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We provide a general theory of nonlinear electronic circuits subjected to thermal noise. The devices
constituting the circuit can have arbitrary I-V curves but must display shot noise. This theory includes
tunnel junctions, diodes, and MOS transistors in subthreshold operation, among others. The stochastic
nonequilibrium thermodynamics of these circuits is also established. The irreversible entropy production
is expressed in terms of thermodynamic potentials and forces, and its fluctuations satisfy fluctuation
theorems. Our theory is ideally suited to formulate a thermodynamics of computing with realistic
architectures, where the reduction in transistor size and operating voltages make thermal fluctuations
increasingly important. We demonstrate this point in two ways: first, by proposing a stochastic model of a
CMOS inverter whose actual transfer function deviates from the deterministic one due to nonequilibrium
fluctuations, and, second, by proposing a low-power full-CMOS design for a probabilistic bit (or binary
stochastic neuron) exploiting intrinsic noise.
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I. INTRODUCTION

The growing energy consumption of data-intensive
technologies is raising concern [1,2]. Semiconductor-based
electronic circuits constitute the dominant architecture
implementing the information processing underlying these
technologies. In order to reduce energy consumption, these
circuits need to operate in regimes where the information-
carrying signals are increasingly close to thermal fluctua-
tions [3–9]. Proposals have, for instance, been made to
trade reliability for energetic costs in certain applications
[10–12] or to exploit intrinsic thermal fluctuations (instead
of generating them at much higher energy cost with random
number generators) when solving stochastic optimization
problems [13–15]. But, despite that, a proper description
of thermal noise in nonlinear electronic circuits remains
an open problem, especially if one aims at preserving
thermodynamic consistency [16–22]. Traditional methods
employed in engineering are usually based on the lineari-
zation of the response of a given element around an
operating point or consider only external noise generated

by linear resistors (the internal or intrinsic noise is first
mapped to external sources) [19,23]. Although these
approaches might offer accurate estimations of the noise
in some applications, they are not thermodynamically
consistent and are, therefore, not suited for situations
where thermal fluctuations are relevant or, even more so,
are exploited as a resource.
The discovery of the so-called fluctuation theorems

[24–28] and the ensuing development of the theory of
stochastic thermodynamics [27,29–31] established univer-
sal constraints on the thermal fluctuations of any system,
even if it is highly nonlinear and arbitrarily away from
thermal equilibrium. The central ingredient introducing
thermodynamic consistency in stochastic thermodynamics
are the local detailed balance (LDB) conditions, which
relate the log-ratio between the forward and backward rates
of a given fluctuation or transition to the corresponding
entropy production in the environment. In this way, the
LDB conditions connect the dynamical description to the
thermodynamics, even far from equilibrium. The theory is
used to study colloidal particles, chemical reaction net-
works, molecular motors [27,32–34], and also electronic
systems. It is applied to linear electrical circuits ranging
from simple circuits [35–37] to complex networks (even
in quantum regimes) [38], but these circuits are of limited
use to implement computations. Following experimental
and theoretical progress on the study of nonlinear
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single-electron devices and Coulomb blockade systems
[16,39–43], stochastic thermodynamics was also used to
reach a detailed understanding of thermal fluctuations in
these systems [44–51]. The nature of the conduction
channels (typically tunnel junctions) and the nanoscopic
size of the conductors (implying low capacitances and high
charging energies) allow one to design circuits that process
information with very low energy requirements [40]. The
logical states here are represented by the presence of just
one or a few electrons [52]. Unfortunately, the need to
operate at low temperatures and challenges in the fabrica-
tion of these devices have so far prevented their practical
application in computing. In the foreseeable future, regular
complementary metal-oxide-semiconductor (CMOS) cir-
cuits will probably remain the most relevant platform for
computing [53,54]. In this context, the quest for speed and
low energy consumption fueled spectacular progress in the
miniaturization of transistors, and nowadays integrated
circuits with a typical feature size of around 5 nm can be
mass produced. In these circuits, a transistor can be activated
by just a few hundred electrons in its gate terminal. Thus,
CMOS circuits are approaching regimes where a description
in terms of single electrons becomes necessary [9]. The fact
that both single-electron devices and CMOS transistors (in
some modes of operation) display shot noise [55] suggests
that the rigorous tools and methods that have been used to
model and simulate single-electron devices could also be
applied to study CMOS circuits. While recent studies use
stochastic thermodynamics for the detailed characterization
of individual devices such as diodes and transistors
[51,56,57], the study of complex networks and circuits
comprising such devices remains unexplored.
Stochastic thermodynamics also offers a framework to

study the energetic costs of computation in a systematic
way [58,59]. Although it was realized early on that
information processing can, in principle, be done without
energy expenditure [60,61], this fact is true only in
idealized setups where either the computation is extremely
slow or the computing device is perfectly isolated from
the environment. However, real computations are done in
finite time and in noisy environments and, thus, dissipate
energy. Stochastic thermodynamics has been used to
resolve contentious issues in thermodynamics of compu-
tation such as the relation between thermodynamic and
logical reversibility [58,59,62], the energetic costs associ-
ated with measurement and erasure [62–65], and the cyclic
operation of computing devices [58]. It is also used to
evaluate the dissipation of finite-time processes [66–69]
and to design optimal erasing protocols [70–73]. The
thermodynamic costs associated with the structure of
complex information processing networks are also studied
[74,75]. However, these efforts involve either extremely
simple and idealized models or abstract formulations aimed
at obtaining fundamental bounds, where no particular
computing architecture is considered.

In this paper, we report three major achievements.
First, in Secs. II–IV, we develop a general formalism to
construct thermodynamically consistent stochastic dynami-
cal descriptions of arbitrary circuits made of devices
displaying shot noise. In this way, we resolve the long-
standing problem of rigorously describing thermal noise in
nonlinear electronic circuits by providing an alternative to
the usual methods employed in engineering, which are
based on linear response around an operating point. To do
so, we combine the LDB conditions with the I-V curve
characterization of a given device, in order to describe its
stochastic behavior when it is introduced in an arbitrary
circuit. This procedure fully captures the charging effects
resulting from electromagnetic rearrangements in the cir-
cuit when electron transfers occur [39]. Neglecting those
charging effects compromises thermodynamic consistency
and leads to unphysical results (e.g., perpetuum mobile).
Our formalism can seamlessly accommodate many differ-
ent devices like tunnel junctions [40,47], diodes [20],
MOS transistors in subthreshold operation [20,55,76], or
more exotic devices like nanoscale vacuum channel tran-
sistors [77]. The devices may even be time-dependently
driven and at different temperatures.
Second, because the dynamical description is by con-

struction thermodynamically consistent (i.e., compatible
with the LDB conditions), we can employ stochastic
thermodynamics for a complete thermodynamic charac-
terization of these circuits. This characterization is done
in Secs. V and VI, where the first and second laws of
thermodynamics are formulated at the level of the ensem-
ble-averaged description as well as along single stochastic
trajectories. We also establish the relation between heat and
electric currents and identify the thermodynamic potentials
and forces at work in these circuits. We finish by for-
mulating a general version of the Landauer principle as well
as the different fluctuation theorems known to date.
Third, by formulating the stochastic thermodynamics of

a large family of technological relevant electronic circuits,
we provide a rigorous framework to study thermodynamics
of computation implemented with realistic architectures
instead of toy models. To substantiate this claim, in
Sec. VII, we construct and analyze a stochastic model of
a CMOS inverter (or NOT gate) and of a probabilistic bit
(p-bit). The CMOS inverter is an important primitive in
electronic design, from which more complex devices like
oscillators and memories can be built. We show how, due to
nonequilibrium fluctuations, the transfer function of the
gate deviates from the one obtained by a deterministic
treatment. We also compute the full counting statistics of
the current fluctuations and illustrate the validity of a
detailed fluctuation theorem. The p-bit can be considered
as a faulty memory, with a controllable bias and error rate.
They are a physical implementation of what in machine
learning is known as a binary stochastic neuron [78,79].
Such devices were recently employed in proof-of-concept
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experiments to solve stochastic optimization problems and
emulate artificial neural networks [13,14]. Other proposals
to exploit physical noise include cryptographic applications
[80]. To the best of our knowledge, our design is the first
full-CMOS proposal for a p-bit exploiting intrinsic noise
and can be implemented with current technology. The
methods employed in these examples can be directly
applied to model arbitrary logic gates at the stochastic
level, in both asynchronous computing schemes or syn-
chronous ones requiring an external clock signal.
Our work provides bridges between computer engineer-

ing, mesoscopic physics, and nonequilibrium statistical
physics. In doing so, it may contribute to the search for
new practical and energy-efficient computing paradigms
and also to the design of experiments taking advantage
of the versatility of electronic circuits in order to test new
developments in statistical physics.
Please note that the reader mainly interested in the

stochastic modeling of circuits might want to skip Secs. V
and VI on a first read and go directly to the applications
discussed in Sec. VII.

II. BASIC SETUP

We consider an arrangement of N0 ideal conductors
characterized by their total charge fqngn¼1;…;N0

and
electrostatic potential fVngn¼1;…;N0

, where the latter are
measured with respect to some reference or “ground” (see
Fig. 1). Basic electrostatic theory shows that the charges
and potentials are related by the linear relation:

q0 ¼ C0V0; ð1Þ

where q0 ¼ ðq1;…; qN0
ÞT and V0 ¼ ðV1;…; VN0

ÞT are
column vectors containing the charges and voltages,
respectively, and the N0 × N0 symmetric matrix C0 (known
as the Maxwell capacitance matrix) encodes the mutual and

self-capacitances of the conductors. These capacitances
depend on the shape, size, and relative position and
orientation of the conductors. The electrostatic energy
contained in such a system is given by the quadratic form

E ¼ 1

2
qT0V0 ¼

1

2
VT

0C0V0 ¼
1

2
qT0C

−1
0 q0: ð2Þ

Some of the conductors can have their potential fixed by
voltage sources, and in that case we say that the circuit is
open. We refer to conductors with fixed potentials as
regulated conductors and to the rest as free conductors.
Thus, we have N0 ¼ N þ Nr, where N is the number of
free conductors andNr the number of regulated conductors.
The vector q0 is split into vectors q and qr containing the
charges of the free and regulated conductors, respectively.
If the circuit is open, then the degrees of freedom of the
system are reduced. This result can be seen from Eq. (1),
since fixing the potential of a conductor imposes a linear
relationship between all the charges. Then, the state of
the system is fully specified by the charges q of all the
free conductors.
We also consider two-terminal devices or channels that

allow the transport of elementary charges of value qe
between pairs of conductors, forming a network or circuit.
Each of these channels is modeled as a bidirectional
Poisson process (BPP). This choice offers some generality
while keeping the formalism concrete and simple and, as
mentioned before, allows one to describe relevant devices
like tunnel junctions [40,47], diodes [20], MOS transistors
in subthreshold operation [55,76], and other devices like
nanoscale vacuum channel transistors [77]. The common
feature of all these devices is that they display shot noise
(i.e., the current noise spectral density is proportional to
the average current for large biases [81]; see Sec. III A).
This feature is also a limitation of the BPP modeling
choice, since it does not allow one to properly describe
regular resistors or source-drain conduction in MOS
transistors operating in saturation mode, where the current
noise spectral density is approximately independent of
the average current (as for Johnson-Nyquist noise) [81].
However, this limitation is not serious, especially if we are
interested in the regime of ultralow energy consumption,
where the subthreshold and unsaturated operation of MOS
transistors is optimal [76].
Let ρ ¼ 1;…;M index the two-terminal devices present

in the circuit. Then, given a device ρ connecting conductor
n and m, we associate to it two basic Poisson processes: a
“forward” one, in which an elementary charge is trans-
ported from conductor n to conductor m, and the “reverse”
one, in which a charge is transported in the opposite
direction, with respective rates λρðq; tÞ and λ−ρðq; tÞ. The
forward direction is, of course, chosen arbitrarily. Note that
the rates λ�ρðq; tÞ depend explicitly on the full state q of the
system, which allows one to model externally controlled

FIG. 1. A system of conductors. Two of them (1 and 4) are
maintained at fixed potentials V1 and V4 by voltage sources.
Elementary charges qe are interchanged between them by devices
a, b, and c.
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conduction channels. Thus, in a transition �ρ, the state of
the system changes as

q → qþ qeΔ�ρ; ðΔρÞk ¼ −δk;n þ δk;m; ð3Þ

where qe is the value of the elementary charge involved in
all the possible transitions and Δ−ρ ¼ −Δρ. The vector Δρ

encodes to which conductors the device ρ is connected and
what the change in their number of charges is during the
transitions. If a device ρ is connected between one of
the free conductors, n, and one with fixed voltage, the
corresponding vector Δρ is given by

ðΔρÞk ¼ δk;n; ð4Þ

where the forward direction is chosen as the one leaving the
conductor with fixed potential.
One can imagine more complex devices that involve three

or more conductors in an irreducible way, for example, by
taking one charge from conductor m and one from n and
transporting them to conductor o. This kind of device can
also be treated with the formalism we develop here, although
most discussions are focused on two-terminal devices (that,
however, might be controlled externally).

A. Reduced incidence matrix, cycles,
and conservation laws

The vectors Δρ>0 can be grouped in an N ×M reduced
incidence matrix:

Δ ¼

2
664

j � � � j
Δ1 � � � ΔM

j � � � j

3
775: ð5Þ

This matrix is analogous to the stoichiometric matrix in
chemical reaction networks [33,82,83]. For closed circuits,
it coincides with the full incidence matrix of the directed
graph obtained by mapping conductors to nodes and two-
terminal devices as directed edges (with the direction given
by the forward one). The reduced incidence matrix for
an open circuit is obtained from the one of the closed
circuit by eliminating the rows corresponding to regulated
conductors.
The right null eigenvectors of Δ define cycles, i.e.,

sequences of transitions that leave the circuit state invariant:

Δcα ¼ 0: ð6Þ

The elements of the vectors cα can always be chosen to
be 0, 1, or −1. The number of independent cycles is
Nc ¼ dim½KerðΔÞ�. The left null eigenvectors of Δ corre-
spond to conservation laws, since if

lT
νΔ ¼ 0; ð7Þ

then the quantities

LνðqÞ ¼ lT
ν q ð8Þ

will not change under any transition; i.e., they are deter-
mined by the initial state of the circuit. The elements of lν

can always be considered to be 0 or 1. For each connected
component of the full circuit in which no conductor is
regulated, we have a conserved quantity that is just the total
charge of the conductors in that component. In fact, these
are the only conserved quantities. Thus, the number
of independent conservation laws, Nl ¼ dim½KerðΔTÞ�,
equals the number of closed connected components of
the circuit.
Whenever a closed circuit is opened by connecting one

of its conductors to a voltage source (see Fig. 1), we might
either break a conservation law or create a new cycle. This
possibility can be seen in the following way. The rank-
nullity theorem applied to the matrix Δ can be expressed as

N − Nl þ Nc ¼ M: ð9Þ

This expression is valid for closed as well as for open
circuits. Let us assume, however, that in the previous
equation N, Nl, and Nc correspond to the matrix Δ of
the circuit in which all the voltage sources are discon-
nected. Then, we connect Nr voltage sources, and, thus,
the number of conductors involved in the new matrix Δ0 is
now N0 ¼ N − Nr. Applying the rank-nullity theorem to
Δ0, we obtain

N0 − N0
l þ N0

c ¼ M: ð10Þ

Subtracting the previous two equations, we see that

Nr ¼ Nl − N0
l þ N0

c − Nc: ð11Þ

Thus, the number of voltage sources connected to the
circuit equals the number of broken conservation laws,
Nl − N0

l, plus the number of emergent cycles, N0
c − Nc.

This result is easily understood: If a previously closed
component of the circuit is connected to a voltage source,
its total charge ceases to be a conserved quantity. However,
if we further connect another voltage source to another
conductor of the same component, then a new cycle is
created (the one in which a charge is injected by one source,
transported through the component, and removed by the
second source).

B. Stochastic and deterministic dynamics

At any given time, the state of the circuit is described
by a probability distribution Pðq; tÞ over the state space.
It evolves according to the master equation
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dtPðq; tÞ ¼
X
ρ

fJ−ρðqþ qeΔρ; tÞ − Jρðq; tÞg; ð12Þ

where the probability currents are defined as

Jρðq; tÞ ¼ λρðq; tÞPðq; tÞ: ð13Þ

They are simply the probability per unit time to observe a
transition ρ in state q. The summation in Eq. (12) is over
positive and negative values of ρ; i.e., it is over transitions
and not over devices. The set of currents Jρðq; tÞρ¼�1;…;�M

can be considered the components of a vector function of
the state that we denote Jðq; tÞ. We define the following
operator over those functions:

Dρ
q½F� ¼ F−ρðqþ qeΔρÞ − FρðqÞ: ð14Þ

Then, Dρ
q½J� is the net probability current arriving at state q

corresponding to transitions �ρ, and the master equation
reads

dtPðq; tÞ ¼
X
ρ

Dρ
q½J�: ð15Þ

Note that the change in a scalar quantity FðqÞ in a transition
q → qþ qeΔρ can also be expressed by trivially extending
the operator Dρ

q½·� to these functions:

Dρ
q½F� ¼ Fðqþ qeΔρÞ − FðqÞ: ð16Þ

The dynamical description based on the master equation
in Eq. (12) is valid for timescales which are large compared
to the time taken by each transition or conduction event,
that here are considered to be instantaneous. This dynamics
can be compared to the deterministic dynamics obtained by
usual methods in circuit theory [84]. In those deterministic
descriptions, the charges qn are considered to be continu-
ous variables, and the charge vector q evolves according to
the following differential equation:

dtq ¼
X
ρ>0

ΔρIρ; ð17Þ

where Iρ is the electric current associated to device ρ.
The previous equation is closed by providing the I-V curve
characterization of all the devices and by Eq. (1) relating
voltages and charges. For example, the current Iρ through a
two-terminal device connected from conductor n to con-
ductor m is considered to be a function IρðΔVn;mÞ of the
voltage drop ΔVn;m ¼ Vn − Vm (see Sec. III A). Then,
ΔVn;m can be expressed in terms of q by inverting Eq. (1).
The relation between the deterministic and stochastic
descriptions is nontrivial and is examined in the particular
example of the CMOS inverter in Sec. VII A.

C. Equilibrium states and detailed balance

An equilibrium state Peqðq; tÞ of the circuit is defined as
one in which the global detailed balance condition holds:

Dρ
q½J� ¼ 0 ∀ ρ: ð18Þ

By Eq. (15), if an equilibrium state exists, it is also a
stationary one. In general, no equilibrium state exists.
However, for closed and isothermal circuits, consistency
with equilibrium thermodynamics demands the following
Gibbs state to be an equilibrium one:

PGibbsðq; tÞ ¼ Z−1e−βEðqÞ
Y
ν

δ½LνðqÞ; LνðqðiÞÞ�; ð19Þ

where δ½a; b� ¼ 1 if a ¼ b and 0 otherwise, qðiÞ is the initial
state of the circuit, and ν runs over a set of independent
conservation laws. The partition function Z is such that
PGibbsðq; tÞ is normalized and, thus, depends on the inverse
temperature β and the quantities fLνðqðiÞÞg. More general
equilibrium states can be obtained by mixing Gibbs
distributions like Eq. (19) according to a distribution
PðqðiÞÞ on the initial state.
The demand that PGibbsðq; tÞ must be an equilibrium

state when the circuit is closed and isothermal imposes
minimal conditions on the transition rates λ�ρðq; tÞ. These
are the LDB conditions, which for closed circuits and
isothermal settings are

log
λρðq; tÞ

λ−ρðqþ qeΔρ; tÞ
¼ −β½Eðqþ qeΔρÞ − EðqÞ�; ð20Þ

for each ρ. They can also be written as

Dρ
q½log λ� ¼ βDρ

q½E�; ð21Þ

where λðq; tÞ is a vector function of the state with
components fλρðq; tÞgρ¼�1;…;�N and the logð·Þ function
is applied elementwise. Thus, the rates λ�ρðq; tÞ character-
izing a given two-terminal device ρ must fulfill the
constraints imposed by Eq. (20). We now generalize the
LDB conditions to open circuits and nonisothermal
settings.

D. Energy difference and local detailed balance

We consider an open circuit in which some conductors
have the potential fixed by voltage sources. In the sameway
we did with the charges, the vector V0 is split into vectors V
and Vr, containing the voltages of the free and regulated
conductors, respectively. We can then express the relation
of Eq. (1) between all the charges and voltages as

�
q

qr

�
¼

�
C Cm

CT
m Cr

��
V

Vr

�
; ð22Þ
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whereCr is theNr × Nr capacitance matrix of the regulated
conductors, C is the N × N capacitance matrix of the free
conductors, and Cm is the N × Nr matrix with the mutual
capacitances between conductors of the two groups. The
previous equation can be rewritten as

�
V

qr

�
¼

�
C−1 −C−1Cm

CT
mC−1 Cr − CT

mC−1Cm

��
q

Vr

�
; ð23Þ

from where it is clear that, given the potentials Vr, the
charges q are enough to determine the rest of the variables,
as discussed before. The total electrostatic energy is then

EðqÞ ¼ 1

2

�
qT;VT

r

��
V

qr

�

¼ 1

2
qTC−1qþ 1

2
VT

r ðCr − CT
mC−1CmÞVr: ð24Þ

We are interested in computing how the total energy of the
system (conductors plus sources) changes in a transition
q → qþ qeΔρ. From the previous equation, we see that the
change in electrostatic energy is

Dρ
q½E� ¼ Eðqþ qeΔρÞ − EðqÞ

¼ q2eΔT
ρC−1Δρ=2þ qeqTC−1Δρ; ð25Þ

which is independent of the voltages Vr. In addition to this
change, we need to consider the change in the energy stored
in the voltage sources. This change can be computed as
(minus) the work performed by them, which equals the
charge transported from ground to the conductor to which
each source is connected times its voltage. There are two
different contributions to this work. First, the transition ρ
might directly involve one regulated conductor. If a charge
qe arrives to the conductor fixed to a potential Vr, it needs
to be removed, and for this removal the source must
perform an amount of work given by wr ¼ −qeVr.
Second, even if the transition does not involve any
regulated conductor, changes in the distribution of charge
among the free conductors can induce a charging of the
regulated conductors. From Eq. (23), we see that the
induced charge is δqr ¼ qeCT

mC−1Δρ. It follows that
the total amount of work performed by the sources during
transition ρ is

δWρ ¼ −qeVT
rΔr

ρ þ qeVT
rCT

mC−1Δρ; ð26Þ

where Δr
ρ is a vector encoding the change in the number

of charges in the regulated conductors in transition ρ (if no
regulated conductor is involved in transition ρ, then
Δr

ρ ¼ 0). Thus, the change in the energy of the system
and sources can be written as

δQρðqÞ ¼ Dρ
q½E� − δWρ ¼ Dρ

q½Φ� þ qeVT
rΔr

ρ; ð27Þ

where we define the potential

ΦðqÞ ¼ EðqÞ − VT
rCT

mC−1q: ð28Þ

The first term in the right-hand side in Eq. (27) is
conservative, since its contribution vanishes in any cyclic
sequence of transitions in the state space fqg. The second
contribution is not conservative, since its contribution does
not vanish in cyclic transformations: Its value depends on
how the regulated conductors are involved in the cycle.
Also, we note that the gradient of the potential ΦðqÞ gives
the voltage of the free conductors:

VðqÞ ¼ ∇qΦðqÞ; ð29Þ

as can be verified from Eq. (23).
The quantity δQρðqÞ is the energy required to perform

the transition q → qþ qeΔρ. By conservation of energy, it
must be provided by the environment of the device ρ, which
we assume to be at thermal equilibrium at temperature Tρ

(this assumption implies that the two conductors to which ρ
is connected should also be at temperature Tρ). Therefore,
δQρðqÞ is the heat associated to device ρ during the
transition and corresponds to an entropy change in its
environment equal to −δQρðqÞ=Tρ. Thus, the LDB con-
dition now reads

log
λρðq; tÞ

λ−ρðqþ qeΔρ; tÞ
¼ −βρδQρðqÞ; ð30Þ

for each ρ, where βρ ¼ ðkbTρÞ−1. Equivalently,

Dρ
q½log λ� ¼ βρðDρ

q½Φ� þ qeVT
rΔr

ρÞ: ð31Þ

For closed and isothermal settings, this condition reduces
to Eq. (20).

E. Infinite vs finite state spaces

Certain types of circuits, in particular, single-electron
devices, are such that the number of charges in a given
conductor can take only a few distinct values. They can,
therefore, be described by truncating their infinite state space
fqg to the finite set of states relevant for the dynamics. This
truncation does not compromise thermodynamic consis-
tency. Such approaches can also be used to model single-
electron traps, which can be useful to model random
telegraphic and 1=f noise, as we discuss in Sec. III B 3.
For many other circuits, such truncation to a small state

space is not possible. Infinite state spaces are indeed a
crucial ingredient of devices displaying a macroscopic
limit. This situation is the case of CMOS circuits, for
instance, where, as the typical size of the transistors is
increased, the number of electrons in each conductor
becomes very large. In this case, the stochastic dynamics
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gives rise to a deterministic nonlinear dynamics [described
by Eq. (17)], which enables the emergence of complex
phenomena such as bistabilities, oscillations, and chaos.
Studying fluctuations can become very expensive numeri-
cally, and many techniques suitable for finite state space
(e.g., spectral methods) are not applicable anymore. Also,
common approximation techniques, such as the second-
order truncation of the Kramers-Moyal expansion of
Eq. (12) leading to Fokker-Planck or Langevin equations,
are known to produce incorrect results [85,86]. One must,
therefore, resort to more elaborate methods such as path
integrals and large deviation techniques [87–91]. Such
methods have been used to study stochastic chemical
reaction networks [92], where similar problems are encoun-
tered [86], and were recently applied in electronics [90,91].

III. MODELS FOR DEVICES

A. I-V curve characterization

Two-terminal devices are usually characterized by meas-
uring how the average electric current through them
depends on the applied voltage across their terminals, as
in Fig. 2. Modeling a device ρ as a BPP with rates λþ and λ−
and applying the LDB condition of Eq. (30) to this simple
case, we obtain

log
λþðVÞ
λ−ðVÞ

¼ βqeV: ð32Þ

The net amount of charge going through the device in the
forward direction between time t and tþ Δt is

qðΔtÞ ¼ qe½NþðΔtÞ − N−ðΔtÞ�; ð33Þ

where N�ðΔtÞ are independent Poisson processes with
rates λ�ðVÞ. The average current is then

hIi ¼ hqðΔtÞ=Δti ¼ qe½λþðVÞ − λ−ðVÞ�
¼ qeλþðVÞð1 − e−βqeVÞ: ð34Þ

Thus, the BPP modeling assumption and the LDB con-
dition allow one to determine the rates λ�ðVÞ from the
measurement of the I-V curve alone, via Eqs. (32) and (34).
In turn, from these rates, we can compute any statistical
moment of the electric current IðΔtÞ ¼ qðΔtÞ=Δt.
Therefore, the full statistics of the process is completely

determined by just the mean value hIðΔtÞi. In particular,
the second central moment is [20,21]

σ2I ðΔtÞ ¼ h½IðΔtÞ − hIðΔtÞi�2i

¼ q2e
Δt

½λþðVÞ þ λ−ðVÞ�

¼ qe
Δt

hIðΔtÞi coth ðβqeV=2Þ; ð35Þ

which at variance with the first moment hIðΔtÞi depends
explicitly on the integration time Δt. This integration time
is related via the Nyquist-Shannon sampling theorem to the
frequency bandwidth Δf ¼ 1=ð2ΔtÞ of the measurement.
Thus, in the limit of large bias (βqeV ≫ 1), we obtain the
usual expression for shot noise:

σ2I ðΔtÞ ¼ 2qehIiΔf: ð36Þ

Then, in this context, shot noise appears as a direct
consequence of the BPP assumption and of the LDB
condition. For this reason, the fluctuations in circuits with
elements that do not display shot noise cannot be faithfully
described with this formalism. In the opposite limit where
thermal effects dominate (βqeV ≪ 1), we recover the usual
expression for Johnson-Nyquist noise [55,93].

B. Specific devices

1. Tunnel junctions

A tunnel junction is the simplest kind of device and the
one for which the BPP model is more natural (in some
regimes of operation) [40]. Here, we consider a tunnel
junction consisting of a sufficiently small gap between two
metallic islands at room temperature, such that electrons
can tunnel through the gap. It typically displays an Ohmic
I-V curve [40,94]: hIi ¼ V=RTJ, where the tunnel junction
resistance RTJ can be computed from the specific properties
of the metal conductors and the transmission coefficient of
the junction. Using Eqs. (32) and (34), we obtain the rates

λþðVÞ ¼
V

qeRTJ

1

1 − e−βqeV
;

λ−ðVÞ ¼
V

qeRTJ

1

eβqeV − 1
: ð37Þ

These expressions are well defined for any positive or
negative value of the elementary charge qe, and if it
changes sign, then the roles λþ and λ− are just inverted.
Many other different kinds of tunnel junctions exist, which
can display strongly nonlinear I-V curves depending on the
spectral densities of the materials constituting the junction
(see Ref. [40] for a quick review).FIG. 2. I-V characterization of a two-terminal device.
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2. Diodes

The characteristic curve of a p-n junction diode is often
modeled via the ideal Shockley diode equation [95]:

hIi ¼ IsðeβqeV − 1Þ; ð38Þ
where in this case qe is the positive electron charge and
Is > 0 is the reversed bias saturation current. Then, the
Poisson rates are given by

λ−ðVÞ ¼ Is=qe;

λþðVÞ ¼ ðIs=qeÞeV=VT ; ð39Þ
where we define the thermal voltage

VT ¼ ðβqeÞ−1 ¼ kbT=qe: ð40Þ

3. MOS transistors in weak inversion

MOS transistors are ubiquitous devices underlying most
modern digital and analog electronics. An enhancement-
mode nMOS transistor like the one depicted in Fig. 3 has
two typical modes of operation: (i) a saturation mode and
(ii) a subthreshold or weak inversion mode (see Ref. [54]
for a rigorous discussion of all the modes of operation). In
the saturation mode, the transistor essentially behaves like a
switch, allowing conduction between source (S) and drain
(D) if the gate (G) voltage is above a certain threshold V th
[see Fig. 3(a)]. If VG < V th, then source-drain conduction
is suppressed. However, whenever VS ≠ VD, some small
leakage current still flows, and its magnitude greatly
depends on how far VG is below V th. This mode is the
subthreshold mode of operation, on which we focus in the
following. To describe this mode, we consider the Enz-
Krummenacher-Vittoz model of the MOS transistor as
developed in Ref. [53]. According to this model, the
average drain current hIDi can be naturally split into
forward and reverse components given by

hIfDi ¼ I0eðVG−V th−nVSÞ=ðnVT Þ;

hIrDi ¼ I0eðVG−V th−nVDÞ=ðnVT Þ; ð41Þ

respectively, where the voltages and the current ID are
defined as in Fig. 3(a). This model of the MOS transistor in
subthreshold operation involves three parameters character-
izing the device: the threshold voltage V th, the “specific”
current I0, and the “slope factor” n ≥ 1. All these param-
eters can be determined from a microscopic description of
the device as explained in Ref. [53]. The total average drain
current is then

hIDi ¼ hIfDi − hIrDi
¼ I0eðVG−V thÞ=ðnVTÞðe−VS=VT − e−VD=VT Þ: ð42Þ

In the previous expression, the symmetry of the device is
preserved, since we see that the current ID is inverted if we
interchange the roles of drain and source. For the more
common three-terminal configuration of Fig. 3(b), the
symmetry is broken, and the current is given by

hIDi ¼ I0eðVG−VS−V thÞ=ðnVT Þð1 − e−ðVD−VSÞ=VT Þ: ð43Þ

The voltage bias driving this current is VD − VS, which
plays the role of V in the I-V curve characterization. Using
this last expression, we obtain the following Poisson rates:

λþ ¼ ðI0=qeÞeðVG−VS−V thÞ=ðnVT Þ;

λ− ¼ ðI0=qeÞeðVG−VS−V thÞ=ðnVT Þe−ðVD−VSÞ=VT : ð44Þ

In principle, this model is accurate only for hIf=rD i ≪ I0.
In a pMOS transistor, conduction between drain and

source is increasingly allowed as the gate voltage becomes
negative with respect to the body, contrarily to the nMOS
transistor. However, all the expressions presented for the
nMOS transistor are still valid for pMOS transistors
provided that the signs of the currents and voltages are
reversed, as Fig. 4 indicates.
In general treatments, the noise in MOS transistors is

modeled by integrating infinitesimal Johnson-Nyquist
sources along the drain-source channel [53,54]. However,
for the subthreshold or weak-inversion mode in which we
are interested, the results obtained in that way are fully
compatible with those obtained from a simple BPP model as
considered here [55]. This compatibility is not the case for
other modes of operation. We note that this discussion
concerns only the noise associated with the transport

FIG. 3. An nMOS transistor. In (a), the bulk (B) terminal is
grounded, and all other voltages are measured with respect to it.
This process allows one to preserve the symmetry between the
source (S) and drain (D) terminals that is broken by connecting S
and B together to obtain a three-terminal device like in (b).

FIG. 4. Definition of voltage and current references for pMOS
transistors.
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processes. Other kinds of noise associated with the presence
of defects and charge traps (1=f and/or random telegraphic
noise) play a role in MOS transistors [96–98] and are
relevant at low frequency. Random telegraphic noise can
nonetheless be modeled within the framework using indi-
vidual charge traps, as briefly mentioned in Sec. II D. 1=f
can be modeled as well, as it can be generated by an
ensemble of random telegraphic sources [99].

IV. CHARGING EFFECTS

The previously discussed I-V characterization of two-
terminal devices allows one to determine the Poisson rates
λ�ρ for a given device ρ in situations where the voltage
across the device is kept fixed. In actual circuits, this voltage
depends on the full state q of the circuit, in accordance with
the relation of Eq. (1). Thus, the Poisson rates are functions
λ�ρðqÞ of the full state. However, naive constructions of the
functions λ�ρðqÞ, based on the I-V characterization and
Eq. (1), fail to fulfill the LDB conditions. As a consequence,
they lead to unphysical nonthermal stationary states for
closed and isothermal circuits. To discuss and illustrate this
situation, we revisit the well-known “Brillouin’s paradox”
[22]. Based on the analysis of this problem, we derive a
procedure to construct the rates λ�ρðqÞ for arbitrary devices
and circuits in such a way that the LDB conditions are
always respected.

A. Brillouin paradox

We consider the circuit of Fig. 5: a closed and isothermal
circuit consisting of a diode and a capacitor connected
in parallel. At any given time, the voltage across the diode
is equal to the capacitor voltage V ¼ q=C, where q is the
total charge in the upper capacitor plate. Then, to construct
the Poisson rates λ�ðqÞ, we might consider the following
procedure: To obtain the rate for a transition q → q ∓ qe,
we evaluate the fixed-voltage rates λ�ðVÞ of Eqs. (39) at the
voltage preceding the transition (we refer to this
assumption as a “naïve causality”). In this way, we have

q → qþ qe∶ λnc− ðqÞ ¼ Is=qe;

q → q − qe∶ λncþ ðqÞ ¼ ðIs=qeÞeq=ðCVT Þ: ð45Þ

However, these rates do not fulfill the LDB condition of
Eq. (20), that for this simple case reads

log
λþðqþ qeÞ

λ−ðqÞ
¼ −β½EðqÞ − Eðqþ qeÞ�

¼ βqe½V þ qe=ð2CÞ�
¼ ðqþ qe=2Þ=ðCVTÞ; ð46Þ

where EðqÞ ¼ q2=ð2CÞ is the energy of the circuit. As a
consequence, the stationary distribution corresponding to
the transition rates λc�ðqÞ is

Pc
stðqÞ ∝ e−ðβ=2CÞðq2þqeqÞ; ð47Þ

which deviates from the correct Gibbs equilibrium by a
factor of e−βqeq=ð2CÞ. Since this factor is an uneven function
of the charge, it follows that the stationary mean value
of the charge in the capacitor is strictly below 0. If this
situation were the case, the capacitor could be disconnected
from the diode and employed as a source of energy, and
this process could, in principle, be repeated indefinitely.
This apparent violation of the second law is essentially the
Brillouin paradox and can be considered the electronic
analog of a Brownian ratchet.
A way to solve this problem is to notice that the LDB

condition of Eq. (46) would be fulfilled if the fixed-voltage
rates λ�ðVÞ were evaluated not at the voltage before
each transition but at the average of the voltage before
and after the transition. Using this midpoint rule, we obtain
the rates [20,21]

q → qþ qe∶ λ−ðqÞ ¼ Is=qe;

q → q − qe∶ λþðqÞ ¼ ðIs=qeÞeðq−qe=2Þ=ðCVTÞ; ð48Þ

which lead to the correct Gibbs equilibrium. Later, we show
that the midpoint rule is valid, in general. This result means
that it can be applied to the fixed-voltage rates λ�ρðVÞ of an
arbitrary device ρ to obtain thermodynamically consistent
transition rates λ�ρðqÞ when this device is embedded in an
arbitrary circuit. Although this rule seems to be at odds with
the notion of causality, it is actually not: The probability
of a transition naturally depends on the final state as well as
on the initial one. For the naive notion of causality to be
preserved, one should modify the characteristic I-V curve
of the device in question in a way that is context dependent.
This modification, in turn, challenges the idea of modu-
larity, i.e., the notion that the behavior of a device is
not influenced by its environment and, therefore, can be
plugged into different circuits without modifying its
description, which is a basic assumption in the usual
modeling of complex electronic circuits at the deterministic
level. However, modifications to the characteristic curve of
a device due to charging effects in its environment are well
known in the study of single-electron devices, where the
most explicit example is known as the Coulomb blockadeFIG. 5. Circuit illustrating the Brillouin paradox.
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effect [39–43,94,100]. In the following, we illustrate the
charging effects in the context of the Brillouin paradox.

B. Charging effects in the I-V curve

Let hIiV be the average current for a given value of the
capacitor voltage in the example in Fig. 5. According to the
correct rates of Eqs. (48), it reads

hIiV ¼ Isðe½V−qe=ð2CÞ�=VT − 1Þ; ð49Þ

which matches the characteristic I-V function of Eq. (38)
evaluated at a voltage shifted by δV ¼ qe=ð2CÞ. At the
same time, the standard deviation of the voltage is σV ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbT=C

p
. Then, charging effects are relevant whenever δV

is comparable to V and σV . Consequently, in order to
observe or employ these effects, as done, for example, in
single-electron transistors, one needs to work either with
nanoscopic circuits (in order to achieve low values of C) or
at low temperatures (usually a combination of both). The
characteristic curves of Eqs. (38) and (49) are compared in
Fig. 6(a). We note that, counter to intuition, the mean value
hIiV does not vanish for V ¼ 0. This result seems to
indicate that an initially empty capacitor would charge
up when connected to the diode. However, in accordance
with the second law, this anomaly is effectively neutralized
by thermal fluctuations. This neutralization can be verified
by computing the mean value of the current for the Gibbs
equilibrium distribution PeqðqÞ ∝ e−βq

2=ð2CÞ:

hIieq ¼
X
q

PeqðqÞhIiV¼q=C ¼ 0: ð50Þ

Also, for 0 < V < δV, we have hIiV < 0, and, thus, it
seems that for those values of V the device is actually
delivering power. However, this situation is not the case,
since the actual voltage can take only the discrete
values V ¼ n2δV, with n integer, as indicated with dots
in Fig. 6(a). Finally, we note that if we take the limit
C → ∞ while fixing the voltage V, which corresponds to a
model of a perfect voltage source, charging effects dis-
appear (we go back to the picture in Fig. 2).

C. General case

Comparing Eqs. (32) and (30), we see that if V in the
fixed-voltage rates λ̃�ðVÞ is replaced by ∓ δQ�ρðqÞ=qe,
then the resulting state-dependent rates automatically satisfy
the LDB condition [recall the definition of δQ�ρðqÞ in
Eq. (27) and note that it satisfies δQ−ρðqþ qeΔρÞ ¼
−δQρðqÞ]. Explicitly, we should consider (for ρ > 0)

λ�ρðqÞ ¼ λ̃�½∓ δQ�ρðqÞ=qe�: ð51Þ

In turn, if device ρ is connected to conductors n andm (with
n → m as the forward direction), then we have

δQ�ρðqÞ ¼∓ qeΔV
�ρ
nmðqÞ; ð52Þ

where ΔVρ
nmðqÞ is the average of the voltage difference

ΔVnm ¼ Vn − Vm before and after the transition
q → qþ qeΔρ. This result justifies the midpoint rule men-
tioned above and can be easily verified from the relation of
Eq. (23) and the definition of ΦðqÞ in Eq. (28).
Particular care should be taken for the case of the MOS

transistor (or, in general, with three-terminal devices that
can be considered as externally controlled two-terminal
devices). In this case, the fixed-voltage transition rates λ̃�
for the source-drain conduction do not depend only on the
voltage difference ΔVDS ¼ VD − VS between those termi-
nals, but also on the “control” voltage ΔVGS ¼ VG − VS.
Generalizing the rates of Eq. (44), we can write

λ̃þðΔVGS;ΔVDSÞ ¼ fðΔVGSÞgþðΔVDSÞ;
λ̃−ðΔVGS;ΔVDSÞ ¼ fðΔVGSÞg−ðΔVDSÞ; ð53Þ

where the functions f and g� are such that the following
condition is satisfied:

FIG. 6. Charging effects in the characteristic I-V curve of a
(a) Shockley diode (δV=VT ¼ 0.4) and (b) tunnel junction
(δV=VT ¼ 5).
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log
λ̃þðΔVGS;ΔVDSÞ
λ̃−ðΔVGS;ΔVDSÞ

¼ βqeΔVDS: ð54Þ

To construct state-dependent rates satisfying the LDB
condition of Eq. (30), we should not only replace ΔVDS
by its average before and after the transition but also do the
same with the control parameter ΔVGS. Explicitly,

λ�ρðqÞ ¼ λ̃�½ΔV�ρ
GSðqÞ;ΔV�ρ

DSðqÞ�: ð55Þ

An analysis similar to the one for the diode in Sec. IV B
also holds for more general circuits, including CMOS
circuits. If C is the typical capacitance at a given node
of a circuit, the standard deviation of the voltage fluctua-
tions at that node can be estimated by its equilibrium value
σV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kbT=C
p ¼ ffiffiffiffiffiffiffiffiffiffiffi

VTve
p

, where we define the elementary
voltage ve ¼ qe=C which represents the voltage change
associated to a single charge jump. Values of C as low as
50–100 aF can be attained in modern CMOS fabrication
processes [101], that at room temperature lead to elemen-
tary voltages as high as ve ≃ 0.1VT , and, thus, σV ≃ 0.3VT .
Then, we see that in modern subthreshold or near-threshold
applications it is not possible to neglect charging effects
nor thermal fluctuations if the operating voltages are
comparable to the thermal voltage VT . This result, in turn,
opens new possibilities that are explored in the example in
Sec. VII B.

D. Charging effects and nonlinearity

Circuits containing devices with nonlinear I-V curves are
qualitatively different from circuits in which all devices
are linear. For example, in linear RLC networks (where the
degrees of freedom are continuous and the stochastic
dynamics is described by a Fokker-Planck equation), the
dynamics of the mean or expected values of voltages and
currents is decoupled from the dynamics of higher-order
moments, and, therefore, it matches the deterministic
dynamics [38]. This situation is not anymore the case if
some nonlinear element is present. However, in the kind of
discrete models we are considering here, charging effects
can induce nonlinear behaviors even if the characteristic
I-V curves of all the devices in the circuit are linear, as is
the case with tunnel junctions [39,42,43]. This situation is
illustrated in Fig. 6(b), that is obtained in the same way as
Fig. 6(a) for the diode. These induced nonlinearities are a
resource that is exploited in the construction of single-
electron transistors and logic gates consisting of only small
conductive islands and tunnel junctions between them [40].
However, in the macroscopic limit in which each conductor
has many excess charges or for high temperatures, the
nonlinear effects are washed out. Consequently, in those
regimes, the expected values of voltages and currents in
such circuits obey closed and linear equations of motion
that match the ones obtained from the deterministic

description of Eq. (17). The question about the relation
between the stochastic and deterministic descriptions in
general circuits is nontrivial and is not addressed here in
full generality. It is analyzed for the particular example
of the CMOS inverter in Sec. VII A. A general treatment
will be considered elsewhere, based on large deviations
theory [90–92,102].

V. STOCHASTIC THERMODYNAMICS

So far, we have established the general stochastic
description of electronic circuits, and we have shown
how to construct the transition rates corresponding to
different devices in a way that is thermodynamically
consistent. In the following, we explore the general proper-
ties of this kind of models. We start by analyzing the energy
balance and the entropy production; i.e., we establish the
first and second laws. For this analysis, we first define
the production of heat in each device and its relation to the
electric current.

A. Electrical currents and heat dissipation

Let us consider the following pair of transitions, which
are the inverse of each other:

q⇌
þρ

−ρ
qþ qeΔρ: ð56Þ

The average electric current corresponding to this pair of
transitions is

hIρiq ¼ qe½Jρðq; tÞ − J−ρðqþ qeΔρ; tÞ� ¼ −qeD
ρ
q½J�: ð57Þ

Then, the net average electric current corresponding to
device ρ is

hIρi ¼
X
q

hIρiq ¼ −qe
X
q

Dρ
q½J�: ð58Þ

In a similar way, the average rate at which heat is
provided by the environment of device ρ corresponding to
that pair of transitions is

h _Qρiq ¼ δQρðqÞ½JρðqÞ − J−ρðqþ qeΔρ; tÞ�
¼ q−1e δQρðqÞhIρiq; ð59Þ

where δQρðqÞ is the change in energy of the system during
transition ρ and is given by Eq. (27). Note that, as is usual in
stochastic thermodynamics but contrary to what is normally
done in electronics, heat is defined as positive when it
increases the energy of the system. Recalling Eq. (52), if
device ρ is connected to conductors n and m, we can write

h _Qρiq ¼ −ΔVρ
nmðqÞhIρiq: ð60Þ

STOCHASTIC THERMODYNAMICS OF NONLINEAR ELECTRONIC … PHYS. REV. X 11, 031064 (2021)

031064-11



This expression is the stochastic version of the usual
formula for Joule heating. Note that it is valid only at
the level of transitions and that the average voltage differ-
ence is involved. The net heat rate associated to device ρ is

h _Qρi ¼
X
q

h _Qρiq ¼
X
q

q−1e δQρðqÞhIρiq

¼ −
X
q

Dρ
q½Φ�Dρ

q½J� þ hIρiVT
rΔr

ρ; ð61Þ

where we employ Eq. (27) to substitute δQρðqÞ.

B. Balance of energy

Let us consider the rate of change in the mean value of
the potential Φðq; tÞ:

dthΦi ¼
X
q

dtPðq; tÞΦðq; tÞ þ ∂thΦi: ð62Þ

The explicit time dependence of Φ accounts for possible
external controls of the parameters entering its definition,
like the elements of the capacitance matrix or the voltages
of the regulated conductors. Thus, the contribution ∂thΦi is
interpreted as the rate of work done by this external control:

h _WΦi ¼ ∂thΦi: ð63Þ

Then, employing the master equation of Eq. (12), we can
write

dthΦi − h _WΦi ¼
X
ρ;q

Dρ
q½J�Φðq; tÞ

¼ −
1

2

X
ρ;q

Dρ
q½J�Dρ

q½Φ�

¼ −
X
ρ>0

X
q

Dρ
q½J�Dρ

q½Φ�

¼
X
ρ>0

h _Qρi −
X
ρ>0

hIρiVT
rΔr

ρ: ð64Þ

In the second and third lines of this equation, we use the
symmetry Dρ

q½·� ¼ −D−ρ
qþqeΔρ

½·�. Note that, at variance with
the first line, the sums in the last line involve only positive
values of ρ and, therefore, can be considered as sums over
devices. According to Sec. II D, the quantities

h _Wr
ρi ¼ −hIρiVT

rΔr
ρ ð65Þ

are the average rates of work performed by the voltage
sources corresponding to device ρ. In this way, we obtain
the following energy balance for a general circuit:

dthΦi ¼ h _WΦi þ
X
ρ>0

h _Wr
ρi þ

X
ρ>0

h _Qρi: ð66Þ

C. Entropy production

To the probability distribution Pðq; tÞ, we assign the
Shannon entropy:

hSi ¼ −kb
X
q

Pðq; tÞ log½Pðq; tÞ�; ð67Þ

which can be considered the average of the state-dependent
entropy Sðq;tÞ¼−kb log½Pðq;tÞ�. Its time derivative is

dthSi ¼ −kb
X
ρ

X
q

Dρ
q½J� log½Pðq; tÞ�

¼ kb
X
ρ>0

X
q

Dρ
q½J�Dρ

q½logðPÞ�: ð68Þ

As usual, this rate of entropy change can be split into two
components:

dthSi ¼ kb
X
ρ>0

X
q

Dρ
q½J�Dρ

q½logðPÞ�

¼ kb
X
ρ>0

X
q

fDρ
q½J�Dρ

q½logðJÞ� −Dρ
q½J�Dρ

q½logðλÞ�g:

ð69Þ

Using the LDB condition in Eq. (31), the second term can
be related to the average entropy production in the
environment:

h _Σei¼ kb
X
ρ>0

X
q

Dρ
q½J�Dρ

q½logðλÞ� ¼−kb
X
ρ>0

βρh _Qρi: ð70Þ

Thus, combining the last two equations, we obtain the
following expression for the total average irreversible
entropy production:

h _Σi≡ dthSi þ h _Σei ¼ kb
X
ρ>0

X
q

Dρ
q½J�Dρ

q½logðJÞ� ≥ 0;

ð71Þ

which is explicitly positive. This expression constitutes a
proof of the second law of thermodynamics in this context.
We see that the entropy production h _Σi vanishes if and only
if Dρ

q½J� ¼ 0, i.e., if the state is an equilibrium one [see
Eq. (18)]. The fact that hΣi corresponds to the familiar
concept of entropy production is further justified in the
following.

1. Isothermal conditions

If the temperature of all the devices is the same, then we
can split the total entropy production into a potential term
and a work term. To see this split, we combine Eqs. (70)
and (66) and write
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Th _Σei ¼ h _WΦi þ
X
ρ>0

h _Wr
ρi − dthΦi; ð72Þ

where T is the common temperature of all devices. Then,
we obtain

Th _Σi ¼ TdthSi − dthΦi þ h _WΦi þ
X
ρ>0

h _Wr
ρi

¼ −dthFi þ h _WΦi þ
X
ρ>0

h _Wr
ρi; ð73Þ

where we define the average free energy as

hFi ¼ hΦi − ThSi: ð74Þ

Thus, the temperature times the total entropy production
rate is expressed as a change in a thermodynamic
potential plus the total work performed on the system.
Integrating Eq. (73) and using the fact that h _Σi > 0, we
recover the usual statement of the second law: The amount
of work that can be extracted from the system during
an arbitrary transformation is limited by minus the free
energy difference.

D. Equilibrium states

Because of the LDB conditions, for time-independent,
closed, and isothermal systems, there is always an equi-
librium state satisfying Eq. (18), and it is given by Eq. (19).
However, equilibrium states could also exist under more
general conditions. For example, if an isothermal and
closed circuit is opened by connecting some or all con-
nected components to a voltage source (in such a way that
there is only one voltage source connected to each
component), then there also exists an equilibrium state,
in which no currents flow. To see this result, we notice that
in such a case also the second term in Eq. (27) is
conservative. In fact, we can write

δQρðqÞ ¼ Dρ
q½Φ� þ qeVT

rΔr
ρ

¼ Dρ
q½Φ −

X
np

VnpLnp �; ð75Þ

where np indexes the regulated conductors, Vnp is the
voltage of conductor np, and

LnpðqÞ ¼ l0Tnpq ð76Þ

is the total charge of the free conductors in the connected
component to which conductor np belongs. Here, the vectors
l0np can be constructed as the reduction to the space of free
conductors of the left eigenvectors of the incidence matrix Δ
of the full circuit, including the regulated conductors. We see
then that in this case the energy change during a transition
can be expressed as the change in a state function ΨðqÞ:

δQρðqÞ ¼ Dρ
q½Ψ�; ð77Þ

with

ΨðqÞ ¼ ΦðqÞ −
X
np

VnpLnpðqÞ: ð78Þ

Thus, it follows that for isothermal conditions there exists
an equilibrium state satisfying the global detailed balance
conditions of Eq. (18). It is given by

PeqðqÞ ¼ Z−1e−βΨðqÞ
Y
νc

δ½LνcðqÞ; LνcðqðiÞÞ�; ð79Þ

where the index νc runs over the closed connected
components of the circuit, LνcðqÞ is the total charge of
component νc as defined by Eq. (8), and qðiÞ is the initial
state. As with Eq. (19), the partition function Z is such that
Peqðq; tÞ is normalized and, thus, depends on the conserved
quantities fLνcðqðiÞÞg.

E. Fundamental nonequilibrium forces

Based on the previous discussion, we can now decom-
pose the work performed by the sources into conservative
and nonconservative contributions. For this decomposition,
we first split the set of regulated conductors into two
categories. For each of the open connected components in
the full circuit, we arbitrarily select one of its regulated
conductors. The conductors selected in this way are
indexed by np ¼ 1;…; Np. As is clear later, the subindex
p stands for “potential.” The total number Np of potential
conductors can be easily seen to match the number of
broken conservation laws as defined in Sec. II A. The rest
of the regulated conductors are indexed by nf ¼ 1;…; Nf.
In this case, the subindex f stands for “force,” and Nf ¼
N − Np equals the number of emergent cycles. In this way,
to each transition ρ involving a regulated conductor, we can
assign (i) the voltage VnrðρÞ of the regulated conductor
involved in that transition and (ii) a reference voltage
VnpðρÞ, that is the voltage of the regulated conductor np that
is selected as potential in the corresponding open connected
component. Thus, the energy change during a transition ρ
involving a regulated conductor can be rewritten as

δQρðqÞ ¼ Dρ
q½Φ� þ qeVT

rΔr
ρ

¼ Dρ
q

h
Φ −

X
np

VnpLnp

i

þ qeðΔr
ρÞnrðρÞðVnrðρÞ − VnpðρÞÞ; ð80Þ

where LnpðqÞ is the total charge on the free conductors in
the open connected component of conductor np, as defined
in Eq. (76). Thus, the heat rate of device ρ [Eq. (61)] can
also be expressed as
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h _Qρi ¼
X
q

1

qe
δQρðqÞhIρiq

¼ −
X
q

Dρ
q½Ψ�Dρ

q½J� þ hIρiðΔr
ρÞnrðρÞðVnrðρÞ − VnpðρÞÞ;

ð81Þ

where Ψ is the potential defined in Eq. (78). To each
device ρ, we can assign a voltage difference ΔVρ ¼
−ðΔr

ρÞnrðρÞðVnrðρÞ − VnpðρÞÞ. The minus sign in this defi-
nition is introduced in order to make ΔVρ positive when-
ever the reference voltage is the lowest one in each
connected component, and the forward direction of device
ρ is the one leaving the regulated conductor. For an
“internal” device not connected to any regulated conductor
or for a device connected to a regulated conductor at the
reference voltage, ΔVρ ¼ 0. Then, we see that at most Nf

voltage differences ΔVρ can be different from zero. They
are considered elements of a set fΔVnfgnf¼1;…;Nf

of
fundamental voltage differences or nonequilibrium forces.
Therefore, the total heat rate can be written as

h _Qi ¼ −
X
ρ>0

X
q

Dρ
q½Ψ�Dρ

q½J� −
XNf

nf¼1

hInfiΔVnf ; ð82Þ

where ΔVnf is one of the Nf fundamental nonequilibrium
forces or voltage differences and hInfi its associated electric
current.

F. Minimal decomposition of the isothermal
entropy production

For isothermal settings, the entropy production can be
decomposed in a similar way as in Sec. V C 1, this time in
terms of the grand potential

hΩi ¼ hΨi − ThSi ð83Þ

and the fundamental forces ΔVnf . To see this similarity, we
start by computing the change in the potential Ψ:

dthΨi − ∂thΨi ¼
X
q

dtPðq; tÞΨðq; tÞ

¼ −
X
ρ>0

X
q

Dρ
q½J�Dρ

q½Ψ�: ð84Þ

As before, we define a rate of work associated to the
external control of the system:

h _WΨi ¼ ∂thΨi: ð85Þ

Note that this rate of work coincides with h _WΦi in Eq. (63)
only if the voltages of the regulated conductors are time

independent. Now, combining the last two equations with
Eq. (82) and recalling that for isothermal settings we have
Th _Σei ¼ −h _Qi, we obtain

Th _Σei ¼ −dthΨi þ h _WΨi þ
X
nf

hInfiΔVnf ; ð86Þ

that leads to the following expression for the irreversible
entropy production:

Th _Σi ¼ −dthΩi þ h _WΨi þ
X
nf

h _Wnfi; ð87Þ

where

h _Wnfi ¼ hInfiΔVnf ð88Þ

is naturally defined as the work rate associated to the
fundamental voltage difference ΔVnf . We see that if the

system is not driven (h _WΨi ¼ 0) and there are no funda-
mental forces ΔVnf , then dthΩi ¼ −T _Σ ≤ 0. Also, from
the fact that the capacitance matrix C is positive definite,
it follows that the thermodynamic potential hΩi is
bounded from below. Thus, when h _WΨi ¼ h _Wnfi ¼ 0,
hΩi is a Lyapunov function that reaches a minimum at
equilibrium.

G. Nonequilibrium Landauer principle

Let us consider a transformation between two arbitrary,
possibly nonequilibrium, states PðiÞðqÞ and PðfÞðqÞ. This
transformation is driven by changing in time the parameters
of the circuit (for example, the elements of the capacitance
matrix or the properties of some of the devices) and/or
by modifying the voltages of the regulated conductors.
This transformation can induce a parametric driving of the
potentials Φ and Ψ (and, thus, also the free energies F and
Ω), as well as a change in the nonequilibrium forces ΔVnf

to which the system is subjected. In the following, we
consider the time-dependent equilibrium state Peqðq; tÞ,
which is just the equilibrium state of Eq. (79) correspond-
ing to the parameters of the system at time t, and that will
serve as a reference state. Also, given an arbitrary state
Pðq; tÞ [compatible with the conserved quantities LνcðqðiÞÞ],
we introduce its relative entropy with respect to the
equilibrium state Peqðq; tÞ:

IðtÞ¼DðPjPeqÞ¼
X
q

Pðq;tÞ log½Pðq;tÞ=Peqðq;tÞ�; ð89Þ

which in simple terms measures how much information
should be provided in order to identify the state Pðq; tÞ
starting from Peqðq; tÞ. It vanishes if and only if Pðq; tÞ ¼
Peqðq; tÞ and is always positive otherwise. By employing
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the explicit form of the equilibrium state Peqðq; tÞ, it is easy
to see that the relative entropy can be computed as a
difference between average free energies:

kbTIðtÞ ¼ hΩðtÞi − hΩðtÞieq; ð90Þ

where hΩðtÞi ¼ P
q Pðq; tÞΩðq; tÞ is the nonequili-

brium free energy and hΩieq ¼
P

q Peqðq; tÞΩðq; tÞ ¼
−kbT log½ZðtÞ� is the equilibrium one. Using Eq. (90),
we can rewrite Eq. (87) as

h _WΨi þ
X
nf

h _Wnfi ¼ kbTdtI þ dthΩieq þ Th _Σi: ð91Þ

Integrating this relation over time and using that hΣi ¼R h _Σidt ≥ 0, we obtain

hWΨi þ
X
nf

hWnfi ≥ kbTΔI þ ΔhΩieq: ð92Þ

Thus, the previous expression provides a bound for the
amount of work necessary to perform (or that can be
extracted during) a transformation between arbitrary states.
Importantly, this bound explicitly takes into account the
“information content” of the initial and final states with
respect to the “uninformative” equilibrium, and it can be
considered a general version of the Landauer principle
[103]. The connection to the notion of logical or computa-
tional information is achieved by splitting the state space
fqg into different logical subspaces. This splitting is
done in Ref. [62], where a bound equivalent to Eq. (92)
is derived.
The Landauer principle is commonly discussed in terms

of physical memories that represent logical values as
quasiequilibrium metastable states, of which the proper
thermal equilibrium is a mixture [62,104–106]. However,
it is important to notice that in some relevant kinds of
electronic memories logical values are represented by
nonequilibrium steady states (NESSs) that continuously
produce entropy [for example, static random access
memory (SRAM) cells or the probabilistic bit discussed
in Sec. VII B]. Although the Landauer principle can any-
way be applied to those cases, the bound obtained from the
right-hand side of Eq. (92) does not take into account
that continuous entropy production (or “housekeeping
heat” [107]) or any other additional dissipation due to
restrictions on the control parameters of the system [108].
Refinements of the Landauer principle based on lower
bounds for the entropy production in nonadiabatic trans-
formations can be obtained [67–72], but to the best of our
knowledge the physics of computation with NESSs
remains poorly explored.

VI. STOCHASTIC TRAJECTORIES AND
FLUCTUATION THEOREMS

In the previous sections, we study the average or
expected values of relevant quantities like the energy,
entropy, or work. In this section, we turn to a lower-level
description based on single trajectories in the state space of
the circuit, that allows us to formulate different fluctuation
theorems. We closely follow the treatment in Ref. [33] for
chemical reaction networks and of Ref. [28] for general
Markov chains. Here, we present only the main results and
the necessary definitions. Additional details about the
derivations can be found in Supplemental Material [109].
We define a trajectoryQt as a particular realization of the

stochastic dynamics, from some initial time τ ¼ 0 up to time
τ ¼ t. Thus, a particular trajectory is fully characterized by
its initial state q0, the set of transitions fρlg that take place
up to time t, and the times ftlg at which they occur. The
index l takes the values l ¼ 1;…; Nt, where Nt is the
number of transitions up to time t. All this information can
be encoded in the trajectory probability current:

jρðq; tÞ ¼
XNt

l¼1

δ½ρ; ρl�δ½q; qtl �δðt − tlÞ; ð93Þ

where qt is the state immediately before instant t. Different
trajectories occur with different probabilities. If the evolu-
tion of the system is well described by the master equation
of Eq. (12), then the probability density P½Qt� of observing
trajectory Qt given that the initial state is q0 satisfies

P½Qt� ¼
YNt

l¼0

e
−
R

tlþ1

tl

P
ρ
λρðqτ ;τÞdτ YNt

l¼1

λρlðqtl ; tlÞ; ð94Þ

where we define tNtþ1 ¼ t. The factors in the first product
account for the probabilities of not having any transition
during the periods ½tl; tlþ1Þ, while the factors in the second
product are proportional to the probabilities of each of
the jumps to take place. If we average Eq. (93) over all
trajectories, then we recover the probability currents
of Eq. (13).
The average quantities defined in the previous sections

can be easily extended to individual trajectories. For
example, the instantaneous electric current and power of
device ρ are, respectively,

IρðtÞ ¼ −qe
X
q

Dρ
q½ j� ð95Þ

and

_QρðtÞ ¼ −
X
q

δQρðqÞDρ
q½ j�

¼ −
X
q

Dρ
q½Ψ�Dρ

q½ j� − IρðtÞΔVnfðρÞðtÞ: ð96Þ
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These are just the stochastic versions of the average
quantities in Eqs. (81) and (57), respectively, and are
obtained by simply replacing the average current vector
Jðq; tÞ by the stochastic one jðq; tÞ, which is a vector
function with components fjρðq; tÞgρ¼�1;…;�M. ΔVnfðtÞ is
one of the fundamental nonequilibrium forces defined in
Sec. V E.
The net change of a state function fðq; tÞ during a

trajectory can be expressed in terms of the currents jρðq; tÞ
in the following way:

Δf ¼ fðqt; tÞ − fðq0; 0Þ

¼
Z

t

0

dτ

�
∂tfðqτ; τÞ þ

X
ρ;q

jρðq; τÞDρ
q½fjτ�

�
: ð97Þ

Applying this expression to the potential Ψðq; tÞ defined in
Eq. (78), we can arrive at the following energy balance for a
given trajectory:

ΔΨ ¼ WΨ þ
X
nf

Wnf þ
X
ρ>0

Qρ; ð98Þ

where

WΨ ¼
Z

t

0

dτ∂tΨðqτ; τÞ ð99Þ

is the external driving work performed during the trajectory,

Qρ ¼
Z

t

0

dτ _QρðτÞ ð100Þ

is the heat corresponding to device ρ, and

Wnf ¼
Z

t

0

dτInfðτÞΔVnfðτÞ ð101Þ

is the work performed by the fundamental nonequilibrium
force ΔVnf (Inf is its associated electric current).

A. Stochastic entropy and the integral
fluctuation theorem

As mentioned before, it is possible to define the entropy
of a given state during a trajectory in the following
way [110]:

Sðq; tÞ ¼ −kb log½Pðq; tÞ�; ð102Þ

where Pðq; tÞ is the solution of the master equation in
Eq. (12) for a given initial distribution Pðq; 0Þ. The entropy
flow, i.e., the production of entropy in the environment
during a given trajectory, is

ΣeðQtÞ ¼ −kb
X
ρ

βρQρðtÞ

¼ −kb
Z

t

0

dτ
X
ρ;q

jρðq; τÞDρ
q½logðλÞjτ�: ð103Þ

Then, the total entropy production during the trajectory is

ΣðQtÞ ¼ −kb log
�
Pðqt; tÞ
Pðq0; 0Þ

�

− kb

Z
t

0

dτ
X
ρ;q

jρðq; τÞDρ
q½logðλÞjτ�: ð104Þ

It can be verified that the time derivatives of the averages
hΣei and hΣi over all trajectories match the entropy
production rates h _Σei and h _Σi defined in Eqs. (70) and (71).
Unlike its average hΣi, the entropy production Σ of a given
trajectory is not always positive. However, the fluctuations
of Σ are bound to satisfy a general integral fluctuation
theorem. This fundamental result is expressed as the
following equality:

he−Σ=kbi ¼ 1; ð105Þ

where the average is taken over all trajectories Qt. In
simple terms, this equality states that positive values of the
full entropy production are more probable than negative
ones. Accordingly, from this result and Jensen’s inequality
the usual statement of the second law follows: hΣi ≥ 0.
Equation (105) is valid for transient or steady state
dynamics, in autonomous or time-dependent circuits.

B. Detailed fluctuation theorems

Equation (105) is only one of several fluctuation theo-
rems. Under certain conditions, other quantities different
from the full entropy production satisfy more stringent
constraints. For example, in isothermal settings where
βρ ¼ ðkbTÞ−1 for all ρ, it is possible to obtain the following
detailed fluctuation theorem (DFT):

PðfWnfg;WΨÞ
P†ðf−Wnfg;−WΨÞ

¼ exp

��
WΨ þ

X
nf

Wnf

�	
ðkbTÞ

�
:

ð106Þ

In this expression, PðfWnfg;WΨÞ is the probability to
observe the values fWnfg of work for each of the funda-
mental forces and of WΨ for the driving work during a
forward protocol. This protocol consists of the initialization
of the system state at t ¼ 0 according to the equilibrium state
of Eq. (79) and its subsequent evolution according to the
transition rates λðq; τÞ up to time t (the explicit dependence
of the rates on τ takes into account a possible external
manipulation of the circuit parameters, leading to an
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inhomogeneous time evolution). Analogously, the quantity
P†ðf−Wnfg;−WΨÞ is the probability to observe the work
values f−Wnfg and −WΨ during the corresponding back-
ward protocol, in which the system is initialized in a state
drawn from the equilibrium distribution of Eq. (79) (this time
corresponding to the circuit parameters at time t) and evolves
according to the rates λðq; t − τÞ.
The previous result holds for arbitrary times t, under

the condition that the initial state is an equilibrium one.
A complementary relation can be obtained, which is valid
only asymptotically (that is, for long times) but irrespective
of the initial distribution (under the additional assumption
that the circuit state is bounded to a finite region of the state
space). It reads

Pðf _̄Wnfg; _̄WΨÞ
P†ðf− _̄Wnfg;− _̄WΨÞ

≃ exp

�
t

�
_̄WΨ þ

X
nf

_̄Wnf

�
=ðkbTÞ

�
;

ð107Þ

where we define the average work rates _̄WΨ ¼ t−1WΨ and
_̄Wnf ¼ t−1Wnf . Note that in the case in which the voltage
differences ΔVnf are constant we have Wnf ¼ ĪnfΔVnf ,

where Īnf ¼ t−1
R
t
0 dτInfðτÞ are the average associated

currents during the trajectory, and, therefore, Eq. (107)
can be easily expressed in terms of the probabilities

PðfĪnfg; _̄WΨÞ. If there is no external driving of the circuit

parameters, then Pð·Þ ¼ P†ð·Þ.
The fluctuation theorems in Eqs. (106) and (107) express

fundamental symmetries of energy exchange processes.
For example, the novel thermodynamic uncertainty rela-
tions [111] or the usual Onsager relations (as well as their
nonlinear extension [57]) can be recovered from them. For
completeness, a general proof of these and other fluctuation
theorems is given in Supplemental Material [109].

VII. APPLICATIONS

A. The CMOS inverter

The inverter or NOT gate is the most elementary logic
gate. It has a single logical input, which is negated in its
only output. A diagram of a possible implementation of this
gate with MOS transistors is shown in Fig. 7(a). It is
composed by one pMOS (top) and one nMOS (bottom)
transistor, with common drain and gate terminals. The
device is powered by applying a voltage difference
Vdd − Vss between source terminals. When the voltage in
the input is Vin < ðVdd þ VssÞ=2, conduction in the nMOS
transistor is suppressed, while it is enhanced in the
pMOS transistor, and, therefore, the output voltage Vout
rapidly approaches Vdd. The situation is reversed for
V in > ðVdd þ VssÞ=2, as shown in Fig. 7(b).

Now, we explain how to build a stochastic model of the
inverter within our formalism. The first step is to model
the MOS transistor as an externally controlled conduction
channel, with associated capacitances. For example, the
nMOS transistor at the bottom of the diagram in Fig. 7(a)
can be represented as in Fig. 8. There, the transistor is
represented as an externally controlled conduction channel
between source and drain. The Poisson rates λn� associated
to that channel are constructed as explained in Sec. IV C
and depend on the gate to source voltage as well as on the
drain to source voltage. The gate-body interface is modeled
as a capacitor of capacitance Cg, and another capacitor Co

takes into account the output capacitance of the transistor.
Using this mapping, we can model the full inverter with the
diagram in Fig. 9. In turn, this diagram corresponds to a set
of four conductors, in which three of them are regulated by
voltage sources, as shown in Fig. 10. The relation between
the charges and voltages in this system is given by

FIG. 7. (a) Common implementation of a NOT gate with
CMOS technology. (b) Typical deterministic output voltage as
a function of the input (for Vss ¼ −Vdd). (c) Logical symbol for
the NOT gate.

FIG. 8. Model of an nMOS transistor as an externally controlled
conduction channel between source and drain, with associated
Poisson rates λn�. The gate-body interface is represented as a
capacitor Cg, and another capacitor Co takes into account the
output capacitance. This model is just a minimal model and does
not pretend to be realistic. Other parasitic capacitances could also
be taken into account, for example, between drain and gate, but a
proper description of them must take into account the physical
dimensions of the device.
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−Co −Cg 0 Co þCg

3
7775

2
6664
Vout

V in

Vdd

Vss

3
7775;

ð108Þ

where qout is the charge of the only free conductor (the
output of the gate) and to which we refer simply as q in
the following. By comparison with Eq. (22), we can extract
the blocks C, Cm, and Cr of the capacitance matrix
(separated by lines in the previous expression). Using that
and Eq. (22), we obtain the internal energy of the circuit as
a function of the only degree of freedom q:

EðqÞ ¼ q2

4Co
þ Co

4
ΔV2 þ Cg

2
½ðV in − VddÞ2 þ ðV in − VssÞ2�;

ð109Þ

with ΔV ¼ Vdd − Vss. In the same way, from Eq. (28),
we can obtain the potential

ΦðqÞ ¼ EðqÞ þ qðVdd þ VssÞ=2; ð110Þ

and by taking its gradient we obtain the output voltage as a
function of q:

VoutðqÞ ¼ q=ð2CoÞ þ ðVdd þ VssÞ=2: ð111Þ

Also, by selecting Vss as the reference voltage to construct
the potential Ψ [Eq. (78)], we find

ΨðqÞ ¼ ΦðqÞ − qVss ¼ EðqÞ þ qΔV=2 ð112Þ

and that ΔV as defined above is the only nonequilibrium
force (with Ip, the current through the pMOS transistor, as
the associated current).
According to Eq. (98), the energy balance for this circuit

at the trajectory level is

dtΨ ¼ _Qn þ _Qp þ IpΔV; ð113Þ

where _Qn and _Qp are the heat currents associated to each of
the transistors. The irreversible entropy production is given
by Eq. (87) and for this case reads

Th _Σi ¼ −dthΩi þ hIpiΔV; ð114Þ

where T is the temperature of both transistors and hΩi ¼
hΨi − ThSi [we assume time-independent voltages, so the
driving contribution of Eq. (85) is not present]. As can
be seen from the two previous equations, for steady state
conditions (dthΨi ¼ dthSi ¼ 0), the entropy production
h _Σi reduces to the entropy flow h _Σei, and we recover the
usual expression:

Th _Σi ¼ −h _Qni − h _Qpi ¼ hIpiΔV: ð115Þ

We now build the transition rates associated to both
transistors according to the procedure in Sec. IV C. We
begin with the nMOS transistor. The voltage difference
between drain and source is ΔVDS ¼ Vout − Vss, and, thus,
its average during the transition q → q� qe, with rates
λn∓ðqÞ, is VDS¼ðq�qe=2Þ=ð2CoÞþΔV=2. For the pMOS
transistor, the voltage difference between source and drain
is ΔVSD ¼ Vdd − Vout (recall that for pMOS transistors the
references for voltage and currents are reversed), and its
average for the same transitions, this time with rates λp�ðqÞ,
is VSD ¼ −ðq� qe=2Þ=ð2CoÞ þ ΔV=2. Then, via the pro-
cedure in Sec. IV C and the fixed-voltage rates in Eq. (44),
we obtain the transition rates

FIG. 9. A possible model of the CMOS inverter. The different
conductors in the circuit (regions with the same potential) are
identified with different colors (see Fig. 10).

FIG. 10. Representation of the CMOS inverter as a set of three
regulated and one free conductors and two conduction channels.
The capacitors represent the mutual capacitances between them.
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λnþðqÞ ¼ ðI0=qeÞeðV in−Vss−V thÞ=ðnVT Þ;

λn−ðqÞ ¼ λnþðqÞe−½ðqþqe=2Þ=ð2CoÞþΔV=2�=VT ð116Þ

for the nMOS transistor and

λpþðqÞ ¼ ðI0=qeÞeðVdd−V in−V thÞ=ðnVTÞ;

λp−ðqÞ ¼ λpþðqÞe−½−ðq−qe=2Þ=ð2CoÞþΔV=2�=VT ð117Þ

for the pMOS. Thus, the master equation for the distribu-
tion Pðq; tÞ reads

dtPðq; tÞ ¼ Pðq − qe; tÞ½λn−ðq − qeÞ þ λpþðq − qeÞ�
þ Pðqþ qe; tÞ½λnþðqþ qeÞ þ λp−ðqþ qeÞ�
− Pðq; tÞ½λn−ðqÞ þ λnþðqÞ þ λp−ðqÞ þ λpþðqÞ�:

ð118Þ

The master equation can be employed, for example, to find
the steady state for given voltages V in, Vdd, and Vss. As
shown in Supplemental Material [109] and the steady state
is uniquely determined by the following recurrence rela-
tion:

PstðqÞ ¼
αp þ αnγe−ðq−qeÞ=qT

αn þ αpγeq=qT
Pstðq − qeÞ; ð119Þ

where we define the constants

αn ¼ eðV in−VssÞ=ðnVTÞ; αp ¼ eðVdd−V inÞ=ðnVTÞ; ð120Þ

and

γ0 ¼ e−ΔV=ð2VT Þ; qT ¼ 2CoVT; γ ¼ γ0e−qe=ð2qTÞ:

ð121Þ

From Eq. (119), it follows that the mean value hqist can be
obtained from the positive root x of

αpγ0eaþbx2 þ ðαn − αpÞx − αnγ0ea−b ¼ 0; ð122Þ

as hqist ¼ qT logðxÞ. The constants a and b are such that

he�ðq−hqistÞ=qT ist ¼ eqe=ð2qT Þea�b; ð123Þ

where the mean value is taken on the stationary state given
by Eq. (119) (see Supplemental Material [109]). Thus, a
and b quantify the fluctuations of the output charge around
the mean value. They are defined so that if the stationary
state is a thermal equilibrium state (as it is for Vdd ¼ Vss),
then a ¼ b ¼ 0. The constant a is a measure of how the
even moments of PstðqÞ around the mean value deviate
from those corresponding to equilibrium, while b is the
same for the odd moments. We see then that Eq. (122)
determines how the nonequilibrium fluctuations, charac-
terized by a and b, affect the expected output of the
gate hqist. If we assume that the fluctuations are always
compatible with thermal equilibrium (i.e., if a ¼ b ¼ 0),
then Eq. (122) reduces to what it is obtained from a
deterministic analysis of the circuit [Eq. (17)]. Thus, this
equation constitutes an exact stochastic generalization of
the deterministic results that to the best of our knowledge
was not obtained before.
In Fig. 11(a), we show the probability distribution for the

output charge for different values of the power and input
voltages. When there is no voltage bias applied to the gate
(Vdd ¼ −Vss ¼ 0), the distribution is just the equilibrium
one. When a bias is applied but there is no input voltage
(Vdd ¼ −Vss ¼ 5VT and V in ¼ 0), the distribution is
stretched out and it ceases to be Gaussian. The application
of a small input voltage tilts this distribution to one side,
and a further increase of the input voltage generates an
approximately Gaussian peak centered around the value

FIG. 11. (a) Probability distributions for the output charge of the inverter for different power and input voltages (qe=qT ¼ 0.1). Here
and in the other numerical results, we consider Vss ¼ −Vdd, so that ΔV ¼ 2Vdd. The dashed lines indicate the result of a deterministic
analysis. (b) Parameters a and b quantifying the deviations of the fluctuations with respect to thermal equilibrium as a function of V in;
see Eq. (123) (Vdd=VT ¼ 3 and qe=qT ¼ 0.5). We also show the average steady state current through the inverter (in units of qe=t0, with
t0 ¼ ðqe=I0Þ exp½V th=ðnVTÞ�). (c) Comparison of the transfer function obtained from a deterministic analysis and the exact one taking
into account nonequilibrium fluctuations (Vdd=VT ¼ 3 and qe=qT ¼ 0.5).
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corresponding to the deterministic solution. We see that the
distribution of the output charge is, in general, asymmetric
with respect to the deterministic value. Thus, its mean value
and the deterministic one differ. This result is further
evidenced in Fig. 11(b), where we plot the parameters a
and b as a function of the input voltage. We see that the
largest deviations from equilibrium occur around zero input
voltage, when the two transistors are equally activated,
while they rapidly decrease as one of the transistors is
more activated than the other. What happens here is that for
large positive (negative) V in the output conductor is
approximately at equilibrium with the source Vss (Vdd).
Consequently, the current through the device (and, there-
fore, the entropy production) follows a similar pattern.
Finally, in Fig. 11(c), we show the deviations of the actual
transfer function of the inverter from the deterministic one,
caused by nonequilibrium fluctuations.
We now turn to the analysis of the current fluctuations.

For this analysis, we employ the method for full counting
statistics [41,45], that we review in Supplemental Material
[109]. This method allows one to evaluate the characteristic
function associated to the current fluctuations in terms of
the generator of the master equation. Then, the character-
istic function can be inverted to obtain the probability
distribution. We consider the number Nt of charges that got
through the pMOS transistor during a time t, starting from
the stationary distribution. In Fig. 12(a), we show the
probability distribution of Nt for different input voltages,
with t ¼ 10−1t0, where t0 ¼ ðqe=I0Þ exp½V th=ðnVTÞ� is the
natural timescale for this problem. Also, in Fig. 12(b), we
illustrate the DFT in Eq. (106), which in this case reads

PðNtÞ
Pð−NtÞ

¼ eNtΔV=VT ; ð124Þ

assuming an initial state PeqðqÞ ∝ e−βΨðqÞ, with ΨðqÞ given
by Eq. (112).
From Figs. 11(a) and 12(a), we see that, except when the

number of charges is too low [as in the bottom in Fig. 12(a)],
the deterministic solution matches the most probable result
according to the stochastic treatment. This result is analo-
gous to what is formally shown in the case of chemical
reaction networks using large deviation theory [92].
These results and methods set the stage for more

interesting problems, since the NOT gate is a basic primitive
in electronic design in terms of which more complex
devices can be built. For example, connecting the output
of the gate back to its input through some conduction
channel, we can generate self-sustained oscillations.
Connecting two NOT gates in a loop, we obtain a bistable
system with two metastable NESSs, which is the basis of
many designs of electronic memories and also of the next
example. More complex logic gates can be modeled in the
same way. In this section we analyzed only the stationary
distribution of the inverter for a given input voltage,

although in a real application the energetic cost of switch-
ing the inputs is a significant contribution to the total
entropy production. This cost can be analyzed by letting the
input change in time in a predefined way. Alternatively, it
can also be studied in autonomous circuits (i.e., not
requiring time-dependent external driving) displaying bist-
ability or limit cycles, as is done in the next section.

B. A full-CMOS probabilistic bit

A probabilistic bit (p-bit), or binary stochastic neuron,
is a device with a single output b that can ideally take only
two values, let us say 1 and −1. It outputs the value 1 with
probability p and −1 with probability 1 − p. The value
of p is controlled by an input I. For large positive values
of I, p → 1, while for large negative values p → 0. In a
collection of N of these elementary devices, the inputs
fIigi¼1;…;N could be adjusted as a function of the instanta-
neous state B ¼ ðb1; b2;…; bNÞ, and in this way

FIG. 12. (a) Probability distributions for the number of charges
Nt that go through the pMOS transistor during a time t ¼ 10−1t0
in the stationary state, for different input voltages (qe=qT ¼ 0.1).
Dashed lines indicate the values obtained from a deterministic
analysis. (b) PðNtÞ=Pð−NtÞ ratio as a function of Nt for two
different power voltages (qe=qT ¼ 0.01). The dots correspond to
the numerical results obtained with the method of full counting
statistics, and the dashed lines to the expected result according to
the DFT in Eq. (124).
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correlations between different p-bits can be established
[14]. For example, given a cost function EðBÞ, it is possible
to derive functional relations IiðBÞ such that the state B
occurs with probability PðBÞ ∝ e−EðBÞ. The function E can
then be chosen so that its minimum (the most probable
state) encodes the solution to some problem of inter-
est [112].
There have been recent proposals to implement p-bits

with noisy electronic circuits. The most relevant employs
magnetic tunnel junctions (MTJs), a technology being used
for some commercial memories [113], modified on purpose
so that they are sensitive to thermal noise (by lowering the
energy barrier separating the two possible states represent-
ing one bit) [13,14]. A previous proposal considers a
“probabilistic switch” [11,114]: a regular CMOS inverter
which is driven by external noise at its input, so that its
output fluctuates between the two possible values. The
advantage of this second proposal is that it is based on
CMOS circuits only (not on less common devices like
MTJs). However, its main drawback is that the intrinsic
noise is actually neglected instead of being exploited as a
resource. The reason is that the description of the CMOS
inverter is purely deterministic, and, therefore, access to an
external source of noise is assumed. Also, the noise is
considered to be Gaussian, which as we see in the last
section is not always the case. These limitations are, of
course, related to the difficulty of describing intrinsic noise
in nonlinear electronic circuits, as discussed in Sec. I. As
we see next, our formalism allows one to overcome those
limitations, which highlights its practical value.
We propose a full-CMOS design for a p-bit that is self-

sufficient: Its stochastic behavior is due to the intrinsic
thermal noise, so no external source of noise is necessary.
Also, while in p-bits based on MTJs the transition rate or
error probability is fixed by the fabrication process (for a
given temperature), our design allows one to control this
parameter on the fly by just changing the power voltage.
The basic circuit is shown in Fig. 13 and is composed of
two coupled NOT gates as in regular SRAM cells. The
logical circuit in Fig. 13(a) has two stable states: b ¼ 1 and
b̄ ¼ −1, or b ¼ −1 and b̄ ¼ 1. The corresponding CMOS

implementation in Fig. 13(b) has two degrees of freedom:
the voltages v1 and v2 (or, alternatively, the charges q1 and
q2) at the output of each inverter. We consider Vout ¼ v1 to
be the output used to monitor the state of the bit. If the
powering voltage is above a critical value V�

dd [that for
n ¼ 1 can be found to be V�

dd ¼ VT lnð2Þ [90] ], then the
deterministic equations for the circuit have two possible
steady solutions, which correspond to the two stable logical
states in Fig. 13(a). At the stochastic level, they correspond
to two metastable NESSs, for which Vout ≃ Vdd or
Vout ≃ −Vdd, respectively.
A stochastic model for the circuit in Fig. 13(b) can be

built as before, by employing the mapping in Fig. 8 and
constructing the rates associated to each transistor with the
procedure in Sec. IV C. In this case, this construction is
done automatically by a custom software package, that is
also able to deal with general circuits [115]. The steady
state distribution can be obtained by constructing the
generator of the master equation in Eq. (12) (truncated
to some maximum number of charges) and computing its
eigenvector of zero eigenvalue, as shown in Fig. 14(a).
Also, the corresponding stochastic dynamics can be simu-
lated with the Gillespie algorithm. In this way, we can
generate stochastic trajectories. For example, in Fig. 14(b),
we show two trajectories for different values of the
power voltage. To obtain those results, we consider the
following parameters: VT ¼ 26 mV (room temperature),
Cg ¼ 50 aF, and Co ¼ 10−2Cg. Crucially, these values of
capacitances are compatible to what is achieved in
modern sub-7-nm fabrication processes [101]. Also, for
simplicity, we take n ¼ 1, and, as before, the parameters I0
and V th of the transistors just fix the timescale
t0 ¼ ðqe=I0Þ exp½V th=ðnVTÞ�. We clearly observe random
transitions, or errors, between the two metastable NESSs
and that the transition or error rate depends on the power
voltage Vdd. This result is easily understood: Frequent
random transitions are expected whenever the standard
deviation of the fluctuations around the output voltage,
which can be estimated as σV ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kbT=½2ðCo þ CgÞ�
p

, is
comparable to the mean value hVouti ≃�Vdd. Thus, one
can control the transition rate by changing the powering

FIG. 13. (a) A bistable circuit constructed with two NOT gates, representing a bit. (b) Its CMOS implementation. (c) Complete design
of a p-bit. The bistable circuit constituting the bit is shown in black and is the same as in (b). The biasing circuit is shown in magenta.
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voltage Vdd or, for fixed Vdd > V�
dd, by changing the

temperature and or the size of the transistors (which
modifies the capacitances Cg and Co). Indeed, to a
very good approximation, the waiting time τ between
transitions is exponentially distributed, PðτÞ ¼ λe−λτ, and
the transition rate λ can be seen to scale as λ ∝
exp ½−2ðVdd=σVÞ2=ðnþ 2Þ� to dominant order in
Vdd=σV ≫ 1 [90]. Note that for the previous parameters
V�
dd=σV is of the order of one at room temperature but that it

increases as the square root of the size of the transistors.
Therefore, the transition rate λ decreases exponentially in
the size of the transistors. As a consequence, the exploi-
tation of these naturally occurring fluctuations as a resource
at room temperature is a real possibility only for highly
scaled, state of the art fabrication processes, as the ones
considered above. The error rate λ can be computed from
the trajectories generated by the Gillespie algorithm or
also by more efficient spectral methods as explained in
Ref. [90]. The results are shown in Fig. 14(c) for two
different scales.
To complete the construction of the p-bit, it is necessary

to provide a mechanism to bias its output. There are
different ways to achieve this construction, and here we
focus on the circuit in Fig. 13(c), where the biasing circuit
is colored. It works as follows. A bias voltage Vb > 0 is
coupled to the outputs of the two inverters which form the
core of the p-bit through the drain-source channel of two
transistors. The transistor influencing the output of the first
inverter is an nMOS, while the one influencing the output
of the second inverter is a pMOS. Both transistors have
their bodies grounded, such that their activation depends
only on the gate-body voltage V in (the Poisson rates

corresponding to this configuration are discussed in
Supplemental Material [109]). For V in ¼ 0, both transistors
are equally activated, and the output of both inverters is
very weakly biased toward Vb. For V in > 0, conduction
through the nMOS is enhanced, while it is suppressed for
the pMOS, and, therefore, only the output of the first
inverter is biased toward Vb. In that case, the symmetry
between the two possible metastable NESSs (Vout ≃ Vdd or
Vout ≃ −Vdd) is broken in favor of the one with Vout ≃ Vdd.
The situation is reversed for V in < 0. In Fig. 14(d), we
show two sample trajectories of the output voltage Vout for
a positive and a negative value of the input voltage V in. We
see that Vout is indeed biased and spends more time around
positive or negative values, respectively. The parameters of
the transistors are the same as before, with the exception
that the specific current I00 of the transistors in the biasing
circuit is one order of magnitude lower than the others
(I00 ¼ I0=10). Also, we consider a bias voltage Vb ¼ VT . In
Fig. 14(e), we show how the probability p ¼ PðVout > 0Þ
of the output being positive depends on the input voltage.
We see that p is indeed given by a sigmoidal function
of V in, similar to the typical activation functions considered
in artificial neural networks. Note, however, that, due to the
asymmetric I-V curves of the transistors in the biasing
circuit, the balanced case PðVout > 0Þ ¼ 1=2 is not
achieved at V in ¼ 0 but for a slightly positive V in.
We now analyze the energy consumption of the p-bit.

For this analysis, we obtain the steady state distribution as
before and compute the mean values of current and heat
rates associated with each transistor according to Eqs. (57)
and (61), respectively. By symmetry, for the circuit con-
stituting the core of the bit in Fig. 13(b), the steady state

FIG. 14. (a) 2D histogram of the steady state distribution. (b) Output voltage as a function of time for two different power voltages.
(c) Transition rate λ as a function of the power voltage. Dashed lines correspond to the spectral method developed in Ref. [90], and dots
to the calculation of λ from stochastic trajectories like the ones in (b). In the last case, the error bars indicate the uncertainty in the
determination of λ (95% confidence interval) and can be reduced by generating longer trajectories. The orange line and dots correspond
to doubling the scale of the device (Co;g → 2Co;g). (d) Output voltage as a function of time for two different input voltages V in.
(e) Probability of the output being positive as a function of the input voltage. The insets show the steady state distribution for
V in=VT ¼ �1.1. In all cases, the parameters are VT ¼ 26 mV, Cg ¼ 50 aF, Co ¼ 10−2Cg, and n ¼ 1.
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electric current through all four transistors is the same, and
its dependence on Vdd is shown in Fig. 15(a). We see that it
increases monotonically for low powering voltages and that
it develops a peak right after the transition into bistability
[at Vdd ¼ VT logð2Þ], after which it settles to a constant
value. This maximum in the current close to the transition
into bistability is associated to the occurrence of errors or
transitions between different NESSs: Each switching event
involves the relaxation of previously stored charge, which
adds up to the continuous flow of charge in each NESS.
This result is also seen in Fig. 15(b), where we plot the
entropy production rate and its derivative with respect to
the powering voltage. Since we are considering steady state
conditions, we have that h _Σi ¼ h _Σei ¼ ð−1=TÞðh _Qp1i þ
h _Qn1i þ h _Qp2i þ h _Qn2iÞ, where h _Qðn=pÞð1=2Þi is the rate of
heat dissipation in the nMOS or pMOS transistor of the first
or second inverter. Interestingly, we see that the transition
to bistability is signaled by a maximum in the derivative of
h _Σi with respect to Vdd.
In Fig. 15(c), we show all the currents for the full circuit

in Fig. 13(c), including the bias circuit, for Vb=VT ¼ 1 and
V in ¼ 0. We see that the behavior of the currents through
the transistor in the core circuit is qualitatively similar as
the previous case, although the currents are naturally not
all equal anymore. In Fig. 15(d), we show the total
entropy production and its derivative for the full circuit.
In this case, we split the total entropy production rate as
h _Σi ¼ h _Σicore þ h _Σibias, where h _Σicore ¼ ð−1=TÞðh _Qp1i þ
h _Qn1i þ h _Qp2i þ h _Qn2iÞ and h _Σibias ¼ ð−1=TÞðh _Qpbi þ
h _QnbiÞ are the rate entropy production rates corresponding

to the bit core and biasing circuits (h _Qðn=pÞbi is the rate of heat
dissipation in the nMOS or pMOS biasing transistor). We see
that the transition to bistability is still signaled by amaximum
in the derivative of h _Σi and that the dissipation associated
to the biasing circuit is a small fraction of the total one.
Finally, the behavior with respect to the input voltage V in

with fixed powering voltage Vdd=VT ¼ 1.15 and bias
voltage Vb=VT ¼ 1 is shown in Figs. 15(e) and 15(f). In
Fig. 15(f), we see that the entropy production rate has a
maximum value at zero bias. This result is again due to the
occurrence of transitions between different NESSs, which,
of course, decrease when the bias increases in any direction.
The average total dissipated heat per generated bit is

given by Q̄ ¼ Th _Σi=λ. It is interesting to note that, for
transitions generated by intrinsic thermal noise, Q̄
decreases as the speed or transition rate increases. For
example, by reducing the powering voltage Vdd (always
above V�

dd), the total rate of heat dissipation Th _Σi decreases
[Figs. 15(b) and 15(d)], while the transition rate λ increases
exponentially [Fig. 14(c)], and, therefore, Q̄ decreases
exponentially. For Vdd=VT ≃ 1.1, we have an average
dissipated heat per generated bit on the order of
Q̄ ¼ Th _Σi=λ ≃ 2 × 103kbT ≃ 10 aJ. This result can be
compared to the MTJ p-bit in Ref. [14] that requires an
energy of 2 fJ per random bit, 2 orders of magnitude higher
than the previous estimation.

VIII. DISCUSSION

We have presented a formalism for the construction
of stochastic models of nonlinear electronic circuits in a

FIG. 15. For the core circuit in Fig. 13(b), we show (a) the average electric current (which is the same for all four transistors) and
(b) the total entropy production rate and its derivative with respect to the powering voltage. For the full circuit in Fig. 13(c) with
Vb ¼ VT and V in ¼ 0, we show (c) the average electric current through all the transistors and (d) the total entropy production rate and its
derivative. In this case, we also split the contributions to the entropy production associated with the transistors of the core and biasing
circuits. In (e) and (f), we show, respectively, the average current through all the transistors and the entropy production rate for the full
circuit, this time as a function of the input voltage for Vdd=VT ¼ 1.15 and Vb=VT ¼ 1. The other parameters are VT ¼ 26 mV,
Cg ¼ 50 aF, Co ¼ 10−2Cg, and n ¼ 1.
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thermodynamically consistent way. Devices with arbitrary
I-V curves can be described, provided that their current
fluctuations display shot noise. A complete analysis of the
stochastic thermodynamics of these models was carried out.
The relevant thermodynamic potentials were identified, and
the different contributions to the irreversible entropy pro-
duction were characterized. All these quantities were
extended to individual trajectories, based on which we
presented different detailed and integral fluctuation theo-
rems. As a first application, we have constructed a stochastic
model of a subthreshold CMOS inverter, or NOT gate. We
have shown how to analytically find the steady state of
the resulting master equation. Based on that solution, we
analyzed how the nonequilibrium thermal fluctuations
induce modifications in the transfer function of the gate.
Also, we showed how to compute the full counting statistics
of the current fluctuations and in that way illustrated a
detailed fluctuation theorem. Finally, we proposed a full-
CMOS design of a probabilistic bit, or binary stochastic
neuron, in which intrinsic thermal noise is exploited as a
resource to generate random bits of information in a
controllable way. The energy consumption of our design
is several times lower than in previous proposals.
Of course, the formalism has some limitations, which

are important to discuss here. In first place, only devices
displaying shot noise can be described. This limitation
excludes, for example, regular resistors or MOS transistors
in general modes of operation. In addition, it is not possible
to describe inertial effects (i.e., inductances). These could
be included at the price of mixing discrete and continuous
variations of charge. Nevertheless, there is little practical
motivation for this inclusion, since it is difficult to integrate
inductances in nanoscale electronic circuits [116], and,
therefore, inertial effects might be relevant only at
extremely high frequencies. There are other possible
extensions of the formalism, which are, however, less
relevant, since they capture effects that can be actually
emulated with the formalism as presented here. For
example, although the stochastic dynamics we have con-
sidered is Markovian, non-Markovian effects can be
described by considering a given circuit as a part of a
larger one (something known as “Markovian embedding”).
Finally, although we have not focused on single-electron
devices, our formalism can be directly applied to them. In
that context, there are “cotunneling” effects (events in
which two or more transitions happen at the same time,
possibly leaving the state of the circuit unchanged) that can
become relevant in the Coulomb blockade regime and
which our formalism does not take into account [40].
Our work bridges between different subjects and com-

munities. It shows how to employ the methods of stochastic
thermodynamics and single-electron devices to model other
kinds of circuits that are traditionally first described
deterministically and then supplemented by an approximate
treatment of the noise. In this way, we can describe the

fluctuations in those circuits on a rigorous basis. This
description is relevant and timely in view of the impressive
reduction in the size of CMOS circuits and the need for new
energy-efficient computing paradigms. On another front,
the great versatility in the fabrication and control of
electronic circuits makes them an excellent platform to
study complex phenomena in statistical physics and non-
equilibrium thermodynamics. Thus, our formalism also
offers a valuable bridge between theory and experiment. In
the future, it could be interesting to explore the connection
between the low-level description we propose here and the
more abstract treatments of stochastic thermodynamics of
complex circuits in Refs. [74,75], in particular, to identify
under which conditions the fundamental bounds that they
obtained can be approached within a given technology.
After finishing this work, we became aware of a recent

article [9], in which a similar stochastic description is
employed to compute the error rate of a low-power SRAM
memory cell. It should be noted that the transition rates
considered in that article are actually not thermodynami-
cally consistent; i.e., they do not respect the local detailed
balance conditions. Also, after submission of our work, a
related paper appeared [117], using ST to model logical
operations using single-electron devices.
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