigenstate thermalization approach to
describing late-time equilibration in closed quantum sys-
tems [85-88].

More specifically, our results have direct relevance to a
recently discovered phase transition that arises in moni-
tored random circuits, where unitary gates are interspersed
with random projective measurements [89,90]. These
models have attracted interest in condensed matter theory
due to the potential connections to chaos, thermalization,
conformal field theory, and the many-body localization
phase transition [91-116]. In the context of quantum
information, their study has led to novel insights into
emergent quantum error correction [93,94,117-119], as
well as the sampling complexity of constant depth circuits
in 2D [120]. Because of the repeated rounds of measure-
ments acting on a code-space density matrix, the dynamics
during our expurgation algorithm display a similar phe-
nomenology to the “purification” dynamics of a mixed state
in the unitary-measurement models [93,103,107,119];
however, there are several important differences in the
present case due to the nonrandom, targeted choice of
measurements. Furthermore, since we show that logarith-
mic depth random circuits are sufficient to reliably encode
quantum information, our results may provide guidance for
rigorous existence proofs of the volume-law phase in some

models. They may also help guide efforts in developing
fault-tolerant strategies for monitored random circuits that
incorporate feedback.

B. Structure of the paper

The paper is organized as follows: In Sec. II, we outline
our theoretical approach for studying random quantum
codes. We then summarize our main results and theoretical
methods. In Sec. III, we provide some background on the
basic concepts and terminology used to describe quantum
error-correction thresholds. In Sec. IV, we present the RMT
solution to the erasure threshold for random stabilizer
codes. In Sec. V, we present our results on the behavior
of low-depth random circuit encoders for the erasure
channel. In Sec. VI, we present our expurgation algorithm
to surpass the depth O(log N) barrier in D > 1 dimensions.
In Sec. VII, we present an analysis of the erasure threshold
for general Haar random codes. In Sec. VIII, we describe an
approximate mapping of the erasure threshold to a first-
order domain-wall pinning transition that occurs in the
ordered phase of the Ising model. We provide further
discussions and present our conclusions in Sec. IX.

We remark that the arguments in the paper use a
combination of rigorous proofs, large-scale numerics,
conjectures, and some occasional heuristics. To test our
ideas as strongly as possible with this approach, we analyze
the problem from multiple perspectives and systematically
compare our results across different spatial dimensions.
What emerges from this analysis is a consistent framework
to describe quantum coding with local random circuits.

II. SUMMARY

In this section, we outline the theoretical approach taken
in this work and summarize our main results.

A. Theoretical approach

This paper is focused on developing a theory of optimal
decoding for finite-rate codes generated by random circuits.
To approach this problem, we directly investigate the
probability of successful recovery P(R) of the encoding
and decoding scheme for the specific error model of
erasures. This type of observable is complementary to
other performance metrics that are agnostic to the error
model, for example, the code distance. One advantage of
studying recovery or failure probabilities is that it allows us
to obtain a more detailed understanding of the code
performance near the optimal threshold. For coding below
the optimal threshold, we find that focusing on this
observable often suggests methods to tailor the codes to
the detailed properties of the noise, as we explore with our
expurgation algorithm in Sec. VL

The qualitative behavior of the optimal (minimal) failure
probability P(F) = 1 — P(R) is shown in Fig. 1(a). Here, e
is a parameter that characterizes the strength of noise in a
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FIG. 1. (a) Probability of decoding failure P(F) vs error rate e

through an error-correction threshold for an optimal code. In this
work, we probe the optimality of a given code ensemble by
comparing the location and universality class of the critical point
to random stabilizer codes. (b) Illustration of the models we
study. The encoding circuit is a low-depth random unitary circuit,
and the error is an erasure of a fixed fraction eN of N qubits. The
decoding proceeds via generalized measurements with outcomes
s and recovery operators R,. We mostly focus on stabilizer codes,
where optimal decoding of Pauli error channels like erasure errors
is possible with stabilizer syndrome measurements, followed by
the conditional application of single-site Clifford gates.

given error model (or class of error models), and we assume
that the implemented code is optimal for this error model.
Below threshold, the failure probability converges to zero
in the limit of large N. Past a critical error rate e, (set by the
channel capacity limit for the optimal code), for ¢ > e, the
failure probability instead converges to 1 in the large-N
limit. This discontinuous behavior in the large-N limit is
characteristic of a phase transition. Motivated by results
from classical error correction [32,33], we assume that the
failure probability for an optimal code for large N is well
approximated by the average behavior of a high-depth
random stabilizer code under optimal decoding [121]. One
primary question that we address is what minimal depth of
a random encoding Clifford circuit is needed for large but
finite N to achieve near-optimal failure probability for the
specific case of erasure errors [see Fig. 1(b)].

More specifically, in finite-size systems, the failure
probability for the optimal code will generically be a
function of both the error rate e and the number of (qu)
bits N per code block. However, in the thermodynamic
limit of large N, the failure probability will approach a
scaling form in the vicinity of the critical error rate e, [see
shaded region in Fig. 1(a)]

—lOg[p(F) :Nafopt[(e_eC)Nl/b}’ (1)

where a and b are critical exponents and the corrections
are assumed to be subleading in powers of 1/N. We
take the logarithm of the failure probability as it generally
scales like free energy, e.g., in the surface code [47]. In
coding theory, properties of the scaling functions for the
optimal codes f,, have been extensively studied under
optimal decoding of Markovian error channels (e.g., see
Ref. [122]). The finite-size scaling behavior is important

because it determines the rate of convergence to the ideal
behavior below threshold. The underlying idea of this work
is to use the scaling properties of the optimal codes for a
given error channel as an ideal performance benchmark.
We effectively define a code as optimal if it achieves
capacity at threshold and its threshold behavior lies in the
same universality class as the truly optimal codes for this
error channel.

Of course, finding explicit and efficiently implementable
representations for encoding and decoding maps of optimal
codes is generally a difficult problem [123]. To approxi-
mate this paradigm in a setting that allows for more
theoretical progress and potential practical implications
for quantum computing, we relax the benchmark critical
behavior from that of optimal codes to the average behavior
of high-depth random stabilizer codes. As mentioned
above, random codes typically achieve similar levels of
performance as optimal codes. In quantum error correction,
even random stabilizer codes are often sufficient. We
present numerical evidence on small systems that the
Haar random code transition is in the same universality
class as the random stabilizer code transition. However, we
also see small quantitative differences between the scaling
functions for the two cases, with slightly more optimal
performance for the Haar codes. Random stabilizer codes
are thus better classified as “near-optimal” codes for the
erasure channel, which is similar to a well-known result for
the depolarizing channel [124,125].

B. Main results

As discussed in the Introduction, our main results center
around the resource requirements (in terms of encoding
circuit depth) to achieve zero failure probability or approach
capacity for finite-rate codes generated by random circuits.
In particular, we study stabilizer codes generated by two-
local random Clifford circuits on hypercubic lattices in D
spatial dimensions or on all-to-all coupled networks. The
basic setup is illustrated in Fig. 1(b). In this example, every
other qubit is mapped to an encoded or “logical” qubit at a
coderate of R = 1/2, and the random circuit is implemented
in 1D. We provide a summary of the scalings found in this
work in Table 1.

The error model is taken to be an erasure model where
eN sites of an N-qubit system are randomly selected and
traced out of the system, with those sites heralded to the
decoder but unknown to the encoder. The failure proba-
bility for the more physically relevant case of independent,
identically distributed (IID) erasures at each site with
probability e can be determined from the failure probability
for the fixed-fraction erasure model, which is why we
mostly focus on the latter. [126] For the random stabilizer
codes, we show that the transition is, in a certain sense, first
order since for e < e, the logarithm of the failure prob-
ability is proportional to —(e. — ¢)N in the limit of large N.
If we interpret this as free energy, it is extensive, and its
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TABLE I. Random Clifford circuit encoding depths required to
reach zero failure probability for finite-rate codes under erasure
errors in D dimensions. Here, e, — O(1/N?) denotes coding
arbitrarily close to the critical region of the optimal erasure
threshold in the thermodynamic limit. We find » =1 for the
fixed-fraction erasure model and b = 1/2 for the IID model.
Here, D = 2 is the marginal dimension for the relevance of spatial
randomness in the errors to the threshold behavior, which makes
the scaling at the optimal threshold difficult to reliably determine
from numerics or Imry-Ma arguments. The last column shows the
results upon expurgation of bad logical operators using quantum
measurements (see Sec. VI).

D e<e, e=e.—0(1/N*) Expurgation e <e,
1 (1/e.—e)logN N1/2 log N
2 log N log N (conj.) (logN)‘, ¢ < 1

> 2 log N log N (logN)¢, c <1

density has a discontinuity in the first derivative with
respect to e at e., as is the case for first-order phase
transitions. This first-order transition is rounded out for
finite N. This finite-size rounding is minimal if we take an
error model with erasures on a fixed fraction eN of sites.
The finite-size rounding of the transition in the IID model is
much stronger (by a factor of /N).

We find that the best-known analytical bounds for the
convergence rate to a two-design strongly overestimate the
circuit depth d required for convergence of the failure
probability towards the high-depth [d = O(N)] limit. Most
notably, in any D > 2, at the critical point, the depth
required scales as d < O(log N), which is comparable to
the optimal depth for generating a two-design in systems
without spatial locality constraints O(log N) [36]. Even in
D =1, we find that removing the randomness in erasure
locations by taking regularly spaced erasures leads to a
required depth to approach zero failure probability below
the optimal threshold of O(log N). Spatial randomness in
the erasure locations seems to only be a relevant perturba-
tion for the finite-size scaling behavior in D = 1 and not
for D > 2.

To simplify the analysis, we fix the initial code rate at
precisely R = 1/2 in most of our discussion and drop this
argument from the scaling functions. Also fixing the initial
spatial arrangement of the logical qubits to be every other
site in the lattice, the failure probability has a four-
parameter dependence

—logP(F) = F(e,D,d,N). (2)

We first consider the high-depth limit d = O(N) of the
failure probability, which does not depend on D. Through a
RMT ansatz, we obtain an asymptotic form for the failure
probability in the fixed fraction model that depends only on
the total number of erasures eN (an integer) relative to the
threshold number e.N (which does not have to be an

integer): limy_ o lim,_ o F(e,d,D,N) = f[(e —e.)N]
for e near e.. Here, e, = (1 —R)/2 coincides with the
channel capacity limit for the erasure threshold [127]. For
this fixed-fraction erasure error model, the scaling function
S (x,) is only well defined on a countably infinite set of
values in the thermodynamic limit. The RMT solution
predicts a value for the critical failure probability P(F) =
0.38968... that is independent of R for 0 < R < 1; for
R = 1/2, we verify this value numerically to a precision
of 1074,

To understand the scaling with depth, we first consider a
simple mean-field model for the below-threshold behavior
in which we break the system up into individual blocks of
size O(log N). A simple analysis of this model based on the
results of Ref. [37] shows that the convergence to the high-
depth behavior of the failure probability in D dimensions is
typically O(log N) for random Clifford encodings, but it
can be made as low as depth O[(logN)!'/P] through the
optimized encodings of Ref. [36]. In the latter case, there is
areduction in the effective rate of the code due to the use of
O(log N) ancilla qubits per block in the encoding scheme.

Using an Imry-Ma-type argument [41], we then argue
that the positional randomness of the erasures is irrelevant
for the finite-size scaling in D >2. As a result, we
conjecture that the critical points for all D > 2 have the
same leading-order scaling with depth as the below-thresh-
old behavior predicted from the mean-field model,

_A}lm 10g P(F)|e:e(:,D22 = fDC(d - AlOg N)

Using this ansatz, we find a consistent scaling collapse in
our numerics.

We also study the scaling behavior with depth d in the
1D case (D = 1), which has to be treated separately. By
studying the convergence of the critical failure probability
P(F)|,—,, to the RMT prediction, we find numerical

evidence for a leading-order scaling behavior of the form
= lim 10gP(F)|o_p-1 = f1c(d/VN).  (3)

In contrast, below the critical error rate, we find that the
failure probability for d > O(log N) exhibits exponential
decay with the depth P(F)|,., p_j ~e ¥4 for some
function A(e) that diverges as (e. — e)~! upon approaching
e.. This behavior leads to an overall O(log N) depth for
convergence to zero failure probability below threshold but
with a rate that goes to zero at the optimal erasure threshold.

We argue that the /N scaling at e, has an intuitive
explanation as arising from the Poisson fluctuations in
the number of excess erasures in a given extensive region.

After establishing these scaling results, we introduce our
expurgation algorithm based on measuring logical oper-
ators in the system that are likely to lead to failures. We
prove that the code distance and recovery probability for
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Pauli error channels will monotonically increase with this
expurgation strategy. We then numerically study the per-
formance of the algorithm in 2D and all-to-all coupled
systems. In both cases, we see strong evidence that a given
target failure probability can be achieved with a sub-log-N
depth circuit.

Finally, to test the generality of these results obtained for
stabilizer codes, we study the erasure threshold for Haar
random circuits. We first study the high-depth limit using
small-scale numerics. We find consistent critical behavior
with the random stabilizer code threshold but small quanti-
tative differences in the scaling functions (as noted above).
Using well-studied mappings of two-local Haar random
circuits to statistical mechanics models [71,74,128], we
describe an approximate mapping of the erasure threshold to
a first-order pinning transition for domain walls that occurs
in the ordered phase of D + 1-dimensional Ising models.
Such transitions display similar phenomenology to our
numerically observed results for random Clifford circuits.

III. PRELIMINARIES

In this section, we introduce the basic terminology and
concepts underlying quantum error-correcting codes, opti-
mal decoding, and quantum error-correction thresholds. We
derive a formula used throughout the paper for the recovery
probability of stabilizer subsystem codes under erasure
errors.

A. Optimal decoding

The general setup we consider follows the illustration in
Fig. 1(b). Information is first mapped into a nonlocal code
space; it is then subjected to local errors and decoded. In the
theory of fault tolerance, one needs to consider errors in
both the encoding and decoding steps; however, we do not
address such issues here, and we assume both the encoding
and decoding operations are implemented perfectly.

In the quantum case, these three operations are typically
described using the language of quantum channels, which
are linear maps that are completely positive and trace
preserving [129]. Denoting the encoding, error, and decod-
ing channels by & A, and D, respectively, the central
object of interest is the composite channel

DoNoE. (4)

Error correction can be done perfectly when this composite
channel acts as the identity on the allowed input states
DoNo&(p) = p or is unitarily equivalent to the identity
DoNo&(p) = UpU" for a known unitary U.

When this map is not exactly unitarily equivalent to the
identity, then it is convenient to use a fidelity metric to
quantify its proximity to the identity. One natural fidelity
metric that we study in this work is the max-average state
fidelity [129]

Fuvg = mgx [ duty|[DoNE() ]l (5)

where dy is taken as a uniform measure over pure input
states for £ and the maximum is taken over all possible
decoding maps D. This fidelity metric quantifies the degree
to which a randomly drawn codeword can be recovered
back to its initial state under optimal decoding.

A fidelity metric closely related to this average state
fidelity is the entanglement fidelity, which measures the
degree to which the map preserves entanglement with a
reference system [130]. Given an initial density matrix pg
on the system S, we purify it to the state pgr = |Wgp) (Psg]
by introducing entanglement with a reference system R
such that pg = Trg[psg]. Then, the entanglement fidelity
under optimal decoding is

F.(ps) = mDaX<LPSR|[DONO‘S(PPSRMTSRD]‘IPSR>7 (6)

where the maps act as the identity on the reference system
and F,(pg) is independent of the choice of purification.
Conveniently, the max-average fidelity is equivalent to the
max-entanglement fidelity of the completely mixed state
through the formula F,, = [qFen(I/q) +1]/(q + 1),
where ¢ is the dimension of the input space [131,132].

In cases where the optimization over decoders is difficult
to compute, we can still gain insight into the quantum error-
correction threshold by studying the coherent quantum
information [133,134]

I.(ps, NoE) = S(ps) = S(prs), (7)

where S(p) = —Tr[plog, p| is the von Neumann entropy,
ps = No&(pg), and prg = NoE(psg). The coherent quan-
tum information is closely related to the entanglement
fidelity because when |I.(p, N'oE) — S(p)| < e, it implies
that F,(p) > 1-2y/e [134]. In our analysis of random
stabilizer codes, we directly compute F,,, while for
Haar random codes, we use the coherent quantum infor-
mation to bound F,(I/q).

The coherent quantum information is fundamentally
related to the quantum channel capacity through the
limiting formula [135,136]

Q(N) = lim %maxlc(p,./\/@N). (8)

N—co P

In this work, we study erasure errors, which, for a single
qubit, are defined by the channel

N(p) = (1-¢)p @0)(0] + ¢/21 ® [e)(e].  (9)

The states |0)/|e) are orthogonal states that herald the
absence/occurrence of the erasure on this site. Note that, in
many physically relevant scenarios, the state of the system
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itself is mapped to an orthogonal state under an erasure
error, which is an equivalent description of this channel, for
our purposes. We choose the representation in Eq. (9) to
simplify the notation in later discussions.

The heralded nature of the erasure locations dramatically
simplifies the decoding problem, as we discuss below for
stabilizer codes. Furthermore, because of this classical
register, the capacity of the erasure channel is additive
li.e., O(N) =max, I.(p, N')] and is derivable from the no-
cloning theorem [127]. It is also easy to compute the
channel capacity from the maximization of the coherent
quantum information Q(N') = (1 —2e¢), where e is the
local erasure probability on each site. Equivalently, for a
code rate R = k/N = Q, the optimal erasure threshold in
the thermodynamic limit is e. = (1 — R)/2.

B. Optimal decoding: Stabilizer codes

These concepts of optimal decoding are illustrated more
concretely by considering the example of qubit stabilizer
codes. An [N, k| qubit stabilizer code encodes k logical
qubits in N physical qubits. The codewords are spanned by
the set of 2% stabilizer states that are the simultaneous
eigenstates of a stabilizer group S C Py, which is an
Abelian subgroup of the Pauli group on N qubits Py such
that —I ¢ S. Given a generating set {Z,, ..., Zy_.} for S,
optimal decoding is possible through projective measure-
ments of these generators (called syndrome measurements)
for Pauli error channels. These are channels that have a
Kraus representation of the form

N(p) = p(E.k)EpE" @ |k)(k
Ek

, (10)

where E is an element of Py, |k) are orthogonal quantum
states that are used to store classical data (e.g., the erasure
locations), and p(E,k) > 0 is a joint probability distribu-
tion over the allowed error operators E and register indices
k. Such quantum-classical channels are sometimes called a
“quantum instrument” [137]. Erasure errors can be repre-
sented in this form because of the following identity for the
partial trace operation on site n:

Tr,lp] ® 1,/2 =~ (p + XupXy + YupY, + ZupZ,), (11)

EN

where I,,, X,,, Y,,, and Z, are the four Pauli operators.
The Pauli group operation can be represented by
standard matrix multiplication of the N-qubit Pauli oper-
ators. For two Pauli group elements P;,, we use the
notation ([P, P,]] = Tr[P,P,P7'P;']/2V to denote their
scalar commutator: If P; and P, commute, then
[P, P,]] = 1: otherwise, [[P, P,]] = —1. We can extend
the generating set for S to a complete generating set for Py
by appending destabilizer operators {X|,...,Xy_.} that
satisfy [X;,X;] =0 and [[Z;, X;]] = (—1)%, a generating

set for the logical operators L; (these are Pauli group
elements that commute with § but are not contained in §
[129]), and the Pauli group element iI. Since each E is an
element of the Pauli group, we can decompose them based
on the outcomes they produce in the syndrome measure-
ments Eg = gyLg, , wheres = (s, ..., sy_y) is a vector of
syndrome bits (s; =0/1), gy is Pauli group element
satisfying [[gg. Z;]] = (—1)%, and L, is a logical operator.
The gy is nonunique and is allowed to be linearly
dependent on elements of S, the destabilizers, logical
operators, and il.

After applying the error channel N and performing a
projective measurement of the syndrome bits s and register
state k, the state is mapped to

MyoNoE(p) = p(Eg.k)ggeLr,pLL, gh. (12)
Esk

where we traced over the classical register for notational
convenience. Applying the correction operator g:k, which is
a product of single-site Clifford gates, the state becomes a
mixture of states in the code space

g:k[MskoNog(p)]gsk = Zp(Eskvk)LEskagvk' (13)
Esk

Below threshold in the thermodynamic limit, all the Lg,
must converge in probability to the same logical operator
Lg, up to multiplication by elements of the stabilizer group
S,ie., Lg, = gg, Ly for some gg in S. Since the operators
9k, act trivially in the code space, the initial state can then
be perfectly recovered by applying the additional unitary
correction operator ij.

In finite-size systems, where perfect decoding is not
generally possible, an optimal decoding strategy is any
maximum-likelihood decoder based on the observed s and k
[47]. In this approach, we further break up the set of all E;
into logical operator classes Ei, = gskgEikLék, such that the
gEi, are in § and the L/, cannot be related (modulo a phase)
through multiplication by elements of S. Conditioned on s
and k, the decoder applies a unitary correction operator
Rl, = gLl to the state Ry [MyoNoE(p)|R,, with Ll
corresponding to the most likely logical error equivalence
class. This operator can be computed by finding the value of
i that maximizes the probability

Zi(s.k) =) _p(Ey.k). (14)

i.e., Zna (5, k) = max; Z;(s, k). The probability of a perfect
recovery for all input states under optimal decoding is then
given by
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P(R) =) Zunax(s.k). (15)

For general codes and Pauli error channels, finding Ly is
likely to be exponentially hard, but, in the case of erasure
errors, an efficient optimal decoding strategy has been
derived by Delfosse and Zemor [40]. Briefly reviewing
their argument, one can use the fact that erasure error
locations are heralded, which implies that the decoder only
needs to find the most likely error operator that acts on the
erased sites. Once the sites are known, according to Eq. (11),
all error operators are equally likely, which implies that the
probabilities in Eq. (14) are all equal for a fixed k; therefore,
amaximum-likelihood strategy is to simply choose Ry to be
any Pauli operator that lives on the erased sites and produces
the observed syndrome measurement. Using the standard
representation for stabilizer states from the Gottesman-Knill
theorem [138,139], such a Pauli operator can be found given
the syndrome check operators, erasure locations, and syn-
drome measurement outcomes using Gaussian elimination
in a time of at most O(N?).

Here, we derive an explicit formula for the recovery
probability under erasure errors that is convenient for our
purposes. We make use of a generating matrix for the error
operators that act in the erased region e,

szil iy

M(S,L.e)=| : e (16)
Ling Zin,
Kin, Xing

The first ny = N — k columns sz are vectors of syndrome
bits for a local basis of error operators defined by the
relation (—1)% = [[Z;, E]]. The last 2k columns ¢ sim-
ilarly encode the scalar commutator of the local errors with
a generating set for the logical operators. Crucially,
stabilizer codes are additive codes, which implies that if
E = E] +E2, then Sgp = sEl +SE2 and LﬂE = fEl + sz.
As a result, the row vectors (s, |£, ) act as a generating set
for all possible syndromes and their associated logical
errors in the erased region.

We now show how to compute the recovery probability
from the matrix M. Performing row reduction on M
identifies all errors that map to the all-zero syndrome
but have a nontrivial logical operator content. Errors of this
type can be used to enumerate all uncorrectable errors for
that set of erasure locations. For each matrix M(S, L, e), we
define

ru(S,L,e) = rank(M) — rank(My), (17)

where M is the submatrix of M consisting of the first n;
columns of M. Here, r); counts the number of basis vectors
for errors that have a zero syndrome but act nontrivially on
the logical subspace.

For each syndrome, the decoder can only apply a
single recovery operator; however, this recovery strategy
will always fail with some probability if the error is
linearly dependent on one of the r), basis vectors with
trivial syndrome and nontrivial logical operator content.
Since all the errors occur with equal probability for
erasures, the optimal recovery probability can then be
directly computed as

P(R|S.L.e) = (18)

2rM(S~L,e) :

Incidentally, k — ry, is also equal to the coherent quantum
information of this encoding scheme under erasure errors.
As we take advantage of in Sec. VI, these formulas
directly generalize to stabilizer subsystem codes by
removing columns of M associated with generators for
the gauge group.

IV. RANDOM STABILIZER CODE THRESHOLD

In this section, we present a solution to the critical theory
of the erasure threshold for random stabilizer codes based
on a RMT ansatz. Establishing the basic phenomenology of
the random stabilizer erasure threshold transition is stan-
dard material in quantum information theory [140]. Our
main contribution is to derive analytic predictions for the
code-averaged probability of perfect recovery P(R|n,)
according to Eq. (15), where n, is the number of erased
sites in the fixed-fraction model and k is the number of
logical encoded qubits. In the Appendix A, we further show
that P(R|n,) is equal to the code-averaged max-average
fidelity F avg 10 the thermodynamic limit. We use this result
to argue that the Haar random erasure threshold, where we
only approximate F’ avg> 18 in the same universality class as
the random stabilizer erasure threshold.

The encoding circuit U for a random stabilizer code
is a random Clifford unitary on N qubits. Since spatial
locality is irrelevant in this discussion, we take the initial
unencoded logical qubits to be given by the last block
of k qubits, which implies that the stabilizer group has
generators

Z,=UzZ;U", i=1,..,n (19)
where n; = N — k is the number of stabilizer generators.
We use the optimal decoding strategy for erasure errors
described in Sec. III B: Given a set of erased sites e and
syndromes s, the decoder applies any Pauli operator R,
that lives on e and flips each stabilizer generator Z; to have
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the same sign as s; [40]. The circuit-averaged probability
for perfect recovery under optimal decoding satisfies

P(R|n.) = Eyy P(R|U.e)p(e) =

e
because E;P(R|U, e) depends on e only through n, = |e|
for a fully random Clifford circuit.

Since random stabilizer codes are nondegenerate in the
large-N limit, every correctable error needs to map to a
unique syndrome. We can find the number of unique
syndromes for a given U and e by determining the [,-
rank n, of the syndrome matrix Mg(S, L, e) formed from
the first n; columns of M from Eq. (16). Intuitively, 2" is
simply the total number of unique syndromes available to
the decoder for this erasure pattern. Thus, the average
recovery probability is

P(RIU.e)  (20)

P(Rln,) = Ey[2n2] =22 (1)

where 7y, = log, [E[2"(Ve)]
ng=N—k,and N.

We can approximate the behavior of n, for a random
stabilizer code in the two limits n; < 2n, or ng > 2n,
[140]. In the former case, the number of possible errors is
exponentially larger than the number of available syn-
dromes. For a random U, each syndrome occurs with nearly
equal probability; thus, each syndrome will be occupied
with high probability and result in the scaling 7, = n;. In
the opposite limit, the number of available syndromes is
exponentially larger than the number of errors. As a result,
there is a high probability that each error gets mapped to a
distinct syndrome, resulting in the scaling 71, = 2n,. These
estimates show that P(F) = 1 — P(R) has a discontinuity
at the channel capacity bound n,/N =1—-R =2n,/N =
2e in the large-N limit.

In the RMT approach described below, we can explicitly
calculate P(F) for all values of n, and nj, including
arbitrarily close to threshold,

is just a function of n,,

27101 2p, < ny
[IED(F) ~ 1- re 2ne = Ny (22)
1 =271 2n, > n,,

where § =2n, —n, = 2(e —e.)N is the distance from
the critical point and . is the recovery rate at the critical
point. As we show in the section below, r, = 0.610322...
in the RMT model. From this RMT solution, we also find
that the higher-order corrections to this formula are
exponentially suppressed in the distance from the critical
point O(272]),

A. RMT solution

The exact formula for the code-averaged recovery
probability is given by

2n,

P(R|n,) _[EUZ[P’

There is no need to average over e for a fixed erasure number
because the circuit average removes the dependence on the
spatial locations of errors. In the RMT approach, we assume
that the syndrome matrices M(S, L, e) and Mg(S,L,e) are
given by random 2n, x (n, + 2k) and 2n, x n; matrices,
respectively. We do not expect this result to be true, exactly,
because it ignores the constraint that the time evolution
preserves commutation relations; however, we conjecture
that it is accurate up to exponentially small corrections in N.
The reason it is a probable hypothesis is that M and My
can be constructed by taking submatrices of a much larger
2N x 2N tableau representation for U [138,139]. The RMT
ansatz is based on the assumption that these submatrices
are insensitive to the “global” constraint on the otherwise
random U that it preserves commutation relations of Pauli
group elements.

In the RMT anstaz and for e < 1/2, the matrix M will
have full rank 2n, with a probability that converges to 1
exponentially in N because the number of columns is much
greater than the number of rows. The average recovery
probability then reduces to a combinatorial formula regard-
ing the rank distribution of the My matrix,

(S,L,e)hasry =m]—. (23)

2m

B(R|n,) = Z#Zne ;2115 matrices O.f rankaZ_’:‘L.
— n, X ng matrices 2

The denominator is the number of matrices over [, of size
2n, x n,, which is equal to 22"« since each entry can take
one of two independent values. Finding the number of
2n, X ngy matrices of rank m is a less trivial, but familiar,
result in combinatorics that also has applications in
classical error correction [141]. For completeness, we
provide a derivation in Appendix B.

Using this formula, the probability of successful recov-
ery has the analytic expression

R| "i m 1 22n, _ 2f)(2n‘. _ 2f) om
n P
22n ng H?:(; (Zm _ 2f) 22}16

where n”, = min(n,, 2n,). Note that P(F) = 1 — P(R) has
the asymptotic behavior given by Eq. (22) with the critical
parameter

oo oo 1)2

2m+[
, 24
Z nm+1 Hoo (1_2#) ( )

m=0

which is approximately r. =~ 0.610322.... By numerically
sampling My matrices generated by depth N 1D local
circuits with periodic boundary conditions, we have veri-
fied that these RMT predictions accurately approximate the
true failure probability on these sizes. The results are shown
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FIG. 2. Failure probability for 1D circuit of depth N with
periodic boundary conditions obtained via numerically sampling
10° random codes. We take a fixed fraction erasure error at a code
rate R = 1/2, for which the critical erasure rate is ¢, = N/4. The
black line shows the RMT prediction computed for N = 128,
which agrees with the numerical results to within the statistical
error bars. The inset shows an excellent collapse for this full range
of sizes according to the predicted scaling.

in Fig. 2 up to size N = 128 for R = k/N = 1/2. We find
excellent agreement between the exact numerical results
and the RMT prediction throughout the critical region, even
for sizes down to N = 16. To obtain a more precise
comparison, we estimate the success probability with
higher precision at the critical point. Randomly generating
108 Mg matrices from a depth 2N circuit (N = 40) in 1D
with periodic boundary conditions provides our current
best estimate

r.~0.61029 £ 3.7 x 1075 = 0.61029(4),  (25)

which agrees with the RMT value at a precision of 107*. In
Appendix D, we further show that the recovery probability
is self-averaging at e, in the sense that a typical random
code has a recovery probability that converges to r, in the
large-N limit.

V. QUASILOCAL RANDOM STABILIZER
CODE THRESHOLD

In this section, we investigate the erasure threshold for
random stabilizer codes generated by finite-depth quantum
circuits in finite-size systems.

A. Block model: Mean-field limit

We can gain a surprising amount of insight into this local
random coding problem by first considering a toy model
with the simplified block encoding scheme illustrated in
Fig. 3. Furthermore, the basic arguments in this section are
not specific to the erasure channel. In this model, we
remove gates that couple different blocks of qubits such
that each block undergoes completely independent random
unitary dynamics. Intuitively, this model can be interpreted

ID0O00OOOGOOOOOGOOO

000000 2D
000000 Random circuit
0900000 encoding
000000 @ Syndrome sites
000000

00000

FIG. 3. Toy model for the below-threshold behavior of finite-
depth, random, unitary-encoding circuits in which we remove
gates that couple different blocks of qubits.

as a type of mean-field model for the random code
transition. At large depth, the average failure probability
for this model becomes an upper bound on the average
failure probability of the random code transition.

Specifically, we break up a system of N qubits into cubic
blocks of size N, = LP, where D is the space dimension of
the encoding Clifford circuit in each block and L is the
linear size of the block. Each block has approximately
(1 — R)N,, stabilizers and RN, logical qubits. Running a
high-depth [d = O(N},)] random Clifford circuit on each
block results in a rate R random stabilizer code on this
block of qubits. If we apply an erasure error below the
random code threshold, then the average recovery proba-
bility is just the product of the average recovery probability
for each block (since the codes between blocks are
uncorrelated)

N/N,
P(Rlne) = [[ (1= (@72 + 0(N2™/N,),  (26)

i=1

where &; = (1 —R)N;, —2n,; is the distance from the
critical point in block i with n,; erased sites. In order
for our approximations to be valid, we require that N,
grows as O(log N) or faster. We make use of the fact that
the fluctuations in the number of erasures in each region are
determined by the central limit theorem

nZ:eNh+Ah, A}/"N(O,Gi), o= 6(]—€)Nh.

(27)
As a result, the average failure probability is given by

P (F) < B(F) z% @20, (28)

0 dx
s 22(e=ec)Ny / ——22% exp(—x?/2
vr p(—x°/2)
22(e—eL.)N,,
2re(l —e)N,In4
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where x = (e —e,)\/N/\/e(1 —e). Thus, for e < e,, the
failure probability converges to zero when

3/2
lim loga(N/N, °) <2(e.—e), (30)
N—oo b
which is satisfied for N, = O(log N), i.e., when the block
length scales as L = O|(log N)'/P].

To achieve a random code on each block, we naively
need to apply a depth d = O(L) circuit [37,38]; however,
this neglects the fact that there are rare Clifford circuits
where Pauli operators remain localized to a given site. In
particular, to preserve commutation relations, every two-
qubit Clifford gate has to map at least one single-site Pauli
operator for each site to another single-site Pauli operator.
The probability of such localized logicals appearing in a
system of size N scales as N/A? for a constant A that
depends on the ensemble of gates used in the random
circuit. Note that even if all two-qubit gates are entangling,
A will still be finite. This constraint implies that one needs
to apply a depth O(log N) random Clifford circuit regard-
less of dimensionality to avoid these rare localized oper-
ators. As a result, the block model only converges to zero
failure probability for depth d = O(log N) for all spatial
dimensions. Interestingly, a similar type of argument was
recently used in Corollary 4 of Ref. [142] to prove a lower
bound of O(log N) on the depth required to achieve a form
of anticoncentration in random circuits. The ensemble was
formed from two-local circuits with the gates drawn
randomly from a two-design. Developing a more complete
understanding of the relation between encoding properties
of low-depth random circuits and other observables, e.g.,
anticoncentration or sampling complexity, is an interesting
subject for future work.

In the case of the channel coding problem considered
here, there are two routes to overcome the O(log N) lower
bound on the depth required to achieve zero failure
probability below capacity. One simple approach within
the block model picture is to apply an optimized imple-
mentation of a two-design following Ref. [36], but includ-
ing SWAP gates to map the all-to-all circuit to a local
geometry. This approach also requires the use of O(log N)
ancilla qubits per block, which, by our conventions, would
effectively reduce the overall rate of the code. With such
optimized circuits, one can deterministically encode each
block into a high-performance code in depth O(N,I)/ By,
thereby allowing convergence of the full system to zero
failure probability at depth O[(log N)'/P]. This argument
shows that, in principle, one can surpass the O(logN)
scaling by introducing long-range correlations into the
encoding and allowing for additional ancilla qubits. In
practice, however, the block model will always have a
relatively weak convergence with depth because it does not
take advantage of correlations that can build up between

@os

FIG. 4. (a) Recovery probability vs scaled depth d/v/N
(d = number of two-qubit gates per site) for a 1D random circuit
in a brickwork arrangement at the channel capacity limit
(R,e) = (1/2,e.). (b) Recovery probability vs scaled depth
(A = 6.5) for a nonrandom erasure error in which every fourth
site is erased from the system. In this case, the d = 0 failure
probability is 1/2. Each two-qubit gate in these circuits is a
random Clifford gate.

blocks. To achieve the sublogarithmic scaling in practice,
we therefore use the expurgation strategy described in
Sec. VI below. In this approach, these rare localized logical
operators are directly removed from the code by the
expurgation process.

B. Critical scaling

In the vicinity of the critical point for the random
stabilizer code, it is clear that the block encoding scheme
fails because each individual block fails with a large
probability. As mentioned in the previous section, we
expect the original model to achieve better performance
because the “blocks” formed by the finite depth circuit are
effectively correlated with each other. This implies that the
error correction in regions with excessive numbers of
erasures can be assisted by nearby regions. As shown in
Fig. 4(a), we numerically observe that the convergence to
the critical properties of the random code behavior occurs at
depth O(v/N) in 1D. On the other hand, for D > 2, the
convergence, even at the critical point, occurs at depth
O(logN). As we show below, this distinction between
D = 1and D > 2 can be traced to the familiar fact that the
boundary of a contiguous region in 1D is effectively zero
dimensional. In the discussion below, we assume we are
working at depth greater than O(logN) so that large
inhomogeneities in the quality of the random code are
smoothed out, while what is left over is the randomness in
the error pattern.

We first give an argument for the /N scaling in 1D
based on a mapping to a random walk for the IID model. If
we sum up the number of erasures relative to the critical
number along the length of the system, this is a biased
random walk that travels a certain distance on summing
around the full system. The random walker’s time is the
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system’s space, while the random walker’s space is an
excess number of erasures in that segment of the system’s
space. The failures occur where this random walk “back-
tracks” a distance d. Thus, the characteristic d = d*, where
the failure probability converges towards its high-depth
[d = O(N)] value, is the d where these backtracks become
rare in the system of length N. From the statistics of random
walks, this has a probability of occurring that falls off as
exp(—AN/d?) for some constant A, but the region that is
dense can be of order d*/N distinct locations [143]. By
considering only regions where these local fluctuations
are above threshold, we arrive at the scaling form
d* = N'2g[(e, — e)N'/?], with g(x)~ (1/x)log(x) at
large x and g(0) of order one. Thus, well below threshold
in 1D (x> 1), the scaling for the critical depth is
d* ~ (e, —e)~'log N. The depth required to converge to
zero failure probability is always O(log N) in 1D, but the
prefactor diverges as one approaches the optimal threshold.

A related argument that connects more directly to the
syndrome matrix M (S, L, e) proceeds as follows: Imagine
we apply a fixed number of erasures at the critical point
n, = n,/2 but distributed randomly throughout the system.
If we cut the system into two halves, then one half of the

system will effectively be above threshold with about v/N
extra erasures, while the other half will be below threshold.
In order to correct the above-threshold region, we need to
“borrow” a sufficiently large number of error syndrome
basis elements in M (S, L, e) from the region that is below
threshold, which requires that the minimum support of our

error syndrome basis elements is about \/N to satisfy this

condition. Thus, we need to run a depth on the order of VN
circuit to generate sufficiently long-range error syndromes
in the syndrome matrix M.

To test our argument that it is only the local fluctuations
in the erasure number that determine the required depth, we
compare the convergence to the RMT prediction for
random erasures in Fig. 4(a) against regularly arranged
erasures in Fig. 4(b). In the spatially nonrandom case, the
error is chosen randomly from one of the four regularly
spaced erasure patterns with n, = e.N = N /4. In contrast
to the random error model, we see convergence to the large
depth limit with an O(log N) scaling.

We remark that the recovery probability for a depth zero
circuit with this nonrandom error and our layout of logical
qubits is equal to 1/2. Thus, the recovery probability is
nonmonotonic with depth: Itis 1/2 at d = 0, drops close to
zerofor0 < d <« Alog N, and thenis approximately equal to
0.6 for d > Alog N; the coefficient is found to be A = 6.5.

The situation changes dramatically in higher integer
dimensions where the prefactor of the log N scaling of d*
does not need to diverge as one approaches the optimal
erasure threshold. In this case, the random fluctuations in
erasure number within a given region can be overcome by
the overlapping syndromes near the boundary whenever

—[logy P(R)]/N

0 0.1 02 , 03 0.4 0.5
FIG. 5. Recovery probability vs erasure fraction for a two-
dimensional random circuit in a brickwork arrangement of gates
with periodic boundary conditions for different depths d for N =
256 and R = 1/2. Different sizes collapse to the same curve for
this way of scaling except within a region of width |e — e.| ~
1/N near the critical point. We sequentially cycle through four
layers so that each site interacts with its north, east, south, and
west neighbors for each four units of depth. The scaling behavior
converges to the RMT prediction exponentially with depth
throughout the critical region. The inset shows the same data
on a logarithmic scale, illustrating the scaling P(F) ~ e~%/4 for
e < e.. Each two-qubit gate in the circuit consists of an iISWAP
gate followed by a random single-site Clifford on each site.

LP'd~ /N~ LP/? = d~ L1712, (31)

This tension between random fluctuations and ordering
tendencies is familiar from Imry-Ma arguments. This
scaling indicates that D =2 is the marginal dimension
for the relevance of random erasure locations. For D > 2, at
the depth d > Alog N needed to produce a near-optimal
code, the effect of this erasure-location randomness is
subdominant. This result appears to remain true in the
marginal dimension D = 2, where the subdominance is
only by factors of log N. In Fig. 5, we show the numerical
results for the recovery probability through the erasure
threshold at different values of the depth in two dimensions.
We clearly see the exponential convergence to the RMT
prediction throughout the critical region.

In the case of intermediate dimensions 1 < D < 2, such
as can be realized in fractal lattices and critical percolation
clusters, the perimeter of a region with excess erasures may
have a nontrivial scaling with N that is also not spatially
uniform. As a result, it would be an interesting subject for
future work to precisely determine the fate of the critical
scaling on particular real space lattices with these inter-
mediate dimensions.

C. Spatial correlations of uncorrectable errors

When used as a toy model for the low-depth regime
logN < d < N'/P, the block model suggests that errors
will generally be bunched in space. In particular, this model
leads to the intuition that regions with excess erasures will
fail first with an uncorrectable error of weight close to d”.
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To test this argument, we consider a setup inspired by the
entanglement fidelity: Two of the logical qubit sites are
initially entangled with external reference qubits, and the
other logical qubits are in a random pure product state.

Using these reference qubits as local probes, we define
an error as occurring in the vicinity of location i, if
reference qubit i loses its entanglement with the system
following the full encoding, error, and decoding procedure.
Specifically, we study the change in mutual information
between each probe and the system

AI(R;:S) = I(R;:S) — I(R;: S, (32)

where  I(A:B) = S(pa) + S(pg) = S(pag)s  pPrs =
DoNo(pgs) is the density matrix of the system and
reference probe i following the decoded error channel,
pr, = Trg[pr ¢]. and pg = Trg [pg ¢]. Initially, the mutual
information 7(S:R;) = 2. In these stabilizer code models
with Pauli error channels, the mutual information changes
in discrete integer steps. For two reference qubits entangled
with the system at sites x; and x,, we then define code-
averaged local error profiles

Pi(x15.d) = BIAI(R;:S) > 0], (33)

Pi(x15,d) = P[AI(R,:S) + AI(R,:S) > 0],  (34)

where P(-) = EyP(-) and x5, = |x; — x,| is the distance
between the probes.

Numerical results for these error profile functions are
shown in Fig. 6(a) for D = 1 with length L = N = 128.
We take R = 1/2 and n, = e.N = N/4 so that uncorrect-
able errors occur relatively frequently. We see convincing
evidence that spatial locality plays an important role
for these low-depth codes, despite the potential for
nonlocal effects induced by the syndrome measurements.
In particular, when x;, = L/2, then the joint failure
distribution P, (L /2, d) factorizes into a product distribution
[P(L/2,d)]* at low depths d. On the other hand, when
X;p <d, there is a clear bunching effect whereby
Pi5(x12,d) > [Pi(L/2,d)]*. We study this more quantita-
tively in Fig. 6(b) in terms of the conditional failure
probability of reference probe 2 given that reference probe 1
failed: Pj(x,d) = Py»(x,d)/P;(x,d). Rather intuitively,
we see a collapse of the curves for different depths when this
conditional profile is plotted as a function of x/d.

These spatial correlations in the uncorrectable errors are
an indication that these low-depth codes retain features
associated with spatial locality despite achieving the critical
behavior of fully random or high-depth codes. Thus, in
many respects, they are a truly distinct class of codes from
fully random stabilizer codes.

(@ o4 B L (g, ]
o O Local = j—g f ?0
Z 03 %‘bes Hos6 +g = %421
= ol =
E & +d=16
202 04
o =
£ 4 Pi(L/2,d) >
= o1 +HA@27 £,

g Pi5(L/2,d) &
A 4+ Pi5(3,d) Y
% 10 20 30 06 2 P
d z/d

FIG. 6. (a) Local uncorrectable error probability of one
Py (x12,d) or both P,(x,,d) reference probe qubits entangled
with the system vs d. Here, we take D=1, R=1/2,
n,/N =e.=1/4, and N = 128. Each two-qubit gate in the
circuit is a random Clifford gate. The local error probability is
defined as the probability that the mutual information of a
reference qubit is less than maximal after the optimal decoding.
Note that the red curve almost perfectly coincides with the yellow
curve, indicating an absence of connected correlations for these
far-separated uncorrectable errors. (b) Conditional error proba-
bility of probe 2 when an error affects probe 1 vs scaled distance
for different d. When a probe fails in a given region, it implies that
the second probe at a distance on the order of d also fails with
high probability.

VI. EXPURGATION ALGORITHM

As discussed in Sec. VA, there are strategies in higher
dimensions to overcome the log N depth scaling found for
random Clifford circuits. In this section, we introduce a
natural method to improve the performance of these low-
depth codes based on the fact that the dominant failure
modes at depths [log N]'/P < d <logN are rare regions
with bad logical qubits.

The basic ingredient in our algorithm is the efficient
implementation of quantum measurements of stabilizer
code-space density matrices [139]. We assume that we
are given a single logical operator g. We can update a
generating set for the stabilizer code and its logical
operators by making a projective measurement of the
code-space density matrix following the tableau rules
outlined by Aaronson and Gottesman [139],

=
~

I+2;) - (1xg)ps(1+g)/2

2| -

pPs =

2ﬁ~
L=

(I+Z)(I+g).

(35)

N —
p2

L

where the sign of the measurement outcome is randomly
chosen. This projective measurement operation will not
affect the original generating set for S except to add g to the
list of generators; however, it will modify the logical
operators to ensure that all of the remaining logical
operators commute with g, which implies that the “desta-
bilizer” operator g associated with ¢ is no longer a logical
operator. As a result, we can form an [N, k — 1] stabilizer
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code or stabilizer subsystem code by converting g or g into
a stabilizer or gauge operator, respectively. This procedure
can be iterated to successively convert logical operators
into additional stabilizers or gauge operators while leaving
the original syndrome stabilizers unaffected.

Specifically, in our expurgation algorithm, we begin with
an [N, k] stabilizer code with stabilizer group S and logical
operators L. We then randomly generate an erasure
pattern e and compute the matrix M (S, L, e). Performing
row reduction allows us to form a basis {g;} of linearly
independent errors that map to the zero syndrome but have
nontrivial logical operator content. We then perform a
sequence of projective measurements of these operators as
described above to form a new stabilizer or subsystem
code. This procedure is iterated many times until either
the rate of the code approaches a specified target value, the
failure probability reaches a certain threshold, or the
number of logical operators goes to zero (i.e., expurgation
fails).

To put this algorithm on firmer mathematical footing, we
prove the following two simple propositions:

Proposition 1: Let S be the stabilizer group for a
stabilizer subsystem code with logical operators L and
gauge group G. For every g € L @ G that acts nontrivially
on L, the distance of § after expurgating g into S or G
monotonically increases.

Let us order all 4V — 1 Pauli group operators by their
Hamming weight (number of nontrivial sites) and compute
the anticommutator of every Pauli group element with a
generating set for S and L,

sEl fEl

(36)

sE4N—1 sztN—]

We assume that g and an anticommuting logical g are two
of the generators and that they commute with all other
generators for L. The distance of the subsystem code can be
found by finding the first Pauli group element E, in this list
that has sz, = 0 and a nontrivial anticommutator vector
g, If we expurgate g, then this removes g and g from the
list of generators, which amounts to removing two of the
columns from 7, and adding one column to sz, or not
(depending on the expurgation strategy). If £, becomes
trivial, then the distance might increase, depending on what
happens to the next Pauli group element in the list ordered
by the Hamming weight. If sz becomes nontrivial, then the
distance might also increase. If sz, remains trivial and £,
remains nontrivial, then the distance stays the same.
Therefore, the distance is monotonic. ]

Essentially, we use the following two properties of
expurgation: (i) The stabilizer group never shrinks in size

(it can even grow, depending on the strategy), and (ii) the
number of logical operators only decreases. Hence, the
relevant set of operators that commute with stabilizers
and anticommute with some logical operator never grows.
Therefore, the code distance—defined as the minimum
Hamming weight of elements in the relevant set of
operators—never decreases.

A related proposition that follows a similar line of
reasoning is as follows:

Proposition 2: Let S be the stabilizer group for a
stabilizer subsystem code with logical operators L and
gauge group G. For every g € L @ G that acts nontrivially
on L, the optimal decoding recovery probability of S after
expurgating g into S or G monotonically increases for all
Pauli error channels.

For each Pauli group element E in the list from
Proposition 1, we let their probability of appearing in
the error channel be p(E). We then group this list of
anticommutator vectors into subsets with the same syn-
drome vector s;, which each occur with total probability
P(s;). We further break up these groups into error classes

E;; of errors with identical values of £, . The conditional

recovery probability is the probability of the most likely
error class

pi=max > p(E) (37)

EeE;

divided by P(s;), such that the total recovery probability is
P(R) = >_,; p;- Expurgation of g will never decrease the
total value of this sum. In the case where g is turned into a
gauge operator, the syndrome classes and their total
probabilities are unchanged, while the logical equivalence
classes for that syndrome can only combine with each other
or stay the same. As a result, p; is monotonically increasing
for each i, which makes P(R) monotonically increase
under expurgation. A similar argument holds when g is
turned into a check operator. m

The dynamics during this expurgation process bears close
resemblance to the purification dynamics of pg for random
circuit models with measurements studied by two of the
authors [93] and developed further in Refs. [103,107,119].
In that case, though, the measurements are not selectively
chosen to project out certain logical operators, but rather,
they are chosen as random, few-site projective measure-
ments. In both dynamics, however, we observe a similar
trend that the entropy of the code-space density matrix
progressively decreases with measurements until it reaches a
plateau value. The plateau can either be at a subextensive
value (a “pure” phase) or at a finite entropy density
(a “mixed” phase). What is common between both types
of dynamics is that, whenever there is residual entropy in the
code-space density matrix, the expurgated code is able to
better protect the remaining logical qubits against future
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FIG. 7. (a) Interpolated depth d* to reach 50% failure proba-

bility for a 2D random Clifford circuit with periodic boundary
conditions vs log-system size. All logical operators are turned
into gauge degrees of freedom during expurgation. We remove
the small amount of N/32 to aid in extracting the scaling vs
log, N to large sizes and small depths. We take an erasure fraction
n,/N = 1/8 for both the expurgation algorithm and the calcu-
lation of the failure probability. (b) Same as panel (a), but for an
all-to-all circuit in which N /2 pairs of sites are randomly selected
to apply a two-qubit gate for each unit of depth. Each two-qubit
gate in both geometries is a random Clifford gate.

errors in the system that are statistically independent from
the errors that helped form the code.

In Fig. 7, we provide an illustrative example of the
performance improvements that are possible with this
expurgation strategy for 2D and all-to-all random circuit
encodings. In both cases, all expurgated logicals are turned
into gauge qubits; this process has the advantage that the
syndrome check operators are unchanged. In this case, the
support of each check operator is determined by the initial
encoding circuit. Maintaining low-weight check operators
has advantages for fault tolerance by limiting the effects of
measurement errors. For both geometries, we see nearly
linear scaling of d* with log N before expurgation. After
expurgation, d* has a strongly sublinear scaling with log N.

We also study the performance of these expurgated codes
in 1D, but we do not find improvement of the log N depth
scaling upon expurgation. It is an interesting subject for
future work to better characterize the full range of pos-
sibilities that result from this type of targeted expurgation
process for quantum codes that begin with many logical
qubits.

VII. HAAR RANDOM CODE THRESHOLD

In this section, we study the Haar random erasure
threshold. We find a similar threshold erasure rate and
critical scaling behaviors as the random stabilizer erasure
thresholds; however, we observe small quantitative
differences in the scaling functions near the critical point
for the two codes. These results indicate that Haar random
codes are more optimal than random stabilizer codes for
erasure errors.

In contrast to our analysis of the stabilizer codes, we do
not perform an optimal decoding analysis and only test for

(a) Fixed-fraction crasures  (b) IID Erasures
[ REncoding R Y 2 .
7 .
i eSS
Z‘.c. € SWAP with e # w1
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= E N -8 / =
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- - Max slope __~ III +N =12
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FIG. 8. (a) I(R': &) for the Haar random encoding following a

fixed-fraction erasure error at R = 1/2. Fore < e, = (1 = R)/2,
I(R': &) rapidly decays to zero, whereas it grows to an extensive
value for e > e,. (b) Finite-size scaling in the IID erasure model.
Inset: scaled I(R’:&’) with an unscaled erasure rate. The curves
for different system sizes cross near the channel capacity bound
e, =1/4.

the existence of an erasure threshold. We consider the
coherent quantum information of an initial state in the code
space after application of the erasure channel in Eq. (9) on a
random set e of the sites

1.=S(pg) = S(pe).

po =Trlpgl,  pe=Trelpgl, (38)

where p, is an initial encoded density matrix and p, is the
reduced density matrix on e. We study the purified channel
where a reference system R is used to purify py and an
environment & purifies the error operation [see inset to
Fig. 8(a)]. In the case of the erasure error, the interaction of
the system with the environment is through a SWAP
operation of each erased qubit in e with a qubit in &.
The mutual information between the reference and the
fictitious environment is equal to

I(R":&') = S(pg) + S(pe’) = Slpre)

p
(pQ>_Ic:RN_IcZOv (39)

S
S

where R is the rate of the code. As we discussed in
Sec. IIIA, when I(R':&') = |S(pg) —1.| <e, then the
max-entanglement fidelity for that input state satisfies
F,(po) = 1-21/€; i.e., for € sufficiently small, the error
channel can be approximately decoded.

In Fig. 8, we show the results of numerical simulations
for I(R':&') = EyI(R': &) for the Haar random code with
a po that acts trivially on the code space. We show the
results for both fixed fraction and IID erasure errors. We see
consistent scaling results with the random stabilizer code:
The fixed-fraction error model leads to a finite-size round-
ing of the transition over a region scaling as |e — e,.| ~ 1/N.
The random fluctuations in the total number of erasures in
the IID model then round out the threshold even more,
producing a “critical” region of width |e — e,| ~ 1/4/N and
amplitude 7 ~ /N at e,.
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FIG. 9.

(a) I(R': &) for the fixed fraction erasure errors in the
vicinity of the critical point for the Haar random (H) and random
stabilizer (C: Clifford) codes. (b) Comparison of the code
performance at the critical point. The Haar codes have slightly
better performance than the random stabilizer codes with
I(R':€") = 0.720(5) and 0.848(5), respectively.

To obtain a more direct comparison between the Haar
random and random stabilizer codes, we show the average
coherent quantum information of each code ensemble in
Fig. 9. We see remarkably close quantitative agreement
between the code performance; however, there are signifi-
cant differences that appear at the critical point. In
particular, in Fig. 9(b), we see that the two codes appear
to be converging to substantially different values of
I(R":&') in the large-N limit of 0.720(5) (Haar) and
0.848(5) (Clifford). Thus, a Haar random code is slightly
more optimal than a random stabilizer code in this region
where the code fails. These quantitative differences in the
scaling function indicate that the random stabilizer code
does not necessarily saturate the performance of an optimal
code, even at leading order in the large-N limit. In the case
of the depolarizing channel, the optimal decoding threshold
for a random stabilizer code is expected to be smaller than
the channel capacity limit [124,125].

VIII. STATISTICAL MECHANICS MAPPING:
DOMAIN-WALL PINNING

In this section, we present an approximate mapping of
the erasure threshold to a first-order domain-wall pinning
transition in a related statistical mechanics description. This
discussion applies to both Clifford and Haar models.

We consider the quenched average of the purity of a
subregion A,

—log, Py = —logz[[EUTr[pi]]
< —Eylog, Tr[p3] < EyS(pa).

A natural approximation to the coherent quantum infor-
mation is the difference in log-average purity of each
subregion

(40)

1, = —log, Py + log, P,. (41)

Although this quantity does not have a clear significance
for error correction in general systems, we expect that, for
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FIG. 10. Approximate description of below-threshold behavior
in the Ising model. The coherent quantum information is the free
energy cost of flipping the top boundary condition on e and e in
the ordered phase of the Ising model. Below threshold, the top
boundary condition on é polarizes the system into the ordered
phase aligned along the same direction. The error-correction
threshold occurs when the bulk of the system on the left flips to be
polarized in the + direction as the size of e is increased, which is a
first-order domain-wall pinning phase transition.

deep Haar random circuits, the fluctuations in 7, over
circuits are small enough that it is well approximated by I,
[73,74,80]. For any U constructed of local two-qubit
gates distributed according to a two-design, we can
compute [, after circuit averaging using a well-studied
mapping between the average purity of subregions of
a D-dimensional random circuit to a D + 1-dimensional
partition function of an Ising model with certain boundary
conditions at late times [74]. The condition that the initial
state is mixed on the logical qubit degrees of freedom
corresponds to a spin-polarized bottom boundary condition
on the logical qubit sites [97]. In this mapping, I, becomes
the free energy cost of flipping the polarization of the top
erased boundary condition in the presence of the polarized
boundary condition due to the logical qubits (see Fig. 10).

The temperature of the effective Ising model is well
below the transition temperature, which implies that the
free energy is minimized primarily through energy mini-
mization. Using a minimal energy surface approximation,
we obtain a direct estimate for the analog of the mutual
information between the reference and the environment for
the log-average purity,

I,,(R’Zgl) = —logsz —Ip = RN—IP

0 2n, < ng
~Q 2n,—ng ng<2n,<(l1+R)N (42)
2RN (1+R)N <« 2n,,

where n; = (1 — R)N. This quantity undergoes a phase
transition at the same point as the optimal erasure threshold;
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thus, we suspect it captures some essential features of
the threshold for the optimal code. In particular, the point
2n, = ng corresponds to a transition in the left half of Fig. 10
where the top boundary condition is no longer sufficiently
strong to polarize the bulk of the system. In this case, the
middle domain flips to align with the logical qubits.

Although it is clear that our codes will not be robust
against erasure errors that occur during the encoding
circuit, we can gain some additional insight into the
breakdown of the threshold using this statistical mechanics
model. In the Ising model mapping, erasures in the bulk
correspond to fixing a finite density of spins in the bulk to
point along the + direction, which will overcome the
surface pinning effect and prevent the formation of the
ordered — phase in the left of Fig. 10. As a result, in order to
have a fault-tolerant encoding, some form of error correc-
tion should be applied during the evolution itself.

IX. CONCLUSIONS

In this paper, we revisited the study of quantum error-
correcting codes generated by low-depth random circuits.
In any spatial dimension, we found that a depth O(log N)
random circuit is necessary and sufficient to achieve high-
performance coding against erasure errors below the
optimal erasure threshold, set by the channel capacity.
However, in 1D, coding arbitrarily close to the optimal
threshold requires a depth O(y/N) circuit because of the
relevance of spatial randomness in errors near code
capacity. The marginal dimension for high-performance,
low-depth coding at capacity is 2D, where spatial random-
ness becomes an irrelevant perturbation.

Although spatial randomness in the errors becomes irrel-
evant above 1D, there are still large inhomogeneities in the
quality of the random code due to random circuit fluctuations.
Using a simple block model, we showed that the effects of
code randomness in D > 1 can be mitigated through corre-
lated coding and the use of additional ancilla qubits that
effectively reduce the rate of the code. An alternative strategy,
which works better in practice, is to expurgate low-weight
logical operators from the code using quantum measure-
ments. With these methods, we found that good coding
becomes possible at sub-log-N depths. Codes with rates near
1/2 generated by our random coding algorithms can achieve
high performance at depth 4-8 in 2D for large erasure rates
and block sizes of thousands of qubits.

The results in this work open up many directions for
future research. To develop these codes for use on near-
term devices, a more general theory of optimal decoding for
Pauli error channels should be developed. Efficient optimal
decoding can likely be implemented for these low-depth
codes by taking advantage of their strongly local nature.
For example, a brute force method is sufficient in the block
encoding model with logarithmic block sizes. It will also be
interesting to consider the performance of these codes in

conventional threshold theorems, including strategies for
achieving full fault tolerance, e.g., as can always be
achieved with concatenation.

Another promising avenue of research is to further
develop the expurgation algorithm, which we used to
significantly reduce the required depth to achieve success-
ful decoding of erasure errors. It has now been well
established that fault-tolerant thresholds can be signifi-
cantly improved by tailoring codes to the detailed proper-
ties of the noise [27-30]. The expurgation algorithm
provides a wide variety of additional techniques to tailor
codes to specific noise models. In addition, it may be
possible to further improve the expurgation by using
quantum measurements that explicitly implement entan-
glement swapping, similar to techniques used for the
measurement-based preparation of the surface code states
[144,145].

As mentioned in the Introduction, developing more
concrete connections between the results here and meas-
urement-induced phase transitions is also promising to
explore. Unitary-measurement models that include both
errors and active error correction may realize a different
universality class of these transitions that might be more
resilient in near-term quantum computing devices.
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APPENDIX A: MAX-AVERAGE FIDELITY FOR
RANDOM STABILIZER ERASURE THRESHOLD

In this Appendix, we prove that the max-average fidelity
converges to the perfect recovery probability for the random
stabilizer erasure threshold in the thermodynamic limit.

For an initial random pure state |0)|w) on the unencoded
logical qubits at the k sites i=n,+1,....,N for
ny = N — k, the probability of successful error correction
following the encoding by the Clifford unitary U, erasure at
sites e, syndrome measurements with outcome s, and
maximume-likelihood recovery is given by
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where P}’ = (I— (—=1)%UZ;U")/2 is a syndrome projector
for sites i = 1, ...,n,; and Ry, is the conditional recovery
operator. We include a sum over Kroenecker delta functions
Jgs,» Where {s, } are the set of possible syndrome outcomes
for e. This term is nonzero only when the observed
syndrome is allowed for a given e; thus, it serves as a
projector onto the space of allowed syndromes. The
maximum possible size of {s, } is 2"« as this is the number
of Pauli group elements with support only on e (modulo
a phase).

The precise form of R, depends on the encoding circuit
U in addition to s and e; therefore, it cannot be calculated,
in general, without completely specifying U. On the other
hand, we can use the fact that it can be moved past the
syndrome projectors by turning this into a projector onto
the perfect syndrome outcome. Since it has its support
entirely on e, we can then cancel the product of the two
recovery operators to arrive at the much simpler formula

P(R|U,y.s,e)P(s|U,y.e)
= 8y, (0|(w|UTr, [U]0)[y) (O] (y|UT ]® -U|0)|y).

(A2)

Summing over syndrome measurements gives the recovery
probability

1

P(R| U, v, e) = 22ng—n“, 22’1E_nse
< O UTPUI0)w)[2  (A3)
P
Nge = 10g2|{se}| <2n,. (A4)
Here, we use the identity
T ® 3% = 52 > Pk (A3)

where P, runs over a basis of Pauli group elements that act
on sites in the subset e. Since the Clifford group forms a two-
design, we have the identity from random matrix theory

[EUUa/aUZ’bUC/CU;’d

= [E;t Uaa U[t/b Uee U; OO OupOecd

’d4N_1

1
+ 5a'd’ 5b'c' éadébc AN (éabécdaa’d' 517’0’ + 611’17’ 5c’d’ 5ad6bc):| ’

2
(A6)

where [, is an average over the Haar measure on the unitary
group on N qubits. This formula can be used to bound the
average of the second term in Eq. (A3) as

By [ SIOI0PUONPR| (A7)
PA

-zzn D Euy OlWlUTPUIO) )2 (AS8)
Pl
2211 —ny, Z[E | O| O‘UTP U|O>|0>| (AQ)
22 —1)(2N -1 i
_ J@T=1) _ ey, (al0)

22nﬂ—n§”e (4N _ 1)

where n?, = min(ny,2n,), and in Eq. (A8), we used the
fact that Uly) = UU,|0) for U, distributed according
to the Haar measure. As a result, up to corrections that
decay exponentially with N for any erasurerate e < 1/2, we
find the formula for the code-averaged max-average state
fidelity

Fug = Evy [PRIU.y.€)] = 202, (Al1)

2 — Ey[2ne]. (A12)

This expression for F,, is equal to P(R) from
Eq. (21).

APPENDIX B: COUNTING RANK-m
MATRICES OVER F,

In this Appendix, we reproduce the standard formula for
the number of rank-m 2n, X n, matrices over F,. To find
the formula, we first use the fact that the number of m x n;
matrices of rank m is given by

m—1

H(znx _2k> = (2" — 1)(2"; -2)--- (2"5 _2m—1) (Bl)

k=0

because we have 2" — 1 choices for the first row and
2" — 2i=1 choices for row i to ensure that they are linearly
independent from the first i — 1 rows. When 2n, > m, we
have to account for linear dependence between rows of the
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matrix, which leads to a degeneracy that is equal to the
number of m-dimensional subspaces of a 2n,-dimensional
vector space over [,

21:_01 (22% _ 2k) ) (BZ)
o (2 =29
Here, the numerator counts the total number of
bases of an m-dimensional subspace of a vector space of
dimension 2n,, and the denominator counts the number
of bases for each subspace of dimension m. The number of

2n, X ng matrices of rank m is given by the product of
Egs. (B1) and (B2),

[T (2% = 25) (2 - 29
[T (2" =29)

(B3)

APPENDIX C: INDEPENDENT IDENTICALLY
DISTRIBUTED ERASURE ERRORS

In this Appendix, we derive the leading-order RMT
solution for the recovery probability for IID erasure errors
with error rate e. As noted in Sec. IIB, the failure
probability for IID errors can be obtained from the failure
probability for the fixed-fraction model with n, = eN.
After averaging over all possible n,, there is additional
rounding of the transition due to Poisson fluctuations in the
total number of erasures. To evaluate the associated finite-
size scaling, we make use of the fact that the total number
of erasures is an extensive variable whose fluctuations are
governed by the central limit theorem

oc=+/e(l1—¢e)N.

In averaging over the erasure errors, we can ignore the
critical region for fixed n, because it has a width of about 1

that is much less than the typical fluctuations in n, ~ /N,

ne=eN+A, A~N(0,6%), (C1)

fog: PP~ [~ aaSPEA2T) 5 n _a) ()

0 V2ro
where e. = (1 —R)/2 and Ay = (e — e.)N. After intro-

ducing the scaling variable x = (e — e.)v/N//e(1 —e),

we find

~(logy P(F)), = VNf(x.e),

where erfc(-) is the complementary error function and
f(x,e) is the scaling function for this random code tran-

sition. At the critical point, f(0,e.)=+/2e.(1—e.)/x. This

(C3)

flx.e) =

10 15 20 25 30
N

FIG. 11. Fluctuations in the recovery probability over random
codes vs N for the fixed-fraction erasure model with R = 1/2 at
e = e.. The recovery probability for a random code appears to be
self-averaging towards the RMT prediction r. at large N. We take
a depth 2N encoding circuit in 1D with a brickwork arrangement
of gates. Each two-site gate in the circuit is a random Clifford
gate.

analysis implies that the critical region after averaging over
n, has a width scaling as |e — e.| ~ 1/+/N that arises from
the width of the probability distribution of n,. Similarly, the
average log-failure probability at the critical erasure rate e,

scales as \/N .

APPENDIX D: SELF-AVERAGING OF RANDOM
STABILIZER CODE TRANSITION

One of the central assumptions in this work is that the
finite-size scaling behavior of random stabilizer codes near
threshold well approximates the behavior of the optimal
codes. A necessary condition for this to be true is
that the random codes are self-averaging in the sense that
a single realization of a random code has the same
properties as the average over codes in the large-N limit.
To test this self-averaging condition, we investigate the
convergence with N towards the RMT prediction for the
critical recovery probability r, for single realizations.
Numerical Monte Carlo results for the standard deviation
are shown in Fig. 11. We fix a random Clifford unitary U
generated by a high-depth circuit (depth 2N in 1D). For that
circuit, we then estimate P(R) at the critical point of the
optimal codes for the fixed-fraction erasure model. By
generating many codes, we can then estimate the variance
Ey[P(R) — r.J* through sampling. Over the range of sizes
shown in the figure, we see clear exponential decay of the
standard deviation with N, indicating that P(R) self-
averages to the RMT prediction r. in the large-N limit.
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